]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir/src/interpret/place.rs
New upstream version 1.48.0+dfsg1
[rustc.git] / compiler / rustc_mir / src / interpret / place.rs
CommitLineData
b7449926
XL
1//! Computations on places -- field projections, going from mir::Place, and writing
2//! into a place.
3//! All high-level functions to write to memory work on places as destinations.
4
5use std::convert::TryFrom;
0bf4aa26 6use std::hash::Hash;
b7449926 7
60c5eb7d 8use rustc_macros::HashStable;
ba9703b0
XL
9use rustc_middle::mir;
10use rustc_middle::ty::layout::{PrimitiveExt, TyAndLayout};
11use rustc_middle::ty::{self, Ty};
f035d41b 12use rustc_target::abi::{Abi, Align, FieldsShape, TagEncoding};
ba9703b0 13use rustc_target::abi::{HasDataLayout, LayoutOf, Size, VariantIdx, Variants};
ff7c6d11 14
0bf4aa26 15use super::{
1b1a35ee
XL
16 mir_assign_valid_types, truncate, AllocId, AllocMap, Allocation, AllocationExtra, ConstAlloc,
17 ImmTy, Immediate, InterpCx, InterpResult, LocalValue, Machine, MemoryKind, OpTy, Operand,
18 Pointer, PointerArithmetic, Scalar, ScalarMaybeUninit,
b7449926 19};
ff7c6d11 20
60c5eb7d 21#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
dfeec247 22/// Information required for the sound usage of a `MemPlace`.
f9f354fc 23pub enum MemPlaceMeta<Tag = ()> {
dfeec247 24 /// The unsized payload (e.g. length for slices or vtable pointer for trait objects).
f9f354fc 25 Meta(Scalar<Tag>),
dfeec247
XL
26 /// `Sized` types or unsized `extern type`
27 None,
28 /// The address of this place may not be taken. This protects the `MemPlace` from coming from
ba9703b0 29 /// a ZST Operand without a backing allocation and being converted to an integer address. This
dfeec247
XL
30 /// should be impossible, because you can't take the address of an operand, but this is a second
31 /// protection layer ensuring that we don't mess up.
32 Poison,
33}
34
f9f354fc
XL
35impl<Tag> MemPlaceMeta<Tag> {
36 pub fn unwrap_meta(self) -> Scalar<Tag> {
dfeec247
XL
37 match self {
38 Self::Meta(s) => s,
39 Self::None | Self::Poison => {
40 bug!("expected wide pointer extra data (e.g. slice length or trait object vtable)")
41 }
42 }
43 }
44 fn has_meta(self) -> bool {
45 match self {
46 Self::Meta(_) => true,
47 Self::None | Self::Poison => false,
48 }
49 }
dfeec247 50
dfeec247
XL
51 pub fn erase_tag(self) -> MemPlaceMeta<()> {
52 match self {
53 Self::Meta(s) => MemPlaceMeta::Meta(s.erase_tag()),
54 Self::None => MemPlaceMeta::None,
55 Self::Poison => MemPlaceMeta::Poison,
56 }
57 }
58}
59
60#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
f9f354fc 61pub struct MemPlace<Tag = ()> {
b7449926
XL
62 /// A place may have an integral pointer for ZSTs, and since it might
63 /// be turned back into a reference before ever being dereferenced.
3dfed10e 64 /// However, it may never be uninit.
f9f354fc 65 pub ptr: Scalar<Tag>,
b7449926 66 pub align: Align,
9fa01778 67 /// Metadata for unsized places. Interpretation is up to the type.
b7449926 68 /// Must not be present for sized types, but can be missing for unsized types
0731742a 69 /// (e.g., `extern type`).
f9f354fc 70 pub meta: MemPlaceMeta<Tag>,
b7449926
XL
71}
72
60c5eb7d 73#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
f9f354fc 74pub enum Place<Tag = ()> {
2c00a5a8 75 /// A place referring to a value allocated in the `Memory` system.
f9f354fc 76 Ptr(MemPlace<Tag>),
b7449926
XL
77
78 /// To support alloc-free locals, we are able to write directly to a local.
79 /// (Without that optimization, we'd just always be a `MemPlace`.)
dfeec247 80 Local { frame: usize, local: mir::Local },
b7449926
XL
81}
82
b7449926 83#[derive(Copy, Clone, Debug)]
dfeec247 84pub struct PlaceTy<'tcx, Tag = ()> {
60c5eb7d 85 place: Place<Tag>, // Keep this private; it helps enforce invariants.
ba9703b0 86 pub layout: TyAndLayout<'tcx>,
ff7c6d11
XL
87}
88
0bf4aa26
XL
89impl<'tcx, Tag> ::std::ops::Deref for PlaceTy<'tcx, Tag> {
90 type Target = Place<Tag>;
b7449926 91 #[inline(always)]
0bf4aa26 92 fn deref(&self) -> &Place<Tag> {
b7449926
XL
93 &self.place
94 }
ff7c6d11
XL
95}
96
b7449926 97/// A MemPlace with its layout. Constructing it is only possible in this module.
9fa01778 98#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
dfeec247 99pub struct MPlaceTy<'tcx, Tag = ()> {
0bf4aa26 100 mplace: MemPlace<Tag>,
ba9703b0 101 pub layout: TyAndLayout<'tcx>,
b7449926
XL
102}
103
0bf4aa26
XL
104impl<'tcx, Tag> ::std::ops::Deref for MPlaceTy<'tcx, Tag> {
105 type Target = MemPlace<Tag>;
b7449926 106 #[inline(always)]
0bf4aa26 107 fn deref(&self) -> &MemPlace<Tag> {
b7449926
XL
108 &self.mplace
109 }
110}
111
0bf4aa26 112impl<'tcx, Tag> From<MPlaceTy<'tcx, Tag>> for PlaceTy<'tcx, Tag> {
b7449926 113 #[inline(always)]
0bf4aa26 114 fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
dfeec247 115 PlaceTy { place: Place::Ptr(mplace.mplace), layout: mplace.layout }
ff7c6d11 116 }
b7449926 117}
ff7c6d11 118
48663c56
XL
119impl<Tag> MemPlace<Tag> {
120 /// Replace ptr tag, maintain vtable tag (if any)
0bf4aa26 121 #[inline]
48663c56 122 pub fn replace_tag(self, new_tag: Tag) -> Self {
dfeec247 123 MemPlace { ptr: self.ptr.erase_tag().with_tag(new_tag), align: self.align, meta: self.meta }
0bf4aa26 124 }
0bf4aa26 125
0bf4aa26 126 #[inline]
48663c56 127 pub fn erase_tag(self) -> MemPlace {
dfeec247 128 MemPlace { ptr: self.ptr.erase_tag(), align: self.align, meta: self.meta.erase_tag() }
0bf4aa26
XL
129 }
130
b7449926 131 #[inline(always)]
dfeec247
XL
132 fn from_scalar_ptr(ptr: Scalar<Tag>, align: Align) -> Self {
133 MemPlace { ptr, align, meta: MemPlaceMeta::None }
ff7c6d11
XL
134 }
135
b7449926 136 #[inline(always)]
0bf4aa26 137 pub fn from_ptr(ptr: Pointer<Tag>, align: Align) -> Self {
94b46f34 138 Self::from_scalar_ptr(ptr.into(), align)
ff7c6d11
XL
139 }
140
60c5eb7d 141 /// Turn a mplace into a (thin or wide) pointer, as a reference, pointing to the same space.
a1dfa0c6
XL
142 /// This is the inverse of `ref_to_mplace`.
