]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir/src/monomorphize/collector.rs
New upstream version 1.52.1+dfsg1
[rustc.git] / compiler / rustc_mir / src / monomorphize / collector.rs
CommitLineData
ff7c6d11 1//! Mono Item Collection
60c5eb7d 2//! ====================
7453a54e 3//!
f035d41b 4//! This module is responsible for discovering all items that will contribute
7453a54e
SL
5//! to code generation of the crate. The important part here is that it not only
6//! needs to find syntax-level items (functions, structs, etc) but also all
7//! their monomorphized instantiations. Every non-generic, non-const function
8//! maps to one LLVM artifact. Every generic function can produce
9//! from zero to N artifacts, depending on the sets of type arguments it
10//! is instantiated with.
11//! This also applies to generic items from other crates: A generic definition
12//! in crate X might produce monomorphizations that are compiled into crate Y.
13//! We also have to collect these here.
14//!
ff7c6d11 15//! The following kinds of "mono items" are handled here:
7453a54e
SL
16//!
17//! - Functions
18//! - Methods
19//! - Closures
20//! - Statics
21//! - Drop glue
22//!
23//! The following things also result in LLVM artifacts, but are not collected
24//! here, since we instantiate them locally on demand when needed in a given
25//! codegen unit:
26//!
27//! - Constants
28//! - Vtables
29//! - Object Shims
30//!
31//!
32//! General Algorithm
33//! -----------------
34//! Let's define some terms first:
35//!
ff7c6d11
XL
36//! - A "mono item" is something that results in a function or global in
37//! the LLVM IR of a codegen unit. Mono items do not stand on their
38//! own, they can reference other mono items. For example, if function
39//! `foo()` calls function `bar()` then the mono item for `foo()`
40//! references the mono item for function `bar()`. In general, the
41//! definition for mono item A referencing a mono item B is that
7453a54e
SL
42//! the LLVM artifact produced for A references the LLVM artifact produced
43//! for B.
44//!
ff7c6d11
XL
45//! - Mono items and the references between them form a directed graph,
46//! where the mono items are the nodes and references form the edges.
47//! Let's call this graph the "mono item graph".
7453a54e 48//!
ff7c6d11 49//! - The mono item graph for a program contains all mono items
7453a54e
SL
50//! that are needed in order to produce the complete LLVM IR of the program.
51//!
52//! The purpose of the algorithm implemented in this module is to build the
ff7c6d11 53//! mono item graph for the current crate. It runs in two phases:
7453a54e
SL
54//!
55//! 1. Discover the roots of the graph by traversing the HIR of the crate.
56//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
57//! representation of the item corresponding to a given node, until no more
58//! new nodes are found.
59//!
60//! ### Discovering roots
61//!
ff7c6d11 62//! The roots of the mono item graph correspond to the non-generic
7453a54e
SL
63//! syntactic items in the source code. We find them by walking the HIR of the
64//! crate, and whenever we hit upon a function, method, or static item, we
ff7c6d11 65//! create a mono item consisting of the items DefId and, since we only
7453a54e
SL
66//! consider non-generic items, an empty type-substitution set.
67//!
68//! ### Finding neighbor nodes
ff7c6d11 69//! Given a mono item node, we can discover neighbors by inspecting its
7453a54e 70//! MIR. We walk the MIR and any time we hit upon something that signifies a
ff7c6d11
XL
71//! reference to another mono item, we have found a neighbor. Since the
72//! mono item we are currently at is always monomorphic, we also know the
7453a54e
SL
73//! concrete type arguments of its neighbors, and so all neighbors again will be
74//! monomorphic. The specific forms a reference to a neighboring node can take
75//! in MIR are quite diverse. Here is an overview:
76//!
77//! #### Calling Functions/Methods
ff7c6d11 78//! The most obvious form of one mono item referencing another is a
7453a54e
SL
79//! function or method call (represented by a CALL terminator in MIR). But
80//! calls are not the only thing that might introduce a reference between two
ff7c6d11 81//! function mono items, and as we will see below, they are just a
f035d41b 82//! specialization of the form described next, and consequently will not get any
7453a54e
SL
83//! special treatment in the algorithm.
84//!
85//! #### Taking a reference to a function or method
86//! A function does not need to actually be called in order to be a neighbor of
87//! another function. It suffices to just take a reference in order to introduce
88//! an edge. Consider the following example:
89//!
90//! ```rust
91//! fn print_val<T: Display>(x: T) {
92//! println!("{}", x);
93//! }
94//!
95//! fn call_fn(f: &Fn(i32), x: i32) {
96//! f(x);
97//! }
98//!
99//! fn main() {
100//! let print_i32 = print_val::<i32>;
101//! call_fn(&print_i32, 0);
102//! }
103//! ```
104//! The MIR of none of these functions will contain an explicit call to
ff7c6d11 105//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
7453a54e
SL
106//! an instance of this function. Thus, whenever we encounter a function or
107//! method in operand position, we treat it as a neighbor of the current
ff7c6d11 108//! mono item. Calls are just a special case of that.
7453a54e
SL
109//!
110//! #### Closures
111//! In a way, closures are a simple case. Since every closure object needs to be
112//! constructed somewhere, we can reliably discover them by observing
113//! `RValue::Aggregate` expressions with `AggregateKind::Closure`. This is also
114//! true for closures inlined from other crates.
115//!
116//! #### Drop glue
ff7c6d11
XL
117//! Drop glue mono items are introduced by MIR drop-statements. The
118//! generated mono item will again have drop-glue item neighbors if the
7453a54e
SL
119//! type to be dropped contains nested values that also need to be dropped. It
120//! might also have a function item neighbor for the explicit `Drop::drop`
121//! implementation of its type.
122//!
123//! #### Unsizing Casts
124//! A subtle way of introducing neighbor edges is by casting to a trait object.
125//! Since the resulting fat-pointer contains a reference to a vtable, we need to
126//! instantiate all object-save methods of the trait, as we need to store
127//! pointers to these functions even if they never get called anywhere. This can
128//! be seen as a special case of taking a function reference.
129//!
130//! #### Boxes
131//! Since `Box` expression have special compiler support, no explicit calls to
0731742a 132//! `exchange_malloc()` and `box_free()` may show up in MIR, even if the
7453a54e
SL
133//! compiler will generate them. We have to observe `Rvalue::Box` expressions
134//! and Box-typed drop-statements for that purpose.
135//!
136//!
137//! Interaction with Cross-Crate Inlining
138//! -------------------------------------
139//! The binary of a crate will not only contain machine code for the items
140//! defined in the source code of that crate. It will also contain monomorphic
141//! instantiations of any extern generic functions and of functions marked with
ff7c6d11
XL
142//! `#[inline]`.
143//! The collection algorithm handles this more or less mono. If it is
144//! about to create a mono item for something with an external `DefId`,
7453a54e 145//! it will take a look if the MIR for that item is available, and if so just
9e0c209e 146//! proceed normally. If the MIR is not available, it assumes that the item is
7453a54e
SL
147//! just linked to and no node is created; which is exactly what we want, since
148//! no machine code should be generated in the current crate for such an item.
149//!
150//! Eager and Lazy Collection Mode
151//! ------------------------------
ff7c6d11 152//! Mono item collection can be performed in one of two modes:
7453a54e
SL
153//!
