]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_resolve/src/late.rs
New upstream version 1.53.0+dfsg1
[rustc.git] / compiler / rustc_resolve / src / late.rs
CommitLineData
e1599b0c
XL
1//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2//! It runs when the crate is fully expanded and its module structure is fully built.
3//! So it just walks through the crate and resolves all the expressions, types, etc.
4//!
5//! If you wonder why there's no `early.rs`, that's because it's split into three files -
dfeec247 6//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.
e1599b0c 7
416331ca
XL
8use RibKind::*;
9
10use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
3dfed10e 11use crate::{Module, ModuleOrUniformRoot, ParentScope, PathResult};
416331ca
XL
12use crate::{ResolutionError, Resolver, Segment, UseError};
13
74b04a01 14use rustc_ast::ptr::P;
74b04a01 15use rustc_ast::visit::{self, AssocCtxt, FnCtxt, FnKind, Visitor};
3dfed10e 16use rustc_ast::*;
f035d41b 17use rustc_ast_lowering::ResolverAstLowering;
dfeec247
XL
18use rustc_data_structures::fx::{FxHashMap, FxHashSet};
19use rustc_errors::DiagnosticId;
20use rustc_hir::def::Namespace::{self, *};
21use rustc_hir::def::{self, CtorKind, DefKind, PartialRes, PerNS};
22use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
6a06907d 23use rustc_hir::{PrimTy, TraitCandidate};
ba9703b0
XL
24use rustc_middle::{bug, span_bug};
25use rustc_session::lint;
f9f354fc 26use rustc_span::symbol::{kw, sym, Ident, Symbol};
dfeec247 27use rustc_span::Span;
416331ca 28use smallvec::{smallvec, SmallVec};
416331ca 29
f035d41b 30use rustc_span::source_map::{respan, Spanned};
fc512014 31use std::collections::{hash_map::Entry, BTreeSet};
f035d41b 32use std::mem::{replace, take};
3dfed10e 33use tracing::debug;
416331ca
XL
34
35mod diagnostics;
74b04a01 36crate mod lifetimes;
416331ca
XL
37
38type Res = def::Res<NodeId>;
39
e1599b0c
XL
40type IdentMap<T> = FxHashMap<Ident, T>;
41
416331ca 42/// Map from the name in a pattern to its binding mode.
e1599b0c 43type BindingMap = IdentMap<BindingInfo>;
416331ca
XL
44
45#[derive(Copy, Clone, Debug)]
46struct BindingInfo {
47 span: Span,
48 binding_mode: BindingMode,
49}
50
416331ca
XL
51#[derive(Copy, Clone, PartialEq, Eq, Debug)]
52enum PatternSource {
53 Match,
54 Let,
55 For,
56 FnParam,
57}
58
29967ef6
XL
59#[derive(Copy, Clone, Debug, PartialEq, Eq)]
60enum IsRepeatExpr {
61 No,
62 Yes,
63}
64
416331ca
XL
65impl PatternSource {
66 fn descr(self) -> &'static str {
67 match self {
68 PatternSource::Match => "match binding",
69 PatternSource::Let => "let binding",
70 PatternSource::For => "for binding",
71 PatternSource::FnParam => "function parameter",
72 }
73 }
74}
75
e1599b0c
XL
76/// Denotes whether the context for the set of already bound bindings is a `Product`
77/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
78/// See those functions for more information.
60c5eb7d 79#[derive(PartialEq)]
e1599b0c
XL
80enum PatBoundCtx {
81 /// A product pattern context, e.g., `Variant(a, b)`.
82 Product,
83 /// An or-pattern context, e.g., `p_0 | ... | p_n`.
84 Or,
85}
86
e74abb32
XL
87/// Does this the item (from the item rib scope) allow generic parameters?
88#[derive(Copy, Clone, Debug, Eq, PartialEq)]
dfeec247
XL
89crate enum HasGenericParams {
90 Yes,
91 No,
92}
e74abb32 93
5869c6ff
XL
94#[derive(Copy, Clone, Debug, Eq, PartialEq)]
95crate enum ConstantItemKind {
96 Const,
97 Static,
98}
99
416331ca
XL
100/// The rib kind restricts certain accesses,
101/// e.g. to a `Res::Local` of an outer item.
102#[derive(Copy, Clone, Debug)]
103crate enum RibKind<'a> {
104 /// No restriction needs to be applied.
105 NormalRibKind,
106
107 /// We passed through an impl or trait and are now in one of its
108 /// methods or associated types. Allow references to ty params that impl or trait
109 /// binds. Disallow any other upvars (including other ty params that are
110 /// upvars).
111 AssocItemRibKind,
112
f035d41b
XL
113 /// We passed through a closure. Disallow labels.
114 ClosureOrAsyncRibKind,
115
416331ca
XL
116 /// We passed through a function definition. Disallow upvars.
117 /// Permit only those const parameters that are specified in the function's generics.
118 FnItemRibKind,
119
120 /// We passed through an item scope. Disallow upvars.
e74abb32 121 ItemRibKind(HasGenericParams),
416331ca
XL
122
123 /// We're in a constant item. Can't refer to dynamic stuff.
1b1a35ee
XL
124 ///
125 /// The `bool` indicates if this constant may reference generic parameters
126 /// and is used to only allow generic parameters to be used in trivial constant expressions.
5869c6ff 127 ConstantItemRibKind(bool, Option<(Ident, ConstantItemKind)>),
416331ca
XL
128
129 /// We passed through a module.
130 ModuleRibKind(Module<'a>),
131
132 /// We passed through a `macro_rules!` statement
133 MacroDefinition(DefId),
134
cdc7bbd5
XL
135 /// All bindings in this rib are generic parameters that can't be used
136 /// from the default of a generic parameter because they're not declared
137 /// before said generic parameter. Also see the `visit_generics` override.
138 ForwardGenericParamBanRibKind,
3dfed10e
XL
139
140 /// We are inside of the type of a const parameter. Can't refer to any
141 /// parameters.
142 ConstParamTyRibKind,
416331ca
XL
143}
144
e1599b0c 145impl RibKind<'_> {
f035d41b
XL
146 /// Whether this rib kind contains generic parameters, as opposed to local
147 /// variables.
e1599b0c
XL
148 crate fn contains_params(&self) -> bool {
149 match self {
f035d41b
XL
150 NormalRibKind
151 | ClosureOrAsyncRibKind
152 | FnItemRibKind
5869c6ff 153 | ConstantItemRibKind(..)
f035d41b 154 | ModuleRibKind(_)
3dfed10e
XL
155 | MacroDefinition(_)
156 | ConstParamTyRibKind => false,
cdc7bbd5 157 AssocItemRibKind | ItemRibKind(_) | ForwardGenericParamBanRibKind => true,
e1599b0c
XL
158 }
159 }
160}
161
416331ca
XL
162/// A single local scope.
163///
164/// A rib represents a scope names can live in. Note that these appear in many places, not just
165/// around braces. At any place where the list of accessible names (of the given namespace)
166/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
167/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
168/// etc.
169///
170/// Different [rib kinds](enum.RibKind) are transparent for different names.
171///
172/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
173/// resolving, the name is looked up from inside out.
174#[derive(Debug)]
175crate struct Rib<'a, R = Res> {
e1599b0c 176 pub bindings: IdentMap<R>,
416331ca
XL
177 pub kind: RibKind<'a>,
178}
179
180impl<'a, R> Rib<'a, R> {
181 fn new(kind: RibKind<'a>) -> Rib<'a, R> {
dfeec247 182 Rib { bindings: Default::default(), kind }
416331ca
XL
183 }
184}
185
186#[derive(Copy, Clone, PartialEq, Eq, Debug)]
187crate enum AliasPossibility {
188 No,
189 Maybe,
190}
191
192#[derive(Copy, Clone, Debug)]
193crate enum PathSource<'a> {
194 // Type paths `Path`.
195 Type,
196 // Trait paths in bounds or impls.
197 Trait(AliasPossibility),
198 // Expression paths `path`, with optional parent context.
199 Expr(Option<&'a Expr>),
200 // Paths in path patterns `Path`.
201 Pat,
202 // Paths in struct expressions and patterns `Path { .. }`.
203 Struct,
204 // Paths in tuple struct patterns `Path(..)`.
1b1a35ee 205 TupleStruct(Span, &'a [Span]),
416331ca
XL
206 // `m::A::B` in `<T as m::A>::B::C`.
207 TraitItem(Namespace),
208}
209
210impl<'a> PathSource<'a> {
211 fn namespace(self) -> Namespace {
212 match self {
213 PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
1b1a35ee 214 PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct(..) => ValueNS,
416331ca
XL
215 PathSource::TraitItem(ns) => ns,
216 }
217 }
218
219 fn defer_to_typeck(self) -> bool {
220 match self {
dfeec247
XL
221 PathSource::Type
222 | PathSource::Expr(..)
223 | PathSource::Pat
224 | PathSource::Struct
1b1a35ee 225 | PathSource::TupleStruct(..) => true,
416331ca
XL
226 PathSource::Trait(_) | PathSource::TraitItem(..) => false,
227 }
228 }
229
230 fn descr_expected(self) -> &'static str {
e74abb32 231 match &self {
416331ca
XL
232 PathSource::Type => "type",
233 PathSource::Trait(_) => "trait",
e74abb32 234 PathSource::Pat => "unit struct, unit variant or constant",
416331ca 235 PathSource::Struct => "struct, variant or union type",
1b1a35ee 236 PathSource::TupleStruct(..) => "tuple struct or tuple variant",
416331ca
XL
237 PathSource::TraitItem(ns) => match ns {
238 TypeNS => "associated type",
239 ValueNS => "method or associated constant",
240 MacroNS => bug!("associated macro"),
241 },
3dfed10e 242 PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
416331ca
XL
243 // "function" here means "anything callable" rather than `DefKind::Fn`,
244 // this is not precise but usually more helpful than just "value".
dfeec247 245 Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
5869c6ff
XL
246 // the case of `::some_crate()`
247 ExprKind::Path(_, path)
248 if path.segments.len() == 2
249 && path.segments[0].ident.name == kw::PathRoot =>
250 {
251 "external crate"
252 }
dfeec247
XL
253 ExprKind::Path(_, path) => {
254 let mut msg = "function";
255 if let Some(segment) = path.segments.iter().last() {
256 if let Some(c) = segment.ident.to_string().chars().next() {
257 if c.is_uppercase() {
258 msg = "function, tuple struct or tuple variant";
e74abb32
XL
259 }
260 }
e74abb32 261 }
dfeec247 262 msg
e74abb32 263 }
dfeec247
XL
264 _ => "function",
265 },
416331ca
XL
266 _ => "value",
267 },
268 }
269 }
270
f035d41b 271 fn is_call(self) -> bool {
29967ef6 272 matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
f035d41b
XL
273 }
274
416331ca
XL
275 crate fn is_expected(self, res: Res) -> bool {
276 match self {
5869c6ff
XL
277 PathSource::Type => matches!(
278 res,
279 Res::Def(
ba9703b0 280 DefKind::Struct
5869c6ff
XL
281 | DefKind::Union
282 | DefKind::Enum
283 | DefKind::Trait
284 | DefKind::TraitAlias
285 | DefKind::TyAlias
286 | DefKind::AssocTy
287 | DefKind::TyParam
288 | DefKind::OpaqueTy
289 | DefKind::ForeignTy,
ba9703b0 290 _,
5869c6ff
XL
291 ) | Res::PrimTy(..)
292 | Res::SelfTy(..)
293 ),
29967ef6
XL
294 PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
295 PathSource::Trait(AliasPossibility::Maybe) => {
296 matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
297 }
5869c6ff
XL
298 PathSource::Expr(..) => matches!(
299 res,
300 Res::Def(
ba9703b0 301 DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
5869c6ff
XL
302 | DefKind::Const
303 | DefKind::Static
304 | DefKind::Fn
305 | DefKind::AssocFn
306 | DefKind::AssocConst
307 | DefKind::ConstParam,
ba9703b0 308 _,
5869c6ff
XL
309 ) | Res::Local(..)