143 #[inline(always)]
144 pub fn to_ref(self) -> Immediate<Tag> {
145 match self.meta {
dfeec247
XL
146 MemPlaceMeta::None => Immediate::Scalar(self.ptr.into()),
147 MemPlaceMeta::Meta(meta) => Immediate::ScalarPair(self.ptr.into(), meta.into()),
148 MemPlaceMeta::Poison => bug!(
149 "MPlaceTy::dangling may never be used to produce a \
150 place that will have the address of its pointee taken"
151 ),
a1dfa0c6
XL
152 }
153 }
154
155 pub fn offset(
156 self,
157 offset: Size,
dfeec247 158 meta: MemPlaceMeta<Tag>,
a1dfa0c6 159 cx: &impl HasDataLayout,
dc9dc135 160 ) -> InterpResult<'tcx, Self> {
a1dfa0c6
XL
161 Ok(MemPlace {
162 ptr: self.ptr.ptr_offset(offset, cx)?,
163 align: self.align.restrict_for_offset(offset),
164 meta,
165 })
166 }
0bf4aa26 167}
b7449926 168
0bf4aa26
XL
169impl<'tcx, Tag> MPlaceTy<'tcx, Tag> {
170 /// Produces a MemPlace that works for ZST but nothing else
171 #[inline]
ba9703b0 172 pub fn dangling(layout: TyAndLayout<'tcx>, cx: &impl HasDataLayout) -> Self {
dfeec247 173 let align = layout.align.abi;
ba9703b0 174 let ptr = Scalar::from_machine_usize(align.bytes(), cx);
dfeec247
XL
175 // `Poison` this to make sure that the pointer value `ptr` is never observable by the program.
176 MPlaceTy { mplace: MemPlace { ptr, align, meta: MemPlaceMeta::Poison }, layout }
ff7c6d11
XL
177 }
178
48663c56 179 /// Replace ptr tag, maintain vtable tag (if any)
0731742a 180 #[inline]
48663c56 181 pub fn replace_tag(self, new_tag: Tag) -> Self {
dfeec247 182 MPlaceTy { mplace: self.mplace.replace_tag(new_tag), layout: self.layout }
0731742a
XL
183 }
184
185 #[inline]
a1dfa0c6
XL
186 pub fn offset(
187 self,
188 offset: Size,
dfeec247 189 meta: MemPlaceMeta<Tag>,
ba9703b0 190 layout: TyAndLayout<'tcx>,
a1dfa0c6 191 cx: &impl HasDataLayout,
dc9dc135 192 ) -> InterpResult<'tcx, Self> {
dfeec247 193 Ok(MPlaceTy { mplace: self.mplace.offset(offset, meta, cx)?, layout })
a1dfa0c6
XL
194 }
195
b7449926 196 #[inline]
ba9703b0 197 fn from_aligned_ptr(ptr: Pointer<Tag>, layout: TyAndLayout<'tcx>) -> Self {
a1dfa0c6 198 MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout }
ff7c6d11
XL
199 }
200
b7449926 201 #[inline]
dc9dc135 202 pub(super) fn len(self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
b7449926 203 if self.layout.is_unsized() {
0bf4aa26 204 // We need to consult `meta` metadata
1b1a35ee 205 match self.layout.ty.kind() {
ba9703b0 206 ty::Slice(..) | ty::Str => self.mplace.meta.unwrap_meta().to_machine_usize(cx),
b7449926 207 _ => bug!("len not supported on unsized type {:?}", self.layout.ty),
ff7c6d11 208 }
b7449926
XL
209 } else {
210 // Go through the layout. There are lots of types that support a length,
0731742a 211 // e.g., SIMD types.
b7449926 212 match self.layout.fields {
ba9703b0 213 FieldsShape::Array { count, .. } => Ok(count),
b7449926
XL
214 _ => bug!("len not supported on sized type {:?}", self.layout.ty),
215 }
216 }
217 }
ff7c6d11 218
b7449926 219 #[inline]
dc9dc135 220 pub(super) fn vtable(self) -> Scalar<Tag> {
1b1a35ee 221 match self.layout.ty.kind() {
dfeec247 222 ty::Dynamic(..) => self.mplace.meta.unwrap_meta(),
b7449926 223 _ => bug!("vtable not supported on type {:?}", self.layout.ty),
ff7c6d11
XL
224 }
225 }
226}
227
416331ca 228// These are defined here because they produce a place.
9fa01778 229impl<'tcx, Tag: ::std::fmt::Debug + Copy> OpTy<'tcx, Tag> {
b7449926 230 #[inline(always)]
dfeec247
XL
231 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
232 /// read from the resulting mplace, not to get its address back.
233 pub fn try_as_mplace(
234 self,
235 cx: &impl HasDataLayout,
236 ) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>> {
9fa01778 237 match *self {
b7449926 238 Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }),
dfeec247
XL
239 Operand::Immediate(_) if self.layout.is_zst() => {
240 Ok(MPlaceTy::dangling(self.layout, cx))
241 }
ba9703b0 242 Operand::Immediate(imm) => Err(ImmTy::from_immediate(imm, self.layout)),
b7449926
XL
243 }
244 }
245
246 #[inline(always)]
dfeec247
XL
247 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
248 /// read from the resulting mplace, not to get its address back.
249 pub fn assert_mem_place(self, cx: &impl HasDataLayout) -> MPlaceTy<'tcx, Tag> {
250 self.try_as_mplace(cx).unwrap()
b7449926
XL
251 }
252}
253
416331ca 254impl<Tag: ::std::fmt::Debug> Place<Tag> {
b7449926 255 #[inline]
416331ca 256 pub fn assert_mem_place(self) -> MemPlace<Tag> {
b7449926
XL
257 match self {
258 Place::Ptr(mplace) => mplace,
416331ca 259 _ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self),
b7449926
XL
260 }
261 }
b7449926
XL
262}
263
0bf4aa26 264impl<'tcx, Tag: ::std::fmt::Debug> PlaceTy<'tcx, Tag> {
b7449926 265 #[inline]
416331ca
XL
266 pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
267 MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout }
b7449926
XL
268 }
269}
270
0bf4aa26 271// separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385
ba9703b0 272impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M>
0bf4aa26 273where
a1dfa0c6 274 // FIXME: Working around https://github.com/rust-lang/rust/issues/54385
dc9dc135
XL
275 Tag: ::std::fmt::Debug + Copy + Eq + Hash + 'static,
276 M: Machine<'mir, 'tcx, PointerTag = Tag>,
a1dfa0c6 277 // FIXME: Working around https://github.com/rust-lang/rust/issues/24159
ba9703b0 278 M::MemoryMap: AllocMap<AllocId, (MemoryKind<M::MemoryKind>, Allocation<Tag, M::AllocExtra>)>,
48663c56 279 M::AllocExtra: AllocationExtra<Tag>,
0bf4aa26 280{
60c5eb7d 281 /// Take a value, which represents a (thin or wide) reference, and make it a place.
a1dfa0c6 282 /// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`.
e1599b0c
XL
283 ///
284 /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
285 /// want to ever use the place for memory access!
