]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir_dataflow/src/framework/lattice.rs
New upstream version 1.67.1+dfsg1
[rustc.git] / compiler / rustc_mir_dataflow / src / framework / lattice.rs
CommitLineData
1b1a35ee
XL
1//! Traits used to represent [lattices] for use as the domain of a dataflow analysis.
2//!
3//! # Overview
4//!
5//! The most common lattice is a powerset of some set `S`, ordered by [set inclusion]. The [Hasse
6//! diagram] for the powerset of a set with two elements (`X` and `Y`) is shown below. Note that
7//! distinct elements at the same height in a Hasse diagram (e.g. `{X}` and `{Y}`) are
8//! *incomparable*, not equal.
9//!
10//! ```text
11//! {X, Y} <- top
12//! / \
13//! {X} {Y}
14//! \ /
15//! {} <- bottom
16//!
17//! ```
18//!
19//! The defining characteristic of a lattice—the one that differentiates it from a [partially
20//! ordered set][poset]—is the existence of a *unique* least upper and greatest lower bound for
21//! every pair of elements. The lattice join operator (`∨`) returns the least upper bound, and the
22//! lattice meet operator (`∧`) returns the greatest lower bound. Types that implement one operator
23//! but not the other are known as semilattices. Dataflow analysis only uses the join operator and
24//! will work with any join-semilattice, but both should be specified when possible.
25//!
26//! ## `PartialOrd`
27//!
28//! Given that they represent partially ordered sets, you may be surprised that [`JoinSemiLattice`]
29//! and [`MeetSemiLattice`] do not have [`PartialOrd`][std::cmp::PartialOrd] as a supertrait. This
30//! is because most standard library types use lexicographic ordering instead of set inclusion for
31//! their `PartialOrd` impl. Since we do not actually need to compare lattice elements to run a
32//! dataflow analysis, there's no need for a newtype wrapper with a custom `PartialOrd` impl. The
33//! only benefit would be the ability to check that the least upper (or greatest lower) bound
34//! returned by the lattice join (or meet) operator was in fact greater (or lower) than the inputs.
35//!
36//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)
37//! [set inclusion]: https://en.wikipedia.org/wiki/Subset
38//! [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
39//! [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
40
5e7ed085
FG
41use crate::framework::BitSetExt;
42use rustc_index::bit_set::{BitSet, ChunkedBitSet, HybridBitSet};
1b1a35ee 43use rustc_index::vec::{Idx, IndexVec};
cdc7bbd5 44use std::iter;
1b1a35ee
XL
45
46/// A [partially ordered set][poset] that has a [least upper bound][lub] for any pair of elements
47/// in the set.
48///
49/// [lub]: https://en.wikipedia.org/wiki/Infimum_and_supremum
50/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
51pub trait JoinSemiLattice: Eq {
52 /// Computes the least upper bound of two elements, storing the result in `self` and returning
53 /// `true` if `self` has changed.
54 ///
55 /// The lattice join operator is abbreviated as `∨`.
56 fn join(&mut self, other: &Self) -> bool;
57}
58
59/// A [partially ordered set][poset] that has a [greatest lower bound][glb] for any pair of
60/// elements in the set.
61///
62/// Dataflow analyses only require that their domains implement [`JoinSemiLattice`], not
63/// `MeetSemiLattice`. However, types that will be used as dataflow domains should implement both
64/// so that they can be used with [`Dual`].
65///
66/// [glb]: https://en.wikipedia.org/wiki/Infimum_and_supremum
67/// [poset]: https://en.wikipedia.org/wiki/Partially_ordered_set
68pub trait MeetSemiLattice: Eq {
69 /// Computes the greatest lower bound of two elements, storing the result in `self` and
70 /// returning `true` if `self` has changed.
71 ///
72 /// The lattice meet operator is abbreviated as `∧`.
73 fn meet(&mut self, other: &Self) -> bool;
74}
75
487cf647
FG
76/// A set that has a "bottom" element, which is less than or equal to any other element.
77pub trait HasBottom {
78 fn bottom() -> Self;
79}
80
81/// A set that has a "top" element, which is greater than or equal to any other element.
82pub trait HasTop {
83 fn top() -> Self;
84}
85
1b1a35ee
XL
86/// A `bool` is a "two-point" lattice with `true` as the top element and `false` as the bottom:
87///
88/// ```text
89/// true
90/// |
91/// false
92/// ```
93impl JoinSemiLattice for bool {
94 fn join(&mut self, other: &Self) -> bool {
95 if let (false, true) = (*self, *other) {
96 *self = true;
97 return true;
98 }
99
100 false
101 }
102}
103
104impl MeetSemiLattice for bool {
105 fn meet(&mut self, other: &Self) -> bool {
106 if let (true, false) = (*self, *other) {
107 *self = false;
108 return true;
109 }
110
111 false
112 }
113}
114
487cf647
FG
115impl HasBottom for bool {
116 fn bottom() -> Self {
117 false
118 }
119}
120
121impl HasTop for bool {
122 fn top() -> Self {
123 true
124 }
125}
126
1b1a35ee
XL
127/// A tuple (or list) of lattices is itself a lattice whose least upper bound is the concatenation
128/// of the least upper bounds of each element of the tuple (or list).
