]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_mir_transform/src/coverage/spans.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_mir_transform / src / coverage / spans.rs
CommitLineData
29967ef6 1use super::debug::term_type;
fc512014 2use super::graph::{BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB};
29967ef6 3
29967ef6 4use rustc_data_structures::graph::WithNumNodes;
c295e0f8 5use rustc_middle::mir::spanview::source_range_no_file;
29967ef6
XL
6use rustc_middle::mir::{
7 self, AggregateKind, BasicBlock, FakeReadCause, Rvalue, Statement, StatementKind, Terminator,
8 TerminatorKind,
9};
10use rustc_middle::ty::TyCtxt;
29967ef6 11use rustc_span::source_map::original_sp;
17df50a5 12use rustc_span::{BytePos, ExpnKind, MacroKind, Span, Symbol};
29967ef6 13
17df50a5 14use std::cell::RefCell;
29967ef6
XL
15use std::cmp::Ordering;
16
17#[derive(Debug, Copy, Clone)]
fc512014 18pub(super) enum CoverageStatement {
29967ef6
XL
19 Statement(BasicBlock, Span, usize),
20 Terminator(BasicBlock, Span),
21}
22
23impl CoverageStatement {
a2a8927a 24 pub fn format<'tcx>(&self, tcx: TyCtxt<'tcx>, mir_body: &mir::Body<'tcx>) -> String {
29967ef6
XL
25 match *self {
26 Self::Statement(bb, span, stmt_index) => {
27 let stmt = &mir_body[bb].statements[stmt_index];
28 format!(
29 "{}: @{}[{}]: {:?}",
30 source_range_no_file(tcx, &span),
31 bb.index(),
32 stmt_index,
33 stmt
34 )
35 }
36 Self::Terminator(bb, span) => {
37 let term = mir_body[bb].terminator();
38 format!(
39 "{}: @{}.{}: {:?}",
40 source_range_no_file(tcx, &span),
41 bb.index(),
42 term_type(&term.kind),
43 term.kind
44 )
45 }
46 }
47 }
48
49 pub fn span(&self) -> &Span {
50 match self {
51 Self::Statement(_, span, _) | Self::Terminator(_, span) => span,
52 }
53 }
54}
55
56/// A BCB is deconstructed into one or more `Span`s. Each `Span` maps to a `CoverageSpan` that
57/// references the originating BCB and one or more MIR `Statement`s and/or `Terminator`s.
58/// Initially, the `Span`s come from the `Statement`s and `Terminator`s, but subsequent
59/// transforms can combine adjacent `Span`s and `CoverageSpan` from the same BCB, merging the
60/// `CoverageStatement` vectors, and the `Span`s to cover the extent of the combined `Span`s.
61///
62/// Note: A `CoverageStatement` merged into another CoverageSpan may come from a `BasicBlock` that
63/// is not part of the `CoverageSpan` bcb if the statement was included because it's `Span` matches
64/// or is subsumed by the `Span` associated with this `CoverageSpan`, and it's `BasicBlock`
65/// `is_dominated_by()` the `BasicBlock`s in this `CoverageSpan`.
66#[derive(Debug, Clone)]
fc512014 67pub(super) struct CoverageSpan {
29967ef6 68 pub span: Span,
17df50a5
XL
69 pub expn_span: Span,
70 pub current_macro_or_none: RefCell<Option<Option<Symbol>>>,
29967ef6
XL
71 pub bcb: BasicCoverageBlock,
72 pub coverage_statements: Vec<CoverageStatement>,
73 pub is_closure: bool,
74}
75
76impl CoverageSpan {
fc512014 77 pub fn for_fn_sig(fn_sig_span: Span) -> Self {
17df50a5
XL
78 Self {
79 span: fn_sig_span,
80 expn_span: fn_sig_span,
81 current_macro_or_none: Default::default(),
82 bcb: START_BCB,
83 coverage_statements: vec![],
84 is_closure: false,
85 }
fc512014
XL
86 }
87
29967ef6 88 pub fn for_statement(
a2a8927a 89 statement: &Statement<'_>,
29967ef6 90 span: Span,
17df50a5 91 expn_span: Span,
29967ef6
XL
92 bcb: BasicCoverageBlock,
93 bb: BasicBlock,
94 stmt_index: usize,
95 ) -> Self {
96 let is_closure = match statement.kind {
3c0e092e
XL
97 StatementKind::Assign(box (_, Rvalue::Aggregate(box ref kind, _))) => {
98 matches!(kind, AggregateKind::Closure(_, _) | AggregateKind::Generator(_, _, _))
99 }
29967ef6
XL
100 _ => false,
101 };
102
103 Self {
104 span,
17df50a5
XL
105 expn_span,
106 current_macro_or_none: Default::default(),
29967ef6
XL
107 bcb,
108 coverage_statements: vec![CoverageStatement::Statement(bb, span, stmt_index)],
109 is_closure,
110 }
111 }
112
17df50a5
XL
113 pub fn for_terminator(
114 span: Span,
115 expn_span: Span,
116 bcb: BasicCoverageBlock,
117 bb: BasicBlock,
118 ) -> Self {
29967ef6
XL
119 Self {
120 span,
17df50a5
XL
121 expn_span,
