]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir/src/interpret/place.rs
Merge tag 'debian/1.52.1+dfsg1-1_exp2' into proxmox/buster
[rustc.git] / compiler / rustc_mir / src / interpret / place.rs
CommitLineData
b7449926
XL
1//! Computations on places -- field projections, going from mir::Place, and writing
2//! into a place.
3//! All high-level functions to write to memory work on places as destinations.
4
5use std::convert::TryFrom;
29967ef6 6use std::fmt::Debug;
0bf4aa26 7use std::hash::Hash;
b7449926 8
60c5eb7d 9use rustc_macros::HashStable;
ba9703b0
XL
10use rustc_middle::mir;
11use rustc_middle::ty::layout::{PrimitiveExt, TyAndLayout};
12use rustc_middle::ty::{self, Ty};
f035d41b 13use rustc_target::abi::{Abi, Align, FieldsShape, TagEncoding};
ba9703b0 14use rustc_target::abi::{HasDataLayout, LayoutOf, Size, VariantIdx, Variants};
ff7c6d11 15
0bf4aa26 16use super::{
29967ef6
XL
17 mir_assign_valid_types, AllocId, AllocMap, Allocation, AllocationExtra, ConstAlloc, ImmTy,
18 Immediate, InterpCx, InterpResult, LocalValue, Machine, MemoryKind, OpTy, Operand, Pointer,
19 PointerArithmetic, Scalar, ScalarMaybeUninit,
b7449926 20};
ff7c6d11 21
60c5eb7d 22#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
dfeec247 23/// Information required for the sound usage of a `MemPlace`.
f9f354fc 24pub enum MemPlaceMeta<Tag = ()> {
dfeec247 25 /// The unsized payload (e.g. length for slices or vtable pointer for trait objects).
f9f354fc 26 Meta(Scalar<Tag>),
dfeec247
XL
27 /// `Sized` types or unsized `extern type`
28 None,
29 /// The address of this place may not be taken. This protects the `MemPlace` from coming from
ba9703b0 30 /// a ZST Operand without a backing allocation and being converted to an integer address. This
dfeec247
XL
31 /// should be impossible, because you can't take the address of an operand, but this is a second
32 /// protection layer ensuring that we don't mess up.
33 Poison,
34}
35
6a06907d
XL
36#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
37rustc_data_structures::static_assert_size!(MemPlaceMeta, 24);
38
f9f354fc
XL
39impl<Tag> MemPlaceMeta<Tag> {
40 pub fn unwrap_meta(self) -> Scalar<Tag> {
dfeec247
XL
41 match self {
42 Self::Meta(s) => s,
43 Self::None | Self::Poison => {
44 bug!("expected wide pointer extra data (e.g. slice length or trait object vtable)")
45 }
46 }
47 }
48 fn has_meta(self) -> bool {
49 match self {
50 Self::Meta(_) => true,
51 Self::None | Self::Poison => false,
52 }
53 }
dfeec247 54
dfeec247
XL
55 pub fn erase_tag(self) -> MemPlaceMeta<()> {
56 match self {
57 Self::Meta(s) => MemPlaceMeta::Meta(s.erase_tag()),
58 Self::None => MemPlaceMeta::None,
59 Self::Poison => MemPlaceMeta::Poison,
60 }
61 }
62}
63
64#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
f9f354fc 65pub struct MemPlace<Tag = ()> {
b7449926
XL
66 /// A place may have an integral pointer for ZSTs, and since it might
67 /// be turned back into a reference before ever being dereferenced.
3dfed10e 68 /// However, it may never be uninit.
f9f354fc 69 pub ptr: Scalar<Tag>,
b7449926 70 pub align: Align,
9fa01778 71 /// Metadata for unsized places. Interpretation is up to the type.
b7449926 72 /// Must not be present for sized types, but can be missing for unsized types
0731742a 73 /// (e.g., `extern type`).
f9f354fc 74 pub meta: MemPlaceMeta<Tag>,
b7449926
XL
75}
76
6a06907d
XL
77#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
78rustc_data_structures::static_assert_size!(MemPlace, 56);
79
60c5eb7d 80#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, HashStable)]
f9f354fc 81pub enum Place<Tag = ()> {
2c00a5a8 82 /// A place referring to a value allocated in the `Memory` system.
f9f354fc 83 Ptr(MemPlace<Tag>),
b7449926
XL
84
85 /// To support alloc-free locals, we are able to write directly to a local.
86 /// (Without that optimization, we'd just always be a `MemPlace`.)
dfeec247 87 Local { frame: usize, local: mir::Local },
b7449926
XL
88}
89
6a06907d
XL
90#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
91rustc_data_structures::static_assert_size!(Place, 64);
92
b7449926 93#[derive(Copy, Clone, Debug)]
dfeec247 94pub struct PlaceTy<'tcx, Tag = ()> {
60c5eb7d 95 place: Place<Tag>, // Keep this private; it helps enforce invariants.
ba9703b0 96 pub layout: TyAndLayout<'tcx>,
ff7c6d11
XL
97}
98
6a06907d
XL
99#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
100rustc_data_structures::static_assert_size!(PlaceTy<'_>, 80);
101
29967ef6 102impl<'tcx, Tag> std::ops::Deref for PlaceTy<'tcx, Tag> {
0bf4aa26 103 type Target = Place<Tag>;
b7449926 104 #[inline(always)]
0bf4aa26 105 fn deref(&self) -> &Place<Tag> {
b7449926
XL
106 &self.place
107 }
ff7c6d11
XL
108}
109
b7449926 110/// A MemPlace with its layout. Constructing it is only possible in this module.
9fa01778 111#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
dfeec247 112pub struct MPlaceTy<'tcx, Tag = ()> {
0bf4aa26 113 mplace: MemPlace<Tag>,
ba9703b0 114 pub layout: TyAndLayout<'tcx>,
b7449926
XL
115}
116
6a06907d
XL
117#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
118rustc_data_structures::static_assert_size!(MPlaceTy<'_>, 72);
119
29967ef6 120impl<'tcx, Tag> std::ops::Deref for MPlaceTy<'tcx, Tag> {
0bf4aa26 121 type Target = MemPlace<Tag>;
b7449926 122 #[inline(always)]
0bf4aa26 123 fn deref(&self) -> &MemPlace<Tag> {
b7449926
XL
124 &self.mplace
125 }
126}
127
0bf4aa26 128impl<'tcx, Tag> From<MPlaceTy<'tcx, Tag>> for PlaceTy<'tcx, Tag> {
b7449926 129 #[inline(always)]
0bf4aa26 130 fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
dfeec247 131 PlaceTy { place: Place::Ptr(mplace.mplace), layout: mplace.layout }
ff7c6d11 132 }
b7449926 133}
ff7c6d11 134
48663c56
XL
135impl<Tag> MemPlace<Tag> {
136 /// Replace ptr tag, maintain vtable tag (if any)
0bf4aa26 137 #[inline]
48663c56 138 pub fn replace_tag(self, new_tag: Tag) -> Self {
dfeec247 139 MemPlace { ptr: self.ptr.erase_tag().with_tag(new_tag), align: self.align, meta: self.meta }
0bf4aa26 140 }
0bf4aa26 141
0bf4aa26 142 #[inline]
48663c56 143 pub fn erase_tag(self) -> MemPlace {
dfeec247 144 MemPlace { ptr: self.ptr.erase_tag(), align: self.align, meta: self.meta.erase_tag() }
0bf4aa26
XL
145 }
146
b7449926 147 #[inline(always)]
dfeec247
XL
148 fn from_scalar_ptr(ptr: Scalar<Tag>, align: Align) -> Self {
149 MemPlace { ptr, align, meta: MemPlaceMeta::None }
ff7c6d11
XL
150 }
151
b7449926 152 #[inline(always)]
0bf4aa26 153 pub fn from_ptr(ptr: Pointer<Tag>, align: Align) -> Self {
94b46f34 154 Self::from_scalar_ptr(ptr.into(), align)
ff7c6d11
XL
155 }
156
60c5eb7d 157 /// Turn a mplace into a (thin or wide) pointer, as a reference, pointing to the same space.
a1dfa0c6
XL
158 /// This is the inverse of `ref_to_mplace`.
