]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_middle/src/mir/mod.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_middle / src / mir / mod.rs
CommitLineData
ba9703b0 1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
ff7c6d11 2//!
ba9703b0 3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
7cac9316 4
3dfed10e 5use crate::mir::coverage::{CodeRegion, CoverageKind};
5e7ed085 6use crate::mir::interpret::{ConstAllocation, ConstValue, GlobalAlloc, Scalar};
9fa01778 7use crate::mir::visit::MirVisitable;
416331ca 8use crate::ty::adjustment::PointerCast;
3dfed10e 9use crate::ty::codec::{TyDecoder, TyEncoder};
a2a8927a 10use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeVisitor};
416331ca
XL
11use crate::ty::print::{FmtPrinter, Printer};
12use crate::ty::subst::{Subst, SubstsRef};
29967ef6 13use crate::ty::{self, List, Ty, TyCtxt};
6a06907d 14use crate::ty::{AdtDef, InstanceDef, Region, ScalarInt, UserTypeAnnotationIndex};
a2a8927a 15
5e7ed085 16use rustc_errors::ErrorGuaranteed;
dfeec247 17use rustc_hir::def::{CtorKind, Namespace};
29967ef6 18use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
dfeec247 19use rustc_hir::{self, GeneratorKind};
cdc7bbd5 20use rustc_hir::{self as hir, HirId};
a2a8927a 21use rustc_session::Session;
6a06907d 22use rustc_target::abi::{Size, VariantIdx};
e1599b0c 23
416331ca 24use polonius_engine::Atom;
3dfed10e 25pub use rustc_ast::Mutability;
a1dfa0c6 26use rustc_data_structures::fx::FxHashSet;
f9f354fc 27use rustc_data_structures::graph::dominators::{dominators, Dominators};
60c5eb7d 28use rustc_data_structures::graph::{self, GraphSuccessors};
dfeec247 29use rustc_index::bit_set::BitMatrix;
e74abb32 30use rustc_index::vec::{Idx, IndexVec};
dfeec247
XL
31use rustc_serialize::{Decodable, Encodable};
32use rustc_span::symbol::Symbol;
33use rustc_span::{Span, DUMMY_SP};
f9f354fc 34use rustc_target::asm::InlineAsmRegOrRegClass;
a2a8927a
XL
35
36use either::Either;
37
94b46f34 38use std::borrow::Cow;
6a06907d 39use std::convert::TryInto;
416331ca 40use std::fmt::{self, Debug, Display, Formatter, Write};
29967ef6 41use std::ops::{ControlFlow, Index, IndexMut};
94b46f34 42use std::slice;
ba9703b0 43use std::{iter, mem, option};
83c7162d 44
5869c6ff 45use self::graph_cyclic_cache::GraphIsCyclicCache;
f9f354fc 46use self::predecessors::{PredecessorCache, Predecessors};
dfeec247 47pub use self::query::*;
5e7ed085 48use self::switch_sources::{SwitchSourceCache, SwitchSources};
3157f602 49
f035d41b 50pub mod coverage;
c295e0f8
XL
51mod generic_graph;
52pub mod generic_graphviz;
5869c6ff 53mod graph_cyclic_cache;
c295e0f8 54pub mod graphviz;
ff7c6d11
XL
55pub mod interpret;
56pub mod mono;
c295e0f8 57pub mod patch;
f9f354fc 58mod predecessors;
c295e0f8 59pub mod pretty;
dfeec247 60mod query;
c295e0f8 61pub mod spanview;
5e7ed085 62mod switch_sources;
94b46f34 63pub mod tcx;
f035d41b
XL
64pub mod terminator;
65pub use terminator::*;
94b46f34 66pub mod traversal;
ba9703b0 67mod type_foldable;
94b46f34 68pub mod visit;
3157f602 69
c295e0f8
XL
70pub use self::generic_graph::graphviz_safe_def_name;
71pub use self::graphviz::write_mir_graphviz;
72pub use self::pretty::{
73 create_dump_file, display_allocation, dump_enabled, dump_mir, write_mir_pretty, PassWhere,
74};
75
041b39d2 76/// Types for locals
5869c6ff 77pub type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;
041b39d2
XL
78
79pub trait HasLocalDecls<'tcx> {
80 fn local_decls(&self) -> &LocalDecls<'tcx>;
81}
82
83impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
6a06907d 84 #[inline]
041b39d2
XL
85 fn local_decls(&self) -> &LocalDecls<'tcx> {
86 self
87 }
88}
89
dc9dc135 90impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
6a06907d 91 #[inline]
041b39d2
XL
92 fn local_decls(&self) -> &LocalDecls<'tcx> {
93 &self.local_decls
94 }
95}
96
c295e0f8
XL
97/// A streamlined trait that you can implement to create a pass; the
98/// pass will be named after the type, and it will consist of a main
99/// loop that goes over each available MIR and applies `run_pass`.
100pub trait MirPass<'tcx> {
101 fn name(&self) -> Cow<'_, str> {
102 let name = std::any::type_name::<Self>();
103 if let Some(tail) = name.rfind(':') {
104 Cow::from(&name[tail + 1..])
105 } else {
106 Cow::from(name)
107 }
108 }
109
a2a8927a
XL
110 /// Returns `true` if this pass is enabled with the current combination of compiler flags.
111 fn is_enabled(&self, _sess: &Session) -> bool {
112 true
113 }
114
c295e0f8 115 fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>);
a2a8927a
XL
116
117 /// If this pass causes the MIR to enter a new phase, return that phase.
118 fn phase_change(&self) -> Option<MirPhase> {
119 None
120 }
121
122 fn is_mir_dump_enabled(&self) -> bool {
123 true
124 }
c295e0f8
XL
125}
126
a1dfa0c6
XL
127/// The various "big phases" that MIR goes through.
128///
3dfed10e
XL
129/// These phases all describe dialects of MIR. Since all MIR uses the same datastructures, the
130/// dialects forbid certain variants or values in certain phases.
131///
e1599b0c 132/// Warning: ordering of variants is significant.
3dfed10e 133#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)]
ba9703b0 134#[derive(HashStable)]
a1dfa0c6 135pub enum MirPhase {
5e7ed085 136 Built = 0,
3dfed10e
XL
137 // FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query).
138 // We used to have this for pre-miri MIR based const eval.
a1dfa0c6 139 Const = 1,
3dfed10e
XL
140 /// This phase checks the MIR for promotable elements and takes them out of the main MIR body
141 /// by creating a new MIR body per promoted element. After this phase (and thus the termination
142 /// of the `mir_promoted` query), these promoted elements are available in the `promoted_mir`
143 /// query.
5e7ed085
FG
144 ConstsPromoted = 2,
145 /// Beginning with this phase, the following variants are disallowed:
146 /// * [`TerminatorKind::DropAndReplace`](terminator::TerminatorKind::DropAndReplace)
147 /// * [`TerminatorKind::FalseUnwind`](terminator::TerminatorKind::FalseUnwind)
148 /// * [`TerminatorKind::FalseEdge`](terminator::TerminatorKind::FalseEdge)
149 /// * [`StatementKind::FakeRead`]
150 /// * [`StatementKind::AscribeUserType`]
151 /// * [`Rvalue::Ref`] with `BorrowKind::Shallow`
152 ///
153 /// And the following variant is allowed:
154 /// * [`StatementKind::Retag`]
155 ///
156 /// Furthermore, `Drop` now uses explicit drop flags visible in the MIR and reaching a `Drop`
157 /// terminator means that the auto-generated drop glue will be invoked.
158 DropsLowered = 3,
159 /// Beginning with this phase, the following variant is disallowed:
160 /// * [`Rvalue::Aggregate`] for any `AggregateKind` except `Array`
161 ///
162 /// And the following variant is allowed:
163 /// * [`StatementKind::SetDiscriminant`]
164 Deaggregated = 4,
165 /// Beginning with this phase, the following variants are disallowed:
166 /// * [`TerminatorKind::Yield`](terminator::TerminatorKind::Yield)
167 /// * [`TerminatorKind::GeneratorDrop](terminator::TerminatorKind::GeneratorDrop)
168 GeneratorsLowered = 5,
169 Optimized = 6,
a1dfa0c6
XL
170}
171
172impl MirPhase {
e1599b0c 173 /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
a1dfa0c6
XL
174 pub fn phase_index(&self) -> usize {
175 *self as usize
176 }
177}
178
29967ef6 179/// Where a specific `mir::Body` comes from.
5099ac24 180#[derive(Copy, Clone, Debug, PartialEq, Eq)]
29967ef6
XL
181#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable)]
182pub struct MirSource<'tcx> {
183 pub instance: InstanceDef<'tcx>,
184
185 /// If `Some`, this is a promoted rvalue within the parent function.
186 pub promoted: Option<Promoted>,
187}
188
189impl<'tcx> MirSource<'tcx> {
190 pub fn item(def_id: DefId) -> Self {
191 MirSource {
192 instance: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)),
193 promoted: None,
194 }
195 }
196
197 pub fn from_instance(instance: InstanceDef<'tcx>) -> Self {
198 MirSource { instance, promoted: None }
199 }
200
201 pub fn with_opt_param(self) -> ty::WithOptConstParam<DefId> {
202 self.instance.with_opt_param()
203 }
204
205 #[inline]
206 pub fn def_id(&self) -> DefId {
207 self.instance.def_id()
208 }
209}
210
6a06907d
XL
211#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
212pub struct GeneratorInfo<'tcx> {
213 /// The yield type of the function, if it is a generator.
214 pub yield_ty: Option<Ty<'tcx>>,
215
216 /// Generator drop glue.
217 pub generator_drop: Option<Body<'tcx>>,
218
219 /// The layout of a generator. Produced by the state transformation.
220 pub generator_layout: Option<GeneratorLayout<'tcx>>,
221
222 /// If this is a generator then record the type of source expression that caused this generator
223 /// to be created.
224 pub generator_kind: GeneratorKind,
225}
226
e1599b0c 227/// The lowered representation of a single function.
3dfed10e 228#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
dc9dc135 229pub struct Body<'tcx> {
29967ef6 230 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
92a42be0 231 /// that indexes into this vector.
3157f602 232 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
e9174d1e 233
a1dfa0c6
XL
234 /// Records how far through the "desugaring and optimization" process this particular
235 /// MIR has traversed. This is particularly useful when inlining, since in that context
236 /// we instantiate the promoted constants and add them to our promoted vector -- but those
237 /// promoted items have already been optimized, whereas ours have not. This field allows
238 /// us to see the difference and forego optimization on the inlined promoted items.
239 pub phase: MirPhase,
240
29967ef6
XL
241 pub source: MirSource<'tcx>,
242
e1599b0c 243 /// A list of source scopes; these are referenced by statements
94b46f34 244 /// and used for debuginfo. Indexed by a `SourceScope`.
29967ef6 245 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
54a0048b 246
6a06907d 247 pub generator: Option<Box<GeneratorInfo<'tcx>>>,
60c5eb7d 248
c30ab7b3
SL
249 /// Declarations of locals.
250 ///
251 /// The first local is the return value pointer, followed by `arg_count`
252 /// locals for the function arguments, followed by any user-declared
253 /// variables and temporaries.
041b39d2 254 pub local_decls: LocalDecls<'tcx>,
92a42be0 255
e1599b0c 256 /// User type annotations.
29967ef6 257 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
0731742a 258
e1599b0c 259 /// The number of arguments this function takes.
c30ab7b3
SL
260 ///
261 /// Starting at local 1, `arg_count` locals will be provided by the caller
262 /// and can be assumed to be initialized.
263 ///
264 /// If this MIR was built for a constant, this will be 0.
265 pub arg_count: usize,
7453a54e 266
c30ab7b3
SL
267 /// Mark an argument local (which must be a tuple) as getting passed as
268 /// its individual components at the LLVM level.
269 ///
270 /// This is used for the "rust-call" ABI.
271 pub spread_arg: Option<Local>,
272
60c5eb7d
XL
273 /// Debug information pertaining to user variables, including captures.
274 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
48663c56 275
e1599b0c 276 /// A span representing this MIR, for error reporting.
7453a54e 277 pub span: Span,
dfeec247 278
f9f354fc
XL
279 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
280 /// We hold in this field all the constants we are not able to evaluate yet.
281 pub required_consts: Vec<Constant<'tcx>>,
282
1b1a35ee
XL
283 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
284 ///
285 /// Note that this does not actually mean that this body is not computable right now.
286 /// The repeat count in the following example is polymorphic, but can still be evaluated
287 /// without knowing anything about the type parameter `T`.
288 ///
289 /// ```rust
290 /// fn test<T>() {
291 /// let _ = [0; std::mem::size_of::<*mut T>()];
292 /// }
293 /// ```
294 ///
295 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
296 /// removed the last mention of all generic params. We do not want to rely on optimizations and
297 /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
298 pub is_polymorphic: bool,
299
f9f354fc 300 predecessor_cache: PredecessorCache,
5e7ed085 301 switch_source_cache: SwitchSourceCache,
5869c6ff 302 is_cyclic: GraphIsCyclicCache,
5099ac24 303
5e7ed085 304 pub tainted_by_errors: Option<ErrorGuaranteed>,
e9174d1e
SL
305}
306
dc9dc135 307impl<'tcx> Body<'tcx> {
94b46f34 308 pub fn new(
29967ef6 309 source: MirSource<'tcx>,
94b46f34 310 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
29967ef6 311 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
0731742a 312 local_decls: LocalDecls<'tcx>,
29967ef6 313 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
94b46f34 314 arg_count: usize,
60c5eb7d 315 var_debug_info: Vec<VarDebugInfo<'tcx>>,
94b46f34 316 span: Span,
dfeec247 317 generator_kind: Option<GeneratorKind>,
5e7ed085 318 tainted_by_errors: Option<ErrorGuaranteed>,
94b46f34 319 ) -> Self {
e1599b0c 320 // We need `arg_count` locals, and one for the return place.
94b46f34 321 assert!(
74b04a01 322 local_decls.len() > arg_count,
94b46f34
XL
323 "expected at least {} locals, got {}",
324 arg_count + 1,
325 local_decls.len()
326 );
c30ab7b3 327
1b1a35ee 328 let mut body = Body {
5e7ed085 329 phase: MirPhase::Built,
29967ef6 330 source,
041b39d2 331 basic_blocks,
94b46f34 332 source_scopes,
6a06907d
XL
333 generator: generator_kind.map(|generator_kind| {
334 Box::new(GeneratorInfo {
335 yield_ty: None,
336 generator_drop: None,
337 generator_layout: None,
338 generator_kind,
339 })
340 }),
041b39d2 341 local_decls,
0731742a 342 user_type_annotations,
041b39d2 343 arg_count,
c30ab7b3 344 spread_arg: None,
60c5eb7d 345 var_debug_info,
041b39d2 346 span,
f9f354fc 347 required_consts: Vec::new(),
1b1a35ee 348 is_polymorphic: false,
f9f354fc 349 predecessor_cache: PredecessorCache::new(),
5e7ed085 350 switch_source_cache: SwitchSourceCache::new(),
5869c6ff 351 is_cyclic: GraphIsCyclicCache::new(),
5099ac24 352 tainted_by_errors,
1b1a35ee 353 };
5099ac24 354 body.is_polymorphic = body.has_param_types_or_consts();
1b1a35ee 355 body
3157f602
XL
356 }
357
dfeec247
XL
358 /// Returns a partially initialized MIR body containing only a list of basic blocks.
359 ///
360 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
361 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
362 /// crate.
