]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_middle/src/mir/mod.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / compiler / rustc_middle / src / mir / mod.rs
CommitLineData
ba9703b0 1//! MIR datatypes and passes. See the [rustc dev guide] for more info.
ff7c6d11 2//!
ba9703b0 3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/mir/index.html
7cac9316 4
3dfed10e 5use crate::mir::coverage::{CodeRegion, CoverageKind};
29967ef6 6use crate::mir::interpret::{Allocation, GlobalAlloc, Scalar};
9fa01778 7use crate::mir::visit::MirVisitable;
416331ca 8use crate::ty::adjustment::PointerCast;
3dfed10e 9use crate::ty::codec::{TyDecoder, TyEncoder};
416331ca 10use crate::ty::fold::{TypeFoldable, TypeFolder, TypeVisitor};
416331ca
XL
11use crate::ty::print::{FmtPrinter, Printer};
12use crate::ty::subst::{Subst, SubstsRef};
29967ef6 13use crate::ty::{self, List, Ty, TyCtxt};
6a06907d 14use crate::ty::{AdtDef, InstanceDef, Region, ScalarInt, UserTypeAnnotationIndex};
dfeec247
XL
15use rustc_hir as hir;
16use rustc_hir::def::{CtorKind, Namespace};
29967ef6 17use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
dfeec247 18use rustc_hir::{self, GeneratorKind};
6a06907d 19use rustc_target::abi::{Size, VariantIdx};
e1599b0c 20
416331ca 21use polonius_engine::Atom;
3dfed10e 22pub use rustc_ast::Mutability;
a1dfa0c6 23use rustc_data_structures::fx::FxHashSet;
f9f354fc 24use rustc_data_structures::graph::dominators::{dominators, Dominators};
60c5eb7d 25use rustc_data_structures::graph::{self, GraphSuccessors};
dfeec247 26use rustc_index::bit_set::BitMatrix;
e74abb32 27use rustc_index::vec::{Idx, IndexVec};
dfeec247
XL
28use rustc_serialize::{Decodable, Encodable};
29use rustc_span::symbol::Symbol;
30use rustc_span::{Span, DUMMY_SP};
f9f354fc 31use rustc_target::asm::InlineAsmRegOrRegClass;
94b46f34 32use std::borrow::Cow;
6a06907d 33use std::convert::TryInto;
416331ca 34use std::fmt::{self, Debug, Display, Formatter, Write};
29967ef6 35use std::ops::{ControlFlow, Index, IndexMut};
94b46f34 36use std::slice;
ba9703b0 37use std::{iter, mem, option};
83c7162d 38
5869c6ff 39use self::graph_cyclic_cache::GraphIsCyclicCache;
f9f354fc 40use self::predecessors::{PredecessorCache, Predecessors};
dfeec247 41pub use self::query::*;
3157f602 42
1b1a35ee 43pub mod abstract_const;
f035d41b 44pub mod coverage;
5869c6ff 45mod graph_cyclic_cache;
ff7c6d11
XL
46pub mod interpret;
47pub mod mono;
f9f354fc 48mod predecessors;
dfeec247 49mod query;
94b46f34 50pub mod tcx;
f035d41b
XL
51pub mod terminator;
52pub use terminator::*;
94b46f34 53pub mod traversal;
ba9703b0 54mod type_foldable;
94b46f34 55pub mod visit;
3157f602 56
041b39d2 57/// Types for locals
5869c6ff 58pub type LocalDecls<'tcx> = IndexVec<Local, LocalDecl<'tcx>>;
041b39d2
XL
59
60pub trait HasLocalDecls<'tcx> {
61 fn local_decls(&self) -> &LocalDecls<'tcx>;
62}
63
64impl<'tcx> HasLocalDecls<'tcx> for LocalDecls<'tcx> {
6a06907d 65 #[inline]
041b39d2
XL
66 fn local_decls(&self) -> &LocalDecls<'tcx> {
67 self
68 }
69}
70
dc9dc135 71impl<'tcx> HasLocalDecls<'tcx> for Body<'tcx> {
6a06907d 72 #[inline]
041b39d2
XL
73 fn local_decls(&self) -> &LocalDecls<'tcx> {
74 &self.local_decls
75 }
76}
77
a1dfa0c6
XL
78/// The various "big phases" that MIR goes through.
79///
3dfed10e
XL
80/// These phases all describe dialects of MIR. Since all MIR uses the same datastructures, the
81/// dialects forbid certain variants or values in certain phases.
82///
83/// Note: Each phase's validation checks all invariants of the *previous* phases' dialects. A phase
84/// that changes the dialect documents what invariants must be upheld *after* that phase finishes.
85///
e1599b0c 86/// Warning: ordering of variants is significant.
3dfed10e 87#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, PartialOrd, Ord)]
ba9703b0 88#[derive(HashStable)]
a1dfa0c6
XL
89pub enum MirPhase {
90 Build = 0,
3dfed10e
XL
91 // FIXME(oli-obk): it's unclear whether we still need this phase (and its corresponding query).
92 // We used to have this for pre-miri MIR based const eval.
a1dfa0c6 93 Const = 1,
3dfed10e
XL
94 /// This phase checks the MIR for promotable elements and takes them out of the main MIR body
95 /// by creating a new MIR body per promoted element. After this phase (and thus the termination
96 /// of the `mir_promoted` query), these promoted elements are available in the `promoted_mir`
97 /// query.
98 ConstPromotion = 2,
99 /// After this phase
100 /// * the only `AggregateKind`s allowed are `Array` and `Generator`,
101 /// * `DropAndReplace` is gone for good
102 /// * `Drop` now uses explicit drop flags visible in the MIR and reaching a `Drop` terminator
103 /// means that the auto-generated drop glue will be invoked.
104 DropLowering = 3,
105 /// After this phase, generators are explicit state machines (no more `Yield`).
106 /// `AggregateKind::Generator` is gone for good.
107 GeneratorLowering = 4,
108 Optimization = 5,
a1dfa0c6
XL
109}
110
111impl MirPhase {
e1599b0c 112 /// Gets the index of the current MirPhase within the set of all `MirPhase`s.
a1dfa0c6
XL
113 pub fn phase_index(&self) -> usize {
114 *self as usize
115 }
116}
117
29967ef6
XL
118/// Where a specific `mir::Body` comes from.
119#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
120#[derive(HashStable, TyEncodable, TyDecodable, TypeFoldable)]
121pub struct MirSource<'tcx> {
122 pub instance: InstanceDef<'tcx>,
123
124 /// If `Some`, this is a promoted rvalue within the parent function.
125 pub promoted: Option<Promoted>,
126}
127
128impl<'tcx> MirSource<'tcx> {
129 pub fn item(def_id: DefId) -> Self {
130 MirSource {
131 instance: InstanceDef::Item(ty::WithOptConstParam::unknown(def_id)),
132 promoted: None,
133 }
134 }
135
136 pub fn from_instance(instance: InstanceDef<'tcx>) -> Self {
137 MirSource { instance, promoted: None }
138 }
139
140 pub fn with_opt_param(self) -> ty::WithOptConstParam<DefId> {
141 self.instance.with_opt_param()
142 }
143
144 #[inline]
145 pub fn def_id(&self) -> DefId {
146 self.instance.def_id()
147 }
148}
149
6a06907d
XL
150#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
151pub struct GeneratorInfo<'tcx> {
152 /// The yield type of the function, if it is a generator.
153 pub yield_ty: Option<Ty<'tcx>>,
154
155 /// Generator drop glue.
156 pub generator_drop: Option<Body<'tcx>>,
157
158 /// The layout of a generator. Produced by the state transformation.
159 pub generator_layout: Option<GeneratorLayout<'tcx>>,
160
161 /// If this is a generator then record the type of source expression that caused this generator
162 /// to be created.
163 pub generator_kind: GeneratorKind,
164}
165
e1599b0c 166/// The lowered representation of a single function.
3dfed10e 167#[derive(Clone, TyEncodable, TyDecodable, Debug, HashStable, TypeFoldable)]
dc9dc135 168pub struct Body<'tcx> {
29967ef6 169 /// A list of basic blocks. References to basic block use a newtyped index type [`BasicBlock`]
92a42be0 170 /// that indexes into this vector.
3157f602 171 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
e9174d1e 172
a1dfa0c6
XL
173 /// Records how far through the "desugaring and optimization" process this particular
174 /// MIR has traversed. This is particularly useful when inlining, since in that context
175 /// we instantiate the promoted constants and add them to our promoted vector -- but those
176 /// promoted items have already been optimized, whereas ours have not. This field allows
177 /// us to see the difference and forego optimization on the inlined promoted items.
178 pub phase: MirPhase,
179
29967ef6
XL
180 pub source: MirSource<'tcx>,
181
e1599b0c 182 /// A list of source scopes; these are referenced by statements
94b46f34 183 /// and used for debuginfo. Indexed by a `SourceScope`.
29967ef6 184 pub source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
54a0048b 185
6a06907d 186 pub generator: Option<Box<GeneratorInfo<'tcx>>>,
60c5eb7d 187
c30ab7b3
SL
188 /// Declarations of locals.
189 ///
190 /// The first local is the return value pointer, followed by `arg_count`
191 /// locals for the function arguments, followed by any user-declared
192 /// variables and temporaries.
041b39d2 193 pub local_decls: LocalDecls<'tcx>,
92a42be0 194
e1599b0c 195 /// User type annotations.
29967ef6 196 pub user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
0731742a 197
e1599b0c 198 /// The number of arguments this function takes.
c30ab7b3
SL
199 ///
200 /// Starting at local 1, `arg_count` locals will be provided by the caller
201 /// and can be assumed to be initialized.
202 ///
203 /// If this MIR was built for a constant, this will be 0.
204 pub arg_count: usize,
7453a54e 205
c30ab7b3
SL
206 /// Mark an argument local (which must be a tuple) as getting passed as
207 /// its individual components at the LLVM level.
208 ///
209 /// This is used for the "rust-call" ABI.
210 pub spread_arg: Option<Local>,
211
60c5eb7d
XL
212 /// Debug information pertaining to user variables, including captures.
213 pub var_debug_info: Vec<VarDebugInfo<'tcx>>,
48663c56 214
e1599b0c 215 /// A span representing this MIR, for error reporting.
7453a54e 216 pub span: Span,
dfeec247 217
f9f354fc
XL
218 /// Constants that are required to evaluate successfully for this MIR to be well-formed.
219 /// We hold in this field all the constants we are not able to evaluate yet.
220 pub required_consts: Vec<Constant<'tcx>>,
221
1b1a35ee
XL
222 /// Does this body use generic parameters. This is used for the `ConstEvaluatable` check.
223 ///
224 /// Note that this does not actually mean that this body is not computable right now.
225 /// The repeat count in the following example is polymorphic, but can still be evaluated
226 /// without knowing anything about the type parameter `T`.
227 ///
228 /// ```rust
229 /// fn test<T>() {
230 /// let _ = [0; std::mem::size_of::<*mut T>()];
231 /// }
232 /// ```
233 ///
234 /// **WARNING**: Do not change this flags after the MIR was originally created, even if an optimization
235 /// removed the last mention of all generic params. We do not want to rely on optimizations and
236 /// potentially allow things like `[u8; std::mem::size_of::<T>() * 0]` due to this.
237 pub is_polymorphic: bool,
238
f9f354fc 239 predecessor_cache: PredecessorCache,
5869c6ff 240 is_cyclic: GraphIsCyclicCache,
e9174d1e
SL
241}
242
dc9dc135 243impl<'tcx> Body<'tcx> {
94b46f34 244 pub fn new(
29967ef6 245 source: MirSource<'tcx>,
94b46f34 246 basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
29967ef6 247 source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
0731742a 248 local_decls: LocalDecls<'tcx>,
29967ef6 249 user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
94b46f34 250 arg_count: usize,
60c5eb7d 251 var_debug_info: Vec<VarDebugInfo<'tcx>>,
94b46f34 252 span: Span,
dfeec247 253 generator_kind: Option<GeneratorKind>,
94b46f34 254 ) -> Self {
e1599b0c 255 // We need `arg_count` locals, and one for the return place.
94b46f34 256 assert!(
74b04a01 257 local_decls.len() > arg_count,
94b46f34
XL
258 "expected at least {} locals, got {}",
259 arg_count + 1,
260 local_decls.len()
261 );
c30ab7b3 262
1b1a35ee 263 let mut body = Body {
a1dfa0c6 264 phase: MirPhase::Build,
29967ef6 265 source,
041b39d2 266 basic_blocks,
94b46f34 267 source_scopes,
6a06907d
XL
268 generator: generator_kind.map(|generator_kind| {
269 Box::new(GeneratorInfo {
270 yield_ty: None,
271 generator_drop: None,
272 generator_layout: None,
273 generator_kind,
274 })
275 }),
041b39d2 276 local_decls,
0731742a 277 user_type_annotations,
041b39d2 278 arg_count,
c30ab7b3 279 spread_arg: None,
60c5eb7d 280 var_debug_info,
041b39d2 281 span,
f9f354fc 282 required_consts: Vec::new(),
1b1a35ee 283 is_polymorphic: false,
f9f354fc 284 predecessor_cache: PredecessorCache::new(),
5869c6ff 285 is_cyclic: GraphIsCyclicCache::new(),
1b1a35ee
XL
286 };
287 body.is_polymorphic = body.has_param_types_or_consts();
288 body
3157f602
XL
289 }
290
dfeec247
XL
291 /// Returns a partially initialized MIR body containing only a list of basic blocks.
292 ///
293 /// The returned MIR contains no `LocalDecl`s (even for the return place) or source scopes. It
294 /// is only useful for testing but cannot be `#[cfg(test)]` because it is used in a different
295 /// crate.
296 pub fn new_cfg_only(basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>) -> Self {
1b1a35ee 297 let mut body = Body {
dfeec247 298 phase: MirPhase::Build,
29967ef6 299 source: MirSource::item(DefId::local(CRATE_DEF_INDEX)),
dfeec247
XL
300 basic_blocks,
301 source_scopes: IndexVec::new(),
6a06907d 302 generator: None,
dfeec247
XL
303 local_decls: IndexVec::new(),
304 user_type_annotations: IndexVec::new(),
305 arg_count: 0,
306 spread_arg: None,
307 span: DUMMY_SP,
f9f354fc 308 required_consts: Vec::new(),
dfeec247 309 var_debug_info: Vec::new(),
1b1a35ee 310 is_polymorphic: false,
f9f354fc 311 predecessor_cache: PredecessorCache::new(),
5869c6ff 312 is_cyclic: GraphIsCyclicCache::new(),
1b1a35ee
XL
313 };
314 body.is_polymorphic = body.has_param_types_or_consts();
315 body
dfeec247
XL
316 }
317
3157f602
XL
318 #[inline]
319 pub fn basic_blocks(&self) -> &IndexVec<BasicBlock, BasicBlockData<'tcx>> {
320 &self.basic_blocks
321 }
322
f9f354fc
XL
323 #[inline]
324 pub fn basic_blocks_mut(&mut self) -> &mut IndexVec<BasicBlock, BasicBlockData<'tcx>> {
325 // Because the user could mutate basic block terminators via this reference, we need to
5869c6ff 326 // invalidate the caches.
f9f354fc
XL
327 //
328 // FIXME: Use a finer-grained API for this, so only transformations that alter terminators
5869c6ff 329 // invalidate the caches.
f9f354fc 330 self.predecessor_cache.invalidate();
5869c6ff 331 self.is_cyclic.invalidate();
f9f354fc
XL
332 &mut self.basic_blocks
333 }
334
335 #[inline]
336 pub fn basic_blocks_and_local_decls_mut(
337 &mut self,
338 ) -> (&mut IndexVec<BasicBlock, BasicBlockData<'tcx>>, &mut LocalDecls<'tcx>) {
339 self.predecessor_cache.invalidate();
5869c6ff 340 self.is_cyclic.invalidate();
f9f354fc
XL
341 (&mut self.basic_blocks, &mut self.local_decls)
342 }
343
f035d41b
XL
344 #[inline]
345 pub fn basic_blocks_local_decls_mut_and_var_debug_info(
346 &mut self,
347 ) -> (
348 &mut IndexVec<BasicBlock, BasicBlockData<'tcx>>,
349 &mut LocalDecls<'tcx>,
350 &mut Vec<VarDebugInfo<'tcx>>,
351 ) {
352 self.predecessor_cache.invalidate();
5869c6ff 353 self.is_cyclic.invalidate();
f035d41b
XL
354 (&mut self.basic_blocks, &mut self.local_decls, &mut self.var_debug_info)
355 }
356
e74abb32
XL
357 /// Returns `true` if a cycle exists in the control-flow graph that is reachable from the
358 /// `START_BLOCK`.