286 /// Generally prefer `deref_operand`.
b7449926 287 pub fn ref_to_mplace(
0bf4aa26 288 &self,
a1dfa0c6 289 val: ImmTy<'tcx, M::PointerTag>,
dc9dc135 290 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247
XL
291 let pointee_type =
292 val.layout.ty.builtin_deref(true).expect("`ref_to_mplace` called on non-ptr type").ty;
b7449926 293 let layout = self.layout_of(pointee_type)?;
60c5eb7d 294 let (ptr, meta) = match *val {
3dfed10e 295 Immediate::Scalar(ptr) => (ptr.check_init()?, MemPlaceMeta::None),
dfeec247 296 Immediate::ScalarPair(ptr, meta) => {
3dfed10e 297 (ptr.check_init()?, MemPlaceMeta::Meta(meta.check_init()?))
dfeec247 298 }
60c5eb7d 299 };
0bf4aa26 300
a1dfa0c6 301 let mplace = MemPlace {
60c5eb7d 302 ptr,
9fa01778
XL
303 // We could use the run-time alignment here. For now, we do not, because
304 // the point of tracking the alignment here is to make sure that the *static*
305 // alignment information emitted with the loads is correct. The run-time
306 // alignment can only be more restrictive.
a1dfa0c6 307 align: layout.align.abi,
60c5eb7d 308 meta,
b7449926
XL
309 };
310 Ok(MPlaceTy { mplace, layout })
311 }
312
416331ca
XL
313 /// Take an operand, representing a pointer, and dereference it to a place -- that
314 /// will always be a MemPlace. Lives in `place.rs` because it creates a place.
a1dfa0c6
XL
315 pub fn deref_operand(
316 &self,
317 src: OpTy<'tcx, M::PointerTag>,
dc9dc135 318 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6
XL
319 let val = self.read_immediate(src)?;
320 trace!("deref to {} on {:?}", val.layout.ty, *val);
e1599b0c 321 let place = self.ref_to_mplace(val)?;
f9f354fc 322 self.mplace_access_checked(place, None)
0bf4aa26
XL
323 }
324
416331ca
XL
325 /// Check if the given place is good for memory access with the given
326 /// size, falling back to the layout's size if `None` (in the latter case,
327 /// this must be a statically sized type).
328 ///
329 /// On success, returns `None` for zero-sized accesses (where nothing else is
330 /// left to do) and a `Pointer` to use for the actual access otherwise.
331 #[inline]
dfeec247 332 pub(super) fn check_mplace_access(
416331ca
XL
333 &self,
334 place: MPlaceTy<'tcx, M::PointerTag>,
335 size: Option<Size>,
336 ) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>> {
337 let size = size.unwrap_or_else(|| {
338 assert!(!place.layout.is_unsized());
dfeec247 339 assert!(!place.meta.has_meta());
416331ca
XL
340 place.layout.size
341 });
342 self.memory.check_ptr_access(place.ptr, size, place.align)
343 }
344
e1599b0c
XL
345 /// Return the "access-checked" version of this `MPlace`, where for non-ZST
346 /// this is definitely a `Pointer`.
f9f354fc
XL
347 ///
348 /// `force_align` must only be used when correct alignment does not matter,
349 /// like in Stacked Borrows.
e1599b0c
XL
350 pub fn mplace_access_checked(
351 &self,
352 mut place: MPlaceTy<'tcx, M::PointerTag>,
f9f354fc 353 force_align: Option<Align>,
e1599b0c 354 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247
XL
355 let (size, align) = self
356 .size_and_align_of_mplace(place)?
e1599b0c
XL
357 .unwrap_or((place.layout.size, place.layout.align.abi));
358 assert!(place.mplace.align <= align, "dynamic alignment less strict than static one?");
f9f354fc
XL
359 // Check (stricter) dynamic alignment, unless forced otherwise.
360 place.mplace.align = force_align.unwrap_or(align);
e1599b0c
XL
361 // When dereferencing a pointer, it must be non-NULL, aligned, and live.
362 if let Some(ptr) = self.check_mplace_access(place, Some(size))? {
363 place.mplace.ptr = ptr.into();
364 }
365 Ok(place)
366 }
367
416331ca
XL
368 /// Force `place.ptr` to a `Pointer`.
369 /// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot.
dfeec247 370 pub(super) fn force_mplace_ptr(
416331ca
XL
371 &self,
372 mut place: MPlaceTy<'tcx, M::PointerTag>,
373 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
374 place.mplace.ptr = self.force_ptr(place.mplace.ptr)?.into();
375 Ok(place)
376 }
377
ba9703b0
XL
378 /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
379 /// always possible without allocating, so it can take `&self`. Also return the field's layout.
b7449926 380 /// This supports both struct and array fields.
ba9703b0
XL
381 ///
382 /// This also works for arrays, but then the `usize` index type is restricting.
383 /// For indexing into arrays, use `mplace_index`.
b7449926
XL
384 #[inline(always)]
385 pub fn mplace_field(
8faf50e0 386 &self,
0bf4aa26 387 base: MPlaceTy<'tcx, M::PointerTag>,
ba9703b0 388 field: usize,
dc9dc135 389 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0
XL
390 let offset = base.layout.fields.offset(field);
391 let field_layout = base.layout.field(self, field)?;
b7449926 392
9fa01778 393 // Offset may need adjustment for unsized fields.
0bf4aa26 394 let (meta, offset) = if field_layout.is_unsized() {
9fa01778
XL
395 // Re-use parent metadata to determine dynamic field layout.
396 // With custom DSTS, this *will* execute user-defined code, but the same
397 // happens at run-time so that's okay.
a1dfa0c6
XL
398 let align = match self.size_and_align_of(base.meta, field_layout)? {
399 Some((_, align)) => align,
dfeec247 400 None if offset == Size::ZERO => {
a1dfa0c6
XL
401 // An extern type at offset 0, we fall back to its static alignment.