363 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
5099ac24 364 let mut body = Body {
5e7ed085 365 phase: MirPhase::Built,
29967ef6 366 source: MirSource::item(DefId::local(CRATE_DEF_INDEX)),
dfeec247
XL
367 basic_blocks,
368 source_scopes: IndexVec::new(),
6a06907d 369 generator: None,
dfeec247
XL
370 local_decls: IndexVec::new(),
371 user_type_annotations: IndexVec::new(),
372 arg_count: 0,
373 spread_arg: None,
374 span: DUMMY_SP,
f9f354fc 375 required_consts: Vec::new(),
dfeec247 376 var_debug_info: Vec::new(),
1b1a35ee 377 is_polymorphic: false,
f9f354fc 378 predecessor_cache: PredecessorCache::new(),
5e7ed085 379 switch_source_cache: SwitchSourceCache::new(),
5869c6ff 380 is_cyclic: GraphIsCyclicCache::new(),
5099ac24
FG
381 tainted_by_errors: None,
382 };
383 body.is_polymorphic = body.has_param_types_or_consts();
384 body
dfeec247
XL
385 }
386
3157f602
XL
387 #[inline]
388 pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
389 &self.basic_blocks
390 }
391
f9f354fc
XL
392 #[inline]
393 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
394 // Because the user could mutate basic block terminators via this reference, we need to
5869c6ff 395 // invalidate the caches.
f9f354fc
XL
396 //
397 // FIXME: Use a finer-grained API for this, so only transformations that alter terminators
5869c6ff 398 // invalidate the caches.
f9f354fc 399 self.predecessor_cache.invalidate();
5e7ed085 400 self.switch_source_cache.invalidate();
5869c6ff 401 self.is_cyclic.invalidate();
f9f354fc
XL
402 &mut self.basic_blocks
403 }
404
405 #[inline]
406 pub fn basic_blocks_and_local_decls_mut(
407 &mut self,
408 ) -> (&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, &mut LocalDecls<'tcx>) {
409 self.predecessor_cache.invalidate();
5e7ed085 410 self.switch_source_cache.invalidate();
5869c6ff 411 self.is_cyclic.invalidate();
f9f354fc
XL
412 (&mut self.basic_blocks, &mut self.local_decls)
413 }
414
f035d41b
XL
415 #[inline]
416 pub fn basic_blocks_local_decls_mut_and_var_debug_info(
417 &mut self,
418 ) -> (
419 &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
420 &mut LocalDecls<'tcx>,
421 &mut Vec<VarDebugInfo<'tcx>>,
422 ) {
423 self.predecessor_cache.invalidate();
5e7ed085 424 self.switch_source_cache.invalidate();
5869c6ff 425 self.is_cyclic.invalidate();
f035d41b
XL
426 (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info)
427 }
428
e74abb32
XL
429 /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the
430 /// `START_BLOCK`.
431 pub fn is_cfg_cyclic(&self) -> bool {
5869c6ff 432 self.is_cyclic.is_cyclic(self)
e74abb32
XL
433 }
434
c30ab7b3
SL
435 #[inline]
436 pub fn local_kind(&self, local: Local) -> LocalKind {
b7449926 437 let index = local.as_usize();
c30ab7b3 438 if index == 0 {
94b46f34
XL
439 debug_assert!(
440 self.local_decls[local].mutability == Mutability::Mut,
441 "return place should be mutable"
442 );
c30ab7b3
SL
443
444 LocalKind::ReturnPointer
445 } else if index < self.arg_count + 1 {
446 LocalKind::Arg
60c5eb7d 447 } else if self.local_decls[local].is_user_variable() {
c30ab7b3
SL
448 LocalKind::Var
449 } else {
c30ab7b3
SL
450 LocalKind::Temp
451 }
452 }
453
a1dfa0c6
XL
454 /// Returns an iterator over all user-declared mutable locals.
455 #[inline]
456 pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
457 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
458 let local = Local::new(index);
459 let decl = &self.local_decls[local];
60c5eb7d 460 if decl.is_user_variable() && decl.mutability == Mutability::Mut {
a1dfa0c6
XL
461 Some(local)
462 } else {
463 None
464 }
465 })
466 }
467
83c7162d
XL
468 /// Returns an iterator over all user-declared mutable arguments and locals.
469 #[inline]
94b46f34 470 pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
83c7162d
XL
471 (1..self.local_decls.len()).filter_map(move |index| {
472 let local = Local::new(index);
473 let decl = &self.local_decls[local];
60c5eb7d 474 if (decl.is_user_variable() || index < self.arg_count + 1)
94b46f34 475 && decl.mutability == Mutability::Mut
83c7162d
XL
476 {
477 Some(local)
478 } else {
479 None
480 }
481 })
482 }
483
c30ab7b3
SL
484 /// Returns an iterator over all function arguments.
485 #[inline]
60c5eb7d 486 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
94222f64 487 (1..self.arg_count + 1).map(Local::new)
e9174d1e 488 }
9e0c209e 489
c30ab7b3 490 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
ff7c6d11 491 /// locals that are neither arguments nor the return place).
c30ab7b3 492 #[inline]
fc512014
XL
493 pub fn vars_and_temps_iter(
494 &self,
495 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
94222f64
XL
496 (self.arg_count + 1..self.local_decls.len()).map(Local::new)
497 }
498
499 #[inline]
500 pub fn drain_vars_and_temps<'a>(&'a mut self) -> impl Iterator<Item = LocalDecl<'tcx>> + 'a {
501 self.local_decls.drain(self.arg_count + 1..)
9e0c209e
SL
502 }
503
504 /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
505 /// invalidating statement indices in `Location`s.
506 pub fn make_statement_nop(&mut self, location: Location) {
60c5eb7d 507 let block = &mut self.basic_blocks[location.block];
9e0c209e
SL
508 debug_assert!(location.statement_index < block.statements.len());
509 block.statements[location.statement_index].make_nop()
510 }
ea8adc8c
XL
511
512 /// Returns the source info associated with `location`.
513 pub fn source_info(&self, location: Location) -> &SourceInfo {
514 let block = &self[location.block];
515 let stmts = &block.statements;
516 let idx = location.statement_index;
abe05a73 517 if idx < stmts.len() {
ea8adc8c
XL
518 &stmts[idx].source_info
519 } else {
0bf4aa26 520 assert_eq!(idx, stmts.len());
ea8adc8c
XL
521 &block.terminator().source_info
522 }
523 }
abe05a73 524
e1599b0c 525 /// Returns the return type; it always return first element from `local_decls` array.
f9f354fc 526 #[inline]
abe05a73 527 pub fn return_ty(&self) -> Ty<'tcx> {
ff7c6d11 528 self.local_decls[RETURN_PLACE].ty
abe05a73 529 }
b7449926 530
e1599b0c 531 /// Gets the location of the terminator for the given block.
f9f354fc 532 #[inline]
b7449926 533 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
416331ca 534 Location { block: bb, statement_index: self[bb].statements.len() }
b7449926 535 }
f9f354fc 536
a2a8927a
XL
537 pub fn stmt_at(&self, location: Location) -> Either<&Statement<'tcx>, &Terminator<'tcx>> {
538 let Location { block, statement_index } = location;
539 let block_data = &self.basic_blocks[block];
540 block_data
541 .statements
542 .get(statement_index)
543 .map(Either::Left)
544 .unwrap_or_else(|| Either::Right(block_data.terminator()))
545 }
546
f9f354fc 547 #[inline]
17df50a5 548 pub fn predecessors(&self) -> &Predecessors {
f9f354fc
XL
549 self.predecessor_cache.compute(&self.basic_blocks)
550 }
551
5e7ed085
FG
552 #[inline]
553 pub fn switch_sources(&self) -> &SwitchSources {
554 self.switch_source_cache.compute(&self.basic_blocks)
555 }
556
f9f354fc
XL
557 #[inline]
558 pub fn dominators(&self) -> Dominators<BasicBlock> {
559 dominators(self)
560 }
6a06907d
XL
561
562 #[inline]
563 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
564 self.generator.as_ref().and_then(|generator| generator.yield_ty)
565 }
566
567 #[inline]
568 pub fn generator_layout(&self) -> Option<&GeneratorLayout<'tcx>> {
569 self.generator.as_ref().and_then(|generator| generator.generator_layout.as_ref())
570 }
571
572 #[inline]
573 pub fn generator_drop(&self) -> Option<&Body<'tcx>> {
574 self.generator.as_ref().and_then(|generator| generator.generator_drop.as_ref())
575 }
576
577 #[inline]
578 pub fn generator_kind(&self) -> Option<GeneratorKind> {
579 self.generator.as_ref().map(|generator| generator.generator_kind)
580 }
ea8adc8c
XL
581}
582
3dfed10e 583#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)]
ea8adc8c
XL
584pub enum Safety {
585 Safe,
136023e0 586 /// Unsafe because of compiler-generated unsafe code, like `await` desugaring
ea8adc8c
XL
587 BuiltinUnsafe,
588 /// Unsafe because of an unsafe fn
589 FnUnsafe,
590 /// Unsafe because of an `unsafe` block
532ac7d7 591 ExplicitUnsafe(hir::HirId),
e9174d1e
SL
592}
593
dc9dc135 594impl<'tcx> Index<BasicBlock> for Body<'tcx> {
9cc50fc6
SL
595 type Output = BasicBlockData<'tcx>;
596
597 #[inline]
598 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
3157f602 599 &self.basic_blocks()[index]
9cc50fc6
SL
600 }
601}
602
f9f354fc
XL
603impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
604 #[inline]
605 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
606 &mut self.basic_blocks_mut()[index]
607 }
608}
609
60c5eb7d 610#[derive(Copy, Clone, Debug, HashStable, TypeFoldable)]
ff7c6d11 611pub enum ClearCrossCrate<T> {
ea8adc8c 612 Clear,
94b46f34 613 Set(T),
ea8adc8c
XL
614}
615
8faf50e0 616impl<T> ClearCrossCrate<T> {
ba9703b0 617 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
60c5eb7d
XL
618 match self {
619 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
620 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
621 }
622 }
623
8faf50e0
XL
624 pub fn assert_crate_local(self) -> T {
625 match self {
626 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
627 ClearCrossCrate::Set(v) => v,
628 }
629 }
630}
631
f035d41b
XL
632const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
633const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
634
3dfed10e 635impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
f035d41b 636 #[inline]
3dfed10e
XL
637 fn encode(&self, e: &mut E) -> Result<(), E::Error> {
638 if E::CLEAR_CROSS_CRATE {
639 return Ok(());
640 }
641
f035d41b
XL
642 match *self {
643 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
644 ClearCrossCrate::Set(ref val) => {
645 TAG_CLEAR_CROSS_CRATE_SET.encode(e)?;
646 val.encode(e)
647 }
648 }
649 }
650}
3dfed10e 651impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
f035d41b 652 #[inline]
5099ac24 653 fn decode(d: &mut D) -> ClearCrossCrate<T> {
3dfed10e 654 if D::CLEAR_CROSS_CRATE {
5099ac24 655 return ClearCrossCrate::Clear;
3dfed10e
XL
656 }
657
5099ac24 658 let discr = u8::decode(d);
f035d41b
XL
659
660 match discr {
5099ac24 661 TAG_CLEAR_CROSS_CRATE_CLEAR => ClearCrossCrate::Clear,
f035d41b 662 TAG_CLEAR_CROSS_CRATE_SET => {
5099ac24
FG
663 let val = T::decode(d);
664 ClearCrossCrate::Set(val)
f035d41b 665 }
5099ac24 666 tag => panic!("Invalid tag for ClearCrossCrate: {:?}", tag),
f035d41b
XL
667 }
668 }
669}
ea8adc8c 670
3157f602
XL
671/// Grouped information about the source code origin of a MIR entity.
672/// Intended to be inspected by diagnostics and debuginfo.
673/// Most passes can work with it as a whole, within a single function.
60c5eb7d 674// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
e74abb32 675// `Hash`. Please ping @bjorn3 if removing them.
3dfed10e 676#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
3157f602 677pub struct SourceInfo {
e1599b0c 678 /// The source span for the AST pertaining to this MIR entity.
3157f602
XL
679 pub span: Span,
680
94b46f34
XL
681 /// The source scope, keeping track of which bindings can be
682 /// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
683 pub scope: SourceScope,
3157f602
XL
684}
685
f9f354fc
XL
686impl SourceInfo {
687 #[inline]
688 pub fn outermost(span: Span) -> Self {
689 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
690 }
691}
692
e9174d1e 693///////////////////////////////////////////////////////////////////////////
dfeec247 694// Borrow kinds
94b46f34 695
3dfed10e 696#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, TyEncodable, TyDecodable)]
6a06907d 697#[derive(Hash, HashStable)]
e9174d1e
SL
698pub enum BorrowKind {
699 /// Data must be immutable and is aliasable.
700 Shared,
701
0bf4aa26
XL
702 /// The immediately borrowed place must be immutable, but projections from
703 /// it don't need to be. For example, a shallow borrow of `a.b` doesn't
704 /// conflict with a mutable borrow of `a.b.c`.
705 ///
706 /// This is used when lowering matches: when matching on a place we want to
707 /// ensure that place have the same value from the start of the match until
708 /// an arm is selected. This prevents this code from compiling:
709 ///
710 /// let mut x = &Some(0);
711 /// match *x {
712 /// None => (),
713 /// Some(_) if { x = &None; false } => (),
714 /// Some(_) => (),
715 /// }
716 ///
717 /// This can't be a shared borrow because mutably borrowing (*x as Some).0
718 /// should not prevent `if let None = x { ... }`, for example, because the
719 /// mutating `(*x as Some).0` can't affect the discriminant of `x`.
720 /// We can also report errors with this kind of borrow differently.
721 Shallow,
722
9fa01778 723 /// Data must be immutable but not aliasable. This kind of borrow
e9174d1e 724 /// cannot currently be expressed by the user and is used only in
b7449926
XL
725 /// implicit closure bindings. It is needed when the closure is
726 /// borrowing or mutating a mutable referent, e.g.:
e9174d1e 727 ///
a1dfa0c6
XL
728 /// let x: &mut isize = ...;
729 /// let y = || *x += 5;
e9174d1e
SL
730 ///
731 /// If we were to try to translate this closure into a more explicit
732 /// form, we'd encounter an error with the code as written:
733 ///
a1dfa0c6
XL
734 /// struct Env { x: & &mut isize }
735 /// let x: &mut isize = ...;
736 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
737 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
e9174d1e 738 ///
b7449926 739 /// This is then illegal because you cannot mutate an `&mut` found
e9174d1e
SL
740 /// in an aliasable location. To solve, you'd have to translate with
741 /// an `&mut` borrow:
742 ///
136023e0 743 /// struct Env { x: &mut &mut isize }
a1dfa0c6
XL
744 /// let x: &mut isize = ...;
745 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
746 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
e9174d1e
SL
747 ///
748 /// Now the assignment to `**env.x` is legal, but creating a
749 /// mutable pointer to `x` is not because `x` is not mutable. We
750 /// could fix this by declaring `x` as `let mut x`. This is ok in
751 /// user code, if awkward, but extra weird for closures, since the
752 /// borrow is hidden.
753 ///
754 /// So we introduce a "unique imm" borrow -- the referent is
755 /// immutable, but not aliasable. This solves the problem. For
756 /// simplicity, we don't give users the way to express this
757 /// borrow, it's just used when translating closures.
758 Unique,
759
760 /// Data is mutable and not aliasable.
2c00a5a8 761 Mut {
9fa01778
XL
762 /// `true` if this borrow arose from method-call auto-ref
763 /// (i.e., `adjustment::Adjust::Borrow`).
94b46f34
XL
764 allow_two_phase_borrow: bool,
765 },
2c00a5a8
XL
766}
767
768impl BorrowKind {
769 pub fn allows_two_phase_borrow(&self) -> bool {
770 match *self {
0bf4aa26
XL
771 BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
772 BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
2c00a5a8
XL
773 }
774 }
17df50a5
XL
775
776 pub fn describe_mutability(&self) -> String {
777 match *self {
778 BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => {
779 "immutable".to_string()
780 }
781 BorrowKind::Mut { .. } => "mutable".to_string(),
782 }
783 }
e9174d1e
SL
784}
785
786///////////////////////////////////////////////////////////////////////////
787// Variables and temps
788
e74abb32 789rustc_index::newtype_index! {
b7449926 790 pub struct Local {
532ac7d7 791 derive [HashStable]
abe05a73 792 DEBUG_FORMAT = "_{}",
ff7c6d11 793 const RETURN_PLACE = 0,
b7449926
XL
794 }
795}
54a0048b 796
416331ca
XL
797impl Atom for Local {
798 fn index(self) -> usize {
799 Idx::index(self)
800 }
801}
802
dc9dc135 803/// Classifies locals into categories. See `Body::local_kind`.