359 pub fn is_cfg_cyclic(&self) -> bool {
5869c6ff 360 self.is_cyclic.is_cyclic(self)
e74abb32
XL
361 }
362
c30ab7b3
SL
363 #[inline]
364 pub fn local_kind(&self, local: Local) -> LocalKind {
b7449926 365 let index = local.as_usize();
c30ab7b3 366 if index == 0 {
94b46f34
XL
367 debug_assert!(
368 self.local_decls[local].mutability == Mutability::Mut,
369 "return place should be mutable"
370 );
c30ab7b3
SL
371
372 LocalKind::ReturnPointer
373 } else if index < self.arg_count + 1 {
374 LocalKind::Arg
60c5eb7d 375 } else if self.local_decls[local].is_user_variable() {
c30ab7b3
SL
376 LocalKind::Var
377 } else {
c30ab7b3
SL
378 LocalKind::Temp
379 }
380 }
381
382 /// Returns an iterator over all temporaries.
383 #[inline]
94b46f34
XL
384 pub fn temps_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
385 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
c30ab7b3 386 let local = Local::new(index);
dfeec247 387 if self.local_decls[local].is_user_variable() { None } else { Some(local) }
c30ab7b3
SL
388 })
389 }
390
391 /// Returns an iterator over all user-declared locals.
392 #[inline]
94b46f34
XL
393 pub fn vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
394 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
c30ab7b3 395 let local = Local::new(index);
60c5eb7d 396 self.local_decls[local].is_user_variable().then_some(local)
c30ab7b3 397 })
3157f602
XL
398 }
399
a1dfa0c6
XL
400 /// Returns an iterator over all user-declared mutable locals.
401 #[inline]
402 pub fn mut_vars_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
403 (self.arg_count + 1..self.local_decls.len()).filter_map(move |index| {
404 let local = Local::new(index);
405 let decl = &self.local_decls[local];
60c5eb7d 406 if decl.is_user_variable() && decl.mutability == Mutability::Mut {
a1dfa0c6
XL
407 Some(local)
408 } else {
409 None
410 }
411 })
412 }
413
83c7162d
XL
414 /// Returns an iterator over all user-declared mutable arguments and locals.
415 #[inline]
94b46f34 416 pub fn mut_vars_and_args_iter<'a>(&'a self) -> impl Iterator<Item = Local> + 'a {
83c7162d
XL
417 (1..self.local_decls.len()).filter_map(move |index| {
418 let local = Local::new(index);
419 let decl = &self.local_decls[local];
60c5eb7d 420 if (decl.is_user_variable() || index < self.arg_count + 1)
94b46f34 421 && decl.mutability == Mutability::Mut
83c7162d
XL
422 {
423 Some(local)
424 } else {
425 None
426 }
427 })
428 }
429
c30ab7b3
SL
430 /// Returns an iterator over all function arguments.
431 #[inline]
60c5eb7d 432 pub fn args_iter(&self) -> impl Iterator<Item = Local> + ExactSizeIterator {
c30ab7b3 433 let arg_count = self.arg_count;
60c5eb7d 434 (1..arg_count + 1).map(Local::new)
e9174d1e 435 }
9e0c209e 436
c30ab7b3 437 /// Returns an iterator over all user-defined variables and compiler-generated temporaries (all
ff7c6d11 438 /// locals that are neither arguments nor the return place).
c30ab7b3 439 #[inline]
fc512014
XL
440 pub fn vars_and_temps_iter(
441 &self,
442 ) -> impl DoubleEndedIterator<Item = Local> + ExactSizeIterator {
c30ab7b3
SL
443 let arg_count = self.arg_count;
444 let local_count = self.local_decls.len();
94b46f34 445 (arg_count + 1..local_count).map(Local::new)
9e0c209e
SL
446 }
447
448 /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
449 /// invalidating statement indices in `Location`s.
450 pub fn make_statement_nop(&mut self, location: Location) {
60c5eb7d 451 let block = &mut self.basic_blocks[location.block];
9e0c209e
SL
452 debug_assert!(location.statement_index < block.statements.len());
453 block.statements[location.statement_index].make_nop()
454 }
ea8adc8c
XL
455
456 /// Returns the source info associated with `location`.
457 pub fn source_info(&self, location: Location) -> &SourceInfo {
458 let block = &self[location.block];
459 let stmts = &block.statements;
460 let idx = location.statement_index;
abe05a73 461 if idx < stmts.len() {
ea8adc8c
XL
462 &stmts[idx].source_info
463 } else {
0bf4aa26 464 assert_eq!(idx, stmts.len());
ea8adc8c
XL
465 &block.terminator().source_info
466 }
467 }
abe05a73 468
e1599b0c 469 /// Returns the return type; it always return first element from `local_decls` array.
f9f354fc 470 #[inline]
abe05a73 471 pub fn return_ty(&self) -> Ty<'tcx> {
ff7c6d11 472 self.local_decls[RETURN_PLACE].ty
abe05a73 473 }
b7449926 474
e1599b0c 475 /// Gets the location of the terminator for the given block.
f9f354fc 476 #[inline]
b7449926 477 pub fn terminator_loc(&self, bb: BasicBlock) -> Location {
416331ca 478 Location { block: bb, statement_index: self[bb].statements.len() }
b7449926 479 }
f9f354fc
XL
480
481 #[inline]
482 pub fn predecessors(&self) -> impl std::ops::Deref<Target = Predecessors> + '_ {
483 self.predecessor_cache.compute(&self.basic_blocks)
484 }
485
486 #[inline]
487 pub fn dominators(&self) -> Dominators<BasicBlock> {
488 dominators(self)
489 }
6a06907d
XL
490
491 #[inline]
492 pub fn yield_ty(&self) -> Option<Ty<'tcx>> {
493 self.generator.as_ref().and_then(|generator| generator.yield_ty)
494 }
495
496 #[inline]
497 pub fn generator_layout(&self) -> Option<&GeneratorLayout<'tcx>> {
498 self.generator.as_ref().and_then(|generator| generator.generator_layout.as_ref())
499 }
500
501 #[inline]
502 pub fn generator_drop(&self) -> Option<&Body<'tcx>> {
503 self.generator.as_ref().and_then(|generator| generator.generator_drop.as_ref())
504 }
505
506 #[inline]
507 pub fn generator_kind(&self) -> Option<GeneratorKind> {
508 self.generator.as_ref().map(|generator| generator.generator_kind)
509 }
ea8adc8c
XL
510}
511
3dfed10e 512#[derive(Copy, Clone, PartialEq, Eq, Debug, TyEncodable, TyDecodable, HashStable)]
ea8adc8c
XL
513pub enum Safety {
514 Safe,
515 /// Unsafe because of a PushUnsafeBlock
516 BuiltinUnsafe,
517 /// Unsafe because of an unsafe fn
518 FnUnsafe,
519 /// Unsafe because of an `unsafe` block
532ac7d7 520 ExplicitUnsafe(hir::HirId),
e9174d1e
SL
521}
522
dc9dc135 523impl<'tcx> Index<BasicBlock> for Body<'tcx> {
9cc50fc6
SL
524 type Output = BasicBlockData<'tcx>;
525
526 #[inline]
527 fn index(&self, index: BasicBlock) -> &BasicBlockData<'tcx> {
3157f602 528 &self.basic_blocks()[index]
9cc50fc6
SL
529 }
530}
531
f9f354fc
XL
532impl<'tcx> IndexMut<BasicBlock> for Body<'tcx> {
533 #[inline]
534 fn index_mut(&mut self, index: BasicBlock) -> &mut BasicBlockData<'tcx> {
535 &mut self.basic_blocks_mut()[index]
536 }
537}
538
60c5eb7d 539#[derive(Copy, Clone, Debug, HashStable, TypeFoldable)]
ff7c6d11 540pub enum ClearCrossCrate<T> {
ea8adc8c 541 Clear,
94b46f34 542 Set(T),
ea8adc8c
XL
543}
544
8faf50e0 545impl<T> ClearCrossCrate<T> {
ba9703b0 546 pub fn as_ref(&self) -> ClearCrossCrate<&T> {
60c5eb7d
XL
547 match self {
548 ClearCrossCrate::Clear => ClearCrossCrate::Clear,
549 ClearCrossCrate::Set(v) => ClearCrossCrate::Set(v),
550 }
551 }
552
8faf50e0
XL
553 pub fn assert_crate_local(self) -> T {
554 match self {
555 ClearCrossCrate::Clear => bug!("unwrapping cross-crate data"),
556 ClearCrossCrate::Set(v) => v,
557 }
558 }
559}
560
f035d41b
XL
561const TAG_CLEAR_CROSS_CRATE_CLEAR: u8 = 0;
562const TAG_CLEAR_CROSS_CRATE_SET: u8 = 1;
563
3dfed10e 564impl<'tcx, E: TyEncoder<'tcx>, T: Encodable<E>> Encodable<E> for ClearCrossCrate<T> {
f035d41b 565 #[inline]
3dfed10e
XL
566 fn encode(&self, e: &mut E) -> Result<(), E::Error> {
567 if E::CLEAR_CROSS_CRATE {
568 return Ok(());
569 }
570
f035d41b
XL
571 match *self {
572 ClearCrossCrate::Clear => TAG_CLEAR_CROSS_CRATE_CLEAR.encode(e),
573 ClearCrossCrate::Set(ref val) => {
574 TAG_CLEAR_CROSS_CRATE_SET.encode(e)?;
575 val.encode(e)
576 }
577 }
578 }
579}
3dfed10e 580impl<'tcx, D: TyDecoder<'tcx>, T: Decodable<D>> Decodable<D> for ClearCrossCrate<T> {
f035d41b 581 #[inline]
3dfed10e
XL
582 fn decode(d: &mut D) -> Result<ClearCrossCrate<T>, D::Error> {
583 if D::CLEAR_CROSS_CRATE {
584 return Ok(ClearCrossCrate::Clear);
585 }
586
f035d41b
XL
587 let discr = u8::decode(d)?;
588
589 match discr {
590 TAG_CLEAR_CROSS_CRATE_CLEAR => Ok(ClearCrossCrate::Clear),
591 TAG_CLEAR_CROSS_CRATE_SET => {
592 let val = T::decode(d)?;
593 Ok(ClearCrossCrate::Set(val))
594 }
3dfed10e 595 tag => Err(d.error(&format!("Invalid tag for ClearCrossCrate: {:?}", tag))),
f035d41b
XL
596 }
597 }
598}
ea8adc8c 599
3157f602
XL
600/// Grouped information about the source code origin of a MIR entity.
601/// Intended to be inspected by diagnostics and debuginfo.
602/// Most passes can work with it as a whole, within a single function.
60c5eb7d 603// The unofficial Cranelift backend, at least as of #65828, needs `SourceInfo` to implement `Eq` and
e74abb32 604// `Hash`. Please ping @bjorn3 if removing them.
3dfed10e 605#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash, HashStable)]
3157f602 606pub struct SourceInfo {
e1599b0c 607 /// The source span for the AST pertaining to this MIR entity.
3157f602
XL
608 pub span: Span,
609
94b46f34
XL
610 /// The source scope, keeping track of which bindings can be
611 /// seen by debuginfo, active lint levels, `unsafe {...}`, etc.
612 pub scope: SourceScope,
3157f602
XL
613}
614
f9f354fc
XL
615impl SourceInfo {
616 #[inline]
617 pub fn outermost(span: Span) -> Self {
618 SourceInfo { span, scope: OUTERMOST_SOURCE_SCOPE }
619 }
620}
621
e9174d1e 622///////////////////////////////////////////////////////////////////////////
dfeec247 623// Borrow kinds
94b46f34 624
3dfed10e 625#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, TyEncodable, TyDecodable)]
6a06907d 626#[derive(Hash, HashStable)]
e9174d1e
SL
627pub enum BorrowKind {
628 /// Data must be immutable and is aliasable.
629 Shared,
630
0bf4aa26
XL
631 /// The immediately borrowed place must be immutable, but projections from
632 /// it don't need to be. For example, a shallow borrow of `a.b` doesn't
633 /// conflict with a mutable borrow of `a.b.c`.
634 ///
635 /// This is used when lowering matches: when matching on a place we want to
636 /// ensure that place have the same value from the start of the match until
637 /// an arm is selected. This prevents this code from compiling:
638 ///
639 /// let mut x = &Some(0);
640 /// match *x {
641 /// None => (),
642 /// Some(_) if { x = &None; false } => (),
643 /// Some(_) => (),
644 /// }
645 ///
646 /// This can't be a shared borrow because mutably borrowing (*x as Some).0
647 /// should not prevent `if let None = x { ... }`, for example, because the
648 /// mutating `(*x as Some).0` can't affect the discriminant of `x`.
649 /// We can also report errors with this kind of borrow differently.
650 Shallow,
651
9fa01778 652 /// Data must be immutable but not aliasable. This kind of borrow
e9174d1e 653 /// cannot currently be expressed by the user and is used only in
b7449926
XL
654 /// implicit closure bindings. It is needed when the closure is
655 /// borrowing or mutating a mutable referent, e.g.:
e9174d1e 656 ///
a1dfa0c6
XL
657 /// let x: &mut isize = ...;
658 /// let y = || *x += 5;
e9174d1e
SL
659 ///
660 /// If we were to try to translate this closure into a more explicit
661 /// form, we'd encounter an error with the code as written:
662 ///
a1dfa0c6
XL
663 /// struct Env { x: & &mut isize }
664 /// let x: &mut isize = ...;
665 /// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
666 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
e9174d1e 667 ///
b7449926 668 /// This is then illegal because you cannot mutate an `&mut` found
e9174d1e
SL
669 /// in an aliasable location. To solve, you'd have to translate with
670 /// an `&mut` borrow:
671 ///
a1dfa0c6
XL
672 /// struct Env { x: & &mut isize }
673 /// let x: &mut isize = ...;
674 /// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
675 /// fn fn_ptr(env: &mut Env) { **env.x += 5; }
e9174d1e
SL
676 ///
677 /// Now the assignment to `**env.x` is legal, but creating a
678 /// mutable pointer to `x` is not because `x` is not mutable. We
679 /// could fix this by declaring `x` as `let mut x`. This is ok in
680 /// user code, if awkward, but extra weird for closures, since the
681 /// borrow is hidden.
682 ///
683 /// So we introduce a "unique imm" borrow -- the referent is
684 /// immutable, but not aliasable. This solves the problem. For
685 /// simplicity, we don't give users the way to express this
686 /// borrow, it's just used when translating closures.
687 Unique,
688
689 /// Data is mutable and not aliasable.
2c00a5a8 690 Mut {
9fa01778
XL
691 /// `true` if this borrow arose from method-call auto-ref
692 /// (i.e., `adjustment::Adjust::Borrow`).
94b46f34
XL
693 allow_two_phase_borrow: bool,
694 },
2c00a5a8
XL
695}
696
697impl BorrowKind {
698 pub fn allows_two_phase_borrow(&self) -> bool {
699 match *self {
0bf4aa26
XL
700 BorrowKind::Shared | BorrowKind::Shallow | BorrowKind::Unique => false,
701 BorrowKind::Mut { allow_two_phase_borrow } => allow_two_phase_borrow,
2c00a5a8
XL
702 }
703 }
e9174d1e
SL
704}
705
706///////////////////////////////////////////////////////////////////////////
707// Variables and temps
708
e74abb32 709rustc_index::newtype_index! {
b7449926 710 pub struct Local {
532ac7d7 711 derive [HashStable]
abe05a73 712 DEBUG_FORMAT = "_{}",
ff7c6d11 713 const RETURN_PLACE = 0,
b7449926
XL
714 }
715}
54a0048b 716
416331ca
XL
717impl Atom for Local {
718 fn index(self) -> usize {
719 Idx::index(self)
720 }
721}
722
dc9dc135 723/// Classifies locals into categories. See `Body::local_kind`.
1b1a35ee 724#[derive(Clone, Copy, PartialEq, Eq, Debug, HashStable)]
c30ab7b3 725pub enum LocalKind {
e1599b0c 726 /// User-declared variable binding.
c30ab7b3 727 Var,
e1599b0c 728 /// Compiler-introduced temporary.
c30ab7b3 729 Temp,
e1599b0c 730 /// Function argument.
c30ab7b3 731 Arg,
e1599b0c 732 /// Location of function's return value.
c30ab7b3 733 ReturnPointer,
e9174d1e
SL
734}
735
3dfed10e 736#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
8faf50e0 737pub struct VarBindingForm<'tcx> {
94b46f34
XL
738 /// Is variable bound via `x`, `mut x`, `ref x`, or `ref mut x`?
