]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_lint/src/types.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / compiler / rustc_lint / src / types.rs
CommitLineData
dfeec247 1use crate::{LateContext, LateLintPass, LintContext};
3dfed10e 2use rustc_ast as ast;
74b04a01 3use rustc_attr as attr;
dfeec247 4use rustc_data_structures::fx::FxHashSet;
064997fb 5use rustc_errors::{fluent, Applicability, DiagnosticMessage};
dfeec247 6use rustc_hir as hir;
94222f64 7use rustc_hir::{is_range_literal, Expr, ExprKind, Node};
064997fb 8use rustc_macros::LintDiagnostic;
c295e0f8 9use rustc_middle::ty::layout::{IntegerExt, LayoutOf, SizeSkeleton};
ba9703b0 10use rustc_middle::ty::subst::SubstsRef;
064997fb 11use rustc_middle::ty::{self, AdtKind, DefIdTree, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
dfeec247
XL
12use rustc_span::source_map;
13use rustc_span::symbol::sym;
94222f64 14use rustc_span::{Span, Symbol, DUMMY_SP};
04454e1e 15use rustc_target::abi::{Abi, WrappingRange};
c295e0f8 16use rustc_target::abi::{Integer, TagEncoding, Variants};
3dfed10e 17use rustc_target::spec::abi::Abi as SpecAbi;
9fa01778 18
dfeec247 19use std::cmp;
cdc7bbd5 20use std::iter;
29967ef6 21use std::ops::ControlFlow;
9fa01778 22
b039eaaf 23declare_lint! {
1b1a35ee
XL
24 /// The `unused_comparisons` lint detects comparisons made useless by
25 /// limits of the types involved.
26 ///
27 /// ### Example
28 ///
29 /// ```rust
30 /// fn foo(x: u8) {
31 /// x >= 0;
32 /// }
33 /// ```
34 ///
35 /// {{produces}}
36 ///
37 /// ### Explanation
38 ///
39 /// A useless comparison may indicate a mistake, and should be fixed or
40 /// removed.
b039eaaf
SL
41 UNUSED_COMPARISONS,
42 Warn,
43 "comparisons made useless by limits of the types involved"
44}
45
46declare_lint! {
1b1a35ee
XL
47 /// The `overflowing_literals` lint detects literal out of range for its
48 /// type.
49 ///
50 /// ### Example
51 ///
52 /// ```rust,compile_fail
53 /// let x: u8 = 1000;
54 /// ```
55 ///
56 /// {{produces}}
57 ///
58 /// ### Explanation
59 ///
60 /// It is usually a mistake to use a literal that overflows the type where
61 /// it is used. Either use a literal that is within range, or change the
62 /// type to be within the range of the literal.
b039eaaf 63 OVERFLOWING_LITERALS,
9fa01778
XL
64 Deny,
65 "literal out of range for its type"
b039eaaf
SL
66}
67
5bcae85e 68declare_lint! {
1b1a35ee
XL
69 /// The `variant_size_differences` lint detects enums with widely varying
70 /// variant sizes.
71 ///
72 /// ### Example
73 ///
74 /// ```rust,compile_fail
75 /// #![deny(variant_size_differences)]
76 /// enum En {
77 /// V0(u8),
78 /// VBig([u8; 1024]),
79 /// }
80 /// ```
81 ///
82 /// {{produces}}
83 ///
84 /// ### Explanation
85 ///
86 /// It can be a mistake to add a variant to an enum that is much larger
87 /// than the other variants, bloating the overall size required for all
88 /// variants. This can impact performance and memory usage. This is
89 /// triggered if one variant is more than 3 times larger than the
90 /// second-largest variant.
91 ///
92 /// Consider placing the large variant's contents on the heap (for example
93 /// via [`Box`]) to keep the overall size of the enum itself down.
94 ///
95 /// This lint is "allow" by default because it can be noisy, and may not be
96 /// an actual problem. Decisions about this should be guided with
97 /// profiling and benchmarking.
98 ///
99 /// [`Box`]: https://doc.rust-lang.org/std/boxed/index.html
5bcae85e
SL
100 VARIANT_SIZE_DIFFERENCES,
101 Allow,
102 "detects enums with widely varying variant sizes"
103}
104
b039eaaf
SL
105#[derive(Copy, Clone)]
106pub struct TypeLimits {
107 /// Id of the last visited negated expression
ba9703b0 108 negated_expr_id: Option<hir::HirId>,
b039eaaf
SL
109}
110
532ac7d7
XL
111impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
112
b039eaaf
SL
113impl TypeLimits {
114 pub fn new() -> TypeLimits {
ba9703b0 115 TypeLimits { negated_expr_id: None }
b039eaaf
SL
116 }
117}
118
48663c56
XL
119/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
120/// Returns `true` iff the lint was overridden.
f035d41b
XL
121fn lint_overflowing_range_endpoint<'tcx>(
122 cx: &LateContext<'tcx>,
48663c56
XL
123 lit: &hir::Lit,
124 lit_val: u128,
125 max: u128,
dfeec247 126 expr: &'tcx hir::Expr<'tcx>,
60c5eb7d 127 ty: &str,
48663c56
XL
128) -> bool {
129 // We only want to handle exclusive (`..`) ranges,
130 // which are represented as `ExprKind::Struct`.
f2b60f7d
FG
131 let par_id = cx.tcx.hir().get_parent_node(expr.hir_id);
132 let Node::ExprField(field) = cx.tcx.hir().get(par_id) else { return false };
133 let field_par_id = cx.tcx.hir().get_parent_node(field.hir_id);
134 let Node::Expr(struct_expr) = cx.tcx.hir().get(field_par_id) else { return false };
135 if !is_range_literal(struct_expr) {
136 return false;
137 };
138 let ExprKind::Struct(_, eps, _) = &struct_expr.kind else { return false };
139 if eps.len() != 2 {
140 return false;
141 }
142
74b04a01 143 let mut overwritten = false;
f2b60f7d
FG
144 // We can suggest using an inclusive range
145 // (`..=`) instead only if it is the `end` that is
146 // overflowing and only by 1.
147 if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
148 cx.struct_span_lint(OVERFLOWING_LITERALS, struct_expr.span, |lint| {
149 let mut err = lint.build(fluent::lint::range_endpoint_out_of_range);
150 err.set_arg("ty", ty);
151 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
152 use ast::{LitIntType, LitKind};
153 // We need to preserve the literal's suffix,
154 // as it may determine typing information.
155 let suffix = match lit.node {
156 LitKind::Int(_, LitIntType::Signed(s)) => s.name_str(),
157 LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str(),
158 LitKind::Int(_, LitIntType::Unsuffixed) => "",
159 _ => bug!(),
160 };
161 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
162 err.span_suggestion(
163 struct_expr.span,
164 fluent::lint::suggestion,
165 suggestion,
166 Applicability::MachineApplicable,
167 );
168 err.emit();
169 overwritten = true;
170 }
171 });
48663c56 172 }
74b04a01 173 overwritten
48663c56
XL
174}
175
176// For `isize` & `usize`, be conservative with the warnings, so that the
177// warnings are consistent between 32- and 64-bit platforms.