1b1a35ee 804#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
c30ab7b3 805pub enum LocalKind {
e1599b0c 806 /// User-declared variable binding.
c30ab7b3 807 Var,
e1599b0c 808 /// Compiler-introduced temporary.
c30ab7b3 809 Temp,
e1599b0c 810 /// Function argument.
c30ab7b3 811 Arg,
e1599b0c 812 /// Location of function's return value.
c30ab7b3 813 ReturnPointer,
e9174d1e
SL
814}
815
3dfed10e 816#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
8faf50e0 817pub struct VarBindingForm<'tcx> {
94b46f34
XL
818 /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
819 pub binding_mode: ty::BindingMode,
820 /// If an explicit type was provided for this variable binding,
821 /// this holds the source Span of that type.
822 ///
9fa01778 823 /// NOTE: if you want to change this to a `HirId`, be wary that
94b46f34
XL
824 /// doing so breaks incremental compilation (as of this writing),
825 /// while a `Span` does not cause our tests to fail.
826 pub opt_ty_info: Option<Span>,
8faf50e0
XL
827 /// Place of the RHS of the =, or the subject of the `match` where this
828 /// variable is initialized. None in the case of `let PATTERN;`.
829 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
830 /// (a) the right-hand side isn't evaluated as a place expression.
831 /// (b) it gives a way to separate this case from the remaining cases
832 /// for diagnostics.
833 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
e1599b0c 834 /// The span of the pattern in which this variable was bound.
b7449926 835 pub pat_span: Span,
94b46f34
XL
836}
837
3dfed10e 838#[derive(Clone, Debug, TyEncodable, TyDecodable)]
8faf50e0 839pub enum BindingForm<'tcx> {
94b46f34 840 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
8faf50e0 841 Var(VarBindingForm<'tcx>),
94b46f34 842 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
0bf4aa26 843 ImplicitSelf(ImplicitSelfKind),
8faf50e0
XL
844 /// Reference used in a guard expression to ensure immutability.
845 RefForGuard,
94b46f34
XL
846}
847
0bf4aa26 848/// Represents what type of implicit self a function has, if any.
3dfed10e 849#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
0bf4aa26
XL
850pub enum ImplicitSelfKind {
851 /// Represents a `fn x(self);`.
852 Imm,
853 /// Represents a `fn x(mut self);`.
854 Mut,
855 /// Represents a `fn x(&self);`.
856 ImmRef,
857 /// Represents a `fn x(&mut self);`.
858 MutRef,
859 /// Represents when a function does not have a self argument or
860 /// when a function has a `self: X` argument.
416331ca 861 None,
0bf4aa26
XL
862}
863
fc512014 864TrivialTypeFoldableAndLiftImpls! { BindingForm<'tcx>, }
94b46f34 865
8faf50e0 866mod binding_form_impl {
e74abb32 867 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
c295e0f8 868 use rustc_query_system::ich::StableHashingContext;
8faf50e0
XL
869
870 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
e74abb32 871 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
8faf50e0 872 use super::BindingForm::*;
29967ef6 873 std::mem::discriminant(self).hash_stable(hcx, hasher);
8faf50e0
XL
874
875 match self {
876 Var(binding) => binding.hash_stable(hcx, hasher),
0bf4aa26 877 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
8faf50e0
XL
878 RefForGuard => (),
879 }
880 }
881 }
882}
94b46f34 883
0bf4aa26
XL
884/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
885/// created during evaluation of expressions in a block tail
886/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
887///
888/// It is used to improve diagnostics when such temporaries are
0731742a 889/// involved in borrow_check errors, e.g., explanations of where the
0bf4aa26
XL
890/// temporaries come from, when their destructors are run, and/or how
891/// one might revise the code to satisfy the borrow checker's rules.
3dfed10e 892#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
0bf4aa26
XL
893pub struct BlockTailInfo {
894 /// If `true`, then the value resulting from evaluating this tail
895 /// expression is ignored by the block's expression context.
896 ///
897 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
0731742a 898 /// but not e.g., `let _x = { ...; tail };`
0bf4aa26 899 pub tail_result_is_ignored: bool,
f9f354fc
XL
900
901 /// `Span` of the tail expression.
902 pub span: Span,
0bf4aa26
XL
903}
904
c30ab7b3 905/// A MIR local.
7453a54e 906///
c30ab7b3 907/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
ff7c6d11 908/// argument, or the return place.
3dfed10e 909#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
c30ab7b3 910pub struct LocalDecl<'tcx> {
29967ef6 911 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
c30ab7b3 912 ///
ff7c6d11 913 /// Temporaries and the return place are always mutable.
c30ab7b3
SL
914 pub mutability: Mutability,
915
60c5eb7d 916 // FIXME(matthewjasper) Don't store in this in `Body`
f9f354fc 917 pub local_info: Option<Box<LocalInfo<'tcx>>>,
cc61c64b 918
9fa01778 919 /// `true` if this is an internal local.
ea8adc8c
XL
920 ///
921 /// These locals are not based on types in the source code and are only used
922 /// for a few desugarings at the moment.
923 ///
924 /// The generator transformation will sanity check the locals which are live
925 /// across a suspension point against the type components of the generator
926 /// which type checking knows are live across a suspension point. We need to
927 /// flag drop flags to avoid triggering this check as they are introduced
5099ac24 928 /// outside of type inference.
ea8adc8c 929 ///
ea8adc8c 930 /// This should be sound because the drop flags are fully algebraic, and
fc512014 931 /// therefore don't affect the auto-trait or outlives properties of the
ea8adc8c
XL
932 /// generator.
933 pub internal: bool,
934
0bf4aa26
XL
935 /// If this local is a temporary and `is_block_tail` is `Some`,
936 /// then it is a temporary created for evaluation of some
937 /// subexpression of some block's tail expression (with no
938 /// intervening statement context).
60c5eb7d 939 // FIXME(matthewjasper) Don't store in this in `Body`
0bf4aa26
XL
940 pub is_block_tail: Option<BlockTailInfo>,
941
e1599b0c 942 /// The type of this local.
b039eaaf 943 pub ty: Ty<'tcx>,
54a0048b 944
b7449926 945 /// If the user manually ascribed a type to this variable,
0731742a 946 /// e.g., via `let x: T`, then we carry that type here. The MIR
b7449926
XL
947 /// borrow checker needs this information since it can affect
948 /// region inference.
60c5eb7d 949 // FIXME(matthewjasper) Don't store in this in `Body`
f9f354fc 950 pub user_ty: Option<Box<UserTypeProjections>>,
b7449926 951
0731742a 952 /// The *syntactic* (i.e., not visibility) source scope the local is defined
ea8adc8c
XL
953 /// in. If the local was defined in a let-statement, this
954 /// is *within* the let-statement, rather than outside
955 /// of it.
ff7c6d11 956 ///
94b46f34
XL
957 /// This is needed because the visibility source scope of locals within
958 /// a let-statement is weird.
ff7c6d11
XL
959 ///
960 /// The reason is that we want the local to be *within* the let-statement
961 /// for lint purposes, but we want the local to be *after* the let-statement
962 /// for names-in-scope purposes.
963 ///
964 /// That's it, if we have a let-statement like the one in this
965 /// function:
966 ///
967 /// ```
968 /// fn foo(x: &str) {
969 /// #[allow(unused_mut)]
970 /// let mut x: u32 = { // <- one unused mut
971 /// let mut y: u32 = x.parse().unwrap();
972 /// y + 2
973 /// };
974 /// drop(x);
975 /// }
976 /// ```
977 ///
978 /// Then, from a lint point of view, the declaration of `x: u32`
979 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
980 /// lint scopes are the same as the AST/HIR nesting.
981 ///
982 /// However, from a name lookup point of view, the scopes look more like
983 /// as if the let-statements were `match` expressions:
984 ///
985 /// ```
986 /// fn foo(x: &str) {
987 /// match {
988 /// match x.parse().unwrap() {
989 /// y => y + 2
990 /// }
991 /// } {
992 /// x => drop(x)
993 /// };
994 /// }
995 /// ```
996 ///
997 /// We care about the name-lookup scopes for debuginfo - if the
998 /// debuginfo instruction pointer is at the call to `x.parse()`, we
999 /// want `x` to refer to `x: &str`, but if it is at the call to
1000 /// `drop(x)`, we want it to refer to `x: u32`.
1001 ///
1002 /// To allow both uses to work, we need to have more than a single scope
60c5eb7d
XL
1003 /// for a local. We have the `source_info.scope` represent the "syntactic"
1004 /// lint scope (with a variable being under its let block) while the
1005 /// `var_debug_info.source_info.scope` represents the "local variable"
ff7c6d11
XL
1006 /// scope (where the "rest" of a block is under all prior let-statements).
1007 ///
1008 /// The end result looks like this:
1009 ///
1010 /// ```text
1011 /// ROOT SCOPE
1012 /// │{ argument x: &str }
1013 /// │
e1599b0c
XL
1014 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
1015 /// │ │ // in practice because I'm lazy.
ff7c6d11 1016 /// │ │
94b46f34 1017 /// │ │← x.source_info.scope
ff7c6d11
XL
1018 /// │ │← `x.parse().unwrap()`
1019 /// │ │
94b46f34 1020 /// │ │ │← y.source_info.scope
ff7c6d11
XL
1021 /// │ │
1022 /// │ │ │{ let y: u32 }
1023 /// │ │ │
60c5eb7d 1024 /// │ │ │← y.var_debug_info.source_info.scope
ff7c6d11
XL
1025 /// │ │ │← `y + 2`
1026 /// │
1027 /// │ │{ let x: u32 }
60c5eb7d 1028 /// │ │← x.var_debug_info.source_info.scope
e1599b0c 1029 /// │ │← `drop(x)` // This accesses `x: u32`.
ff7c6d11 1030 /// ```
94b46f34 1031 pub source_info: SourceInfo,
60c5eb7d 1032}
94b46f34 1033
f9f354fc 1034// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 1035#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
f9f354fc
XL
1036static_assert_size!(LocalDecl<'_>, 56);
1037
3dfed10e
XL
1038/// Extra information about a some locals that's used for diagnostics and for
1039/// classifying variables into local variables, statics, etc, which is needed e.g.
1040/// for unsafety checking.
1041///
1042/// Not used for non-StaticRef temporaries, the return place, or anonymous
1043/// function parameters.
1044#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
60c5eb7d
XL
1045pub enum LocalInfo<'tcx> {
1046 /// A user-defined local variable or function parameter
1047 ///
1048 /// The `BindingForm` is solely used for local diagnostics when generating
1049 /// warnings/errors when compiling the current crate, and therefore it need
1050 /// not be visible across crates.
1051 User(ClearCrossCrate<BindingForm<'tcx>>),
1052 /// A temporary created that references the static with the given `DefId`.
1053 StaticRef { def_id: DefId, is_thread_local: bool },
1b1a35ee
XL
1054 /// A temporary created that references the const with the given `DefId`
1055 ConstRef { def_id: DefId },
c295e0f8
XL
1056 /// A temporary created during the creation of an aggregate
1057 /// (e.g. a temporary for `foo` in `MyStruct { my_field: foo }`)
1058 AggregateTemp,
c30ab7b3
SL
1059}
1060
1061impl<'tcx> LocalDecl<'tcx> {
9fa01778 1062 /// Returns `true` only if local is a binding that can itself be
94b46f34
XL
1063 /// made mutable via the addition of the `mut` keyword, namely
1064 /// something like the occurrences of `x` in:
1065 /// - `fn foo(x: Type) { ... }`,
1066 /// - `let x = ...`,
1067 /// - or `match ... { C(x) => ... }`
1068 pub fn can_be_made_mutable(&self) -> bool {
29967ef6
XL
1069 matches!(
1070 self.local_info,
1071 Some(box LocalInfo::User(ClearCrossCrate::Set(
1072 BindingForm::Var(VarBindingForm {
1073 binding_mode: ty::BindingMode::BindByValue(_),
1074 opt_ty_info: _,
1075 opt_match_place: _,
1076 pat_span: _,
5869c6ff 1077 }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
29967ef6
XL
1078 )))
1079 )
94b46f34
XL
1080 }
1081
9fa01778 1082 /// Returns `true` if local is definitely not a `ref ident` or
94b46f34
XL
1083 /// `ref mut ident` binding. (Such bindings cannot be made into
1084 /// mutable bindings, but the inverse does not necessarily hold).
1085 pub fn is_nonref_binding(&self) -> bool {
29967ef6
XL
1086 matches!(
1087 self.local_info,
1088 Some(box LocalInfo::User(ClearCrossCrate::Set(
1089 BindingForm::Var(VarBindingForm {
1090 binding_mode: ty::BindingMode::BindByValue(_),
1091 opt_ty_info: _,
1092 opt_match_place: _,
1093 pat_span: _,
5869c6ff 1094 }) | BindingForm::ImplicitSelf(_),
29967ef6
XL
1095 )))
1096 )
60c5eb7d 1097 }
94b46f34 1098
60c5eb7d
XL
1099 /// Returns `true` if this variable is a named variable or function
1100 /// parameter declared by the user.
1101 #[inline]
1102 pub fn is_user_variable(&self) -> bool {
29967ef6 1103 matches!(self.local_info, Some(box LocalInfo::User(_)))
94b46f34
XL
1104 }
1105
dc9dc135
XL
1106 /// Returns `true` if this is a reference to a variable bound in a `match`
1107 /// expression that is used to access said variable for the guard of the
1108 /// match arm.
1109 pub fn is_ref_for_guard(&self) -> bool {
29967ef6
XL
1110 matches!(
1111 self.local_info,
1112 Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard)))
1113 )
60c5eb7d
XL
1114 }
1115
1116 /// Returns `Some` if this is a reference to a static item that is used to
29967ef6 1117 /// access that static.
60c5eb7d 1118 pub fn is_ref_to_static(&self) -> bool {
29967ef6 1119 matches!(self.local_info, Some(box LocalInfo::StaticRef { .. }))
60c5eb7d
XL
1120 }
1121
29967ef6
XL
1122 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1123 /// access that static.
60c5eb7d
XL
1124 pub fn is_ref_to_thread_local(&self) -> bool {
1125 match self.local_info {
f9f354fc 1126 Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local,
dc9dc135
XL
1127 _ => false,
1128 }
1129 }
1130
1131 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1132 /// `__next` from a `for` loop.
1133 #[inline]
1134 pub fn from_compiler_desugaring(&self) -> bool {
416331ca 1135 self.source_info.span.desugaring_kind().is_some()
dc9dc135
XL
1136 }
1137
f9f354fc 1138 /// Creates a new `LocalDecl` for a temporary: mutable, non-internal.
c30ab7b3 1139 #[inline]
f9f354fc
XL
1140 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1141 Self::with_source_info(ty, SourceInfo::outermost(span))
1142 }
1143
1144 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1145 #[inline]
1146 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1147 LocalDecl {
1148 mutability: Mutability::Mut,
1149 local_info: None,
1150 internal: false,
1151 is_block_tail: None,
1152 ty,
1153 user_ty: None,
1154 source_info,
1155 }
1156 }
1157
1158 /// Converts `self` into same `LocalDecl` except tagged as internal.
1159 #[inline]
1160 pub fn internal(mut self) -> Self {
1161 self.internal = true;
1162 self
b7449926
XL
1163 }
1164
0bf4aa26 1165 /// Converts `self` into same `LocalDecl` except tagged as immutable.
b7449926 1166 #[inline]
0bf4aa26
XL
1167 pub fn immutable(mut self) -> Self {
1168 self.mutability = Mutability::Not;
1169 self
1170 }
1171
1172 /// Converts `self` into same `LocalDecl` except tagged as internal temporary.
1173 #[inline]
1174 pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
1175 assert!(self.is_block_tail.is_none());
1176 self.is_block_tail = Some(info);
1177 self
ea8adc8c 1178 }
a7813a04
XL
1179}
1180
fc512014
XL
1181#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
1182pub enum VarDebugInfoContents<'tcx> {
1183 /// NOTE(eddyb) There's an unenforced invariant that this `Place` is
1184 /// based on a `Local`, not a `Static`, and contains no indexing.
1185 Place(Place<'tcx>),
1186 Const(Constant<'tcx>),
1187}
1188
1189impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1190 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1191 match self {
1192 VarDebugInfoContents::Const(c) => write!(fmt, "{}", c),
1193 VarDebugInfoContents::Place(p) => write!(fmt, "{:?}", p),
1194 }
1195 }
1196}
1197
60c5eb7d 1198/// Debug information pertaining to a user variable.