154//! - Lazy mode means that items will only be instantiated when actually
155//! referenced. The goal is to produce the least amount of machine code
156//! possible.
157//!
158//! - Eager mode is meant to be used in conjunction with incremental compilation
ff7c6d11 159//! where a stable set of mono items is more important than a minimal
7453a54e 160//! one. Thus, eager mode will instantiate drop-glue for every drop-able type
f035d41b 161//! in the crate, even if no drop call for that type exists (yet). It will
7453a54e
SL
162//! also instantiate default implementations of trait methods, something that
163//! otherwise is only done on demand.
164//!
165//!
166//! Open Issues
167//! -----------
168//! Some things are not yet fully implemented in the current version of this
169//! module.
170//!
7453a54e 171//! ### Const Fns
ff7c6d11 172//! Ideally, no mono item should be generated for const fns unless there
7453a54e 173//! is a call to them that cannot be evaluated at compile time. At the moment
ff7c6d11 174//! this is not implemented however: a mono item will be produced
7453a54e
SL
175//! regardless of whether it is actually needed or not.
176
60c5eb7d
XL
177use crate::monomorphize;
178
dfeec247
XL
179use rustc_data_structures::fx::{FxHashMap, FxHashSet};
180use rustc_data_structures::sync::{par_iter, MTLock, MTRef, ParallelIterator};
f035d41b 181use rustc_errors::{ErrorReported, FatalError};
dfeec247 182use rustc_hir as hir;
f9f354fc 183use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LOCAL_CRATE};
dfeec247 184use rustc_hir::itemlikevisit::ItemLikeVisitor;
3dfed10e 185use rustc_hir::lang_items::LangItem;
e74abb32 186use rustc_index::bit_set::GrowableBitSet;
ba9703b0
XL
187use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
188use rustc_middle::mir::interpret::{AllocId, ConstValue};
189use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar};
190use rustc_middle::mir::mono::{InstantiationMode, MonoItem};
191use rustc_middle::mir::visit::Visitor as MirVisitor;
192use rustc_middle::mir::{self, Local, Location};
193use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast};
ba9703b0
XL
194use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts};
195use rustc_middle::ty::{self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable};
196use rustc_session::config::EntryFnType;
f035d41b 197use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
dfeec247 198use smallvec::SmallVec;
532ac7d7 199use std::iter;
29967ef6 200use std::ops::Range;
1b1a35ee 201use std::path::PathBuf;
532ac7d7 202
e74abb32 203#[derive(PartialEq)]
ff7c6d11 204pub enum MonoItemCollectionMode {
7453a54e 205 Eager,
dfeec247 206 Lazy,
7453a54e
SL
207}
208
ff7c6d11 209/// Maps every mono item to all mono items it references in its
a7813a04
XL
210/// body.
211pub struct InliningMap<'tcx> {
ff7c6d11 212 // Maps a source mono item to the range of mono items
3b2f2976 213 // accessed by it.
29967ef6
XL
214 // The range selects elements within the `targets` vecs.
215 index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
ff7c6d11 216 targets: Vec<MonoItem<'tcx>>,
3b2f2976 217
ff7c6d11
XL
218 // Contains one bit per mono item in the `targets` field. That bit
219 // is true if that mono item needs to be inlined into every CGU.
0bf4aa26 220 inlines: GrowableBitSet<usize>,
7453a54e
SL
221}
222
a7813a04 223impl<'tcx> InliningMap<'tcx> {
a7813a04
XL
224 fn new() -> InliningMap<'tcx> {
225 InliningMap {
0bf4aa26 226 index: FxHashMap::default(),
a7813a04 227 targets: Vec::new(),
0bf4aa26 228 inlines: GrowableBitSet::with_capacity(1024),
a7813a04
XL
229 }
230 }
231
dfeec247 232 fn record_accesses(&mut self, source: MonoItem<'tcx>, new_targets: &[(MonoItem<'tcx>, bool)]) {
a7813a04 233 let start_index = self.targets.len();
3b2f2976
XL
234 let new_items_count = new_targets.len();
235 let new_items_count_total = new_items_count + self.targets.len();
236
237 self.targets.reserve(new_items_count);
0bf4aa26 238 self.inlines.ensure(new_items_count_total);
3b2f2976 239
dfeec247
XL
240 for (i, (target, inline)) in new_targets.iter().enumerate() {
241 self.targets.push(*target);
242 if *inline {
3b2f2976
XL
243 self.inlines.insert(i + start_index);
244 }
245 }
246
a7813a04 247 let end_index = self.targets.len();
29967ef6 248 assert!(self.index.insert(source, start_index..end_index).is_none());
a7813a04
XL
249 }
250
251 // Internally iterate over all items referenced by `source` which will be
252 // made available for inlining.
ff7c6d11 253 pub fn with_inlining_candidates<F>(&self, source: MonoItem<'tcx>, mut f: F)
dfeec247
XL
254 where
255 F: FnMut(MonoItem<'tcx>),
3b2f2976 256 {
29967ef6
XL
257 if let Some(range) = self.index.get(&source) {
258 for (i, candidate) in self.targets[range.clone()].iter().enumerate() {
259 if self.inlines.contains(range.start + i) {
3b2f2976
XL
260 f(*candidate);
261 }
7453a54e 262 }
a7813a04 263 }
7453a54e 264 }
3b2f2976
XL
265
266 // Internally iterate over all items and the things each accesses.
267 pub fn iter_accesses<F>(&self, mut f: F)
dfeec247
XL
268 where
269 F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
3b2f2976 270 {
29967ef6
XL
271 for (&accessor, range) in &self.index {
272 f(accessor, &self.targets[range.clone()])
3b2f2976
XL
273 }
274 }
7453a54e
SL
275}
276
416331ca
XL
277pub fn collect_crate_mono_items(
278 tcx: TyCtxt<'_>,
dc9dc135 279 mode: MonoItemCollectionMode,
416331ca 280) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
e74abb32
XL
281 let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
282
dfeec247
XL
283 let roots =
284 tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode));
ea8adc8c 285
416331ca 286 debug!("building mono item graph, beginning at roots");
94b46f34 287
0bf4aa26 288 let mut visited = MTLock::new(FxHashSet::default());
94b46f34
XL
289 let mut inlining_map = MTLock::new(InliningMap::new());
290
291 {
292 let visited: MTRef<'_, _> = &mut visited;
293 let inlining_map: MTRef<'_, _> = &mut inlining_map;
294
dfeec247 295 tcx.sess.time("monomorphization_collector_graph_walk", || {
94b46f34 296 par_iter(roots).for_each(|root| {
a1dfa0c6 297 let mut recursion_depths = DefIdMap::default();
f035d41b
XL
298 collect_items_rec(
299 tcx,
300 dummy_spanned(root),
301 visited,
302 &mut recursion_depths,
303 inlining_map,
304 );
94b46f34
XL
305 });
306 });
ea8adc8c 307 }
7453a54e 308
94b46f34 309 (visited.into_inner(), inlining_map.into_inner())
7453a54e
SL
310}
311
312// Find all non-generic items by walking the HIR. These items serve as roots to
313// start monomorphizing from.