5869c6ff 178fn int_ty_range(int_ty: ty::IntTy) -> (i128, i128) {
48663c56 179 match int_ty {
5869c6ff
XL
180 ty::IntTy::Isize => (i64::MIN.into(), i64::MAX.into()),
181 ty::IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
182 ty::IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
183 ty::IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
184 ty::IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
185 ty::IntTy::I128 => (i128::MIN, i128::MAX),
48663c56
XL
186 }
187}
188
5869c6ff 189fn uint_ty_range(uint_ty: ty::UintTy) -> (u128, u128) {
29967ef6 190 let max = match uint_ty {
5869c6ff
XL
191 ty::UintTy::Usize => u64::MAX.into(),
192 ty::UintTy::U8 => u8::MAX.into(),
193 ty::UintTy::U16 => u16::MAX.into(),
194 ty::UintTy::U32 => u32::MAX.into(),
195 ty::UintTy::U64 => u64::MAX.into(),
196 ty::UintTy::U128 => u128::MAX,
29967ef6
XL
197 };
198 (0, max)
48663c56
XL
199}
200
f035d41b 201fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
48663c56
XL
202 let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
203 let firstch = src.chars().next()?;
204
205 if firstch == '0' {
206 match src.chars().nth(1) {
ba9703b0 207 Some('x' | 'b') => return Some(src),
48663c56
XL
208 _ => return None,
209 }
210 }
211
212 None
213}
214
215fn report_bin_hex_error(
f035d41b 216 cx: &LateContext<'_>,
dfeec247 217 expr: &hir::Expr<'_>,
48663c56
XL
218 ty: attr::IntType,
219 repr_str: String,
220 val: u128,
221 negative: bool,
222) {
ba9703b0 223 let size = Integer::from_attr(&cx.tcx, ty).size();
74b04a01
XL
224 cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
225 let (t, actually) = match ty {
226 attr::IntType::SignedInt(t) => {
6a06907d
XL
227 let actually = if negative {
228 -(size.sign_extend(val) as i128)
229 } else {
230 size.sign_extend(val) as i128
231 };
74b04a01
XL
232 (t.name_str(), actually.to_string())
233 }
234 attr::IntType::UnsignedInt(t) => {
29967ef6 235 let actually = size.truncate(val);
74b04a01
XL
236 (t.name_str(), actually.to_string())
237 }
238 };
064997fb 239 let mut err = lint.build(fluent::lint::overflowing_bin_hex);
6a06907d
XL
240 if negative {
241 // If the value is negative,
242 // emits a note about the value itself, apart from the literal.
064997fb
FG
243 err.note(fluent::lint::negative_note);
244 err.note(fluent::lint::negative_becomes_note);
6a06907d 245 } else {
064997fb 246 err.note(fluent::lint::positive_note);
6a06907d 247 }
f035d41b 248 if let Some(sugg_ty) =
5099ac24 249 get_type_suggestion(cx.typeck_results().node_type(expr.hir_id), val, negative)
74b04a01 250 {
064997fb 251 err.set_arg("suggestion_ty", sugg_ty);
74b04a01
XL
252 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
253 let (sans_suffix, _) = repr_str.split_at(pos);
254 err.span_suggestion(
255 expr.span,
064997fb 256 fluent::lint::suggestion,
74b04a01
XL
257 format!("{}{}", sans_suffix, sugg_ty),
258 Applicability::MachineApplicable,
259 );
260 } else {
064997fb 261 err.help(fluent::lint::help);
74b04a01 262 }
48663c56 263 }
064997fb
FG
264 err.set_arg("ty", t);
265 err.set_arg("lit", repr_str);
266 err.set_arg("dec", val);
267 err.set_arg("actually", actually);
74b04a01
XL
268 err.emit();
269 });
48663c56
XL
270}
271
272// This function finds the next fitting type and generates a suggestion string.
273// It searches for fitting types in the following way (`X < Y`):
274// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
275// - `-iX` => `iY`
276// - `uX` => `uY`
277//
278// No suggestion for: `isize`, `usize`.
60c5eb7d 279fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
5869c6ff
XL
280 use ty::IntTy::*;
281 use ty::UintTy::*;
48663c56
XL
282 macro_rules! find_fit {
283 ($ty:expr, $val:expr, $negative:expr,
284 $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
285 {
286 let _neg = if negative { 1 } else { 0 };
287 match $ty {
288 $($type => {
289 $(if !negative && val <= uint_ty_range($utypes).1 {
60c5eb7d 290 return Some($utypes.name_str())
48663c56
XL
291 })*
292 $(if val <= int_ty_range($itypes).1 as u128 + _neg {
60c5eb7d 293 return Some($itypes.name_str())
48663c56
XL
294 })*
295 None
dc9dc135 296 },)+
48663c56
XL
297 _ => None
298 }
299 }
300 }
301 }
1b1a35ee 302 match t.kind() {
48663c56
XL
303 ty::Int(i) => find_fit!(i, val, negative,
304 I8 => [U8] => [I16, I32, I64, I128],
305 I16 => [U16] => [I32, I64, I128],
306 I32 => [U32] => [I64, I128],
307 I64 => [U64] => [I128],
308 I128 => [U128] => []),
309 ty::Uint(u) => find_fit!(u, val, negative,
310 U8 => [U8, U16, U32, U64, U128] => [],
311 U16 => [U16, U32, U64, U128] => [],
312 U32 => [U32, U64, U128] => [],
313 U64 => [U64, U128] => [],
314 U128 => [U128] => []),
315 _ => None,
316 }
317}
318
f035d41b
XL
319fn lint_int_literal<'tcx>(
320 cx: &LateContext<'tcx>,
48663c56 321 type_limits: &TypeLimits,
dfeec247 322 e: &'tcx hir::Expr<'tcx>,
48663c56 323 lit: &hir::Lit,
5869c6ff 324 t: ty::IntTy,
48663c56
XL
325 v: u128,
326) {
29967ef6 327 let int_type = t.normalize(cx.sess().target.pointer_width);
ba9703b0 328 let (min, max) = int_ty_range(int_type);
48663c56 329 let max = max as u128;
ba9703b0 330 let negative = type_limits.negated_expr_id == Some(e.hir_id);
48663c56
XL
331
332 // Detect literal value out of range [min, max] inclusive
333 // avoiding use of -min to prevent overflow/panic
334 if (negative && v > max + 1) || (!negative && v > max) {
335 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
336 report_bin_hex_error(
337 cx,
338 e,
339 attr::IntType::SignedInt(ty::ast_int_ty(t)),
340 repr_str,
341 v,
342 negative,
343 );
48663c56
XL
344 return;
345 }
346
f2b60f7d
FG
347 if lint_overflowing_range_endpoint(cx, lit, v, max, e, t.name_str()) {
348 // The overflowing literal lint was overridden.
349 return;
48663c56
XL
350 }
351
74b04a01 352 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
064997fb
FG
353 let mut err = lint.build(fluent::lint::overflowing_int);
354 err.set_arg("ty", t.name_str());
355 err.set_arg(
356 "lit",
6a06907d
XL
357 cx.sess()
358 .source_map()
359 .span_to_snippet(lit.span)
360 .expect("must get snippet from literal"),
064997fb
FG
361 );
362 err.set_arg("min", min);
363 err.set_arg("max", max);
364 err.note(fluent::lint::note);
6a06907d 365 if let Some(sugg_ty) =
5099ac24 366 get_type_suggestion(cx.typeck_results().node_type(e.hir_id), v, negative)
6a06907d 367 {
064997fb
FG
368 err.set_arg("suggestion_ty", sugg_ty);
369 err.help(fluent::lint::help);
6a06907d
XL
370 }
371 err.emit();
74b04a01 372 });
48663c56
XL
373 }
374}
375
f035d41b
XL
376fn lint_uint_literal<'tcx>(
377 cx: &LateContext<'tcx>,
dfeec247 378 e: &'tcx hir::Expr<'tcx>,
48663c56 379 lit: &hir::Lit,
5869c6ff 380 t: ty::UintTy,
48663c56 381) {
29967ef6 382 let uint_type = t.normalize(cx.sess().target.pointer_width);
48663c56
XL
383 let (min, max) = uint_ty_range(uint_type);
384 let lit_val: u128 = match lit.node {
385 // _v is u8, within range by definition
386 ast::LitKind::Byte(_v) => return,
387 ast::LitKind::Int(v, _) => v,
388 _ => bug!(),
389 };
390 if lit_val < min || lit_val > max {
dc9dc135
XL
391 let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
392 if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
e74abb32 393 match par_e.kind {
48663c56 394 hir::ExprKind::Cast(..) => {
1b1a35ee 395 if let ty::Char = cx.typeck_results().expr_ty(par_e).kind() {
74b04a01 396 cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
064997fb 397 lint.build(fluent::lint::only_cast_u8_to_char)
74b04a01
XL
398 .span_suggestion(
399 par_e.span,
064997fb 400 fluent::lint::suggestion,
74b04a01
XL
401 format!("'\\u{{{:X}}}'", lit_val),
402 Applicability::MachineApplicable,
403 )
404 .emit();
405 });
48663c56
XL
406 return;
407 }
408 }
48663c56
XL
409 _ => {}
410 }
411 }
f2b60f7d
FG
412 if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, t.name_str()) {
413 // The overflowing literal lint was overridden.