310 | Res::SelfCtor(..)
311 ),
312 PathSource::Pat => matches!(
313 res,
314 Res::Def(
ba9703b0
XL
315 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::AssocConst,
316 _,
5869c6ff
XL
317 ) | Res::SelfCtor(..)
318 ),
29967ef6 319 PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
5869c6ff
XL
320 PathSource::Struct => matches!(
321 res,
322 Res::Def(
ba9703b0 323 DefKind::Struct
5869c6ff
XL
324 | DefKind::Union
325 | DefKind::Variant
326 | DefKind::TyAlias
327 | DefKind::AssocTy,
ba9703b0 328 _,
5869c6ff
XL
329 ) | Res::SelfTy(..)
330 ),
416331ca 331 PathSource::TraitItem(ns) => match res {
ba9703b0 332 Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
416331ca
XL
333 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
334 _ => false,
335 },
336 }
337 }
338
dfeec247
XL
339 fn error_code(self, has_unexpected_resolution: bool) -> DiagnosticId {
340 use rustc_errors::error_code;
416331ca 341 match (self, has_unexpected_resolution) {
dfeec247
XL
342 (PathSource::Trait(_), true) => error_code!(E0404),
343 (PathSource::Trait(_), false) => error_code!(E0405),
344 (PathSource::Type, true) => error_code!(E0573),
345 (PathSource::Type, false) => error_code!(E0412),
346 (PathSource::Struct, true) => error_code!(E0574),
347 (PathSource::Struct, false) => error_code!(E0422),
348 (PathSource::Expr(..), true) => error_code!(E0423),
349 (PathSource::Expr(..), false) => error_code!(E0425),
1b1a35ee
XL
350 (PathSource::Pat | PathSource::TupleStruct(..), true) => error_code!(E0532),
351 (PathSource::Pat | PathSource::TupleStruct(..), false) => error_code!(E0531),
dfeec247
XL
352 (PathSource::TraitItem(..), true) => error_code!(E0575),
353 (PathSource::TraitItem(..), false) => error_code!(E0576),
416331ca
XL
354 }
355 }
356}
357
e74abb32 358#[derive(Default)]
dfeec247 359struct DiagnosticMetadata<'ast> {
29967ef6
XL
360 /// The current trait's associated items' ident, used for diagnostic suggestions.
361 current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,
e74abb32
XL
362
363 /// The current self type if inside an impl (used for better errors).
364 current_self_type: Option<Ty>,
365
366 /// The current self item if inside an ADT (used for better errors).
367 current_self_item: Option<NodeId>,
368
dfeec247
XL
369 /// The current trait (used to suggest).
370 current_item: Option<&'ast Item>,
371
372 /// When processing generics and encountering a type not found, suggest introducing a type
373 /// param.
374 currently_processing_generics: bool,
375
29967ef6 376 /// The current enclosing (non-closure) function (used for better errors).
f9f354fc 377 current_function: Option<(FnKind<'ast>, Span)>,
e74abb32
XL
378
379 /// A list of labels as of yet unused. Labels will be removed from this map when
380 /// they are used (in a `break` or `continue` statement)
381 unused_labels: FxHashMap<NodeId, Span>,
382
383 /// Only used for better errors on `fn(): fn()`.
384 current_type_ascription: Vec<Span>,
385
386 /// Only used for better errors on `let <pat>: <expr, not type>;`.
387 current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
1b1a35ee
XL
388
389 /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
390 in_if_condition: Option<&'ast Expr>,
29967ef6
XL
391
392 /// If we are currently in a trait object definition. Used to point at the bounds when
393 /// encountering a struct or enum.
394 current_trait_object: Option<&'ast [ast::GenericBound]>,
395
396 /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
397 current_where_predicate: Option<&'ast WherePredicate>,
e74abb32
XL
398}
399
dfeec247 400struct LateResolutionVisitor<'a, 'b, 'ast> {
416331ca
XL
401 r: &'b mut Resolver<'a>,
402
403 /// The module that represents the current item scope.
404 parent_scope: ParentScope<'a>,
405
406 /// The current set of local scopes for types and values.
407 /// FIXME #4948: Reuse ribs to avoid allocation.
408 ribs: PerNS<Vec<Rib<'a>>>,
409
410 /// The current set of local scopes, for labels.
411 label_ribs: Vec<Rib<'a, NodeId>>,
412
413 /// The trait that the current context can refer to.
414 current_trait_ref: Option<(Module<'a>, TraitRef)>,
415
e74abb32 416 /// Fields used to add information to diagnostic errors.
dfeec247 417 diagnostic_metadata: DiagnosticMetadata<'ast>,
3dfed10e
XL
418
419 /// State used to know whether to ignore resolution errors for function bodies.
420 ///
421 /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
422 /// In most cases this will be `None`, in which case errors will always be reported.
1b1a35ee 423 /// If it is `true`, then it will be updated when entering a nested function or trait body.
3dfed10e 424 in_func_body: bool,
416331ca
XL
425}
426
427/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
1b1a35ee 428impl<'a: 'ast, 'ast> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast> {
dfeec247
XL
429 fn visit_item(&mut self, item: &'ast Item) {
430 let prev = replace(&mut self.diagnostic_metadata.current_item, Some(item));
3dfed10e
XL
431 // Always report errors in items we just entered.
432 let old_ignore = replace(&mut self.in_func_body, false);
416331ca 433 self.resolve_item(item);
3dfed10e 434 self.in_func_body = old_ignore;
dfeec247 435 self.diagnostic_metadata.current_item = prev;
416331ca 436 }
dfeec247 437 fn visit_arm(&mut self, arm: &'ast Arm) {
416331ca
XL
438 self.resolve_arm(arm);
439 }
dfeec247 440 fn visit_block(&mut self, block: &'ast Block) {
416331ca
XL
441 self.resolve_block(block);
442 }
dfeec247 443 fn visit_anon_const(&mut self, constant: &'ast AnonConst) {
29967ef6
XL
444 // We deal with repeat expressions explicitly in `resolve_expr`.
445 self.resolve_anon_const(constant, IsRepeatExpr::No);
416331ca 446 }
dfeec247 447 fn visit_expr(&mut self, expr: &'ast Expr) {
416331ca
XL
448 self.resolve_expr(expr, None);
449 }
dfeec247 450 fn visit_local(&mut self, local: &'ast Local) {
e74abb32
XL
451 let local_spans = match local.pat.kind {
452 // We check for this to avoid tuple struct fields.
453 PatKind::Wild => None,
454 _ => Some((
455 local.pat.span,
456 local.ty.as_ref().map(|ty| ty.span),
457 local.init.as_ref().map(|init| init.span),
458 )),
459 };
460 let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
416331ca 461 self.resolve_local(local);
e74abb32 462 self.diagnostic_metadata.current_let_binding = original;
416331ca 463 }
dfeec247 464 fn visit_ty(&mut self, ty: &'ast Ty) {
29967ef6 465 let prev = self.diagnostic_metadata.current_trait_object;
e74abb32 466 match ty.kind {
416331ca
XL
467 TyKind::Path(ref qself, ref path) => {
468 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
469 }
470 TyKind::ImplicitSelf => {
e1599b0c 471 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
dfeec247
XL
472 let res = self
473 .resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
474 .map_or(Res::Err, |d| d.res());
416331ca
XL
475 self.r.record_partial_res(ty.id, PartialRes::new(res));
476 }
29967ef6
XL
477 TyKind::TraitObject(ref bounds, ..) => {
478 self.diagnostic_metadata.current_trait_object = Some(&bounds[..]);
479 }
416331ca
XL
480 _ => (),
481 }
482 visit::walk_ty(self, ty);
29967ef6 483 self.diagnostic_metadata.current_trait_object = prev;
416331ca 484 }
dfeec247
XL
485 fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef, m: &'ast TraitBoundModifier) {
486 self.smart_resolve_path(
487 tref.trait_ref.ref_id,
488 None,
489 &tref.trait_ref.path,
490 PathSource::Trait(AliasPossibility::Maybe),
491 );
416331ca
XL
492 visit::walk_poly_trait_ref(self, tref, m);
493 }
dfeec247 494 fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
e74abb32 495 match foreign_item.kind {
5869c6ff
XL
496 ForeignItemKind::Fn(box FnKind(_, _, ref generics, _))
497 | ForeignItemKind::TyAlias(box TyAliasKind(_, ref generics, ..)) => {
e74abb32
XL
498 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
499 visit::walk_foreign_item(this, foreign_item);
500 });
416331ca 501 }
e74abb32
XL
502 ForeignItemKind::Static(..) => {
503 self.with_item_rib(HasGenericParams::No, |this| {
504 visit::walk_foreign_item(this, foreign_item);
505 });
506 }
ba9703b0 507 ForeignItemKind::MacCall(..) => {
e74abb32
XL
508 visit::walk_foreign_item(self, foreign_item);
509 }
510 }
416331ca 511 }
74b04a01 512 fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, _: NodeId) {
e1599b0c 513 let rib_kind = match fn_kind {
74b04a01
XL
514 // Bail if there's no body.
515 FnKind::Fn(.., None) => return visit::walk_fn(self, fn_kind, sp),
ba9703b0 516 FnKind::Fn(FnCtxt::Free | FnCtxt::Foreign, ..) => FnItemRibKind,
f035d41b
XL
517 FnKind::Fn(FnCtxt::Assoc(_), ..) => NormalRibKind,
518 FnKind::Closure(..) => ClosureOrAsyncRibKind,
416331ca 519 };
29967ef6
XL
520 let previous_value = self.diagnostic_metadata.current_function;
521 if matches!(fn_kind, FnKind::Fn(..)) {
522 self.diagnostic_metadata.current_function = Some((fn_kind, sp));
523 }
74b04a01
XL
524 debug!("(resolving function) entering function");
525 let declaration = fn_kind.decl();
416331ca
XL
526
527 // Create a value rib for the function.
e1599b0c
XL
528 self.with_rib(ValueNS, rib_kind, |this| {
529 // Create a label rib for the function.
530 this.with_label_rib(rib_kind, |this| {
531 // Add each argument to the rib.
532 this.resolve_params(&declaration.inputs);
533
534 visit::walk_fn_ret_ty(this, &declaration.output);
535
3dfed10e
XL
536 // Ignore errors in function bodies if this is rustdoc
537 // Be sure not to set this until the function signature has been resolved.
538 let previous_state = replace(&mut this.in_func_body, true);
e1599b0c
XL
539 // Resolve the function body, potentially inside the body of an async closure
540 match fn_kind {
74b04a01
XL
541 FnKind::Fn(.., body) => walk_list!(this, visit_block, body),
542 FnKind::Closure(_, body) => this.visit_expr(body),
e1599b0c
XL
543 };
544
545 debug!("(resolving function) leaving function");
3dfed10e 546 this.in_func_body = previous_state;
e1599b0c
XL
547 })
548 });
e74abb32 549 self.diagnostic_metadata.current_function = previous_value;
416331ca
XL
550 }
551
dfeec247 552 fn visit_generics(&mut self, generics: &'ast Generics) {
416331ca
XL
553 // For type parameter defaults, we have to ban access
554 // to following type parameters, as the InternalSubsts can only
555 // provide previous type parameters as they're built. We
556 // put all the parameters on the ban list and then remove
557 // them one by one as they are processed and become available.
cdc7bbd5
XL
558 let mut forward_ty_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
559 let mut forward_const_ban_rib = Rib::new(ForwardGenericParamBanRibKind);
560 for param in generics.params.iter() {
561 match param.kind {
562 GenericParamKind::Type { .. } => {
563 forward_ty_ban_rib
564 .bindings
565 .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
416331ca 566 }
cdc7bbd5
XL
567 GenericParamKind::Const { .. } => {
568 forward_const_ban_rib
569 .bindings
570 .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
571 }
572 GenericParamKind::Lifetime => {}
573 }
574 }
416331ca 575
e74abb32
XL
576 // rust-lang/rust#61631: The type `Self` is essentially
577 // another type parameter. For ADTs, we consider it
578 // well-defined only after all of the ADT type parameters have
579 // been provided. Therefore, we do not allow use of `Self`
580 // anywhere in ADT type parameter defaults.