122 current_macro_or_none: Default::default(),
29967ef6
XL
123 bcb,
124 coverage_statements: vec![CoverageStatement::Terminator(bb, span)],
125 is_closure: false,
126 }
127 }
128
129 pub fn merge_from(&mut self, mut other: CoverageSpan) {
130 debug_assert!(self.is_mergeable(&other));
131 self.span = self.span.to(other.span);
29967ef6
XL
132 self.coverage_statements.append(&mut other.coverage_statements);
133 }
134
135 pub fn cutoff_statements_at(&mut self, cutoff_pos: BytePos) {
136 self.coverage_statements.retain(|covstmt| covstmt.span().hi() <= cutoff_pos);
137 if let Some(highest_covstmt) =
138 self.coverage_statements.iter().max_by_key(|covstmt| covstmt.span().hi())
139 {
140 self.span = self.span.with_hi(highest_covstmt.span().hi());
141 }
142 }
143
144 #[inline]
145 pub fn is_mergeable(&self, other: &Self) -> bool {
146 self.is_in_same_bcb(other) && !(self.is_closure || other.is_closure)
147 }
148
149 #[inline]
150 pub fn is_in_same_bcb(&self, other: &Self) -> bool {
151 self.bcb == other.bcb
152 }
153
a2a8927a 154 pub fn format<'tcx>(&self, tcx: TyCtxt<'tcx>, mir_body: &mir::Body<'tcx>) -> String {
29967ef6
XL
155 format!(
156 "{}\n {}",
157 source_range_no_file(tcx, &self.span),
a2a8927a 158 self.format_coverage_statements(tcx, mir_body).replace('\n', "\n "),
29967ef6
XL
159 )
160 }
161
a2a8927a 162 pub fn format_coverage_statements<'tcx>(
29967ef6
XL
163 &self,
164 tcx: TyCtxt<'tcx>,
a2a8927a 165 mir_body: &mir::Body<'tcx>,
29967ef6
XL
166 ) -> String {
167 let mut sorted_coverage_statements = self.coverage_statements.clone();
168 sorted_coverage_statements.sort_unstable_by_key(|covstmt| match *covstmt {
169 CoverageStatement::Statement(bb, _, index) => (bb, index),
170 CoverageStatement::Terminator(bb, _) => (bb, usize::MAX),
171 });
172 sorted_coverage_statements
173 .iter()
174 .map(|covstmt| covstmt.format(tcx, mir_body))
175 .collect::<Vec<_>>()
176 .join("\n")
177 }
17df50a5
XL
178
179 /// If the span is part of a macro, returns the macro name symbol.
180 pub fn current_macro(&self) -> Option<Symbol> {
181 self.current_macro_or_none
182 .borrow_mut()
183 .get_or_insert_with(|| {
136023e0
XL
184 if let ExpnKind::Macro(MacroKind::Bang, current_macro) =
185 self.expn_span.ctxt().outer_expn_data().kind
17df50a5
XL
186 {
187 return Some(current_macro);
188 }
189 None
190 })
191 .map(|symbol| symbol)
192 }
193
194 /// If the span is part of a macro, and the macro is visible (expands directly to the given
195 /// body_span), returns the macro name symbol.
196 pub fn visible_macro(&self, body_span: Span) -> Option<Symbol> {
197 if let Some(current_macro) = self.current_macro() {
c295e0f8
XL
198 if self
199 .expn_span
200 .parent_callsite()
201 .unwrap_or_else(|| bug!("macro must have a parent"))
202 .ctxt()
17df50a5
XL
203 == body_span.ctxt()
204 {
205 return Some(current_macro);
206 }
207 }
208 None
209 }
210
211 pub fn is_macro_expansion(&self) -> bool {
212 self.current_macro().is_some()
213 }
29967ef6
XL
214}
215
216/// Converts the initial set of `CoverageSpan`s (one per MIR `Statement` or `Terminator`) into a
217/// minimal set of `CoverageSpan`s, using the BCB CFG to determine where it is safe and useful to:
218///
219/// * Remove duplicate source code coverage regions
220/// * Merge spans that represent continuous (both in source code and control flow), non-branching
221/// execution
222/// * Carve out (leave uncovered) any span that will be counted by another MIR (notably, closures)
223pub struct CoverageSpans<'a, 'tcx> {
224 /// The MIR, used to look up `BasicBlockData`.
225 mir_body: &'a mir::Body<'tcx>,
226
fc512014
XL
227 /// A `Span` covering the signature of function for the MIR.
228 fn_sig_span: Span,
229
29967ef6
XL
230 /// A `Span` covering the function body of the MIR (typically from left curly brace to right
231 /// curly brace).
232 body_span: Span,
233
234 /// The BasicCoverageBlock Control Flow Graph (BCB CFG).
235 basic_coverage_blocks: &'a CoverageGraph,
236
237 /// The initial set of `CoverageSpan`s, sorted by `Span` (`lo` and `hi`) and by relative
238 /// dominance between the `BasicCoverageBlock`s of equal `Span`s.