414 return;
415 }
48663c56 416 if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
5869c6ff
XL
417 report_bin_hex_error(
418 cx,
419 e,
420 attr::IntType::UnsignedInt(ty::ast_uint_ty(t)),
421 repr_str,
422 lit_val,
423 false,
424 );
48663c56
XL
425 return;
426 }
74b04a01 427 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
064997fb
FG
428 lint.build(fluent::lint::overflowing_uint)
429 .set_arg("ty", t.name_str())
430 .set_arg(
431 "lit",
ba9703b0
XL
432 cx.sess()
433 .source_map()
434 .span_to_snippet(lit.span)
435 .expect("must get snippet from literal"),
064997fb
FG
436 )
437 .set_arg("min", min)
438 .set_arg("max", max)
439 .note(fluent::lint::note)
5e7ed085 440 .emit();
74b04a01 441 });
48663c56
XL
442 }
443}
444
f035d41b
XL
445fn lint_literal<'tcx>(
446 cx: &LateContext<'tcx>,
48663c56 447 type_limits: &TypeLimits,
dfeec247 448 e: &'tcx hir::Expr<'tcx>,
48663c56
XL
449 lit: &hir::Lit,
450) {
1b1a35ee 451 match *cx.typeck_results().node_type(e.hir_id).kind() {
48663c56
XL
452 ty::Int(t) => {
453 match lit.node {
ba9703b0 454 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
48663c56
XL
455 lint_int_literal(cx, type_limits, e, lit, t, v)
456 }
457 _ => bug!(),
458 };
459 }
dfeec247 460 ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
48663c56
XL
461 ty::Float(t) => {
462 let is_infinite = match lit.node {
dfeec247 463 ast::LitKind::Float(v, _) => match t {
5869c6ff
XL
464 ty::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
465 ty::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
dfeec247 466 },
48663c56
XL
467 _ => bug!(),
468 };
469 if is_infinite == Ok(true) {
74b04a01 470 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
064997fb
FG
471 lint.build(fluent::lint::overflowing_literal)
472 .set_arg("ty", t.name_str())
473 .set_arg(
474 "lit",
ba9703b0
XL
475 cx.sess()
476 .source_map()
477 .span_to_snippet(lit.span)
478 .expect("must get snippet from literal"),
064997fb
FG
479 )
480 .note(fluent::lint::note)
ba9703b0 481 .emit();
74b04a01 482 });
48663c56
XL
483 }
484 }
485 _ => {}
486 }
487}
488
f035d41b
XL
489impl<'tcx> LateLintPass<'tcx> for TypeLimits {
490 fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
e74abb32 491 match e.kind {
6a06907d 492 hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
b039eaaf 493 // propagate negation, if the negation itself isn't negated
ba9703b0
XL
494 if self.negated_expr_id != Some(e.hir_id) {
495 self.negated_expr_id = Some(expr.hir_id);
b039eaaf 496 }
c30ab7b3 497 }
8faf50e0 498 hir::ExprKind::Binary(binop, ref l, ref r) => {
32a655c1 499 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
74b04a01 500 cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
064997fb 501 lint.build(fluent::lint::unused_comparisons).emit();
74b04a01 502 });
b039eaaf 503 }
c30ab7b3 504 }
48663c56
XL
505 hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
506 _ => {}
b039eaaf
SL
507 };
508
c30ab7b3 509 fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
b039eaaf 510 match binop.node {
8faf50e0
XL
511 hir::BinOpKind::Lt => v > min && v <= max,
512 hir::BinOpKind::Le => v >= min && v < max,
513 hir::BinOpKind::Gt => v >= min && v < max,
514 hir::BinOpKind::Ge => v > min && v <= max,
515 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
c30ab7b3 516 _ => bug!(),
b039eaaf
SL
517 }
518 }
519
520 fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
dfeec247
XL
521 source_map::respan(
522 binop.span,
523 match binop.node {
524 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
525 hir::BinOpKind::Le => hir::BinOpKind::Ge,
526 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
527 hir::BinOpKind::Ge => hir::BinOpKind::Le,
528 _ => return binop,
529 },
530 )
b039eaaf
SL
531 }
532
dfeec247 533 fn check_limits(
f035d41b 534 cx: &LateContext<'_>,
dfeec247
XL
535 binop: hir::BinOp,
536 l: &hir::Expr<'_>,
537 r: &hir::Expr<'_>,
538 ) -> bool {
e74abb32 539 let (lit, expr, swap) = match (&l.kind, &r.kind) {
8faf50e0
XL
540 (&hir::ExprKind::Lit(_), _) => (l, r, true),
541 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
c30ab7b3 542 _ => return true,
b039eaaf
SL
543 };
544 // Normalize the binop so that the literal is always on the RHS in
545 // the comparison
c30ab7b3 546 let norm_binop = if swap { rev_binop(binop) } else { binop };
1b1a35ee 547 match *cx.typeck_results().node_type(expr.hir_id).kind() {
b7449926 548 ty::Int(int_ty) => {
b039eaaf 549 let (min, max) = int_ty_range(int_ty);
e74abb32 550 let lit_val: i128 = match lit.kind {
dfeec247 551 hir::ExprKind::Lit(ref li) => match li.node {
ba9703b0
XL
552 ast::LitKind::Int(
553 v,
554 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
555 ) => v as i128,
dfeec247 556 _ => return true,
32a655c1 557 },
dfeec247 558 _ => bug!(),
b039eaaf
SL
559 };
560 is_valid(norm_binop, lit_val, min, max)
561 }
b7449926 562 ty::Uint(uint_ty) => {
dfeec247 563 let (min, max): (u128, u128) = uint_ty_range(uint_ty);
e74abb32 564 let lit_val: u128 = match lit.kind {
dfeec247
XL
565 hir::ExprKind::Lit(ref li) => match li.node {
566 ast::LitKind::Int(v, _) => v,
567 _ => return true,
32a655c1 568 },
dfeec247 569 _ => bug!(),
b039eaaf
SL
570 };
571 is_valid(norm_binop, lit_val, min, max)
572 }
c30ab7b3 573 _ => true,
b039eaaf
SL
574 }
575 }
576
577 fn is_comparison(binop: hir::BinOp) -> bool {
29967ef6
XL
578 matches!(
579 binop.node,
dfeec247 580 hir::BinOpKind::Eq
29967ef6
XL
581 | hir::BinOpKind::Lt
582 | hir::BinOpKind::Le
583 | hir::BinOpKind::Ne
584 | hir::BinOpKind::Ge
585 | hir::BinOpKind::Gt
586 )
b039eaaf 587 }
b039eaaf
SL
588 }
589}
590
591declare_lint! {
1b1a35ee
XL
592 /// The `improper_ctypes` lint detects incorrect use of types in foreign
593 /// modules.
594 ///
595 /// ### Example
596 ///
597 /// ```rust
598 /// extern "C" {
599 /// static STATIC: String;
600 /// }
601 /// ```
602 ///
603 /// {{produces}}
604 ///
605 /// ### Explanation
606 ///
607 /// The compiler has several checks to verify that types used in `extern`
608 /// blocks are safe and follow certain rules to ensure proper
609 /// compatibility with the foreign interfaces. This lint is issued when it
610 /// detects a probable mistake in a definition. The lint usually should
611 /// provide a description of the issue, along with possibly a hint on how
612 /// to resolve it.
b039eaaf
SL
613 IMPROPER_CTYPES,
614 Warn,
615 "proper use of libc types in foreign modules"
616}
617
f035d41b
XL
618declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
619
620declare_lint! {
1b1a35ee
XL
621 /// The `improper_ctypes_definitions` lint detects incorrect use of
622 /// [`extern` function] definitions.
