]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/auto_trait.rs
New upstream version 1.49.0~beta.4+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
CommitLineData
60c5eb7d
XL
1//! Support code for rustdoc and external tools.
2//! You really don't want to be using this unless you need to.
94b46f34
XL
3
4use super::*;
5
9fa01778
XL
6use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7use crate::infer::InferCtxt;
ba9703b0
XL
8use rustc_middle::ty::fold::TypeFolder;
9use rustc_middle::ty::{Region, RegionVid};
94b46f34 10
60c5eb7d
XL
11use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13use std::collections::hash_map::Entry;
14use std::collections::VecDeque;
15
94b46f34
XL
16// FIXME(twk): this is obviously not nice to duplicate like that
17#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
18pub enum RegionTarget<'tcx> {
19 Region(Region<'tcx>),
20 RegionVid(RegionVid),
21}
22
23#[derive(Default, Debug, Clone)]
24pub struct RegionDeps<'tcx> {
25 larger: FxHashSet<RegionTarget<'tcx>>,
26 smaller: FxHashSet<RegionTarget<'tcx>>,
27}
28
29pub enum AutoTraitResult<A> {
30 ExplicitImpl,
31 PositiveImpl(A),
32 NegativeImpl,
33}
34
1b1a35ee 35#[allow(dead_code)]
94b46f34
XL
36impl<A> AutoTraitResult<A> {
37 fn is_auto(&self) -> bool {
38 match *self {
39 AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
40 _ => false,
41 }
42 }
43}
44
45pub struct AutoTraitInfo<'cx> {
46 pub full_user_env: ty::ParamEnv<'cx>,
47 pub region_data: RegionConstraintData<'cx>,
94b46f34
XL
48 pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
49}
50
dc9dc135
XL
51pub struct AutoTraitFinder<'tcx> {
52 tcx: TyCtxt<'tcx>,
94b46f34
XL
53}
54
dc9dc135
XL
55impl<'tcx> AutoTraitFinder<'tcx> {
56 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
94b46f34
XL
57 AutoTraitFinder { tcx }
58 }
59
9fa01778 60 /// Makes a best effort to determine whether and under which conditions an auto trait is
94b46f34
XL
61 /// implemented for a type. For example, if you have
62 ///
63 /// ```
64 /// struct Foo<T> { data: Box<T> }
65 /// ```
0bf4aa26 66 ///
94b46f34
XL
67 /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
68 /// The analysis attempts to account for custom impls as well as other complex cases. This
69 /// result is intended for use by rustdoc and other such consumers.
0bf4aa26 70 ///
94b46f34
XL
71 /// (Note that due to the coinductive nature of Send, the full and correct result is actually
72 /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
73 /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
74 /// But this is often not the best way to present to the user.)
0bf4aa26 75 ///
94b46f34
XL
76 /// Warning: The API should be considered highly unstable, and it may be refactored or removed
77 /// in the future.
78 pub fn find_auto_trait_generics<A>(
79 &self,
48663c56
XL
80 ty: Ty<'tcx>,
81 orig_env: ty::ParamEnv<'tcx>,
94b46f34 82 trait_did: DefId,
dc9dc135 83 auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
94b46f34
XL
84 ) -> AutoTraitResult<A> {
85 let tcx = self.tcx;
94b46f34 86
dfeec247 87 let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
94b46f34
XL
88
89 let trait_pred = ty::Binder::bind(trait_ref);
90
91 let bail_out = tcx.infer_ctxt().enter(|infcx| {
92 let mut selcx = SelectionContext::with_negative(&infcx, true);
93 let result = selcx.select(&Obligation::new(
94 ObligationCause::dummy(),
48663c56 95 orig_env,
94b46f34
XL
96 trait_pred.to_poly_trait_predicate(),
97 ));
0bf4aa26 98
94b46f34 99 match result {
1b1a35ee 100 Ok(Some(ImplSource::UserDefined(_))) => {
94b46f34 101 debug!(
48663c56 102 "find_auto_trait_generics({:?}): \
94b46f34 103 manual impl found, bailing out",
48663c56 104 trait_ref
94b46f34 105 );
0bf4aa26 106 true
94b46f34 107 }
dfeec247 108 _ => false,
0bf4aa26 109 }
94b46f34
XL
110 });
111
112 // If an explicit impl exists, it always takes priority over an auto impl
113 if bail_out {
114 return AutoTraitResult::ExplicitImpl;
115 }
116
ba9703b0 117 tcx.infer_ctxt().enter(|infcx| {
0bf4aa26 118 let mut fresh_preds = FxHashSet::default();
94b46f34
XL
119
120 // Due to the way projections are handled by SelectionContext, we need to run
121 // evaluate_predicates twice: once on the original param env, and once on the result of
122 // the first evaluate_predicates call.