416331ca
XL
314fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<'_>> {
315 debug!("collecting roots");
7453a54e
SL
316 let mut roots = Vec::new();
317
318 {
9fa01778 319 let entry_fn = tcx.entry_fn(LOCAL_CRATE);
abe05a73 320
ff7c6d11
XL
321 debug!("collect_roots: entry_fn = {:?}", entry_fn);
322
dfeec247 323 let mut visitor = RootCollector { tcx, mode, entry_fn, output: &mut roots };
7453a54e 324
0731742a 325 tcx.hir().krate().visit_all_item_likes(&mut visitor);
0531ce1d
XL
326
327 visitor.push_extra_entry_roots();
7453a54e
SL
328 }
329
94b46f34 330 // We can only codegen items that are instantiable - items all of
041b39d2 331 // whose predicates hold. Luckily, items that aren't instantiable
94b46f34 332 // can't actually be used, so we can just skip codegenning them.
7453a54e 333 roots
f035d41b
XL
334 .into_iter()
335 .filter_map(|root| root.node.is_instantiable(tcx).then_some(root.node))
336 .collect()
7453a54e
SL
337}
338
ff7c6d11 339// Collect all monomorphized items reachable from `starting_point`
dc9dc135
XL
340fn collect_items_rec<'tcx>(
341 tcx: TyCtxt<'tcx>,
f035d41b 342 starting_point: Spanned<MonoItem<'tcx>>,
dc9dc135
XL
343 visited: MTRef<'_, MTLock<FxHashSet<MonoItem<'tcx>>>>,
344 recursion_depths: &mut DefIdMap<usize>,
345 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
346) {
f035d41b 347 if !visited.lock_mut().insert(starting_point.node) {
7453a54e
SL
348 // We've been here already, no need to search again.
349 return;
350 }
1b1a35ee 351 debug!("BEGIN collect_items_rec({})", starting_point.node);
7453a54e
SL
352
353 let mut neighbors = Vec::new();
354 let recursion_depth_reset;
355
f035d41b 356 match starting_point.node {
0531ce1d 357 MonoItem::Static(def_id) => {
ea8adc8c 358 let instance = Instance::mono(tcx, def_id);
32a655c1
SL
359
360 // Sanity check whether this ended up being collected accidentally
3dfed10e 361 debug_assert!(should_codegen_locally(tcx, &instance));
32a655c1 362
3dfed10e 363 let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
f035d41b 364 visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
a7813a04 365
7453a54e 366 recursion_depth_reset = None;
a7813a04 367
1b1a35ee
XL
368 if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
369 for &((), id) in alloc.relocations().values() {
370 collect_miri(tcx, id, &mut neighbors);
371 }
0531ce1d 372 }
7453a54e 373 }
ff7c6d11 374 MonoItem::Fn(instance) => {
32a655c1 375 // Sanity check whether this ended up being collected accidentally
3dfed10e 376 debug_assert!(should_codegen_locally(tcx, &instance));
32a655c1 377
7453a54e 378 // Keep track of the monomorphization recursion depth
f035d41b
XL
379 recursion_depth_reset =
380 Some(check_recursion_limit(tcx, instance, starting_point.span, recursion_depths));
ea8adc8c 381 check_type_length_limit(tcx, instance);
7453a54e 382
f9f354fc
XL
383 rustc_data_structures::stack::ensure_sufficient_stack(|| {
384 collect_neighbours(tcx, instance, &mut neighbors);
385 });
7453a54e 386 }
ff7c6d11 387 MonoItem::GlobalAsm(..) => {
cc61c64b
XL
388 recursion_depth_reset = None;
389 }
7453a54e
SL
390 }
391
f035d41b 392 record_accesses(tcx, starting_point.node, neighbors.iter().map(|i| &i.node), inlining_map);
a7813a04 393
7453a54e 394 for neighbour in neighbors {
ea8adc8c 395 collect_items_rec(tcx, neighbour, visited, recursion_depths, inlining_map);
7453a54e
SL
396 }
397
398 if let Some((def_id, depth)) = recursion_depth_reset {
399 recursion_depths.insert(def_id, depth);
400 }
401
1b1a35ee 402 debug!("END collect_items_rec({})", starting_point.node);
7453a54e
SL
403}
404
f035d41b 405fn record_accesses<'a, 'tcx: 'a>(
dc9dc135
XL
406 tcx: TyCtxt<'tcx>,
407 caller: MonoItem<'tcx>,
f035d41b 408 callees: impl Iterator<Item = &'a MonoItem<'tcx>>,
dc9dc135
XL
409 inlining_map: MTRef<'_, MTLock<InliningMap<'tcx>>>,
410) {
ff7c6d11
XL
411 let is_inlining_candidate = |mono_item: &MonoItem<'tcx>| {
412 mono_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy
a7813a04
XL
413 };
414
dfeec247
XL
415 // We collect this into a `SmallVec` to avoid calling `is_inlining_candidate` in the lock.
416 // FIXME: Call `is_inlining_candidate` when pushing to `neighbors` in `collect_items_rec`
417 // instead to avoid creating this `SmallVec`.
74b04a01 418 let accesses: SmallVec<[_; 128]> =
f035d41b 419 callees.map(|mono_item| (*mono_item, is_inlining_candidate(mono_item))).collect();
a7813a04 420
dfeec247 421 inlining_map.lock_mut().record_accesses(caller, &accesses);
a7813a04
XL
422}
423
1b1a35ee
XL
424/// Format instance name that is already known to be too long for rustc.
425/// Show only the first and last 32 characters to avoid blasting
426/// the user's terminal with thousands of lines of type-name.
427///
428/// If the type name is longer than before+after, it will be written to a file.
429fn shrunk_instance_name(
430 tcx: TyCtxt<'tcx>,
431 instance: &Instance<'tcx>,
432 before: usize,
433 after: usize,
434) -> (String, Option<PathBuf>) {
435 let s = instance.to_string();
6c58768f
XL
436
437 // Only use the shrunk version if it's really shorter.
438 // This also avoids the case where before and after slices overlap.
1b1a35ee
XL
439 if s.chars().nth(before + after + 1).is_some() {
440 // An iterator of all byte positions including the end of the string.
441 let positions = || s.char_indices().map(|(i, _)| i).chain(iter::once(s.len()));
442
443 let shrunk = format!(
444 "{before}...{after}",
445 before = &s[..positions().nth(before).unwrap_or(s.len())],
446 after = &s[positions().rev().nth(after).unwrap_or(0)..],
447 );
6c58768f 448
1b1a35ee
XL
449 let path = tcx.output_filenames(LOCAL_CRATE).temp_path_ext("long-type.txt", None);
450 let written_to_path = std::fs::write(&path, s).ok().map(|_| path);
451
452 (shrunk, written_to_path)
453 } else {
454 (s, None)
455 }
6c58768f
XL
456}
457
dc9dc135
XL
458fn check_recursion_limit<'tcx>(
459 tcx: TyCtxt<'tcx>,
460 instance: Instance<'tcx>,
f035d41b 461 span: Span,
dc9dc135
XL
462 recursion_depths: &mut DefIdMap<usize>,
463) -> (DefId, usize) {
cc61c64b
XL
464 let def_id = instance.def_id();
465 let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0);
7453a54e
SL
466 debug!(" => recursion depth={}", recursion_depth);
467
dfeec247 468 let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() {
cc61c64b
XL
469 // HACK: drop_in_place creates tight monomorphization loops. Give
470 // it more margin.