623 ///
624 /// [`extern` function]: https://doc.rust-lang.org/reference/items/functions.html#extern-function-qualifier
625 ///
626 /// ### Example
627 ///
628 /// ```rust
629 /// # #![allow(unused)]
630 /// pub extern "C" fn str_type(p: &str) { }
631 /// ```
632 ///
633 /// {{produces}}
634 ///
635 /// ### Explanation
636 ///
637 /// There are many parameter and return types that may be specified in an
638 /// `extern` function that are not compatible with the given ABI. This
639 /// lint is an alert that these types should not be used. The lint usually
640 /// should provide a description of the issue, along with possibly a hint
641 /// on how to resolve it.
f035d41b
XL
642 IMPROPER_CTYPES_DEFINITIONS,
643 Warn,
644 "proper use of libc types in foreign item definitions"
645}
646
647declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
648
3dfed10e 649#[derive(Clone, Copy)]
923072b8 650pub(crate) enum CItemKind {
3dfed10e
XL
651 Declaration,
652 Definition,
f035d41b 653}
532ac7d7 654
dc9dc135 655struct ImproperCTypesVisitor<'a, 'tcx> {
f035d41b 656 cx: &'a LateContext<'tcx>,
3dfed10e 657 mode: CItemKind,
b039eaaf
SL
658}
659
0531ce1d 660enum FfiResult<'tcx> {
b039eaaf 661 FfiSafe,
0531ce1d 662 FfiPhantom(Ty<'tcx>),
064997fb 663 FfiUnsafe { ty: Ty<'tcx>, reason: DiagnosticMessage, help: Option<DiagnosticMessage> },
b039eaaf
SL
664}
665
923072b8
FG
666pub(crate) fn nonnull_optimization_guaranteed<'tcx>(
667 tcx: TyCtxt<'tcx>,
668 def: ty::AdtDef<'tcx>,
669) -> bool {
04454e1e 670 tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
1b1a35ee
XL
671}
672
673/// `repr(transparent)` structs can have a single non-ZST field, this function returns that
674/// field.
675pub fn transparent_newtype_field<'a, 'tcx>(
676 tcx: TyCtxt<'tcx>,
677 variant: &'a ty::VariantDef,
678) -> Option<&'a ty::FieldDef> {
679 let param_env = tcx.param_env(variant.def_id);
17df50a5 680 variant.fields.iter().find(|field| {
1b1a35ee 681 let field_ty = tcx.type_of(field.did);
5869c6ff 682 let is_zst = tcx.layout_of(param_env.and(field_ty)).map_or(false, |layout| layout.is_zst());
17df50a5
XL
683 !is_zst
684 })
1b1a35ee
XL
685}
686
3dfed10e 687/// Is type known to be non-null?
6a06907d 688fn ty_is_known_nonnull<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, mode: CItemKind) -> bool {
3dfed10e 689 let tcx = cx.tcx;
1b1a35ee 690 match ty.kind() {
3dfed10e
XL
691 ty::FnPtr(_) => true,
692 ty::Ref(..) => true,
693 ty::Adt(def, _) if def.is_box() && matches!(mode, CItemKind::Definition) => true,
5e7ed085
FG
694 ty::Adt(def, substs) if def.repr().transparent() && !def.is_union() => {
695 let marked_non_null = nonnull_optimization_guaranteed(tcx, *def);
3dfed10e 696
1b1a35ee 697 if marked_non_null {
3dfed10e 698 return true;
f9652781 699 }
1b1a35ee 700
064997fb
FG
701 // `UnsafeCell` has its niche hidden.
702 if def.is_unsafe_cell() {
6a06907d
XL
703 return false;
704 }
705
5e7ed085 706 def.variants()
17df50a5
XL
707 .iter()
708 .filter_map(|variant| transparent_newtype_field(cx.tcx, variant))
709 .any(|field| ty_is_known_nonnull(cx, field.ty(tcx, substs), mode))
b039eaaf 710 }
3dfed10e 711 _ => false,
b039eaaf 712 }
3dfed10e 713}
dc9dc135 714
3dfed10e
XL
715/// Given a non-null scalar (or transparent) type `ty`, return the nullable version of that type.
716/// If the type passed in was not scalar, returns None.
717fn get_nullable_type<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
718 let tcx = cx.tcx;
1b1a35ee 719 Some(match *ty.kind() {
3dfed10e
XL
720 ty::Adt(field_def, field_substs) => {
721 let inner_field_ty = {
f2b60f7d 722 let mut first_non_zst_ty = field_def
5e7ed085
FG
723 .variants()
724 .iter()
725 .filter_map(|v| transparent_newtype_field(cx.tcx, v));
3dfed10e
XL
726 debug_assert_eq!(
727 first_non_zst_ty.clone().count(),
728 1,
729 "Wrong number of fields for transparent type"
730 );
731 first_non_zst_ty
f2b60f7d 732 .next_back()
3dfed10e
XL
733 .expect("No non-zst fields in transparent type.")
734 .ty(tcx, field_substs)
735 };
736 return get_nullable_type(cx, inner_field_ty);
737 }
738 ty::Int(ty) => tcx.mk_mach_int(ty),
739 ty::Uint(ty) => tcx.mk_mach_uint(ty),
740 ty::RawPtr(ty_mut) => tcx.mk_ptr(ty_mut),
741 // As these types are always non-null, the nullable equivalent of
742 // Option<T> of these types are their raw pointer counterparts.
743 ty::Ref(_region, ty, mutbl) => tcx.mk_ptr(ty::TypeAndMut { ty, mutbl }),
744 ty::FnPtr(..) => {
745 // There is no nullable equivalent for Rust's function pointers -- you
746 // must use an Option<fn(..) -> _> to represent it.
747 ty
748 }
749
750 // We should only ever reach this case if ty_is_known_nonnull is extended
751 // to other types.
752 ref unhandled => {
753 debug!(
754 "get_nullable_type: Unhandled scalar kind: {:?} while checking {:?}",
755 unhandled, ty
756 );
757 return None;
758 }
759 })
760}
761
762/// Check if this enum can be safely exported based on the "nullable pointer optimization". If it
1b1a35ee 763/// can, return the type that `ty` can be safely converted to, otherwise return `None`.
3dfed10e
XL
764/// Currently restricted to function pointers, boxes, references, `core::num::NonZero*`,
765/// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
766/// FIXME: This duplicates code in codegen.
923072b8 767pub(crate) fn repr_nullable_ptr<'tcx>(
3dfed10e
XL
768 cx: &LateContext<'tcx>,
769 ty: Ty<'tcx>,
770 ckind: CItemKind,
771) -> Option<Ty<'tcx>> {
772 debug!("is_repr_nullable_ptr(cx, ty = {:?})", ty);
1b1a35ee 773 if let ty::Adt(ty_def, substs) = ty.kind() {
5e7ed085 774 let field_ty = match &ty_def.variants().raw[..] {
17df50a5
XL
775 [var_one, var_two] => match (&var_one.fields[..], &var_two.fields[..]) {
776 ([], [field]) | ([field], []) => field.ty(cx.tcx, substs),
777 _ => return None,
778 },
779 _ => return None,
f035d41b 780 };
dc9dc135 781
3dfed10e
XL
782 if !ty_is_known_nonnull(cx, field_ty, ckind) {
783 return None;
f035d41b 784 }
dc9dc135 785
3dfed10e
XL
786 // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
787 // If the computed size for the field and the enum are different, the nonnull optimization isn't
788 // being applied (and we've got a problem somewhere).
789 let compute_size_skeleton = |t| SizeSkeleton::compute(t, cx.tcx, cx.param_env).unwrap();
f035d41b
XL
790 if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
791 bug!("improper_ctypes: Option nonnull optimization not applied?");
792 }
dc9dc135 793
3dfed10e
XL
794 // Return the nullable type this Option-like enum can be safely represented with.
795 let field_ty_abi = &cx.layout_of(field_ty).unwrap().abi;
796 if let Abi::Scalar(field_ty_scalar) = field_ty_abi {
04454e1e
FG
797 match field_ty_scalar.valid_range(cx) {
798 WrappingRange { start: 0, end }
799 if end == field_ty_scalar.size(&cx.tcx).unsigned_int_max() - 1 =>
800 {
5e7ed085
FG
801 return Some(get_nullable_type(cx, field_ty).unwrap());
802 }
04454e1e 803 WrappingRange { start: 1, .. } => {
3dfed10e
XL
804 return Some(get_nullable_type(cx, field_ty).unwrap());
805 }
04454e1e
FG
806 WrappingRange { start, end } => {
807 unreachable!("Unhandled start and end range: ({}, {})", start, end)
808 }
3dfed10e
XL
809 };
810 }
f035d41b 811 }
3dfed10e
XL
812 None
813}
b039eaaf 814
3dfed10e 815impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
60c5eb7d
XL
816 /// Check if the type is array and emit an unsafe type lint.