159 #[inline(always)]
160 pub fn to_ref(self) -> Immediate<Tag> {
161 match self.meta {
dfeec247
XL
162 MemPlaceMeta::None => Immediate::Scalar(self.ptr.into()),
163 MemPlaceMeta::Meta(meta) => Immediate::ScalarPair(self.ptr.into(), meta.into()),
164 MemPlaceMeta::Poison => bug!(
165 "MPlaceTy::dangling may never be used to produce a \
166 place that will have the address of its pointee taken"
167 ),
a1dfa0c6
XL
168 }
169 }
170
5869c6ff 171 #[inline]
a1dfa0c6
XL
172 pub fn offset(
173 self,
174 offset: Size,
dfeec247 175 meta: MemPlaceMeta<Tag>,
a1dfa0c6 176 cx: &impl HasDataLayout,
dc9dc135 177 ) -> InterpResult<'tcx, Self> {
a1dfa0c6
XL
178 Ok(MemPlace {
179 ptr: self.ptr.ptr_offset(offset, cx)?,
180 align: self.align.restrict_for_offset(offset),
181 meta,
182 })
183 }
0bf4aa26 184}
b7449926 185
6a06907d 186impl<'tcx, Tag: Copy> MPlaceTy<'tcx, Tag> {
0bf4aa26
XL
187 /// Produces a MemPlace that works for ZST but nothing else
188 #[inline]
ba9703b0 189 pub fn dangling(layout: TyAndLayout<'tcx>, cx: &impl HasDataLayout) -> Self {
dfeec247 190 let align = layout.align.abi;
ba9703b0 191 let ptr = Scalar::from_machine_usize(align.bytes(), cx);
dfeec247
XL
192 // `Poison` this to make sure that the pointer value `ptr` is never observable by the program.
193 MPlaceTy { mplace: MemPlace { ptr, align, meta: MemPlaceMeta::Poison }, layout }
ff7c6d11
XL
194 }
195
48663c56 196 /// Replace ptr tag, maintain vtable tag (if any)
0731742a 197 #[inline]
6a06907d 198 pub fn replace_tag(&self, new_tag: Tag) -> Self {
dfeec247 199 MPlaceTy { mplace: self.mplace.replace_tag(new_tag), layout: self.layout }
0731742a
XL
200 }
201
202 #[inline]
a1dfa0c6 203 pub fn offset(
6a06907d 204 &self,
a1dfa0c6 205 offset: Size,
dfeec247 206 meta: MemPlaceMeta<Tag>,
ba9703b0 207 layout: TyAndLayout<'tcx>,
a1dfa0c6 208 cx: &impl HasDataLayout,
dc9dc135 209 ) -> InterpResult<'tcx, Self> {
dfeec247 210 Ok(MPlaceTy { mplace: self.mplace.offset(offset, meta, cx)?, layout })
a1dfa0c6
XL
211 }
212
b7449926 213 #[inline]
ba9703b0 214 fn from_aligned_ptr(ptr: Pointer<Tag>, layout: TyAndLayout<'tcx>) -> Self {
a1dfa0c6 215 MPlaceTy { mplace: MemPlace::from_ptr(ptr, layout.align.abi), layout }
ff7c6d11
XL
216 }
217
b7449926 218 #[inline]
6a06907d 219 pub(super) fn len(&self, cx: &impl HasDataLayout) -> InterpResult<'tcx, u64> {
b7449926 220 if self.layout.is_unsized() {
0bf4aa26 221 // We need to consult `meta` metadata
1b1a35ee 222 match self.layout.ty.kind() {
ba9703b0 223 ty::Slice(..) | ty::Str => self.mplace.meta.unwrap_meta().to_machine_usize(cx),
b7449926 224 _ => bug!("len not supported on unsized type {:?}", self.layout.ty),
ff7c6d11 225 }
b7449926
XL
226 } else {
227 // Go through the layout. There are lots of types that support a length,
0731742a 228 // e.g., SIMD types.
b7449926 229 match self.layout.fields {
ba9703b0 230 FieldsShape::Array { count, .. } => Ok(count),
b7449926
XL
231 _ => bug!("len not supported on sized type {:?}", self.layout.ty),
232 }
233 }
234 }
ff7c6d11 235
b7449926 236 #[inline]
6a06907d 237 pub(super) fn vtable(&self) -> Scalar<Tag> {
1b1a35ee 238 match self.layout.ty.kind() {
dfeec247 239 ty::Dynamic(..) => self.mplace.meta.unwrap_meta(),
b7449926 240 _ => bug!("vtable not supported on type {:?}", self.layout.ty),
ff7c6d11
XL
241 }
242 }
243}
244
416331ca 245// These are defined here because they produce a place.
29967ef6 246impl<'tcx, Tag: Debug + Copy> OpTy<'tcx, Tag> {
b7449926 247 #[inline(always)]
dfeec247
XL
248 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
249 /// read from the resulting mplace, not to get its address back.
250 pub fn try_as_mplace(
6a06907d 251 &self,
dfeec247
XL
252 cx: &impl HasDataLayout,
253 ) -> Result<MPlaceTy<'tcx, Tag>, ImmTy<'tcx, Tag>> {
6a06907d 254 match **self {
b7449926 255 Operand::Indirect(mplace) => Ok(MPlaceTy { mplace, layout: self.layout }),
dfeec247
XL
256 Operand::Immediate(_) if self.layout.is_zst() => {
257 Ok(MPlaceTy::dangling(self.layout, cx))
258 }
ba9703b0 259 Operand::Immediate(imm) => Err(ImmTy::from_immediate(imm, self.layout)),
b7449926
XL
260 }
261 }
262
263 #[inline(always)]
dfeec247
XL
264 /// Note: do not call `as_ref` on the resulting place. This function should only be used to
265 /// read from the resulting mplace, not to get its address back.