239 sorted_spans_iter: Option<std::vec::IntoIter<CoverageSpan>>,
240
241 /// The current `CoverageSpan` to compare to its `prev`, to possibly merge, discard, force the
242 /// discard of the `prev` (and or `pending_dups`), or keep both (with `prev` moved to
243 /// `pending_dups`). If `curr` is not discarded or merged, it becomes `prev` for the next
244 /// iteration.
245 some_curr: Option<CoverageSpan>,
246
17df50a5
XL
247 /// The original `span` for `curr`, in case `curr.span()` is modified. The `curr_original_span`
248 /// **must not be mutated** (except when advancing to the next `curr`), even if `curr.span()`
249 /// is mutated.
29967ef6
XL
250 curr_original_span: Span,
251
252 /// The CoverageSpan from a prior iteration; typically assigned from that iteration's `curr`.
253 /// If that `curr` was discarded, `prev` retains its value from the previous iteration.
254 some_prev: Option<CoverageSpan>,
255
17df50a5
XL
256 /// Assigned from `curr_original_span` from the previous iteration. The `prev_original_span`
257 /// **must not be mutated** (except when advancing to the next `prev`), even if `prev.span()`
258 /// is mutated.
29967ef6
XL
259 prev_original_span: Span,
260
17df50a5
XL
261 /// A copy of the expn_span from the prior iteration.
262 prev_expn_span: Option<Span>,
263
29967ef6
XL
264 /// One or more `CoverageSpan`s with the same `Span` but different `BasicCoverageBlock`s, and
265 /// no `BasicCoverageBlock` in this list dominates another `BasicCoverageBlock` in the list.
266 /// If a new `curr` span also fits this criteria (compared to an existing list of
267 /// `pending_dups`), that `curr` `CoverageSpan` moves to `prev` before possibly being added to
268 /// the `pending_dups` list, on the next iteration. As a result, if `prev` and `pending_dups`
269 /// have the same `Span`, the criteria for `pending_dups` holds for `prev` as well: a `prev`
270 /// with a matching `Span` does not dominate any `pending_dup` and no `pending_dup` dominates a
271 /// `prev` with a matching `Span`)
272 pending_dups: Vec<CoverageSpan>,
273
274 /// The final `CoverageSpan`s to add to the coverage map. A `Counter` or `Expression`
275 /// will also be injected into the MIR for each `CoverageSpan`.
276 refined_spans: Vec<CoverageSpan>,
277}
278
279impl<'a, 'tcx> CoverageSpans<'a, 'tcx> {
fc512014
XL
280 /// Generate a minimal set of `CoverageSpan`s, each representing a contiguous code region to be
281 /// counted.
282 ///
283 /// The basic steps are:
284 ///
285 /// 1. Extract an initial set of spans from the `Statement`s and `Terminator`s of each
286 /// `BasicCoverageBlockData`.
287 /// 2. Sort the spans by span.lo() (starting position). Spans that start at the same position
288 /// are sorted with longer spans before shorter spans; and equal spans are sorted
289 /// (deterministically) based on "dominator" relationship (if any).
290 /// 3. Traverse the spans in sorted order to identify spans that can be dropped (for instance,
291 /// if another span or spans are already counting the same code region), or should be merged
292 /// into a broader combined span (because it represents a contiguous, non-branching, and
293 /// uninterrupted region of source code).
294 ///
295 /// Closures are exposed in their enclosing functions as `Assign` `Rvalue`s, and since
296 /// closures have their own MIR, their `Span` in their enclosing function should be left
297 /// "uncovered".
298 ///
299 /// Note the resulting vector of `CoverageSpan`s may not be fully sorted (and does not need
300 /// to be).
301 pub(super) fn generate_coverage_spans(
29967ef6 302 mir_body: &'a mir::Body<'tcx>,
cdc7bbd5 303 fn_sig_span: Span, // Ensured to be same SourceFile and SyntaxContext as `body_span`
29967ef6
XL
304 body_span: Span,
305 basic_coverage_blocks: &'a CoverageGraph,
306 ) -> Vec<CoverageSpan> {
307 let mut coverage_spans = CoverageSpans {
308 mir_body,
fc512014 309 fn_sig_span,
29967ef6
XL
310 body_span,
311 basic_coverage_blocks,
312 sorted_spans_iter: None,
313 refined_spans: Vec::with_capacity(basic_coverage_blocks.num_nodes() * 2),
314 some_curr: None,
315 curr_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
316 some_prev: None,
317 prev_original_span: Span::with_root_ctxt(BytePos(0), BytePos(0)),
17df50a5 318 prev_expn_span: None,
29967ef6
XL
319 pending_dups: Vec::new(),
320 };
321
322 let sorted_spans = coverage_spans.mir_to_initial_sorted_coverage_spans();
323
324 coverage_spans.sorted_spans_iter = Some(sorted_spans.into_iter());
29967ef6
XL
325
326 coverage_spans.to_refined_spans()
327 }
328
29967ef6
XL
329 fn mir_to_initial_sorted_coverage_spans(&self) -> Vec<CoverageSpan> {
330 let mut initial_spans = Vec::<CoverageSpan>::with_capacity(self.mir_body.num_nodes() * 2);
331 for (bcb, bcb_data) in self.basic_coverage_blocks.iter_enumerated() {
a2a8927a 332 initial_spans.extend(self.bcb_to_initial_coverage_spans(bcb, bcb_data));
29967ef6
XL
333 }
334
335 if initial_spans.is_empty() {
336 // This can happen if, for example, the function is unreachable (contains only a
337 // `BasicBlock`(s) with an `Unreachable` terminator).