817 fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
1b1a35ee 818 if let ty::Array(..) = ty.kind() {
60c5eb7d
XL
819 self.emit_ffi_unsafe_type_lint(
820 ty,
821 sp,
064997fb
FG
822 fluent::lint::improper_ctypes_array_reason,
823 Some(fluent::lint::improper_ctypes_array_help),
60c5eb7d
XL
824 );
825 true
826 } else {
827 false
828 }
829 }
830
f035d41b
XL
831 /// Checks if the given field's type is "ffi-safe".
832 fn check_field_type_for_ffi(
833 &self,
834 cache: &mut FxHashSet<Ty<'tcx>>,
835 field: &ty::FieldDef,
836 substs: SubstsRef<'tcx>,
837 ) -> FfiResult<'tcx> {
838 let field_ty = field.ty(self.cx.tcx, substs);
839 if field_ty.has_opaque_types() {
840 self.check_type_for_ffi(cache, field_ty)
841 } else {
842 let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
843 self.check_type_for_ffi(cache, field_ty)
844 }
845 }
846
847 /// Checks if the given `VariantDef`'s field types are "ffi-safe".
848 fn check_variant_for_ffi(
849 &self,
850 cache: &mut FxHashSet<Ty<'tcx>>,
851 ty: Ty<'tcx>,
5e7ed085 852 def: ty::AdtDef<'tcx>,
f035d41b
XL
853 variant: &ty::VariantDef,
854 substs: SubstsRef<'tcx>,
855 ) -> FfiResult<'tcx> {
856 use FfiResult::*;
857
5e7ed085 858 if def.repr().transparent() {
c295e0f8 859 // Can assume that at most one field is not a ZST, so only check
f035d41b 860 // that field's type for FFI-safety.
1b1a35ee 861 if let Some(field) = transparent_newtype_field(self.cx.tcx, variant) {
f035d41b
XL
862 self.check_field_type_for_ffi(cache, field, substs)
863 } else {
c295e0f8
XL
864 // All fields are ZSTs; this means that the type should behave
865 // like (), which is FFI-unsafe
064997fb 866 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_struct_zst, help: None }
f035d41b
XL
867 }
868 } else {
869 // We can't completely trust repr(C) markings; make sure the fields are
870 // actually safe.
871 let mut all_phantom = !variant.fields.is_empty();
872 for field in &variant.fields {
873 match self.check_field_type_for_ffi(cache, &field, substs) {
874 FfiSafe => {
875 all_phantom = false;
876 }
877 FfiPhantom(..) if def.is_enum() => {
878 return FfiUnsafe {
879 ty,
064997fb 880 reason: fluent::lint::improper_ctypes_enum_phantomdata,
f035d41b
XL
881 help: None,
882 };
883 }
884 FfiPhantom(..) => {}
885 r => return r,
886 }
887 }
888
889 if all_phantom { FfiPhantom(ty) } else { FfiSafe }
890 }
891 }
892
9fa01778 893 /// Checks if the given type is "ffi-safe" (has a stable, well-defined
b039eaaf 894 /// representation which can be exported to C code).
dfeec247 895 fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
9fa01778 896 use FfiResult::*;
8bb4bdeb 897
3dfed10e 898 let tcx = self.cx.tcx;
b039eaaf
SL
899
900 // Protect against infinite recursion, for example
901 // `struct S(*mut S);`.
902 // FIXME: A recursion limit is necessary as well, for irregular
b7449926 903 // recursive types.
b039eaaf
SL
904 if !cache.insert(ty) {
905 return FfiSafe;
906 }
907
fc512014 908 match *ty.kind() {
b7449926 909 ty::Adt(def, substs) => {
17df50a5
XL
910 if def.is_box() && matches!(self.mode, CItemKind::Definition) {
911 if ty.boxed_ty().is_sized(tcx.at(DUMMY_SP), self.cx.param_env) {
912 return FfiSafe;
913 } else {
914 return FfiUnsafe {
915 ty,
064997fb 916 reason: fluent::lint::improper_ctypes_box,
17df50a5
XL
917 help: None,
918 };
919 }
920 }
8bb4bdeb 921 if def.is_phantom_data() {
0531ce1d 922 return FfiPhantom(ty);
8bb4bdeb 923 }
c30ab7b3 924 match def.adt_kind() {
f035d41b 925 AdtKind::Struct | AdtKind::Union => {
5e7ed085 926 if !def.repr().c() && !def.repr().transparent() {
0531ce1d 927 return FfiUnsafe {
e1599b0c 928 ty,
064997fb
FG
929 reason: if def.is_struct() {
930 fluent::lint::improper_ctypes_struct_layout_reason
931 } else {
932 fluent::lint::improper_ctypes_union_layout_reason
933 },
934 help: if def.is_struct() {
935 Some(fluent::lint::improper_ctypes_struct_layout_help)
936 } else {
937 Some(fluent::lint::improper_ctypes_union_layout_help)
938 },
0531ce1d 939 };
c30ab7b3 940 }
b039eaaf 941
e74abb32
XL
942 let is_non_exhaustive =
943 def.non_enum_variant().is_field_list_non_exhaustive();
5e7ed085 944 if is_non_exhaustive && !def.did().is_local() {
e74abb32
XL
945 return FfiUnsafe {
946 ty,
064997fb
FG
947 reason: if def.is_struct() {
948 fluent::lint::improper_ctypes_struct_non_exhaustive
949 } else {
950 fluent::lint::improper_ctypes_union_non_exhaustive
951 },
e74abb32
XL
952 help: None,
953 };
954 }
955
2c00a5a8 956 if def.non_enum_variant().fields.is_empty() {
0531ce1d 957 return FfiUnsafe {
e1599b0c 958 ty,
064997fb
FG
959 reason: if def.is_struct() {
960 fluent::lint::improper_ctypes_struct_fieldless_reason
961 } else {
962 fluent::lint::improper_ctypes_union_fieldless_reason
963 },
964 help: if def.is_struct() {
965 Some(fluent::lint::improper_ctypes_struct_fieldless_help)
966 } else {
967 Some(fluent::lint::improper_ctypes_union_fieldless_help)
968 },
0531ce1d 969 };
8bb4bdeb
XL
970 }
971
f035d41b 972 self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
b039eaaf 973 }
c30ab7b3 974 AdtKind::Enum => {
5e7ed085 975 if def.variants().is_empty() {
c30ab7b3
SL
976 // Empty enums are okay... although sort of useless.
977 return FfiSafe;
978 }
9e0c209e 979
c30ab7b3
SL
980 // Check for a repr() attribute to specify the size of the
981 // discriminant.
5e7ed085
FG
982 if !def.repr().c() && !def.repr().transparent() && def.repr().int.is_none()
983 {
8bb4bdeb 984 // Special-case types like `Option<extern fn()>`.
3dfed10e 985 if repr_nullable_ptr(self.cx, ty, self.mode).is_none() {
0531ce1d 986 return FfiUnsafe {
e1599b0c 987 ty,
064997fb
FG
988 reason: fluent::lint::improper_ctypes_enum_repr_reason,
989 help: Some(fluent::lint::improper_ctypes_enum_repr_help),
0531ce1d 990 };
9e0c209e 991 }
8bb4bdeb 992 }
c30ab7b3 993
5e7ed085 994 if def.is_variant_list_non_exhaustive() && !def.did().is_local() {
e74abb32
XL
995 return FfiUnsafe {
996 ty,
064997fb 997 reason: fluent::lint::improper_ctypes_non_exhaustive,
e74abb32
XL
998 help: None,
999 };
1000 }
1001
c30ab7b3 1002 // Check the contained variants.