581 //
582 // (We however cannot ban `Self` for defaults on *all* generic
583 // lists; e.g. trait generics can usefully refer to `Self`,
584 // such as in the case of `trait Add<Rhs = Self>`.)
585 if self.diagnostic_metadata.current_self_item.is_some() {
586 // (`Some` if + only if we are in ADT's generics.)
cdc7bbd5 587 forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
e74abb32 588 }
416331ca
XL
589
590 for param in &generics.params {
591 match param.kind {
f035d41b
XL
592 GenericParamKind::Lifetime => self.visit_generic_param(param),
593 GenericParamKind::Type { ref default } => {
416331ca
XL
594 for bound in &param.bounds {
595 self.visit_param_bound(bound);
596 }
597
598 if let Some(ref ty) = default {
cdc7bbd5
XL
599 self.ribs[TypeNS].push(forward_ty_ban_rib);
600 self.ribs[ValueNS].push(forward_const_ban_rib);
601 self.visit_ty(ty);
602 forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
603 forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
416331ca
XL
604 }
605
606 // Allow all following defaults to refer to this type parameter.
cdc7bbd5 607 forward_ty_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
416331ca 608 }
cdc7bbd5
XL
609 GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
610 // Const parameters can't have param bounds.
611 assert!(param.bounds.is_empty());
612
3dfed10e
XL
613 self.ribs[TypeNS].push(Rib::new(ConstParamTyRibKind));
614 self.ribs[ValueNS].push(Rib::new(ConstParamTyRibKind));
416331ca 615 self.visit_ty(ty);
3dfed10e
XL
616 self.ribs[TypeNS].pop().unwrap();
617 self.ribs[ValueNS].pop().unwrap();
cdc7bbd5
XL
618
619 if let Some(ref expr) = default {
620 self.ribs[TypeNS].push(forward_ty_ban_rib);
621 self.ribs[ValueNS].push(forward_const_ban_rib);
622 self.visit_anon_const(expr);
623 forward_const_ban_rib = self.ribs[ValueNS].pop().unwrap();
624 forward_ty_ban_rib = self.ribs[TypeNS].pop().unwrap();
625 }
626
627 // Allow all following defaults to refer to this const parameter.
628 forward_const_ban_rib
629 .bindings
630 .remove(&Ident::with_dummy_span(param.ident.name));
416331ca
XL
631 }
632 }
633 }
634 for p in &generics.where_clause.predicates {
635 self.visit_where_predicate(p);
636 }
637 }
60c5eb7d 638
dfeec247 639 fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
60c5eb7d 640 debug!("visit_generic_arg({:?})", arg);
dfeec247 641 let prev = replace(&mut self.diagnostic_metadata.currently_processing_generics, true);
60c5eb7d
XL
642 match arg {
643 GenericArg::Type(ref ty) => {
74b04a01 644 // We parse const arguments as path types as we cannot distinguish them during
60c5eb7d
XL
645 // parsing. We try to resolve that ambiguity by attempting resolution the type
646 // namespace first, and if that fails we try again in the value namespace. If
647 // resolution in the value namespace succeeds, we have an generic const argument on
648 // our hands.
649 if let TyKind::Path(ref qself, ref path) = ty.kind {
650 // We cannot disambiguate multi-segment paths right now as that requires type
651 // checking.
652 if path.segments.len() == 1 && path.segments[0].args.is_none() {
dfeec247
XL
653 let mut check_ns = |ns| {
654 self.resolve_ident_in_lexical_scope(
655 path.segments[0].ident,
656 ns,
657 None,
658 path.span,
659 )
660 .is_some()
661 };
60c5eb7d
XL
662 if !check_ns(TypeNS) && check_ns(ValueNS) {
663 // This must be equivalent to `visit_anon_const`, but we cannot call it
664 // directly due to visitor lifetimes so we have to copy-paste some code.
29967ef6
XL
665 //
666 // Note that we might not be inside of an repeat expression here,
667 // but considering that `IsRepeatExpr` is only relevant for
668 // non-trivial constants this is doesn't matter.
5869c6ff 669 self.with_constant_rib(IsRepeatExpr::No, true, None, |this| {
60c5eb7d
XL
670 this.smart_resolve_path(
671 ty.id,
672 qself.as_ref(),
673 path,
dfeec247 674 PathSource::Expr(None),
60c5eb7d
XL
675 );
676
677 if let Some(ref qself) = *qself {
678 this.visit_ty(&qself.ty);
679 }
680 this.visit_path(path, ty.id);
681 });
682
dfeec247 683 self.diagnostic_metadata.currently_processing_generics = prev;
60c5eb7d
XL
684 return;
685 }
686 }
687 }
688
689 self.visit_ty(ty);
690 }
691 GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
692 GenericArg::Const(ct) => self.visit_anon_const(ct),
693 }
dfeec247 694 self.diagnostic_metadata.currently_processing_generics = prev;
60c5eb7d 695 }
29967ef6
XL
696
697 fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
698 debug!("visit_where_predicate {:?}", p);
699 let previous_value =
700 replace(&mut self.diagnostic_metadata.current_where_predicate, Some(p));
701 visit::walk_where_predicate(self, p);
702 self.diagnostic_metadata.current_where_predicate = previous_value;
703 }
416331ca
XL
704}
705
1b1a35ee 706impl<'a: 'ast, 'b, 'ast> LateResolutionVisitor<'a, 'b, 'ast> {
dfeec247 707 fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b, 'ast> {
416331ca
XL
708 // During late resolution we only track the module component of the parent scope,
709 // although it may be useful to track other components as well for diagnostics.
416331ca 710 let graph_root = resolver.graph_root;
29967ef6 711 let parent_scope = ParentScope::module(graph_root, resolver);
e1599b0c 712 let start_rib_kind = ModuleRibKind(graph_root);
416331ca
XL
713 LateResolutionVisitor {
714 r: resolver,
715 parent_scope,
716 ribs: PerNS {
e1599b0c
XL
717 value_ns: vec![Rib::new(start_rib_kind)],
718 type_ns: vec![Rib::new(start_rib_kind)],
719 macro_ns: vec![Rib::new(start_rib_kind)],
416331ca
XL
720 },
721 label_ribs: Vec::new(),
722 current_trait_ref: None,
e74abb32 723 diagnostic_metadata: DiagnosticMetadata::default(),
3dfed10e
XL
724 // errors at module scope should always be reported
725 in_func_body: false,
416331ca
XL
726 }
727 }
728
dfeec247
XL
729 fn resolve_ident_in_lexical_scope(
730 &mut self,
731 ident: Ident,
732 ns: Namespace,
733 record_used_id: Option<NodeId>,
734 path_span: Span,
735 ) -> Option<LexicalScopeBinding<'a>> {
416331ca 736 self.r.resolve_ident_in_lexical_scope(
dfeec247
XL
737 ident,
738 ns,
739 &self.parent_scope,
740 record_used_id,
741 path_span,
742 &self.ribs[ns],
416331ca
XL
743 )
744 }
745
746 fn resolve_path(
747 &mut self,
748 path: &[Segment],
749 opt_ns: Option<Namespace>, // `None` indicates a module path in import
750 record_used: bool,
751 path_span: Span,
752 crate_lint: CrateLint,
753 ) -> PathResult<'a> {
754 self.r.resolve_path_with_ribs(
dfeec247
XL
755 path,
756 opt_ns,
757 &self.parent_scope,
758 record_used,
759 path_span,
760 crate_lint,
761 Some(&self.ribs),
416331ca
XL
762 )
763 }
764
765 // AST resolution
766 //
767 // We maintain a list of value ribs and type ribs.
768 //
769 // Simultaneously, we keep track of the current position in the module
770 // graph in the `parent_scope.module` pointer. When we go to resolve a name in
771 // the value or type namespaces, we first look through all the ribs and
772 // then query the module graph. When we resolve a name in the module
773 // namespace, we can skip all the ribs (since nested modules are not
774 // allowed within blocks in Rust) and jump straight to the current module
775 // graph node.
776 //
777 // Named implementations are handled separately. When we find a method
778 // call, we consult the module node to find all of the implementations in
779 // scope. This information is lazily cached in the module node. We then
780 // generate a fake "implementation scope" containing all the
781 // implementations thus found, for compatibility with old resolve pass.
782
e1599b0c
XL
783 /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
784 fn with_rib<T>(
785 &mut self,
786 ns: Namespace,
787 kind: RibKind<'a>,
788 work: impl FnOnce(&mut Self) -> T,
789 ) -> T {
790 self.ribs[ns].push(Rib::new(kind));
791 let ret = work(self);
792 self.ribs[ns].pop();
793 ret
794 }
795
796 fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
f035d41b 797 let id = self.r.local_def_id(id);
416331ca
XL
798 let module = self.r.module_map.get(&id).cloned(); // clones a reference
799 if let Some(module) = module {
800 // Move down in the graph.
801 let orig_module = replace(&mut self.parent_scope.module, module);
e1599b0c
XL
802 self.with_rib(ValueNS, ModuleRibKind(module), |this| {
803 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
804 let ret = f(this);
805 this.parent_scope.module = orig_module;
806 ret
807 })
808 })
416331ca
XL
809 } else {
810 f(self)
811 }
812 }
813
f035d41b
XL
814 /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
815 /// label and reports an error if the label is not found or is unreachable.
816 fn resolve_label(&self, mut label: Ident) -> Option<NodeId> {
817 let mut suggestion = None;
818
819 // Preserve the original span so that errors contain "in this macro invocation"
820 // information.
821 let original_span = label.span;
822
823 for i in (0..self.label_ribs.len()).rev() {
824 let rib = &self.label_ribs[i];
825
826 if let MacroDefinition(def) = rib.kind {
416331ca
XL
827 // If an invocation of this macro created `ident`, give up on `ident`
828 // and switch to `ident`'s source from the macro definition.
f035d41b
XL
829 if def == self.r.macro_def(label.span.ctxt()) {
830 label.span.remove_mark();
416331ca
XL
831 }
832 }
f035d41b
XL
833
834 let ident = label.normalize_to_macro_rules();
835 if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
836 return if self.is_label_valid_from_rib(i) {
837 Some(*id)
838 } else {
3dfed10e 839 self.report_error(
f035d41b
XL
840 original_span,
841 ResolutionError::UnreachableLabel {
3dfed10e 842 name: label.name,
f035d41b
XL
843 definition_span: ident.span,
844 suggestion,
845 },
846 );
847
848 None
849 };
416331ca 850 }
f035d41b
XL
851
852 // Diagnostics: Check if this rib contains a label with a similar name, keep track of
853 // the first such label that is encountered.
854 suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
416331ca 855 }
f035d41b 856
3dfed10e 857 self.report_error(
f035d41b 858 original_span,
3dfed10e 859 ResolutionError::UndeclaredLabel { name: label.name, suggestion },
f035d41b 860 );
416331ca
XL
861 None
862 }
863
f035d41b
XL
864 /// Determine whether or not a label from the `rib_index`th label rib is reachable.
865 fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
866 let ribs = &self.label_ribs[rib_index + 1..];
867
868 for rib in ribs {
869 match rib.kind {
870 NormalRibKind | MacroDefinition(..) => {
871 // Nothing to do. Continue.
872 }
873
874 AssocItemRibKind
875 | ClosureOrAsyncRibKind
876 | FnItemRibKind
877 | ItemRibKind(..)