338 return initial_spans;
339 }
340
fc512014
XL
341 initial_spans.push(CoverageSpan::for_fn_sig(self.fn_sig_span));
342
29967ef6
XL
343 initial_spans.sort_unstable_by(|a, b| {
344 if a.span.lo() == b.span.lo() {
345 if a.span.hi() == b.span.hi() {
346 if a.is_in_same_bcb(b) {
347 Some(Ordering::Equal)
348 } else {
349 // Sort equal spans by dominator relationship, in reverse order (so
350 // dominators always come after the dominated equal spans). When later
351 // comparing two spans in order, the first will either dominate the second,
352 // or they will have no dominator relationship.
353 self.basic_coverage_blocks.dominators().rank_partial_cmp(b.bcb, a.bcb)
354 }
355 } else {
356 // Sort hi() in reverse order so shorter spans are attempted after longer spans.
357 // This guarantees that, if a `prev` span overlaps, and is not equal to, a
358 // `curr` span, the prev span either extends further left of the curr span, or
359 // they start at the same position and the prev span extends further right of
360 // the end of the curr span.
361 b.span.hi().partial_cmp(&a.span.hi())
362 }
363 } else {
364 a.span.lo().partial_cmp(&b.span.lo())
365 }
366 .unwrap()
367 });
368
369 initial_spans
370 }
371
372 /// Iterate through the sorted `CoverageSpan`s, and return the refined list of merged and
373 /// de-duplicated `CoverageSpan`s.
374 fn to_refined_spans(mut self) -> Vec<CoverageSpan> {
375 while self.next_coverage_span() {
17df50a5
XL
376 if self.some_prev.is_none() {
377 debug!(" initial span");
378 self.check_invoked_macro_name_span();
379 } else if self.curr().is_mergeable(self.prev()) {
29967ef6
XL
380 debug!(" same bcb (and neither is a closure), merge with prev={:?}", self.prev());
381 let prev = self.take_prev();
382 self.curr_mut().merge_from(prev);
17df50a5 383 self.check_invoked_macro_name_span();
29967ef6
XL
384 // Note that curr.span may now differ from curr_original_span
385 } else if self.prev_ends_before_curr() {
386 debug!(
387 " different bcbs and disjoint spans, so keep curr for next iter, and add \
388 prev={:?}",
389 self.prev()
390 );
391 let prev = self.take_prev();
17df50a5
XL
392 self.push_refined_span(prev);
393 self.check_invoked_macro_name_span();
29967ef6
XL
394 } else if self.prev().is_closure {
395 // drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
396 // next iter
397 debug!(
398 " curr overlaps a closure (prev). Drop curr and keep prev for next iter. \
399 prev={:?}",
400 self.prev()
401 );
fc512014 402 self.take_curr();
29967ef6
XL
403 } else if self.curr().is_closure {
404 self.carve_out_span_for_closure();
405 } else if self.prev_original_span == self.curr().span {
17df50a5
XL
406 // Note that this compares the new (`curr`) span to `prev_original_span`.
407 // In this branch, the actual span byte range of `prev_original_span` is not
408 // important. What is important is knowing whether the new `curr` span was
409 // **originally** the same as the original span of `prev()`. The original spans
410 // reflect their original sort order, and for equal spans, conveys a partial
411 // ordering based on CFG dominator priority.
412 if self.prev().is_macro_expansion() && self.curr().is_macro_expansion() {
413 // Macros that expand to include branching (such as
414 // `assert_eq!()`, `assert_ne!()`, `info!()`, `debug!()`, or
415 // `trace!()) typically generate callee spans with identical
416 // ranges (typically the full span of the macro) for all
417 // `BasicBlocks`. This makes it impossible to distinguish
418 // the condition (`if val1 != val2`) from the optional
419 // branched statements (such as the call to `panic!()` on
420 // assert failure). In this case it is better (or less
421 // worse) to drop the optional branch bcbs and keep the
422 // non-conditional statements, to count when reached.
423 debug!(
424 " curr and prev are part of a macro expansion, and curr has the same span \
425 as prev, but is in a different bcb. Drop curr and keep prev for next iter. \
426 prev={:?}",
427 self.prev()
428 );
429 self.take_curr();
430 } else {
431 self.hold_pending_dups_unless_dominated();
432 }
29967ef6
XL
433 } else {
434 self.cutoff_prev_at_overlapping_curr();
17df50a5 435 self.check_invoked_macro_name_span();
29967ef6
XL
436 }
437 }
438
439 debug!(" AT END, adding last prev={:?}", self.prev());
440 let prev = self.take_prev();
17df50a5 441 let pending_dups = self.pending_dups.split_off(0);
29967ef6
XL
442 for dup in pending_dups {
443 debug!(" ...adding at least one pending dup={:?}", dup);
17df50a5 444 self.push_refined_span(dup);
29967ef6 445 }
fc512014
XL
446
447 // Async functions wrap a closure that implements the body to be executed. The enclosing
448 // function is called and returns an `impl Future` without initially executing any of the
449 // body. To avoid showing the return from the enclosing function as a "covered" return from
450 // the closure, the enclosing function's `TerminatorKind::Return`s `CoverageSpan` is
451 // excluded. The closure's `Return` is the only one that will be counted. This provides
452 // adequate coverage, and more intuitive counts. (Avoids double-counting the closing brace
453 // of the function body.)