402 // FIXME: Once we have made decisions for how to handle size and alignment
403 // of `extern type`, this should be adapted. It is just a temporary hack
404 // to get some code to work that probably ought to work.
dfeec247
XL
405 field_layout.align.abi
406 }
f035d41b
XL
407 None => span_bug!(
408 self.cur_span(),
409 "cannot compute offset for extern type field at non-0 offset"
410 ),
a1dfa0c6
XL
411 };
412 (base.meta, offset.align_to(align))
b7449926 413 } else {
0bf4aa26 414 // base.meta could be present; we might be accessing a sized field of an unsized
b7449926 415 // struct.
dfeec247 416 (MemPlaceMeta::None, offset)
b7449926
XL
417 };
418
a1dfa0c6
XL
419 // We do not look at `base.layout.align` nor `field_layout.align`, unlike
420 // codegen -- mostly to see if we can get away with that
421 base.offset(offset, meta, field_layout, self)
ff7c6d11
XL
422 }
423
ba9703b0
XL
424 /// Index into an array.
425 #[inline(always)]
426 pub fn mplace_index(
427 &self,
428 base: MPlaceTy<'tcx, M::PointerTag>,
429 index: u64,
430 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
431 // Not using the layout method because we want to compute on u64
432 match base.layout.fields {
433 FieldsShape::Array { stride, .. } => {
434 let len = base.len(self)?;
435 if index >= len {
436 // This can only be reached in ConstProp and non-rustc-MIR.
437 throw_ub!(BoundsCheckFailed { len, index });
438 }
439 let offset = stride * index; // `Size` multiplication
440 // All fields have the same layout.
441 let field_layout = base.layout.field(self, 0)?;
442
443 assert!(!field_layout.is_unsized());
444 base.offset(offset, MemPlaceMeta::None, field_layout, self)
445 }
f035d41b
XL
446 _ => span_bug!(
447 self.cur_span(),
448 "`mplace_index` called on non-array type {:?}",
449 base.layout.ty
450 ),
ba9703b0
XL
451 }
452 }
453
b7449926
XL
454 // Iterates over all fields of an array. Much more efficient than doing the
455 // same by repeatedly calling `mplace_array`.
dfeec247 456 pub(super) fn mplace_array_fields(
0531ce1d 457 &self,
0bf4aa26 458 base: MPlaceTy<'tcx, Tag>,
dc9dc135 459 ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'tcx>
0bf4aa26 460 {
b7449926
XL
461 let len = base.len(self)?; // also asserts that we have a type where this makes sense
462 let stride = match base.layout.fields {
ba9703b0 463 FieldsShape::Array { stride, .. } => stride,
f035d41b 464 _ => span_bug!(self.cur_span(), "mplace_array_fields: expected an array layout"),
94b46f34 465 };
b7449926
XL
466 let layout = base.layout.field(self, 0)?;
467 let dl = &self.tcx.data_layout;
ba9703b0
XL
468 // `Size` multiplication
469 Ok((0..len).map(move |i| base.offset(stride * i, MemPlaceMeta::None, layout, dl)))
0531ce1d
XL
470 }
471
dfeec247 472 fn mplace_subslice(
8faf50e0 473 &self,
0bf4aa26 474 base: MPlaceTy<'tcx, M::PointerTag>,
b7449926
XL
475 from: u64,
476 to: u64,
60c5eb7d 477 from_end: bool,
dc9dc135 478 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
b7449926 479 let len = base.len(self)?; // also asserts that we have a type where this makes sense
60c5eb7d 480 let actual_to = if from_end {
ba9703b0 481 if from.checked_add(to).map_or(true, |to| to > len) {
dfeec247 482 // This can only be reached in ConstProp and non-rustc-MIR.
ba9703b0 483 throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
dfeec247 484 }
ba9703b0 485 len.checked_sub(to).unwrap()
60c5eb7d
XL
486 } else {
487 to
488 };
b7449926
XL
489
490 // Not using layout method because that works with usize, and does not work with slices
491 // (that have count 0 in their layout).
492 let from_offset = match base.layout.fields {
ba9703b0 493 FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
f035d41b
XL
494 _ => {
495 span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
496 }
ff7c6d11 497 };
b7449926 498
0bf4aa26 499 // Compute meta and new layout
ba9703b0 500 let inner_len = actual_to.checked_sub(from).unwrap();
1b1a35ee 501 let (meta, ty) = match base.layout.ty.kind() {
b7449926
XL
502 // It is not nice to match on the type, but that seems to be the only way to
503 // implement this.
dfeec247 504 ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(inner, inner_len)),
b7449926 505 ty::Slice(..) => {
ba9703b0 506 let len = Scalar::from_machine_usize(inner_len, self);
dfeec247 507 (MemPlaceMeta::Meta(len), base.layout.ty)
b7449926 508 }
f035d41b
XL
509 _ => {
510 span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
511 }
b7449926
XL
512 };
513 let layout = self.layout_of(ty)?;
a1dfa0c6 514 base.offset(from_offset, meta, layout, self)
b7449926
XL
515 }
516
dfeec247 517 pub(super) fn mplace_downcast(
b7449926 518 &self,
0bf4aa26 519 base: MPlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 520 variant: VariantIdx,
dc9dc135 521 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
b7449926 522 // Downcasts only change the layout
dfeec247 523 assert!(!base.meta.has_meta());
b7449926
XL
524 Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..base })
525 }
526
527 /// Project into an mplace
dfeec247 528 pub(super) fn mplace_projection(
b7449926 529 &self,
0bf4aa26 530 base: MPlaceTy<'tcx, M::PointerTag>,
f9f354fc 531 proj_elem: mir::PlaceElem<'tcx>,
dc9dc135 532 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0 533 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 534 Ok(match proj_elem {
ba9703b0 535 Field(field, _) => self.mplace_field(base, field.index())?,
b7449926
XL
536 Downcast(_, variant) => self.mplace_downcast(base, variant)?,
537 Deref => self.deref_operand(base.into())?,
538
539 Index(local) => {
9fa01778
XL
540 let layout = self.layout_of(self.tcx.types.usize)?;
541 let n = self.access_local(self.frame(), local, Some(layout))?;
542 let n = self.read_scalar(n)?;
ba9703b0 543 let n = u64::try_from(
3dfed10e 544 self.force_bits(n.check_init()?, self.tcx.data_layout.pointer_size)?,
ba9703b0
XL
545 )
546 .unwrap();
547 self.mplace_index(base, n)?
b7449926
XL
548 }
549
dfeec247 550 ConstantIndex { offset, min_length, from_end } => {
b7449926 551 let n = base.len(self)?;
1b1a35ee 552 if n < min_length {
dfeec247 553 // This can only be reached in ConstProp and non-rustc-MIR.