471 recursion_depth / 4
472 } else {
473 recursion_depth
474 };
475
7453a54e
SL
476 // Code that needs to instantiate the same function recursively
477 // more than the recursion limit is assumed to be causing an
478 // infinite expansion.
f9f354fc 479 if !tcx.sess.recursion_limit().value_within_limit(adjusted_recursion_depth) {
1b1a35ee
XL
480 let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
481 let error = format!("reached the recursion limit while instantiating `{}`", shrunk);
f035d41b
XL
482 let mut err = tcx.sess.struct_span_fatal(span, &error);
483 err.span_note(
484 tcx.def_span(def_id),
485 &format!("`{}` defined here", tcx.def_path_str(def_id)),
486 );
1b1a35ee
XL
487 if let Some(path) = written_to_path {
488 err.note(&format!("the full type name has been written to '{}'", path.display()));
489 }
f035d41b
XL
490 err.emit();
491 FatalError.raise();
7453a54e
SL
492 }
493
cc61c64b 494 recursion_depths.insert(def_id, recursion_depth + 1);
7453a54e 495
cc61c64b 496 (def_id, recursion_depth)
7453a54e
SL
497}
498
dc9dc135 499fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
ba9703b0
XL
500 let type_length = instance
501 .substs
502 .iter()
f9f354fc 503 .flat_map(|arg| arg.walk())
ba9703b0
XL
504 .filter(|arg| match arg.unpack() {
505 GenericArgKind::Type(_) | GenericArgKind::Const(_) => true,
506 GenericArgKind::Lifetime(_) => false,
507 })
508 .count();
509 debug!(" => type length={}", type_length);
476ff2be
SL
510
511 // Rust code can easily create exponentially-long types using only a
512 // polynomial recursion depth. Even with the default recursion
513 // depth, you can easily get cases that take >2^60 steps to run,
514 // which means that rustc basically hangs.
515 //
516 // Bail out in these cases to avoid that bad user experience.
f9f354fc 517 if !tcx.sess.type_length_limit().value_within_limit(type_length) {
1b1a35ee
XL
518 let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance, 32, 32);
519 let msg = format!("reached the type-length limit while instantiating `{}`", shrunk);
532ac7d7 520 let mut diag = tcx.sess.struct_span_fatal(tcx.def_span(instance.def_id()), &msg);
1b1a35ee
XL
521 if let Some(path) = written_to_path {
522 diag.note(&format!("the full type name has been written to '{}'", path.display()));
523 }
524 diag.help(&format!(
476ff2be 525 "consider adding a `#![type_length_limit=\"{}\"]` attribute to your crate",
dfeec247
XL
526 type_length
527 ));
476ff2be
SL
528 diag.emit();
529 tcx.sess.abort_if_errors();
530 }
531}
532
dc9dc135
XL
533struct MirNeighborCollector<'a, 'tcx> {
534 tcx: TyCtxt<'tcx>,
535 body: &'a mir::Body<'tcx>,
f035d41b 536 output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
ba9703b0
XL
537 instance: Instance<'tcx>,
538}
539
540impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
541 pub fn monomorphize<T>(&self, value: T) -> T
542 where
543 T: TypeFoldable<'tcx>,
544 {
545 debug!("monomorphize: self.instance={:?}", self.instance);
29967ef6
XL
546 self.instance.subst_mir_and_normalize_erasing_regions(
547 self.tcx,
548 ty::ParamEnv::reveal_all(),
fc512014 549 value,
29967ef6 550 )
ba9703b0 551 }
7453a54e
SL
552}
553
554impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
9e0c209e 555 fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
7453a54e
SL
556 debug!("visiting rvalue {:?}", *rvalue);
557
f035d41b
XL
558 let span = self.body.source_info(location).span;
559
7453a54e 560 match *rvalue {
7453a54e
SL
561 // When doing an cast from a regular pointer to a fat pointer, we
562 // have to instantiate all methods of the trait being cast to, so we
563 // can build the appropriate vtable.
48663c56 564 mir::Rvalue::Cast(
dfeec247
XL
565 mir::CastKind::Pointer(PointerCast::Unsize),
566 ref operand,
567 target_ty,
48663c56 568 ) => {
ba9703b0 569 let target_ty = self.monomorphize(target_ty);
dc9dc135 570 let source_ty = operand.ty(self.body, self.tcx);
ba9703b0 571 let source_ty = self.monomorphize(source_ty);
dfeec247
XL
572 let (source_ty, target_ty) =
573 find_vtable_types_for_unsizing(self.tcx, source_ty, target_ty);
7453a54e
SL
574 // This could also be a different Unsize instruction, like
575 // from a fixed sized array to a slice. But we are only
576 // interested in things that produce a vtable.
577 if target_ty.is_trait() && !source_ty.is_trait() {
dfeec247
XL
578 create_mono_items_for_vtable_methods(
579 self.tcx,
580 target_ty,
581 source_ty,
f035d41b 582 span,
dfeec247
XL
583 self.output,
584 );
7453a54e
SL
585 }
586 }
48663c56 587 mir::Rvalue::Cast(
dfeec247
XL
588 mir::CastKind::Pointer(PointerCast::ReifyFnPointer),
589 ref operand,
590 _,
48663c56 591 ) => {
dc9dc135 592 let fn_ty = operand.ty(self.body, self.tcx);
ba9703b0 593 let fn_ty = self.monomorphize(fn_ty);
f035d41b 594 visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output);
cc61c64b 595 }
48663c56 596 mir::Rvalue::Cast(
dfeec247
XL
597 mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)),
598 ref operand,
599 _,
48663c56 600 ) => {
dc9dc135 601 let source_ty = operand.ty(self.body, self.tcx);
ba9703b0 602 let source_ty = self.monomorphize(source_ty);
1b1a35ee 603 match *source_ty.kind() {
b7449926 604 ty::Closure(def_id, substs) => {
dc9dc135 605 let instance = Instance::resolve_closure(
dfeec247
XL
606 self.tcx,
607 def_id,
608 substs,
609 ty::ClosureKind::FnOnce,
610 );
3dfed10e
XL
611 if should_codegen_locally(self.tcx, &instance) {
612 self.output.push(create_fn_mono_item(self.tcx, instance, span));
83c7162d 613 }
8bb4bdeb
XL
614 }
615 _ => bug!(),
616 }
617 }
7cac9316 618 mir::Rvalue::NullaryOp(mir::NullOp::Box, _) => {
ea8adc8c 619 let tcx = self.tcx;
f9f354fc 620 let exchange_malloc_fn_def_id =
3dfed10e 621 tcx.require_lang_item(LangItem::ExchangeMalloc, None);
cc61c64b 622 let instance = Instance::mono(tcx, exchange_malloc_fn_def_id);
3dfed10e
XL
623 if should_codegen_locally(tcx, &instance) {
624 self.output.push(create_fn_mono_item(self.tcx, instance, span));
32a655c1 625 }
7453a54e 626 }