17df50a5 454 let body_ends_with_closure = if let Some(last_covspan) = self.refined_spans.last() {
fc512014
XL
455 last_covspan.is_closure && last_covspan.span.hi() == self.body_span.hi()
456 } else {
457 false
458 };
459
460 if !body_ends_with_closure {
17df50a5 461 self.push_refined_span(prev);
29967ef6 462 }
29967ef6
XL
463
464 // Remove `CoverageSpan`s derived from closures, originally added to ensure the coverage
465 // regions for the current function leave room for the closure's own coverage regions
466 // (injected separately, from the closure's own MIR).
17df50a5
XL
467 self.refined_spans.retain(|covspan| !covspan.is_closure);
468 self.refined_spans
469 }
470
471 fn push_refined_span(&mut self, covspan: CoverageSpan) {
472 let len = self.refined_spans.len();
473 if len > 0 {
474 let last = &mut self.refined_spans[len - 1];
475 if last.is_mergeable(&covspan) {
476 debug!(
477 "merging new refined span with last refined span, last={:?}, covspan={:?}",
478 last, covspan
479 );
480 last.merge_from(covspan);
481 return;
482 }
483 }
484 self.refined_spans.push(covspan)
485 }
486
487 fn check_invoked_macro_name_span(&mut self) {
488 if let Some(visible_macro) = self.curr().visible_macro(self.body_span) {
489 if self.prev_expn_span.map_or(true, |prev_expn_span| {
490 self.curr().expn_span.ctxt() != prev_expn_span.ctxt()
491 }) {
492 let merged_prefix_len = self.curr_original_span.lo() - self.curr().span.lo();
493 let after_macro_bang =
494 merged_prefix_len + BytePos(visible_macro.as_str().bytes().count() as u32 + 1);
495 let mut macro_name_cov = self.curr().clone();
496 self.curr_mut().span =
497 self.curr().span.with_lo(self.curr().span.lo() + after_macro_bang);
498 macro_name_cov.span =
499 macro_name_cov.span.with_hi(macro_name_cov.span.lo() + after_macro_bang);
500 debug!(
501 " and curr starts a new macro expansion, so add a new span just for \
502 the macro `{}!`, new span={:?}",
503 visible_macro, macro_name_cov
504 );
505 self.push_refined_span(macro_name_cov);
506 }
507 }
29967ef6
XL
508 }
509
510 // Generate a set of `CoverageSpan`s from the filtered set of `Statement`s and `Terminator`s of
511 // the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One `CoverageSpan` is generated
512 // for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
513 // merge some `CoverageSpan`s, at which point a `CoverageSpan` may represent multiple
514 // `Statement`s and/or `Terminator`s.)
515 fn bcb_to_initial_coverage_spans(
516 &self,
517 bcb: BasicCoverageBlock,
518 bcb_data: &'a BasicCoverageBlockData,
519 ) -> Vec<CoverageSpan> {
520 bcb_data
521 .basic_blocks
522 .iter()
523 .flat_map(|&bb| {
524 let data = &self.mir_body[bb];
525 data.statements
526 .iter()
527 .enumerate()
528 .filter_map(move |(index, statement)| {
17df50a5
XL
529 filtered_statement_span(statement).map(|span| {
530 CoverageSpan::for_statement(
531 statement,
532 function_source_span(span, self.body_span),
533 span,
534 bcb,
535 bb,
536 index,
537 )
29967ef6
XL
538 })
539 })
17df50a5
XL
540 .chain(filtered_terminator_span(data.terminator()).map(|span| {
541 CoverageSpan::for_terminator(
542 function_source_span(span, self.body_span),
543 span,
544 bcb,
545 bb,
546 )
547 }))
29967ef6
XL
548 })
549 .collect()
550 }
551
552 fn curr(&self) -> &CoverageSpan {
553 self.some_curr
554 .as_ref()
555 .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
556 }
557
558 fn curr_mut(&mut self) -> &mut CoverageSpan {
559 self.some_curr
560 .as_mut()
561 .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
562 }
563
564 fn prev(&self) -> &CoverageSpan {
565 self.some_prev
566 .as_ref()
567 .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
568 }
569
570 fn prev_mut(&mut self) -> &mut CoverageSpan {
571 self.some_prev
572 .as_mut()
573 .unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
574 }
575
576 fn take_prev(&mut self) -> CoverageSpan {
577 self.some_prev.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_prev"))
578 }
579
580 /// If there are `pending_dups` but `prev` is not a matching dup (`prev.span` doesn't match the
581 /// `pending_dups` spans), then one of the following two things happened during the previous
582 /// iteration:
583 /// * the previous `curr` span (which is now `prev`) was not a duplicate of the pending_dups
584 /// (in which case there should be at least two spans in `pending_dups`); or
585 /// * the `span` of `prev` was modified by `curr_mut().merge_from(prev)` (in which case
586 /// `pending_dups` could have as few as one span)
587 /// In either case, no more spans will match the span of `pending_dups`, so
588 /// add the `pending_dups` if they don't overlap `curr`, and clear the list.
