]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir_dataflow/src/framework/mod.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_mir_dataflow / src / framework / mod.rs
CommitLineData
dfeec247
XL
1//! A framework that can express both [gen-kill] and generic dataflow problems.
2//!
ba9703b0
XL
3//! To actually use this framework, you must implement either the `Analysis` or the
4//! `GenKillAnalysis` trait. If your transfer function can be expressed with only gen/kill
5//! operations, prefer `GenKillAnalysis` since it will run faster while iterating to fixpoint. The
6//! `impls` module contains several examples of gen/kill dataflow analyses.
dfeec247 7//!
ba9703b0
XL
8//! Create an `Engine` for your analysis using the `into_engine` method on the `Analysis` trait,
9//! then call `iterate_to_fixpoint`. From there, you can use a `ResultsCursor` to inspect the
10//! fixpoint solution to your dataflow problem, or implement the `ResultsVisitor` interface and use
11//! `visit_results`. The following example uses the `ResultsCursor` approach.
dfeec247 12//!
6a06907d 13//! ```ignore (cross-crate-imports)
c295e0f8 14//! use rustc_const_eval::dataflow::Analysis; // Makes `into_engine` available.
dfeec247 15//!
29967ef6 16//! fn do_my_analysis(tcx: TyCtxt<'tcx>, body: &mir::Body<'tcx>) {
ba9703b0 17//! let analysis = MyAnalysis::new()
29967ef6 18//! .into_engine(tcx, body)
ba9703b0
XL
19//! .iterate_to_fixpoint()
20//! .into_results_cursor(body);
dfeec247 21//!
ba9703b0 22//! // Print the dataflow state *after* each statement in the start block.
dfeec247
XL
23//! for (_, statement_index) in body.block_data[START_BLOCK].statements.iter_enumerated() {
24//! cursor.seek_after(Location { block: START_BLOCK, statement_index });
25//! let state = cursor.get();
26//! println!("{:?}", state);
27//! }
28//! }
29//! ```
30//!
31//! [gen-kill]: https://en.wikipedia.org/wiki/Data-flow_analysis#Bit_vector_problems
dfeec247 32
f9f354fc 33use std::cmp::Ordering;
dfeec247 34
5e7ed085 35use rustc_index::bit_set::{BitSet, ChunkedBitSet, HybridBitSet};
f9f354fc 36use rustc_index::vec::Idx;
ba9703b0 37use rustc_middle::mir::{self, BasicBlock, Location};
1b1a35ee 38use rustc_middle::ty::TyCtxt;
dfeec247
XL
39
40mod cursor;
f9f354fc 41mod direction;
dfeec247 42mod engine;
1b1a35ee 43pub mod fmt;
94222f64 44pub mod graphviz;
1b1a35ee 45pub mod lattice;
74b04a01 46mod visitor;
dfeec247
XL
47
48pub use self::cursor::{ResultsCursor, ResultsRefCursor};
f9f354fc
XL
49pub use self::direction::{Backward, Direction, Forward};
50pub use self::engine::{Engine, Results};
1b1a35ee 51pub use self::lattice::{JoinSemiLattice, MeetSemiLattice};
c295e0f8 52pub use self::visitor::{visit_results, ResultsVisitable, ResultsVisitor};
dfeec247 53
5e7ed085
FG
54/// Analysis domains are all bitsets of various kinds. This trait holds
55/// operations needed by all of them.
56pub trait BitSetExt<T> {
57 fn domain_size(&self) -> usize;
58 fn contains(&self, elem: T) -> bool;
59 fn union(&mut self, other: &HybridBitSet<T>);
60 fn subtract(&mut self, other: &HybridBitSet<T>);
61}
62
63impl<T: Idx> BitSetExt<T> for BitSet<T> {
64 fn domain_size(&self) -> usize {
65 self.domain_size()
66 }
67
68 fn contains(&self, elem: T) -> bool {
69 self.contains(elem)
70 }
71
72 fn union(&mut self, other: &HybridBitSet<T>) {
73 self.union(other);
74 }
75
76 fn subtract(&mut self, other: &HybridBitSet<T>) {
77 self.subtract(other);
78 }
79}
80
81impl<T: Idx> BitSetExt<T> for ChunkedBitSet<T> {
82 fn domain_size(&self) -> usize {
83 self.domain_size()
84 }
85
86 fn contains(&self, elem: T) -> bool {
87 self.contains(elem)
88 }
89
90 fn union(&mut self, other: &HybridBitSet<T>) {
91 self.union(other);
92 }
93
94 fn subtract(&mut self, other: &HybridBitSet<T>) {
95 self.subtract(other);
96 }
97}
98
dfeec247
XL
99/// Define the domain of a dataflow problem.