5869c6ff 878 | ConstantItemRibKind(..)
f035d41b 879 | ModuleRibKind(..)
cdc7bbd5 880 | ForwardGenericParamBanRibKind
3dfed10e 881 | ConstParamTyRibKind => {
f035d41b
XL
882 return false;
883 }
884 }
885 }
886
887 true
888 }
889
dfeec247 890 fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
416331ca
XL
891 debug!("resolve_adt");
892 self.with_current_self_item(item, |this| {
e74abb32 893 this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
f035d41b 894 let item_def_id = this.r.local_def_id(item.id).to_def_id();
1b1a35ee 895 this.with_self_rib(Res::SelfTy(None, Some((item_def_id, false))), |this| {
416331ca
XL
896 visit::walk_item(this, item);
897 });
898 });
899 });
900 }
901
902 fn future_proof_import(&mut self, use_tree: &UseTree) {
903 let segments = &use_tree.prefix.segments;
904 if !segments.is_empty() {
905 let ident = segments[0].ident;
906 if ident.is_path_segment_keyword() || ident.span.rust_2015() {
907 return;
908 }
909
910 let nss = match use_tree.kind {
911 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
912 _ => &[TypeNS],
913 };
914 let report_error = |this: &Self, ns| {
915 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
3dfed10e
XL
916 if this.should_report_errs() {
917 this.r
918 .session
919 .span_err(ident.span, &format!("imports cannot refer to {}", what));
920 }
416331ca
XL
921 };
922
923 for &ns in nss {
924 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
925 Some(LexicalScopeBinding::Res(..)) => {
926 report_error(self, ns);
927 }
928 Some(LexicalScopeBinding::Item(binding)) => {
f035d41b
XL
929 let orig_unusable_binding =
930 replace(&mut self.r.unusable_binding, Some(binding));
dfeec247
XL
931 if let Some(LexicalScopeBinding::Res(..)) = self
932 .resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span)
933 {
416331ca
XL
934 report_error(self, ns);
935 }
f035d41b 936 self.r.unusable_binding = orig_unusable_binding;
416331ca
XL
937 }
938 None => {}
939 }
940 }
941 } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
942 for (use_tree, _) in use_trees {
943 self.future_proof_import(use_tree);
944 }
945 }
946 }
947
dfeec247 948 fn resolve_item(&mut self, item: &'ast Item) {
416331ca 949 let name = item.ident.name;
e74abb32 950 debug!("(resolving item) resolving {} ({:?})", name, item.kind);
416331ca 951
e74abb32 952 match item.kind {
5869c6ff
XL
953 ItemKind::TyAlias(box TyAliasKind(_, ref generics, _, _))
954 | ItemKind::Fn(box FnKind(_, _, ref generics, _)) => {
dfeec247
XL
955 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
956 visit::walk_item(this, item)
957 });
416331ca
XL
958 }
959
dfeec247
XL
960 ItemKind::Enum(_, ref generics)
961 | ItemKind::Struct(_, ref generics)
962 | ItemKind::Union(_, ref generics) => {
416331ca
XL
963 self.resolve_adt(item, generics);
964 }
965
5869c6ff 966 ItemKind::Impl(box ImplKind {
dfeec247
XL
967 ref generics,
968 ref of_trait,
969 ref self_ty,
970 items: ref impl_items,
971 ..
5869c6ff 972 }) => {
dfeec247
XL
973 self.resolve_implementation(generics, of_trait, &self_ty, item.id, impl_items);
974 }
416331ca 975
5869c6ff 976 ItemKind::Trait(box TraitKind(.., ref generics, ref bounds, ref trait_items)) => {
416331ca 977 // Create a new rib for the trait-wide type parameters.
e74abb32 978 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
f035d41b 979 let local_def_id = this.r.local_def_id(item.id).to_def_id();
416331ca
XL
980 this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
981 this.visit_generics(generics);
982 walk_list!(this, visit_param_bound, bounds);
983
74b04a01
XL
984 let walk_assoc_item = |this: &mut Self, generics, item| {
985 this.with_generic_param_rib(generics, AssocItemRibKind, |this| {
986 visit::walk_assoc_item(this, item, AssocCtxt::Trait)
987 });
988 };
989
fc512014
XL
990 this.with_trait_items(trait_items, |this| {
991 for item in trait_items {
74b04a01
XL
992 match &item.kind {
993 AssocItemKind::Const(_, ty, default) => {
994 this.visit_ty(ty);
995 // Only impose the restrictions of `ConstRibKind` for an
996 // actual constant expression in a provided default.
997 if let Some(expr) = default {
3dfed10e
XL
998 // We allow arbitrary const expressions inside of associated consts,
999 // even if they are potentially not const evaluatable.
1000 //
1001 // Type parameters can already be used and as associated consts are
1002 // not used as part of the type system, this is far less surprising.
29967ef6
XL
1003 this.with_constant_rib(
1004 IsRepeatExpr::No,
1005 true,
5869c6ff 1006 None,
29967ef6
XL
1007 |this| this.visit_expr(expr),
1008 );
74b04a01
XL
1009 }
1010 }
5869c6ff 1011 AssocItemKind::Fn(box FnKind(_, _, generics, _)) => {
74b04a01
XL
1012 walk_assoc_item(this, generics, item);
1013 }
5869c6ff 1014 AssocItemKind::TyAlias(box TyAliasKind(_, generics, _, _)) => {
74b04a01
XL
1015 walk_assoc_item(this, generics, item);
1016 }
ba9703b0 1017 AssocItemKind::MacCall(_) => {
74b04a01
XL
1018 panic!("unexpanded macro in resolve!")
1019 }
1020 };
fc512014
XL
1021 }
1022 });
416331ca
XL
1023 });
1024 });
1025 }
1026
1027 ItemKind::TraitAlias(ref generics, ref bounds) => {
1028 // Create a new rib for the trait-wide type parameters.
e74abb32 1029 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
f035d41b 1030 let local_def_id = this.r.local_def_id(item.id).to_def_id();
416331ca
XL
1031 this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
1032 this.visit_generics(generics);
1033 walk_list!(this, visit_param_bound, bounds);
1034 });
1035 });
1036 }
1037
6a06907d 1038 ItemKind::Mod(..) | ItemKind::ForeignMod(_) => {
416331ca
XL
1039 self.with_scope(item.id, |this| {
1040 visit::walk_item(this, item);
1041 });
1042 }
1043
74b04a01 1044 ItemKind::Static(ref ty, _, ref expr) | ItemKind::Const(_, ref ty, ref expr) => {
e74abb32 1045 self.with_item_rib(HasGenericParams::No, |this| {
416331ca 1046 this.visit_ty(ty);
74b04a01 1047 if let Some(expr) = expr {
5869c6ff
XL
1048 let constant_item_kind = match item.kind {
1049 ItemKind::Const(..) => ConstantItemKind::Const,
1050 ItemKind::Static(..) => ConstantItemKind::Static,
1051 _ => unreachable!(),
1052 };
29967ef6
XL
1053 // We already forbid generic params because of the above item rib,
1054 // so it doesn't matter whether this is a trivial constant.
5869c6ff
XL
1055 this.with_constant_rib(
1056 IsRepeatExpr::No,
1057 true,
1058 Some((item.ident, constant_item_kind)),
1059 |this| this.visit_expr(expr),
1060 );
74b04a01 1061 }
416331ca
XL
1062 });
1063 }
1064
1065 ItemKind::Use(ref use_tree) => {
1066 self.future_proof_import(use_tree);
1067 }
1068
dfeec247 1069 ItemKind::ExternCrate(..) | ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
416331ca
XL
1070 // do nothing, these are just around to be encoded
1071 }
1072
ba9703b0 1073 ItemKind::MacCall(_) => panic!("unexpanded macro in resolve!"),
416331ca
XL
1074 }
1075 }
1076
e74abb32 1077 fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
dfeec247
XL
1078 where
1079 F: FnOnce(&mut Self),
416331ca
XL
1080 {
1081 debug!("with_generic_param_rib");
e74abb32
XL
1082 let mut function_type_rib = Rib::new(kind);
1083 let mut function_value_rib = Rib::new(kind);
1084 let mut seen_bindings = FxHashMap::default();
1085
1086 // We also can't shadow bindings from the parent item
1087 if let AssocItemRibKind = kind {
1088 let mut add_bindings_for_ns = |ns| {
dfeec247
XL
1089 let parent_rib = self.ribs[ns]
1090 .iter()
1b1a35ee 1091 .rfind(|r| matches!(r.kind, ItemRibKind(_)))
e74abb32 1092 .expect("associated item outside of an item");
dfeec247
XL
1093 seen_bindings
1094 .extend(parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)));
e74abb32
XL
1095 };
1096 add_bindings_for_ns(ValueNS);
1097 add_bindings_for_ns(TypeNS);
1098 }
1099
1100 for param in &generics.params {
1101 if let GenericParamKind::Lifetime { .. } = param.kind {
1102 continue;
416331ca
XL
1103 }
1104
ba9703b0 1105 let ident = param.ident.normalize_to_macros_2_0();
e74abb32
XL
1106 debug!("with_generic_param_rib: {}", param.id);
1107
fc512014
XL
1108 match seen_bindings.entry(ident) {
1109 Entry::Occupied(entry) => {
1110 let span = *entry.get();
1111 let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
1112 self.report_error(param.ident.span, err);
1113 }
1114 Entry::Vacant(entry) => {
1115 entry.insert(param.ident.span);
1116 }
e74abb32 1117 }
e74abb32
XL
1118
1119 // Plain insert (no renaming).
fc512014
XL
1120 let (rib, def_kind) = match param.kind {
1121 GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
1122 GenericParamKind::Const { .. } => (&mut function_value_rib, DefKind::ConstParam),
e74abb32 1123 _ => unreachable!(),
fc512014
XL
1124 };
1125 let res = Res::Def(def_kind, self.r.local_def_id(param.id).to_def_id());
1126 self.r.record_partial_res(param.id, PartialRes::new(res));
1127 rib.bindings.insert(ident, res);
416331ca
XL
1128 }
1129
e74abb32
XL
1130 self.ribs[ValueNS].push(function_value_rib);
1131 self.ribs[TypeNS].push(function_type_rib);
1132
416331ca
XL
1133 f(self);
1134
e74abb32
XL
1135 self.ribs[TypeNS].pop();
1136 self.ribs[ValueNS].pop();
416331ca
XL
1137 }
1138
e1599b0c
XL
1139 fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
1140 self.label_ribs.push(Rib::new(kind));
416331ca
XL
1141 f(self);
1142 self.label_ribs.pop();
1143 }
1144
e74abb32
XL
1145 fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
1146 let kind = ItemRibKind(has_generic_params);
1147 self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
416331ca
XL
1148 }
1149
29967ef6
XL
1150 // HACK(min_const_generics,const_evaluatable_unchecked): We
1151 // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
1152 // with a future compat lint for now. We do this by adding an
1153 // additional special case for repeat expressions.
1154 //
1155 // Note that we intentionally still forbid `[0; N + 1]` during
1156 // name resolution so that we don't extend the future
1157 // compat lint to new cases.