589 fn check_pending_dups(&mut self) {
590 if let Some(dup) = self.pending_dups.last() {
591 if dup.span != self.prev().span {
592 debug!(
593 " SAME spans, but pending_dups are NOT THE SAME, so BCBs matched on \
594 previous iteration, or prev started a new disjoint span"
595 );
596 if dup.span.hi() <= self.curr().span.lo() {
597 let pending_dups = self.pending_dups.split_off(0);
598 for dup in pending_dups.into_iter() {
599 debug!(" ...adding at least one pending={:?}", dup);
17df50a5 600 self.push_refined_span(dup);
29967ef6
XL
601 }
602 } else {
603 self.pending_dups.clear();
604 }
605 }
606 }
607 }
608
609 /// Advance `prev` to `curr` (if any), and `curr` to the next `CoverageSpan` in sorted order.
610 fn next_coverage_span(&mut self) -> bool {
611 if let Some(curr) = self.some_curr.take() {
17df50a5 612 self.prev_expn_span = Some(curr.expn_span);
29967ef6
XL
613 self.some_prev = Some(curr);
614 self.prev_original_span = self.curr_original_span;
615 }
616 while let Some(curr) = self.sorted_spans_iter.as_mut().unwrap().next() {
617 debug!("FOR curr={:?}", curr);
17df50a5 618 if self.some_prev.is_some() && self.prev_starts_after_next(&curr) {
29967ef6
XL
619 debug!(
620 " prev.span starts after curr.span, so curr will be dropped (skipping past \
621 closure?); prev={:?}",
622 self.prev()
623 );
624 } else {
625 // Save a copy of the original span for `curr` in case the `CoverageSpan` is changed
626 // by `self.curr_mut().merge_from(prev)`.
627 self.curr_original_span = curr.span;
628 self.some_curr.replace(curr);
629 self.check_pending_dups();
630 return true;
631 }
632 }
633 false
634 }
635
636 /// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
637 /// `curr` coverage span.
fc512014
XL
638 fn take_curr(&mut self) -> CoverageSpan {
639 self.some_curr.take().unwrap_or_else(|| bug!("invalid attempt to unwrap a None some_curr"))
29967ef6
XL
640 }
641
642 /// Returns true if the curr span should be skipped because prev has already advanced beyond the
643 /// end of curr. This can only happen if a prior iteration updated `prev` to skip past a region
644 /// of code, such as skipping past a closure.
645 fn prev_starts_after_next(&self, next_curr: &CoverageSpan) -> bool {
646 self.prev().span.lo() > next_curr.span.lo()
647 }
648
649 /// Returns true if the curr span starts past the end of the prev span, which means they don't
650 /// overlap, so we now know the prev can be added to the refined coverage spans.
651 fn prev_ends_before_curr(&self) -> bool {
652 self.prev().span.hi() <= self.curr().span.lo()
653 }
654
fc512014
XL
655 /// If `prev`s span extends left of the closure (`curr`), carve out the closure's span from
656 /// `prev`'s span. (The closure's coverage counters will be injected when processing the
657 /// closure's own MIR.) Add the portion of the span to the left of the closure; and if the span
658 /// extends to the right of the closure, update `prev` to that portion of the span. For any
659 /// `pending_dups`, repeat the same process.
29967ef6
XL
660 fn carve_out_span_for_closure(&mut self) {
661 let curr_span = self.curr().span;
662 let left_cutoff = curr_span.lo();
663 let right_cutoff = curr_span.hi();
664 let has_pre_closure_span = self.prev().span.lo() < right_cutoff;
665 let has_post_closure_span = self.prev().span.hi() > right_cutoff;
666 let mut pending_dups = self.pending_dups.split_off(0);
667 if has_pre_closure_span {
668 let mut pre_closure = self.prev().clone();
669 pre_closure.span = pre_closure.span.with_hi(left_cutoff);
670 debug!(" prev overlaps a closure. Adding span for pre_closure={:?}", pre_closure);
671 if !pending_dups.is_empty() {
672 for mut dup in pending_dups.iter().cloned() {
673 dup.span = dup.span.with_hi(left_cutoff);
674 debug!(" ...and at least one pre_closure dup={:?}", dup);
17df50a5 675 self.push_refined_span(dup);
29967ef6
XL
676 }
677 }
17df50a5 678 self.push_refined_span(pre_closure);
29967ef6
XL
679 }
680 if has_post_closure_span {
17df50a5
XL
681 // Mutate `prev.span()` to start after the closure (and discard curr).
682 // (**NEVER** update `prev_original_span` because it affects the assumptions
683 // about how the `CoverageSpan`s are ordered.)