6a06907d 266 pub fn assert_mem_place(&self, cx: &impl HasDataLayout) -> MPlaceTy<'tcx, Tag> {
dfeec247 267 self.try_as_mplace(cx).unwrap()
b7449926
XL
268 }
269}
270
29967ef6 271impl<Tag: Debug> Place<Tag> {
b7449926 272 #[inline]
416331ca 273 pub fn assert_mem_place(self) -> MemPlace<Tag> {
b7449926
XL
274 match self {
275 Place::Ptr(mplace) => mplace,
416331ca 276 _ => bug!("assert_mem_place: expected Place::Ptr, got {:?}", self),
b7449926
XL
277 }
278 }
b7449926
XL
279}
280
29967ef6 281impl<'tcx, Tag: Debug> PlaceTy<'tcx, Tag> {
b7449926 282 #[inline]
416331ca
XL
283 pub fn assert_mem_place(self) -> MPlaceTy<'tcx, Tag> {
284 MPlaceTy { mplace: self.place.assert_mem_place(), layout: self.layout }
b7449926
XL
285 }
286}
287
0bf4aa26 288// separating the pointer tag for `impl Trait`, see https://github.com/rust-lang/rust/issues/54385
ba9703b0 289impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M>
0bf4aa26 290where
a1dfa0c6 291 // FIXME: Working around https://github.com/rust-lang/rust/issues/54385
29967ef6 292 Tag: Debug + Copy + Eq + Hash + 'static,
dc9dc135 293 M: Machine<'mir, 'tcx, PointerTag = Tag>,
a1dfa0c6 294 // FIXME: Working around https://github.com/rust-lang/rust/issues/24159
ba9703b0 295 M::MemoryMap: AllocMap<AllocId, (MemoryKind<M::MemoryKind>, Allocation<Tag, M::AllocExtra>)>,
48663c56 296 M::AllocExtra: AllocationExtra<Tag>,
0bf4aa26 297{
60c5eb7d 298 /// Take a value, which represents a (thin or wide) reference, and make it a place.
a1dfa0c6 299 /// Alignment is just based on the type. This is the inverse of `MemPlace::to_ref()`.
e1599b0c
XL
300 ///
301 /// Only call this if you are sure the place is "valid" (aligned and inbounds), or do not
302 /// want to ever use the place for memory access!
303 /// Generally prefer `deref_operand`.
b7449926 304 pub fn ref_to_mplace(
0bf4aa26 305 &self,
6a06907d 306 val: &ImmTy<'tcx, M::PointerTag>,
dc9dc135 307 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247
XL
308 let pointee_type =
309 val.layout.ty.builtin_deref(true).expect("`ref_to_mplace` called on non-ptr type").ty;
b7449926 310 let layout = self.layout_of(pointee_type)?;
6a06907d 311 let (ptr, meta) = match **val {
3dfed10e 312 Immediate::Scalar(ptr) => (ptr.check_init()?, MemPlaceMeta::None),
dfeec247 313 Immediate::ScalarPair(ptr, meta) => {
3dfed10e 314 (ptr.check_init()?, MemPlaceMeta::Meta(meta.check_init()?))
dfeec247 315 }
60c5eb7d 316 };
0bf4aa26 317
a1dfa0c6 318 let mplace = MemPlace {
60c5eb7d 319 ptr,
9fa01778
XL
320 // We could use the run-time alignment here. For now, we do not, because
321 // the point of tracking the alignment here is to make sure that the *static*
322 // alignment information emitted with the loads is correct. The run-time
323 // alignment can only be more restrictive.
a1dfa0c6 324 align: layout.align.abi,
60c5eb7d 325 meta,
b7449926
XL
326 };
327 Ok(MPlaceTy { mplace, layout })
328 }
329
416331ca
XL
330 /// Take an operand, representing a pointer, and dereference it to a place -- that
331 /// will always be a MemPlace. Lives in `place.rs` because it creates a place.
a1dfa0c6
XL
332 pub fn deref_operand(
333 &self,
6a06907d 334 src: &OpTy<'tcx, M::PointerTag>,
dc9dc135 335 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6
XL
336 let val = self.read_immediate(src)?;
337 trace!("deref to {} on {:?}", val.layout.ty, *val);
6a06907d 338 let place = self.ref_to_mplace(&val)?;
f9f354fc 339 self.mplace_access_checked(place, None)
0bf4aa26
XL
340 }
341
416331ca
XL
342 /// Check if the given place is good for memory access with the given
343 /// size, falling back to the layout's size if `None` (in the latter case,
344 /// this must be a statically sized type).
345 ///
346 /// On success, returns `None` for zero-sized accesses (where nothing else is
347 /// left to do) and a `Pointer` to use for the actual access otherwise.
348 #[inline]
dfeec247 349 pub(super) fn check_mplace_access(
416331ca 350 &self,
6a06907d 351 place: &MPlaceTy<'tcx, M::PointerTag>,
416331ca
XL
352 size: Option<Size>,
353 ) -> InterpResult<'tcx, Option<Pointer<M::PointerTag>>> {
354 let size = size.unwrap_or_else(|| {
355 assert!(!place.layout.is_unsized());
dfeec247 356 assert!(!place.meta.has_meta());
416331ca
XL
357 place.layout.size
358 });
359 self.memory.check_ptr_access(place.ptr, size, place.align)
360 }
361
e1599b0c
XL
362 /// Return the "access-checked" version of this `MPlace`, where for non-ZST
363 /// this is definitely a `Pointer`.
f9f354fc
XL
364 ///
365 /// `force_align` must only be used when correct alignment does not matter,
366 /// like in Stacked Borrows.
e1599b0c
XL
367 pub fn mplace_access_checked(
368 &self,
369 mut place: MPlaceTy<'tcx, M::PointerTag>,
f9f354fc 370 force_align: Option<Align>,
e1599b0c 371 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247 372 let (size, align) = self
6a06907d 373 .size_and_align_of_mplace(&place)?
e1599b0c
XL
374 .unwrap_or((place.layout.size, place.layout.align.abi));
375 assert!(place.mplace.align <= align, "dynamic alignment less strict than static one?");
f9f354fc
XL
376 // Check (stricter) dynamic alignment, unless forced otherwise.
377 place.mplace.align = force_align.unwrap_or(align);
e1599b0c 378 // When dereferencing a pointer, it must be non-NULL, aligned, and live.
6a06907d 379 if let Some(ptr) = self.check_mplace_access(&place, Some(size))? {
e1599b0c
XL
380 place.mplace.ptr = ptr.into();
381 }
382 Ok(place)
383 }
384
416331ca
XL
385 /// Force `place.ptr` to a `Pointer`.
386 /// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot.
dfeec247 387 pub(super) fn force_mplace_ptr(
416331ca
XL
388 &self,
389 mut place: MPlaceTy<'tcx, M::PointerTag>,
390 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
391 place.mplace.ptr = self.force_ptr(place.mplace.ptr)?.into();
392 Ok(place)
393 }
394
ba9703b0
XL
395 /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
396 /// always possible without allocating, so it can take `&self`. Also return the field's layout.
b7449926 397 /// This supports both struct and array fields.
ba9703b0
XL
398 ///
399 /// This also works for arrays, but then the `usize` index type is restricting.
400 /// For indexing into arrays, use `mplace_index`.
b7449926
XL
401 #[inline(always)]
402 pub fn mplace_field(
8faf50e0 403 &self,
6a06907d 404 base: &MPlaceTy<'tcx, M::PointerTag>,
ba9703b0 405 field: usize,
dc9dc135 406 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0
XL
407 let offset = base.layout.fields.offset(field);
408 let field_layout = base.layout.field(self, field)?;
b7449926 409
9fa01778 410 // Offset may need adjustment for unsized fields.
0bf4aa26 411 let (meta, offset) = if field_layout.is_unsized() {
9fa01778
XL
412 // Re-use parent metadata to determine dynamic field layout.
413 // With custom DSTS, this *will* execute user-defined code, but the same
414 // happens at run-time so that's okay.
6a06907d 415 let align = match self.size_and_align_of(&base.meta, &field_layout)? {
a1dfa0c6 416 Some((_, align)) => align,
dfeec247 417 None if offset == Size::ZERO => {
a1dfa0c6
XL
418 // An extern type at offset 0, we fall back to its static alignment.