1b1a35ee 554 throw_ub!(BoundsCheckFailed { len: min_length, index: n });
dfeec247 555 }
b7449926
XL
556
557 let index = if from_end {
ba9703b0 558 assert!(0 < offset && offset <= min_length);
1b1a35ee 559 n.checked_sub(offset).unwrap()
b7449926 560 } else {
dfeec247 561 assert!(offset < min_length);
1b1a35ee 562 offset
b7449926
XL
563 };
564
ba9703b0 565 self.mplace_index(base, index)?
b7449926
XL
566 }
567
1b1a35ee 568 Subslice { from, to, from_end } => self.mplace_subslice(base, from, to, from_end)?,
b7449926 569 })
ff7c6d11
XL
570 }
571
9fa01778 572 /// Gets the place of a field inside the place, and also the field's type.
b7449926 573 /// Just a convenience function, but used quite a bit.
a1dfa0c6
XL
574 /// This is the only projection that might have a side-effect: We cannot project
575 /// into the field of a local `ScalarPair`, we have to first allocate it.
b7449926 576 pub fn place_field(
ff7c6d11 577 &mut self,
0bf4aa26 578 base: PlaceTy<'tcx, M::PointerTag>,
ba9703b0 579 field: usize,
dc9dc135 580 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
581 // FIXME: We could try to be smarter and avoid allocation for fields that span the
582 // entire place.
583 let mplace = self.force_allocation(base)?;
584 Ok(self.mplace_field(mplace, field)?.into())
ff7c6d11
XL
585 }
586
ba9703b0
XL
587 pub fn place_index(
588 &mut self,
589 base: PlaceTy<'tcx, M::PointerTag>,
590 index: u64,
591 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
592 let mplace = self.force_allocation(base)?;
593 Ok(self.mplace_index(mplace, index)?.into())
594 }
595
b7449926 596 pub fn place_downcast(
a1dfa0c6 597 &self,
0bf4aa26 598 base: PlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 599 variant: VariantIdx,
dc9dc135 600 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
601 // Downcast just changes the layout
602 Ok(match base.place {
dfeec247
XL
603 Place::Ptr(mplace) => {
604 self.mplace_downcast(MPlaceTy { mplace, layout: base.layout }, variant)?.into()
605 }
b7449926 606 Place::Local { .. } => {
a1dfa0c6 607 let layout = base.layout.for_variant(self, variant);
b7449926 608 PlaceTy { layout, ..base }
ff7c6d11 609 }
b7449926 610 })
ff7c6d11
XL
611 }
612
9fa01778 613 /// Projects into a place.
b7449926
XL
614 pub fn place_projection(
615 &mut self,
0bf4aa26 616 base: PlaceTy<'tcx, M::PointerTag>,
f9f354fc 617 &proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>,
dc9dc135 618 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
ba9703b0 619 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 620 Ok(match proj_elem {
ba9703b0 621 Field(field, _) => self.place_field(base, field.index())?,
b7449926
XL
622 Downcast(_, variant) => self.place_downcast(base, variant)?,
623 Deref => self.deref_operand(self.place_to_op(base)?)?.into(),
624 // For the other variants, we have to force an allocation.
625 // This matches `operand_projection`.
626 Subslice { .. } | ConstantIndex { .. } | Index(_) => {
627 let mplace = self.force_allocation(base)?;
628 self.mplace_projection(mplace, proj_elem)?.into()
629 }
630 })
631 }
ff7c6d11 632
9fa01778 633 /// Computes a place. You should only use this if you intend to write into this
b7449926 634 /// place; for reading, a more efficient alternative is `eval_place_for_read`.
0bf4aa26
XL
635 pub fn eval_place(
636 &mut self,
ba9703b0 637 place: mir::Place<'tcx>,
dc9dc135 638 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
f9f354fc
XL
639 let mut place_ty = PlaceTy {
640 // This works even for dead/uninitialized locals; we check further when writing
641 place: Place::Local { frame: self.frame_idx(), local: place.local },
642 layout: self.layout_of_local(self.frame(), place.local, None)?,
e1599b0c 643 };
b7449926 644
e1599b0c 645 for elem in place.projection.iter() {
f9f354fc 646 place_ty = self.place_projection(place_ty, &elem)?
e1599b0c 647 }
ff7c6d11 648
3dfed10e 649 trace!("{:?}", self.dump_place(place_ty.place));
f9f354fc
XL
650 // Sanity-check the type we ended up with.
651 debug_assert!(mir_assign_valid_types(
652 *self.tcx,
f035d41b 653 self.param_env,
f9f354fc
XL
654 self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
655 place.ty(&self.frame().body.local_decls, *self.tcx).ty
656 ))?,
657 place_ty.layout,
658 ));
e1599b0c 659 Ok(place_ty)
ff7c6d11
XL
660 }
661
b7449926 662 /// Write a scalar to a place
60c5eb7d 663 #[inline(always)]
b7449926 664 pub fn write_scalar(
ff7c6d11 665 &mut self,
f9f354fc 666 val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
0bf4aa26 667 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 668 ) -> InterpResult<'tcx> {
a1dfa0c6 669 self.write_immediate(Immediate::Scalar(val.into()), dest)
b7449926 670 }
ff7c6d11 671
a1dfa0c6 672 /// Write an immediate to a place
0bf4aa26 673 #[inline(always)]
a1dfa0c6 674 pub fn write_immediate(
b7449926 675 &mut self,
a1dfa0c6 676 src: Immediate<M::PointerTag>,
0bf4aa26 677 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 678 ) -> InterpResult<'tcx> {
a1dfa0c6 679 self.write_immediate_no_validate(src, dest)?;
0bf4aa26
XL
680
681 if M::enforce_validity(self) {
682 // Data got changed, better make sure it matches the type!
74b04a01 683 self.validate_operand(self.place_to_op(dest)?)?;
dc9dc135
XL
684 }
685
686 Ok(())
687 }
688
689 /// Write an `Immediate` to memory.
690 #[inline(always)]
691 pub fn write_immediate_to_mplace(
692 &mut self,
693 src: Immediate<M::PointerTag>,
694 dest: MPlaceTy<'tcx, M::PointerTag>,
695 ) -> InterpResult<'tcx> {
696 self.write_immediate_to_mplace_no_validate(src, dest)?;
697
698 if M::enforce_validity(self) {
699 // Data got changed, better make sure it matches the type!
74b04a01 700 self.validate_operand(dest.into())?;
0bf4aa26
XL
701 }
702
703 Ok(())
704 }
705
a1dfa0c6 706 /// Write an immediate to a place.
0bf4aa26
XL
707 /// If you use this you are responsible for validating that things got copied at the
708 /// right type.
a1dfa0c6 709 fn write_immediate_no_validate(
0bf4aa26 710 &mut self,
a1dfa0c6 711 src: Immediate<M::PointerTag>,
0bf4aa26 712 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 713 ) -> InterpResult<'tcx> {
0bf4aa26
XL
714 if cfg!(debug_assertions) {
715 // This is a very common path, avoid some checks in release mode
716 assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
a1dfa0c6 717 match src {
f9f354fc 718 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Ptr(_))) => assert_eq!(
dfeec247
XL
719 self.pointer_size(),
720 dest.layout.size,
721 "Size mismatch when writing pointer"
722 ),
f9f354fc 723 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Raw { size, .. })) => {
dfeec247 724 assert_eq!(
ba9703b0 725 Size::from_bytes(size),
dfeec247
XL
726 dest.layout.size,
727 "Size mismatch when writing bits"
728 )
729 }
3dfed10e 730 Immediate::Scalar(ScalarMaybeUninit::Uninit) => {} // uninit can have any size
a1dfa0c6 731 Immediate::ScalarPair(_, _) => {
0bf4aa26
XL
732 // FIXME: Can we check anything here?