29967ef6 684 self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
17df50a5 685 debug!(" Mutated prev.span to start after the closure. prev={:?}", self.prev());
29967ef6 686 for dup in pending_dups.iter_mut() {
17df50a5 687 debug!(" ...and at least one overlapping dup={:?}", dup);
29967ef6
XL
688 dup.span = dup.span.with_lo(right_cutoff);
689 }
690 self.pending_dups.append(&mut pending_dups);
fc512014 691 let closure_covspan = self.take_curr();
17df50a5 692 self.push_refined_span(closure_covspan); // since self.prev() was already updated
29967ef6
XL
693 } else {
694 pending_dups.clear();
695 }
696 }
697
698 /// Called if `curr.span` equals `prev_original_span` (and potentially equal to all
17df50a5
XL
699 /// `pending_dups` spans, if any). Keep in mind, `prev.span()` may have been changed.
700 /// If prev.span() was merged into other spans (with matching BCB, for instance),
701 /// `prev.span.hi()` will be greater than (further right of) `prev_original_span.hi()`.
702 /// If prev.span() was split off to the right of a closure, prev.span().lo() will be
703 /// greater than prev_original_span.lo(). The actual span of `prev_original_span` is
704 /// not as important as knowing that `prev()` **used to have the same span** as `curr(),
705 /// which means their sort order is still meaningful for determinating the dominator
706 /// relationship.
29967ef6
XL
707 ///
708 /// When two `CoverageSpan`s have the same `Span`, dominated spans can be discarded; but if
709 /// neither `CoverageSpan` dominates the other, both (or possibly more than two) are held,
710 /// until their disposition is determined. In this latter case, the `prev` dup is moved into
711 /// `pending_dups` so the new `curr` dup can be moved to `prev` for the next iteration.
712 fn hold_pending_dups_unless_dominated(&mut self) {
713 // Equal coverage spans are ordered by dominators before dominated (if any), so it should be
714 // impossible for `curr` to dominate any previous `CoverageSpan`.
715 debug_assert!(!self.span_bcb_is_dominated_by(self.prev(), self.curr()));
716
717 let initial_pending_count = self.pending_dups.len();
718 if initial_pending_count > 0 {
719 let mut pending_dups = self.pending_dups.split_off(0);
720 pending_dups.retain(|dup| !self.span_bcb_is_dominated_by(self.curr(), dup));
721 self.pending_dups.append(&mut pending_dups);
722 if self.pending_dups.len() < initial_pending_count {
723 debug!(
724 " discarded {} of {} pending_dups that dominated curr",
725 initial_pending_count - self.pending_dups.len(),
726 initial_pending_count
727 );
728 }
729 }
730
731 if self.span_bcb_is_dominated_by(self.curr(), self.prev()) {
732 debug!(
733 " different bcbs but SAME spans, and prev dominates curr. Discard prev={:?}",
734 self.prev()
735 );
736 self.cutoff_prev_at_overlapping_curr();
737 // If one span dominates the other, assocate the span with the code from the dominated
738 // block only (`curr`), and discard the overlapping portion of the `prev` span. (Note
739 // that if `prev.span` is wider than `prev_original_span`, a `CoverageSpan` will still
740 // be created for `prev`s block, for the non-overlapping portion, left of `curr.span`.)
741 //
742 // For example:
743 // match somenum {
744 // x if x < 1 => { ... }
745 // }...
746 //
747 // The span for the first `x` is referenced by both the pattern block (every time it is
748 // evaluated) and the arm code (only when matched). The counter will be applied only to
749 // the dominated block. This allows coverage to track and highlight things like the
750 // assignment of `x` above, if the branch is matched, making `x` available to the arm
751 // code; and to track and highlight the question mark `?` "try" operator at the end of
752 // a function call returning a `Result`, so the `?` is covered when the function returns
753 // an `Err`, and not counted as covered if the function always returns `Ok`.
754 } else {
755 // Save `prev` in `pending_dups`. (`curr` will become `prev` in the next iteration.)
756 // If the `curr` CoverageSpan is later discarded, `pending_dups` can be discarded as
757 // well; but if `curr` is added to refined_spans, the `pending_dups` will also be added.
758 debug!(
759 " different bcbs but SAME spans, and neither dominates, so keep curr for \
760 next iter, and, pending upcoming spans (unless overlapping) add prev={:?}",
761 self.prev()
762 );
763 let prev = self.take_prev();
764 self.pending_dups.push(prev);
765 }
766 }
767
768 /// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
769 /// statements that end before `curr.lo()` (if any), and add the portion of the
770 /// combined span for those statements. Any other statements have overlapping spans
771 /// that can be ignored because `curr` and/or other upcoming statements/spans inside
772 /// the overlap area will produce their own counters. This disambiguation process
773 /// avoids injecting multiple counters for overlapping spans, and the potential for
774 /// double-counting.