419 // FIXME: Once we have made decisions for how to handle size and alignment
420 // of `extern type`, this should be adapted. It is just a temporary hack
421 // to get some code to work that probably ought to work.
dfeec247
XL
422 field_layout.align.abi
423 }
f035d41b
XL
424 None => span_bug!(
425 self.cur_span(),
426 "cannot compute offset for extern type field at non-0 offset"
427 ),
a1dfa0c6
XL
428 };
429 (base.meta, offset.align_to(align))
b7449926 430 } else {
0bf4aa26 431 // base.meta could be present; we might be accessing a sized field of an unsized
b7449926 432 // struct.
dfeec247 433 (MemPlaceMeta::None, offset)
b7449926
XL
434 };
435
a1dfa0c6
XL
436 // We do not look at `base.layout.align` nor `field_layout.align`, unlike
437 // codegen -- mostly to see if we can get away with that
438 base.offset(offset, meta, field_layout, self)
ff7c6d11
XL
439 }
440
ba9703b0
XL
441 /// Index into an array.
442 #[inline(always)]
443 pub fn mplace_index(
444 &self,
6a06907d 445 base: &MPlaceTy<'tcx, M::PointerTag>,
ba9703b0
XL
446 index: u64,
447 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
448 // Not using the layout method because we want to compute on u64
449 match base.layout.fields {
450 FieldsShape::Array { stride, .. } => {
451 let len = base.len(self)?;
452 if index >= len {
453 // This can only be reached in ConstProp and non-rustc-MIR.
454 throw_ub!(BoundsCheckFailed { len, index });
455 }
456 let offset = stride * index; // `Size` multiplication
457 // All fields have the same layout.
458 let field_layout = base.layout.field(self, 0)?;
459
460 assert!(!field_layout.is_unsized());
461 base.offset(offset, MemPlaceMeta::None, field_layout, self)
462 }
f035d41b
XL
463 _ => span_bug!(
464 self.cur_span(),
465 "`mplace_index` called on non-array type {:?}",
466 base.layout.ty
467 ),
ba9703b0
XL
468 }
469 }
470
b7449926
XL
471 // Iterates over all fields of an array. Much more efficient than doing the
472 // same by repeatedly calling `mplace_array`.
dfeec247 473 pub(super) fn mplace_array_fields(
0531ce1d 474 &self,
6a06907d
XL
475 base: &'a MPlaceTy<'tcx, Tag>,
476 ) -> InterpResult<'tcx, impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>> + 'a>
0bf4aa26 477 {
b7449926
XL
478 let len = base.len(self)?; // also asserts that we have a type where this makes sense
479 let stride = match base.layout.fields {
ba9703b0 480 FieldsShape::Array { stride, .. } => stride,
f035d41b 481 _ => span_bug!(self.cur_span(), "mplace_array_fields: expected an array layout"),
94b46f34 482 };
b7449926
XL
483 let layout = base.layout.field(self, 0)?;
484 let dl = &self.tcx.data_layout;
ba9703b0
XL
485 // `Size` multiplication
486 Ok((0..len).map(move |i| base.offset(stride * i, MemPlaceMeta::None, layout, dl)))
0531ce1d
XL
487 }
488
dfeec247 489 fn mplace_subslice(
8faf50e0 490 &self,
6a06907d 491 base: &MPlaceTy<'tcx, M::PointerTag>,
b7449926
XL
492 from: u64,
493 to: u64,
60c5eb7d 494 from_end: bool,
dc9dc135 495 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
b7449926 496 let len = base.len(self)?; // also asserts that we have a type where this makes sense
60c5eb7d 497 let actual_to = if from_end {
ba9703b0 498 if from.checked_add(to).map_or(true, |to| to > len) {
dfeec247 499 // This can only be reached in ConstProp and non-rustc-MIR.
ba9703b0 500 throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
dfeec247 501 }
ba9703b0 502 len.checked_sub(to).unwrap()
60c5eb7d
XL
503 } else {
504 to
505 };
b7449926
XL
506
507 // Not using layout method because that works with usize, and does not work with slices
508 // (that have count 0 in their layout).
509 let from_offset = match base.layout.fields {
ba9703b0 510 FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
f035d41b
XL
511 _ => {
512 span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout)
513 }
ff7c6d11 514 };
b7449926 515
0bf4aa26 516 // Compute meta and new layout
ba9703b0 517 let inner_len = actual_to.checked_sub(from).unwrap();
1b1a35ee 518 let (meta, ty) = match base.layout.ty.kind() {
b7449926
XL
519 // It is not nice to match on the type, but that seems to be the only way to
520 // implement this.
dfeec247 521 ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(inner, inner_len)),
b7449926 522 ty::Slice(..) => {
ba9703b0 523 let len = Scalar::from_machine_usize(inner_len, self);
dfeec247 524 (MemPlaceMeta::Meta(len), base.layout.ty)
b7449926 525 }
f035d41b
XL
526 _ => {
527 span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty)
528 }
b7449926
XL
529 };
530 let layout = self.layout_of(ty)?;
a1dfa0c6 531 base.offset(from_offset, meta, layout, self)
b7449926
XL
532 }
533
6a06907d 534 pub(crate) fn mplace_downcast(
b7449926 535 &self,
6a06907d 536 base: &MPlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 537 variant: VariantIdx,
dc9dc135 538 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
b7449926 539 // Downcasts only change the layout
dfeec247 540 assert!(!base.meta.has_meta());
6a06907d 541 Ok(MPlaceTy { layout: base.layout.for_variant(self, variant), ..*base })
b7449926
XL
542 }
543
544 /// Project into an mplace
dfeec247 545 pub(super) fn mplace_projection(
b7449926 546 &self,
6a06907d 547 base: &MPlaceTy<'tcx, M::PointerTag>,
f9f354fc 548 proj_elem: mir::PlaceElem<'tcx>,
dc9dc135 549 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
ba9703b0 550 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 551 Ok(match proj_elem {
ba9703b0 552 Field(field, _) => self.mplace_field(base, field.index())?,
b7449926 553 Downcast(_, variant) => self.mplace_downcast(base, variant)?,
6a06907d 554 Deref => self.deref_operand(&base.into())?,
b7449926
XL
555
556 Index(local) => {
9fa01778
XL
557 let layout = self.layout_of(self.tcx.types.usize)?;
558 let n = self.access_local(self.frame(), local, Some(layout))?;
6a06907d 559 let n = self.read_scalar(&n)?;
ba9703b0 560 let n = u64::try_from(
3dfed10e 561 self.force_bits(n.check_init()?, self.tcx.data_layout.pointer_size)?,
ba9703b0
XL
562 )
563 .unwrap();
564 self.mplace_index(base, n)?
b7449926
XL
565 }
566
dfeec247 567 ConstantIndex { offset, min_length, from_end } => {
b7449926 568 let n = base.len(self)?;
1b1a35ee 569 if n < min_length {
dfeec247 570 // This can only be reached in ConstProp and non-rustc-MIR.