733 }
734 }
735 }
a1dfa0c6 736 trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
0bf4aa26 737
a1dfa0c6 738 // See if we can avoid an allocation. This is the counterpart to `try_read_immediate`,
b7449926
XL
739 // but not factored as a separate function.
740 let mplace = match dest.place {
ff7c6d11 741 Place::Local { frame, local } => {
f035d41b 742 match M::access_local_mut(self, frame, local)? {
48663c56
XL
743 Ok(local) => {
744 // Local can be updated in-place.
745 *local = LocalValue::Live(Operand::Immediate(src));
b7449926 746 return Ok(());
48663c56
XL
747 }
748 Err(mplace) => {
749 // The local is in memory, go on below.
750 mplace
751 }
ff7c6d11 752 }
dfeec247 753 }
48663c56 754 Place::Ptr(mplace) => mplace, // already referring to memory
ff7c6d11 755 };
0bf4aa26 756 let dest = MPlaceTy { mplace, layout: dest.layout };
ff7c6d11 757
b7449926 758 // This is already in memory, write there.
a1dfa0c6 759 self.write_immediate_to_mplace_no_validate(src, dest)
ff7c6d11
XL
760 }
761
a1dfa0c6 762 /// Write an immediate to memory.
dc9dc135 763 /// If you use this you are responsible for validating that things got copied at the
0bf4aa26 764 /// right type.
a1dfa0c6 765 fn write_immediate_to_mplace_no_validate(
b7449926 766 &mut self,
a1dfa0c6 767 value: Immediate<M::PointerTag>,
0bf4aa26 768 dest: MPlaceTy<'tcx, M::PointerTag>,
dc9dc135 769 ) -> InterpResult<'tcx> {
b7449926
XL
770 // Note that it is really important that the type here is the right one, and matches the
771 // type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here
772 // to handle padding properly, which is only correct if we never look at this data with the
773 // wrong type.
774
60c5eb7d 775 // Invalid places are a thing: the return place of a diverging function
dfeec247 776 let ptr = match self.check_mplace_access(dest, None)? {
dc9dc135
XL
777 Some(ptr) => ptr,
778 None => return Ok(()), // zero-sized access
779 };
b7449926 780
f035d41b 781 let tcx = *self.tcx;
0bf4aa26
XL
782 // FIXME: We should check that there are dest.layout.size many bytes available in
783 // memory. The code below is not sufficient, with enough padding it might not
784 // cover all the bytes!
b7449926 785 match value {
a1dfa0c6 786 Immediate::Scalar(scalar) => {
0bf4aa26 787 match dest.layout.abi {
ba9703b0 788 Abi::Scalar(_) => {} // fine
f035d41b
XL
789 _ => span_bug!(
790 self.cur_span(),
791 "write_immediate_to_mplace: invalid Scalar layout: {:#?}",
792 dest.layout
793 ),
0bf4aa26 794 }
60c5eb7d 795 self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar(
f035d41b 796 &tcx,
dfeec247
XL
797 ptr,
798 scalar,
799 dest.layout.size,
b7449926 800 )
ff7c6d11 801 }
a1dfa0c6 802 Immediate::ScalarPair(a_val, b_val) => {
dc9dc135
XL
803 // We checked `ptr_align` above, so all fields will have the alignment they need.
804 // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
805 // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
b7449926 806 let (a, b) = match dest.layout.abi {
ba9703b0 807 Abi::ScalarPair(ref a, ref b) => (&a.value, &b.value),
f035d41b
XL
808 _ => span_bug!(
809 self.cur_span(),
dfeec247
XL
810 "write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
811 dest.layout
812 ),
b7449926 813 };
a1dfa0c6
XL
814 let (a_size, b_size) = (a.size(self), b.size(self));
815 let b_offset = a_size.align_to(b.align(self).abi);
a1dfa0c6
XL
816 let b_ptr = ptr.offset(b_offset, self)?;
817
0bf4aa26
XL
818 // It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
819 // but that does not work: We could be a newtype around a pair, then the
820 // fields do not match the `ScalarPair` components.
821
f035d41b
XL
822 self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar(&tcx, ptr, a_val, a_size)?;
823 self.memory.get_raw_mut(b_ptr.alloc_id)?.write_scalar(&tcx, b_ptr, b_val, b_size)
ff7c6d11 824 }
b7449926 825 }
ff7c6d11
XL
826 }
827
9fa01778 828 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26
XL
829 /// Use `copy_op_transmute` if the layouts could disagree.
830 #[inline(always)]
b7449926 831 pub fn copy_op(
ff7c6d11 832 &mut self,
0bf4aa26
XL
833 src: OpTy<'tcx, M::PointerTag>,
834 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 835 ) -> InterpResult<'tcx> {
0bf4aa26
XL
836 self.copy_op_no_validate(src, dest)?;
837
838 if M::enforce_validity(self) {
839 // Data got changed, better make sure it matches the type!
74b04a01 840 self.validate_operand(self.place_to_op(dest)?)?;
0bf4aa26
XL
841 }
842
843 Ok(())
844 }
845
9fa01778 846 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26 847 /// Use `copy_op_transmute` if the layouts could disagree.
dc9dc135 848 /// Also, if you use this you are responsible for validating that things get copied at the
0bf4aa26
XL
849 /// right type.
850 fn copy_op_no_validate(
851 &mut self,
852 src: OpTy<'tcx, M::PointerTag>,
853 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 854 ) -> InterpResult<'tcx> {
0bf4aa26
XL
855 // We do NOT compare the types for equality, because well-typed code can
856 // actually "transmute" `&mut T` to `&T` in an assignment without a cast.
f035d41b 857 if !mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
ba9703b0 858 span_bug!(
f035d41b 859 self.cur_span(),
ba9703b0
XL
860 "type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
861 src.layout.ty,
862 dest.layout.ty,
863 );
864 }
b7449926
XL
865
866 // Let us see if the layout is simple so we take a shortcut, avoid force_allocation.
a1dfa0c6 867 let src = match self.try_read_immediate(src)? {
0bf4aa26 868 Ok(src_val) => {
48663c56 869 assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
0bf4aa26 870 // Yay, we got a value that we can write directly.