f9f354fc
XL
627 mir::Rvalue::ThreadLocalRef(def_id) => {
628 assert!(self.tcx.is_thread_local_static(def_id));
629 let instance = Instance::mono(self.tcx, def_id);
3dfed10e 630 if should_codegen_locally(self.tcx, &instance) {
f9f354fc 631 trace!("collecting thread-local static {:?}", def_id);
f035d41b 632 self.output.push(respan(span, MonoItem::Static(def_id)));
f9f354fc
XL
633 }
634 }
7453a54e
SL
635 _ => { /* not interesting */ }
636 }
637
9e0c209e 638 self.super_rvalue(rvalue, location);
7453a54e
SL
639 }
640
532ac7d7 641 fn visit_const(&mut self, constant: &&'tcx ty::Const<'tcx>, location: Location) {
ea8adc8c
XL
642 debug!("visiting const {:?} @ {:?}", *constant, location);
643
ba9703b0
XL
644 let substituted_constant = self.monomorphize(*constant);
645 let param_env = ty::ParamEnv::reveal_all();
646
647 match substituted_constant.val {
648 ty::ConstKind::Value(val) => collect_const_value(self.tcx, val, self.output),
3dfed10e
XL
649 ty::ConstKind::Unevaluated(def, substs, promoted) => {
650 match self.tcx.const_eval_resolve(param_env, def, substs, promoted, None) {
ba9703b0
XL
651 Ok(val) => collect_const_value(self.tcx, val, self.output),
652 Err(ErrorHandled::Reported(ErrorReported) | ErrorHandled::Linted) => {}
653 Err(ErrorHandled::TooGeneric) => span_bug!(
3dfed10e
XL
654 self.body.source_info(location).span,
655 "collection encountered polymorphic constant: {}",
656 substituted_constant
ba9703b0
XL
657 ),
658 }
659 }
660 _ => {}
661 }
7453a54e 662
ea8adc8c 663 self.super_const(constant);
a7813a04
XL
664 }
665
f035d41b
XL
666 fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) {
667 debug!("visiting terminator {:?} @ {:?}", terminator, location);
668 let source = self.body.source_info(location).span;
7cac9316 669
ea8adc8c 670 let tcx = self.tcx;
f035d41b 671 match terminator.kind {
cc61c64b 672 mir::TerminatorKind::Call { ref func, .. } => {
dc9dc135 673 let callee_ty = func.ty(self.body, tcx);
ba9703b0 674 let callee_ty = self.monomorphize(callee_ty);
f035d41b 675 visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output);
a7813a04 676 }
f035d41b
XL
677 mir::TerminatorKind::Drop { ref place, .. }
678 | mir::TerminatorKind::DropAndReplace { ref place, .. } => {
679 let ty = place.ty(self.body, self.tcx).ty;
ba9703b0 680 let ty = self.monomorphize(ty);
f035d41b 681 visit_drop_use(self.tcx, ty, true, source, self.output);
cc61c64b 682 }
f9f354fc
XL
683 mir::TerminatorKind::InlineAsm { ref operands, .. } => {
684 for op in operands {
f035d41b
XL
685 match *op {
686 mir::InlineAsmOperand::SymFn { ref value } => {
6a06907d 687 let fn_ty = self.monomorphize(value.literal.ty());
f035d41b
XL
688 visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output);
689 }
690 mir::InlineAsmOperand::SymStatic { def_id } => {
691 let instance = Instance::mono(self.tcx, def_id);
3dfed10e 692 if should_codegen_locally(self.tcx, &instance) {
f035d41b
XL
693 trace!("collecting asm sym static {:?}", def_id);
694 self.output.push(respan(source, MonoItem::Static(def_id)));
695 }
696 }
697 _ => {}
f9f354fc
XL
698 }
699 }
700 }
dfeec247
XL
701 mir::TerminatorKind::Goto { .. }
702 | mir::TerminatorKind::SwitchInt { .. }
703 | mir::TerminatorKind::Resume
704 | mir::TerminatorKind::Abort
705 | mir::TerminatorKind::Return
706 | mir::TerminatorKind::Unreachable
707 | mir::TerminatorKind::Assert { .. } => {}
708 mir::TerminatorKind::GeneratorDrop
709 | mir::TerminatorKind::Yield { .. }
f035d41b 710 | mir::TerminatorKind::FalseEdge { .. }
dfeec247 711 | mir::TerminatorKind::FalseUnwind { .. } => bug!(),
a7813a04
XL
712 }
713
f035d41b 714 self.super_terminator(terminator, location);
7453a54e 715 }
3b2f2976 716
f9f354fc 717 fn visit_local(
dfeec247
XL
718 &mut self,
719 _place_local: &Local,
720 _context: mir::visit::PlaceContext,
721 _location: Location,
722 ) {
3b2f2976 723 }
7453a54e
SL
724}
725
dc9dc135
XL
726fn visit_drop_use<'tcx>(
727 tcx: TyCtxt<'tcx>,
728 ty: Ty<'tcx>,
729 is_direct_call: bool,
f035d41b
XL
730 source: Span,
731 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135
XL
732) {
733 let instance = Instance::resolve_drop_in_place(tcx, ty);
f035d41b 734 visit_instance_use(tcx, instance, is_direct_call, source, output);
7453a54e
SL
735}
736
dc9dc135
XL
737fn visit_fn_use<'tcx>(
738 tcx: TyCtxt<'tcx>,
739 ty: Ty<'tcx>,
740 is_direct_call: bool,
f035d41b
XL
741 source: Span,
742 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135 743) {
1b1a35ee 744 if let ty::FnDef(def_id, substs) = *ty.kind() {
f9f354fc
XL
745 let instance = if is_direct_call {
746 ty::Instance::resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs).unwrap().unwrap()
747 } else {
748 ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs)
749 .unwrap()
750 };
f035d41b 751 visit_instance_use(tcx, instance, is_direct_call, source, output);
7453a54e 752 }
cc61c64b 753}
7453a54e 754
dc9dc135
XL
755fn visit_instance_use<'tcx>(
756 tcx: TyCtxt<'tcx>,
757 instance: ty::Instance<'tcx>,
758 is_direct_call: bool,
f035d41b
XL
759 source: Span,
760 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135 761) {
cc61c64b 762 debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call);
3dfed10e 763 if !should_codegen_locally(tcx, &instance) {
dfeec247 764 return;
7453a54e
SL
765 }
766
cc61c64b 767 match instance.def {
dfeec247 768 ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => {
cc61c64b 769 if !is_direct_call {
60c5eb7d 770 bug!("{:?} being reified", instance);
32a655c1
SL
771 }
772 }
cc61c64b 773 ty::InstanceDef::DropGlue(_, None) => {
60c5eb7d 774 // Don't need to emit noop drop glue if we are calling directly.
cc61c64b 775 if !is_direct_call {
3dfed10e 776 output.push(create_fn_mono_item(tcx, instance, source));
7453a54e
SL
777 }
778 }
dfeec247
XL
779 ty::InstanceDef::DropGlue(_, Some(_))
780 | ty::InstanceDef::VtableShim(..)
781 | ty::InstanceDef::ReifyShim(..)
782 | ty::InstanceDef::ClosureOnceShim { .. }
783 | ty::InstanceDef::Item(..)
784 | ty::InstanceDef::FnPtrShim(..)