100///
1b1a35ee
XL
101/// This trait specifies the lattice on which this analysis operates (the domain) as well as its
102/// initial value at the entry point of each basic block.
103pub trait AnalysisDomain<'tcx> {
104 /// The type that holds the dataflow state at any given point in the program.
105 type Domain: Clone + JoinSemiLattice;
dfeec247 106
1b1a35ee 107 /// The direction of this analysis. Either `Forward` or `Backward`.
f9f354fc
XL
108 type Direction: Direction = Forward;
109
dfeec247
XL
110 /// A descriptive name for this analysis. Used only for debugging.
111 ///
112 /// This name should be brief and contain no spaces, periods or other characters that are not
113 /// suitable as part of a filename.
114 const NAME: &'static str;
115
1b1a35ee
XL
116 /// The initial value of the dataflow state upon entry to each basic block.
117 fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain;
dfeec247 118
1b1a35ee 119 /// Mutates the initial value of the dataflow state upon entry to the `START_BLOCK`.
f9f354fc
XL
120 ///
121 /// For backward analyses, initial state besides the bottom value is not yet supported. Trying
122 /// to mutate the initial state will result in a panic.
123 //
124 // FIXME: For backward dataflow analyses, the initial state should be applied to every basic
125 // block where control flow could exit the MIR body (e.g., those terminated with `return` or
126 // `resume`). It's not obvious how to handle `yield` points in generators, however.
1b1a35ee 127 fn initialize_start_block(&self, body: &mir::Body<'tcx>, state: &mut Self::Domain);
dfeec247
XL
128}
129
130/// A dataflow problem with an arbitrarily complex transfer function.
1b1a35ee
XL
131///
132/// # Convergence
133///
134/// When implementing this trait directly (not via [`GenKillAnalysis`]), it's possible to choose a
135/// transfer function such that the analysis does not reach fixpoint. To guarantee convergence,
136/// your transfer functions must maintain the following invariant:
137///
138/// > If the dataflow state **before** some point in the program changes to be greater
139/// than the prior state **before** that point, the dataflow state **after** that point must
140/// also change to be greater than the prior state **after** that point.
141///
142/// This invariant guarantees that the dataflow state at a given point in the program increases
143/// monotonically until fixpoint is reached. Note that this monotonicity requirement only applies
144/// to the same point in the program at different points in time. The dataflow state at a given
145/// point in the program may or may not be greater than the state at any preceding point.
dfeec247
XL
146pub trait Analysis<'tcx>: AnalysisDomain<'tcx> {
147 /// Updates the current dataflow state with the effect of evaluating a statement.
148 fn apply_statement_effect(
149 &self,
1b1a35ee 150 state: &mut Self::Domain,
dfeec247
XL
151 statement: &mir::Statement<'tcx>,
152 location: Location,
153 );
154
155 /// Updates the current dataflow state with an effect that occurs immediately *before* the
156 /// given statement.
157 ///
158 /// This method is useful if the consumer of the results of this analysis needs only to observe
159 /// *part* of the effect of a statement (e.g. for two-phase borrows). As a general rule,
160 /// analyses should not implement this without implementing `apply_statement_effect`.
161 fn apply_before_statement_effect(
162 &self,
1b1a35ee 163 _state: &mut Self::Domain,
dfeec247
XL
164 _statement: &mir::Statement<'tcx>,
165 _location: Location,
166 ) {
167 }
168
169 /// Updates the current dataflow state with the effect of evaluating a terminator.
170 ///
171 /// The effect of a successful return from a `Call` terminator should **not** be accounted for
172 /// in this function. That should go in `apply_call_return_effect`. For example, in the
173 /// `InitializedPlaces` analyses, the return place for a function call is not marked as
174 /// initialized here.
175 fn apply_terminator_effect(
176 &self,
1b1a35ee 177 state: &mut Self::Domain,
dfeec247
XL
178 terminator: &mir::Terminator<'tcx>,
179 location: Location,
180 );
181
182 /// Updates the current dataflow state with an effect that occurs immediately *before* the
183 /// given terminator.