3dfed10e 1199#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
60c5eb7d 1200pub struct VarDebugInfo<'tcx> {
f9f354fc 1201 pub name: Symbol,
60c5eb7d
XL
1202
1203 /// Source info of the user variable, including the scope
1204 /// within which the variable is visible (to debuginfo)
1205 /// (see `LocalDecl`'s `source_info` field for more details).
1206 pub source_info: SourceInfo,
a7813a04 1207
60c5eb7d 1208 /// Where the data for this user variable is to be found.
fc512014 1209 pub value: VarDebugInfoContents<'tcx>,
e9174d1e
SL
1210}
1211
e9174d1e
SL
1212///////////////////////////////////////////////////////////////////////////
1213// BasicBlock
1214
e74abb32 1215rustc_index::newtype_index! {
1b1a35ee
XL
1216 /// A node in the MIR [control-flow graph][CFG].
1217 ///
1218 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1219 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1220 /// as an edge in a graph between basic blocks.
1221 ///
1222 /// Basic blocks consist of a series of [statements][Statement], ending with a
1223 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1224 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1225 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1226 /// needed because some analyses require that there are no critical edges in the CFG.
1227 ///
29967ef6
XL
1228 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1229 /// the actual data that a basic block holds is in [`BasicBlockData`].
1230 ///
1b1a35ee
XL
1231 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1232 ///
1233 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1234 /// [data-flow analyses]:
1235 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
c295e0f8 1236 /// [`CriticalCallEdges`]: ../../rustc_const_eval/transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1b1a35ee 1237 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
b7449926 1238 pub struct BasicBlock {
532ac7d7 1239 derive [HashStable]
b7449926
XL
1240 DEBUG_FORMAT = "bb{}",
1241 const START_BLOCK = 0,
1242 }
1243}
abe05a73
XL
1244
1245impl BasicBlock {
1246 pub fn start_location(self) -> Location {
416331ca 1247 Location { block: self, statement_index: 0 }
abe05a73
XL
1248 }
1249}
e9174d1e
SL
1250
1251///////////////////////////////////////////////////////////////////////////
54a0048b 1252// BasicBlockData and Terminator
e9174d1e 1253
1b1a35ee 1254/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
3dfed10e 1255#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
b039eaaf 1256pub struct BasicBlockData<'tcx> {
54a0048b 1257 /// List of statements in this block.
b039eaaf 1258 pub statements: Vec<Statement<'tcx>>,
54a0048b
SL
1259
1260 /// Terminator for this block.
1261 ///
9fa01778 1262 /// N.B., this should generally ONLY be `None` during construction.
54a0048b
SL
1263 /// Therefore, you should generally access it via the
1264 /// `terminator()` or `terminator_mut()` methods. The only
1265 /// exception is that certain passes, such as `simplify_cfg`, swap
1266 /// out the terminator temporarily with `None` while they continue
1267 /// to recurse over the set of basic blocks.
9cc50fc6 1268 pub terminator: Option<Terminator<'tcx>>,
54a0048b
SL
1269
1270 /// If true, this block lies on an unwind path. This is used
94b46f34 1271 /// during codegen where distinct kinds of basic blocks may be
54a0048b
SL
1272 /// generated (particularly for MSVC cleanup). Unwind blocks must
1273 /// only branch to other unwind blocks.
9cc50fc6 1274 pub is_cleanup: bool,
e9174d1e
SL
1275}
1276
74b04a01 1277/// Information about an assertion failure.
6a06907d 1278#[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq, PartialOrd)]
74b04a01
XL
1279pub enum AssertKind<O> {
1280 BoundsCheck { len: O, index: O },
f035d41b
XL
1281 Overflow(BinOp, O, O),
1282 OverflowNeg(O),
1283 DivisionByZero(O),
1284 RemainderByZero(O),
74b04a01
XL
1285 ResumedAfterReturn(GeneratorKind),
1286 ResumedAfterPanic(GeneratorKind),
1287}
1288
5099ac24 1289#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
f9f354fc
XL
1290pub enum InlineAsmOperand<'tcx> {
1291 In {
1292 reg: InlineAsmRegOrRegClass,
1293 value: Operand<'tcx>,
1294 },
1295 Out {
1296 reg: InlineAsmRegOrRegClass,
1297 late: bool,
1298 place: Option<Place<'tcx>>,
1299 },
1300 InOut {
1301 reg: InlineAsmRegOrRegClass,
1302 late: bool,
1303 in_value: Operand<'tcx>,
1304 out_place: Option<Place<'tcx>>,
1305 },
1306 Const {
cdc7bbd5 1307 value: Box<Constant<'tcx>>,
f9f354fc
XL
1308 },
1309 SymFn {
1310 value: Box<Constant<'tcx>>,
1311 },
1312 SymStatic {
f035d41b 1313 def_id: DefId,
f9f354fc
XL
1314 },
1315}
1316
74b04a01
XL
1317/// Type for MIR `Assert` terminator error messages.
1318pub type AssertMessage<'tcx> = AssertKind<Operand<'tcx>>;
1319
5e7ed085
FG
1320// FIXME: Change `Successors` to `impl Iterator<Item = BasicBlock>`.
1321#[allow(rustc::pass_by_value)]
83c7162d
XL
1322pub type Successors<'a> =
1323 iter::Chain<option::IntoIter<&'a BasicBlock>, slice::Iter<'a, BasicBlock>>;
1324pub type SuccessorsMut<'a> =
1325 iter::Chain<option::IntoIter<&'a mut BasicBlock>, slice::IterMut<'a, BasicBlock>>;
1326
b039eaaf 1327impl<'tcx> BasicBlockData<'tcx> {
9cc50fc6 1328 pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
416331ca 1329 BasicBlockData { statements: vec![], terminator, is_cleanup: false }
e9174d1e 1330 }
9cc50fc6
SL
1331
1332 /// Accessor for terminator.
1333 ///
1334 /// Terminator may not be None after construction of the basic block is complete. This accessor
1335 /// provides a convenience way to reach the terminator.
17df50a5 1336 #[inline]
9cc50fc6
SL
1337 pub fn terminator(&self) -> &Terminator<'tcx> {
1338 self.terminator.as_ref().expect("invalid terminator state")
1339 }
1340
17df50a5 1341 #[inline]
9cc50fc6
SL
1342 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1343 self.terminator.as_mut().expect("invalid terminator state")
1344 }
ea8adc8c 1345
94b46f34
XL
1346 pub fn retain_statements<F>(&mut self, mut f: F)
1347 where
0bf4aa26 1348 F: FnMut(&mut Statement<'_>) -> bool,
94b46f34 1349 {
ea8adc8c
XL
1350 for s in &mut self.statements {
1351 if !f(s) {
0531ce1d 1352 s.make_nop();
ea8adc8c
XL
1353 }
1354 }
1355 }
ff7c6d11 1356
0531ce1d 1357 pub fn expand_statements<F, I>(&mut self, mut f: F)
94b46f34
XL
1358 where
1359 F: FnMut(&mut Statement<'tcx>) -> Option<I>,
1360 I: iter::TrustedLen<Item = Statement<'tcx>>,
0531ce1d
XL
1361 {
1362 // Gather all the iterators we'll need to splice in, and their positions.
1363 let mut splices: Vec<(usize, I)> = vec![];
1364 let mut extra_stmts = 0;
1365 for (i, s) in self.statements.iter_mut().enumerate() {
1366 if let Some(mut new_stmts) = f(s) {
1367 if let Some(first) = new_stmts.next() {
1368 // We can already store the first new statement.
1369 *s = first;
1370
1371 // Save the other statements for optimized splicing.
1372 let remaining = new_stmts.size_hint().0;
1373 if remaining > 0 {
1374 splices.push((i + 1 + extra_stmts, new_stmts));
1375 extra_stmts += remaining;
1376 }
1377 } else {
1378 s.make_nop();
1379 }
1380 }
1381 }
1382
1383 // Splice in the new statements, from the end of the block.
1384 // FIXME(eddyb) This could be more efficient with a "gap buffer"
1385 // where a range of elements ("gap") is left uninitialized, with
1386 // splicing adding new elements to the end of that gap and moving
1387 // existing elements from before the gap to the end of the gap.
1388 // For now, this is safe code, emulating a gap but initializing it.
94b46f34
XL
1389 let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
1390 self.statements.resize(
1391 gap.end,
f9f354fc 1392 Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
94b46f34 1393 );
0531ce1d
XL
1394 for (splice_start, new_stmts) in splices.into_iter().rev() {
1395 let splice_end = splice_start + new_stmts.size_hint().0;
1396 while gap.end > splice_end {
1397 gap.start -= 1;
1398 gap.end -= 1;
1399 self.statements.swap(gap.start, gap.end);
1400 }
1401 self.statements.splice(splice_start..splice_end, new_stmts);
1402 gap.end = splice_start;
1403 }
1404 }
1405
ff7c6d11 1406 pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
dfeec247 1407 if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
ff7c6d11 1408 }
e9174d1e
SL
1409}
1410
74b04a01
XL
1411impl<O> AssertKind<O> {
1412 /// Getting a description does not require `O` to be printable, and does not
1413 /// require allocation.
1414 /// The caller is expected to handle `BoundsCheck` separately.
1415 pub fn description(&self) -> &'static str {
1416 use AssertKind::*;
1417 match self {
f035d41b
XL
1418 Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
1419 Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
1420 Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
1421 Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
1422 Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
1423 OverflowNeg(_) => "attempt to negate with overflow",
1424 Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
1425 Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
1426 Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
1427 DivisionByZero(_) => "attempt to divide by zero",
1428 RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
74b04a01
XL
1429 ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
1430 ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
1431 ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
1432 ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
1433 BoundsCheck { .. } => bug!("Unexpected AssertKind"),
1434 }
1435 }
ba9703b0
XL
1436
1437 /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
17df50a5 1438 pub fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
ba9703b0
XL
1439 where
1440 O: Debug,
1441 {
f035d41b 1442 use AssertKind::*;
ba9703b0 1443 match self {
f035d41b 1444 BoundsCheck { ref len, ref index } => write!(
ba9703b0 1445 f,
1b1a35ee 1446 "\"index out of bounds: the length is {{}} but the index is {{}}\", {:?}, {:?}",
ba9703b0
XL
1447 len, index
1448 ),
f035d41b
XL
1449
1450 OverflowNeg(op) => {
1b1a35ee 1451 write!(f, "\"attempt to negate `{{}}`, which would overflow\", {:?}", op)
f035d41b 1452 }
1b1a35ee 1453 DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {:?}", op),
f035d41b
XL
1454 RemainderByZero(op) => write!(
1455 f,
1b1a35ee 1456 "\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {:?}",
f035d41b
XL
1457 op
1458 ),
1459 Overflow(BinOp::Add, l, r) => write!(
1460 f,
1b1a35ee 1461 "\"attempt to compute `{{}} + {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1462 l, r
1463 ),
1464 Overflow(BinOp::Sub, l, r) => write!(
1465 f,
1b1a35ee 1466 "\"attempt to compute `{{}} - {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1467 l, r
1468 ),
1469 Overflow(BinOp::Mul, l, r) => write!(
1470 f,
1b1a35ee 1471 "\"attempt to compute `{{}} * {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1472 l, r
1473 ),
1474 Overflow(BinOp::Div, l, r) => write!(
1475 f,
1b1a35ee 1476 "\"attempt to compute `{{}} / {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1477 l, r
1478 ),
1479 Overflow(BinOp::Rem, l, r) => write!(
1480 f,
1b1a35ee 1481 "\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1482 l, r
1483 ),
1484 Overflow(BinOp::Shr, _, r) => {
1b1a35ee 1485 write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {:?}", r)
f035d41b
XL
1486 }
1487 Overflow(BinOp::Shl, _, r) => {
1b1a35ee 1488 write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {:?}", r)
f035d41b 1489 }
ba9703b0
XL
1490 _ => write!(f, "\"{}\"", self.description()),
1491 }
1492 }
74b04a01
XL
1493}
1494
1495impl<O: fmt::Debug> fmt::Debug for AssertKind<O> {
1496 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1497 use AssertKind::*;
1498 match self {
1b1a35ee
XL
1499 BoundsCheck { ref len, ref index } => write!(
1500 f,
1501 "index out of bounds: the length is {:?} but the index is {:?}",
1502 len, index
1503 ),
1504 OverflowNeg(op) => write!(f, "attempt to negate `{:#?}`, which would overflow", op),
1505 DivisionByZero(op) => write!(f, "attempt to divide `{:#?}` by zero", op),
1506 RemainderByZero(op) => write!(
1507 f,
1508 "attempt to calculate the remainder of `{:#?}` with a divisor of zero",
1509 op
1510 ),
f035d41b 1511 Overflow(BinOp::Add, l, r) => {
1b1a35ee 1512 write!(f, "attempt to compute `{:#?} + {:#?}`, which would overflow", l, r)
e9174d1e 1513 }
f035d41b 1514 Overflow(BinOp::Sub, l, r) => {
1b1a35ee 1515 write!(f, "attempt to compute `{:#?} - {:#?}`, which would overflow", l, r)
94b46f34 1516 }
f035d41b 1517 Overflow(BinOp::Mul, l, r) => {
1b1a35ee 1518 write!(f, "attempt to compute `{:#?} * {:#?}`, which would overflow", l, r)
f9f354fc 1519 }
f035d41b 1520 Overflow(BinOp::Div, l, r) => {
1b1a35ee 1521 write!(f, "attempt to compute `{:#?} / {:#?}`, which would overflow", l, r)
9cc50fc6 1522 }
f035d41b
XL
1523 Overflow(BinOp::Rem, l, r) => write!(
1524 f,
1b1a35ee 1525 "attempt to compute the remainder of `{:#?} % {:#?}`, which would overflow",
f035d41b
XL
1526 l, r
1527 ),
1528 Overflow(BinOp::Shr, _, r) => {
1b1a35ee 1529 write!(f, "attempt to shift right by `{:#?}`, which would overflow", r)
94b46f34 1530 }
f035d41b 1531 Overflow(BinOp::Shl, _, r) => {
1b1a35ee 1532 write!(f, "attempt to shift left by `{:#?}`, which would overflow", r)
3157f602 1533 }
f035d41b 1534 _ => write!(f, "{}", self.description()),
9cc50fc6
SL
1535 }
1536 }
e9174d1e
SL
1537}
1538
e9174d1e
SL
1539///////////////////////////////////////////////////////////////////////////
1540// Statements
1541
3dfed10e 1542#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
b039eaaf 1543pub struct Statement<'tcx> {
3157f602 1544 pub source_info: SourceInfo,
b039eaaf 1545 pub kind: StatementKind<'tcx>,
e9174d1e
SL
1546}
1547
a1dfa0c6 1548// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 1549#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
e1599b0c 1550static_assert_size!(Statement<'_>, 32);
a1dfa0c6 1551
e1599b0c 1552impl Statement<'_> {
9e0c209e
SL
1553 /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
1554 /// invalidating statement indices in `Location`s.
1555 pub fn make_nop(&mut self) {
1556 self.kind = StatementKind::Nop
1557 }
0531ce1d
XL
1558
1559 /// Changes a statement to a nop and returns the original statement.
a2a8927a 1560 #[must_use = "If you don't need the statement, use `make_nop` instead"]
0531ce1d
XL
1561 pub fn replace_nop(&mut self) -> Self {
1562 Statement {
1563 source_info: self.source_info,
94b46f34 1564 kind: mem::replace(&mut self.kind, StatementKind::Nop),
0531ce1d
XL
1565 }
1566 }
9e0c209e
SL
1567}
1568
5e7ed085
FG
1569/// The various kinds of statements that can appear in MIR.
1570///
1571/// Not all of these are allowed at every [`MirPhase`]. Check the documentation there to see which
1572/// ones you do not have to worry about. The MIR validator will generally enforce such restrictions,
1573/// causing an ICE if they are violated.
6a06907d 1574#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
b039eaaf 1575pub enum StatementKind<'tcx> {
ff7c6d11 1576 /// Write the RHS Rvalue to the LHS Place.
5e7ed085
FG
1577 ///
1578 /// The LHS place may not overlap with any memory accessed on the RHS.
e1599b0c 1579 Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>),
5bcae85e 1580
94b46f34 1581 /// This represents all the reading that a pattern match may do
0731742a 1582 /// (e.g., inspecting constants and discriminant values), and the
0bf4aa26
XL
1583 /// kind of pattern it comes from. This is in order to adapt potential
1584 /// error messages to these specific patterns.