1158 fn with_constant_rib(
1159 &mut self,
1160 is_repeat: IsRepeatExpr,
1161 is_trivial: bool,
5869c6ff 1162 item: Option<(Ident, ConstantItemKind)>,
29967ef6
XL
1163 f: impl FnOnce(&mut Self),
1164 ) {
1165 debug!("with_constant_rib: is_repeat={:?} is_trivial={}", is_repeat, is_trivial);
5869c6ff 1166 self.with_rib(ValueNS, ConstantItemRibKind(is_trivial, item), |this| {
29967ef6
XL
1167 this.with_rib(
1168 TypeNS,
5869c6ff 1169 ConstantItemRibKind(is_repeat == IsRepeatExpr::Yes || is_trivial, item),
29967ef6 1170 |this| {
5869c6ff 1171 this.with_label_rib(ConstantItemRibKind(is_trivial, item), f);
29967ef6
XL
1172 },
1173 )
e1599b0c 1174 });
416331ca
XL
1175 }
1176
e1599b0c 1177 fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
416331ca 1178 // Handle nested impls (inside fn bodies)
dfeec247
XL
1179 let previous_value =
1180 replace(&mut self.diagnostic_metadata.current_self_type, Some(self_type.clone()));
416331ca 1181 let result = f(self);
e74abb32 1182 self.diagnostic_metadata.current_self_type = previous_value;
416331ca
XL
1183 result
1184 }
1185
e1599b0c 1186 fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
dfeec247
XL
1187 let previous_value =
1188 replace(&mut self.diagnostic_metadata.current_self_item, Some(self_item.id));
416331ca 1189 let result = f(self);
e74abb32 1190 self.diagnostic_metadata.current_self_item = previous_value;
416331ca
XL
1191 result
1192 }
1193
29967ef6 1194 /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
e1599b0c
XL
1195 fn with_trait_items<T>(
1196 &mut self,
5869c6ff 1197 trait_items: &'ast [P<AssocItem>],
e1599b0c
XL
1198 f: impl FnOnce(&mut Self) -> T,
1199 ) -> T {
5869c6ff
XL
1200 let trait_assoc_items =
1201 replace(&mut self.diagnostic_metadata.current_trait_assoc_items, Some(&trait_items));
416331ca 1202 let result = f(self);
29967ef6 1203 self.diagnostic_metadata.current_trait_assoc_items = trait_assoc_items;
416331ca
XL
1204 result
1205 }
1206
1207 /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
e1599b0c
XL
1208 fn with_optional_trait_ref<T>(
1209 &mut self,
1210 opt_trait_ref: Option<&TraitRef>,
dfeec247 1211 f: impl FnOnce(&mut Self, Option<DefId>) -> T,
e1599b0c 1212 ) -> T {
416331ca
XL
1213 let mut new_val = None;
1214 let mut new_id = None;
1215 if let Some(trait_ref) = opt_trait_ref {
1216 let path: Vec<_> = Segment::from_path(&trait_ref.path);
1217 let res = self.smart_resolve_path_fragment(
1218 trait_ref.ref_id,
1219 None,
1220 &path,
1221 trait_ref.path.span,
1222 PathSource::Trait(AliasPossibility::No),
1223 CrateLint::SimplePath(trait_ref.ref_id),
dfeec247
XL
1224 );
1225 let res = res.base_res();
416331ca
XL
1226 if res != Res::Err {
1227 new_id = Some(res.def_id());
1228 let span = trait_ref.path.span;
dfeec247
XL
1229 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) = self.resolve_path(
1230 &path,
1231 Some(TypeNS),
1232 false,
1233 span,
1234 CrateLint::SimplePath(trait_ref.ref_id),
1235 ) {
416331ca
XL
1236 new_val = Some((module, trait_ref.clone()));
1237 }
1238 }
1239 }
1240 let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1241 let result = f(self, new_id);
1242 self.current_trait_ref = original_trait_ref;
1243 result
1244 }
1245
e1599b0c 1246 fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
416331ca
XL
1247 let mut self_type_rib = Rib::new(NormalRibKind);
1248
1249 // Plain insert (no renaming, since types are not currently hygienic)
e1599b0c
XL
1250 self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1251 self.ribs[ns].push(self_type_rib);
416331ca 1252 f(self);
e1599b0c 1253 self.ribs[ns].pop();
416331ca
XL
1254 }
1255
e1599b0c
XL
1256 fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1257 self.with_self_rib_ns(TypeNS, self_res, f)
416331ca
XL
1258 }
1259
dfeec247
XL
1260 fn resolve_implementation(
1261 &mut self,
1262 generics: &'ast Generics,
1263 opt_trait_reference: &'ast Option<TraitRef>,
1264 self_type: &'ast Ty,
1265 item_id: NodeId,
74b04a01 1266 impl_items: &'ast [P<AssocItem>],
dfeec247 1267 ) {
416331ca
XL
1268 debug!("resolve_implementation");
1269 // If applicable, create a rib for the type parameters.
e74abb32 1270 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
416331ca
XL
1271 // Dummy self type for better errors if `Self` is used in the trait path.
1272 this.with_self_rib(Res::SelfTy(None, None), |this| {
1273 // Resolve the trait reference, if necessary.
1274 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
f035d41b 1275 let item_def_id = this.r.local_def_id(item_id).to_def_id();
1b1a35ee 1276 this.with_self_rib(Res::SelfTy(trait_id, Some((item_def_id, false))), |this| {
416331ca
XL
1277 if let Some(trait_ref) = opt_trait_reference.as_ref() {
1278 // Resolve type arguments in the trait path.
1279 visit::walk_trait_ref(this, trait_ref);
1280 }
1281 // Resolve the self type.
1282 this.visit_ty(self_type);
1283 // Resolve the generic parameters.
1284 this.visit_generics(generics);
1285 // Resolve the items within the impl.
1286 this.with_current_self_type(self_type, |this| {
e1599b0c
XL
1287 this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1288 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
74b04a01
XL
1289 for item in impl_items {
1290 use crate::ResolutionError::*;
1291 match &item.kind {
3dfed10e 1292 AssocItemKind::Const(_default, _ty, _expr) => {
74b04a01
XL
1293 debug!("resolve_implementation AssocItemKind::Const",);
1294 // If this is a trait impl, ensure the const
1295 // exists in trait
1296 this.check_trait_item(
1297 item.ident,
1298 ValueNS,
1299 item.span,
1300 |n, s| ConstNotMemberOfTrait(n, s),
1301 );
1302
3dfed10e
XL
1303 // We allow arbitrary const expressions inside of associated consts,
1304 // even if they are potentially not const evaluatable.
1305 //
1306 // Type parameters can already be used and as associated consts are
1307 // not used as part of the type system, this is far less surprising.
29967ef6
XL
1308 this.with_constant_rib(
1309 IsRepeatExpr::No,
1310 true,
5869c6ff 1311 None,
29967ef6
XL
1312 |this| {
1313 visit::walk_assoc_item(
1314 this,
1315 item,
1316 AssocCtxt::Impl,
1317 )
1318 },
1319 );
74b04a01 1320 }
5869c6ff 1321 AssocItemKind::Fn(box FnKind(.., generics, _)) => {
74b04a01
XL
1322 // We also need a new scope for the impl item type parameters.
1323 this.with_generic_param_rib(
1324 generics,
1325 AssocItemRibKind,
1326 |this| {
1327 // If this is a trait impl, ensure the method
1328 // exists in trait
1329 this.check_trait_item(
1330 item.ident,
1331 ValueNS,
1332 item.span,
1333 |n, s| MethodNotMemberOfTrait(n, s),
1334 );
1335
1336 visit::walk_assoc_item(
1337 this,
1338 item,
1339 AssocCtxt::Impl,
1340 )
1341 },
1342 );
1343 }
5869c6ff
XL
1344 AssocItemKind::TyAlias(box TyAliasKind(
1345 _,
1346 generics,
1347 _,
1348 _,
1349 )) => {
74b04a01
XL
1350 // We also need a new scope for the impl item type parameters.
1351 this.with_generic_param_rib(
1352 generics,
1353 AssocItemRibKind,
1354 |this| {
1355 // If this is a trait impl, ensure the type
1356 // exists in trait
1357 this.check_trait_item(
1358 item.ident,
1359 TypeNS,
1360 item.span,
1361 |n, s| TypeNotMemberOfTrait(n, s),
1362 );
1363
1364 visit::walk_assoc_item(
1365 this,
1366 item,
1367 AssocCtxt::Impl,
1368 )
1369 },
1370 );
1371 }
ba9703b0 1372 AssocItemKind::MacCall(_) => {
74b04a01 1373 panic!("unexpanded macro in resolve!")
416331ca 1374 }
74b04a01 1375 }
416331ca
XL
1376 }
1377 });
1378 });
1379 });
1380 });
1381 });
1382 });
1383 }
1384
1385 fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
dfeec247 1386 where
f9f354fc 1387 F: FnOnce(Symbol, &str) -> ResolutionError<'_>,
416331ca
XL
1388 {
1389 // If there is a TraitRef in scope for an impl, then the method must be in the
1390 // trait.
1391 if let Some((module, _)) = self.current_trait_ref {
dfeec247
XL
1392 if self
1393 .r
1394 .resolve_ident_in_module(
1395 ModuleOrUniformRoot::Module(module),
1396 ident,
1397 ns,
1398 &self.parent_scope,
1399 false,
1400 span,
1401 )
1402 .is_err()
1403 {
416331ca 1404 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
3dfed10e 1405 self.report_error(span, err(ident.name, &path_names_to_string(path)));
416331ca
XL
1406 }
1407 }
1408 }
1409
dfeec247 1410 fn resolve_params(&mut self, params: &'ast [Param]) {
e1599b0c
XL
1411 let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1412 for Param { pat, ty, .. } in params {
1413 self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1414 self.visit_ty(ty);
1415 debug!("(resolving function / closure) recorded parameter");
1416 }
1417 }
1418
dfeec247 1419 fn resolve_local(&mut self, local: &'ast Local) {
3dfed10e 1420 debug!("resolving local ({:?})", local);
416331ca
XL
1421 // Resolve the type.
1422 walk_list!(self, visit_ty, &local.ty);
1423
1424 // Resolve the initializer.
1425 walk_list!(self, visit_expr, &local.init);
1426
1427 // Resolve the pattern.
e1599b0c 1428 self.resolve_pattern_top(&local.pat, PatternSource::Let);
416331ca
XL
1429 }
1430
e1599b0c
XL
1431 /// build a map from pattern identifiers to binding-info's.
1432 /// this is done hygienically. This could arise for a macro
1433 /// that expands into an or-pattern where one 'x' was from the
1434 /// user and one 'x' came from the macro.
416331ca
XL
1435 fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1436 let mut binding_map = FxHashMap::default();
1437
1438 pat.walk(&mut |pat| {
e74abb32 1439 match pat.kind {
e1599b0c
XL
1440 PatKind::Ident(binding_mode, ident, ref sub_pat)
1441 if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1442 {
1443 binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
416331ca 1444 }
e1599b0c
XL
1445 PatKind::Or(ref ps) => {
1446 // Check the consistency of this or-pattern and
1447 // then add all bindings to the larger map.
1448 for bm in self.check_consistent_bindings(ps) {
1449 binding_map.extend(bm);
1450 }
1451 return false;
1452 }
1453 _ => {}
416331ca 1454 }
e1599b0c 1455
416331ca
XL
1456 true
1457 });
1458
1459 binding_map
1460 }
1461
e1599b0c 1462 fn is_base_res_local(&self, nid: NodeId) -> bool {
29967ef6 1463 matches!(self.r.partial_res_map.get(&nid).map(|res| res.base_res()), Some(Res::Local(..)))
e1599b0c
XL
1464 }
1465
1466 /// Checks that all of the arms in an or-pattern have exactly the
1467 /// same set of bindings, with the same binding modes for each.
1468 fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
416331ca
XL
1469 let mut missing_vars = FxHashMap::default();
1470 let mut inconsistent_vars = FxHashMap::default();
1471
e1599b0c 1472 // 1) Compute the binding maps of all arms.
dfeec247 1473 let maps = pats.iter().map(|pat| self.binding_mode_map(pat)).collect::<Vec<_>>();
e1599b0c
XL
1474
1475 // 2) Record any missing bindings or binding mode inconsistencies.
1476 for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1477 // Check against all arms except for the same pattern which is always self-consistent.
dfeec247
XL
1478 let inners = pats
1479 .iter()
1480 .enumerate()
e1599b0c
XL
1481 .filter(|(_, pat)| pat.id != pat_outer.id)
1482 .flat_map(|(idx, _)| maps[idx].iter())
1483 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1484
1485 for (name, info, &binding_inner) in inners {
1486 match info {
dfeec247
XL
1487 None => {
1488 // The inner binding is missing in the outer.
1489 let binding_error =
1490 missing_vars.entry(name).or_insert_with(|| BindingError {
e1599b0c
XL
1491 name,
1492 origin: BTreeSet::new(),
1493 target: BTreeSet::new(),
1494 could_be_path: name.as_str().starts_with(char::is_uppercase),
1495 });
1496 binding_error.origin.insert(binding_inner.span);
1497 binding_error.target.insert(pat_outer.span);
1498 }
1499 Some(binding_outer) => {
1500 if binding_outer.binding_mode != binding_inner.binding_mode {
1501 // The binding modes in the outer and inner bindings differ.