785 | ty::InstanceDef::CloneShim(..) => {
3dfed10e 786 output.push(create_fn_mono_item(tcx, instance, source));
32a655c1 787 }
7453a54e
SL
788 }
789}
790
60c5eb7d
XL
791// Returns `true` if we should codegen an instance in the local crate.
792// Returns `false` if we can just link to the upstream crate and therefore don't
ff7c6d11 793// need a mono item.
3dfed10e 794fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool {
cc61c64b 795 let def_id = match instance.def {
3dfed10e
XL
796 ty::InstanceDef::Item(def) => def.did,
797 ty::InstanceDef::DropGlue(def_id, Some(_)) => def_id,
dfeec247
XL
798 ty::InstanceDef::VtableShim(..)
799 | ty::InstanceDef::ReifyShim(..)
800 | ty::InstanceDef::ClosureOnceShim { .. }
801 | ty::InstanceDef::Virtual(..)
802 | ty::InstanceDef::FnPtrShim(..)
803 | ty::InstanceDef::DropGlue(..)
804 | ty::InstanceDef::Intrinsic(_)
805 | ty::InstanceDef::CloneShim(..) => return true,
cc61c64b 806 };
83c7162d 807
a1dfa0c6 808 if tcx.is_foreign_item(def_id) {
3dfed10e 809 // Foreign items are always linked against, there's no way of instantiating them.
a1dfa0c6
XL
810 return false;
811 }
812
813 if def_id.is_local() {
3dfed10e 814 // Local items cannot be referred to locally without monomorphizing them locally.
a1dfa0c6
XL
815 return true;
816 }
817
3dfed10e
XL
818 if tcx.is_reachable_non_generic(def_id)
819 || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some()
820 {
821 // We can link to the item in question, no instance needed in this crate.
a1dfa0c6
XL
822 return false;
823 }
824
825 if !tcx.is_mir_available(def_id) {
5869c6ff 826 bug!("no MIR available for {:?}", def_id);
a1dfa0c6 827 }
83c7162d 828
ba9703b0 829 true
7453a54e
SL
830}
831
60c5eb7d 832/// For a given pair of source and target type that occur in an unsizing coercion,
7453a54e
SL
833/// this function finds the pair of types that determines the vtable linking
834/// them.
835///
836/// For example, the source type might be `&SomeStruct` and the target type\
837/// might be `&SomeTrait` in a cast like:
838///
839/// let src: &SomeStruct = ...;
840/// let target = src as &SomeTrait;
841///
842/// Then the output of this function would be (SomeStruct, SomeTrait) since for
843/// constructing the `target` fat-pointer we need the vtable for that pair.
844///
845/// Things can get more complicated though because there's also the case where
846/// the unsized type occurs as a field:
847///
848/// ```rust
849/// struct ComplexStruct<T: ?Sized> {
850/// a: u32,
851/// b: f64,
852/// c: T
853/// }
854/// ```
855///
856/// In this case, if `T` is sized, `&ComplexStruct<T>` is a thin pointer. If `T`
857/// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is
858/// for the pair of `T` (which is a trait) and the concrete type that `T` was
859/// originally coerced from:
860///
861/// let src: &ComplexStruct<SomeStruct> = ...;
862/// let target = src as &ComplexStruct<SomeTrait>;
863///
864/// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair
865/// `(SomeStruct, SomeTrait)`.
866///
0731742a 867/// Finally, there is also the case of custom unsizing coercions, e.g., for
7453a54e 868/// smart pointers such as `Rc` and `Arc`.
dc9dc135
XL
869fn find_vtable_types_for_unsizing<'tcx>(
870 tcx: TyCtxt<'tcx>,
871 source_ty: Ty<'tcx>,
872 target_ty: Ty<'tcx>,
873) -> (Ty<'tcx>, Ty<'tcx>) {
ea8adc8c 874 let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| {
416331ca 875 let param_env = ty::ParamEnv::reveal_all();
ff7c6d11 876 let type_has_metadata = |ty: Ty<'tcx>| -> bool {
416331ca 877 if ty.is_sized(tcx.at(DUMMY_SP), param_env) {
ff7c6d11
XL
878 return false;
879 }
416331ca 880 let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env);
1b1a35ee 881 match tail.kind() {
b7449926
XL
882 ty::Foreign(..) => false,
883 ty::Str | ty::Slice(..) | ty::Dynamic(..) => true,
532ac7d7 884 _ => bug!("unexpected unsized tail: {:?}", tail),
ff7c6d11
XL
885 }
886 };
887 if type_has_metadata(inner_source) {
32a655c1
SL
888 (inner_source, inner_target)
889 } else {
416331ca 890 tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env)
32a655c1
SL
891 }
892 };
ff7c6d11 893
1b1a35ee 894 match (&source_ty.kind(), &target_ty.kind()) {
ba9703b0 895 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
dfeec247 896 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
32a655c1
SL
897 ptr_vtable(a, b)
898 }
b7449926 899 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
32a655c1 900 ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty())
7453a54e
SL
901 }
902
dfeec247 903 (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => {
7453a54e
SL
904 assert_eq!(source_adt_def, target_adt_def);
905
74b04a01
XL
906 let CustomCoerceUnsized::Struct(coerce_index) =
907 monomorphize::custom_coerce_unsize_info(tcx, source_ty, target_ty);
7453a54e 908
2c00a5a8
XL
909 let source_fields = &source_adt_def.non_enum_variant().fields;
910 let target_fields = &target_adt_def.non_enum_variant().fields;
7453a54e 911
dfeec247
XL
912 assert!(
913 coerce_index < source_fields.len() && source_fields.len() == target_fields.len()
914 );
7453a54e 915
dfeec247
XL
916 find_vtable_types_for_unsizing(
917 tcx,
60c5eb7d 918 source_fields[coerce_index].ty(tcx, source_substs),
dfeec247 919 target_fields[coerce_index].ty(tcx, target_substs),
60c5eb7d 920 )
7453a54e 921 }
dfeec247
XL
922 _ => bug!(
923 "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}",
924 source_ty,
925 target_ty
926 ),
7453a54e
SL
927 }
928}
929
3dfed10e
XL
930fn create_fn_mono_item<'tcx>(
931 tcx: TyCtxt<'tcx>,
932 instance: Instance<'tcx>,
933 source: Span,
934) -> Spanned<MonoItem<'tcx>> {
ff7c6d11 935 debug!("create_fn_mono_item(instance={})", instance);
3dfed10e 936 respan(source, MonoItem::Fn(instance.polymorphize(tcx)))
7453a54e
SL
937}
938
ff7c6d11 939/// Creates a `MonoItem` for each method that is referenced by the vtable for
7453a54e 940/// the given trait/impl pair.