739 pub binding_mode: ty::BindingMode,
740 /// If an explicit type was provided for this variable binding,
741 /// this holds the source Span of that type.
742 ///
9fa01778 743 /// NOTE: if you want to change this to a `HirId`, be wary that
94b46f34
XL
744 /// doing so breaks incremental compilation (as of this writing),
745 /// while a `Span` does not cause our tests to fail.
746 pub opt_ty_info: Option<Span>,
8faf50e0
XL
747 /// Place of the RHS of the =, or the subject of the `match` where this
748 /// variable is initialized. None in the case of `let PATTERN;`.
749 /// Some((None, ..)) in the case of and `let [mut] x = ...` because
750 /// (a) the right-hand side isn't evaluated as a place expression.
751 /// (b) it gives a way to separate this case from the remaining cases
752 /// for diagnostics.
753 pub opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
e1599b0c 754 /// The span of the pattern in which this variable was bound.
b7449926 755 pub pat_span: Span,
94b46f34
XL
756}
757
3dfed10e 758#[derive(Clone, Debug, TyEncodable, TyDecodable)]
8faf50e0 759pub enum BindingForm<'tcx> {
94b46f34 760 /// This is a binding for a non-`self` binding, or a `self` that has an explicit type.
8faf50e0 761 Var(VarBindingForm<'tcx>),
94b46f34 762 /// Binding for a `self`/`&self`/`&mut self` binding where the type is implicit.
0bf4aa26 763 ImplicitSelf(ImplicitSelfKind),
8faf50e0
XL
764 /// Reference used in a guard expression to ensure immutability.
765 RefForGuard,
94b46f34
XL
766}
767
0bf4aa26 768/// Represents what type of implicit self a function has, if any.
3dfed10e 769#[derive(Clone, Copy, PartialEq, Debug, TyEncodable, TyDecodable, HashStable)]
0bf4aa26
XL
770pub enum ImplicitSelfKind {
771 /// Represents a `fn x(self);`.
772 Imm,
773 /// Represents a `fn x(mut self);`.
774 Mut,
775 /// Represents a `fn x(&self);`.
776 ImmRef,
777 /// Represents a `fn x(&mut self);`.
778 MutRef,
779 /// Represents when a function does not have a self argument or
780 /// when a function has a `self: X` argument.
416331ca 781 None,
0bf4aa26
XL
782}
783
fc512014 784TrivialTypeFoldableAndLiftImpls! { BindingForm<'tcx>, }
94b46f34 785
8faf50e0 786mod binding_form_impl {
9fa01778 787 use crate::ich::StableHashingContext;
e74abb32 788 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
8faf50e0
XL
789
790 impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for super::BindingForm<'tcx> {
e74abb32 791 fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
8faf50e0 792 use super::BindingForm::*;
29967ef6 793 std::mem::discriminant(self).hash_stable(hcx, hasher);
8faf50e0
XL
794
795 match self {
796 Var(binding) => binding.hash_stable(hcx, hasher),
0bf4aa26 797 ImplicitSelf(kind) => kind.hash_stable(hcx, hasher),
8faf50e0
XL
798 RefForGuard => (),
799 }
800 }
801 }
802}
94b46f34 803
0bf4aa26
XL
804/// `BlockTailInfo` is attached to the `LocalDecl` for temporaries
805/// created during evaluation of expressions in a block tail
806/// expression; that is, a block like `{ STMT_1; STMT_2; EXPR }`.
807///
808/// It is used to improve diagnostics when such temporaries are
0731742a 809/// involved in borrow_check errors, e.g., explanations of where the
0bf4aa26
XL
810/// temporaries come from, when their destructors are run, and/or how
811/// one might revise the code to satisfy the borrow checker's rules.
3dfed10e 812#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
0bf4aa26
XL
813pub struct BlockTailInfo {
814 /// If `true`, then the value resulting from evaluating this tail
815 /// expression is ignored by the block's expression context.
816 ///
817 /// Examples include `{ ...; tail };` and `let _ = { ...; tail };`
0731742a 818 /// but not e.g., `let _x = { ...; tail };`
0bf4aa26 819 pub tail_result_is_ignored: bool,
f9f354fc
XL
820
821 /// `Span` of the tail expression.
822 pub span: Span,
0bf4aa26
XL
823}
824
c30ab7b3 825/// A MIR local.
7453a54e 826///
c30ab7b3 827/// This can be a binding declared by the user, a temporary inserted by the compiler, a function
ff7c6d11 828/// argument, or the return place.
3dfed10e 829#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
c30ab7b3 830pub struct LocalDecl<'tcx> {
29967ef6 831 /// Whether this is a mutable binding (i.e., `let x` or `let mut x`).
c30ab7b3 832 ///
ff7c6d11 833 /// Temporaries and the return place are always mutable.
c30ab7b3
SL
834 pub mutability: Mutability,
835
60c5eb7d 836 // FIXME(matthewjasper) Don't store in this in `Body`
f9f354fc 837 pub local_info: Option<Box<LocalInfo<'tcx>>>,
cc61c64b 838
9fa01778 839 /// `true` if this is an internal local.
ea8adc8c
XL
840 ///
841 /// These locals are not based on types in the source code and are only used
842 /// for a few desugarings at the moment.
843 ///
844 /// The generator transformation will sanity check the locals which are live
845 /// across a suspension point against the type components of the generator
846 /// which type checking knows are live across a suspension point. We need to
847 /// flag drop flags to avoid triggering this check as they are introduced
848 /// after typeck.
849 ///
ea8adc8c 850 /// This should be sound because the drop flags are fully algebraic, and
fc512014 851 /// therefore don't affect the auto-trait or outlives properties of the
ea8adc8c
XL
852 /// generator.
853 pub internal: bool,
854
0bf4aa26
XL
855 /// If this local is a temporary and `is_block_tail` is `Some`,
856 /// then it is a temporary created for evaluation of some
857 /// subexpression of some block's tail expression (with no
858 /// intervening statement context).
60c5eb7d 859 // FIXME(matthewjasper) Don't store in this in `Body`
0bf4aa26
XL
860 pub is_block_tail: Option<BlockTailInfo>,
861
e1599b0c 862 /// The type of this local.
b039eaaf 863 pub ty: Ty<'tcx>,
54a0048b 864
b7449926 865 /// If the user manually ascribed a type to this variable,
0731742a 866 /// e.g., via `let x: T`, then we carry that type here. The MIR
b7449926
XL
867 /// borrow checker needs this information since it can affect
868 /// region inference.
60c5eb7d 869 // FIXME(matthewjasper) Don't store in this in `Body`
f9f354fc 870 pub user_ty: Option<Box<UserTypeProjections>>,
b7449926 871
0731742a 872 /// The *syntactic* (i.e., not visibility) source scope the local is defined
ea8adc8c
XL
873 /// in. If the local was defined in a let-statement, this
874 /// is *within* the let-statement, rather than outside
875 /// of it.
ff7c6d11 876 ///
94b46f34
XL
877 /// This is needed because the visibility source scope of locals within
878 /// a let-statement is weird.
ff7c6d11
XL
879 ///
880 /// The reason is that we want the local to be *within* the let-statement
881 /// for lint purposes, but we want the local to be *after* the let-statement
882 /// for names-in-scope purposes.
883 ///
884 /// That's it, if we have a let-statement like the one in this
885 /// function:
886 ///
887 /// ```
888 /// fn foo(x: &str) {
889 /// #[allow(unused_mut)]
890 /// let mut x: u32 = { // <- one unused mut
891 /// let mut y: u32 = x.parse().unwrap();
892 /// y + 2
893 /// };
894 /// drop(x);
895 /// }
896 /// ```
897 ///
898 /// Then, from a lint point of view, the declaration of `x: u32`
899 /// (and `y: u32`) are within the `#[allow(unused_mut)]` scope - the
900 /// lint scopes are the same as the AST/HIR nesting.
901 ///
902 /// However, from a name lookup point of view, the scopes look more like
903 /// as if the let-statements were `match` expressions:
904 ///
905 /// ```
906 /// fn foo(x: &str) {
907 /// match {
908 /// match x.parse().unwrap() {
909 /// y => y + 2
910 /// }
911 /// } {
912 /// x => drop(x)
913 /// };
914 /// }
915 /// ```
916 ///
917 /// We care about the name-lookup scopes for debuginfo - if the
918 /// debuginfo instruction pointer is at the call to `x.parse()`, we
919 /// want `x` to refer to `x: &str`, but if it is at the call to
920 /// `drop(x)`, we want it to refer to `x: u32`.
921 ///
922 /// To allow both uses to work, we need to have more than a single scope
60c5eb7d
XL
923 /// for a local. We have the `source_info.scope` represent the "syntactic"
924 /// lint scope (with a variable being under its let block) while the
925 /// `var_debug_info.source_info.scope` represents the "local variable"
ff7c6d11
XL
926 /// scope (where the "rest" of a block is under all prior let-statements).
927 ///
928 /// The end result looks like this:
929 ///
930 /// ```text
931 /// ROOT SCOPE
932 /// │{ argument x: &str }
933 /// │
e1599b0c
XL
934 /// │ │{ #[allow(unused_mut)] } // This is actually split into 2 scopes
935 /// │ │ // in practice because I'm lazy.
ff7c6d11 936 /// │ │
94b46f34 937 /// │ │← x.source_info.scope
ff7c6d11
XL
938 /// │ │← `x.parse().unwrap()`
939 /// │ │
94b46f34 940 /// │ │ │← y.source_info.scope
ff7c6d11
XL
941 /// │ │
942 /// │ │ │{ let y: u32 }
943 /// │ │ │
60c5eb7d 944 /// │ │ │← y.var_debug_info.source_info.scope
ff7c6d11
XL
945 /// │ │ │← `y + 2`
946 /// │
947 /// │ │{ let x: u32 }
60c5eb7d 948 /// │ │← x.var_debug_info.source_info.scope
e1599b0c 949 /// │ │← `drop(x)` // This accesses `x: u32`.
ff7c6d11 950 /// ```
94b46f34 951 pub source_info: SourceInfo,
60c5eb7d 952}
94b46f34 953
f9f354fc 954// `LocalDecl` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 955#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
f9f354fc
XL
956static_assert_size!(LocalDecl<'_>, 56);
957
3dfed10e
XL
958/// Extra information about a some locals that's used for diagnostics and for
959/// classifying variables into local variables, statics, etc, which is needed e.g.
960/// for unsafety checking.
961///
962/// Not used for non-StaticRef temporaries, the return place, or anonymous
963/// function parameters.
964#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
60c5eb7d
XL
965pub enum LocalInfo<'tcx> {
966 /// A user-defined local variable or function parameter
967 ///
968 /// The `BindingForm` is solely used for local diagnostics when generating
969 /// warnings/errors when compiling the current crate, and therefore it need
970 /// not be visible across crates.
971 User(ClearCrossCrate<BindingForm<'tcx>>),
972 /// A temporary created that references the static with the given `DefId`.
973 StaticRef { def_id: DefId, is_thread_local: bool },
1b1a35ee
XL
974 /// A temporary created that references the const with the given `DefId`
975 ConstRef { def_id: DefId },
c30ab7b3
SL
976}
977
978impl<'tcx> LocalDecl<'tcx> {
9fa01778 979 /// Returns `true` only if local is a binding that can itself be
94b46f34
XL
980 /// made mutable via the addition of the `mut` keyword, namely
981 /// something like the occurrences of `x` in:
982 /// - `fn foo(x: Type) { ... }`,
983 /// - `let x = ...`,
984 /// - or `match ... { C(x) => ... }`
985 pub fn can_be_made_mutable(&self) -> bool {
29967ef6
XL
986 matches!(
987 self.local_info,
988 Some(box LocalInfo::User(ClearCrossCrate::Set(
989 BindingForm::Var(VarBindingForm {
990 binding_mode: ty::BindingMode::BindByValue(_),
991 opt_ty_info: _,
992 opt_match_place: _,
993 pat_span: _,
5869c6ff 994 }) | BindingForm::ImplicitSelf(ImplicitSelfKind::Imm),
29967ef6
XL
995 )))
996 )
94b46f34
XL
997 }
998
9fa01778 999 /// Returns `true` if local is definitely not a `ref ident` or
94b46f34
XL
1000 /// `ref mut ident` binding. (Such bindings cannot be made into
1001 /// mutable bindings, but the inverse does not necessarily hold).
1002 pub fn is_nonref_binding(&self) -> bool {
29967ef6
XL
1003 matches!(
1004 self.local_info,
1005 Some(box LocalInfo::User(ClearCrossCrate::Set(
1006 BindingForm::Var(VarBindingForm {
1007 binding_mode: ty::BindingMode::BindByValue(_),
1008 opt_ty_info: _,
1009 opt_match_place: _,
1010 pat_span: _,
5869c6ff 1011 }) | BindingForm::ImplicitSelf(_),
29967ef6
XL
1012 )))
1013 )
60c5eb7d 1014 }
94b46f34 1015
60c5eb7d
XL
1016 /// Returns `true` if this variable is a named variable or function
1017 /// parameter declared by the user.
1018 #[inline]
1019 pub fn is_user_variable(&self) -> bool {
29967ef6 1020 matches!(self.local_info, Some(box LocalInfo::User(_)))
94b46f34
XL
1021 }
1022
dc9dc135
XL
1023 /// Returns `true` if this is a reference to a variable bound in a `match`
1024 /// expression that is used to access said variable for the guard of the
1025 /// match arm.
1026 pub fn is_ref_for_guard(&self) -> bool {
29967ef6
XL
1027 matches!(
1028 self.local_info,
1029 Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::RefForGuard)))
1030 )
60c5eb7d
XL
1031 }
1032
1033 /// Returns `Some` if this is a reference to a static item that is used to
29967ef6 1034 /// access that static.
60c5eb7d 1035 pub fn is_ref_to_static(&self) -> bool {
29967ef6 1036 matches!(self.local_info, Some(box LocalInfo::StaticRef { .. }))
60c5eb7d
XL
1037 }
1038
29967ef6
XL
1039 /// Returns `Some` if this is a reference to a thread-local static item that is used to
1040 /// access that static.
60c5eb7d
XL
1041 pub fn is_ref_to_thread_local(&self) -> bool {
1042 match self.local_info {
f9f354fc 1043 Some(box LocalInfo::StaticRef { is_thread_local, .. }) => is_thread_local,
dc9dc135
XL
1044 _ => false,
1045 }
1046 }
1047
1048 /// Returns `true` is the local is from a compiler desugaring, e.g.,
1049 /// `__next` from a `for` loop.
1050 #[inline]
1051 pub fn from_compiler_desugaring(&self) -> bool {
416331ca 1052 self.source_info.span.desugaring_kind().is_some()
dc9dc135
XL
1053 }
1054
f9f354fc 1055 /// Creates a new `LocalDecl` for a temporary: mutable, non-internal.
c30ab7b3 1056 #[inline]
f9f354fc
XL
1057 pub fn new(ty: Ty<'tcx>, span: Span) -> Self {
1058 Self::with_source_info(ty, SourceInfo::outermost(span))
1059 }
1060
1061 /// Like `LocalDecl::new`, but takes a `SourceInfo` instead of a `Span`.
1062 #[inline]
1063 pub fn with_source_info(ty: Ty<'tcx>, source_info: SourceInfo) -> Self {
1064 LocalDecl {
1065 mutability: Mutability::Mut,
1066 local_info: None,
1067 internal: false,
1068 is_block_tail: None,
1069 ty,
1070 user_ty: None,
1071 source_info,
1072 }
1073 }
1074
1075 /// Converts `self` into same `LocalDecl` except tagged as internal.
1076 #[inline]
1077 pub fn internal(mut self) -> Self {
1078 self.internal = true;
1079 self
b7449926
XL
1080 }
1081
0bf4aa26 1082 /// Converts `self` into same `LocalDecl` except tagged as immutable.
b7449926 1083 #[inline]
0bf4aa26
XL
1084 pub fn immutable(mut self) -> Self {
1085 self.mutability = Mutability::Not;
1086 self
1087 }
1088
1089 /// Converts `self` into same `LocalDecl` except tagged as internal temporary.