9fa01778
XL
871 // FIXME: Add a check to make sure that if `src` is indirect,
872 // it does not overlap with `dest`.
dc9dc135 873 return self.write_immediate_no_validate(*src_val, dest);
0bf4aa26
XL
874 }
875 Err(mplace) => mplace,
b7449926
XL
876 };
877 // Slow path, this does not fit into an immediate. Just memcpy.
0bf4aa26
XL
878 trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
879
48663c56
XL
880 // This interprets `src.meta` with the `dest` local's layout, if an unsized local
881 // is being initialized!
882 let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?;
883 let size = size.unwrap_or_else(|| {
dfeec247
XL
884 assert!(
885 !dest.layout.is_unsized(),
886 "Cannot copy into already initialized unsized place"
887 );
48663c56
XL
888 dest.layout.size
889 });
890 assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances");
416331ca 891
dfeec247
XL
892 let src = self
893 .check_mplace_access(src, Some(size))
e1599b0c 894 .expect("places should be checked on creation");
dfeec247
XL
895 let dest = self
896 .check_mplace_access(dest, Some(size))
e1599b0c 897 .expect("places should be checked on creation");
416331ca
XL
898 let (src_ptr, dest_ptr) = match (src, dest) {
899 (Some(src_ptr), Some(dest_ptr)) => (src_ptr, dest_ptr),
900 (None, None) => return Ok(()), // zero-sized copy
901 _ => bug!("The pointers should both be Some or both None"),
902 };
903
dfeec247 904 self.memory.copy(src_ptr, dest_ptr, size, /*nonoverlapping*/ true)
0bf4aa26
XL
905 }
906
9fa01778 907 /// Copies the data from an operand to a place. The layouts may disagree, but they must
0bf4aa26
XL
908 /// have the same size.
909 pub fn copy_op_transmute(
910 &mut self,
911 src: OpTy<'tcx, M::PointerTag>,
912 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 913 ) -> InterpResult<'tcx> {
f035d41b 914 if mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
0bf4aa26
XL
915 // Fast path: Just use normal `copy_op`
916 return self.copy_op(src, dest);
917 }
48663c56 918 // We still require the sizes to match.
dfeec247
XL
919 if src.layout.size != dest.layout.size {
920 // FIXME: This should be an assert instead of an error, but if we transmute within an
921 // array length computation, `typeck` may not have yet been run and errored out. In fact
922 // most likey we *are* running `typeck` right now. Investigate whether we can bail out
3dfed10e 923 // on `typeck_results().has_errors` at all const eval entry points.
dfeec247 924 debug!("Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest);
ba9703b0 925 self.tcx.sess.delay_span_bug(
f035d41b 926 self.cur_span(),
ba9703b0
XL
927 "size-changing transmute, should have been caught by transmute checking",
928 );
929 throw_inval!(TransmuteSizeDiff(src.layout.ty, dest.layout.ty));
dfeec247 930 }
48663c56
XL
931 // Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want
932 // to avoid that here.
dfeec247
XL
933 assert!(
934 !src.layout.is_unsized() && !dest.layout.is_unsized(),
935 "Cannot transmute unsized data"
936 );
0bf4aa26
XL
937
938 // The hard case is `ScalarPair`. `src` is already read from memory in this case,
939 // using `src.layout` to figure out which bytes to use for the 1st and 2nd field.
940 // We have to write them to `dest` at the offsets they were *read at*, which is
941 // not necessarily the same as the offsets in `dest.layout`!
942 // Hence we do the copy with the source layout on both sides. We also make sure to write
943 // into memory, because if `dest` is a local we would not even have a way to write
944 // at the `src` offsets; the fact that we came from a different layout would
945 // just be lost.
946 let dest = self.force_allocation(dest)?;
947 self.copy_op_no_validate(
948 src,
949 PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }),
950 )?;
951
952 if M::enforce_validity(self) {
953 // Data got changed, better make sure it matches the type!
74b04a01 954 self.validate_operand(dest.into())?;
0bf4aa26
XL
955 }
956
957 Ok(())
ff7c6d11
XL
958 }
959
9fa01778 960 /// Ensures that a place is in memory, and returns where it is.
a1dfa0c6
XL
961 /// If the place currently refers to a local that doesn't yet have a matching allocation,
962 /// create such an allocation.
b7449926 963 /// This is essentially `force_to_memplace`.
48663c56
XL
964 ///
965 /// This supports unsized types and returns the computed size to avoid some
966 /// redundant computation when copying; use `force_allocation` for a simpler, sized-only
967 /// version.
968 pub fn force_allocation_maybe_sized(
ff7c6d11 969 &mut self,
0bf4aa26 970 place: PlaceTy<'tcx, M::PointerTag>,
dfeec247 971 meta: MemPlaceMeta<M::PointerTag>,
dc9dc135 972 ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)> {
48663c56 973 let (mplace, size) = match place.place {
b7449926 974 Place::Local { frame, local } => {
f035d41b 975 match M::access_local_mut(self, frame, local)? {
dfeec247 976 Ok(&mut local_val) => {
b7449926 977 // We need to make an allocation.
48663c56 978
b7449926 979 // We need the layout of the local. We can NOT use the layout we got,
0731742a 980 // that might e.g., be an inner field of a struct with `Scalar` layout,
b7449926 981 // that has different alignment than the outer field.
ba9703b0
XL
982 let local_layout =
983 self.layout_of_local(&self.stack()[frame], local, None)?;
dfeec247
XL
984 // We also need to support unsized types, and hence cannot use `allocate`.
985 let (size, align) = self
986 .size_and_align_of(meta, local_layout)?
48663c56
XL
987 .expect("Cannot allocate for non-dyn-sized type");
988 let ptr = self.memory.allocate(size, align, MemoryKind::Stack);
989 let mplace = MemPlace { ptr: ptr.into(), align, meta };
dfeec247 990 if let LocalValue::Live(Operand::Immediate(value)) = local_val {
48663c56
XL
991 // Preserve old value.
992 // We don't have to validate as we can assume the local
993 // was already valid for its type.
994 let mplace = MPlaceTy { mplace, layout: local_layout };
995 self.write_immediate_to_mplace_no_validate(value, mplace)?;
996 }
997 // Now we can call `access_mut` again, asserting it goes well,
998 // and actually overwrite things.
f035d41b 999 *M::access_local_mut(self, frame, local).unwrap().unwrap() =
48663c56
XL
1000 LocalValue::Live(Operand::Indirect(mplace));
1001 (mplace, Some(size))
b7449926 1002 }
48663c56 1003 Err(mplace) => (mplace, None), // this already was an indirect local
b7449926
XL
1004 }
1005 }
dfeec247 1006 Place::Ptr(mplace) => (mplace, None),
b7449926
XL
1007 };
1008 // Return with the original layout, so that the caller can go on
48663c56
XL
1009 Ok((MPlaceTy { mplace, layout: place.layout }, size))
1010 }
1011
1012 #[inline(always)]
1013 pub fn force_allocation(
1014 &mut self,
1015 place: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 1016 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247 1017 Ok(self.force_allocation_maybe_sized(place, MemPlaceMeta::None)?.0)
ff7c6d11
XL
1018 }
1019
b7449926 1020 pub fn allocate(
ff7c6d11 1021 &mut self,
ba9703b0
XL
1022 layout: TyAndLayout<'tcx>,
1023 kind: MemoryKind<M::MemoryKind>,
0731742a 1024 ) -> MPlaceTy<'tcx, M::PointerTag> {
48663c56
XL
1025 let ptr = self.memory.allocate(layout.size, layout.align.abi, kind);
1026 MPlaceTy::from_aligned_ptr(ptr, layout)
b7449926 1027 }
ff7c6d11 1028
60c5eb7d
XL
1029 /// Returns a wide MPlace.