1b1a35ee 571 throw_ub!(BoundsCheckFailed { len: min_length, index: n });
dfeec247 572 }
b7449926
XL
573
574 let index = if from_end {
ba9703b0 575 assert!(0 < offset && offset <= min_length);
1b1a35ee 576 n.checked_sub(offset).unwrap()
b7449926 577 } else {
dfeec247 578 assert!(offset < min_length);
1b1a35ee 579 offset
b7449926
XL
580 };
581
ba9703b0 582 self.mplace_index(base, index)?
b7449926
XL
583 }
584
1b1a35ee 585 Subslice { from, to, from_end } => self.mplace_subslice(base, from, to, from_end)?,
b7449926 586 })
ff7c6d11
XL
587 }
588
9fa01778 589 /// Gets the place of a field inside the place, and also the field's type.
b7449926 590 /// Just a convenience function, but used quite a bit.
a1dfa0c6
XL
591 /// This is the only projection that might have a side-effect: We cannot project
592 /// into the field of a local `ScalarPair`, we have to first allocate it.
b7449926 593 pub fn place_field(
ff7c6d11 594 &mut self,
6a06907d 595 base: &PlaceTy<'tcx, M::PointerTag>,
ba9703b0 596 field: usize,
dc9dc135 597 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
598 // FIXME: We could try to be smarter and avoid allocation for fields that span the
599 // entire place.
600 let mplace = self.force_allocation(base)?;
6a06907d 601 Ok(self.mplace_field(&mplace, field)?.into())
ff7c6d11
XL
602 }
603
ba9703b0
XL
604 pub fn place_index(
605 &mut self,
6a06907d 606 base: &PlaceTy<'tcx, M::PointerTag>,
ba9703b0
XL
607 index: u64,
608 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
609 let mplace = self.force_allocation(base)?;
6a06907d 610 Ok(self.mplace_index(&mplace, index)?.into())
ba9703b0
XL
611 }
612
b7449926 613 pub fn place_downcast(
a1dfa0c6 614 &self,
6a06907d 615 base: &PlaceTy<'tcx, M::PointerTag>,
a1dfa0c6 616 variant: VariantIdx,
dc9dc135 617 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
b7449926
XL
618 // Downcast just changes the layout
619 Ok(match base.place {
dfeec247 620 Place::Ptr(mplace) => {
6a06907d 621 self.mplace_downcast(&MPlaceTy { mplace, layout: base.layout }, variant)?.into()
dfeec247 622 }
b7449926 623 Place::Local { .. } => {
a1dfa0c6 624 let layout = base.layout.for_variant(self, variant);
6a06907d 625 PlaceTy { layout, ..*base }
ff7c6d11 626 }
b7449926 627 })
ff7c6d11
XL
628 }
629
9fa01778 630 /// Projects into a place.
b7449926
XL
631 pub fn place_projection(
632 &mut self,
6a06907d 633 base: &PlaceTy<'tcx, M::PointerTag>,
f9f354fc 634 &proj_elem: &mir::ProjectionElem<mir::Local, Ty<'tcx>>,
dc9dc135 635 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
ba9703b0 636 use rustc_middle::mir::ProjectionElem::*;
f9f354fc 637 Ok(match proj_elem {
ba9703b0 638 Field(field, _) => self.place_field(base, field.index())?,
b7449926 639 Downcast(_, variant) => self.place_downcast(base, variant)?,
6a06907d 640 Deref => self.deref_operand(&self.place_to_op(base)?)?.into(),
b7449926
XL
641 // For the other variants, we have to force an allocation.
642 // This matches `operand_projection`.
643 Subslice { .. } | ConstantIndex { .. } | Index(_) => {
644 let mplace = self.force_allocation(base)?;
6a06907d 645 self.mplace_projection(&mplace, proj_elem)?.into()
b7449926
XL
646 }
647 })
648 }
ff7c6d11 649
9fa01778 650 /// Computes a place. You should only use this if you intend to write into this
b7449926 651 /// place; for reading, a more efficient alternative is `eval_place_for_read`.
0bf4aa26
XL
652 pub fn eval_place(
653 &mut self,
ba9703b0 654 place: mir::Place<'tcx>,
dc9dc135 655 ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> {
f9f354fc
XL
656 let mut place_ty = PlaceTy {
657 // This works even for dead/uninitialized locals; we check further when writing
658 place: Place::Local { frame: self.frame_idx(), local: place.local },
659 layout: self.layout_of_local(self.frame(), place.local, None)?,
e1599b0c 660 };
b7449926 661
e1599b0c 662 for elem in place.projection.iter() {
6a06907d 663 place_ty = self.place_projection(&place_ty, &elem)?
e1599b0c 664 }
ff7c6d11 665
3dfed10e 666 trace!("{:?}", self.dump_place(place_ty.place));
f9f354fc
XL
667 // Sanity-check the type we ended up with.
668 debug_assert!(mir_assign_valid_types(
669 *self.tcx,
f035d41b 670 self.param_env,
f9f354fc
XL
671 self.layout_of(self.subst_from_current_frame_and_normalize_erasing_regions(
672 place.ty(&self.frame().body.local_decls, *self.tcx).ty
673 ))?,
674 place_ty.layout,
675 ));
e1599b0c 676 Ok(place_ty)
ff7c6d11
XL
677 }
678
b7449926 679 /// Write a scalar to a place
60c5eb7d 680 #[inline(always)]
b7449926 681 pub fn write_scalar(
ff7c6d11 682 &mut self,
f9f354fc 683 val: impl Into<ScalarMaybeUninit<M::PointerTag>>,
6a06907d 684 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 685 ) -> InterpResult<'tcx> {
a1dfa0c6 686 self.write_immediate(Immediate::Scalar(val.into()), dest)
b7449926 687 }
ff7c6d11 688
a1dfa0c6 689 /// Write an immediate to a place
0bf4aa26 690 #[inline(always)]
a1dfa0c6 691 pub fn write_immediate(
b7449926 692 &mut self,
a1dfa0c6 693 src: Immediate<M::PointerTag>,
6a06907d 694 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 695 ) -> InterpResult<'tcx> {
a1dfa0c6 696 self.write_immediate_no_validate(src, dest)?;
0bf4aa26
XL
697
698 if M::enforce_validity(self) {
699 // Data got changed, better make sure it matches the type!
6a06907d 700 self.validate_operand(&self.place_to_op(dest)?)?;
dc9dc135
XL
701 }
702
703 Ok(())
704 }
705
706 /// Write an `Immediate` to memory.
707 #[inline(always)]
708 pub fn write_immediate_to_mplace(
709 &mut self,
710 src: Immediate<M::PointerTag>,
6a06907d 711 dest: &MPlaceTy<'tcx, M::PointerTag>,
dc9dc135
XL
712 ) -> InterpResult<'tcx> {
713 self.write_immediate_to_mplace_no_validate(src, dest)?;
714
715 if M::enforce_validity(self) {
716 // Data got changed, better make sure it matches the type!
6a06907d 717 self.validate_operand(&dest.into())?;
0bf4aa26
XL
718 }
719
720 Ok(())
721 }
722
a1dfa0c6 723 /// Write an immediate to a place.
0bf4aa26
XL
724 /// If you use this you are responsible for validating that things got copied at the
725 /// right type.
a1dfa0c6 726 fn write_immediate_no_validate(
0bf4aa26 727 &mut self,
a1dfa0c6 728 src: Immediate<M::PointerTag>,
6a06907d 729 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 730 ) -> InterpResult<'tcx> {
0bf4aa26
XL
731 if cfg!(debug_assertions) {
732 // This is a very common path, avoid some checks in release mode
733 assert!(!dest.layout.is_unsized(), "Cannot write unsized data");
a1dfa0c6 734 match src {
f9f354fc 735 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Ptr(_))) => assert_eq!(
dfeec247
XL
736 self.pointer_size(),
737 dest.layout.size,
738 "Size mismatch when writing pointer"
739 ),
29967ef6
XL
740 Immediate::Scalar(ScalarMaybeUninit::Scalar(Scalar::Int(int))) => {
741 assert_eq!(int.size(), dest.layout.size, "Size mismatch when writing bits")
dfeec247 742 }
3dfed10e 743 Immediate::Scalar(ScalarMaybeUninit::Uninit) => {} // uninit can have any size
a1dfa0c6 744 Immediate::ScalarPair(_, _) => {
0bf4aa26
XL
745 // FIXME: Can we check anything here?