1502 inconsistent_vars
1503 .entry(name)
1504 .or_insert((binding_inner.span, binding_outer.span));
416331ca
XL
1505 }
1506 }
1507 }
1508 }
1509 }
1510
e1599b0c 1511 // 3) Report all missing variables we found.
416331ca 1512 let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
f035d41b
XL
1513 missing_vars.sort_by_key(|(sym, _err)| sym.as_str());
1514
416331ca
XL
1515 for (name, mut v) in missing_vars {
1516 if inconsistent_vars.contains_key(name) {
1517 v.could_be_path = false;
1518 }
3dfed10e 1519 self.report_error(
416331ca 1520 *v.origin.iter().next().unwrap(),
dfeec247
XL
1521 ResolutionError::VariableNotBoundInPattern(v),
1522 );
416331ca
XL
1523 }
1524
e1599b0c 1525 // 4) Report all inconsistencies in binding modes we found.
416331ca
XL
1526 let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1527 inconsistent_vars.sort();
1528 for (name, v) in inconsistent_vars {
3dfed10e 1529 self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
416331ca 1530 }
416331ca 1531
e1599b0c
XL
1532 // 5) Finally bubble up all the binding maps.
1533 maps
416331ca
XL
1534 }
1535
e1599b0c 1536 /// Check the consistency of the outermost or-patterns.
dfeec247 1537 fn check_consistent_bindings_top(&mut self, pat: &'ast Pat) {
e74abb32 1538 pat.walk(&mut |pat| match pat.kind {
e1599b0c
XL
1539 PatKind::Or(ref ps) => {
1540 self.check_consistent_bindings(ps);
1541 false
dfeec247 1542 }
e1599b0c
XL
1543 _ => true,
1544 })
416331ca
XL
1545 }
1546
dfeec247 1547 fn resolve_arm(&mut self, arm: &'ast Arm) {
e1599b0c
XL
1548 self.with_rib(ValueNS, NormalRibKind, |this| {
1549 this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1550 walk_list!(this, visit_expr, &arm.guard);
1551 this.visit_expr(&arm.body);
1552 });
416331ca
XL
1553 }
1554
e1599b0c 1555 /// Arising from `source`, resolve a top level pattern.
dfeec247 1556 fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
e1599b0c
XL
1557 let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1558 self.resolve_pattern(pat, pat_src, &mut bindings);
1559 }
416331ca 1560
e1599b0c
XL
1561 fn resolve_pattern(
1562 &mut self,
dfeec247 1563 pat: &'ast Pat,
e1599b0c
XL
1564 pat_src: PatternSource,
1565 bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1566 ) {
1567 self.resolve_pattern_inner(pat, pat_src, bindings);
1568 // This has to happen *after* we determine which pat_idents are variants:
1569 self.check_consistent_bindings_top(pat);
1570 visit::walk_pat(self, pat);
416331ca
XL
1571 }
1572
e1599b0c
XL
1573 /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1574 ///
1575 /// ### `bindings`
1576 ///
1577 /// A stack of sets of bindings accumulated.
1578 ///
1579 /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1580 /// be interpreted as re-binding an already bound binding. This results in an error.
1581 /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1582 /// in reusing this binding rather than creating a fresh one.
1583 ///
1584 /// When called at the top level, the stack must have a single element
1585 /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1586 /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1587 /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1588 /// When each `p_i` has been dealt with, the top set is merged with its parent.
1589 /// When a whole or-pattern has been dealt with, the thing happens.
1590 ///
1591 /// See the implementation and `fresh_binding` for more details.
1592 fn resolve_pattern_inner(
1593 &mut self,
1594 pat: &Pat,
1595 pat_src: PatternSource,
1596 bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1597 ) {
416331ca 1598 // Visit all direct subpatterns of this pattern.
416331ca 1599 pat.walk(&mut |pat| {
e74abb32
XL
1600 debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1601 match pat.kind {
e1599b0c
XL
1602 PatKind::Ident(bmode, ident, ref sub) => {
1603 // First try to resolve the identifier as some existing entity,
1604 // then fall back to a fresh binding.
1605 let has_sub = sub.is_some();
dfeec247
XL
1606 let res = self
1607 .try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
e1599b0c 1608 .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
416331ca 1609 self.r.record_partial_res(pat.id, PartialRes::new(res));
cdc7bbd5 1610 self.r.record_pat_span(pat.id, pat.span);
416331ca 1611 }
1b1a35ee
XL
1612 PatKind::TupleStruct(ref path, ref sub_patterns) => {
1613 self.smart_resolve_path(
1614 pat.id,
1615 None,
1616 path,
1617 PathSource::TupleStruct(
1618 pat.span,
1619 self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
1620 ),
1621 );
416331ca 1622 }
416331ca
XL
1623 PatKind::Path(ref qself, ref path) => {
1624 self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1625 }
416331ca
XL
1626 PatKind::Struct(ref path, ..) => {
1627 self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1628 }
e1599b0c
XL
1629 PatKind::Or(ref ps) => {
1630 // Add a new set of bindings to the stack. `Or` here records that when a
1631 // binding already exists in this set, it should not result in an error because
1632 // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1633 bindings.push((PatBoundCtx::Or, Default::default()));
1634 for p in ps {
1635 // Now we need to switch back to a product context so that each
1636 // part of the or-pattern internally rejects already bound names.
1637 // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1638 bindings.push((PatBoundCtx::Product, Default::default()));
1639 self.resolve_pattern_inner(p, pat_src, bindings);
1640 // Move up the non-overlapping bindings to the or-pattern.
1641 // Existing bindings just get "merged".
1642 let collected = bindings.pop().unwrap().1;
1643 bindings.last_mut().unwrap().1.extend(collected);
1644 }
1645 // This or-pattern itself can itself be part of a product,
1646 // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1647 // Both cases bind `a` again in a product pattern and must be rejected.
1648 let collected = bindings.pop().unwrap().1;
1649 bindings.last_mut().unwrap().1.extend(collected);
1650
1651 // Prevent visiting `ps` as we've already done so above.
1652 return false;
1653 }
416331ca
XL
1654 _ => {}
1655 }
1656 true
1657 });
e1599b0c 1658 }
416331ca 1659
e1599b0c
XL
1660 fn fresh_binding(
1661 &mut self,
1662 ident: Ident,
1663 pat_id: NodeId,
1664 pat_src: PatternSource,
1665 bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1666 ) -> Res {
1667 // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1668 // (We must not add it if it's in the bindings map because that breaks the assumptions
1669 // later passes make about or-patterns.)
ba9703b0 1670 let ident = ident.normalize_to_macro_rules();
e1599b0c 1671
60c5eb7d
XL
1672 let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1673 // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1674 let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1675 // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1676 // This is *required* for consistency which is checked later.
1677 let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
e1599b0c
XL
1678
1679 if already_bound_and {
1680 // Overlap in a product pattern somewhere; report an error.
1681 use ResolutionError::*;
1682 let error = match pat_src {
1683 // `fn f(a: u8, a: u8)`:
1684 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1685 // `Variant(a, a)`:
1686 _ => IdentifierBoundMoreThanOnceInSamePattern,
1687 };
3dfed10e 1688 self.report_error(ident.span, error(ident.name));
e1599b0c
XL
1689 }
1690
1691 // Record as bound if it's valid:
5869c6ff 1692 let ident_valid = ident.name != kw::Empty;
e1599b0c
XL
1693 if ident_valid {
1694 bindings.last_mut().unwrap().1.insert(ident);
1695 }
1696
1697 if already_bound_or {
1698 // `Variant1(a) | Variant2(a)`, ok
1699 // Reuse definition from the first `a`.
1700 self.innermost_rib_bindings(ValueNS)[&ident]
1701 } else {
1702 let res = Res::Local(pat_id);
1703 if ident_valid {
1704 // A completely fresh binding add to the set if it's valid.
1705 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1706 }
1707 res
1708 }
1709 }
1710
1711 fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1712 &mut self.ribs[ns].last_mut().unwrap().bindings
1713 }
1714
1715 fn try_resolve_as_non_binding(
1716 &mut self,
1717 pat_src: PatternSource,
1718 pat: &Pat,
1719 bm: BindingMode,
1720 ident: Ident,
1721 has_sub: bool,
1722 ) -> Option<Res> {
e1599b0c
XL
1723 // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1724 // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1725 // also be interpreted as a path to e.g. a constant, variant, etc.
dfeec247 1726 let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Not);
e1599b0c 1727
ba9703b0
XL
1728 let ls_binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?;
1729 let (res, binding) = match ls_binding {
1730 LexicalScopeBinding::Item(binding)
1731 if is_syntactic_ambiguity && binding.is_ambiguity() =>
dfeec247 1732 {
ba9703b0
XL
1733 // For ambiguous bindings we don't know all their definitions and cannot check
1734 // whether they can be shadowed by fresh bindings or not, so force an error.
1735 // issues/33118#issuecomment-233962221 (see below) still applies here,
1736 // but we have to ignore it for backward compatibility.
e1599b0c 1737 self.r.record_use(ident, ValueNS, binding, false);
ba9703b0
XL
1738 return None;
1739 }
1740 LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
1741 LexicalScopeBinding::Res(res) => (res, None),
1742 };
1743
1744 match res {
1745 Res::SelfCtor(_) // See #70549.
1746 | Res::Def(
1747 DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
1748 _,
1749 ) if is_syntactic_ambiguity => {
1750 // Disambiguate in favor of a unit struct/variant or constant pattern.
1751 if let Some(binding) = binding {
1752 self.r.record_use(ident, ValueNS, binding, false);
1753 }
e1599b0c
XL
1754 Some(res)
1755 }
ba9703b0 1756 Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static, _) => {
e1599b0c
XL
1757 // This is unambiguously a fresh binding, either syntactically
1758 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1759 // to something unusable as a pattern (e.g., constructor function),
1760 // but we still conservatively report an error, see
1761 // issues/33118#issuecomment-233962221 for one reason why.
3dfed10e 1762 self.report_error(
e1599b0c
XL
1763 ident.span,
1764 ResolutionError::BindingShadowsSomethingUnacceptable(
1765 pat_src.descr(),
1766 ident.name,
ba9703b0 1767 binding.expect("no binding for a ctor or static"),
e1599b0c
XL
1768 ),
1769 );
1770 None
1771 }
ba9703b0 1772 Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
e1599b0c
XL
1773 // These entities are explicitly allowed to be shadowed by fresh bindings.
1774 None
1775 }
ba9703b0
XL
1776 _ => span_bug!(
1777 ident.span,
1778 "unexpected resolution for an identifier in pattern: {:?}",
1779 res,
1780 ),
e1599b0c 1781 }
416331ca
XL
1782 }
1783
1784 // High-level and context dependent path resolution routine.
1785 // Resolves the path and records the resolution into definition map.
1786 // If resolution fails tries several techniques to find likely
1787 // resolution candidates, suggest imports or other help, and report
1788 // errors in user friendly way.
dfeec247
XL
1789 fn smart_resolve_path(
1790 &mut self,
1791 id: NodeId,
1792 qself: Option<&QSelf>,
1793 path: &Path,
1794 source: PathSource<'ast>,
1795 ) {
416331ca
XL
1796 self.smart_resolve_path_fragment(
1797 id,
1798 qself,
1799 &Segment::from_path(path),
1800 path.span,
1801 source,
1802 CrateLint::SimplePath(id),
1803 );
1804 }
1805
dfeec247
XL
1806 fn smart_resolve_path_fragment(
1807 &mut self,
1808 id: NodeId,
1809 qself: Option<&QSelf>,
1810 path: &[Segment],
1811 span: Span,
1812 source: PathSource<'ast>,
1813 crate_lint: CrateLint,
1814 ) -> PartialRes {
3dfed10e 1815 tracing::debug!(
5869c6ff 1816 "smart_resolve_path_fragment(id={:?}, qself={:?}, path={:?})",
3dfed10e
XL
1817 id,
1818 qself,
1819 path
1820 );
416331ca 1821 let ns = source.namespace();
416331ca
XL
1822
1823 let report_errors = |this: &mut Self, res: Option<Res>| {
3dfed10e
XL
1824 if this.should_report_errs() {
1825 let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1826
5869c6ff 1827 let def_id = this.parent_scope.module.nearest_parent_mod;
3dfed10e
XL
1828 let instead = res.is_some();
1829 let suggestion =
1830 if res.is_none() { this.report_missing_type_error(path) } else { None };
1831
1832 this.r.use_injections.push(UseError {
1833 err,
1834 candidates,
1835 def_id,
1836 instead,
1837 suggestion,
1838 });
1839 }
f035d41b 1840
416331ca
XL
1841 PartialRes::new(Res::Err)
1842 };
1843
f035d41b
XL
1844 // For paths originating from calls (like in `HashMap::new()`), tries
1845 // to enrich the plain `failed to resolve: ...` message with hints
1846 // about possible missing imports.