0731742a
XL
1585 ///
1586 /// Note that this also is emitted for regular `let` bindings to ensure that locals that are
9fa01778 1587 /// never accessed still get some sanity checks for, e.g., `let x: ! = ..;`
cdc7bbd5 1588 FakeRead(Box<(FakeReadCause, Place<'tcx>)>),
94b46f34 1589
ff7c6d11 1590 /// Write the discriminant for a variant to the enum Place.
e1599b0c 1591 SetDiscriminant { place: Box<Place<'tcx>>, variant_index: VariantIdx },
5bcae85e
SL
1592
1593 /// Start a live range for the storage of the local.
ea8adc8c 1594 StorageLive(Local),
5bcae85e
SL
1595
1596 /// End the current live range for the storage of the local.
ea8adc8c 1597 StorageDead(Local),
9e0c209e 1598
9fa01778 1599 /// Retag references in the given place, ensuring they got fresh tags. This is
a1dfa0c6
XL
1600 /// part of the Stacked Borrows model. These statements are currently only interpreted
1601 /// by miri and only generated when "-Z mir-emit-retag" is passed.
1602 /// See <https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/>
1603 /// for more details.
e1599b0c 1604 Retag(RetagKind, Box<Place<'tcx>>),
041b39d2 1605
b7449926
XL
1606 /// Encodes a user's type ascription. These need to be preserved
1607 /// intact so that NLL can respect them. For example:
0531ce1d 1608 ///
b7449926 1609 /// let a: T = y;
0531ce1d 1610 ///
b7449926
XL
1611 /// The effect of this annotation is to relate the type `T_y` of the place `y`
1612 /// to the user-given type `T`. The effect depends on the specified variance:
0531ce1d 1613 ///
b7449926
XL
1614 /// - `Covariant` -- requires that `T_y <: T`
1615 /// - `Contravariant` -- requires that `T_y :> T`
1616 /// - `Invariant` -- requires that `T_y == T`
1617 /// - `Bivariant` -- no effect
e1599b0c 1618 AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, ty::Variance),
0531ce1d 1619
5099ac24 1620 /// Marks the start of a "coverage region", injected with '-Cinstrument-coverage'. A
cdc7bbd5
XL
1621 /// `Coverage` statement carries metadata about the coverage region, used to inject a coverage
1622 /// map into the binary. If `Coverage::kind` is a `Counter`, the statement also generates
1623 /// executable code, to increment a counter variable at runtime, each time the code region is
1624 /// executed.
3dfed10e
XL
1625 Coverage(Box<Coverage>),
1626
6a06907d
XL
1627 /// Denotes a call to the intrinsic function copy_overlapping, where `src_dst` denotes the
1628 /// memory being read from and written to(one field to save memory), and size
1629 /// indicates how many bytes are being copied over.
1630 CopyNonOverlapping(Box<CopyNonOverlapping<'tcx>>),
1631
9e0c209e
SL
1632 /// No-op. Useful for deleting instructions without affecting statement indices.
1633 Nop,
e9174d1e
SL
1634}
1635
1b1a35ee 1636impl<'tcx> StatementKind<'tcx> {
6a06907d
XL
1637 pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
1638 match self {
1639 StatementKind::Assign(x) => Some(x),
1640 _ => None,
1641 }
1642 }
1643
1644 pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
1b1a35ee
XL
1645 match self {
1646 StatementKind::Assign(x) => Some(x),
1647 _ => None,
1648 }
1649 }
1650}
1651
e1599b0c 1652/// Describes what kind of retag is to be performed.
6a06907d 1653#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, Hash, HashStable)]
0731742a 1654pub enum RetagKind {
e1599b0c 1655 /// The initial retag when entering a function.
0731742a 1656 FnEntry,
e1599b0c 1657 /// Retag preparing for a two-phase borrow.
0731742a 1658 TwoPhase,
e1599b0c 1659 /// Retagging raw pointers.
0731742a 1660 Raw,
e1599b0c 1661 /// A "normal" retag.
0731742a
XL
1662 Default,
1663}
1664
e1599b0c 1665/// The `FakeReadCause` describes the type of pattern why a FakeRead statement exists.
6a06907d 1666#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, Hash, HashStable, PartialEq)]
0bf4aa26 1667pub enum FakeReadCause {
9fa01778
XL
1668 /// Inject a fake read of the borrowed input at the end of each guards
1669 /// code.
0bf4aa26 1670 ///
9fa01778
XL
1671 /// This should ensure that you cannot change the variant for an enum while
1672 /// you are in the midst of matching on it.
0bf4aa26
XL
1673 ForMatchGuard,
1674
1675 /// `let x: !; match x {}` doesn't generate any read of x so we need to
1676 /// generate a read of x to check that it is initialized and safe.
cdc7bbd5
XL
1677 ///
1678 /// If a closure pattern matches a Place starting with an Upvar, then we introduce a
1679 /// FakeRead for that Place outside the closure, in such a case this option would be
1680 /// Some(closure_def_id).
1681 /// Otherwise, the value of the optional DefId will be None.
1682 ForMatchedPlace(Option<DefId>),
0bf4aa26 1683
9fa01778 1684 /// A fake read of the RefWithinGuard version of a bind-by-value variable
5099ac24 1685 /// in a match guard to ensure that its value hasn't change by the time
9fa01778
XL
1686 /// we create the OutsideGuard version.
1687 ForGuardBinding,
1688
0bf4aa26
XL
1689 /// Officially, the semantics of
1690 ///
1691 /// `let pattern = <expr>;`
1692 ///
1693 /// is that `<expr>` is evaluated into a temporary and then this temporary is
1694 /// into the pattern.
1695 ///
1696 /// However, if we see the simple pattern `let var = <expr>`, we optimize this to
1697 /// evaluate `<expr>` directly into the variable `var`. This is mostly unobservable,
1698 /// but in some cases it can affect the borrow checker, as in #53695.
1699 /// Therefore, we insert a "fake read" here to ensure that we get
1700 /// appropriate errors.
cdc7bbd5
XL
1701 ///
1702 /// If a closure pattern matches a Place starting with an Upvar, then we introduce a
1703 /// FakeRead for that Place outside the closure, in such a case this option would be
1704 /// Some(closure_def_id).
1705 /// Otherwise, the value of the optional DefId will be None.
1706 ForLet(Option<DefId>),
60c5eb7d
XL
1707
1708 /// If we have an index expression like
1709 ///
1710 /// (*x)[1][{ x = y; 4}]
1711 ///
1712 /// then the first bounds check is invalidated when we evaluate the second
1713 /// index expression. Thus we create a fake borrow of `x` across the second
1714 /// indexer, which will cause a borrow check error.
1715 ForIndex,
0bf4aa26
XL
1716}
1717
e1599b0c 1718impl Debug for Statement<'_> {
0bf4aa26 1719 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
1720 use self::StatementKind::*;
1721 match self.kind {
dfeec247 1722 Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv),
cdc7bbd5
XL
1723 FakeRead(box (ref cause, ref place)) => {
1724 write!(fmt, "FakeRead({:?}, {:?})", cause, place)
1725 }
416331ca
XL
1726 Retag(ref kind, ref place) => write!(
1727 fmt,
1728 "Retag({}{:?})",
1729 match kind {
1730 RetagKind::FnEntry => "[fn entry] ",
1731 RetagKind::TwoPhase => "[2phase] ",
1732 RetagKind::Raw => "[raw] ",
1733 RetagKind::Default => "",
1734 },
1735 place,
1736 ),
ff7c6d11
XL
1737 StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
1738 StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
416331ca
XL
1739 SetDiscriminant { ref place, variant_index } => {
1740 write!(fmt, "discriminant({:?}) = {:?}", place, variant_index)
1741 }
dfeec247 1742 AscribeUserType(box (ref place, ref c_ty), ref variance) => {
b7449926 1743 write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
94b46f34 1744 }
94222f64
XL
1745 Coverage(box self::Coverage { ref kind, code_region: Some(ref rgn) }) => {
1746 write!(fmt, "Coverage::{:?} for {:?}", kind, rgn)
1b1a35ee 1747 }
94222f64 1748 Coverage(box ref coverage) => write!(fmt, "Coverage::{:?}", coverage.kind),
6a06907d
XL
1749 CopyNonOverlapping(box crate::mir::CopyNonOverlapping {
1750 ref src,
1751 ref dst,
1752 ref count,
1753 }) => {
1754 write!(fmt, "copy_nonoverlapping(src={:?}, dst={:?}, count={:?})", src, dst, count)
1755 }
9e0c209e 1756 Nop => write!(fmt, "nop"),
e9174d1e
SL
1757 }
1758 }
1759}
54a0048b 1760
6a06907d 1761#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
3dfed10e
XL
1762pub struct Coverage {
1763 pub kind: CoverageKind,
29967ef6 1764 pub code_region: Option<CodeRegion>,
3dfed10e
XL
1765}
1766
6a06907d
XL
1767#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
1768pub struct CopyNonOverlapping<'tcx> {
1769 pub src: Operand<'tcx>,
1770 pub dst: Operand<'tcx>,
1771 /// Number of elements to copy from src to dest, not bytes.
1772 pub count: Operand<'tcx>,
1773}
1774
e9174d1e 1775///////////////////////////////////////////////////////////////////////////
ff7c6d11 1776// Places
e9174d1e
SL
1777
1778/// A path to a value; something that can be evaluated without
1779/// changing or disturbing program state.
5099ac24 1780#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, HashStable)]
416331ca 1781pub struct Place<'tcx> {
dfeec247 1782 pub local: Local,
532ac7d7
XL
1783
1784 /// projection out of a place (access a field, deref a pointer, etc)
e74abb32 1785 pub projection: &'tcx List<PlaceElem<'tcx>>,
532ac7d7
XL
1786}
1787
c295e0f8 1788#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
6a06907d
XL
1789static_assert_size!(Place<'_>, 16);
1790
60c5eb7d 1791#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
3dfed10e 1792#[derive(TyEncodable, TyDecodable, HashStable)]
532ac7d7 1793pub enum ProjectionElem<V, T> {
e9174d1e 1794 Deref,
3b2f2976 1795 Field(Field, T),
5e7ed085
FG
1796 /// Index into a slice/array.
1797 ///
1798 /// Note that this does not also dereference, and so it does not exactly correspond to slice
1799 /// indexing in Rust. In other words, in the below Rust code:
1800 ///
1801 /// ```rust
1802 /// let x = &[1, 2, 3, 4];
1803 /// let i = 2;
1804 /// x[i];
1805 /// ```
1806 ///
1807 /// The `x[i]` is turned into a `Deref` followed by an `Index`, not just an `Index`. The same
1808 /// thing is true of the `ConstantIndex` and `Subslice` projections below.
e9174d1e
SL
1809 Index(V),
1810
7453a54e
SL
1811 /// These indices are generated by slice patterns. Easiest to explain
1812 /// by example:
1813 ///
1814 /// ```
1815 /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
1816 /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
1817 /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
1818 /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
1819 /// ```
e9174d1e 1820 ConstantIndex {
7453a54e 1821 /// index or -index (in Python terms), depending on from_end
1b1a35ee 1822 offset: u64,
60c5eb7d
XL
1823 /// The thing being indexed must be at least this long. For arrays this
1824 /// is always the exact length.
1b1a35ee 1825 min_length: u64,
60c5eb7d
XL
1826 /// Counting backwards from end? This is always false when indexing an
1827 /// array.
7453a54e 1828 from_end: bool,
e9174d1e
SL
1829 },
1830
3157f602
XL
1831 /// These indices are generated by slice patterns.
1832 ///
60c5eb7d
XL
1833 /// If `from_end` is true `slice[from..slice.len() - to]`.
1834 /// Otherwise `array[from..to]`.
3157f602 1835 Subslice {
1b1a35ee
XL
1836 from: u64,
1837 to: u64,
60c5eb7d
XL
1838 /// Whether `to` counts from the start or end of the array/slice.
1839 /// For `PlaceElem`s this is `true` if and only if the base is a slice.
1840 /// For `ProjectionKind`, this can also be `true` for arrays.
1841 from_end: bool,
3157f602
XL
1842 },
1843
7453a54e
SL
1844 /// "Downcast" to a variant of an ADT. Currently, we only introduce
1845 /// this for ADTs with more than one variant. It may be better to
1846 /// just introduce it always, or always for enums.
532ac7d7
XL
1847 ///
1848 /// The included Symbol is the name of the variant, used for printing MIR.
1849 Downcast(Option<Symbol>, VariantIdx),
e9174d1e
SL
1850}
1851
e1599b0c
XL
1852impl<V, T> ProjectionElem<V, T> {
1853 /// Returns `true` if the target of this projection may refer to a different region of memory
1854 /// than the base.
1855 fn is_indirect(&self) -> bool {
1856 match self {
1857 Self::Deref => true,
1858
dfeec247 1859 Self::Field(_, _)
e1599b0c
XL
1860 | Self::Index(_)
1861 | Self::ConstantIndex { .. }
1862 | Self::Subslice { .. }
dfeec247 1863 | Self::Downcast(_, _) => false,
e1599b0c
XL
1864 }
1865 }
a2a8927a
XL
1866
1867 /// Returns `true` if this is a `Downcast` projection with the given `VariantIdx`.
1868 pub fn is_downcast_to(&self, v: VariantIdx) -> bool {
1869 matches!(*self, Self::Downcast(_, x) if x == v)
1870 }
1871
1872 /// Returns `true` if this is a `Field` projection with the given index.
1873 pub fn is_field_to(&self, f: Field) -> bool {
1874 matches!(*self, Self::Field(x, _) if x == f)
1875 }
e1599b0c
XL
1876}
1877
ff7c6d11 1878/// Alias for projections as they appear in places, where the base is a place
ea8adc8c 1879/// and the index is a local.
532ac7d7 1880pub type PlaceElem<'tcx> = ProjectionElem<Local, Ty<'tcx>>;
e9174d1e 1881
5e7ed085
FG
1882// This type is fairly frequently used, so we shouldn't unintentionally increase
1883// its size.
6a06907d 1884#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
1b1a35ee 1885static_assert_size!(PlaceElem<'_>, 24);
a1dfa0c6 1886
0bf4aa26
XL
1887/// Alias for projections as they appear in `UserTypeProjection`, where we
1888/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
532ac7d7 1889pub type ProjectionKind = ProjectionElem<(), ()>;
0bf4aa26 1890
e74abb32 1891rustc_index::newtype_index! {
5e7ed085
FG
1892 /// A [newtype'd][wrapper] index type in the MIR [control-flow graph][CFG]
1893 ///
1894 /// A field (e.g., `f` in `_1.f`) is one variant of [`ProjectionElem`]. Conceptually,
1895 /// rustc can identify that a field projection refers to either two different regions of memory
1896 /// or the same one between the base and the 'projection element'.
1897 /// Read more about projections in the [rustc-dev-guide][mir-datatypes]
1898 ///
1899 /// [wrapper]: https://rustc-dev-guide.rust-lang.org/appendix/glossary.html#newtype
1900 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1901 /// [mir-datatypes]: https://rustc-dev-guide.rust-lang.org/mir/index.html#mir-data-types
b7449926 1902 pub struct Field {
532ac7d7 1903 derive [HashStable]
b7449926
XL
1904 DEBUG_FORMAT = "field[{}]"
1905 }
1906}
e9174d1e 1907
416331ca 1908#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
74b04a01
XL
1909pub struct PlaceRef<'tcx> {
1910 pub local: Local,
1911 pub projection: &'tcx [PlaceElem<'tcx>],
416331ca
XL
1912}
1913
ff7c6d11 1914impl<'tcx> Place<'tcx> {
e74abb32 1915 // FIXME change this to a const fn by also making List::empty a const fn.
e1599b0c 1916 pub fn return_place() -> Place<'tcx> {
dfeec247 1917 Place { local: RETURN_PLACE, projection: List::empty() }
e9174d1e 1918 }
0bf4aa26 1919
e1599b0c
XL
1920 /// Returns `true` if this `Place` contains a `Deref` projection.
1921 ///
1922 /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
1923 /// same region of memory as its base.
1924 pub fn is_indirect(&self) -> bool {
1925 self.projection.iter().any(|elem| elem.is_indirect())
1926 }
1927
9fa01778 1928 /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
0bf4aa26 1929 /// a single deref of a local.