746 }
747 }
748 }
a1dfa0c6 749 trace!("write_immediate: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
0bf4aa26 750
a1dfa0c6 751 // See if we can avoid an allocation. This is the counterpart to `try_read_immediate`,
b7449926
XL
752 // but not factored as a separate function.
753 let mplace = match dest.place {
ff7c6d11 754 Place::Local { frame, local } => {
f035d41b 755 match M::access_local_mut(self, frame, local)? {
48663c56
XL
756 Ok(local) => {
757 // Local can be updated in-place.
758 *local = LocalValue::Live(Operand::Immediate(src));
b7449926 759 return Ok(());
48663c56
XL
760 }
761 Err(mplace) => {
762 // The local is in memory, go on below.
763 mplace
764 }
ff7c6d11 765 }
dfeec247 766 }
48663c56 767 Place::Ptr(mplace) => mplace, // already referring to memory
ff7c6d11 768 };
0bf4aa26 769 let dest = MPlaceTy { mplace, layout: dest.layout };
ff7c6d11 770
b7449926 771 // This is already in memory, write there.
6a06907d 772 self.write_immediate_to_mplace_no_validate(src, &dest)
ff7c6d11
XL
773 }
774
a1dfa0c6 775 /// Write an immediate to memory.
dc9dc135 776 /// If you use this you are responsible for validating that things got copied at the
0bf4aa26 777 /// right type.
a1dfa0c6 778 fn write_immediate_to_mplace_no_validate(
b7449926 779 &mut self,
a1dfa0c6 780 value: Immediate<M::PointerTag>,
6a06907d 781 dest: &MPlaceTy<'tcx, M::PointerTag>,
dc9dc135 782 ) -> InterpResult<'tcx> {
b7449926
XL
783 // Note that it is really important that the type here is the right one, and matches the
784 // type things are read at. In case `src_val` is a `ScalarPair`, we don't do any magic here
785 // to handle padding properly, which is only correct if we never look at this data with the
786 // wrong type.
787
60c5eb7d 788 // Invalid places are a thing: the return place of a diverging function
dfeec247 789 let ptr = match self.check_mplace_access(dest, None)? {
dc9dc135
XL
790 Some(ptr) => ptr,
791 None => return Ok(()), // zero-sized access
792 };
b7449926 793
f035d41b 794 let tcx = *self.tcx;
0bf4aa26
XL
795 // FIXME: We should check that there are dest.layout.size many bytes available in
796 // memory. The code below is not sufficient, with enough padding it might not
797 // cover all the bytes!
b7449926 798 match value {
a1dfa0c6 799 Immediate::Scalar(scalar) => {
0bf4aa26 800 match dest.layout.abi {
ba9703b0 801 Abi::Scalar(_) => {} // fine
f035d41b
XL
802 _ => span_bug!(
803 self.cur_span(),
804 "write_immediate_to_mplace: invalid Scalar layout: {:#?}",
805 dest.layout
806 ),
0bf4aa26 807 }
60c5eb7d 808 self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar(
f035d41b 809 &tcx,
dfeec247
XL
810 ptr,
811 scalar,
812 dest.layout.size,
b7449926 813 )
ff7c6d11 814 }
a1dfa0c6 815 Immediate::ScalarPair(a_val, b_val) => {
dc9dc135
XL
816 // We checked `ptr_align` above, so all fields will have the alignment they need.
817 // We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
818 // which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
b7449926 819 let (a, b) = match dest.layout.abi {
ba9703b0 820 Abi::ScalarPair(ref a, ref b) => (&a.value, &b.value),
f035d41b
XL
821 _ => span_bug!(
822 self.cur_span(),
dfeec247
XL
823 "write_immediate_to_mplace: invalid ScalarPair layout: {:#?}",
824 dest.layout
825 ),
b7449926 826 };
a1dfa0c6
XL
827 let (a_size, b_size) = (a.size(self), b.size(self));
828 let b_offset = a_size.align_to(b.align(self).abi);
a1dfa0c6
XL
829 let b_ptr = ptr.offset(b_offset, self)?;
830
0bf4aa26
XL
831 // It is tempting to verify `b_offset` against `layout.fields.offset(1)`,
832 // but that does not work: We could be a newtype around a pair, then the
833 // fields do not match the `ScalarPair` components.
834
f035d41b
XL
835 self.memory.get_raw_mut(ptr.alloc_id)?.write_scalar(&tcx, ptr, a_val, a_size)?;
836 self.memory.get_raw_mut(b_ptr.alloc_id)?.write_scalar(&tcx, b_ptr, b_val, b_size)
ff7c6d11 837 }
b7449926 838 }
ff7c6d11
XL
839 }
840
9fa01778 841 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26
XL
842 /// Use `copy_op_transmute` if the layouts could disagree.
843 #[inline(always)]
b7449926 844 pub fn copy_op(
ff7c6d11 845 &mut self,
6a06907d
XL
846 src: &OpTy<'tcx, M::PointerTag>,
847 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 848 ) -> InterpResult<'tcx> {
0bf4aa26
XL
849 self.copy_op_no_validate(src, dest)?;
850
851 if M::enforce_validity(self) {
852 // Data got changed, better make sure it matches the type!
6a06907d 853 self.validate_operand(&self.place_to_op(dest)?)?;
0bf4aa26
XL
854 }
855
856 Ok(())
857 }
858
9fa01778 859 /// Copies the data from an operand to a place. This does not support transmuting!
0bf4aa26 860 /// Use `copy_op_transmute` if the layouts could disagree.
dc9dc135 861 /// Also, if you use this you are responsible for validating that things get copied at the
0bf4aa26
XL
862 /// right type.
863 fn copy_op_no_validate(
864 &mut self,
6a06907d
XL
865 src: &OpTy<'tcx, M::PointerTag>,
866 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 867 ) -> InterpResult<'tcx> {
0bf4aa26
XL
868 // We do NOT compare the types for equality, because well-typed code can
869 // actually "transmute" `&mut T` to `&T` in an assignment without a cast.
f035d41b 870 if !mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
ba9703b0 871 span_bug!(
f035d41b 872 self.cur_span(),
ba9703b0
XL
873 "type mismatch when copying!\nsrc: {:?},\ndest: {:?}",
874 src.layout.ty,
875 dest.layout.ty,
876 );
877 }
b7449926
XL
878
879 // Let us see if the layout is simple so we take a shortcut, avoid force_allocation.
a1dfa0c6 880 let src = match self.try_read_immediate(src)? {
0bf4aa26 881 Ok(src_val) => {
48663c56 882 assert!(!src.layout.is_unsized(), "cannot have unsized immediates");
0bf4aa26 883 // Yay, we got a value that we can write directly.
9fa01778
XL
884 // FIXME: Add a check to make sure that if `src` is indirect,
885 // it does not overlap with `dest`.
dc9dc135 886 return self.write_immediate_no_validate(*src_val, dest);
0bf4aa26
XL
887 }
888 Err(mplace) => mplace,
b7449926
XL
889 };
890 // Slow path, this does not fit into an immediate. Just memcpy.