1847 //
1848 // Similar thing, for types, happens in `report_errors` above.
1849 let report_errors_for_call = |this: &mut Self, parent_err: Spanned<ResolutionError<'a>>| {
1850 if !source.is_call() {
1851 return Some(parent_err);
1852 }
1853
1854 // Before we start looking for candidates, we have to get our hands
1855 // on the type user is trying to perform invocation on; basically:
5869c6ff
XL
1856 // we're transforming `HashMap::new` into just `HashMap`.
1857 let path = match path.split_last() {
1858 Some((_, path)) if !path.is_empty() => path,
1859 _ => return Some(parent_err),
f035d41b
XL
1860 };
1861
1862 let (mut err, candidates) =
1863 this.smart_resolve_report_errors(path, span, PathSource::Type, None);
1864
1865 if candidates.is_empty() {
1866 err.cancel();
1867 return Some(parent_err);
1868 }
1869
1870 // There are two different error messages user might receive at
1871 // this point:
1872 // - E0412 cannot find type `{}` in this scope
1873 // - E0433 failed to resolve: use of undeclared type or module `{}`
1874 //
1875 // The first one is emitted for paths in type-position, and the
1876 // latter one - for paths in expression-position.
1877 //
1878 // Thus (since we're in expression-position at this point), not to
1879 // confuse the user, we want to keep the *message* from E0432 (so
1880 // `parent_err`), but we want *hints* from E0412 (so `err`).
1881 //
1882 // And that's what happens below - we're just mixing both messages
1883 // into a single one.
1884 let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);
1885
1886 parent_err.cancel();
1887
1888 err.message = take(&mut parent_err.message);
1889 err.code = take(&mut parent_err.code);
1890 err.children = take(&mut parent_err.children);
1891
1892 drop(parent_err);
1893
5869c6ff 1894 let def_id = this.parent_scope.module.nearest_parent_mod;
f035d41b 1895
3dfed10e
XL
1896 if this.should_report_errs() {
1897 this.r.use_injections.push(UseError {
1898 err,
1899 candidates,
1900 def_id,
1901 instead: false,
1902 suggestion: None,
1903 });
1904 } else {
1905 err.cancel();
1906 }
f035d41b
XL
1907
1908 // We don't return `Some(parent_err)` here, because the error will
1909 // be already printed as part of the `use` injections
1910 None
1911 };
1912
416331ca
XL
1913 let partial_res = match self.resolve_qpath_anywhere(
1914 id,
1915 qself,
1916 path,
1917 ns,
1918 span,
1919 source.defer_to_typeck(),
1920 crate_lint,
1921 ) {
f035d41b 1922 Ok(Some(partial_res)) if partial_res.unresolved_segments() == 0 => {
fc512014
XL
1923 if source.is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err
1924 {
416331ca
XL
1925 partial_res
1926 } else {
60c5eb7d 1927 report_errors(self, Some(partial_res.base_res()))
416331ca
XL
1928 }
1929 }
f035d41b
XL
1930
1931 Ok(Some(partial_res)) if source.defer_to_typeck() => {
416331ca
XL
1932 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1933 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1934 // it needs to be added to the trait map.
1935 if ns == ValueNS {
1936 let item_name = path.last().unwrap().ident;
5869c6ff 1937 let traits = self.traits_in_scope(item_name, ns);
416331ca
XL
1938 self.r.trait_map.insert(id, traits);
1939 }
1940
6a06907d 1941 if PrimTy::from_name(path[0].ident.name).is_some() {
fc512014
XL
1942 let mut std_path = Vec::with_capacity(1 + path.len());
1943
1944 std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
1945 std_path.extend(path);
416331ca 1946 if let PathResult::Module(_) | PathResult::NonModule(_) =
f035d41b 1947 self.resolve_path(&std_path, Some(ns), false, span, CrateLint::No)
dfeec247 1948 {
f035d41b 1949 // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
dfeec247 1950 let item_span =
5869c6ff 1951 path.iter().last().map_or(span, |segment| segment.ident.span);
f035d41b 1952
416331ca
XL
1953 let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1954 hm.insert(item_span, span);
416331ca
XL
1955 hm.insert(span, span);
1956 }
1957 }
f035d41b 1958
416331ca
XL
1959 partial_res
1960 }
f035d41b
XL
1961
1962 Err(err) => {
1963 if let Some(err) = report_errors_for_call(self, err) {
3dfed10e 1964 self.report_error(err.span, err.node);
f035d41b
XL
1965 }
1966
1967 PartialRes::new(Res::Err)
1968 }
1969
dfeec247 1970 _ => report_errors(self, None),
416331ca
XL
1971 };
1972
5869c6ff 1973 if !matches!(source, PathSource::TraitItem(..)) {
416331ca
XL
1974 // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1975 self.r.record_partial_res(id, partial_res);
1976 }
f035d41b 1977
416331ca
XL
1978 partial_res
1979 }
1980
1981 fn self_type_is_available(&mut self, span: Span) -> bool {
1982 let binding = self.resolve_ident_in_lexical_scope(
e1599b0c 1983 Ident::with_dummy_span(kw::SelfUpper),
416331ca
XL
1984 TypeNS,
1985 None,
1986 span,
1987 );
1988 if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1989 }
1990
1991 fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1992 let ident = Ident::new(kw::SelfLower, self_span);
1993 let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1994 if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1995 }
1996
3dfed10e
XL
1997 /// A wrapper around [`Resolver::report_error`].
1998 ///
1999 /// This doesn't emit errors for function bodies if this is rustdoc.
2000 fn report_error(&self, span: Span, resolution_error: ResolutionError<'_>) {
2001 if self.should_report_errs() {
2002 self.r.report_error(span, resolution_error);
2003 }
2004 }
2005
2006 #[inline]
2007 /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items.
2008 fn should_report_errs(&self) -> bool {
2009 !(self.r.session.opts.actually_rustdoc && self.in_func_body)
2010 }
2011
416331ca
XL
2012 // Resolve in alternative namespaces if resolution in the primary namespace fails.
2013 fn resolve_qpath_anywhere(
2014 &mut self,
2015 id: NodeId,
2016 qself: Option<&QSelf>,
2017 path: &[Segment],
2018 primary_ns: Namespace,
2019 span: Span,
2020 defer_to_typeck: bool,
2021 crate_lint: CrateLint,
f035d41b 2022 ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
416331ca 2023 let mut fin_res = None;
f035d41b 2024
fc512014 2025 for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
416331ca 2026 if i == 0 || ns != primary_ns {
f035d41b 2027 match self.resolve_qpath(id, qself, path, ns, span, crate_lint)? {
dfeec247
XL
2028 Some(partial_res)
2029 if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
2030 {
f035d41b 2031 return Ok(Some(partial_res));
dfeec247
XL
2032 }
2033 partial_res => {
2034 if fin_res.is_none() {
fc512014 2035 fin_res = partial_res;
dfeec247
XL
2036 }
2037 }
416331ca
XL
2038 }
2039 }
2040 }
2041
416331ca 2042 assert!(primary_ns != MacroNS);
f035d41b 2043
416331ca
XL
2044 if qself.is_none() {
2045 let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1b1a35ee 2046 let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
dfeec247
XL
2047 if let Ok((_, res)) =
2048 self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false)
2049 {
f035d41b 2050 return Ok(Some(PartialRes::new(res)));
416331ca
XL
2051 }
2052 }
2053
f035d41b 2054 Ok(fin_res)
416331ca
XL
2055 }
2056
2057 /// Handles paths that may refer to associated items.
2058 fn resolve_qpath(
2059 &mut self,
2060 id: NodeId,
2061 qself: Option<&QSelf>,
2062 path: &[Segment],
2063 ns: Namespace,
2064 span: Span,
2065 crate_lint: CrateLint,
f035d41b 2066 ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'a>>> {
416331ca
XL
2067 debug!(
2068 "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
dfeec247 2069 id, qself, path, ns, span,
416331ca
XL
2070 );
2071
2072 if let Some(qself) = qself {
2073 if qself.position == 0 {
2074 // This is a case like `<T>::B`, where there is no
2075 // trait to resolve. In that case, we leave the `B`
2076 // segment to be resolved by type-check.
f035d41b 2077 return Ok(Some(PartialRes::with_unresolved_segments(
dfeec247
XL
2078 Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)),
2079 path.len(),
f035d41b 2080 )));
416331ca
XL
2081 }
2082
2083 // Make sure `A::B` in `<T as A::B>::C` is a trait item.
2084 //
2085 // Currently, `path` names the full item (`A::B::C`, in
2086 // our example). so we extract the prefix of that that is
2087 // the trait (the slice upto and including
2088 // `qself.position`). And then we recursively resolve that,
2089 // but with `qself` set to `None`.
2090 //
2091 // However, setting `qself` to none (but not changing the
2092 // span) loses the information about where this path
2093 // *actually* appears, so for the purposes of the crate
2094 // lint we pass along information that this is the trait
2095 // name from a fully qualified path, and this also
2096 // contains the full span (the `CrateLint::QPathTrait`).
2097 let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
2098 let partial_res = self.smart_resolve_path_fragment(
2099 id,
2100 None,
2101 &path[..=qself.position],
2102 span,
2103 PathSource::TraitItem(ns),
dfeec247 2104 CrateLint::QPathTrait { qpath_id: id, qpath_span: qself.path_span },
416331ca
XL
2105 );
2106
2107 // The remaining segments (the `C` in our example) will
2108 // have to be resolved by type-check, since that requires doing
2109 // trait resolution.
f035d41b 2110 return Ok(Some(PartialRes::with_unresolved_segments(
416331ca
XL
2111 partial_res.base_res(),
2112 partial_res.unresolved_segments() + path.len() - qself.position - 1,
f035d41b 2113 )));
416331ca
XL
2114 }
2115
2116 let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
2117 PathResult::NonModule(path_res) => path_res,
2118 PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
2119 PartialRes::new(module.res().unwrap())
2120 }
2121 // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
2122 // don't report an error right away, but try to fallback to a primitive type.
2123 // So, we are still able to successfully resolve something like
2124 //
2125 // use std::u8; // bring module u8 in scope
2126 // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
2127 // u8::max_value() // OK, resolves to associated function <u8>::max_value,
2128 // // not to non-existent std::u8::max_value
2129 // }
2130 //
2131 // Such behavior is required for backward compatibility.