1090 #[inline]
1091 pub fn block_tail(mut self, info: BlockTailInfo) -> Self {
1092 assert!(self.is_block_tail.is_none());
1093 self.is_block_tail = Some(info);
1094 self
ea8adc8c 1095 }
a7813a04
XL
1096}
1097
fc512014
XL
1098#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
1099pub enum VarDebugInfoContents<'tcx> {
1100 /// NOTE(eddyb) There's an unenforced invariant that this `Place` is
1101 /// based on a `Local`, not a `Static`, and contains no indexing.
1102 Place(Place<'tcx>),
1103 Const(Constant<'tcx>),
1104}
1105
1106impl<'tcx> Debug for VarDebugInfoContents<'tcx> {
1107 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
1108 match self {
1109 VarDebugInfoContents::Const(c) => write!(fmt, "{}", c),
1110 VarDebugInfoContents::Place(p) => write!(fmt, "{:?}", p),
1111 }
1112 }
1113}
1114
60c5eb7d 1115/// Debug information pertaining to a user variable.
3dfed10e 1116#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
60c5eb7d 1117pub struct VarDebugInfo<'tcx> {
f9f354fc 1118 pub name: Symbol,
60c5eb7d
XL
1119
1120 /// Source info of the user variable, including the scope
1121 /// within which the variable is visible (to debuginfo)
1122 /// (see `LocalDecl`'s `source_info` field for more details).
1123 pub source_info: SourceInfo,
a7813a04 1124
60c5eb7d 1125 /// Where the data for this user variable is to be found.
fc512014 1126 pub value: VarDebugInfoContents<'tcx>,
e9174d1e
SL
1127}
1128
e9174d1e
SL
1129///////////////////////////////////////////////////////////////////////////
1130// BasicBlock
1131
e74abb32 1132rustc_index::newtype_index! {
1b1a35ee
XL
1133 /// A node in the MIR [control-flow graph][CFG].
1134 ///
1135 /// There are no branches (e.g., `if`s, function calls, etc.) within a basic block, which makes
1136 /// it easier to do [data-flow analyses] and optimizations. Instead, branches are represented
1137 /// as an edge in a graph between basic blocks.
1138 ///
1139 /// Basic blocks consist of a series of [statements][Statement], ending with a
1140 /// [terminator][Terminator]. Basic blocks can have multiple predecessors and successors,
1141 /// however there is a MIR pass ([`CriticalCallEdges`]) that removes *critical edges*, which
1142 /// are edges that go from a multi-successor node to a multi-predecessor node. This pass is
1143 /// needed because some analyses require that there are no critical edges in the CFG.
1144 ///
29967ef6
XL
1145 /// Note that this type is just an index into [`Body.basic_blocks`](Body::basic_blocks);
1146 /// the actual data that a basic block holds is in [`BasicBlockData`].
1147 ///
1b1a35ee
XL
1148 /// Read more about basic blocks in the [rustc-dev-guide][guide-mir].
1149 ///
1150 /// [CFG]: https://rustc-dev-guide.rust-lang.org/appendix/background.html#cfg
1151 /// [data-flow analyses]:
1152 /// https://rustc-dev-guide.rust-lang.org/appendix/background.html#what-is-a-dataflow-analysis
1153 /// [`CriticalCallEdges`]: ../../rustc_mir/transform/add_call_guards/enum.AddCallGuards.html#variant.CriticalCallEdges
1154 /// [guide-mir]: https://rustc-dev-guide.rust-lang.org/mir/
b7449926 1155 pub struct BasicBlock {
532ac7d7 1156 derive [HashStable]
b7449926
XL
1157 DEBUG_FORMAT = "bb{}",
1158 const START_BLOCK = 0,
1159 }
1160}
abe05a73
XL
1161
1162impl BasicBlock {
1163 pub fn start_location(self) -> Location {
416331ca 1164 Location { block: self, statement_index: 0 }
abe05a73
XL
1165 }
1166}
e9174d1e
SL
1167
1168///////////////////////////////////////////////////////////////////////////
54a0048b 1169// BasicBlockData and Terminator
e9174d1e 1170
1b1a35ee 1171/// See [`BasicBlock`] for documentation on what basic blocks are at a high level.
3dfed10e 1172#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
b039eaaf 1173pub struct BasicBlockData<'tcx> {
54a0048b 1174 /// List of statements in this block.
b039eaaf 1175 pub statements: Vec<Statement<'tcx>>,
54a0048b
SL
1176
1177 /// Terminator for this block.
1178 ///
9fa01778 1179 /// N.B., this should generally ONLY be `None` during construction.
54a0048b
SL
1180 /// Therefore, you should generally access it via the
1181 /// `terminator()` or `terminator_mut()` methods. The only
1182 /// exception is that certain passes, such as `simplify_cfg`, swap
1183 /// out the terminator temporarily with `None` while they continue
1184 /// to recurse over the set of basic blocks.
9cc50fc6 1185 pub terminator: Option<Terminator<'tcx>>,
54a0048b
SL
1186
1187 /// If true, this block lies on an unwind path. This is used
94b46f34 1188 /// during codegen where distinct kinds of basic blocks may be
54a0048b
SL
1189 /// generated (particularly for MSVC cleanup). Unwind blocks must
1190 /// only branch to other unwind blocks.
9cc50fc6 1191 pub is_cleanup: bool,
e9174d1e
SL
1192}
1193
74b04a01 1194/// Information about an assertion failure.
6a06907d 1195#[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq, PartialOrd)]
74b04a01
XL
1196pub enum AssertKind<O> {
1197 BoundsCheck { len: O, index: O },
f035d41b
XL
1198 Overflow(BinOp, O, O),
1199 OverflowNeg(O),
1200 DivisionByZero(O),
1201 RemainderByZero(O),
74b04a01
XL
1202 ResumedAfterReturn(GeneratorKind),
1203 ResumedAfterPanic(GeneratorKind),
1204}
1205
6a06907d
XL
1206#[derive(
1207 Clone,
1208 Debug,
1209 PartialEq,
1210 PartialOrd,
1211 TyEncodable,
1212 TyDecodable,
1213 Hash,
1214 HashStable,
1215 TypeFoldable
1216)]
f9f354fc
XL
1217pub enum InlineAsmOperand<'tcx> {
1218 In {
1219 reg: InlineAsmRegOrRegClass,
1220 value: Operand<'tcx>,
1221 },
1222 Out {
1223 reg: InlineAsmRegOrRegClass,
1224 late: bool,
1225 place: Option<Place<'tcx>>,
1226 },
1227 InOut {
1228 reg: InlineAsmRegOrRegClass,
1229 late: bool,
1230 in_value: Operand<'tcx>,
1231 out_place: Option<Place<'tcx>>,
1232 },
1233 Const {
1234 value: Operand<'tcx>,
1235 },
1236 SymFn {
1237 value: Box<Constant<'tcx>>,
1238 },
1239 SymStatic {
f035d41b 1240 def_id: DefId,
f9f354fc
XL
1241 },
1242}
1243
74b04a01
XL
1244/// Type for MIR `Assert` terminator error messages.
1245pub type AssertMessage<'tcx> = AssertKind<Operand<'tcx>>;
1246
83c7162d
XL
1247pub type Successors<'a> =
1248 iter::Chain<option::IntoIter<&'a BasicBlock>, slice::Iter<'a, BasicBlock>>;
1249pub type SuccessorsMut<'a> =
1250 iter::Chain<option::IntoIter<&'a mut BasicBlock>, slice::IterMut<'a, BasicBlock>>;
1251
b039eaaf 1252impl<'tcx> BasicBlockData<'tcx> {
9cc50fc6 1253 pub fn new(terminator: Option<Terminator<'tcx>>) -> BasicBlockData<'tcx> {
416331ca 1254 BasicBlockData { statements: vec![], terminator, is_cleanup: false }
e9174d1e 1255 }
9cc50fc6
SL
1256
1257 /// Accessor for terminator.
1258 ///
1259 /// Terminator may not be None after construction of the basic block is complete. This accessor
1260 /// provides a convenience way to reach the terminator.
1261 pub fn terminator(&self) -> &Terminator<'tcx> {
1262 self.terminator.as_ref().expect("invalid terminator state")
1263 }
1264
1265 pub fn terminator_mut(&mut self) -> &mut Terminator<'tcx> {
1266 self.terminator.as_mut().expect("invalid terminator state")
1267 }
ea8adc8c 1268
94b46f34
XL
1269 pub fn retain_statements<F>(&mut self, mut f: F)
1270 where
0bf4aa26 1271 F: FnMut(&mut Statement<'_>) -> bool,
94b46f34 1272 {
ea8adc8c
XL
1273 for s in &mut self.statements {
1274 if !f(s) {
0531ce1d 1275 s.make_nop();
ea8adc8c
XL
1276 }
1277 }
1278 }
ff7c6d11 1279
0531ce1d 1280 pub fn expand_statements<F, I>(&mut self, mut f: F)
94b46f34
XL
1281 where
1282 F: FnMut(&mut Statement<'tcx>) -> Option<I>,
1283 I: iter::TrustedLen<Item = Statement<'tcx>>,
0531ce1d
XL
1284 {
1285 // Gather all the iterators we'll need to splice in, and their positions.
1286 let mut splices: Vec<(usize, I)> = vec![];
1287 let mut extra_stmts = 0;
1288 for (i, s) in self.statements.iter_mut().enumerate() {
1289 if let Some(mut new_stmts) = f(s) {
1290 if let Some(first) = new_stmts.next() {
1291 // We can already store the first new statement.
1292 *s = first;
1293
1294 // Save the other statements for optimized splicing.
1295 let remaining = new_stmts.size_hint().0;
1296 if remaining > 0 {
1297 splices.push((i + 1 + extra_stmts, new_stmts));
1298 extra_stmts += remaining;
1299 }
1300 } else {
1301 s.make_nop();
1302 }
1303 }
1304 }
1305
1306 // Splice in the new statements, from the end of the block.
1307 // FIXME(eddyb) This could be more efficient with a "gap buffer"
1308 // where a range of elements ("gap") is left uninitialized, with
1309 // splicing adding new elements to the end of that gap and moving
1310 // existing elements from before the gap to the end of the gap.
1311 // For now, this is safe code, emulating a gap but initializing it.
94b46f34
XL
1312 let mut gap = self.statements.len()..self.statements.len() + extra_stmts;
1313 self.statements.resize(
1314 gap.end,
f9f354fc 1315 Statement { source_info: SourceInfo::outermost(DUMMY_SP), kind: StatementKind::Nop },
94b46f34 1316 );
0531ce1d
XL
1317 for (splice_start, new_stmts) in splices.into_iter().rev() {
1318 let splice_end = splice_start + new_stmts.size_hint().0;
1319 while gap.end > splice_end {
1320 gap.start -= 1;
1321 gap.end -= 1;
1322 self.statements.swap(gap.start, gap.end);
1323 }
1324 self.statements.splice(splice_start..splice_end, new_stmts);
1325 gap.end = splice_start;
1326 }
1327 }
1328
ff7c6d11 1329 pub fn visitable(&self, index: usize) -> &dyn MirVisitable<'tcx> {
dfeec247 1330 if index < self.statements.len() { &self.statements[index] } else { &self.terminator }
ff7c6d11 1331 }
e9174d1e
SL
1332}
1333
74b04a01
XL
1334impl<O> AssertKind<O> {
1335 /// Getting a description does not require `O` to be printable, and does not
1336 /// require allocation.
1337 /// The caller is expected to handle `BoundsCheck` separately.
1338 pub fn description(&self) -> &'static str {
1339 use AssertKind::*;
1340 match self {
f035d41b
XL
1341 Overflow(BinOp::Add, _, _) => "attempt to add with overflow",
1342 Overflow(BinOp::Sub, _, _) => "attempt to subtract with overflow",
1343 Overflow(BinOp::Mul, _, _) => "attempt to multiply with overflow",
1344 Overflow(BinOp::Div, _, _) => "attempt to divide with overflow",
1345 Overflow(BinOp::Rem, _, _) => "attempt to calculate the remainder with overflow",
1346 OverflowNeg(_) => "attempt to negate with overflow",
1347 Overflow(BinOp::Shr, _, _) => "attempt to shift right with overflow",
1348 Overflow(BinOp::Shl, _, _) => "attempt to shift left with overflow",
1349 Overflow(op, _, _) => bug!("{:?} cannot overflow", op),
1350 DivisionByZero(_) => "attempt to divide by zero",
1351 RemainderByZero(_) => "attempt to calculate the remainder with a divisor of zero",
74b04a01
XL
1352 ResumedAfterReturn(GeneratorKind::Gen) => "generator resumed after completion",
1353 ResumedAfterReturn(GeneratorKind::Async(_)) => "`async fn` resumed after completion",
1354 ResumedAfterPanic(GeneratorKind::Gen) => "generator resumed after panicking",
1355 ResumedAfterPanic(GeneratorKind::Async(_)) => "`async fn` resumed after panicking",
1356 BoundsCheck { .. } => bug!("Unexpected AssertKind"),
1357 }
1358 }
ba9703b0
XL
1359
1360 /// Format the message arguments for the `assert(cond, msg..)` terminator in MIR printing.
1361 fn fmt_assert_args<W: Write>(&self, f: &mut W) -> fmt::Result
1362 where
1363 O: Debug,
1364 {
f035d41b 1365 use AssertKind::*;
ba9703b0 1366 match self {
f035d41b 1367 BoundsCheck { ref len, ref index } => write!(
ba9703b0 1368 f,
1b1a35ee 1369 "\"index out of bounds: the length is {{}} but the index is {{}}\", {:?}, {:?}",
ba9703b0
XL
1370 len, index
1371 ),
f035d41b
XL
1372
1373 OverflowNeg(op) => {
1b1a35ee 1374 write!(f, "\"attempt to negate `{{}}`, which would overflow\", {:?}", op)
f035d41b 1375 }
1b1a35ee 1376 DivisionByZero(op) => write!(f, "\"attempt to divide `{{}}` by zero\", {:?}", op),
f035d41b
XL
1377 RemainderByZero(op) => write!(
1378 f,
1b1a35ee 1379 "\"attempt to calculate the remainder of `{{}}` with a divisor of zero\", {:?}",
f035d41b
XL
1380 op
1381 ),
1382 Overflow(BinOp::Add, l, r) => write!(
1383 f,
1b1a35ee 1384 "\"attempt to compute `{{}} + {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1385 l, r
1386 ),
1387 Overflow(BinOp::Sub, l, r) => write!(
1388 f,
1b1a35ee 1389 "\"attempt to compute `{{}} - {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1390 l, r
1391 ),
1392 Overflow(BinOp::Mul, l, r) => write!(
1393 f,
1b1a35ee 1394 "\"attempt to compute `{{}} * {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1395 l, r
1396 ),
1397 Overflow(BinOp::Div, l, r) => write!(
1398 f,
1b1a35ee 1399 "\"attempt to compute `{{}} / {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1400 l, r
1401 ),
1402 Overflow(BinOp::Rem, l, r) => write!(
1403 f,
1b1a35ee 1404 "\"attempt to compute the remainder of `{{}} % {{}}`, which would overflow\", {:?}, {:?}",
f035d41b
XL
1405 l, r
1406 ),
1407 Overflow(BinOp::Shr, _, r) => {
1b1a35ee 1408 write!(f, "\"attempt to shift right by `{{}}`, which would overflow\", {:?}", r)
f035d41b
XL
1409 }
1410 Overflow(BinOp::Shl, _, r) => {
1b1a35ee 1411 write!(f, "\"attempt to shift left by `{{}}`, which would overflow\", {:?}", r)
f035d41b 1412 }
ba9703b0
XL
1413 _ => write!(f, "\"{}\"", self.description()),
1414 }
1415 }
74b04a01
XL
1416}
1417
1418impl<O: fmt::Debug> fmt::Debug for AssertKind<O> {
1419 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1420 use AssertKind::*;
1421 match self {
1b1a35ee
XL
1422 BoundsCheck { ref len, ref index } => write!(
1423 f,
1424 "index out of bounds: the length is {:?} but the index is {:?}",
1425 len, index
1426 ),
1427 OverflowNeg(op) => write!(f, "attempt to negate `{:#?}`, which would overflow", op),
1428 DivisionByZero(op) => write!(f, "attempt to divide `{:#?}` by zero", op),
1429 RemainderByZero(op) => write!(
1430 f,
1431 "attempt to calculate the remainder of `{:#?}` with a divisor of zero",
1432 op
1433 ),
f035d41b 1434 Overflow(BinOp::Add, l, r) => {
1b1a35ee 1435 write!(f, "attempt to compute `{:#?} + {:#?}`, which would overflow", l, r)
e9174d1e 1436 }
f035d41b 1437 Overflow(BinOp::Sub, l, r) => {
1b1a35ee 1438 write!(f, "attempt to compute `{:#?} - {:#?}`, which would overflow", l, r)
94b46f34 1439 }
f035d41b 1440 Overflow(BinOp::Mul, l, r) => {
1b1a35ee 1441 write!(f, "attempt to compute `{:#?} * {:#?}`, which would overflow", l, r)
f9f354fc 1442 }
f035d41b 1443 Overflow(BinOp::Div, l, r) => {
1b1a35ee 1444 write!(f, "attempt to compute `{:#?} / {:#?}`, which would overflow", l, r)
9cc50fc6 1445 }
f035d41b
XL
1446 Overflow(BinOp::Rem, l, r) => write!(
1447 f,
1b1a35ee 1448 "attempt to compute the remainder of `{:#?} % {:#?}`, which would overflow",
f035d41b
XL
1449 l, r
1450 ),
1451 Overflow(BinOp::Shr, _, r) => {
1b1a35ee 1452 write!(f, "attempt to shift right by `{:#?}`, which would overflow", r)
94b46f34 1453 }
f035d41b 1454 Overflow(BinOp::Shl, _, r) => {
1b1a35ee 1455 write!(f, "attempt to shift left by `{:#?}`, which would overflow", r)
3157f602 1456 }
f035d41b 1457 _ => write!(f, "{}", self.description()),
9cc50fc6
SL
1458 }
1459 }
e9174d1e
SL
1460}
1461
e9174d1e
SL
1462///////////////////////////////////////////////////////////////////////////
1463// Statements
1464
3dfed10e 1465#[derive(Clone, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
b039eaaf 1466pub struct Statement<'tcx> {
3157f602 1467 pub source_info: SourceInfo,
b039eaaf 1468 pub kind: StatementKind<'tcx>,
e9174d1e
SL
1469}
1470
a1dfa0c6 1471// `Statement` is used a lot. Make sure it doesn't unintentionally get bigger.