0bf4aa26
XL
891 trace!("copy_op: {:?} <- {:?}: {}", *dest, src, dest.layout.ty);
892
48663c56
XL
893 // This interprets `src.meta` with the `dest` local's layout, if an unsized local
894 // is being initialized!
895 let (dest, size) = self.force_allocation_maybe_sized(dest, src.meta)?;
896 let size = size.unwrap_or_else(|| {
dfeec247
XL
897 assert!(
898 !dest.layout.is_unsized(),
899 "Cannot copy into already initialized unsized place"
900 );
48663c56
XL
901 dest.layout.size
902 });
903 assert_eq!(src.meta, dest.meta, "Can only copy between equally-sized instances");
416331ca 904
dfeec247 905 let src = self
6a06907d 906 .check_mplace_access(&src, Some(size))
e1599b0c 907 .expect("places should be checked on creation");
dfeec247 908 let dest = self
6a06907d 909 .check_mplace_access(&dest, Some(size))
e1599b0c 910 .expect("places should be checked on creation");
416331ca
XL
911 let (src_ptr, dest_ptr) = match (src, dest) {
912 (Some(src_ptr), Some(dest_ptr)) => (src_ptr, dest_ptr),
913 (None, None) => return Ok(()), // zero-sized copy
914 _ => bug!("The pointers should both be Some or both None"),
915 };
916
dfeec247 917 self.memory.copy(src_ptr, dest_ptr, size, /*nonoverlapping*/ true)
0bf4aa26
XL
918 }
919
9fa01778 920 /// Copies the data from an operand to a place. The layouts may disagree, but they must
0bf4aa26
XL
921 /// have the same size.
922 pub fn copy_op_transmute(
923 &mut self,
6a06907d
XL
924 src: &OpTy<'tcx, M::PointerTag>,
925 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 926 ) -> InterpResult<'tcx> {
f035d41b 927 if mir_assign_valid_types(*self.tcx, self.param_env, src.layout, dest.layout) {
0bf4aa26
XL
928 // Fast path: Just use normal `copy_op`
929 return self.copy_op(src, dest);
930 }
48663c56 931 // We still require the sizes to match.
dfeec247
XL
932 if src.layout.size != dest.layout.size {
933 // FIXME: This should be an assert instead of an error, but if we transmute within an
934 // array length computation, `typeck` may not have yet been run and errored out. In fact
935 // most likey we *are* running `typeck` right now. Investigate whether we can bail out
3dfed10e 936 // on `typeck_results().has_errors` at all const eval entry points.
dfeec247 937 debug!("Size mismatch when transmuting!\nsrc: {:#?}\ndest: {:#?}", src, dest);
ba9703b0 938 self.tcx.sess.delay_span_bug(
f035d41b 939 self.cur_span(),
ba9703b0
XL
940 "size-changing transmute, should have been caught by transmute checking",
941 );
942 throw_inval!(TransmuteSizeDiff(src.layout.ty, dest.layout.ty));
dfeec247 943 }
48663c56
XL
944 // Unsized copies rely on interpreting `src.meta` with `dest.layout`, we want
945 // to avoid that here.
dfeec247
XL
946 assert!(
947 !src.layout.is_unsized() && !dest.layout.is_unsized(),
948 "Cannot transmute unsized data"
949 );
0bf4aa26
XL
950
951 // The hard case is `ScalarPair`. `src` is already read from memory in this case,
952 // using `src.layout` to figure out which bytes to use for the 1st and 2nd field.
953 // We have to write them to `dest` at the offsets they were *read at*, which is
954 // not necessarily the same as the offsets in `dest.layout`!
955 // Hence we do the copy with the source layout on both sides. We also make sure to write
956 // into memory, because if `dest` is a local we would not even have a way to write
957 // at the `src` offsets; the fact that we came from a different layout would
958 // just be lost.
959 let dest = self.force_allocation(dest)?;
960 self.copy_op_no_validate(
961 src,
6a06907d 962 &PlaceTy::from(MPlaceTy { mplace: *dest, layout: src.layout }),
0bf4aa26
XL
963 )?;
964
965 if M::enforce_validity(self) {
966 // Data got changed, better make sure it matches the type!
6a06907d 967 self.validate_operand(&dest.into())?;
0bf4aa26
XL
968 }
969
970 Ok(())
ff7c6d11
XL
971 }
972
9fa01778 973 /// Ensures that a place is in memory, and returns where it is.
a1dfa0c6
XL
974 /// If the place currently refers to a local that doesn't yet have a matching allocation,
975 /// create such an allocation.
b7449926 976 /// This is essentially `force_to_memplace`.
48663c56
XL
977 ///
978 /// This supports unsized types and returns the computed size to avoid some
979 /// redundant computation when copying; use `force_allocation` for a simpler, sized-only
980 /// version.
981 pub fn force_allocation_maybe_sized(
ff7c6d11 982 &mut self,
6a06907d 983 place: &PlaceTy<'tcx, M::PointerTag>,
dfeec247 984 meta: MemPlaceMeta<M::PointerTag>,
dc9dc135 985 ) -> InterpResult<'tcx, (MPlaceTy<'tcx, M::PointerTag>, Option<Size>)> {
48663c56 986 let (mplace, size) = match place.place {
b7449926 987 Place::Local { frame, local } => {
f035d41b 988 match M::access_local_mut(self, frame, local)? {
dfeec247 989 Ok(&mut local_val) => {
b7449926 990 // We need to make an allocation.
48663c56 991
b7449926 992 // We need the layout of the local. We can NOT use the layout we got,
0731742a 993 // that might e.g., be an inner field of a struct with `Scalar` layout,
b7449926 994 // that has different alignment than the outer field.
ba9703b0
XL
995 let local_layout =
996 self.layout_of_local(&self.stack()[frame], local, None)?;
dfeec247
XL
997 // We also need to support unsized types, and hence cannot use `allocate`.
998 let (size, align) = self
6a06907d 999 .size_and_align_of(&meta, &local_layout)?
48663c56
XL
1000 .expect("Cannot allocate for non-dyn-sized type");
1001 let ptr = self.memory.allocate(size, align, MemoryKind::Stack);
1002 let mplace = MemPlace { ptr: ptr.into(), align, meta };
dfeec247 1003 if let LocalValue::Live(Operand::Immediate(value)) = local_val {
48663c56
XL
1004 // Preserve old value.
1005 // We don't have to validate as we can assume the local
1006 // was already valid for its type.
1007 let mplace = MPlaceTy { mplace, layout: local_layout };
6a06907d 1008 self.write_immediate_to_mplace_no_validate(value, &mplace)?;
48663c56
XL
1009 }
1010 // Now we can call `access_mut` again, asserting it goes well,
1011 // and actually overwrite things.
f035d41b 1012 *M::access_local_mut(self, frame, local).unwrap().unwrap() =
48663c56
XL
1013 LocalValue::Live(Operand::Indirect(mplace));
1014 (mplace, Some(size))
b7449926 1015 }
48663c56 1016 Err(mplace) => (mplace, None), // this already was an indirect local
b7449926
XL
1017 }
1018 }
dfeec247 1019 Place::Ptr(mplace) => (mplace, None),
b7449926
XL
1020 };
1021 // Return with the original layout, so that the caller can go on
48663c56
XL
1022 Ok((MPlaceTy { mplace, layout: place.layout }, size))
1023 }
1024
1025 #[inline(always)]
1026 pub fn force_allocation(
1027 &mut self,
6a06907d 1028 place: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 1029 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
dfeec247 1030 Ok(self.force_allocation_maybe_sized(place, MemPlaceMeta::None)?.0)
ff7c6d11
XL
1031 }
1032
b7449926 1033 pub fn allocate(
ff7c6d11 1034 &mut self,
ba9703b0
XL
1035 layout: TyAndLayout<'tcx>,
1036 kind: MemoryKind<M::MemoryKind>,
0731742a 1037 ) -> MPlaceTy<'tcx, M::PointerTag> {
48663c56
XL
1038 let ptr = self.memory.allocate(layout.size, layout.align.abi, kind);
1039 MPlaceTy::from_aligned_ptr(ptr, layout)
b7449926 1040 }
ff7c6d11 1041
60c5eb7d
XL
1042 /// Returns a wide MPlace.