2132 // The same fallback is used when `a` resolves to nothing.
dfeec247
XL
2133 PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
2134 if (ns == TypeNS || path.len() > 1)
6a06907d 2135 && PrimTy::from_name(path[0].ident.name).is_some() =>
dfeec247 2136 {
6a06907d 2137 let prim = PrimTy::from_name(path[0].ident.name).unwrap();
416331ca
XL
2138 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
2139 }
dfeec247
XL
2140 PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2141 PartialRes::new(module.res().unwrap())
2142 }
416331ca 2143 PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
f035d41b 2144 return Err(respan(span, ResolutionError::FailedToResolve { label, suggestion }));
416331ca 2145 }
f035d41b
XL
2146 PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
2147 PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
416331ca
XL
2148 };
2149
dfeec247
XL
2150 if path.len() > 1
2151 && result.base_res() != Res::Err
2152 && path[0].ident.name != kw::PathRoot
2153 && path[0].ident.name != kw::DollarCrate
2154 {
416331ca
XL
2155 let unqualified_result = {
2156 match self.resolve_path(
2157 &[*path.last().unwrap()],
2158 Some(ns),
2159 false,
2160 span,
2161 CrateLint::No,
2162 ) {
2163 PathResult::NonModule(path_res) => path_res.base_res(),
dfeec247
XL
2164 PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
2165 module.res().unwrap()
2166 }
f035d41b 2167 _ => return Ok(Some(result)),
416331ca
XL
2168 }
2169 };
2170 if result.base_res() == unqualified_result {
2171 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
e74abb32 2172 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
416331ca
XL
2173 }
2174 }
2175
f035d41b 2176 Ok(Some(result))
416331ca
XL
2177 }
2178
e1599b0c 2179 fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
416331ca 2180 if let Some(label) = label {
60c5eb7d
XL
2181 if label.ident.as_str().as_bytes()[1] != b'_' {
2182 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
2183 }
e1599b0c 2184 self.with_label_rib(NormalRibKind, |this| {
ba9703b0 2185 let ident = label.ident.normalize_to_macro_rules();
416331ca
XL
2186 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
2187 f(this);
2188 });
2189 } else {
2190 f(self);
2191 }
2192 }
2193
dfeec247 2194 fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
416331ca
XL
2195 self.with_resolved_label(label, id, |this| this.visit_block(block));
2196 }
2197
dfeec247 2198 fn resolve_block(&mut self, block: &'ast Block) {
e1599b0c
XL
2199 debug!("(resolving block) entering block");
2200 // Move down in the graph, if there's an anonymous module rooted here.
2201 let orig_module = self.parent_scope.module;
2202 let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
2203
2204 let mut num_macro_definition_ribs = 0;
2205 if let Some(anonymous_module) = anonymous_module {
2206 debug!("(resolving block) found anonymous module, moving down");
2207 self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2208 self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
2209 self.parent_scope.module = anonymous_module;
2210 } else {
2211 self.ribs[ValueNS].push(Rib::new(NormalRibKind));
2212 }
2213
2214 // Descend into the block.
2215 for stmt in &block.stmts {
e74abb32
XL
2216 if let StmtKind::Item(ref item) = stmt.kind {
2217 if let ItemKind::MacroDef(..) = item.kind {
e1599b0c 2218 num_macro_definition_ribs += 1;
f035d41b 2219 let res = self.r.local_def_id(item.id).to_def_id();
e1599b0c
XL
2220 self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
2221 self.label_ribs.push(Rib::new(MacroDefinition(res)));
2222 }
2223 }
2224
2225 self.visit_stmt(stmt);
2226 }
2227
2228 // Move back up.
2229 self.parent_scope.module = orig_module;
dfeec247 2230 for _ in 0..num_macro_definition_ribs {
e1599b0c
XL
2231 self.ribs[ValueNS].pop();
2232 self.label_ribs.pop();
2233 }
2234 self.ribs[ValueNS].pop();
2235 if anonymous_module.is_some() {
2236 self.ribs[TypeNS].pop();
2237 }
2238 debug!("(resolving block) leaving block");
2239 }
2240
29967ef6
XL
2241 fn resolve_anon_const(&mut self, constant: &'ast AnonConst, is_repeat: IsRepeatExpr) {
2242 debug!("resolve_anon_const {:?} is_repeat: {:?}", constant, is_repeat);
2243 self.with_constant_rib(
2244 is_repeat,
2245 constant.value.is_potential_trivial_const_param(),
5869c6ff 2246 None,
29967ef6
XL
2247 |this| {
2248 visit::walk_anon_const(this, constant);
2249 },
2250 );
2251 }
2252
dfeec247 2253 fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
416331ca
XL
2254 // First, record candidate traits for this expression if it could
2255 // result in the invocation of a method call.
2256
2257 self.record_candidate_traits_for_expr_if_necessary(expr);
2258
2259 // Next, resolve the node.
e74abb32 2260 match expr.kind {
416331ca
XL
2261 ExprKind::Path(ref qself, ref path) => {
2262 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
2263 visit::walk_expr(self, expr);
2264 }
2265
6a06907d
XL
2266 ExprKind::Struct(ref se) => {
2267 self.smart_resolve_path(expr.id, None, &se.path, PathSource::Struct);
416331ca
XL
2268 visit::walk_expr(self, expr);
2269 }
2270
2271 ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
f035d41b
XL
2272 if let Some(node_id) = self.resolve_label(label.ident) {
2273 // Since this res is a label, it is never read.
2274 self.r.label_res_map.insert(expr.id, node_id);
2275 self.diagnostic_metadata.unused_labels.remove(&node_id);
416331ca
XL
2276 }
2277
2278 // visit `break` argument if any
2279 visit::walk_expr(self, expr);
2280 }
2281
5869c6ff
XL
2282 ExprKind::Break(None, Some(ref e)) => {
2283 // We use this instead of `visit::walk_expr` to keep the parent expr around for
2284 // better diagnostics.
2285 self.resolve_expr(e, Some(&expr));
2286 }
2287
e1599b0c 2288 ExprKind::Let(ref pat, ref scrutinee) => {
416331ca 2289 self.visit_expr(scrutinee);
e1599b0c 2290 self.resolve_pattern_top(pat, PatternSource::Let);
416331ca
XL
2291 }
2292
2293 ExprKind::If(ref cond, ref then, ref opt_else) => {
e1599b0c 2294 self.with_rib(ValueNS, NormalRibKind, |this| {
1b1a35ee 2295 let old = this.diagnostic_metadata.in_if_condition.replace(cond);
e1599b0c 2296 this.visit_expr(cond);
1b1a35ee 2297 this.diagnostic_metadata.in_if_condition = old;
e1599b0c
XL
2298 this.visit_block(then);
2299 });
f9f354fc
XL
2300 if let Some(expr) = opt_else {
2301 self.visit_expr(expr);
2302 }
416331ca
XL
2303 }
2304
2305 ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
2306
e1599b0c 2307 ExprKind::While(ref cond, ref block, label) => {
416331ca 2308 self.with_resolved_label(label, expr.id, |this| {
e1599b0c
XL
2309 this.with_rib(ValueNS, NormalRibKind, |this| {
2310 this.visit_expr(cond);
2311 this.visit_block(block);
2312 })
416331ca
XL
2313 });
2314 }
2315
e1599b0c
XL
2316 ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
2317 self.visit_expr(iter_expr);
2318 self.with_rib(ValueNS, NormalRibKind, |this| {
2319 this.resolve_pattern_top(pat, PatternSource::For);
2320 this.resolve_labeled_block(label, expr.id, block);
2321 });
416331ca
XL
2322 }
2323
2324 ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
2325
2326 // Equivalent to `visit::walk_expr` + passing some context to children.
2327 ExprKind::Field(ref subexpression, _) => {
2328 self.resolve_expr(subexpression, Some(expr));
2329 }
f035d41b 2330 ExprKind::MethodCall(ref segment, ref arguments, _) => {
416331ca
XL
2331 let mut arguments = arguments.iter();
2332 self.resolve_expr(arguments.next().unwrap(), Some(expr));
2333 for argument in arguments {
2334 self.resolve_expr(argument, None);
2335 }
2336 self.visit_path_segment(expr.span, segment);
2337 }
2338
2339 ExprKind::Call(ref callee, ref arguments) => {
2340 self.resolve_expr(callee, Some(expr));
cdc7bbd5 2341 let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
6a06907d
XL
2342 for (idx, argument) in arguments.iter().enumerate() {
2343 // Constant arguments need to be treated as AnonConst since
2344 // that is how they will be later lowered to HIR.
2345 if const_args.contains(&idx) {
2346 self.with_constant_rib(
2347 IsRepeatExpr::No,
2348 argument.is_potential_trivial_const_param(),
2349 None,
2350 |this| {
2351 this.resolve_expr(argument, None);
2352 },
2353 );
2354 } else {
2355 self.resolve_expr(argument, None);
2356 }
416331ca
XL
2357 }
2358 }
3dfed10e
XL
2359 ExprKind::Type(ref type_expr, ref ty) => {
2360 // `ParseSess::type_ascription_path_suggestions` keeps spans of colon tokens in
2361 // type ascription. Here we are trying to retrieve the span of the colon token as
2362 // well, but only if it's written without spaces `expr:Ty` and therefore confusable
2363 // with `expr::Ty`, only in this case it will match the span from
2364 // `type_ascription_path_suggestions`.
2365 self.diagnostic_metadata
2366 .current_type_ascription
2367 .push(type_expr.span.between(ty.span));
416331ca 2368 visit::walk_expr(self, expr);
e74abb32 2369 self.diagnostic_metadata.current_type_ascription.pop();
416331ca
XL
2370 }
2371 // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
2372 // resolve the arguments within the proper scopes so that usages of them inside the
2373 // closure are detected as upvars rather than normal closure arg usages.
74b04a01 2374 ExprKind::Closure(_, Async::Yes { .. }, _, ref fn_decl, ref body, _span) => {
e1599b0c 2375 self.with_rib(ValueNS, NormalRibKind, |this| {
f035d41b
XL
2376 this.with_label_rib(ClosureOrAsyncRibKind, |this| {
2377 // Resolve arguments:
2378 this.resolve_params(&fn_decl.inputs);
2379 // No need to resolve return type --
2380 // the outer closure return type is `FnRetTy::Default`.
e1599b0c 2381
f035d41b
XL
2382 // Now resolve the inner closure
2383 {
2384 // No need to resolve arguments: the inner closure has none.
2385 // Resolve the return type:
2386 visit::walk_fn_ret_ty(this, &fn_decl.output);
2387 // Resolve the body
2388 this.visit_expr(body);
2389 }
2390 })
e1599b0c 2391 });
416331ca 2392 }
f035d41b
XL
2393 ExprKind::Async(..) | ExprKind::Closure(..) => {
2394 self.with_label_rib(ClosureOrAsyncRibKind, |this| visit::walk_expr(this, expr));
2395 }
29967ef6
XL
2396 ExprKind::Repeat(ref elem, ref ct) => {
2397 self.visit_expr(elem);
2398 self.resolve_anon_const(ct, IsRepeatExpr::Yes);
2399 }
416331ca
XL
2400 _ => {
2401 visit::walk_expr(self, expr);
2402 }
2403 }
2404 }
2405
dfeec247 2406 fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
e74abb32 2407 match expr.kind {
416331ca
XL
2408 ExprKind::Field(_, ident) => {
2409 // FIXME(#6890): Even though you can't treat a method like a
2410 // field, we need to add any trait methods we find that match
2411 // the field name so that we can do some nice error reporting
2412 // later on in typeck.
5869c6ff 2413 let traits = self.traits_in_scope(ident, ValueNS);
416331ca
XL
2414 self.r.trait_map.insert(expr.id, traits);
2415 }
2416 ExprKind::MethodCall(ref segment, ..) => {
dfeec247 2417 debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
5869c6ff 2418 let traits = self.traits_in_scope(segment.ident, ValueNS);
416331ca
XL
2419 self.r.trait_map.insert(expr.id, traits);
2420 }
2421 _ => {
2422 // Nothing to do.
2423 }
2424 }
2425 }
2426
5869c6ff
XL
2427 fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
2428 self.r.traits_in_scope(
2429 self.current_trait_ref.as_ref().map(|(module, _)| *module),
2430 &self.parent_scope,
2431 ident.span.ctxt(),
2432 Some((ident.name, ns)),
2433 )
416331ca 2434 }
416331ca
XL
2435}
2436
2437impl<'a> Resolver<'a> {
2438 pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
416331ca
XL
2439 let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2440 visit::walk_crate(&mut late_resolution_visitor, krate);
e74abb32
XL
2441 for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2442 self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
416331ca
XL
2443 }
2444 }
2445}