dc9dc135
XL
941fn create_mono_items_for_vtable_methods<'tcx>(
942 tcx: TyCtxt<'tcx>,
943 trait_ty: Ty<'tcx>,
944 impl_ty: Ty<'tcx>,
f035d41b
XL
945 source: Span,
946 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135 947) {
3dfed10e 948 assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars());
7453a54e 949
1b1a35ee 950 if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() {
0731742a
XL
951 if let Some(principal) = trait_ty.principal() {
952 let poly_trait_ref = principal.with_self_ty(tcx, impl_ty);
953 assert!(!poly_trait_ref.has_escaping_bound_vars());
954
955 // Walk all methods of the trait, including those of its supertraits
956 let methods = tcx.vtable_methods(poly_trait_ref);
dfeec247
XL
957 let methods = methods
958 .iter()
959 .cloned()
960 .filter_map(|method| method)
961 .map(|(def_id, substs)| {
962 ty::Instance::resolve_for_vtable(
963 tcx,
964 ty::ParamEnv::reveal_all(),
965 def_id,
966 substs,
967 )
968 .unwrap()
969 })
3dfed10e
XL
970 .filter(|&instance| should_codegen_locally(tcx, &instance))
971 .map(|item| create_fn_mono_item(tcx, item, source));
0731742a
XL
972 output.extend(methods);
973 }
974
60c5eb7d 975 // Also add the destructor.
f035d41b 976 visit_drop_use(tcx, impl_ty, false, source, output);
7453a54e
SL
977 }
978}
979
980//=-----------------------------------------------------------------------------
981// Root Collection
982//=-----------------------------------------------------------------------------
983
dc9dc135
XL
984struct RootCollector<'a, 'tcx> {
985 tcx: TyCtxt<'tcx>,
ff7c6d11 986 mode: MonoItemCollectionMode,
f035d41b 987 output: &'a mut Vec<Spanned<MonoItem<'tcx>>>,
f9f354fc 988 entry_fn: Option<(LocalDefId, EntryFnType)>,
7453a54e
SL
989}
990
dc9dc135 991impl ItemLikeVisitor<'v> for RootCollector<'_, 'v> {
dfeec247 992 fn visit_item(&mut self, item: &'v hir::Item<'v>) {
e74abb32 993 match item.kind {
dfeec247
XL
994 hir::ItemKind::ExternCrate(..)
995 | hir::ItemKind::Use(..)
fc512014 996 | hir::ItemKind::ForeignMod { .. }
dfeec247
XL
997 | hir::ItemKind::TyAlias(..)
998 | hir::ItemKind::Trait(..)
999 | hir::ItemKind::TraitAlias(..)
1000 | hir::ItemKind::OpaqueTy(..)
1001 | hir::ItemKind::Mod(..) => {
60c5eb7d 1002 // Nothing to do, just keep recursing.
7453a54e
SL
1003 }
1004
dfeec247 1005 hir::ItemKind::Impl { .. } => {
ff7c6d11 1006 if self.mode == MonoItemCollectionMode::Eager {
dfeec247 1007 create_mono_items_for_default_impls(self.tcx, item, self.output);
7453a54e
SL
1008 }
1009 }
1010
dfeec247
XL
1011 hir::ItemKind::Enum(_, ref generics)
1012 | hir::ItemKind::Struct(_, ref generics)
1013 | hir::ItemKind::Union(_, ref generics) => {
ff7c6d11
XL
1014 if generics.params.is_empty() {
1015 if self.mode == MonoItemCollectionMode::Eager {
dfeec247
XL
1016 debug!(
1017 "RootCollector: ADT drop-glue for {}",
6a06907d 1018 self.tcx.def_path_str(item.def_id.to_def_id())
dfeec247 1019 );
7453a54e 1020
6a06907d 1021 let ty = Instance::new(item.def_id.to_def_id(), InternalSubsts::empty())
3dfed10e 1022 .ty(self.tcx, ty::ParamEnv::reveal_all());
f035d41b 1023 visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output);
7453a54e
SL
1024 }
1025 }
1026 }
8faf50e0 1027 hir::ItemKind::GlobalAsm(..) => {
dfeec247
XL
1028 debug!(
1029 "RootCollector: ItemKind::GlobalAsm({})",
6a06907d 1030 self.tcx.def_path_str(item.def_id.to_def_id())
dfeec247 1031 );
6a06907d 1032 self.output.push(dummy_spanned(MonoItem::GlobalAsm(item.item_id())));
cc61c64b 1033 }
8faf50e0 1034 hir::ItemKind::Static(..) => {
6a06907d
XL
1035 debug!(
1036 "RootCollector: ItemKind::Static({})",
1037 self.tcx.def_path_str(item.def_id.to_def_id())
1038 );
1039 self.output.push(dummy_spanned(MonoItem::Static(item.def_id.to_def_id())));
7453a54e 1040 }
8faf50e0 1041 hir::ItemKind::Const(..) => {
ff7c6d11 1042 // const items only generate mono items if they are
5bcae85e 1043 // actually used somewhere. Just declaring them is insufficient.
a1dfa0c6
XL
1044
1045 // but even just declaring them must collect the items they refer to
6a06907d 1046 if let Ok(val) = self.tcx.const_eval_poly(item.def_id.to_def_id()) {
74b04a01 1047 collect_const_value(self.tcx, val, &mut self.output);
a1dfa0c6 1048 }
5bcae85e 1049 }
8faf50e0 1050 hir::ItemKind::Fn(..) => {
6a06907d 1051 self.push_if_root(item.def_id);
7453a54e
SL
1052 }
1053 }
7453a54e
SL
1054 }
1055
dfeec247 1056 fn visit_trait_item(&mut self, _: &'v hir::TraitItem<'v>) {
32a655c1
SL
1057 // Even if there's a default body with no explicit generics,
1058 // it's still generic over some `Self: Trait`, so not a root.
1059 }
1060
dfeec247 1061 fn visit_impl_item(&mut self, ii: &'v hir::ImplItem<'v>) {
ba9703b0 1062 if let hir::ImplItemKind::Fn(hir::FnSig { .. }, _) = ii.kind {
6a06907d 1063 self.push_if_root(ii.def_id);
7453a54e 1064 }
7453a54e 1065 }
fc512014
XL
1066
1067 fn visit_foreign_item(&mut self, _foreign_item: &'v hir::ForeignItem<'v>) {}
7453a54e
SL
1068}
1069
dc9dc135 1070impl RootCollector<'_, 'v> {
f9f354fc 1071 fn is_root(&self, def_id: LocalDefId) -> bool {
dfeec247
XL
1072 !item_requires_monomorphization(self.tcx, def_id)
1073 && match self.mode {
1074 MonoItemCollectionMode::Eager => true,
1075 MonoItemCollectionMode::Lazy => {
1076 self.entry_fn.map(|(id, _)| id) == Some(def_id)
1077 || self.tcx.is_reachable_non_generic(def_id)
1078 || self
1079 .tcx
1080 .codegen_fn_attrs(def_id)
1081 .flags
1082 .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
1083 }
abe05a73 1084 }
abe05a73 1085 }
ff7c6d11 1086
60c5eb7d 1087 /// If `def_id` represents a root, pushes it onto the list of
ff7c6d11 1088 /// outputs. (Note that all roots must be monomorphic.)
f9f354fc 1089 fn push_if_root(&mut self, def_id: LocalDefId) {
ff7c6d11
XL
1090 if self.is_root(def_id) {
1091 debug!("RootCollector::push_if_root: found root def_id={:?}", def_id);
1092
f9f354fc 1093 let instance = Instance::mono(self.tcx, def_id.to_def_id());
3dfed10e 1094 self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP));
ff7c6d11
XL
1095 }
1096 }
1097
1098 /// As a special case, when/if we encounter the
1099 /// `main()` function, we also have to generate a
1100 /// monomorphized copy of the start lang item based on
1101 /// the return type of `main`. This is not needed when
1102 /// the user writes their own `start` manually.