1043 pub fn allocate_str(
1044 &mut self,
1045 str: &str,
ba9703b0 1046 kind: MemoryKind<M::MemoryKind>,
60c5eb7d 1047 ) -> MPlaceTy<'tcx, M::PointerTag> {
ba9703b0
XL
1048 let ptr = self.memory.allocate_bytes(str.as_bytes(), kind);
1049 let meta = Scalar::from_machine_usize(u64::try_from(str.len()).unwrap(), self);
60c5eb7d
XL
1050 let mplace = MemPlace {
1051 ptr: ptr.into(),
1052 align: Align::from_bytes(1).unwrap(),
dfeec247 1053 meta: MemPlaceMeta::Meta(meta),
60c5eb7d
XL
1054 };
1055
1056 let layout = self.layout_of(self.tcx.mk_static_str()).unwrap();
1057 MPlaceTy { mplace, layout }
1058 }
1059
f035d41b
XL
1060 /// Writes the discriminant of the given variant.
1061 pub fn write_discriminant(
b7449926 1062 &mut self,
a1dfa0c6 1063 variant_index: VariantIdx,
6a06907d 1064 dest: &PlaceTy<'tcx, M::PointerTag>,
dc9dc135 1065 ) -> InterpResult<'tcx> {
60c5eb7d
XL
1066 // Layout computation excludes uninhabited variants from consideration
1067 // therefore there's no way to represent those variants in the given layout.
1068 if dest.layout.for_variant(self, variant_index).abi.is_uninhabited() {
1069 throw_ub!(Unreachable);
1070 }
e74abb32 1071
b7449926 1072 match dest.layout.variants {
ba9703b0 1073 Variants::Single { index } => {
60c5eb7d 1074 assert_eq!(index, variant_index);
ff7c6d11 1075 }
ba9703b0 1076 Variants::Multiple {
f035d41b
XL
1077 tag_encoding: TagEncoding::Direct,
1078 tag: ref tag_layout,
1079 tag_field,
532ac7d7
XL
1080 ..
1081 } => {
60c5eb7d 1082 // No need to validate that the discriminant here because the
ba9703b0 1083 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1084
48663c56
XL
1085 let discr_val =
1086 dest.layout.ty.discriminant_for_variant(*self.tcx, variant_index).unwrap().val;
b7449926
XL
1087
1088 // raw discriminants for enums are isize or bigger during
1089 // their computation, but the in-memory tag is the smallest possible
1090 // representation
f035d41b 1091 let size = tag_layout.value.size(self);
29967ef6 1092 let tag_val = size.truncate(discr_val);
b7449926 1093
f035d41b 1094 let tag_dest = self.place_field(dest, tag_field)?;
6a06907d 1095 self.write_scalar(Scalar::from_uint(tag_val, size), &tag_dest)?;
ff7c6d11 1096 }
ba9703b0 1097 Variants::Multiple {
f035d41b
XL
1098 tag_encoding:
1099 TagEncoding::Niche { dataful_variant, ref niche_variants, niche_start },
1100 tag: ref tag_layout,
1101 tag_field,
b7449926 1102 ..
ff7c6d11 1103 } => {
60c5eb7d 1104 // No need to validate that the discriminant here because the
ba9703b0 1105 // `TyAndLayout::for_variant()` call earlier already checks the variant is valid.
60c5eb7d 1106
b7449926 1107 if variant_index != dataful_variant {
e1599b0c 1108 let variants_start = niche_variants.start().as_u32();
dfeec247
XL
1109 let variant_index_relative = variant_index
1110 .as_u32()
e1599b0c
XL
1111 .checked_sub(variants_start)
1112 .expect("overflow computing relative variant idx");
1113 // We need to use machine arithmetic when taking into account `niche_start`:
f035d41b
XL
1114 // tag_val = variant_index_relative + niche_start_val
1115 let tag_layout = self.layout_of(tag_layout.value.to_int_ty(*self.tcx))?;
1116 let niche_start_val = ImmTy::from_uint(niche_start, tag_layout);
e1599b0c 1117 let variant_index_relative_val =
f035d41b
XL
1118 ImmTy::from_uint(variant_index_relative, tag_layout);
1119 let tag_val = self.binary_op(
e1599b0c 1120 mir::BinOp::Add,
6a06907d
XL
1121 &variant_index_relative_val,
1122 &niche_start_val,
b7449926 1123 )?;
e1599b0c 1124 // Write result.
f035d41b 1125 let niche_dest = self.place_field(dest, tag_field)?;
6a06907d 1126 self.write_immediate(*tag_val, &niche_dest)?;
b7449926
XL
1127 }
1128 }
1129 }
ff7c6d11 1130
b7449926
XL
1131 Ok(())
1132 }
ff7c6d11 1133
a1dfa0c6
XL
1134 pub fn raw_const_to_mplace(
1135 &self,
1b1a35ee 1136 raw: ConstAlloc<'tcx>,
dc9dc135 1137 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> {
a1dfa0c6 1138 // This must be an allocation in `tcx`
f9f354fc 1139 let _ = self.tcx.global_alloc(raw.alloc_id);
3dfed10e 1140 let ptr = self.global_base_pointer(Pointer::from(raw.alloc_id))?;
a1dfa0c6 1141 let layout = self.layout_of(raw.ty)?;
dc9dc135 1142 Ok(MPlaceTy::from_aligned_ptr(ptr, layout))
a1dfa0c6
XL
1143 }
1144
b7449926
XL
1145 /// Turn a place with a `dyn Trait` type into a place with the actual dynamic type.
1146 /// Also return some more information so drop doesn't have to run the same code twice.
dfeec247
XL
1147 pub(super) fn unpack_dyn_trait(
1148 &self,
6a06907d 1149 mplace: &MPlaceTy<'tcx, M::PointerTag>,
dfeec247 1150 ) -> InterpResult<'tcx, (ty::Instance<'tcx>, MPlaceTy<'tcx, M::PointerTag>)> {
dc9dc135 1151 let vtable = mplace.vtable(); // also sanity checks the type
b7449926
XL
1152 let (instance, ty) = self.read_drop_type_from_vtable(vtable)?;
1153 let layout = self.layout_of(ty)?;
1154
1155 // More sanity checks
1156 if cfg!(debug_assertions) {
1157 let (size, align) = self.read_size_and_align_from_vtable(vtable)?;
1158 assert_eq!(size, layout.size);
a1dfa0c6
XL
1159 // only ABI alignment is preserved
1160 assert_eq!(align, layout.align.abi);
ff7c6d11 1161 }
ff7c6d11 1162
6a06907d 1163 let mplace = MPlaceTy { mplace: MemPlace { meta: MemPlaceMeta::None, ..**mplace }, layout };
b7449926 1164 Ok((instance, mplace))
ff7c6d11
XL
1165 }
1166}