184 ///
185 /// This method is useful if the consumer of the results of this analysis needs only to observe
186 /// *part* of the effect of a terminator (e.g. for two-phase borrows). As a general rule,
187 /// analyses should not implement this without implementing `apply_terminator_effect`.
188 fn apply_before_terminator_effect(
189 &self,
1b1a35ee 190 _state: &mut Self::Domain,
dfeec247
XL
191 _terminator: &mir::Terminator<'tcx>,
192 _location: Location,
193 ) {
194 }
195
1b1a35ee
XL
196 /* Edge-specific effects */
197
dfeec247
XL
198 /// Updates the current dataflow state with the effect of a successful return from a `Call`
199 /// terminator.
200 ///
201 /// This is separate from `apply_terminator_effect` to properly track state across unwind
202 /// edges.
203 fn apply_call_return_effect(
204 &self,
1b1a35ee 205 state: &mut Self::Domain,
dfeec247 206 block: BasicBlock,
a2a8927a 207 return_places: CallReturnPlaces<'_, 'tcx>,
dfeec247 208 );
74b04a01 209
ba9703b0
XL
210 /// Updates the current dataflow state with the effect of resuming from a `Yield` terminator.
211 ///
212 /// This is similar to `apply_call_return_effect` in that it only takes place after the
213 /// generator is resumed, not when it is dropped.
214 ///
215 /// By default, no effects happen.
216 fn apply_yield_resume_effect(
217 &self,
1b1a35ee 218 _state: &mut Self::Domain,
ba9703b0
XL
219 _resume_block: BasicBlock,
220 _resume_place: mir::Place<'tcx>,
221 ) {
222 }
223
74b04a01
XL
224 /// Updates the current dataflow state with the effect of taking a particular branch in a
225 /// `SwitchInt` terminator.
226 ///
1b1a35ee
XL
227 /// Unlike the other edge-specific effects, which are allowed to mutate `Self::Domain`
228 /// directly, overriders of this method must pass a callback to
229 /// `SwitchIntEdgeEffects::apply`. The callback will be run once for each outgoing edge and
230 /// will have access to the dataflow state that will be propagated along that edge.
231 ///
232 /// This interface is somewhat more complex than the other visitor-like "effect" methods.
233 /// However, it is both more ergonomic—callers don't need to recompute or cache information
234 /// about a given `SwitchInt` terminator for each one of its edges—and more efficient—the
235 /// engine doesn't need to clone the exit state for a block unless
236 /// `SwitchIntEdgeEffects::apply` is actually called.
1b1a35ee 237 fn apply_switch_int_edge_effects(
74b04a01 238 &self,
74b04a01 239 _block: BasicBlock,
1b1a35ee
XL
240 _discr: &mir::Operand<'tcx>,
241 _apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
74b04a01
XL
242 ) {
243 }
244
1b1a35ee
XL
245 /* Extension methods */
246
74b04a01
XL
247 /// Creates an `Engine` to find the fixpoint for this dataflow problem.
248 ///
249 /// You shouldn't need to override this outside this module, since the combination of the
250 /// default impl and the one for all `A: GenKillAnalysis` will do the right thing.
251 /// Its purpose is to enable method chaining like so:
252 ///
6a06907d 253 /// ```ignore (cross-crate-imports)
74b04a01
XL
254 /// let results = MyAnalysis::new(tcx, body)
255 /// .into_engine(tcx, body, def_id)
256 /// .iterate_to_fixpoint()
257 /// .into_results_cursor(body);
258 /// ```
a2a8927a
XL
259 fn into_engine<'mir>(
260 self,
261 tcx: TyCtxt<'tcx>,
262 body: &'mir mir::Body<'tcx>,
263 ) -> Engine<'mir, 'tcx, Self>
74b04a01
XL
264 where
265 Self: Sized,
266 {
29967ef6 267 Engine::new_generic(tcx, body, self)
74b04a01 268 }
dfeec247
XL
269}
270
271/// A gen/kill dataflow problem.
272///
273/// Each method in this trait has a corresponding one in `Analysis`. However, these methods only
274/// allow modification of the dataflow state via "gen" and "kill" operations. By defining transfer
275/// functions for each statement in this way, the transfer function for an entire basic block can
276/// be computed efficiently.