129///
130/// In other words:
131/// (A₀, A₁, ..., Aₙ) ∨ (B₀, B₁, ..., Bₙ) = (A₀∨B₀, A₁∨B₁, ..., Aₙ∨Bₙ)
132impl<I: Idx, T: JoinSemiLattice> JoinSemiLattice for IndexVec<I, T> {
133 fn join(&mut self, other: &Self) -> bool {
134 assert_eq!(self.len(), other.len());
135
136 let mut changed = false;
cdc7bbd5 137 for (a, b) in iter::zip(self, other) {
1b1a35ee
XL
138 changed |= a.join(b);
139 }
140 changed
141 }
142}
143
144impl<I: Idx, T: MeetSemiLattice> MeetSemiLattice for IndexVec<I, T> {
145 fn meet(&mut self, other: &Self) -> bool {
146 assert_eq!(self.len(), other.len());
147
148 let mut changed = false;
cdc7bbd5 149 for (a, b) in iter::zip(self, other) {
1b1a35ee
XL
150 changed |= a.meet(b);
151 }
152 changed
153 }
154}
155
156/// A `BitSet` represents the lattice formed by the powerset of all possible values of
157/// the index type `T` ordered by inclusion. Equivalently, it is a tuple of "two-point" lattices,
158/// one for each possible value of `T`.
159impl<T: Idx> JoinSemiLattice for BitSet<T> {
160 fn join(&mut self, other: &Self) -> bool {
161 self.union(other)
162 }
163}
164
165impl<T: Idx> MeetSemiLattice for BitSet<T> {
166 fn meet(&mut self, other: &Self) -> bool {
167 self.intersect(other)
168 }
169}
170
5e7ed085
FG
171impl<T: Idx> JoinSemiLattice for ChunkedBitSet<T> {
172 fn join(&mut self, other: &Self) -> bool {
173 self.union(other)
174 }
175}
176
177impl<T: Idx> MeetSemiLattice for ChunkedBitSet<T> {
178 fn meet(&mut self, other: &Self) -> bool {
179 self.intersect(other)
180 }
181}
182
1b1a35ee
XL
183/// The counterpart of a given semilattice `T` using the [inverse order].
184///
185/// The dual of a join-semilattice is a meet-semilattice and vice versa. For example, the dual of a
186/// powerset has the empty set as its top element and the full set as its bottom element and uses
187/// set *intersection* as its join operator.
188///
189/// [inverse order]: https://en.wikipedia.org/wiki/Duality_(order_theory)
190#[derive(Clone, Copy, Debug, PartialEq, Eq)]
191pub struct Dual<T>(pub T);
192
5e7ed085
FG
193impl<T: Idx> BitSetExt<T> for Dual<BitSet<T>> {
194 fn domain_size(&self) -> usize {
195 self.0.domain_size()
196 }
197
198 fn contains(&self, elem: T) -> bool {
199 self.0.contains(elem)
200 }
201
202 fn union(&mut self, other: &HybridBitSet<T>) {
203 self.0.union(other);
1b1a35ee 204 }
1b1a35ee 205
5e7ed085
FG
206 fn subtract(&mut self, other: &HybridBitSet<T>) {
207 self.0.subtract(other);
1b1a35ee
XL
208 }
209}
210
211impl<T: MeetSemiLattice> JoinSemiLattice for Dual<T> {
212 fn join(&mut self, other: &Self) -> bool {
213 self.0.meet(&other.0)
214 }
215}
216
217impl<T: JoinSemiLattice> MeetSemiLattice for Dual<T> {
218 fn meet(&mut self, other: &Self) -> bool {
219 self.0.join(&other.0)
220 }
221}
222
223/// Extends a type `T` with top and bottom elements to make it a partially ordered set in which no
064997fb
FG
224/// value of `T` is comparable with any other.
225///
226/// A flat set has the following [Hasse diagram]:
1b1a35ee
XL
227///
228/// ```text
064997fb
FG
229/// top
230/// / ... / / \ \ ... \
1b1a35ee 231/// all possible values of `T`
064997fb
FG
232/// \ ... \ \ / / ... /
233/// bottom
1b1a35ee
XL
234/// ```
235///
236/// [Hasse diagram]: https://en.wikipedia.org/wiki/Hasse_diagram
237#[derive(Clone, Copy, Debug, PartialEq, Eq)]
238pub enum FlatSet<T> {
239 Bottom,
240 Elem(T),
241 Top,
242}
243
244impl<T: Clone + Eq> JoinSemiLattice for FlatSet<T> {
245 fn join(&mut self, other: &Self) -> bool {
246 let result = match (&*self, other) {
247 (Self::Top, _) | (_, Self::Bottom) => return false,
248 (Self::Elem(a), Self::Elem(b)) if a == b => return false,
249
250 (Self::Bottom, Self::Elem(x)) => Self::Elem(x.clone()),
251
252 _ => Self::Top,
253 };
254
255 *self = result;
256 true
257 }
258}
259
260impl<T: Clone + Eq> MeetSemiLattice for FlatSet<T> {
261 fn meet(&mut self, other: &Self) -> bool {
262 let result = match (&*self, other) {
263 (Self::Bottom, _) | (_, Self::Top) => return false,
264 (Self::Elem(ref a), Self::Elem(ref b)) if a == b => return false,
265
266 (Self::Top, Self::Elem(ref x)) => Self::Elem(x.clone()),
267
268 _ => Self::Bottom,
269 };
270
271 *self = result;
272 true
273 }
274}
487cf647
FG
275
276impl<T> HasBottom for FlatSet<T> {
277 fn bottom() -> Self {
278 Self::Bottom
279 }
280}
281
282impl<T> HasTop for FlatSet<T> {
283 fn top() -> Self {
284 Self::Top
285 }
286}