5e7ed085 1003 for variant in def.variants() {
e74abb32
XL
1004 let is_non_exhaustive = variant.is_field_list_non_exhaustive();
1005 if is_non_exhaustive && !variant.def_id.is_local() {
1006 return FfiUnsafe {
1007 ty,
064997fb 1008 reason: fluent::lint::improper_ctypes_non_exhaustive_variant,
e74abb32
XL
1009 help: None,
1010 };
1011 }
1012
f035d41b
XL
1013 match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
1014 FfiSafe => (),
1015 r => return r,
9e0c209e 1016 }
b039eaaf 1017 }
f035d41b 1018
c30ab7b3 1019 FfiSafe
b039eaaf
SL
1020 }
1021 }
c30ab7b3 1022 }
b039eaaf 1023
b7449926 1024 ty::Char => FfiUnsafe {
e1599b0c 1025 ty,
064997fb
FG
1026 reason: fluent::lint::improper_ctypes_char_reason,
1027 help: Some(fluent::lint::improper_ctypes_char_help),
0531ce1d 1028 },
b039eaaf 1029
064997fb
FG
1030 ty::Int(ty::IntTy::I128) | ty::Uint(ty::UintTy::U128) => {
1031 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_128bit, help: None }
1032 }
ea8adc8c 1033
b039eaaf 1034 // Primitive types with a stable representation.
b7449926 1035 ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
b039eaaf 1036
b7449926 1037 ty::Slice(_) => FfiUnsafe {
e1599b0c 1038 ty,
064997fb
FG
1039 reason: fluent::lint::improper_ctypes_slice_reason,
1040 help: Some(fluent::lint::improper_ctypes_slice_help),
0531ce1d
XL
1041 },
1042
dfeec247 1043 ty::Dynamic(..) => {
064997fb 1044 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_dyn, help: None }
dfeec247 1045 }
0531ce1d 1046
b7449926 1047 ty::Str => FfiUnsafe {
e1599b0c 1048 ty,
064997fb
FG
1049 reason: fluent::lint::improper_ctypes_str_reason,
1050 help: Some(fluent::lint::improper_ctypes_str_help),
0531ce1d
XL
1051 },
1052
b7449926 1053 ty::Tuple(..) => FfiUnsafe {
e1599b0c 1054 ty,
064997fb
FG
1055 reason: fluent::lint::improper_ctypes_tuple_reason,
1056 help: Some(fluent::lint::improper_ctypes_tuple_help),
0531ce1d 1057 },
b039eaaf 1058
f035d41b
XL
1059 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
1060 if {
3dfed10e 1061 matches!(self.mode, CItemKind::Definition)
f035d41b
XL
1062 && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
1063 } =>
1064 {
1065 FfiSafe
1066 }
1067
c295e0f8
XL
1068 ty::RawPtr(ty::TypeAndMut { ty, .. })
1069 if match ty.kind() {
1070 ty::Tuple(tuple) => tuple.is_empty(),
1071 _ => false,
1072 } =>
1073 {
1074 FfiSafe
1075 }
1076
dfeec247
XL
1077 ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
1078 self.check_type_for_ffi(cache, ty)
1079 }
b039eaaf 1080
60c5eb7d 1081 ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
b039eaaf 1082
b7449926 1083 ty::FnPtr(sig) => {
f035d41b
XL
1084 if self.is_internal_abi(sig.abi()) {
1085 return FfiUnsafe {
1086 ty,
064997fb
FG
1087 reason: fluent::lint::improper_ctypes_fnptr_reason,
1088 help: Some(fluent::lint::improper_ctypes_fnptr_help),
f035d41b 1089 };
b039eaaf
SL
1090 }
1091
fc512014 1092 let sig = tcx.erase_late_bound_regions(sig);
b7449926 1093 if !sig.output().is_unit() {
476ff2be 1094 let r = self.check_type_for_ffi(cache, sig.output());
5bcae85e
SL
1095 match r {
1096 FfiSafe => {}
c30ab7b3
SL
1097 _ => {
1098 return r;
1099 }
b039eaaf
SL
1100 }
1101 }
476ff2be 1102 for arg in sig.inputs() {
5099ac24 1103 let r = self.check_type_for_ffi(cache, *arg);
b039eaaf
SL
1104 match r {
1105 FfiSafe => {}
c30ab7b3
SL
1106 _ => {
1107 return r;
1108 }
b039eaaf
SL
1109 }
1110 }
1111 FfiSafe
1112 }
1113
b7449926
XL
1114 ty::Foreign(..) => FfiSafe,
1115
f035d41b
XL
1116 // While opaque types are checked for earlier, if a projection in a struct field
1117 // normalizes to an opaque type, then it will reach this branch.
1118 ty::Opaque(..) => {
064997fb 1119 FfiUnsafe { ty, reason: fluent::lint::improper_ctypes_opaque, help: None }
f035d41b
XL
1120 }
1121
1122 // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
1123 // so they are currently ignored for the purposes of this lint.
3dfed10e 1124 ty::Param(..) | ty::Projection(..) if matches!(self.mode, CItemKind::Definition) => {
f035d41b
XL
1125 FfiSafe
1126 }
1127
dfeec247 1128 ty::Param(..)
f035d41b 1129 | ty::Projection(..)
dfeec247
XL
1130 | ty::Infer(..)
1131 | ty::Bound(..)
f035d41b 1132 | ty::Error(_)
dfeec247
XL
1133 | ty::Closure(..)
1134 | ty::Generator(..)
1135 | ty::GeneratorWitness(..)
1136 | ty::Placeholder(..)
dfeec247 1137 | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
e1599b0c
XL
1138 }
1139 }
1140
1141 fn emit_ffi_unsafe_type_lint(
1142 &mut self,
1143 ty: Ty<'tcx>,
1144 sp: Span,
064997fb
FG
1145 note: DiagnosticMessage,
1146 help: Option<DiagnosticMessage>,
e1599b0c 1147 ) {
f035d41b 1148 let lint = match self.mode {
3dfed10e
XL
1149 CItemKind::Declaration => IMPROPER_CTYPES,
1150 CItemKind::Definition => IMPROPER_CTYPES_DEFINITIONS,
f035d41b
XL
1151 };
1152
1153 self.cx.struct_span_lint(lint, sp, |lint| {
1154 let item_description = match self.mode {
3dfed10e
XL
1155 CItemKind::Declaration => "block",
1156 CItemKind::Definition => "fn",
f035d41b 1157 };
064997fb
FG
1158 let mut diag = lint.build(fluent::lint::improper_ctypes);
1159 diag.set_arg("ty", ty);
1160 diag.set_arg("desc", item_description);
1161 diag.span_label(sp, fluent::lint::label);
74b04a01
XL
1162 if let Some(help) = help {
1163 diag.help(help);
e1599b0c 1164 }
74b04a01 1165 diag.note(note);
1b1a35ee 1166 if let ty::Adt(def, _) = ty.kind() {
5e7ed085 1167 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did()) {
064997fb 1168 diag.span_note(sp, fluent::lint::note);
74b04a01
XL
1169 }
1170 }
1171 diag.emit();
1172 });
e1599b0c
XL
1173 }
1174
1175 fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
f035d41b
XL
1176 struct ProhibitOpaqueTypes<'a, 'tcx> {
1177 cx: &'a LateContext<'tcx>,
fc512014 1178 }
e1599b0c 1179
064997fb 1180 impl<'a, 'tcx> ty::visit::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
fc512014
XL
1181 type BreakTy = Ty<'tcx>;
1182
1183 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1b1a35ee 1184 match ty.kind() {
fc512014 1185 ty::Opaque(..) => ControlFlow::Break(ty),
f035d41b
XL
1186 // Consider opaque types within projections FFI-safe if they do not normalize
1187 // to more opaque types.
1188 ty::Projection(..) => {
1189 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1190
94222f64 1191 // If `ty` is an opaque type directly then `super_visit_with` won't invoke
f035d41b 1192 // this function again.
29967ef6
XL
1193 if ty.has_opaque_types() {
1194 self.visit_ty(ty)
1195 } else {
1196 ControlFlow::CONTINUE
1197 }
f035d41b
XL
1198 }
1199 _ => ty.super_visit_with(self),
e1599b0c
XL
1200 }
1201 }
1202 }
1203
fc512014 1204 if let Some(ty) = ty.visit_with(&mut ProhibitOpaqueTypes { cx: self.cx }).break_value() {
064997fb 1205 self.emit_ffi_unsafe_type_lint(ty, sp, fluent::lint::improper_ctypes_opaque, None);
e1599b0c
XL
1206 true
1207 } else {
1208 false
b039eaaf
SL
1209 }
1210 }
1211
f035d41b
XL
1212 fn check_type_for_ffi_and_report_errors(
1213 &mut self,
1214 sp: Span,
1215 ty: Ty<'tcx>,
1216 is_static: bool,
1217 is_return_type: bool,
1218 ) {
e1599b0c
XL
1219 // We have to check for opaque types before `normalize_erasing_regions`,
1220 // which will replace opaque types with their underlying concrete type.