277///
278/// `Analysis` is automatically implemented for all implementers of `GenKillAnalysis`.
279pub trait GenKillAnalysis<'tcx>: Analysis<'tcx> {
1b1a35ee
XL
280 type Idx: Idx;
281
dfeec247
XL
282 /// See `Analysis::apply_statement_effect`.
283 fn statement_effect(
284 &self,
285 trans: &mut impl GenKill<Self::Idx>,
286 statement: &mir::Statement<'tcx>,
287 location: Location,
288 );
289
290 /// See `Analysis::apply_before_statement_effect`.
291 fn before_statement_effect(
292 &self,
293 _trans: &mut impl GenKill<Self::Idx>,
294 _statement: &mir::Statement<'tcx>,
295 _location: Location,
296 ) {
297 }
298
299 /// See `Analysis::apply_terminator_effect`.
300 fn terminator_effect(
301 &self,
302 trans: &mut impl GenKill<Self::Idx>,
303 terminator: &mir::Terminator<'tcx>,
304 location: Location,
305 );
306
307 /// See `Analysis::apply_before_terminator_effect`.
308 fn before_terminator_effect(
309 &self,
310 _trans: &mut impl GenKill<Self::Idx>,
311 _terminator: &mir::Terminator<'tcx>,
312 _location: Location,
313 ) {
314 }
315
1b1a35ee
XL
316 /* Edge-specific effects */
317
dfeec247
XL
318 /// See `Analysis::apply_call_return_effect`.
319 fn call_return_effect(
320 &self,
321 trans: &mut impl GenKill<Self::Idx>,
322 block: BasicBlock,
a2a8927a 323 return_places: CallReturnPlaces<'_, 'tcx>,
dfeec247 324 );
74b04a01 325
ba9703b0
XL
326 /// See `Analysis::apply_yield_resume_effect`.
327 fn yield_resume_effect(
328 &self,
f9f354fc 329 _trans: &mut impl GenKill<Self::Idx>,
ba9703b0
XL
330 _resume_block: BasicBlock,
331 _resume_place: mir::Place<'tcx>,
332 ) {
333 }
334
1b1a35ee
XL
335 /// See `Analysis::apply_switch_int_edge_effects`.
336 fn switch_int_edge_effects<G: GenKill<Self::Idx>>(
74b04a01 337 &self,
74b04a01 338 _block: BasicBlock,
1b1a35ee
XL
339 _discr: &mir::Operand<'tcx>,
340 _edge_effects: &mut impl SwitchIntEdgeEffects<G>,
74b04a01
XL
341 ) {
342 }
dfeec247
XL
343}
344
a2a8927a 345impl<'tcx, A> Analysis<'tcx> for A
dfeec247
XL
346where
347 A: GenKillAnalysis<'tcx>,
5e7ed085 348 A::Domain: GenKill<A::Idx> + BitSetExt<A::Idx>,
dfeec247
XL
349{
350 fn apply_statement_effect(
351 &self,
1b1a35ee 352 state: &mut A::Domain,
dfeec247
XL
353 statement: &mir::Statement<'tcx>,
354 location: Location,
355 ) {
356 self.statement_effect(state, statement, location);
357 }
358
359 fn apply_before_statement_effect(
360 &self,
1b1a35ee 361 state: &mut A::Domain,
dfeec247
XL
362 statement: &mir::Statement<'tcx>,
363 location: Location,
364 ) {
365 self.before_statement_effect(state, statement, location);
366 }
367
368 fn apply_terminator_effect(
369 &self,
1b1a35ee 370 state: &mut A::Domain,
dfeec247
XL
371 terminator: &mir::Terminator<'tcx>,
372 location: Location,
373 ) {
374 self.terminator_effect(state, terminator, location);
375 }
376
377 fn apply_before_terminator_effect(
378 &self,
1b1a35ee 379 state: &mut A::Domain,
dfeec247
XL
380 terminator: &mir::Terminator<'tcx>,
381 location: Location,
382 ) {
383 self.before_terminator_effect(state, terminator, location);
384 }
385
1b1a35ee
XL
386 /* Edge-specific effects */