5869c6ff 1930 #[inline(always)]
dc9dc135 1931 pub fn local_or_deref_local(&self) -> Option<Local> {
5869c6ff 1932 self.as_ref().local_or_deref_local()
0bf4aa26
XL
1933 }
1934
e1599b0c
XL
1935 /// If this place represents a local variable like `_X` with no
1936 /// projections, return `Some(_X)`.
5869c6ff 1937 #[inline(always)]
e1599b0c 1938 pub fn as_local(&self) -> Option<Local> {
e74abb32 1939 self.as_ref().as_local()
416331ca
XL
1940 }
1941
6a06907d 1942 #[inline]
74b04a01
XL
1943 pub fn as_ref(&self) -> PlaceRef<'tcx> {
1944 PlaceRef { local: self.local, projection: &self.projection }
0bf4aa26 1945 }
fc512014
XL
1946
1947 /// Iterate over the projections in evaluation order, i.e., the first element is the base with
1948 /// its projection and then subsequently more projections are added.
1949 /// As a concrete example, given the place a.b.c, this would yield:
1950 /// - (a, .b)
1951 /// - (a.b, .c)
5869c6ff 1952 ///
fc512014 1953 /// Given a place without projections, the iterator is empty.
6a06907d 1954 #[inline]
fc512014
XL
1955 pub fn iter_projections(
1956 self,
1957 ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
1958 self.projection.iter().enumerate().map(move |(i, proj)| {
1959 let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
1960 (base, proj)
1961 })
1962 }
5e7ed085
FG
1963
1964 /// Generates a new place by appending `more_projections` to the existing ones
1965 /// and interning the result.
1966 pub fn project_deeper(self, more_projections: &[PlaceElem<'tcx>], tcx: TyCtxt<'tcx>) -> Self {
1967 if more_projections.is_empty() {
1968 return self;
1969 }
1970
1971 let mut v: Vec<PlaceElem<'tcx>>;
1972
1973 let new_projections = if self.projection.is_empty() {
1974 more_projections
1975 } else {
1976 v = Vec::with_capacity(self.projection.len() + more_projections.len());
1977 v.extend(self.projection);
1978 v.extend(more_projections);
1979 &v
1980 };
1981
1982 Place { local: self.local, projection: tcx.intern_place_elems(new_projections) }
1983 }
e9174d1e
SL
1984}
1985
dc9dc135
XL
1986impl From<Local> for Place<'_> {
1987 fn from(local: Local) -> Self {
dfeec247 1988 Place { local, projection: List::empty() }
dc9dc135
XL
1989 }
1990}
1991
74b04a01 1992impl<'tcx> PlaceRef<'tcx> {
416331ca
XL
1993 /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
1994 /// a single deref of a local.
416331ca 1995 pub fn local_or_deref_local(&self) -> Option<Local> {
74b04a01 1996 match *self {
dfeec247 1997 PlaceRef { local, projection: [] }
74b04a01 1998 | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
416331ca
XL
1999 _ => None,
2000 }
2001 }
e74abb32
XL
2002
2003 /// If this place represents a local variable like `_X` with no
2004 /// projections, return `Some(_X)`.
17df50a5 2005 #[inline]
e74abb32 2006 pub fn as_local(&self) -> Option<Local> {
74b04a01
XL
2007 match *self {
2008 PlaceRef { local, projection: [] } => Some(local),
e74abb32
XL
2009 _ => None,
2010 }
2011 }
5869c6ff 2012
17df50a5 2013 #[inline]
5869c6ff
XL
2014 pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
2015 if let &[ref proj_base @ .., elem] = self.projection {
2016 Some((PlaceRef { local: self.local, projection: proj_base }, elem))
2017 } else {
2018 None
2019 }
2020 }
416331ca
XL
2021}
2022
e1599b0c 2023impl Debug for Place<'_> {
0bf4aa26 2024 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e1599b0c
XL
2025 for elem in self.projection.iter().rev() {
2026 match elem {
2027 ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => {
2028 write!(fmt, "(").unwrap();
2029 }
2030 ProjectionElem::Deref => {
2031 write!(fmt, "(*").unwrap();
94b46f34 2032 }
e1599b0c
XL
2033 ProjectionElem::Index(_)
2034 | ProjectionElem::ConstantIndex { .. }
2035 | ProjectionElem::Subslice { .. } => {}
48663c56 2036 }
e1599b0c 2037 }
48663c56 2038
dfeec247 2039 write!(fmt, "{:?}", self.local)?;
48663c56 2040
e1599b0c
XL
2041 for elem in self.projection.iter() {
2042 match elem {
2043 ProjectionElem::Downcast(Some(name), _index) => {
2044 write!(fmt, " as {})", name)?;
2045 }
2046 ProjectionElem::Downcast(None, index) => {
2047 write!(fmt, " as variant#{:?})", index)?;
2048 }
2049 ProjectionElem::Deref => {
2050 write!(fmt, ")")?;
2051 }
2052 ProjectionElem::Field(field, ty) => {
2053 write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
2054 }
2055 ProjectionElem::Index(ref index) => {
2056 write!(fmt, "[{:?}]", index)?;
2057 }
2058 ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
2059 write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
2060 }
2061 ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
2062 write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
2063 }
f9f354fc 2064 ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
e1599b0c
XL
2065 write!(fmt, "[{:?}:]", from)?;
2066 }
f9f354fc 2067 ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
e1599b0c
XL
2068 write!(fmt, "[:-{:?}]", to)?;
2069 }
60c5eb7d 2070 ProjectionElem::Subslice { from, to, from_end: true } => {
e1599b0c 2071 write!(fmt, "[{:?}:-{:?}]", from, to)?;
94b46f34 2072 }
60c5eb7d
XL
2073 ProjectionElem::Subslice { from, to, from_end: false } => {
2074 write!(fmt, "[{:?}..{:?}]", from, to)?;
2075 }
48663c56 2076 }
e1599b0c 2077 }
48663c56 2078
e1599b0c 2079 Ok(())
e9174d1e
SL
2080 }
2081}
2082
54a0048b
SL
2083///////////////////////////////////////////////////////////////////////////
2084// Scopes
2085
e74abb32 2086rustc_index::newtype_index! {
b7449926 2087 pub struct SourceScope {
532ac7d7 2088 derive [HashStable]
abe05a73 2089 DEBUG_FORMAT = "scope[{}]",
94b46f34 2090 const OUTERMOST_SOURCE_SCOPE = 0,
b7449926
XL
2091 }
2092}
54a0048b 2093
cdc7bbd5
XL
2094impl SourceScope {
2095 /// Finds the original HirId this MIR item came from.
2096 /// This is necessary after MIR optimizations, as otherwise we get a HirId
2097 /// from the function that was inlined instead of the function call site.
a2a8927a 2098 pub fn lint_root<'tcx>(
cdc7bbd5
XL
2099 self,
2100 source_scopes: &IndexVec<SourceScope, SourceScopeData<'tcx>>,
2101 ) -> Option<HirId> {
2102 let mut data = &source_scopes[self];
2103 // FIXME(oli-obk): we should be able to just walk the `inlined_parent_scope`, but it
2104 // does not work as I thought it would. Needs more investigation and documentation.
2105 while data.inlined.is_some() {
2106 trace!(?data);
2107 data = &source_scopes[data.parent_scope.unwrap()];
2108 }
2109 trace!(?data);
2110 match &data.local_data {
2111 ClearCrossCrate::Set(data) => Some(data.lint_root),
2112 ClearCrossCrate::Clear => None,
2113 }
2114 }
2115}
2116
29967ef6
XL
2117#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
2118pub struct SourceScopeData<'tcx> {
a7813a04 2119 pub span: Span,
94b46f34 2120 pub parent_scope: Option<SourceScope>,
60c5eb7d 2121
29967ef6
XL
2122 /// Whether this scope is the root of a scope tree of another body,
2123 /// inlined into this body by the MIR inliner.
2124 /// `ty::Instance` is the callee, and the `Span` is the call site.
2125 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
2126
2127 /// Nearest (transitive) parent scope (if any) which is inlined.
2128 /// This is an optimization over walking up `parent_scope`
2129 /// until a scope with `inlined: Some(...)` is found.
2130 pub inlined_parent_scope: Option<SourceScope>,
2131
60c5eb7d
XL
2132 /// Crate-local information for this source scope, that can't (and
2133 /// needn't) be tracked across crates.
2134 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
94b46f34
XL
2135}
2136
3dfed10e 2137#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
94b46f34 2138pub struct SourceScopeLocalData {
e1599b0c 2139 /// An `HirId` with lint levels equivalent to this scope's lint levels.
532ac7d7 2140 pub lint_root: hir::HirId,
94b46f34
XL
2141 /// The unsafe block that contains this node.
2142 pub safety: Safety,
54a0048b
SL
2143}
2144
e9174d1e
SL
2145///////////////////////////////////////////////////////////////////////////
2146// Operands
54a0048b 2147
0bf4aa26
XL
2148/// These are values that can appear inside an rvalue. They are intentionally
2149/// limited to prevent rvalues from being nested in one another.
5099ac24 2150#[derive(Clone, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf 2151pub enum Operand<'tcx> {
ff7c6d11
XL
2152 /// Copy: The value must be available for use afterwards.
2153 ///
2154 /// This implies that the type of the place must be `Copy`; this is true
2155 /// by construction during build, but also checked by the MIR type checker.
2156 Copy(Place<'tcx>),
b7449926 2157
ff7c6d11
XL
2158 /// Move: The value (including old borrows of it) will not be used again.
2159 ///
2160 /// Safe for values of all types (modulo future developments towards `?Move`).
2161 /// Correct usage patterns are enforced by the borrow checker for safe code.
2162 /// `Copy` may be converted to `Move` to enable "last-use" optimizations.
2163 Move(Place<'tcx>),
b7449926
XL
2164
2165 /// Synthesizes a constant value.
cc61c64b 2166 Constant(Box<Constant<'tcx>>),
e9174d1e
SL
2167}
2168
c295e0f8 2169#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
6a06907d
XL
2170static_assert_size!(Operand<'_>, 24);
2171
b039eaaf 2172impl<'tcx> Debug for Operand<'tcx> {
0bf4aa26 2173 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
2174 use self::Operand::*;
2175 match *self {
2176 Constant(ref a) => write!(fmt, "{:?}", a),
ff7c6d11
XL
2177 Copy(ref place) => write!(fmt, "{:?}", place),
2178 Move(ref place) => write!(fmt, "move {:?}", place),
e9174d1e
SL
2179 }
2180 }
2181}
2182
cc61c64b 2183impl<'tcx> Operand<'tcx> {
b7449926 2184 /// Convenience helper to make a constant that refers to the fn
9fa01778 2185 /// with given `DefId` and substs. Since this is used to synthesize
b7449926 2186 /// MIR, assumes `user_ty` is None.
dc9dc135
XL
2187 pub fn function_handle(
2188 tcx: TyCtxt<'tcx>,
cc61c64b 2189 def_id: DefId,
532ac7d7 2190 substs: SubstsRef<'tcx>,
cc61c64b
XL
2191 span: Span,
2192 ) -> Self {
ea8adc8c 2193 let ty = tcx.type_of(def_id).subst(tcx, substs);
94222f64 2194 Operand::Constant(Box::new(Constant {
041b39d2 2195 span,
b7449926 2196 user_ty: None,
6a06907d 2197 literal: ConstantKind::Ty(ty::Const::zero_sized(tcx, ty)),
94222f64 2198 }))
cc61c64b
XL
2199 }
2200
1b1a35ee
XL
2201 pub fn is_move(&self) -> bool {
2202 matches!(self, Operand::Move(..))
2203 }
2204
f035d41b
XL
2205 /// Convenience helper to make a literal-like constant from a given scalar value.
2206 /// Since this is used to synthesize MIR, assumes `user_ty` is None.
2207 pub fn const_from_scalar(
2208 tcx: TyCtxt<'tcx>,
2209 ty: Ty<'tcx>,
2210 val: Scalar,
2211 span: Span,
2212 ) -> Operand<'tcx> {
2213 debug_assert!({
2214 let param_env_and_ty = ty::ParamEnv::empty().and(ty);
2215 let type_size = tcx
2216 .layout_of(param_env_and_ty)
2217 .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
2218 .size;
29967ef6
XL
2219 let scalar_size = match val {
2220 Scalar::Int(int) => int.size(),
f035d41b 2221 _ => panic!("Invalid scalar type {:?}", val),
29967ef6 2222 };
f035d41b
XL
2223 scalar_size == type_size
2224 });
94222f64 2225 Operand::Constant(Box::new(Constant {
f035d41b
XL
2226 span,
2227 user_ty: None,
136023e0 2228 literal: ConstantKind::Val(ConstValue::Scalar(val), ty),
94222f64 2229 }))
f035d41b
XL
2230 }
2231
ff7c6d11
XL
2232 pub fn to_copy(&self) -> Self {
2233 match *self {
2234 Operand::Copy(_) | Operand::Constant(_) => self.clone(),
dfeec247 2235 Operand::Move(place) => Operand::Copy(place),
ff7c6d11
XL
2236 }
2237 }
74b04a01
XL
2238
2239 /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
2240 /// constant.
ba9703b0 2241 pub fn place(&self) -> Option<Place<'tcx>> {
74b04a01 2242 match self {
ba9703b0 2243 Operand::Copy(place) | Operand::Move(place) => Some(*place),
74b04a01
XL
2244 Operand::Constant(_) => None,
2245 }
2246 }
1b1a35ee
XL
2247
2248 /// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
2249 /// place.
2250 pub fn constant(&self) -> Option<&Constant<'tcx>> {
2251 match self {
2252 Operand::Constant(x) => Some(&**x),
2253 Operand::Copy(_) | Operand::Move(_) => None,
2254 }
2255 }
5e7ed085
FG
2256
2257 /// Gets the `ty::FnDef` from an operand if it's a constant function item.
2258 ///
2259 /// While this is unlikely in general, it's the normal case of what you'll
2260 /// find as the `func` in a [`TerminatorKind::Call`].
2261 pub fn const_fn_def(&self) -> Option<(DefId, SubstsRef<'tcx>)> {
2262 let const_ty = self.constant()?.literal.ty();
2263 if let ty::FnDef(def_id, substs) = *const_ty.kind() { Some((def_id, substs)) } else { None }
2264 }
cc61c64b
XL
2265}
2266
e9174d1e 2267///////////////////////////////////////////////////////////////////////////
7453a54e 2268/// Rvalues
e9174d1e 2269
6a06907d 2270#[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
5e7ed085
FG
2271/// The various kinds of rvalues that can appear in MIR.
2272///
2273/// Not all of these are allowed at every [`MirPhase`]. Check the documentation there to see which
2274/// ones you do not have to worry about. The MIR validator will generally enforce such restrictions,
2275/// causing an ICE if they are violated.
b039eaaf 2276pub enum Rvalue<'tcx> {
7453a54e 2277 /// x (either a move or copy, depending on type of x)
b039eaaf 2278 Use(Operand<'tcx>),
e9174d1e 2279
7453a54e 2280 /// [x; 32]
5099ac24 2281 Repeat(Operand<'tcx>, ty::Const<'tcx>),
e9174d1e 2282
7453a54e 2283 /// &x or &mut x
ff7c6d11 2284 Ref(Region<'tcx>, BorrowKind, Place<'tcx>),
e9174d1e 2285
f9f354fc
XL
2286 /// Accessing a thread local static. This is inherently a runtime operation, even if llvm
2287 /// treats it as an access to a static. This `Rvalue` yields a reference to the thread local
2288 /// static.
2289 ThreadLocalRef(DefId),
2290
dfeec247
XL
2291 /// Create a raw pointer to the given place
2292 /// Can be generated by raw address of expressions (`&raw const x`),
2293 /// or when casting a reference to a raw pointer.
2294 AddressOf(Mutability, Place<'tcx>),
2295
f9f354fc 2296 /// length of a `[X]` or `[X;n]` value
ff7c6d11 2297 Len(Place<'tcx>),
e9174d1e 2298
b039eaaf 2299 Cast(CastKind, Operand<'tcx>, Ty<'tcx>),
e9174d1e 2300
6a06907d
XL
2301 BinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>),
2302 CheckedBinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>),
e9174d1e 2303
7cac9316 2304 NullaryOp(NullOp, Ty<'tcx>),
b039eaaf 2305 UnaryOp(UnOp, Operand<'tcx>),
e9174d1e 2306
8bb4bdeb
XL
2307 /// Read the discriminant of an ADT.