1221 if self.check_for_opaque_ty(sp, ty) {
1222 // We've already emitted an error due to an opaque type.
1223 return;
1224 }
1225
54a0048b
SL
1226 // it is only OK to use this function because extern fns cannot have
1227 // any generic types right now:
f035d41b
XL
1228 let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
1229
1230 // C doesn't really support passing arrays by value - the only way to pass an array by value
1231 // is through a struct. So, first test that the top level isn't an array, and then
1232 // recursively check the types inside.
60c5eb7d
XL
1233 if !is_static && self.check_for_array_ty(sp, ty) {
1234 return;
1235 }
b039eaaf 1236
f035d41b
XL
1237 // Don't report FFI errors for unit return types. This check exists here, and not in
1238 // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1239 // happened.
1240 if is_return_type && ty.is_unit() {
1241 return;
1242 }
1243
0bf4aa26 1244 match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
b039eaaf 1245 FfiResult::FfiSafe => {}
0531ce1d 1246 FfiResult::FfiPhantom(ty) => {
064997fb
FG
1247 self.emit_ffi_unsafe_type_lint(
1248 ty,
1249 sp,
1250 fluent::lint::improper_ctypes_only_phantomdata,
1251 None,
1252 );
9e0c209e 1253 }
f035d41b
XL
1254 // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1255 // argument, which after substitution, is `()`, then this branch can be hit.
3dfed10e 1256 FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => {}
e1599b0c 1257 FfiResult::FfiUnsafe { ty, reason, help } => {
064997fb 1258 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
b039eaaf
SL
1259 }
1260 }
1261 }
b039eaaf 1262
dfeec247 1263 fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
416331ca 1264 let def_id = self.cx.tcx.hir().local_def_id(id);
041b39d2 1265 let sig = self.cx.tcx.fn_sig(def_id);
fc512014 1266 let sig = self.cx.tcx.erase_late_bound_regions(sig);
54a0048b 1267
cdc7bbd5 1268 for (input_ty, input_hir) in iter::zip(sig.inputs(), decl.inputs) {
5099ac24 1269 self.check_type_for_ffi_and_report_errors(input_hir.span, *input_ty, false, false);
54a0048b
SL
1270 }
1271
74b04a01 1272 if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
476ff2be 1273 let ret_ty = sig.output();
f035d41b 1274 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
b039eaaf
SL
1275 }
1276 }
54a0048b 1277
532ac7d7 1278 fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
416331ca 1279 let def_id = self.cx.tcx.hir().local_def_id(id);
7cac9316 1280 let ty = self.cx.tcx.type_of(def_id);
f035d41b 1281 self.check_type_for_ffi_and_report_errors(span, ty, true, false);
54a0048b 1282 }
b039eaaf 1283
3dfed10e 1284 fn is_internal_abi(&self, abi: SpecAbi) -> bool {
29967ef6
XL
1285 matches!(
1286 abi,
1287 SpecAbi::Rust | SpecAbi::RustCall | SpecAbi::RustIntrinsic | SpecAbi::PlatformIntrinsic
1288 )
f035d41b
XL
1289 }
1290}
1291
1292impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1293 fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
3dfed10e 1294 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Declaration };
6a06907d 1295 let abi = cx.tcx.hir().get_foreign_abi(it.hir_id());
f035d41b
XL
1296
1297 if !vis.is_internal_abi(abi) {
e74abb32 1298 match it.kind {
b7449926 1299 hir::ForeignItemKind::Fn(ref decl, _, _) => {
6a06907d 1300 vis.check_foreign_fn(it.hir_id(), decl);
b7449926
XL
1301 }
1302 hir::ForeignItemKind::Static(ref ty, _) => {
6a06907d 1303 vis.check_foreign_static(it.hir_id(), ty.span);
b039eaaf 1304 }
dfeec247 1305 hir::ForeignItemKind::Type => (),
b039eaaf 1306 }
b039eaaf
SL
1307 }
1308 }
1309}
5bcae85e 1310
f035d41b
XL
1311impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1312 fn check_fn(
1313 &mut self,
1314 cx: &LateContext<'tcx>,
1315 kind: hir::intravisit::FnKind<'tcx>,
1316 decl: &'tcx hir::FnDecl<'_>,
1317 _: &'tcx hir::Body<'_>,
1318 _: Span,
1319 hir_id: hir::HirId,
1320 ) {
1321 use hir::intravisit::FnKind;
1322
1323 let abi = match kind {
1324 FnKind::ItemFn(_, _, header, ..) => header.abi,
1325 FnKind::Method(_, sig, ..) => sig.header.abi,
1326 _ => return,
1327 };
1328
3dfed10e 1329 let mut vis = ImproperCTypesVisitor { cx, mode: CItemKind::Definition };
f035d41b
XL
1330 if !vis.is_internal_abi(abi) {
1331 vis.check_foreign_fn(hir_id, decl);
1332 }
1333 }
1334}
1335
532ac7d7 1336declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
5bcae85e 1337
f035d41b
XL
1338impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1339 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
e74abb32 1340 if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
6a06907d 1341 let t = cx.tcx.type_of(it.def_id);
fc512014 1342 let ty = cx.tcx.erase_regions(t);
5e7ed085 1343 let Ok(layout) = cx.layout_of(ty) else { return };
a2a8927a 1344 let Variants::Multiple {
c295e0f8 1345 tag_encoding: TagEncoding::Direct, tag, ref variants, ..
a2a8927a
XL
1346 } = &layout.variants else {
1347 return
532ac7d7
XL
1348 };
1349
04454e1e 1350 let tag_size = tag.size(&cx.tcx).bytes();
532ac7d7 1351
dfeec247
XL
1352 debug!(
1353 "enum `{}` is {} bytes large with layout:\n{:#?}",
1354 t,
1355 layout.size.bytes(),
1356 layout
1357 );
532ac7d7 1358
cdc7bbd5 1359 let (largest, slargest, largest_index) = iter::zip(enum_definition.variants, variants)
532ac7d7 1360 .map(|(variant, variant_layout)| {
f035d41b 1361 // Subtract the size of the enum tag.
5e7ed085 1362 let bytes = variant_layout.size().bytes().saturating_sub(tag_size);
532ac7d7 1363
dfeec247 1364 debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
532ac7d7
XL
1365 bytes
1366 })
1367 .enumerate()
dfeec247
XL
1368 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1369 if size > l {
1370 (size, l, idx)
1371 } else if size > s {
1372 (l, size, li)
1373 } else {
1374 (l, s, li)
1375 }
532ac7d7
XL
1376 });
1377
1378 // We only warn if the largest variant is at least thrice as large as
1379 // the second-largest.
1380 if largest > slargest * 3 && slargest > 0 {
74b04a01 1381 cx.struct_span_lint(
dfeec247
XL
1382 VARIANT_SIZE_DIFFERENCES,
1383 enum_definition.variants[largest_index].span,
74b04a01 1384 |lint| {
064997fb
FG
1385 lint.build(fluent::lint::variant_size_differences)
1386 .set_arg("largest", largest)
1387 .emit();
74b04a01 1388 },
dfeec247 1389 );
5bcae85e
SL
1390 }
1391 }
1392 }
1393}
94222f64
XL
1394
1395declare_lint! {
1396 /// The `invalid_atomic_ordering` lint detects passing an `Ordering`
1397 /// to an atomic operation that does not support that ordering.
1398 ///
1399 /// ### Example
1400 ///
1401 /// ```rust,compile_fail
1402 /// # use core::sync::atomic::{AtomicU8, Ordering};
1403 /// let atom = AtomicU8::new(0);
1404 /// let value = atom.load(Ordering::Release);
1405 /// # let _ = value;
1406 /// ```
1407 ///
1408 /// {{produces}}
1409 ///
1410 /// ### Explanation
1411 ///
1412 /// Some atomic operations are only supported for a subset of the
1413 /// `atomic::Ordering` variants. Passing an unsupported variant will cause
1414 /// an unconditional panic at runtime, which is detected by this lint.