387
dfeec247
XL
388 fn apply_call_return_effect(
389 &self,
1b1a35ee 390 state: &mut A::Domain,
dfeec247 391 block: BasicBlock,
a2a8927a 392 return_places: CallReturnPlaces<'_, 'tcx>,
dfeec247 393 ) {
a2a8927a 394 self.call_return_effect(state, block, return_places);
dfeec247 395 }
74b04a01 396
ba9703b0
XL
397 fn apply_yield_resume_effect(
398 &self,
1b1a35ee 399 state: &mut A::Domain,
ba9703b0
XL
400 resume_block: BasicBlock,
401 resume_place: mir::Place<'tcx>,
402 ) {
403 self.yield_resume_effect(state, resume_block, resume_place);
404 }
405
1b1a35ee 406 fn apply_switch_int_edge_effects(
74b04a01 407 &self,
74b04a01 408 block: BasicBlock,
1b1a35ee
XL
409 discr: &mir::Operand<'tcx>,
410 edge_effects: &mut impl SwitchIntEdgeEffects<A::Domain>,
74b04a01 411 ) {
1b1a35ee 412 self.switch_int_edge_effects(block, discr, edge_effects);
74b04a01
XL
413 }
414
1b1a35ee
XL
415 /* Extension methods */
416
a2a8927a
XL
417 fn into_engine<'mir>(
418 self,
419 tcx: TyCtxt<'tcx>,
420 body: &'mir mir::Body<'tcx>,
421 ) -> Engine<'mir, 'tcx, Self>
74b04a01
XL
422 where
423 Self: Sized,
424 {
29967ef6 425 Engine::new_gen_kill(tcx, body, self)
74b04a01 426 }
dfeec247
XL
427}
428
429/// The legal operations for a transfer function in a gen/kill problem.
430///
431/// This abstraction exists because there are two different contexts in which we call the methods in
432/// `GenKillAnalysis`. Sometimes we need to store a single transfer function that can be efficiently
433/// applied multiple times, such as when computing the cumulative transfer function for each block.
434/// These cases require a `GenKillSet`, which in turn requires two `BitSet`s of storage. Oftentimes,
435/// however, we only need to apply an effect once. In *these* cases, it is more efficient to pass the
436/// `BitSet` representing the state vector directly into the `*_effect` methods as opposed to
437/// building up a `GenKillSet` and then throwing it away.
438pub trait GenKill<T> {
439 /// Inserts `elem` into the state vector.
440 fn gen(&mut self, elem: T);
441
442 /// Removes `elem` from the state vector.
443 fn kill(&mut self, elem: T);
444
445 /// Calls `gen` for each element in `elems`.
446 fn gen_all(&mut self, elems: impl IntoIterator<Item = T>) {
447 for elem in elems {
448 self.gen(elem);
449 }
450 }
451
452 /// Calls `kill` for each element in `elems`.
453 fn kill_all(&mut self, elems: impl IntoIterator<Item = T>) {
454 for elem in elems {
455 self.kill(elem);
456 }
457 }
458}
459
460/// Stores a transfer function for a gen/kill problem.
461///
462/// Calling `gen`/`kill` on a `GenKillSet` will "build up" a transfer function so that it can be
463/// applied multiple times efficiently. When there are multiple calls to `gen` and/or `kill` for
464/// the same element, the most recent one takes precedence.
465#[derive(Clone)]
1b1a35ee 466pub struct GenKillSet<T> {
dfeec247
XL
467 gen: HybridBitSet<T>,
468 kill: HybridBitSet<T>,
469}
470
471impl<T: Idx> GenKillSet<T> {
472 /// Creates a new transfer function that will leave the dataflow state unchanged.