6a06907d 1472#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
e1599b0c 1473static_assert_size!(Statement<'_>, 32);
a1dfa0c6 1474
e1599b0c 1475impl Statement<'_> {
9e0c209e
SL
1476 /// Changes a statement to a nop. This is both faster than deleting instructions and avoids
1477 /// invalidating statement indices in `Location`s.
1478 pub fn make_nop(&mut self) {
1479 self.kind = StatementKind::Nop
1480 }
0531ce1d
XL
1481
1482 /// Changes a statement to a nop and returns the original statement.
1483 pub fn replace_nop(&mut self) -> Self {
1484 Statement {
1485 source_info: self.source_info,
94b46f34 1486 kind: mem::replace(&mut self.kind, StatementKind::Nop),
0531ce1d
XL
1487 }
1488 }
9e0c209e
SL
1489}
1490
6a06907d 1491#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
b039eaaf 1492pub enum StatementKind<'tcx> {
ff7c6d11 1493 /// Write the RHS Rvalue to the LHS Place.
e1599b0c 1494 Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>),
5bcae85e 1495
94b46f34 1496 /// This represents all the reading that a pattern match may do
0731742a 1497 /// (e.g., inspecting constants and discriminant values), and the
0bf4aa26
XL
1498 /// kind of pattern it comes from. This is in order to adapt potential
1499 /// error messages to these specific patterns.
0731742a
XL
1500 ///
1501 /// Note that this also is emitted for regular `let` bindings to ensure that locals that are
9fa01778 1502 /// never accessed still get some sanity checks for, e.g., `let x: ! = ..;`
e1599b0c 1503 FakeRead(FakeReadCause, Box<Place<'tcx>>),
94b46f34 1504
ff7c6d11 1505 /// Write the discriminant for a variant to the enum Place.
e1599b0c 1506 SetDiscriminant { place: Box<Place<'tcx>>, variant_index: VariantIdx },
5bcae85e
SL
1507
1508 /// Start a live range for the storage of the local.
ea8adc8c 1509 StorageLive(Local),
5bcae85e
SL
1510
1511 /// End the current live range for the storage of the local.
ea8adc8c 1512 StorageDead(Local),
9e0c209e 1513
532ac7d7
XL
1514 /// Executes a piece of inline Assembly. Stored in a Box to keep the size
1515 /// of `StatementKind` low.
ba9703b0 1516 LlvmInlineAsm(Box<LlvmInlineAsm<'tcx>>),
8bb4bdeb 1517
9fa01778 1518 /// Retag references in the given place, ensuring they got fresh tags. This is
a1dfa0c6
XL
1519 /// part of the Stacked Borrows model. These statements are currently only interpreted
1520 /// by miri and only generated when "-Z mir-emit-retag" is passed.
1521 /// See <https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/>
1522 /// for more details.
e1599b0c 1523 Retag(RetagKind, Box<Place<'tcx>>),
041b39d2 1524
b7449926
XL
1525 /// Encodes a user's type ascription. These need to be preserved
1526 /// intact so that NLL can respect them. For example:
0531ce1d 1527 ///
b7449926 1528 /// let a: T = y;
0531ce1d 1529 ///
b7449926
XL
1530 /// The effect of this annotation is to relate the type `T_y` of the place `y`
1531 /// to the user-given type `T`. The effect depends on the specified variance:
0531ce1d 1532 ///
b7449926
XL
1533 /// - `Covariant` -- requires that `T_y <: T`
1534 /// - `Contravariant` -- requires that `T_y :> T`
1535 /// - `Invariant` -- requires that `T_y == T`
1536 /// - `Bivariant` -- no effect
e1599b0c 1537 AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, ty::Variance),
0531ce1d 1538
3dfed10e
XL
1539 /// Marks the start of a "coverage region", injected with '-Zinstrument-coverage'. A
1540 /// `CoverageInfo` statement carries metadata about the coverage region, used to inject a coverage
1541 /// map into the binary. The `Counter` kind also generates executable code, to increment a
1542 /// counter varible at runtime, each time the code region is executed.
1543 Coverage(Box<Coverage>),
1544
6a06907d
XL
1545 /// Denotes a call to the intrinsic function copy_overlapping, where `src_dst` denotes the
1546 /// memory being read from and written to(one field to save memory), and size
1547 /// indicates how many bytes are being copied over.
1548 CopyNonOverlapping(Box<CopyNonOverlapping<'tcx>>),
1549
9e0c209e
SL
1550 /// No-op. Useful for deleting instructions without affecting statement indices.
1551 Nop,
e9174d1e
SL
1552}
1553
1b1a35ee 1554impl<'tcx> StatementKind<'tcx> {
6a06907d
XL
1555 pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)> {
1556 match self {
1557 StatementKind::Assign(x) => Some(x),
1558 _ => None,
1559 }
1560 }
1561
1562 pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)> {
1b1a35ee
XL
1563 match self {
1564 StatementKind::Assign(x) => Some(x),
1565 _ => None,
1566 }
1567 }
1568}
1569
e1599b0c 1570/// Describes what kind of retag is to be performed.
6a06907d 1571#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, PartialEq, Eq, Hash, HashStable)]
0731742a 1572pub enum RetagKind {
e1599b0c 1573 /// The initial retag when entering a function.
0731742a 1574 FnEntry,
e1599b0c 1575 /// Retag preparing for a two-phase borrow.
0731742a 1576 TwoPhase,
e1599b0c 1577 /// Retagging raw pointers.
0731742a 1578 Raw,
e1599b0c 1579 /// A "normal" retag.
0731742a
XL
1580 Default,
1581}
1582
e1599b0c 1583/// The `FakeReadCause` describes the type of pattern why a FakeRead statement exists.
6a06907d 1584#[derive(Copy, Clone, TyEncodable, TyDecodable, Debug, Hash, HashStable, PartialEq)]
0bf4aa26 1585pub enum FakeReadCause {
9fa01778
XL
1586 /// Inject a fake read of the borrowed input at the end of each guards
1587 /// code.
0bf4aa26 1588 ///
9fa01778
XL
1589 /// This should ensure that you cannot change the variant for an enum while
1590 /// you are in the midst of matching on it.
0bf4aa26
XL
1591 ForMatchGuard,
1592
1593 /// `let x: !; match x {}` doesn't generate any read of x so we need to
1594 /// generate a read of x to check that it is initialized and safe.
1595 ForMatchedPlace,
1596
9fa01778
XL
1597 /// A fake read of the RefWithinGuard version of a bind-by-value variable
1598 /// in a match guard to ensure that it's value hasn't change by the time
1599 /// we create the OutsideGuard version.
1600 ForGuardBinding,
1601
0bf4aa26
XL
1602 /// Officially, the semantics of
1603 ///
1604 /// `let pattern = <expr>;`
1605 ///
1606 /// is that `<expr>` is evaluated into a temporary and then this temporary is
1607 /// into the pattern.
1608 ///
1609 /// However, if we see the simple pattern `let var = <expr>`, we optimize this to
1610 /// evaluate `<expr>` directly into the variable `var`. This is mostly unobservable,
1611 /// but in some cases it can affect the borrow checker, as in #53695.
1612 /// Therefore, we insert a "fake read" here to ensure that we get
1613 /// appropriate errors.
1614 ForLet,
60c5eb7d
XL
1615
1616 /// If we have an index expression like
1617 ///
1618 /// (*x)[1][{ x = y; 4}]
1619 ///
1620 /// then the first bounds check is invalidated when we evaluate the second
1621 /// index expression. Thus we create a fake borrow of `x` across the second
1622 /// indexer, which will cause a borrow check error.
1623 ForIndex,
0bf4aa26
XL
1624}
1625
6a06907d 1626#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
ba9703b0
XL
1627pub struct LlvmInlineAsm<'tcx> {
1628 pub asm: hir::LlvmInlineAsmInner,
532ac7d7
XL
1629 pub outputs: Box<[Place<'tcx>]>,
1630 pub inputs: Box<[(Span, Operand<'tcx>)]>,
1631}
1632
e1599b0c 1633impl Debug for Statement<'_> {
0bf4aa26 1634 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
1635 use self::StatementKind::*;
1636 match self.kind {
dfeec247 1637 Assign(box (ref place, ref rv)) => write!(fmt, "{:?} = {:?}", place, rv),
0bf4aa26 1638 FakeRead(ref cause, ref place) => write!(fmt, "FakeRead({:?}, {:?})", cause, place),
416331ca
XL
1639 Retag(ref kind, ref place) => write!(
1640 fmt,
1641 "Retag({}{:?})",
1642 match kind {
1643 RetagKind::FnEntry => "[fn entry] ",
1644 RetagKind::TwoPhase => "[2phase] ",
1645 RetagKind::Raw => "[raw] ",
1646 RetagKind::Default => "",
1647 },
1648 place,
1649 ),
ff7c6d11
XL
1650 StorageLive(ref place) => write!(fmt, "StorageLive({:?})", place),
1651 StorageDead(ref place) => write!(fmt, "StorageDead({:?})", place),
416331ca
XL
1652 SetDiscriminant { ref place, variant_index } => {
1653 write!(fmt, "discriminant({:?}) = {:?}", place, variant_index)
1654 }
ba9703b0
XL
1655 LlvmInlineAsm(ref asm) => {
1656 write!(fmt, "llvm_asm!({:?} : {:?} : {:?})", asm.asm, asm.outputs, asm.inputs)
416331ca 1657 }
dfeec247 1658 AscribeUserType(box (ref place, ref c_ty), ref variance) => {
b7449926 1659 write!(fmt, "AscribeUserType({:?}, {:?}, {:?})", place, variance, c_ty)
94b46f34 1660 }
1b1a35ee 1661 Coverage(box ref coverage) => {
29967ef6
XL
1662 if let Some(rgn) = &coverage.code_region {
1663 write!(fmt, "Coverage::{:?} for {:?}", coverage.kind, rgn)
1664 } else {
1665 write!(fmt, "Coverage::{:?}", coverage.kind)
1b1a35ee
XL
1666 }
1667 }
6a06907d
XL
1668 CopyNonOverlapping(box crate::mir::CopyNonOverlapping {
1669 ref src,
1670 ref dst,
1671 ref count,
1672 }) => {
1673 write!(fmt, "copy_nonoverlapping(src={:?}, dst={:?}, count={:?})", src, dst, count)
1674 }
9e0c209e 1675 Nop => write!(fmt, "nop"),
e9174d1e
SL
1676 }
1677 }
1678}
54a0048b 1679
6a06907d 1680#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
3dfed10e
XL
1681pub struct Coverage {
1682 pub kind: CoverageKind,
29967ef6 1683 pub code_region: Option<CodeRegion>,
3dfed10e
XL
1684}
1685
6a06907d
XL
1686#[derive(Clone, Debug, PartialEq, TyEncodable, TyDecodable, Hash, HashStable, TypeFoldable)]
1687pub struct CopyNonOverlapping<'tcx> {
1688 pub src: Operand<'tcx>,
1689 pub dst: Operand<'tcx>,
1690 /// Number of elements to copy from src to dest, not bytes.
1691 pub count: Operand<'tcx>,
1692}
1693
e9174d1e 1694///////////////////////////////////////////////////////////////////////////
ff7c6d11 1695// Places
e9174d1e
SL
1696
1697/// A path to a value; something that can be evaluated without
1698/// changing or disturbing program state.
3dfed10e 1699#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
416331ca 1700pub struct Place<'tcx> {
dfeec247 1701 pub local: Local,
532ac7d7
XL
1702
1703 /// projection out of a place (access a field, deref a pointer, etc)
e74abb32 1704 pub projection: &'tcx List<PlaceElem<'tcx>>,
532ac7d7
XL
1705}
1706
6a06907d
XL
1707#[cfg(target_arch = "x86_64")]
1708static_assert_size!(Place<'_>, 16);
1709
60c5eb7d 1710#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
3dfed10e 1711#[derive(TyEncodable, TyDecodable, HashStable)]
532ac7d7 1712pub enum ProjectionElem<V, T> {
e9174d1e 1713 Deref,
3b2f2976 1714 Field(Field, T),
e9174d1e
SL
1715 Index(V),
1716
7453a54e
SL
1717 /// These indices are generated by slice patterns. Easiest to explain
1718 /// by example:
1719 ///
1720 /// ```
1721 /// [X, _, .._, _, _] => { offset: 0, min_length: 4, from_end: false },
1722 /// [_, X, .._, _, _] => { offset: 1, min_length: 4, from_end: false },
1723 /// [_, _, .._, X, _] => { offset: 2, min_length: 4, from_end: true },
1724 /// [_, _, .._, _, X] => { offset: 1, min_length: 4, from_end: true },
1725 /// ```
e9174d1e 1726 ConstantIndex {
7453a54e 1727 /// index or -index (in Python terms), depending on from_end
1b1a35ee 1728 offset: u64,
60c5eb7d
XL
1729 /// The thing being indexed must be at least this long. For arrays this
1730 /// is always the exact length.
1b1a35ee 1731 min_length: u64,
60c5eb7d
XL
1732 /// Counting backwards from end? This is always false when indexing an
1733 /// array.
7453a54e 1734 from_end: bool,
e9174d1e
SL
1735 },
1736
3157f602
XL
1737 /// These indices are generated by slice patterns.
1738 ///
60c5eb7d
XL
1739 /// If `from_end` is true `slice[from..slice.len() - to]`.
1740 /// Otherwise `array[from..to]`.
3157f602 1741 Subslice {
1b1a35ee
XL
1742 from: u64,
1743 to: u64,
60c5eb7d
XL
1744 /// Whether `to` counts from the start or end of the array/slice.
1745 /// For `PlaceElem`s this is `true` if and only if the base is a slice.
1746 /// For `ProjectionKind`, this can also be `true` for arrays.
1747 from_end: bool,
3157f602
XL
1748 },
1749
7453a54e
SL
1750 /// "Downcast" to a variant of an ADT. Currently, we only introduce
1751 /// this for ADTs with more than one variant. It may be better to
1752 /// just introduce it always, or always for enums.
532ac7d7
XL
1753 ///
1754 /// The included Symbol is the name of the variant, used for printing MIR.
1755 Downcast(Option<Symbol>, VariantIdx),
e9174d1e
SL
1756}
1757
e1599b0c
XL
1758impl<V, T> ProjectionElem<V, T> {
1759 /// Returns `true` if the target of this projection may refer to a different region of memory
1760 /// than the base.
1761 fn is_indirect(&self) -> bool {
1762 match self {
1763 Self::Deref => true,
1764
dfeec247 1765 Self::Field(_, _)
e1599b0c
XL
1766 | Self::Index(_)
1767 | Self::ConstantIndex { .. }
1768 | Self::Subslice { .. }
dfeec247 1769 | Self::Downcast(_, _) => false,
e1599b0c
XL
1770 }
1771 }
1772}
1773
ff7c6d11 1774/// Alias for projections as they appear in places, where the base is a place
ea8adc8c 1775/// and the index is a local.