775 fn cutoff_prev_at_overlapping_curr(&mut self) {
776 debug!(
777 " different bcbs, overlapping spans, so ignore/drop pending and only add prev \
778 if it has statements that end before curr; prev={:?}",
779 self.prev()
780 );
781 if self.pending_dups.is_empty() {
782 let curr_span = self.curr().span;
783 self.prev_mut().cutoff_statements_at(curr_span.lo());
784 if self.prev().coverage_statements.is_empty() {
785 debug!(" ... no non-overlapping statements to add");
786 } else {
787 debug!(" ... adding modified prev={:?}", self.prev());
788 let prev = self.take_prev();
17df50a5 789 self.push_refined_span(prev);
29967ef6
XL
790 }
791 } else {
792 // with `pending_dups`, `prev` cannot have any statements that don't overlap
793 self.pending_dups.clear();
794 }
795 }
796
797 fn span_bcb_is_dominated_by(&self, covspan: &CoverageSpan, dom_covspan: &CoverageSpan) -> bool {
798 self.basic_coverage_blocks.is_dominated_by(covspan.bcb, dom_covspan.bcb)
799 }
800}
801
17df50a5
XL
802/// If the MIR `Statement` has a span contributive to computing coverage spans,
803/// return it; otherwise return `None`.
a2a8927a 804pub(super) fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
29967ef6
XL
805 match statement.kind {
806 // These statements have spans that are often outside the scope of the executed source code
807 // for their parent `BasicBlock`.
808 StatementKind::StorageLive(_)
809 | StatementKind::StorageDead(_)
810 // Coverage should not be encountered, but don't inject coverage coverage
811 | StatementKind::Coverage(_)
812 // Ignore `Nop`s
813 | StatementKind::Nop => None,
814
815 // FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
816 // statements be more consistent?
817 //
818 // FakeReadCause::ForGuardBinding, in this example:
819 // match somenum {
820 // x if x < 1 => { ... }
821 // }...
822 // The BasicBlock within the match arm code included one of these statements, but the span
823 // for it covered the `1` in this source. The actual statements have nothing to do with that
824 // source span:
825 // FakeRead(ForGuardBinding, _4);
826 // where `_4` is:
827 // _4 = &_1; (at the span for the first `x`)
828 // and `_1` is the `Place` for `somenum`.
829 //
830 // If and when the Issue is resolved, remove this special case match pattern:
cdc7bbd5 831 StatementKind::FakeRead(box (cause, _)) if cause == FakeReadCause::ForGuardBinding => None,
29967ef6
XL
832
833 // Retain spans from all other statements
cdc7bbd5 834 StatementKind::FakeRead(box (_, _)) // Not including `ForGuardBinding`
6a06907d 835 | StatementKind::CopyNonOverlapping(..)
29967ef6
XL
836 | StatementKind::Assign(_)
837 | StatementKind::SetDiscriminant { .. }
838 | StatementKind::LlvmInlineAsm(_)
839 | StatementKind::Retag(_, _)
840 | StatementKind::AscribeUserType(_, _) => {
17df50a5 841 Some(statement.source_info.span)
29967ef6
XL
842 }
843 }
844}
845
17df50a5
XL
846/// If the MIR `Terminator` has a span contributive to computing coverage spans,
847/// return it; otherwise return `None`.
a2a8927a 848pub(super) fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
29967ef6
XL
849 match terminator.kind {
850 // These terminators have spans that don't positively contribute to computing a reasonable
851 // span of actually executed source code. (For example, SwitchInt terminators extracted from
852 // an `if condition { block }` has a span that includes the executed block, if true,
853 // but for coverage, the code region executed, up to *and* through the SwitchInt,
854 // actually stops before the if's block.)
855 TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
856 | TerminatorKind::Assert { .. }
857 | TerminatorKind::Drop { .. }
858 | TerminatorKind::DropAndReplace { .. }
859 | TerminatorKind::SwitchInt { .. }
860 // For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
fc512014
XL
861 | TerminatorKind::FalseEdge { .. }
862 | TerminatorKind::Goto { .. } => None,
29967ef6 863
cdc7bbd5
XL
864 // Call `func` operand can have a more specific span when part of a chain of calls
865 | TerminatorKind::Call { ref func, .. } => {
866 let mut span = terminator.source_info.span;
867 if let mir::Operand::Constant(box constant) = func {
868 if constant.span.lo() > span.lo() {
869 span = span.with_lo(constant.span.lo());
870 }
871 }
17df50a5 872 Some(span)
cdc7bbd5
XL
873 }
874
29967ef6
XL
875 // Retain spans from all other terminators
876 TerminatorKind::Resume
877 | TerminatorKind::Abort
878 | TerminatorKind::Return
29967ef6
XL
879 | TerminatorKind::Yield { .. }
880 | TerminatorKind::GeneratorDrop
881 | TerminatorKind::FalseUnwind { .. }
882 | TerminatorKind::InlineAsm { .. } => {
17df50a5 883 Some(terminator.source_info.span)
29967ef6
XL
884 }
885 }
886}
887
17df50a5
XL
888/// Returns an extrapolated span (pre-expansion[^1]) corresponding to a range
889/// within the function's body source. This span is guaranteed to be contained
890/// within, or equal to, the `body_span`. If the extrapolated span is not
891/// contained within the `body_span`, the `body_span` is returned.
892///
893/// [^1]Expansions result from Rust syntax including macros, syntactic sugar,
894/// etc.).
29967ef6 895#[inline]
17df50a5
XL
896pub(super) fn function_source_span(span: Span, body_span: Span) -> Span {
897 let original_span = original_sp(span, body_span).with_ctxt(body_span.ctxt());
898 if body_span.contains(original_span) { original_span } else { body_span }
29967ef6 899}