473 pub fn identity(universe: usize) -> Self {
474 GenKillSet {
475 gen: HybridBitSet::new_empty(universe),
476 kill: HybridBitSet::new_empty(universe),
477 }
478 }
479
5e7ed085 480 pub fn apply(&self, state: &mut impl BitSetExt<T>) {
dfeec247
XL
481 state.union(&self.gen);
482 state.subtract(&self.kill);
483 }
484}
485
486impl<T: Idx> GenKill<T> for GenKillSet<T> {
487 fn gen(&mut self, elem: T) {
488 self.gen.insert(elem);
489 self.kill.remove(elem);
490 }
491
492 fn kill(&mut self, elem: T) {
493 self.kill.insert(elem);
494 self.gen.remove(elem);
495 }
496}
497
498impl<T: Idx> GenKill<T> for BitSet<T> {
499 fn gen(&mut self, elem: T) {
500 self.insert(elem);
501 }
502
503 fn kill(&mut self, elem: T) {
504 self.remove(elem);
505 }
506}
507
5e7ed085
FG
508impl<T: Idx> GenKill<T> for ChunkedBitSet<T> {
509 fn gen(&mut self, elem: T) {
510 self.insert(elem);
511 }
512
513 fn kill(&mut self, elem: T) {
514 self.remove(elem);
515 }
516}
517
1b1a35ee
XL
518impl<T: Idx> GenKill<T> for lattice::Dual<BitSet<T>> {
519 fn gen(&mut self, elem: T) {
520 self.0.insert(elem);
521 }
522
523 fn kill(&mut self, elem: T) {
524 self.0.remove(elem);
525 }
526}
527
f9f354fc
XL
528// NOTE: DO NOT CHANGE VARIANT ORDER. The derived `Ord` impls rely on the current order.
529#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
530pub enum Effect {
531 /// The "before" effect (e.g., `apply_before_statement_effect`) for a statement (or
532 /// terminator).
533 Before,
534
535 /// The "primary" effect (e.g., `apply_statement_effect`) for a statement (or terminator).
536 Primary,
537}
538
539impl Effect {
540 pub const fn at_index(self, statement_index: usize) -> EffectIndex {
541 EffectIndex { effect: self, statement_index }
542 }
543}
544
545#[derive(Clone, Copy, Debug, PartialEq, Eq)]
546pub struct EffectIndex {
547 statement_index: usize,
548 effect: Effect,
549}
550
551impl EffectIndex {
552 fn next_in_forward_order(self) -> Self {
553 match self.effect {
554 Effect::Before => Effect::Primary.at_index(self.statement_index),
555 Effect::Primary => Effect::Before.at_index(self.statement_index + 1),
556 }
557 }
558
559 fn next_in_backward_order(self) -> Self {
560 match self.effect {
561 Effect::Before => Effect::Primary.at_index(self.statement_index),
562 Effect::Primary => Effect::Before.at_index(self.statement_index - 1),
563 }
564 }
565
cdc7bbd5 566 /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
f9f354fc
XL
567 /// in forward order.
568 fn precedes_in_forward_order(self, other: Self) -> bool {
569 let ord = self
570 .statement_index
571 .cmp(&other.statement_index)
572 .then_with(|| self.effect.cmp(&other.effect));
573 ord == Ordering::Less
574 }
575
576 /// Returns `true` if the effect at `self` should be applied earlier than the effect at `other`
577 /// in backward order.
578 fn precedes_in_backward_order(self, other: Self) -> bool {
579 let ord = other
580 .statement_index
581 .cmp(&self.statement_index)
582 .then_with(|| self.effect.cmp(&other.effect));
583 ord == Ordering::Less
584 }
585}
586
1b1a35ee
XL
587pub struct SwitchIntTarget {
588 pub value: Option<u128>,
589 pub target: BasicBlock,
590}
591
592/// A type that records the edge-specific effects for a `SwitchInt` terminator.
593pub trait SwitchIntEdgeEffects<D> {
594 /// Calls `apply_edge_effect` for each outgoing edge from a `SwitchInt` terminator and
595 /// records the results.
596 fn apply(&mut self, apply_edge_effect: impl FnMut(&mut D, SwitchIntTarget));
597}
598
a2a8927a
XL
599/// List of places that are written to after a successful (non-unwind) return
600/// from a `Call` or `InlineAsm`.
601pub enum CallReturnPlaces<'a, 'tcx> {
602 Call(mir::Place<'tcx>),
603 InlineAsm(&'a [mir::InlineAsmOperand<'tcx>]),
604}
605
606impl<'tcx> CallReturnPlaces<'_, 'tcx> {
607 pub fn for_each(&self, mut f: impl FnMut(mir::Place<'tcx>)) {
608 match *self {
609 Self::Call(place) => f(place),
610 Self::InlineAsm(operands) => {
611 for op in operands {
612 match *op {
613 mir::InlineAsmOperand::Out { place: Some(place), .. }
614 | mir::InlineAsmOperand::InOut { out_place: Some(place), .. } => f(place),
615 _ => {}
616 }
617 }
618 }
619 }
620 }
621}
622
dfeec247
XL
623#[cfg(test)]
624mod tests;