1030 pub fn allocate_str(
1031 &mut self,
1032 str: &str,
ba9703b0 1033 kind: MemoryKind<M::MemoryKind>,
60c5eb7d 1034 ) -> MPlaceTy<'tcx, M::PointerTag> {
ba9703b0
XL
1035 let ptr = self.memory.allocate_bytes(str.as_bytes(), kind);
1036 let meta = Scalar::from_machine_usize(u64::try_from(str.len()).unwrap(), self);
60c5eb7d
XL
1037 let mplace = MemPlace {
1038 ptr: ptr.into(),
1039 align: Align::from_bytes(1).unwrap(),
dfeec247 1040 meta: MemPlaceMeta::Meta(meta),
60c5eb7d
XL
1041 };
1042
1043 let layout = self.layout_of(self.tcx.mk_static_str()).unwrap();
1044 MPlaceTy { mplace, layout }
1045 }
1046
f035d41b
XL
1047 /// Writes the discriminant of the given variant.
1048 pub fn write_discriminant(
b7449926 1049 &mut self,
a1dfa0c6 1050 variant_index: VariantIdx,
0bf4aa26 1051 dest: PlaceTy<'tcx, M::PointerTag>,
dc9dc135 1052 ) -> InterpResult<'tcx> {
60c5eb7d
XL
1053 // Layout computation excludes uninhabited variants from consideration
1054 // therefore there's no way to represent those variants in the given layout.
1055 if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() {
1056 throw_ub!(Unreachable);
1057 }
e74abb32 1058
b7449926 1059 match dest.layout.variants {
ba9703b0 1060 Variants::Single { index } => {
60c5eb7d 1061 assert_eq!(index, variant_index);
ff7c6d11 1062 }
ba9703b0 1063 Variants::Multiple {
f035d41b
XL
1064 tag_encoding: TagEncoding::Direct,
1065 tag: ref tag_layout,
1066 tag_field,
532ac7d7
XL
1067 ..
1068 } => {
60c5eb7d 1069 // No need to validate that the discriminant here because the
ba9703b0 1070 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1071
48663c56
XL
1072 let discr_val =
1073 dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val;
b7449926
XL
1074
1075 // raw discriminants for enums are isize or bigger during
1076 // their computation, but the in-memory tag is the smallest possible
1077 // representation
f035d41b
XL
1078 let size = tag_layout.value.size(self);
1079 let tag_val = truncate(discr_val, size);
b7449926 1080
f035d41b
XL
1081 let tag_dest = self.place_field(dest, tag_field)?;
1082 self.write_scalar(Scalar::from_uint(tag_val, size), tag_dest)?;
ff7c6d11 1083 }
ba9703b0 1084 Variants::Multiple {
f035d41b
XL
1085 tag_encoding:
1086 TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
1087 tag: ref tag_layout,
1088 tag_field,
b7449926 1089 ..
ff7c6d11 1090 } => {
60c5eb7d 1091 // No need to validate that the discriminant here because the
ba9703b0 1092 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1093
b7449926 1094 if variant_index != dataful_variant {
e1599b0c 1095 let variants_start = niche_variants.start().as_u32();
dfeec247
XL
1096 let variant_index_relative = variant_index
1097 .as_u32()
e1599b0c
XL
1098 .checked_sub(variants_start)
1099 .expect("overflow computing relative variant idx");
1100 // We need to use machine arithmetic when taking into account `niche_start`:
f035d41b
XL
1101 // tag_val = variant_index_relative + niche_start_val
1102 let tag_layout = self.layout_of(tag_layout.value.to_int_ty(*self.tcx))?;
1103 let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
e1599b0c 1104 let variant_index_relative_val =
f035d41b
XL
1105 ImmTy::from_uint(variant_index_relative, tag_layout);
1106 let tag_val = self.binary_op(
e1599b0c
XL
1107 mir::BinOp::Add,
1108 variant_index_relative_val,
1109 niche_start_val,
b7449926 1110 )?;
e1599b0c 1111 // Write result.
f035d41b
XL
1112 let niche_dest = self.place_field(dest, tag_field)?;
1113 self.write_immediate(*tag_val, niche_dest)?;
b7449926
XL
1114 }
1115 }
1116 }
ff7c6d11 1117
b7449926
XL
1118 Ok(())
1119 }
ff7c6d11 1120
a1dfa0c6
XL
1121 pub fn raw_const_to_mplace(
1122 &self,
1b1a35ee 1123 raw: ConstAlloc<'tcx>,
dc9dc135 1124 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6 1125 // This must be an allocation in `tcx`
f9f354fc 1126 let _ = self.tcx.global_alloc(raw.alloc_id);
3dfed10e 1127 let ptr = self.global_base_pointer(Pointer::from(raw.alloc_id))?;
a1dfa0c6 1128 let layout = self.layout_of(raw.ty)?;
dc9dc135 1129 Ok(MPlaceTy::from_aligned_ptr(ptr, layout))
a1dfa0c6
XL
1130 }
1131
b7449926
XL
1132 /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type.
1133 /// Also return some more information so drop doesn't have to run the same code twice.
dfeec247
XL
1134 pub(super) fn unpack_dyn_trait(
1135 &self,
1136 mplace: MPlaceTy<'tcx, M::PointerTag>,
1137 ) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)> {
dc9dc135 1138 let vtable = mplace.vtable(); // also sanity checks the type
b7449926
XL
1139 let (instance, ty) = self.read_drop_type_from_vtable(vtable)?;
1140 let layout = self.layout_of(ty)?;
1141
1142 // More sanity checks
1143 if cfg!(debug_assertions) {
1144 let (size, align) = self.read_size_and_align_from_vtable(vtable)?;
1145 assert_eq!(size, layout.size);
a1dfa0c6
XL
1146 // only ABI alignment is preserved
1147 assert_eq!(align, layout.align.abi);
ff7c6d11 1148 }
ff7c6d11 1149
dfeec247 1150 let mplace = MPlaceTy { mplace: MemPlace { meta: MemPlaceMeta::None, ..*mplace }, layout };
b7449926 1151 Ok((instance, mplace))
ff7c6d11
XL
1152 }
1153}