532ac7d7 1776pub type PlaceElem<'tcx> = ProjectionElem<Local, Ty<'tcx>>;
e9174d1e 1777
48663c56 1778// At least on 64 bit systems, `PlaceElem` should not be larger than two pointers.
6a06907d 1779#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
1b1a35ee 1780static_assert_size!(PlaceElem<'_>, 24);
a1dfa0c6 1781
0bf4aa26
XL
1782/// Alias for projections as they appear in `UserTypeProjection`, where we
1783/// need neither the `V` parameter for `Index` nor the `T` for `Field`.
532ac7d7 1784pub type ProjectionKind = ProjectionElem<(), ()>;
0bf4aa26 1785
e74abb32 1786rustc_index::newtype_index! {
b7449926 1787 pub struct Field {
532ac7d7 1788 derive [HashStable]
b7449926
XL
1789 DEBUG_FORMAT = "field[{}]"
1790 }
1791}
e9174d1e 1792
416331ca 1793#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
74b04a01
XL
1794pub struct PlaceRef<'tcx> {
1795 pub local: Local,
1796 pub projection: &'tcx [PlaceElem<'tcx>],
416331ca
XL
1797}
1798
ff7c6d11 1799impl<'tcx> Place<'tcx> {
e74abb32 1800 // FIXME change this to a const fn by also making List::empty a const fn.
e1599b0c 1801 pub fn return_place() -> Place<'tcx> {
dfeec247 1802 Place { local: RETURN_PLACE, projection: List::empty() }
e9174d1e 1803 }
0bf4aa26 1804
e1599b0c
XL
1805 /// Returns `true` if this `Place` contains a `Deref` projection.
1806 ///
1807 /// If `Place::is_indirect` returns false, the caller knows that the `Place` refers to the
1808 /// same region of memory as its base.
1809 pub fn is_indirect(&self) -> bool {
1810 self.projection.iter().any(|elem| elem.is_indirect())
1811 }
1812
9fa01778 1813 /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
0bf4aa26 1814 /// a single deref of a local.
5869c6ff 1815 #[inline(always)]
dc9dc135 1816 pub fn local_or_deref_local(&self) -> Option<Local> {
5869c6ff 1817 self.as_ref().local_or_deref_local()
0bf4aa26
XL
1818 }
1819
e1599b0c
XL
1820 /// If this place represents a local variable like `_X` with no
1821 /// projections, return `Some(_X)`.
5869c6ff 1822 #[inline(always)]
e1599b0c 1823 pub fn as_local(&self) -> Option<Local> {
e74abb32 1824 self.as_ref().as_local()
416331ca
XL
1825 }
1826
6a06907d 1827 #[inline]
74b04a01
XL
1828 pub fn as_ref(&self) -> PlaceRef<'tcx> {
1829 PlaceRef { local: self.local, projection: &self.projection }
0bf4aa26 1830 }
fc512014
XL
1831
1832 /// Iterate over the projections in evaluation order, i.e., the first element is the base with
1833 /// its projection and then subsequently more projections are added.
1834 /// As a concrete example, given the place a.b.c, this would yield:
1835 /// - (a, .b)
1836 /// - (a.b, .c)
5869c6ff 1837 ///
fc512014 1838 /// Given a place without projections, the iterator is empty.
6a06907d 1839 #[inline]
fc512014
XL
1840 pub fn iter_projections(
1841 self,
1842 ) -> impl Iterator<Item = (PlaceRef<'tcx>, PlaceElem<'tcx>)> + DoubleEndedIterator {
1843 self.projection.iter().enumerate().map(move |(i, proj)| {
1844 let base = PlaceRef { local: self.local, projection: &self.projection[..i] };
1845 (base, proj)
1846 })
1847 }
e9174d1e
SL
1848}
1849
dc9dc135
XL
1850impl From<Local> for Place<'_> {
1851 fn from(local: Local) -> Self {
dfeec247 1852 Place { local, projection: List::empty() }
dc9dc135
XL
1853 }
1854}
1855
74b04a01 1856impl<'tcx> PlaceRef<'tcx> {
416331ca
XL
1857 /// Finds the innermost `Local` from this `Place`, *if* it is either a local itself or
1858 /// a single deref of a local.
416331ca 1859 pub fn local_or_deref_local(&self) -> Option<Local> {
74b04a01 1860 match *self {
dfeec247 1861 PlaceRef { local, projection: [] }
74b04a01 1862 | PlaceRef { local, projection: [ProjectionElem::Deref] } => Some(local),
416331ca
XL
1863 _ => None,
1864 }
1865 }
e74abb32
XL
1866
1867 /// If this place represents a local variable like `_X` with no
1868 /// projections, return `Some(_X)`.
1869 pub fn as_local(&self) -> Option<Local> {
74b04a01
XL
1870 match *self {
1871 PlaceRef { local, projection: [] } => Some(local),
e74abb32
XL
1872 _ => None,
1873 }
1874 }
5869c6ff
XL
1875
1876 pub fn last_projection(&self) -> Option<(PlaceRef<'tcx>, PlaceElem<'tcx>)> {
1877 if let &[ref proj_base @ .., elem] = self.projection {
1878 Some((PlaceRef { local: self.local, projection: proj_base }, elem))
1879 } else {
1880 None
1881 }
1882 }
416331ca
XL
1883}
1884
e1599b0c 1885impl Debug for Place<'_> {
0bf4aa26 1886 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e1599b0c
XL
1887 for elem in self.projection.iter().rev() {
1888 match elem {
1889 ProjectionElem::Downcast(_, _) | ProjectionElem::Field(_, _) => {
1890 write!(fmt, "(").unwrap();
1891 }
1892 ProjectionElem::Deref => {
1893 write!(fmt, "(*").unwrap();
94b46f34 1894 }
e1599b0c
XL
1895 ProjectionElem::Index(_)
1896 | ProjectionElem::ConstantIndex { .. }
1897 | ProjectionElem::Subslice { .. } => {}
48663c56 1898 }
e1599b0c 1899 }
48663c56 1900
dfeec247 1901 write!(fmt, "{:?}", self.local)?;
48663c56 1902
e1599b0c
XL
1903 for elem in self.projection.iter() {
1904 match elem {
1905 ProjectionElem::Downcast(Some(name), _index) => {
1906 write!(fmt, " as {})", name)?;
1907 }
1908 ProjectionElem::Downcast(None, index) => {
1909 write!(fmt, " as variant#{:?})", index)?;
1910 }
1911 ProjectionElem::Deref => {
1912 write!(fmt, ")")?;
1913 }
1914 ProjectionElem::Field(field, ty) => {
1915 write!(fmt, ".{:?}: {:?})", field.index(), ty)?;
1916 }
1917 ProjectionElem::Index(ref index) => {
1918 write!(fmt, "[{:?}]", index)?;
1919 }
1920 ProjectionElem::ConstantIndex { offset, min_length, from_end: false } => {
1921 write!(fmt, "[{:?} of {:?}]", offset, min_length)?;
1922 }
1923 ProjectionElem::ConstantIndex { offset, min_length, from_end: true } => {
1924 write!(fmt, "[-{:?} of {:?}]", offset, min_length)?;
1925 }
f9f354fc 1926 ProjectionElem::Subslice { from, to, from_end: true } if to == 0 => {
e1599b0c
XL
1927 write!(fmt, "[{:?}:]", from)?;
1928 }
f9f354fc 1929 ProjectionElem::Subslice { from, to, from_end: true } if from == 0 => {
e1599b0c
XL
1930 write!(fmt, "[:-{:?}]", to)?;
1931 }
60c5eb7d 1932 ProjectionElem::Subslice { from, to, from_end: true } => {
e1599b0c 1933 write!(fmt, "[{:?}:-{:?}]", from, to)?;
94b46f34 1934 }
60c5eb7d
XL
1935 ProjectionElem::Subslice { from, to, from_end: false } => {
1936 write!(fmt, "[{:?}..{:?}]", from, to)?;
1937 }
48663c56 1938 }
e1599b0c 1939 }
48663c56 1940
e1599b0c 1941 Ok(())
e9174d1e
SL
1942 }
1943}
1944
54a0048b
SL
1945///////////////////////////////////////////////////////////////////////////
1946// Scopes
1947
e74abb32 1948rustc_index::newtype_index! {
b7449926 1949 pub struct SourceScope {
532ac7d7 1950 derive [HashStable]
abe05a73 1951 DEBUG_FORMAT = "scope[{}]",
94b46f34 1952 const OUTERMOST_SOURCE_SCOPE = 0,
b7449926
XL
1953 }
1954}
54a0048b 1955
29967ef6
XL
1956#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
1957pub struct SourceScopeData<'tcx> {
a7813a04 1958 pub span: Span,
94b46f34 1959 pub parent_scope: Option<SourceScope>,
60c5eb7d 1960
29967ef6
XL
1961 /// Whether this scope is the root of a scope tree of another body,
1962 /// inlined into this body by the MIR inliner.
1963 /// `ty::Instance` is the callee, and the `Span` is the call site.
1964 pub inlined: Option<(ty::Instance<'tcx>, Span)>,
1965
1966 /// Nearest (transitive) parent scope (if any) which is inlined.
1967 /// This is an optimization over walking up `parent_scope`
1968 /// until a scope with `inlined: Some(...)` is found.
1969 pub inlined_parent_scope: Option<SourceScope>,
1970
60c5eb7d
XL
1971 /// Crate-local information for this source scope, that can't (and
1972 /// needn't) be tracked across crates.
1973 pub local_data: ClearCrossCrate<SourceScopeLocalData>,
94b46f34
XL
1974}
1975
3dfed10e 1976#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable)]
94b46f34 1977pub struct SourceScopeLocalData {
e1599b0c 1978 /// An `HirId` with lint levels equivalent to this scope's lint levels.
532ac7d7 1979 pub lint_root: hir::HirId,
94b46f34
XL
1980 /// The unsafe block that contains this node.
1981 pub safety: Safety,
54a0048b
SL
1982}
1983
e9174d1e
SL
1984///////////////////////////////////////////////////////////////////////////
1985// Operands
54a0048b 1986
0bf4aa26
XL
1987/// These are values that can appear inside an rvalue. They are intentionally
1988/// limited to prevent rvalues from being nested in one another.
6a06907d 1989#[derive(Clone, PartialEq, PartialOrd, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf 1990pub enum Operand<'tcx> {
ff7c6d11
XL
1991 /// Copy: The value must be available for use afterwards.
1992 ///
1993 /// This implies that the type of the place must be `Copy`; this is true
1994 /// by construction during build, but also checked by the MIR type checker.
1995 Copy(Place<'tcx>),
b7449926 1996
ff7c6d11
XL
1997 /// Move: The value (including old borrows of it) will not be used again.
1998 ///
1999 /// Safe for values of all types (modulo future developments towards `?Move`).
2000 /// Correct usage patterns are enforced by the borrow checker for safe code.
2001 /// `Copy` may be converted to `Move` to enable "last-use" optimizations.
2002 Move(Place<'tcx>),
b7449926
XL
2003
2004 /// Synthesizes a constant value.
cc61c64b 2005 Constant(Box<Constant<'tcx>>),
e9174d1e
SL
2006}
2007
6a06907d
XL
2008#[cfg(target_arch = "x86_64")]
2009static_assert_size!(Operand<'_>, 24);
2010
b039eaaf 2011impl<'tcx> Debug for Operand<'tcx> {
0bf4aa26 2012 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
2013 use self::Operand::*;
2014 match *self {
2015 Constant(ref a) => write!(fmt, "{:?}", a),
ff7c6d11
XL
2016 Copy(ref place) => write!(fmt, "{:?}", place),
2017 Move(ref place) => write!(fmt, "move {:?}", place),
e9174d1e
SL
2018 }
2019 }
2020}
2021
cc61c64b 2022impl<'tcx> Operand<'tcx> {
b7449926 2023 /// Convenience helper to make a constant that refers to the fn
9fa01778 2024 /// with given `DefId` and substs. Since this is used to synthesize
b7449926 2025 /// MIR, assumes `user_ty` is None.
dc9dc135
XL
2026 pub fn function_handle(
2027 tcx: TyCtxt<'tcx>,
cc61c64b 2028 def_id: DefId,
532ac7d7 2029 substs: SubstsRef<'tcx>,
cc61c64b
XL
2030 span: Span,
2031 ) -> Self {
ea8adc8c 2032 let ty = tcx.type_of(def_id).subst(tcx, substs);
cc61c64b 2033 Operand::Constant(box Constant {
041b39d2 2034 span,
b7449926 2035 user_ty: None,
6a06907d 2036 literal: ConstantKind::Ty(ty::Const::zero_sized(tcx, ty)),
cc61c64b
XL
2037 })
2038 }
2039
1b1a35ee
XL
2040 pub fn is_move(&self) -> bool {
2041 matches!(self, Operand::Move(..))
2042 }
2043
f035d41b
XL
2044 /// Convenience helper to make a literal-like constant from a given scalar value.
2045 /// Since this is used to synthesize MIR, assumes `user_ty` is None.
2046 pub fn const_from_scalar(
2047 tcx: TyCtxt<'tcx>,
2048 ty: Ty<'tcx>,
2049 val: Scalar,
2050 span: Span,
2051 ) -> Operand<'tcx> {
2052 debug_assert!({
2053 let param_env_and_ty = ty::ParamEnv::empty().and(ty);
2054 let type_size = tcx
2055 .layout_of(param_env_and_ty)
2056 .unwrap_or_else(|e| panic!("could not compute layout for {:?}: {:?}", ty, e))
2057 .size;
29967ef6
XL
2058 let scalar_size = match val {
2059 Scalar::Int(int) => int.size(),
f035d41b 2060 _ => panic!("Invalid scalar type {:?}", val),
29967ef6 2061 };
f035d41b
XL
2062 scalar_size == type_size
2063 });
2064 Operand::Constant(box Constant {
2065 span,
2066 user_ty: None,
6a06907d 2067 literal: ConstantKind::Val(val.into(), ty),
f035d41b
XL
2068 })
2069 }
2070
ff7c6d11
XL
2071 pub fn to_copy(&self) -> Self {
2072 match *self {
2073 Operand::Copy(_) | Operand::Constant(_) => self.clone(),
dfeec247 2074 Operand::Move(place) => Operand::Copy(place),
ff7c6d11
XL
2075 }
2076 }
74b04a01
XL
2077
2078 /// Returns the `Place` that is the target of this `Operand`, or `None` if this `Operand` is a
2079 /// constant.
ba9703b0 2080 pub fn place(&self) -> Option<Place<'tcx>> {
74b04a01 2081 match self {
ba9703b0 2082 Operand::Copy(place) | Operand::Move(place) => Some(*place),
74b04a01
XL
2083 Operand::Constant(_) => None,
2084 }
2085 }
1b1a35ee
XL
2086
2087 /// Returns the `Constant` that is the target of this `Operand`, or `None` if this `Operand` is a
2088 /// place.
2089 pub fn constant(&self) -> Option<&Constant<'tcx>> {
2090 match self {
2091 Operand::Constant(x) => Some(&**x),
2092 Operand::Copy(_) | Operand::Move(_) => None,
2093 }
2094 }
cc61c64b
XL
2095}
2096
e9174d1e 2097///////////////////////////////////////////////////////////////////////////
7453a54e 2098/// Rvalues
e9174d1e 2099
6a06907d 2100#[derive(Clone, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
b039eaaf 2101pub enum Rvalue<'tcx> {
7453a54e 2102 /// x (either a move or copy, depending on type of x)
b039eaaf 2103 Use(Operand<'tcx>),
e9174d1e 2104
7453a54e 2105 /// [x; 32]
ba9703b0 2106 Repeat(Operand<'tcx>, &'tcx ty::Const<'tcx>),
e9174d1e 2107
7453a54e 2108 /// &x or &mut x
ff7c6d11 2109 Ref(Region<'tcx>, BorrowKind, Place<'tcx>),
e9174d1e 2110
f9f354fc
XL
2111 /// Accessing a thread local static. This is inherently a runtime operation, even if llvm
2112 /// treats it as an access to a static. This `Rvalue` yields a reference to the thread local
2113 /// static.
2114 ThreadLocalRef(DefId),
2115
dfeec247
XL
2116 /// Create a raw pointer to the given place
2117 /// Can be generated by raw address of expressions (`&raw const x`),
2118 /// or when casting a reference to a raw pointer.