0531ce1d 1103 fn push_extra_entry_roots(&mut self) {
9fa01778
XL
1104 let main_def_id = match self.entry_fn {
1105 Some((def_id, EntryFnType::Main)) => def_id,
1106 _ => return,
0531ce1d
XL
1107 };
1108
3dfed10e 1109 let start_def_id = match self.tcx.lang_items().require(LangItem::Start) {
ff7c6d11
XL
1110 Ok(s) => s,
1111 Err(err) => self.tcx.sess.fatal(&err),
1112 };
0531ce1d 1113 let main_ret_ty = self.tcx.fn_sig(main_def_id).output();
ff7c6d11
XL
1114
1115 // Given that `main()` has no arguments,
1116 // then its return type cannot have
1117 // late-bound regions, since late-bound
1118 // regions must appear in the argument
1119 // listing.
fc512014 1120 let main_ret_ty = self.tcx.erase_regions(main_ret_ty.no_bound_vars().unwrap());
ff7c6d11
XL
1121
1122 let start_instance = Instance::resolve(
1123 self.tcx,
0531ce1d 1124 ty::ParamEnv::reveal_all(),
ff7c6d11 1125 start_def_id,
dfeec247
XL
1126 self.tcx.intern_substs(&[main_ret_ty.into()]),
1127 )
f9f354fc 1128 .unwrap()
dfeec247 1129 .unwrap();
ff7c6d11 1130
3dfed10e 1131 self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP));
ff7c6d11 1132 }
abe05a73
XL
1133}
1134
f9f354fc 1135fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
3b2f2976 1136 let generics = tcx.generics_of(def_id);
94b46f34 1137 generics.requires_monomorphization(tcx)
3b2f2976
XL
1138}
1139
dc9dc135
XL
1140fn create_mono_items_for_default_impls<'tcx>(
1141 tcx: TyCtxt<'tcx>,
dfeec247 1142 item: &'tcx hir::Item<'tcx>,
f035d41b 1143 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135 1144) {
e74abb32 1145 match item.kind {
5869c6ff
XL
1146 hir::ItemKind::Impl(ref impl_) => {
1147 for param in impl_.generics.params {
8faf50e0
XL
1148 match param.kind {
1149 hir::GenericParamKind::Lifetime { .. } => {}
dfeec247
XL
1150 hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => {
1151 return;
9fa01778 1152 }
8faf50e0 1153 }
7453a54e
SL
1154 }
1155
dfeec247
XL
1156 debug!(
1157 "create_mono_items_for_default_impls(item={})",
6a06907d 1158 tcx.def_path_str(item.def_id.to_def_id())
dfeec247 1159 );
7453a54e 1160
6a06907d 1161 if let Some(trait_ref) = tcx.impl_trait_ref(item.def_id) {
416331ca 1162 let param_env = ty::ParamEnv::reveal_all();
dfeec247 1163 let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref);
476ff2be 1164 let overridden_methods: FxHashSet<_> =
5869c6ff 1165 impl_.items.iter().map(|iiref| iiref.ident.normalize_to_macros_2_0()).collect();
9e0c209e 1166 for method in tcx.provided_trait_methods(trait_ref.def_id) {
ba9703b0 1167 if overridden_methods.contains(&method.ident.normalize_to_macros_2_0()) {
7453a54e
SL
1168 continue;
1169 }
1170
48663c56 1171 if tcx.generics_of(method.def_id).own_requires_monomorphization() {
7453a54e
SL
1172 continue;
1173 }
1174
dfeec247
XL
1175 let substs =
1176 InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind {
48663c56 1177 GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
dfeec247 1178 GenericParamDefKind::Type { .. } | GenericParamDefKind::Const => {
94b46f34
XL
1179 trait_ref.substs[param.index as usize]
1180 }
dfeec247 1181 });
f9f354fc
XL
1182 let instance = ty::Instance::resolve(tcx, param_env, method.def_id, substs)
1183 .unwrap()
1184 .unwrap();
cc61c64b 1185
3dfed10e
XL
1186 let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP);
1187 if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance)
dfeec247 1188 {
ff7c6d11 1189 output.push(mono_item);
7453a54e
SL
1190 }
1191 }
1192 }
1193 }
dfeec247 1194 _ => bug!(),
7453a54e
SL
1195 }
1196}
1197
60c5eb7d 1198/// Scans the miri alloc in order to find function calls, closures, and drop-glue.
f035d41b
XL
1199fn collect_miri<'tcx>(
1200 tcx: TyCtxt<'tcx>,
1201 alloc_id: AllocId,
1202 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
1203) {
f9f354fc
XL
1204 match tcx.global_alloc(alloc_id) {
1205 GlobalAlloc::Static(def_id) => {
1206 assert!(!tcx.is_thread_local_static(def_id));
dc9dc135 1207 let instance = Instance::mono(tcx, def_id);
3dfed10e 1208 if should_codegen_locally(tcx, &instance) {
dc9dc135 1209 trace!("collecting static {:?}", def_id);
f035d41b 1210 output.push(dummy_spanned(MonoItem::Static(def_id)));
94b46f34 1211 }
0531ce1d 1212 }
f9f354fc 1213 GlobalAlloc::Memory(alloc) => {
94b46f34 1214 trace!("collecting {:?} with {:#?}", alloc_id, alloc);
e1599b0c 1215 for &((), inner) in alloc.relocations().values() {
f9f354fc
XL
1216 rustc_data_structures::stack::ensure_sufficient_stack(|| {
1217 collect_miri(tcx, inner, output);
1218 });
94b46f34 1219 }
dfeec247 1220 }
f9f354fc 1221 GlobalAlloc::Function(fn_instance) => {
3dfed10e 1222 if should_codegen_locally(tcx, &fn_instance) {
94b46f34 1223 trace!("collecting {:?} with {:#?}", alloc_id, fn_instance);
3dfed10e 1224 output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP));
94b46f34 1225 }
0531ce1d 1226 }
0531ce1d
XL
1227 }
1228}
1229
60c5eb7d 1230/// Scans the MIR in order to find function calls, closures, and drop-glue.
dc9dc135
XL
1231fn collect_neighbours<'tcx>(
1232 tcx: TyCtxt<'tcx>,
1233 instance: Instance<'tcx>,
f035d41b 1234 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
dc9dc135 1235) {
e1599b0c 1236 debug!("collect_neighbours: {:?}", instance.def_id());
dc9dc135 1237 let body = tcx.instance_mir(instance.def);
5bcae85e 1238
ba9703b0 1239 MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
7453a54e 1240}
476ff2be 1241
74b04a01
XL
1242fn collect_const_value<'tcx>(
1243 tcx: TyCtxt<'tcx>,
1244 value: ConstValue<'tcx>,
f035d41b 1245 output: &mut Vec<Spanned<MonoItem<'tcx>>>,
74b04a01
XL
1246) {
1247 match value {
1248 ConstValue::Scalar(Scalar::Ptr(ptr)) => collect_miri(tcx, ptr.alloc_id, output),
1249 ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => {
1250 for &((), id) in alloc.relocations().values() {
1251 collect_miri(tcx, id, output);
1252 }
1253 }
1254 _ => {}
1255 }
1256}