1415 ///
1416 /// This lint will trigger in the following cases: (where `AtomicType` is an
1417 /// atomic type from `core::sync::atomic`, such as `AtomicBool`,
1418 /// `AtomicPtr`, `AtomicUsize`, or any of the other integer atomics).
1419 ///
1420 /// - Passing `Ordering::Acquire` or `Ordering::AcqRel` to
1421 /// `AtomicType::store`.
1422 ///
1423 /// - Passing `Ordering::Release` or `Ordering::AcqRel` to
1424 /// `AtomicType::load`.
1425 ///
1426 /// - Passing `Ordering::Relaxed` to `core::sync::atomic::fence` or
1427 /// `core::sync::atomic::compiler_fence`.
1428 ///
1429 /// - Passing `Ordering::Release` or `Ordering::AcqRel` as the failure
1430 /// ordering for any of `AtomicType::compare_exchange`,
1431 /// `AtomicType::compare_exchange_weak`, or `AtomicType::fetch_update`.
94222f64
XL
1432 INVALID_ATOMIC_ORDERING,
1433 Deny,
1434 "usage of invalid atomic ordering in atomic operations and memory fences"
1435}
1436
1437declare_lint_pass!(InvalidAtomicOrdering => [INVALID_ATOMIC_ORDERING]);
1438
1439impl InvalidAtomicOrdering {
1440 fn inherent_atomic_method_call<'hir>(
1441 cx: &LateContext<'_>,
1442 expr: &Expr<'hir>,
1443 recognized_names: &[Symbol], // used for fast path calculation
1444 ) -> Option<(Symbol, &'hir [Expr<'hir>])> {
1445 const ATOMIC_TYPES: &[Symbol] = &[
1446 sym::AtomicBool,
1447 sym::AtomicPtr,
1448 sym::AtomicUsize,
1449 sym::AtomicU8,
1450 sym::AtomicU16,
1451 sym::AtomicU32,
1452 sym::AtomicU64,
1453 sym::AtomicU128,
1454 sym::AtomicIsize,
1455 sym::AtomicI8,
1456 sym::AtomicI16,
1457 sym::AtomicI32,
1458 sym::AtomicI64,
1459 sym::AtomicI128,
1460 ];
f2b60f7d 1461 if let ExprKind::MethodCall(ref method_path, _, args, _) = &expr.kind
5e7ed085
FG
1462 && recognized_names.contains(&method_path.ident.name)
1463 && let Some(m_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id)
1464 && let Some(impl_did) = cx.tcx.impl_of_method(m_def_id)
1465 && let Some(adt) = cx.tcx.type_of(impl_did).ty_adt_def()
94222f64 1466 // skip extension traits, only lint functions from the standard library
5e7ed085 1467 && cx.tcx.trait_id_of_impl(impl_did).is_none()
04454e1e 1468 && let parent = cx.tcx.parent(adt.did())
5e7ed085
FG
1469 && cx.tcx.is_diagnostic_item(sym::atomic_mod, parent)
1470 && ATOMIC_TYPES.contains(&cx.tcx.item_name(adt.did()))
1471 {
1472 return Some((method_path.ident.name, args));
94222f64
XL
1473 }
1474 None
1475 }
1476
064997fb
FG
1477 fn match_ordering(cx: &LateContext<'_>, ord_arg: &Expr<'_>) -> Option<Symbol> {
1478 let ExprKind::Path(ref ord_qpath) = ord_arg.kind else { return None };
1479 let did = cx.qpath_res(ord_qpath, ord_arg.hir_id).opt_def_id()?;
94222f64
XL
1480 let tcx = cx.tcx;
1481 let atomic_ordering = tcx.get_diagnostic_item(sym::Ordering);
064997fb
FG
1482 let name = tcx.item_name(did);
1483 let parent = tcx.parent(did);
1484 [sym::Relaxed, sym::Release, sym::Acquire, sym::AcqRel, sym::SeqCst].into_iter().find(
1485 |&ordering| {
1486 name == ordering
1487 && (Some(parent) == atomic_ordering
1488 // needed in case this is a ctor, not a variant
1489 || tcx.opt_parent(parent) == atomic_ordering)
1490 },
1491 )
94222f64
XL
1492 }
1493
1494 fn check_atomic_load_store(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1495 if let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::load, sym::store])
1496 && let Some((ordering_arg, invalid_ordering)) = match method {
f2b60f7d
FG
1497 sym::load => Some((&args[0], sym::Release)),
1498 sym::store => Some((&args[1], sym::Acquire)),
94222f64 1499 _ => None,
94222f64 1500 }
064997fb
FG
1501 && let Some(ordering) = Self::match_ordering(cx, ordering_arg)
1502 && (ordering == invalid_ordering || ordering == sym::AcqRel)
5e7ed085
FG
1503 {
1504 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, ordering_arg.span, |diag| {
1505 if method == sym::load {
064997fb
FG
1506 diag.build(fluent::lint::atomic_ordering_load)
1507 .help(fluent::lint::help)
5e7ed085
FG
1508 .emit()
1509 } else {
1510 debug_assert_eq!(method, sym::store);
064997fb
FG
1511 diag.build(fluent::lint::atomic_ordering_store)
1512 .help(fluent::lint::help)
5e7ed085
FG
1513 .emit();
1514 }
1515 });
94222f64
XL
1516 }
1517 }
1518
1519 fn check_memory_fence(cx: &LateContext<'_>, expr: &Expr<'_>) {
5e7ed085
FG
1520 if let ExprKind::Call(ref func, ref args) = expr.kind
1521 && let ExprKind::Path(ref func_qpath) = func.kind
1522 && let Some(def_id) = cx.qpath_res(func_qpath, func.hir_id).opt_def_id()
1523 && matches!(cx.tcx.get_diagnostic_name(def_id), Some(sym::fence | sym::compiler_fence))
064997fb 1524 && Self::match_ordering(cx, &args[0]) == Some(sym::Relaxed)
5e7ed085
FG
1525 {
1526 cx.struct_span_lint(INVALID_ATOMIC_ORDERING, args[0].span, |diag| {
064997fb
FG
1527 diag.build(fluent::lint::atomic_ordering_fence)
1528 .help(fluent::lint::help)
5e7ed085
FG
1529 .emit();
1530 });
94222f64
XL
1531 }
1532 }
1533
1534 fn check_atomic_compare_exchange(cx: &LateContext<'_>, expr: &Expr<'_>) {
064997fb
FG
1535 let Some((method, args)) = Self::inherent_atomic_method_call(cx, expr, &[sym::fetch_update, sym::compare_exchange, sym::compare_exchange_weak])
1536 else {return };
1537
1538 let fail_order_arg = match method {
f2b60f7d
FG
1539 sym::fetch_update => &args[1],
1540 sym::compare_exchange | sym::compare_exchange_weak => &args[3],
064997fb
FG
1541 _ => return,
1542 };
1543
1544 let Some(fail_ordering) = Self::match_ordering(cx, fail_order_arg) else { return };
1545
1546 if matches!(fail_ordering, sym::Release | sym::AcqRel) {
1547 #[derive(LintDiagnostic)]
f2b60f7d 1548 #[diag(lint::atomic_ordering_invalid)]
064997fb
FG
1549 #[help]
1550 struct InvalidAtomicOrderingDiag {
1551 method: Symbol,
1552 #[label]
1553 fail_order_arg_span: Span,
94222f64 1554 }
064997fb
FG
1555
1556 cx.emit_spanned_lint(
1557 INVALID_ATOMIC_ORDERING,
1558 fail_order_arg.span,
1559 InvalidAtomicOrderingDiag { method, fail_order_arg_span: fail_order_arg.span },
1560 );
94222f64
XL
1561 }
1562 }
1563}
1564
1565impl<'tcx> LateLintPass<'tcx> for InvalidAtomicOrdering {
1566 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
1567 Self::check_atomic_load_store(cx, expr);
1568 Self::check_memory_fence(cx, expr);
1569 Self::check_atomic_compare_exchange(cx, expr);
1570 }
1571}