2119 AddressOf(Mutability, Place<'tcx>),
2120
f9f354fc 2121 /// length of a `[X]` or `[X;n]` value
ff7c6d11 2122 Len(Place<'tcx>),
e9174d1e 2123
b039eaaf 2124 Cast(CastKind, Operand<'tcx>, Ty<'tcx>),
e9174d1e 2125
6a06907d
XL
2126 BinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>),
2127 CheckedBinaryOp(BinOp, Box<(Operand<'tcx>, Operand<'tcx>)>),
e9174d1e 2128
7cac9316 2129 NullaryOp(NullOp, Ty<'tcx>),
b039eaaf 2130 UnaryOp(UnOp, Operand<'tcx>),
e9174d1e 2131
8bb4bdeb
XL
2132 /// Read the discriminant of an ADT.
2133 ///
0731742a 2134 /// Undefined (i.e., no effort is made to make it defined, but there’s no reason why it cannot
8bb4bdeb 2135 /// be defined to return, say, a 0) if ADT is not an enum.
ff7c6d11 2136 Discriminant(Place<'tcx>),
8bb4bdeb 2137
9fa01778 2138 /// Creates an aggregate value, like a tuple or struct. This is
7453a54e
SL
2139 /// only needed because we want to distinguish `dest = Foo { x:
2140 /// ..., y: ... }` from `dest.x = ...; dest.y = ...;` in the case
2141 /// that `Foo` has a destructor. These rvalues can be optimized
2142 /// away after type-checking and before lowering.
cc61c64b 2143 Aggregate(Box<AggregateKind<'tcx>>, Vec<Operand<'tcx>>),
e9174d1e
SL
2144}
2145
6a06907d
XL
2146#[cfg(target_arch = "x86_64")]
2147static_assert_size!(Rvalue<'_>, 40);
2148
2149#[derive(Clone, Copy, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2150pub enum CastKind {
2151 Misc,
48663c56 2152 Pointer(PointerCast),
e9174d1e
SL
2153}
2154
6a06907d 2155#[derive(Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf 2156pub enum AggregateKind<'tcx> {
8bb4bdeb
XL
2157 /// The type is of the element
2158 Array(Ty<'tcx>),
e9174d1e 2159 Tuple,
ff7c6d11 2160
2c00a5a8
XL
2161 /// The second field is the variant index. It's equal to 0 for struct
2162 /// and union expressions. The fourth field is
ff7c6d11 2163 /// active field number and is present only for union expressions
0731742a 2164 /// -- e.g., for a union expression `SomeUnion { c: .. }`, the
ff7c6d11 2165 /// active field index would identity the field `c`
416331ca 2166 Adt(&'tcx AdtDef, VariantIdx, SubstsRef<'tcx>, Option<UserTypeAnnotationIndex>, Option<usize>),
ff7c6d11 2167
e74abb32 2168 Closure(DefId, SubstsRef<'tcx>),
60c5eb7d 2169 Generator(DefId, SubstsRef<'tcx>, hir::Movability),
e9174d1e
SL
2170}
2171
6a06907d
XL
2172#[cfg(target_arch = "x86_64")]
2173static_assert_size!(AggregateKind<'_>, 48);
2174
2175#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2176pub enum BinOp {
2177 /// The `+` operator (addition)
2178 Add,
2179 /// The `-` operator (subtraction)
2180 Sub,
2181 /// The `*` operator (multiplication)
2182 Mul,
2183 /// The `/` operator (division)
2184 Div,
2185 /// The `%` operator (modulus)
2186 Rem,
2187 /// The `^` operator (bitwise xor)
2188 BitXor,
2189 /// The `&` operator (bitwise and)
2190 BitAnd,
2191 /// The `|` operator (bitwise or)
2192 BitOr,
2193 /// The `<<` operator (shift left)
2194 Shl,
2195 /// The `>>` operator (shift right)
2196 Shr,
2197 /// The `==` operator (equality)
2198 Eq,
2199 /// The `<` operator (less than)
2200 Lt,
2201 /// The `<=` operator (less than or equal to)
2202 Le,
2203 /// The `!=` operator (not equal to)
2204 Ne,
2205 /// The `>=` operator (greater than or equal to)
2206 Ge,
2207 /// The `>` operator (greater than)
2208 Gt,
7cac9316
XL
2209 /// The `ptr.offset` operator
2210 Offset,
e9174d1e
SL
2211}
2212
3157f602
XL
2213impl BinOp {
2214 pub fn is_checkable(self) -> bool {
2215 use self::BinOp::*;
29967ef6 2216 matches!(self, Add | Sub | Mul | Shl | Shr)
3157f602
XL
2217 }
2218}
2219
6a06907d 2220#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
7cac9316 2221pub enum NullOp {
9fa01778 2222 /// Returns the size of a value of that type
7cac9316 2223 SizeOf,
9fa01778 2224 /// Creates a new uninitialized box for a value of that type
7cac9316
XL
2225 Box,
2226}
2227
6a06907d 2228#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable)]
e9174d1e
SL
2229pub enum UnOp {
2230 /// The `!` operator for logical inversion
2231 Not,
2232 /// The `-` operator for negation
b039eaaf 2233 Neg,
e9174d1e
SL
2234}
2235
b039eaaf 2236impl<'tcx> Debug for Rvalue<'tcx> {
0bf4aa26 2237 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
e9174d1e
SL
2238 use self::Rvalue::*;
2239
2240 match *self {
ff7c6d11 2241 Use(ref place) => write!(fmt, "{:?}", place),
ba9703b0
XL
2242 Repeat(ref a, ref b) => {
2243 write!(fmt, "[{:?}; ", a)?;
2244 pretty_print_const(b, fmt, false)?;
2245 write!(fmt, "]")
2246 }
9cc50fc6 2247 Len(ref a) => write!(fmt, "Len({:?})", a),
ff7c6d11
XL
2248 Cast(ref kind, ref place, ref ty) => {
2249 write!(fmt, "{:?} as {:?} ({:?})", place, ty, kind)
2250 }
6a06907d
XL
2251 BinaryOp(ref op, box (ref a, ref b)) => write!(fmt, "{:?}({:?}, {:?})", op, a, b),
2252 CheckedBinaryOp(ref op, box (ref a, ref b)) => {
3157f602
XL
2253 write!(fmt, "Checked{:?}({:?}, {:?})", op, a, b)
2254 }
e9174d1e 2255 UnaryOp(ref op, ref a) => write!(fmt, "{:?}({:?})", op, a),
ff7c6d11 2256 Discriminant(ref place) => write!(fmt, "discriminant({:?})", place),
7cac9316 2257 NullaryOp(ref op, ref t) => write!(fmt, "{:?}({:?})", op, t),
f9f354fc
XL
2258 ThreadLocalRef(did) => ty::tls::with(|tcx| {
2259 let muta = tcx.static_mutability(did).unwrap().prefix_str();
2260 write!(fmt, "&/*tls*/ {}{}", muta, tcx.def_path_str(did))
2261 }),
ff7c6d11 2262 Ref(region, borrow_kind, ref place) => {
9cc50fc6
SL
2263 let kind_str = match borrow_kind {
2264 BorrowKind::Shared => "",
0bf4aa26 2265 BorrowKind::Shallow => "shallow ",
2c00a5a8 2266 BorrowKind::Mut { .. } | BorrowKind::Unique => "mut ",
9cc50fc6 2267 };
041b39d2 2268
3b2f2976 2269 // When printing regions, add trailing space if necessary.
532ac7d7
XL
2270 let print_region = ty::tls::with(|tcx| {
2271 tcx.sess.verbose() || tcx.sess.opts.debugging_opts.identify_regions
2272 });
2273 let region = if print_region {
8faf50e0 2274 let mut region = region.to_string();
74b04a01 2275 if !region.is_empty() {
94b46f34
XL
2276 region.push(' ');
2277 }
041b39d2
XL
2278 region
2279 } else {
3b2f2976 2280 // Do not even print 'static
b7449926 2281 String::new()
041b39d2 2282 };
ff7c6d11 2283 write!(fmt, "&{}{}{:?}", region, kind_str, place)
9cc50fc6
SL
2284 }
2285
dfeec247
XL
2286 AddressOf(mutability, ref place) => {
2287 let kind_str = match mutability {
2288 Mutability::Mut => "mut",
2289 Mutability::Not => "const",
2290 };
2291
2292 write!(fmt, "&raw {} {:?}", kind_str, place)
2293 }
2294
ff7c6d11 2295 Aggregate(ref kind, ref places) => {
ba9703b0
XL
2296 let fmt_tuple = |fmt: &mut Formatter<'_>, name: &str| {
2297 let mut tuple_fmt = fmt.debug_tuple(name);
ff7c6d11
XL
2298 for place in places {
2299 tuple_fmt.field(place);
9cc50fc6
SL
2300 }
2301 tuple_fmt.finish()
ba9703b0 2302 };
9cc50fc6 2303
cc61c64b 2304 match **kind {
ff7c6d11 2305 AggregateKind::Array(_) => write!(fmt, "{:?}", places),
9cc50fc6 2306
ba9703b0
XL
2307 AggregateKind::Tuple => {
2308 if places.is_empty() {
2309 write!(fmt, "()")
2310 } else {
2311 fmt_tuple(fmt, "")
2312 }
2313 }
9cc50fc6 2314
b7449926 2315 AggregateKind::Adt(adt_def, variant, substs, _user_ty, _) => {
9cc50fc6 2316 let variant_def = &adt_def.variants[variant];
54a0048b 2317
ba9703b0
XL
2318 let name = ty::tls::with(|tcx| {
2319 let mut name = String::new();
29967ef6 2320 let substs = tcx.lift(substs).expect("could not lift for printing");
ba9703b0 2321 FmtPrinter::new(tcx, &mut name, Namespace::ValueNS)
532ac7d7 2322 .print_def_path(variant_def.def_id, substs)?;
ba9703b0 2323 Ok(name)
532ac7d7 2324 })?;
9cc50fc6 2325
c30ab7b3 2326 match variant_def.ctor_kind {
ba9703b0
XL
2327 CtorKind::Const => fmt.write_str(&name),
2328 CtorKind::Fn => fmt_tuple(fmt, &name),
c30ab7b3 2329 CtorKind::Fictive => {
ba9703b0 2330 let mut struct_fmt = fmt.debug_struct(&name);
ff7c6d11 2331 for (field, place) in variant_def.fields.iter().zip(places) {
94b46f34 2332 struct_fmt.field(&field.ident.as_str(), place);
9cc50fc6
SL
2333 }
2334 struct_fmt.finish()
2335 }
2336 }
2337 }
2338
60c5eb7d 2339 AggregateKind::Closure(def_id, substs) => ty::tls::with(|tcx| {
f9f354fc 2340 if let Some(def_id) = def_id.as_local() {
3dfed10e 2341 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
041b39d2 2342 let name = if tcx.sess.opts.debugging_opts.span_free_formats {
29967ef6 2343 let substs = tcx.lift(substs).unwrap();
60c5eb7d
XL
2344 format!(
2345 "[closure@{}]",
f9f354fc 2346 tcx.def_path_str_with_substs(def_id.to_def_id(), substs),
60c5eb7d 2347 )
041b39d2 2348 } else {
f035d41b
XL
2349 let span = tcx.hir().span(hir_id);
2350 format!("[closure@{}]", tcx.sess.source_map().span_to_string(span))
041b39d2 2351 };
9cc50fc6
SL
2352 let mut struct_fmt = fmt.debug_struct(&name);
2353
f9f354fc 2354 if let Some(upvars) = tcx.upvars_mentioned(def_id) {
dc9dc135
XL
2355 for (&var_id, place) in upvars.keys().zip(places) {
2356 let var_name = tcx.hir().name(var_id);
ff7c6d11 2357 struct_fmt.field(&var_name.as_str(), place);
9cc50fc6 2358 }
48663c56 2359 }
9cc50fc6
SL
2360
2361 struct_fmt.finish()
2362 } else {
2363 write!(fmt, "[closure]")
2364 }
2365 }),
ea8adc8c
XL
2366
2367 AggregateKind::Generator(def_id, _, _) => ty::tls::with(|tcx| {
f9f354fc 2368 if let Some(def_id) = def_id.as_local() {
3dfed10e 2369 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
416331ca 2370 let name = format!("[generator@{:?}]", tcx.hir().span(hir_id));
ea8adc8c
XL
2371 let mut struct_fmt = fmt.debug_struct(&name);
2372
f9f354fc 2373 if let Some(upvars) = tcx.upvars_mentioned(def_id) {
dc9dc135
XL
2374 for (&var_id, place) in upvars.keys().zip(places) {
2375 let var_name = tcx.hir().name(var_id);
ff7c6d11 2376 struct_fmt.field(&var_name.as_str(), place);
ea8adc8c 2377 }
48663c56 2378 }
ea8adc8c
XL
2379
2380 struct_fmt.finish()
2381 } else {
2382 write!(fmt, "[generator]")
2383 }
2384 }),
9cc50fc6
SL
2385 }
2386 }
e9174d1e
SL
2387 }
2388 }
2389}
2390
2391///////////////////////////////////////////////////////////////////////////
7453a54e
SL
2392/// Constants
2393///
2394/// Two constants are equal if they are the same constant. Note that
1b1a35ee
XL
2395/// this does not necessarily mean that they are `==` in Rust. In
2396/// particular, one must be wary of `NaN`!
e9174d1e 2397
6a06907d 2398#[derive(Clone, Copy, PartialEq, PartialOrd, TyEncodable, TyDecodable, Hash, HashStable)]
b039eaaf
SL
2399pub struct Constant<'tcx> {
2400 pub span: Span,
b7449926
XL
2401
2402 /// Optional user-given type: for something like
2403 /// `collect::<Vec<_>>`, this would be present and would
2404 /// indicate that `Vec<_>` was explicitly specified.
2405 ///
2406 /// Needed for NLL to impose user-given type constraints.
0731742a 2407 pub user_ty: Option<UserTypeAnnotationIndex>,
b7449926 2408
6a06907d
XL
2409 pub literal: ConstantKind<'tcx>,
2410}
2411
2412#[derive(Clone, Copy, PartialEq, PartialOrd, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
2413pub enum ConstantKind<'tcx> {
2414 /// This constant came from the type system
2415 Ty(&'tcx ty::Const<'tcx>),
2416 /// This constant cannot go back into the type system, as it represents
2417 /// something the type system cannot handle (e.g. pointers).
2418 Val(interpret::ConstValue<'tcx>, Ty<'tcx>),
0bf4aa26
XL
2419}
2420
60c5eb7d
XL
2421impl Constant<'tcx> {
2422 pub fn check_static_ptr(&self, tcx: TyCtxt<'_>) -> Option<DefId> {
6a06907d 2423 match self.literal.const_for_ty()?.val.try_to_scalar() {
f9f354fc
XL
2424 Some(Scalar::Ptr(ptr)) => match tcx.global_alloc(ptr.alloc_id) {
2425 GlobalAlloc::Static(def_id) => {
2426 assert!(!tcx.is_thread_local_static(def_id));
2427 Some(def_id)
dfeec247 2428 }
f9f354fc 2429 _ => None,
60c5eb7d
XL
2430 },
2431 _ => None,
2432 }
2433 }
6a06907d
XL
2434 pub fn ty(&self) -> Ty<'tcx> {
2435 self.literal.ty()
2436 }
2437}
2438
2439impl From<&'tcx ty::Const<'tcx>> for ConstantKind<'tcx> {
2440 fn from(ct: &'tcx ty::Const<'tcx>) -> Self {
2441 Self::Ty(ct)
2442 }
2443}
2444
2445impl ConstantKind<'tcx> {
2446 /// Returns `None` if the constant is not trivially safe for use in the type system.