2308 ///
0731742a 2309 /// Undefined (i.e., no effort is made to make it defined, but there’s no reason why it cannot
8bb4bdeb 2310 /// be defined to return, say, a 0) if ADT is not an enum.
ff7c6d11 2311 Discriminant(Place<'tcx>),
8bb4bdeb 2312
9fa01778 2313 /// Creates an aggregate value, like a tuple or struct. This is
7453a54e
SL
2314 /// only needed because we want to distinguish `dest = Foo { x:
2315 /// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case
2316 /// that `Foo` has a destructor. These rvalues can be optimized
2317 /// away after type-checking and before lowering.
cc61c64b 2318 Aggregate(Box<AggregateKind<'tcx>>, Vec<Operand<'tcx>>),
c295e0f8
XL
2319
2320 /// Transmutes a `*mut u8` into shallow-initialized `Box<T>`.
2321 ///
2322 /// This is different a normal transmute because dataflow analysis will treat the box
2323 /// as initialized but its content as uninitialized.
2324 ShallowInitBox(Operand<'tcx>, Ty<'tcx>),
e9174d1e
SL
2325}
2326
c295e0f8 2327#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
6a06907d
XL
2328static_assert_size!(Rvalue<'_>, 40);
2329
2330#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2331pub enum CastKind {
2332 Misc,
48663c56 2333 Pointer(PointerCast),
e9174d1e
SL
2334}
2335
6a06907d 2336#[derive(Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf 2337pub enum AggregateKind<'tcx> {
8bb4bdeb
XL
2338 /// The type is of the element
2339 Array(Ty<'tcx>),
e9174d1e 2340 Tuple,
ff7c6d11 2341
2c00a5a8
XL
2342 /// The second field is the variant index. It's equal to 0 for struct
2343 /// and union expressions. The fourth field is
ff7c6d11 2344 /// active field number and is present only for union expressions
0731742a 2345 /// -- e.g., for a union expression `SomeUnion { c: .. }`, the
ff7c6d11 2346 /// active field index would identity the field `c`
a2a8927a 2347 Adt(DefId, VariantIdx, SubstsRef<'tcx>, Option<UserTypeAnnotationIndex>, Option<usize>),
ff7c6d11 2348
e74abb32 2349 Closure(DefId, SubstsRef<'tcx>),
60c5eb7d 2350 Generator(DefId, SubstsRef<'tcx>, hir::Movability),
e9174d1e
SL
2351}
2352
c295e0f8 2353#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
6a06907d
XL
2354static_assert_size!(AggregateKind<'_>, 48);
2355
2356#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2357pub enum BinOp {
2358 /// The `+` operator (addition)
2359 Add,
2360 /// The `-` operator (subtraction)
2361 Sub,
2362 /// The `*` operator (multiplication)
2363 Mul,
2364 /// The `/` operator (division)
3c0e092e 2365 ///
5099ac24
FG
2366 /// Division by zero is UB, because the compiler should have inserted checks
2367 /// prior to this.
e9174d1e
SL
2368 Div,
2369 /// The `%` operator (modulus)
3c0e092e 2370 ///
5099ac24
FG
2371 /// Using zero as the modulus (second operand) is UB, because the compiler
2372 /// should have inserted checks prior to this.
e9174d1e
SL
2373 Rem,
2374 /// The `^` operator (bitwise xor)
2375 BitXor,
2376 /// The `&` operator (bitwise and)
2377 BitAnd,
2378 /// The `|` operator (bitwise or)
2379 BitOr,
2380 /// The `<<` operator (shift left)
3c0e092e
XL
2381 ///
2382 /// The offset is truncated to the size of the first operand before shifting.
e9174d1e
SL
2383 Shl,
2384 /// The `>>` operator (shift right)
3c0e092e
XL
2385 ///
2386 /// The offset is truncated to the size of the first operand before shifting.
e9174d1e
SL
2387 Shr,
2388 /// The `==` operator (equality)
2389 Eq,
2390 /// The `<` operator (less than)
2391 Lt,
2392 /// The `<=` operator (less than or equal to)
2393 Le,
2394 /// The `!=` operator (not equal to)
2395 Ne,
2396 /// The `>=` operator (greater than or equal to)
2397 Ge,
2398 /// The `>` operator (greater than)
2399 Gt,
7cac9316
XL
2400 /// The `ptr.offset` operator
2401 Offset,
e9174d1e
SL
2402}
2403
3157f602
XL
2404impl BinOp {
2405 pub fn is_checkable(self) -> bool {
2406 use self::BinOp::*;
29967ef6 2407 matches!(self, Add | Sub | Mul | Shl | Shr)
3157f602
XL
2408 }
2409}
2410
6a06907d 2411#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
7cac9316 2412pub enum NullOp {
9fa01778 2413 /// Returns the size of a value of that type
7cac9316 2414 SizeOf,
c295e0f8
XL
2415 /// Returns the minimum alignment of a type
2416 AlignOf,
7cac9316
XL
2417}
2418
6a06907d 2419#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2420pub enum UnOp {
2421 /// The `!` operator for logical inversion
2422 Not,
2423 /// The `-` operator for negation
b039eaaf 2424 Neg,
e9174d1e
SL
2425}
2426
b039eaaf 2427impl<'tcx> Debug for Rvalue<'tcx> {
0bf4aa26 2428 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
2429 use self::Rvalue::*;
2430
2431 match *self {
ff7c6d11 2432 Use(ref place) => write!(fmt, "{:?}", place),
5099ac24 2433 Repeat(ref a, b) => {
ba9703b0
XL
2434 write!(fmt, "[{:?}; ", a)?;
2435 pretty_print_const(b, fmt, false)?;
2436 write!(fmt, "]")
2437 }
9cc50fc6 2438 Len(ref a) => write!(fmt, "Len({:?})", a),
ff7c6d11
XL
2439 Cast(ref kind, ref place, ref ty) => {
2440 write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
2441 }
6a06907d
XL
2442 BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
2443 CheckedBinaryOp(ref op, box (ref a, ref b)) => {
3157f602
XL
2444 write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
2445 }
e9174d1e 2446 UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
ff7c6d11 2447 Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
7cac9316 2448 NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
f9f354fc
XL
2449 ThreadLocalRef(did) => ty::tls::with(|tcx| {
2450 let muta = tcx.static_mutability(did).unwrap().prefix_str();
2451 write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
2452 }),
ff7c6d11 2453 Ref(region, borrow_kind, ref place) => {
9cc50fc6
SL
2454 let kind_str = match borrow_kind {
2455 BorrowKind::Shared => "",
0bf4aa26 2456 BorrowKind::Shallow => "shallow ",
2c00a5a8 2457 BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
9cc50fc6 2458 };
041b39d2 2459
3b2f2976 2460 // When printing regions, add trailing space if necessary.
532ac7d7
XL
2461 let print_region = ty::tls::with(|tcx| {
2462 tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions
2463 });
2464 let region = if print_region {
8faf50e0 2465 let mut region = region.to_string();
74b04a01 2466 if !region.is_empty() {
94b46f34
XL
2467 region.push(' ');
2468 }
041b39d2
XL
2469 region
2470 } else {
3b2f2976 2471 // Do not even print 'static
b7449926 2472 String::new()
041b39d2 2473 };
ff7c6d11 2474 write!(fmt, "&{}{}{:?}", region, kind_str, place)
9cc50fc6
SL
2475 }
2476
dfeec247
XL
2477 AddressOf(mutability, ref place) => {
2478 let kind_str = match mutability {
2479 Mutability::Mut => "mut",
2480 Mutability::Not => "const",
2481 };
2482
2483 write!(fmt, "&raw {} {:?}", kind_str, place)
2484 }
2485
ff7c6d11 2486 Aggregate(ref kind, ref places) => {
ba9703b0
XL
2487 let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
2488 let mut tuple_fmt = fmt.debug_tuple(name);
ff7c6d11
XL
2489 for place in places {
2490 tuple_fmt.field(place);
9cc50fc6
SL
2491 }
2492 tuple_fmt.finish()
ba9703b0 2493 };
9cc50fc6 2494
cc61c64b 2495 match **kind {
ff7c6d11 2496 AggregateKind::Array(_) => write!(fmt, "{:?}", places),
9cc50fc6 2497
ba9703b0
XL
2498 AggregateKind::Tuple => {
2499 if places.is_empty() {
2500 write!(fmt, "()")
2501 } else {
2502 fmt_tuple(fmt, "")
2503 }
2504 }
9cc50fc6 2505
a2a8927a
XL
2506 AggregateKind::Adt(adt_did, variant, substs, _user_ty, _) => {
2507 ty::tls::with(|tcx| {
5e7ed085 2508 let variant_def = &tcx.adt_def(adt_did).variant(variant);
29967ef6 2509 let substs = tcx.lift(substs).expect("could not lift for printing");
5e7ed085
FG
2510 let name = FmtPrinter::new(tcx, Namespace::ValueNS)
2511 .print_def_path(variant_def.def_id, substs)?
2512 .into_buffer();
a2a8927a
XL
2513
2514 match variant_def.ctor_kind {
2515 CtorKind::Const => fmt.write_str(&name),
2516 CtorKind::Fn => fmt_tuple(fmt, &name),
2517 CtorKind::Fictive => {
2518 let mut struct_fmt = fmt.debug_struct(&name);
2519 for (field, place) in iter::zip(&variant_def.fields, places) {
5099ac24 2520 struct_fmt.field(field.name.as_str(), place);
a2a8927a
XL
2521 }
2522 struct_fmt.finish()
9cc50fc6 2523 }
9cc50fc6 2524 }
a2a8927a 2525 })
9cc50fc6
SL
2526 }
2527
60c5eb7d 2528 AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| {
f9f354fc 2529 if let Some(def_id) = def_id.as_local() {
041b39d2 2530 let name = if tcx.sess.opts.debugging_opts.span_free_formats {
29967ef6 2531 let substs = tcx.lift(substs).unwrap();
60c5eb7d
XL
2532 format!(
2533 "[closure@{}]",
f9f354fc 2534 tcx.def_path_str_with_substs(def_id.to_def_id(), substs),
60c5eb7d 2535 )
041b39d2 2536 } else {
5099ac24 2537 let span = tcx.def_span(def_id);
17df50a5
XL
2538 format!(
2539 "[closure@{}]",
2540 tcx.sess.source_map().span_to_diagnostic_string(span)
2541 )
041b39d2 2542 };
9cc50fc6
SL
2543 let mut struct_fmt = fmt.debug_struct(&name);
2544
17df50a5 2545 // FIXME(project-rfc-2229#48): This should be a list of capture names/places
f9f354fc 2546 if let Some(upvars) = tcx.upvars_mentioned(def_id) {
cdc7bbd5 2547 for (&var_id, place) in iter::zip(upvars.keys(), places) {
dc9dc135 2548 let var_name = tcx.hir().name(var_id);
a2a8927a 2549 struct_fmt.field(var_name.as_str(), place);
9cc50fc6 2550 }
48663c56 2551 }
9cc50fc6
SL
2552
2553 struct_fmt.finish()
2554 } else {
2555 write!(fmt, "[closure]")
2556 }
2557 }),
ea8adc8c
XL
2558
2559 AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
f9f354fc 2560 if let Some(def_id) = def_id.as_local() {
5099ac24 2561 let name = format!("[generator@{:?}]", tcx.def_span(def_id));
ea8adc8c
XL
2562 let mut struct_fmt = fmt.debug_struct(&name);
2563
17df50a5 2564 // FIXME(project-rfc-2229#48): This should be a list of capture names/places
f9f354fc 2565 if let Some(upvars) = tcx.upvars_mentioned(def_id) {
cdc7bbd5 2566 for (&var_id, place) in iter::zip(upvars.keys(), places) {
dc9dc135 2567 let var_name = tcx.hir().name(var_id);
a2a8927a 2568 struct_fmt.field(var_name.as_str(), place);
ea8adc8c 2569 }
48663c56 2570 }
ea8adc8c
XL
2571
2572 struct_fmt.finish()
2573 } else {
2574 write!(fmt, "[generator]")
2575 }
2576 }),
9cc50fc6
SL
2577 }
2578 }
c295e0f8
XL
2579
2580 ShallowInitBox(ref place, ref ty) => {
2581 write!(fmt, "ShallowInitBox({:?}, {:?})", place, ty)
2582 }
e9174d1e
SL
2583 }
2584 }
2585}
2586
2587///////////////////////////////////////////////////////////////////////////
7453a54e
SL
2588/// Constants
2589///
2590/// Two constants are equal if they are the same constant. Note that
1b1a35ee
XL
2591/// this does not necessarily mean that they are `==` in Rust. In
2592/// particular, one must be wary of `NaN`!
e9174d1e 2593
5099ac24 2594#[derive(Clone, Copy, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf
SL
2595pub struct Constant<'tcx> {
2596 pub span: Span,
b7449926
XL
2597
2598 /// Optional user-given type: for something like
2599 /// `collect::<Vec<_>>`, this would be present and would
2600 /// indicate that `Vec<_>` was explicitly specified.
2601 ///
2602 /// Needed for NLL to impose user-given type constraints.
0731742a 2603 pub user_ty: Option<UserTypeAnnotationIndex>,
b7449926 2604
6a06907d
XL
2605 pub literal: ConstantKind<'tcx>,
2606}
2607
5099ac24 2608#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
cdc7bbd5 2609#[derive(Lift)]
6a06907d
XL
2610pub enum ConstantKind<'tcx> {
2611 /// This constant came from the type system
5099ac24 2612 Ty(ty::Const<'tcx>),
6a06907d
XL
2613 /// This constant cannot go back into the type system, as it represents
2614 /// something the type system cannot handle (e.g. pointers).
2615 Val(interpret::ConstValue<'tcx>, Ty<'tcx>),
0bf4aa26
XL
2616}
2617
a2a8927a 2618impl<'tcx> Constant<'tcx> {
60c5eb7d 2619 pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
5099ac24 2620 match self.literal.try_to_scalar() {
136023e0 2621 Some(Scalar::Ptr(ptr, _size)) => match tcx.global_alloc(ptr.provenance) {
f9f354fc
XL
2622 GlobalAlloc::Static(def_id) => {
2623 assert!(!tcx.is_thread_local_static(def_id));
2624 Some(def_id)
dfeec247 2625 }
f9f354fc 2626 _ => None,
60c5eb7d
XL
2627 },
2628 _ => None,
2629 }
2630 }
17df50a5 2631 #[inline]
6a06907d
XL
2632 pub fn ty(&self) -> Ty<'tcx> {
2633 self.literal.ty()
2634 }
2635}
2636
5099ac24 2637impl<'tcx> From<ty::Const<'tcx>> for ConstantKind<'tcx> {
17df50a5 2638 #[inline]
5099ac24 2639 fn from(ct: ty::Const<'tcx>) -> Self {
5e7ed085
FG
2640 match ct.val() {
2641 ty::ConstKind::Value(cv) => {
2642 // FIXME Once valtrees are introduced we need to convert those
2643 // into `ConstValue` instances here
2644 Self::Val(cv, ct.ty())
2645 }
2646 _ => Self::Ty(ct),
2647 }
6a06907d
XL
2648 }
2649}
2650
a2a8927a 2651impl<'tcx> ConstantKind<'tcx> {
6a06907d 2652 /// Returns `None` if the constant is not trivially safe for use in the type system.