2447 pub fn const_for_ty(&self) -> Option<&'tcx ty::Const<'tcx>> {
2448 match self {
2449 ConstantKind::Ty(c) => Some(c),
2450 ConstantKind::Val(..) => None,
2451 }
2452 }
2453
2454 pub fn ty(&self) -> Ty<'tcx> {
2455 match self {
2456 ConstantKind::Ty(c) => c.ty,
2457 ConstantKind::Val(_, ty) => ty,
2458 }
2459 }
2460
2461 #[inline]
2462 pub fn try_to_value(self) -> Option<interpret::ConstValue<'tcx>> {
2463 match self {
2464 ConstantKind::Ty(c) => c.val.try_to_value(),
2465 ConstantKind::Val(val, _) => Some(val),
2466 }
2467 }
2468
2469 #[inline]
2470 pub fn try_to_scalar(self) -> Option<Scalar> {
2471 self.try_to_value()?.try_to_scalar()
2472 }
2473
2474 #[inline]
2475 pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
2476 Some(self.try_to_value()?.try_to_scalar()?.assert_int())
2477 }
2478
2479 #[inline]
2480 pub fn try_to_bits(self, size: Size) -> Option<u128> {
2481 self.try_to_scalar_int()?.to_bits(size).ok()
2482 }
2483
2484 #[inline]
2485 pub fn try_to_bool(self) -> Option<bool> {
2486 self.try_to_scalar_int()?.try_into().ok()
2487 }
2488
2489 #[inline]
2490 pub fn try_eval_bits(
2491 &self,
2492 tcx: TyCtxt<'tcx>,
2493 param_env: ty::ParamEnv<'tcx>,
2494 ty: Ty<'tcx>,
2495 ) -> Option<u128> {
2496 match self {
2497 Self::Ty(ct) => ct.try_eval_bits(tcx, param_env, ty),
2498 Self::Val(val, t) => {
2499 assert_eq!(*t, ty);
2500 let size =
2501 tcx.layout_of(param_env.with_reveal_all_normalized(tcx).and(ty)).ok()?.size;
2502 val.try_to_bits(size)
2503 }
2504 }
2505 }
2506
2507 #[inline]
2508 pub fn try_eval_bool(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<bool> {
2509 match self {
2510 Self::Ty(ct) => ct.try_eval_bool(tcx, param_env),
2511 Self::Val(val, _) => val.try_to_bool(),
2512 }
2513 }
2514
2515 #[inline]
2516 pub fn try_eval_usize(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Option<u64> {
2517 match self {
2518 Self::Ty(ct) => ct.try_eval_usize(tcx, param_env),
2519 Self::Val(val, _) => val.try_to_machine_usize(tcx),
2520 }
2521 }
60c5eb7d
XL
2522}
2523
0bf4aa26
XL
2524/// A collection of projections into user types.
2525///
2526/// They are projections because a binding can occur a part of a
2527/// parent pattern that has been ascribed a type.
2528///
2529/// Its a collection because there can be multiple type ascriptions on
2530/// the path from the root of the pattern down to the binding itself.
2531///
2532/// An example:
2533///
2534/// ```rust
2535/// struct S<'a>((i32, &'a str), String);
2536/// let S((_, w): (i32, &'static str), _): S = ...;
2537/// // ------ ^^^^^^^^^^^^^^^^^^^ (1)
2538/// // --------------------------------- ^ (2)
2539/// ```
2540///
2541/// The highlights labelled `(1)` show the subpattern `(_, w)` being
2542/// ascribed the type `(i32, &'static str)`.
2543///
2544/// The highlights labelled `(2)` show the whole pattern being
2545/// ascribed the type `S`.
2546///
2547/// In this example, when we descend to `w`, we will have built up the
2548/// following two projected types:
2549///
2550/// * base: `S`, projection: `(base.0).1`
2551/// * base: `(i32, &'static str)`, projection: `base.1`
2552///
2553/// The first will lead to the constraint `w: &'1 str` (for some
2554/// inferred region `'1`). The second will lead to the constraint `w:
2555/// &'static str`.
3dfed10e 2556#[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable)]
532ac7d7 2557pub struct UserTypeProjections {
f9f354fc 2558 pub contents: Vec<(UserTypeProjection, Span)>,
0bf4aa26
XL
2559}
2560
532ac7d7 2561impl<'tcx> UserTypeProjections {
0bf4aa26
XL
2562 pub fn none() -> Self {
2563 UserTypeProjections { contents: vec![] }
2564 }
2565
f9f354fc
XL
2566 pub fn is_empty(&self) -> bool {
2567 self.contents.is_empty()
2568 }
2569
dfeec247
XL
2570 pub fn projections_and_spans(
2571 &self,
2572 ) -> impl Iterator<Item = &(UserTypeProjection, Span)> + ExactSizeIterator {
0bf4aa26
XL
2573 self.contents.iter()
2574 }
2575
dfeec247 2576 pub fn projections(&self) -> impl Iterator<Item = &UserTypeProjection> + ExactSizeIterator {
0bf4aa26
XL
2577 self.contents.iter().map(|&(ref user_type, _span)| user_type)
2578 }
0731742a 2579
416331ca 2580 pub fn push_projection(mut self, user_ty: &UserTypeProjection, span: Span) -> Self {
0731742a
XL
2581 self.contents.push((user_ty.clone(), span));
2582 self
2583 }
2584
2585 fn map_projections(
2586 mut self,
416331ca 2587 mut f: impl FnMut(UserTypeProjection) -> UserTypeProjection,
0731742a
XL
2588 ) -> Self {
2589 self.contents = self.contents.drain(..).map(|(proj, span)| (f(proj), span)).collect();
2590 self
2591 }
2592
2593 pub fn index(self) -> Self {
2594 self.map_projections(|pat_ty_proj| pat_ty_proj.index())
2595 }
2596
1b1a35ee 2597 pub fn subslice(self, from: u64, to: u64) -> Self {
0731742a
XL
2598 self.map_projections(|pat_ty_proj| pat_ty_proj.subslice(from, to))
2599 }
2600
2601 pub fn deref(self) -> Self {
2602 self.map_projections(|pat_ty_proj| pat_ty_proj.deref())
2603 }
2604
2605 pub fn leaf(self, field: Field) -> Self {
2606 self.map_projections(|pat_ty_proj| pat_ty_proj.leaf(field))
2607 }
2608
416331ca 2609 pub fn variant(self, adt_def: &'tcx AdtDef, variant_index: VariantIdx, field: Field) -> Self {
0731742a
XL
2610 self.map_projections(|pat_ty_proj| pat_ty_proj.variant(adt_def, variant_index, field))
2611 }
0bf4aa26
XL
2612}
2613
2614/// Encodes the effect of a user-supplied type annotation on the
2615/// subcomponents of a pattern. The effect is determined by applying the
2616/// given list of proejctions to some underlying base type. Often,
2617/// the projection element list `projs` is empty, in which case this
2618/// directly encodes a type in `base`. But in the case of complex patterns with
2619/// subpatterns and bindings, we want to apply only a *part* of the type to a variable,
2620/// in which case the `projs` vector is used.
2621///
2622/// Examples:
2623///
2624/// * `let x: T = ...` -- here, the `projs` vector is empty.
2625///
2626/// * `let (x, _): T = ...` -- here, the `projs` vector would contain
2627/// `field[0]` (aka `.0`), indicating that the type of `s` is
2628/// determined by finding the type of the `.0` field from `T`.
6a06907d 2629#[derive(Clone, Debug, TyEncodable, TyDecodable, Hash, HashStable, PartialEq)]
532ac7d7 2630pub struct UserTypeProjection {
0731742a 2631 pub base: UserTypeAnnotationIndex,
dc9dc135 2632 pub projs: Vec<ProjectionKind>,
0bf4aa26
XL
2633}
2634
416331ca 2635impl Copy for ProjectionKind {}
0bf4aa26 2636
532ac7d7 2637impl UserTypeProjection {
0731742a
XL
2638 pub(crate) fn index(mut self) -> Self {
2639 self.projs.push(ProjectionElem::Index(()));
2640 self
2641 }
2642
1b1a35ee 2643 pub(crate) fn subslice(mut self, from: u64, to: u64) -> Self {
60c5eb7d 2644 self.projs.push(ProjectionElem::Subslice { from, to, from_end: true });
0731742a
XL
2645 self
2646 }
2647
2648 pub(crate) fn deref(mut self) -> Self {
2649 self.projs.push(ProjectionElem::Deref);
2650 self
2651 }
2652
2653 pub(crate) fn leaf(mut self, field: Field) -> Self {
2654 self.projs.push(ProjectionElem::Field(field, ()));
2655 self
2656 }
2657
2658 pub(crate) fn variant(
2659 mut self,
ba9703b0 2660 adt_def: &AdtDef,
0731742a
XL
2661 variant_index: VariantIdx,
2662 field: Field,
2663 ) -> Self {
532ac7d7
XL
2664 self.projs.push(ProjectionElem::Downcast(
2665 Some(adt_def.variants[variant_index].ident.name),
416331ca
XL
2666 variant_index,
2667 ));
0731742a
XL
2668 self.projs.push(ProjectionElem::Field(field, ()));
2669 self
2670 }
2671}
2672
fc512014 2673TrivialTypeFoldableAndLiftImpls! { ProjectionKind, }
0bf4aa26 2674
532ac7d7 2675impl<'tcx> TypeFoldable<'tcx> for UserTypeProjection {
fc512014
XL
2676 fn super_fold_with<F: TypeFolder<'tcx>>(self, folder: &mut F) -> Self {
2677 UserTypeProjection {
2678 base: self.base.fold_with(folder),
2679 projs: self.projs.fold_with(folder),
2680 }
0bf4aa26
XL
2681 }
2682
fc512014
XL
2683 fn super_visit_with<Vs: TypeVisitor<'tcx>>(
2684 &self,
2685 visitor: &mut Vs,
2686 ) -> ControlFlow<Vs::BreakTy> {
0bf4aa26
XL
2687 self.base.visit_with(visitor)
2688 // Note: there's nothing in `self.proj` to visit.
2689 }
2690}
2691
e74abb32 2692rustc_index::newtype_index! {
b7449926 2693 pub struct Promoted {
532ac7d7 2694 derive [HashStable]
b7449926
XL
2695 DEBUG_FORMAT = "promoted[{}]"
2696 }
2697}
abe05a73 2698
9cc50fc6 2699impl<'tcx> Debug for Constant<'tcx> {
0bf4aa26 2700 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
dc9dc135 2701 write!(fmt, "{}", self)
9cc50fc6
SL
2702 }
2703}
2704
dc9dc135
XL
2705impl<'tcx> Display for Constant<'tcx> {
2706 fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
6a06907d 2707 match self.ty().kind() {
3dfed10e
XL
2708 ty::FnDef(..) => {}
2709 _ => write!(fmt, "const ")?,
2710 }
6a06907d
XL
2711 match self.literal {
2712 ConstantKind::Ty(c) => pretty_print_const(c, fmt, true),
2713 ConstantKind::Val(val, ty) => pretty_print_const_value(val, ty, fmt, true),
2714 }
dc9dc135 2715 }
9cc50fc6 2716}
3157f602 2717
ba9703b0
XL
2718fn pretty_print_const(
2719 c: &ty::Const<'tcx>,
2720 fmt: &mut Formatter<'_>,
2721 print_types: bool,
2722) -> fmt::Result {
2723 use crate::ty::print::PrettyPrinter;
2724 ty::tls::with(|tcx| {
29967ef6 2725 let literal = tcx.lift(c).unwrap();
ba9703b0
XL
2726 let mut cx = FmtPrinter::new(tcx, fmt, Namespace::ValueNS);
2727 cx.print_alloc_ids = true;
2728 cx.pretty_print_const(literal, print_types)?;
2729 Ok(())
2730 })
2731}
2732
6a06907d
XL
2733fn pretty_print_const_value(
2734 val: interpret::ConstValue<'tcx>,
2735 ty: Ty<'tcx>,
2736 fmt: &mut Formatter<'_>,
2737 print_types: bool,
2738) -> fmt::Result {
2739 use crate::ty::print::PrettyPrinter;
2740 ty::tls::with(|tcx| {
2741 let val = tcx.lift(val).unwrap();
2742 let ty = tcx.lift(ty).unwrap();
2743 let mut cx = FmtPrinter::new(tcx, fmt, Namespace::ValueNS);
2744 cx.print_alloc_ids = true;
2745 cx.pretty_print_const_value(val, ty, print_types)?;
2746 Ok(())
2747 })
2748}
2749
dc9dc135 2750impl<'tcx> graph::DirectedGraph for Body<'tcx> {
3157f602 2751 type Node = BasicBlock;
8faf50e0 2752}
3157f602 2753
dc9dc135 2754impl<'tcx> graph::WithNumNodes for Body<'tcx> {
f9f354fc 2755 #[inline]
94b46f34
XL
2756 fn num_nodes(&self) -> usize {
2757 self.basic_blocks.len()
2758 }
8faf50e0 2759}
3157f602 2760
dc9dc135 2761impl<'tcx> graph::WithStartNode for Body<'tcx> {
f9f354fc 2762 #[inline]
94b46f34
XL
2763 fn start_node(&self) -> Self::Node {
2764 START_BLOCK
2765 }
8faf50e0 2766}
3157f602 2767
dc9dc135 2768impl<'tcx> graph::WithSuccessors for Body<'tcx> {
f9f354fc 2769 #[inline]
dfeec247 2770 fn successors(&self, node: Self::Node) -> <Self as GraphSuccessors<'_>>::Iter {
83c7162d 2771 self.basic_blocks[node].terminator().successors().cloned()
3157f602
XL
2772 }
2773}
2774
dc9dc135 2775impl<'a, 'b> graph::GraphSuccessors<'b> for Body<'a> {
3157f602 2776 type Item = BasicBlock;
83c7162d 2777 type Iter = iter::Cloned<Successors<'b>>;
3157f602 2778}
9e0c209e 2779
f9f354fc
XL
2780impl graph::GraphPredecessors<'graph> for Body<'tcx> {
2781 type Item = BasicBlock;
2782 type Iter = smallvec::IntoIter<[BasicBlock; 4]>;
2783}
2784
2785impl graph::WithPredecessors for Body<'tcx> {
2786 #[inline]
2787 fn predecessors(&self, node: Self::Node) -> <Self as graph::GraphPredecessors<'_>>::Iter {
2788 self.predecessors()[node].clone().into_iter()
2789 }
2790}
2791
ba9703b0
XL
2792/// `Location` represents the position of the start of the statement; or, if
2793/// `statement_index` equals the number of statements, then the start of the
2794/// terminator.
532ac7d7 2795#[derive(Copy, Clone, PartialEq, Eq, Hash, Ord, PartialOrd, HashStable)]
9e0c209e 2796pub struct Location {
e1599b0c 2797 /// The block that the location is within.
9e0c209e
SL
2798 pub block: BasicBlock,
2799
9e0c209e
SL
2800 pub statement_index: usize,
2801}
2802
2803impl fmt::Debug for Location {
0bf4aa26 2804 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
9e0c209e
SL
2805 write!(fmt, "{:?}[{}]", self.block, self.statement_index)
2806 }
2807}
2808
2809impl Location {
416331ca 2810 pub const START: Location = Location { block: START_BLOCK, statement_index: 0 };
83c7162d 2811
abe05a73
XL
2812 /// Returns the location immediately after this one within the enclosing block.
2813 ///
2814 /// Note that if this location represents a terminator, then the
2815 /// resulting location would be out of bounds and invalid.
2816 pub fn successor_within_block(&self) -> Location {
416331ca 2817 Location { block: self.block, statement_index: self.statement_index + 1 }
abe05a73
XL
2818 }
2819
a1dfa0c6 2820 /// Returns `true` if `other` is earlier in the control flow graph than `self`.
f9f354fc 2821 pub fn is_predecessor_of<'tcx>(&self, other: Location, body: &Body<'tcx>) -> bool {
a1dfa0c6
XL
2822 // If we are in the same block as the other location and are an earlier statement
2823 // then we are a predecessor of `other`.
2824 if self.block == other.block && self.statement_index < other.statement_index {
2825 return true;
2826 }
2827
f9f354fc
XL
2828 let predecessors = body.predecessors();
2829
a1dfa0c6 2830 // If we're in another block, then we want to check that block is a predecessor of `other`.
f9f354fc 2831 let mut queue: Vec<BasicBlock> = predecessors[other.block].to_vec();
a1dfa0c6
XL
2832 let mut visited = FxHashSet::default();
2833
2834 while let Some(block) = queue.pop() {
2835 // If we haven't visited this block before, then make sure we visit it's predecessors.
2836 if visited.insert(block) {
f9f354fc 2837 queue.extend(predecessors[block].iter().cloned());
a1dfa0c6
XL
2838 } else {
2839 continue;
2840 }
2841
2842 // If we found the block that `self` is in, then we are a predecessor of `other` (since
2843 // we found that block by looking at the predecessors of `other`).
2844 if self.block == block {
2845 return true;
2846 }
2847 }
2848
2849 false
2850 }
2851
83c7162d 2852 pub fn dominates(&self, other: Location, dominators: &Dominators<BasicBlock>) -> bool {
9e0c209e
SL
2853 if self.block == other.block {
2854 self.statement_index <= other.statement_index
2855 } else {
2856 dominators.is_dominated_by(other.block, self.block)
2857 }
2858 }
2859}