5099ac24 2653 pub fn const_for_ty(&self) -> Option<ty::Const<'tcx>> {
6a06907d 2654 match self {
5099ac24 2655 ConstantKind::Ty(c) => Some(*c),
6a06907d
XL
2656 ConstantKind::Val(..) => None,
2657 }
2658 }
2659
2660 pub fn ty(&self) -> Ty<'tcx> {
2661 match self {
5099ac24
FG
2662 ConstantKind::Ty(c) => c.ty(),
2663 ConstantKind::Val(_, ty) => *ty,
6a06907d
XL
2664 }
2665 }
2666
2667 #[inline]
2668 pub fn try_to_value(self) -> Option<interpret::ConstValue<'tcx>> {
2669 match self {
5099ac24 2670 ConstantKind::Ty(c) => c.val().try_to_value(),
6a06907d
XL
2671 ConstantKind::Val(val, _) => Some(val),
2672 }
2673 }
2674
2675 #[inline]
2676 pub fn try_to_scalar(self) -> Option<Scalar> {
2677 self.try_to_value()?.try_to_scalar()
2678 }
2679
2680 #[inline]
2681 pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
2682 Some(self.try_to_value()?.try_to_scalar()?.assert_int())
2683 }
2684
2685 #[inline]
2686 pub fn try_to_bits(self, size: Size) -> Option<u128> {
2687 self.try_to_scalar_int()?.to_bits(size).ok()
2688 }
2689
2690 #[inline]
2691 pub fn try_to_bool(self) -> Option<bool> {
2692 self.try_to_scalar_int()?.try_into().ok()
2693 }
2694
2695 #[inline]
2696 pub fn try_eval_bits(
2697 &self,
2698 tcx: TyCtxt<'tcx>,
2699 param_env: ty::ParamEnv<'tcx>,
2700 ty: Ty<'tcx>,
2701 ) -> Option<u128> {
2702 match self {
2703 Self::Ty(ct) => ct.try_eval_bits(tcx, param_env, ty),
2704 Self::Val(val, t) => {
2705 assert_eq!(*t, ty);
2706 let size =
2707 tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
2708 val.try_to_bits(size)
2709 }
2710 }
2711 }
2712
2713 #[inline]
2714 pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
2715 match self {
2716 Self::Ty(ct) => ct.try_eval_bool(tcx, param_env),
2717 Self::Val(val, _) => val.try_to_bool(),
2718 }
2719 }
2720
2721 #[inline]
2722 pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u64> {
2723 match self {
2724 Self::Ty(ct) => ct.try_eval_usize(tcx, param_env),
2725 Self::Val(val, _) => val.try_to_machine_usize(tcx),
2726 }
2727 }
5e7ed085
FG
2728
2729 pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
2730 let cv = ConstValue::from_bool(v);
2731 Self::Val(cv, tcx.types.bool)
2732 }
2733
2734 pub fn from_zero_sized(ty: Ty<'tcx>) -> Self {
2735 let cv = ConstValue::Scalar(Scalar::ZST);
2736 Self::Val(cv, ty)
2737 }
2738
2739 pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
2740 let ty = tcx.types.usize;
2741 let size = tcx
2742 .layout_of(ty::ParamEnv::empty().and(ty))
2743 .unwrap_or_else(|e| bug!("could not compute layout for {:?}: {:?}", ty, e))
2744 .size;
2745 let cv = ConstValue::Scalar(Scalar::from_uint(n as u128, size));
2746
2747 Self::Val(cv, ty)
2748 }
60c5eb7d
XL
2749}
2750
0bf4aa26
XL
2751/// A collection of projections into user types.
2752///
2753/// They are projections because a binding can occur a part of a
2754/// parent pattern that has been ascribed a type.
2755///
2756/// Its a collection because there can be multiple type ascriptions on
2757/// the path from the root of the pattern down to the binding itself.
2758///
2759/// An example:
2760///
2761/// ```rust
2762/// struct S<'a>((i32, &'a str), String);
2763/// let S((_, w): (i32, &'static str), _): S = ...;
2764/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
2765/// // --------------------------------- ^ (2)
2766/// ```
2767///
2768/// The highlights labelled `(1)` show the subpattern `(_, w)` being
2769/// ascribed the type `(i32, &'static str)`.
2770///
2771/// The highlights labelled `(2)` show the whole pattern being
2772/// ascribed the type `S`.
2773///
2774/// In this example, when we descend to `w`, we will have built up the
2775/// following two projected types:
2776///
2777/// * base: `S`, projection: `(base.0).1`
2778/// * base: `(i32, &'static str)`, projection: `base.1`
2779///
2780/// The first will lead to the constraint `w: &'1 str` (for some
2781/// inferred region `'1`). The second will lead to the constraint `w:
2782/// &'static str`.
3dfed10e 2783#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
532ac7d7 2784pub struct UserTypeProjections {
f9f354fc 2785 pub contents: Vec<(UserTypeProjection, Span)>,
0bf4aa26
XL
2786}
2787
532ac7d7 2788impl<'tcx> UserTypeProjections {
0bf4aa26
XL
2789 pub fn none() -> Self {
2790 UserTypeProjections { contents: vec![] }
2791 }
2792
f9f354fc
XL
2793 pub fn is_empty(&self) -> bool {
2794 self.contents.is_empty()
2795 }
2796
dfeec247
XL
2797 pub fn projections_and_spans(
2798 &self,
2799 ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
0bf4aa26
XL
2800 self.contents.iter()
2801 }
2802
dfeec247 2803 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
0bf4aa26
XL
2804 self.contents.iter().map(|&(ref user_type, _span)| user_type)
2805 }
0731742a 2806
416331ca 2807 pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
0731742a
XL
2808 self.contents.push((user_ty.clone(), span));
2809 self
2810 }
2811
2812 fn map_projections(
2813 mut self,
416331ca 2814 mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
0731742a 2815 ) -> Self {
3c0e092e 2816 self.contents = self.contents.into_iter().map(|(proj, span)| (f(proj), span)).collect();
0731742a
XL
2817 self
2818 }
2819
2820 pub fn index(self) -> Self {
2821 self.map_projections(|pat_ty_proj| pat_ty_proj.index())
2822 }
2823
1b1a35ee 2824 pub fn subslice(self, from: u64, to: u64) -> Self {
0731742a
XL
2825 self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
2826 }
2827
2828 pub fn deref(self) -> Self {
2829 self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
2830 }
2831
2832 pub fn leaf(self, field: Field) -> Self {
2833 self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
2834 }
2835
5e7ed085 2836 pub fn variant(self, adt_def: AdtDef<'tcx>, variant_index: VariantIdx, field: Field) -> Self {
0731742a
XL
2837 self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
2838 }
0bf4aa26
XL
2839}
2840
2841/// Encodes the effect of a user-supplied type annotation on the
2842/// subcomponents of a pattern. The effect is determined by applying the
5e7ed085 2843/// given list of projections to some underlying base type. Often,
0bf4aa26
XL
2844/// the projection element list `projs` is empty, in which case this
2845/// directly encodes a type in `base`. But in the case of complex patterns with
2846/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
2847/// in which case the `projs` vector is used.
2848///
2849/// Examples:
2850///
2851/// * `let x: T = ...` -- here, the `projs` vector is empty.
2852///
2853/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
2854/// `field[0]` (aka `.0`), indicating that the type of `s` is
2855/// determined by finding the type of the `.0` field from `T`.
6a06907d 2856#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
532ac7d7 2857pub struct UserTypeProjection {
0731742a 2858 pub base: UserTypeAnnotationIndex,
dc9dc135 2859 pub projs: Vec<ProjectionKind>,
0bf4aa26
XL
2860}
2861
416331ca 2862impl Copy for ProjectionKind {}
0bf4aa26 2863
532ac7d7 2864impl UserTypeProjection {
0731742a
XL
2865 pub(crate) fn index(mut self) -> Self {
2866 self.projs.push(ProjectionElem::Index(()));
2867 self
2868 }
2869
1b1a35ee 2870 pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
60c5eb7d 2871 self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
0731742a
XL
2872 self
2873 }
2874
2875 pub(crate) fn deref(mut self) -> Self {
2876 self.projs.push(ProjectionElem::Deref);
2877 self
2878 }
2879
2880 pub(crate) fn leaf(mut self, field: Field) -> Self {
2881 self.projs.push(ProjectionElem::Field(field, ()));
2882 self
2883 }
2884
2885 pub(crate) fn variant(
2886 mut self,
5e7ed085 2887 adt_def: AdtDef<'_>,
0731742a
XL
2888 variant_index: VariantIdx,
2889 field: Field,
2890 ) -> Self {
532ac7d7 2891 self.projs.push(ProjectionElem::Downcast(
5e7ed085 2892 Some(adt_def.variant(variant_index).name),
416331ca
XL
2893 variant_index,
2894 ));
0731742a
XL
2895 self.projs.push(ProjectionElem::Field(field, ()));
2896 self
2897 }
2898}
2899
fc512014 2900TrivialTypeFoldableAndLiftImpls! { ProjectionKind, }
0bf4aa26 2901
532ac7d7 2902impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
a2a8927a
XL
2903 fn try_super_fold_with<F: FallibleTypeFolder<'tcx>>(
2904 self,
2905 folder: &mut F,
2906 ) -> Result<Self, F::Error> {
2907 Ok(UserTypeProjection {
2908 base: self.base.try_fold_with(folder)?,
2909 projs: self.projs.try_fold_with(folder)?,
2910 })
0bf4aa26
XL
2911 }
2912
fc512014
XL
2913 fn super_visit_with<Vs: TypeVisitor<'tcx>>(
2914 &self,
2915 visitor: &mut Vs,
2916 ) -> ControlFlow<Vs::BreakTy> {
0bf4aa26
XL
2917 self.base.visit_with(visitor)
2918 // Note: there's nothing in `self.proj` to visit.
2919 }
2920}
2921
e74abb32 2922rustc_index::newtype_index! {
b7449926 2923 pub struct Promoted {
532ac7d7 2924 derive [HashStable]
b7449926
XL
2925 DEBUG_FORMAT = "promoted[{}]"
2926 }
2927}
abe05a73 2928
9cc50fc6 2929impl<'tcx> Debug for Constant<'tcx> {
0bf4aa26 2930 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
dc9dc135 2931 write!(fmt, "{}", self)
9cc50fc6
SL
2932 }
2933}
2934
dc9dc135
XL
2935impl<'tcx> Display for Constant<'tcx> {
2936 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
6a06907d 2937 match self.ty().kind() {
3dfed10e
XL
2938 ty::FnDef(..) => {}
2939 _ => write!(fmt, "const ")?,
2940 }
cdc7bbd5
XL
2941 Display::fmt(&self.literal, fmt)
2942 }
2943}
2944
2945impl<'tcx> Display for ConstantKind<'tcx> {
2946 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
2947 match *self {
6a06907d
XL
2948 ConstantKind::Ty(c) => pretty_print_const(c, fmt, true),
2949 ConstantKind::Val(val, ty) => pretty_print_const_value(val, ty, fmt, true),
2950 }
dc9dc135 2951 }
9cc50fc6 2952}
3157f602 2953
a2a8927a 2954fn pretty_print_const<'tcx>(
5099ac24 2955 c: ty::Const<'tcx>,
ba9703b0
XL
2956 fmt: &mut Formatter<'_>,
2957 print_types: bool,
2958) -> fmt::Result {
2959 use crate::ty::print::PrettyPrinter;
2960 ty::tls::with(|tcx| {
29967ef6 2961 let literal = tcx.lift(c).unwrap();
5e7ed085 2962 let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
ba9703b0 2963 cx.print_alloc_ids = true;
5e7ed085
FG
2964 let cx = cx.pretty_print_const(literal, print_types)?;
2965 fmt.write_str(&cx.into_buffer())?;
ba9703b0
XL
2966 Ok(())
2967 })
2968}
2969
a2a8927a 2970fn pretty_print_const_value<'tcx>(
6a06907d
XL
2971 val: interpret::ConstValue<'tcx>,
2972 ty: Ty<'tcx>,
2973 fmt: &mut Formatter<'_>,
2974 print_types: bool,
2975) -> fmt::Result {
2976 use crate::ty::print::PrettyPrinter;
2977 ty::tls::with(|tcx| {
2978 let val = tcx.lift(val).unwrap();
2979 let ty = tcx.lift(ty).unwrap();
5e7ed085 2980 let mut cx = FmtPrinter::new(tcx, Namespace::ValueNS);
6a06907d 2981 cx.print_alloc_ids = true;
5e7ed085
FG
2982 let cx = cx.pretty_print_const_value(val, ty, print_types)?;
2983 fmt.write_str(&cx.into_buffer())?;
6a06907d
XL
2984 Ok(())
2985 })
2986}
2987
dc9dc135 2988impl<'tcx> graph::DirectedGraph for Body<'tcx> {
3157f602 2989 type Node = BasicBlock;
8faf50e0 2990}
3157f602 2991
dc9dc135 2992impl<'tcx> graph::WithNumNodes for Body<'tcx> {
f9f354fc 2993 #[inline]
94b46f34
XL
2994 fn num_nodes(&self) -> usize {
2995 self.basic_blocks.len()
2996 }
8faf50e0 2997}
3157f602 2998
dc9dc135 2999impl<'tcx> graph::WithStartNode for Body<'tcx> {
f9f354fc 3000 #[inline]
94b46f34
XL
3001 fn start_node(&self) -> Self::Node {
3002 START_BLOCK
3003 }
8faf50e0 3004}
3157f602 3005
dc9dc135 3006impl<'tcx> graph::WithSuccessors for Body<'tcx> {
f9f354fc 3007 #[inline]
dfeec247 3008 fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
83c7162d 3009 self.basic_blocks[node].terminator().successors().cloned()
3157f602
XL
3010 }
3011}
3012
dc9dc135 3013impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> {
3157f602 3014 type Item = BasicBlock;
83c7162d 3015 type Iter = iter::Cloned<Successors<'b>>;
3157f602 3016}
9e0c209e 3017
a2a8927a 3018impl<'tcx, 'graph> graph::GraphPredecessors<'graph> for Body<'tcx> {
f9f354fc 3019 type Item = BasicBlock;
17df50a5 3020 type Iter = std::iter::Copied<std::slice::Iter<'graph, BasicBlock>>;
f9f354fc
XL
3021}
3022
a2a8927a 3023impl<'tcx> graph::WithPredecessors for Body<'tcx> {
f9f354fc
XL
3024 #[inline]
3025 fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
17df50a5 3026 self.predecessors()[node].iter().copied()
f9f354fc
XL
3027 }
3028}
3029
ba9703b0
XL
3030/// `Location` represents the position of the start of the statement; or, if
3031/// `statement_index` equals the number of statements, then the start of the
3032/// terminator.
532ac7d7 3033#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
9e0c209e 3034pub struct Location {
e1599b0c 3035 /// The block that the location is within.
9e0c209e
SL
3036 pub block: BasicBlock,
3037
9e0c209e
SL
3038 pub statement_index: usize,
3039}
3040
3041impl fmt::Debug for Location {
0bf4aa26 3042 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
9e0c209e
SL
3043 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
3044 }
3045}
3046
3047impl Location {
416331ca 3048 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
83c7162d 3049
abe05a73
XL
3050 /// Returns the location immediately after this one within the enclosing block.
3051 ///
3052 /// Note that if this location represents a terminator, then the
3053 /// resulting location would be out of bounds and invalid.
3054 pub fn successor_within_block(&self) -> Location {
416331ca 3055 Location { block: self.block, statement_index: self.statement_index + 1 }
abe05a73
XL
3056 }
3057
a1dfa0c6 3058 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
f9f354fc 3059 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
a1dfa0c6
XL
3060 // If we are in the same block as the other location and are an earlier statement
3061 // then we are a predecessor of `other`.
3062 if self.block == other.block && self.statement_index < other.statement_index {
3063 return true;
3064 }
3065
f9f354fc
XL
3066 let predecessors = body.predecessors();
3067
a1dfa0c6 3068 // If we're in another block, then we want to check that block is a predecessor of `other`.
f9f354fc 3069 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
a1dfa0c6
XL
3070 let mut visited = FxHashSet::default();
3071
3072 while let Some(block) = queue.pop() {
5099ac24 3073 // If we haven't visited this block before, then make sure we visit its predecessors.
a1dfa0c6 3074 if visited.insert(block) {
f9f354fc 3075 queue.extend(predecessors[block].iter().cloned());
a1dfa0c6
XL
3076 } else {
3077 continue;
3078 }
3079
3080 // If we found the block that `self` is in, then we are a predecessor of `other` (since
3081 // we found that block by looking at the predecessors of `other`).
3082 if self.block == block {
3083 return true;
3084 }
3085 }
3086
3087 false
3088 }
3089
83c7162d 3090 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
9e0c209e
SL
3091 if self.block == other.block {
3092 self.statement_index <= other.statement_index
3093 } else {
3094 dominators.is_dominated_by(other.block, self.block)
3095 }
3096 }
3097}