123 //
124 // The problem is this: most of rustc, including SelectionContext and traits::project,
0731742a 125 // are designed to work with a concrete usage of a type (e.g., Vec<u8>
94b46f34
XL
126 // fn<T>() { Vec<T> }. This information will generally never change - given
127 // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
128 // If we're unable to prove that 'T' implements a particular trait, we're done -
129 // there's nothing left to do but error out.
130 //
131 // However, synthesizing an auto trait impl works differently. Here, we start out with
132 // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
133 // with - and progressively discover the conditions we need to fulfill for it to
134 // implement a certain auto trait. This ends up breaking two assumptions made by trait
135 // selection and projection:
136 //
137 // * We can always cache the result of a particular trait selection for the lifetime of
138 // an InfCtxt
139 // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
140 // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
141 //
142 // We fix the first assumption by manually clearing out all of the InferCtxt's caches
143 // in between calls to SelectionContext.select. This allows us to keep all of the
144 // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
145 // them between calls.
146 //
147 // We fix the second assumption by reprocessing the result of our first call to
148 // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
149 // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
150 // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
151 // SelectionContext to return it back to us.
152
153 let (new_env, user_env) = match self.evaluate_predicates(
74b04a01 154 &infcx,
94b46f34
XL
155 trait_did,
156 ty,
48663c56
XL
157 orig_env,
158 orig_env,
94b46f34
XL
159 &mut fresh_preds,
160 false,
161 ) {
162 Some(e) => e,
163 None => return AutoTraitResult::NegativeImpl,
164 };
165
dfeec247
XL
166 let (full_env, full_user_env) = self
167 .evaluate_predicates(
ba9703b0 168 &infcx,
dfeec247
XL
169 trait_did,
170 ty,
171 new_env,
172 user_env,
173 &mut fresh_preds,
174 true,
94b46f34 175 )
dfeec247
XL
176 .unwrap_or_else(|| {
177 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
178 });
94b46f34
XL
179
180 debug!(
48663c56 181 "find_auto_trait_generics({:?}): fulfilling \
94b46f34 182 with {:?}",
48663c56 183 trait_ref, full_env
94b46f34
XL
184 );
185 infcx.clear_caches();
186
187 // At this point, we already have all of the bounds we need. FulfillmentContext is used
188 // to store all of the necessary region/lifetime bounds in the InferContext, as well as
189 // an additional sanity check.
190 let mut fulfill = FulfillmentContext::new();
ba9703b0 191 fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
94b46f34 192 fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
dfeec247 193 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, e)
94b46f34
XL
194 });
195
74b04a01
XL
196 let body_id_map: FxHashMap<_, _> = infcx
197 .inner
198 .borrow()
f9f354fc 199 .region_obligations()
74b04a01
XL
200 .iter()
201 .map(|&(id, _)| (id, vec![]))
202 .collect();
94b46f34 203
48663c56 204 infcx.process_registered_region_obligations(&body_id_map, None, full_env);
94b46f34 205
74b04a01
XL
206 let region_data = infcx
207 .inner
208 .borrow_mut()
209 .unwrap_region_constraints()
210 .region_constraint_data()
211 .clone();
94b46f34
XL
212
213 let vid_to_region = self.map_vid_to_region(&region_data);
214
dfeec247 215 let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
94b46f34 216
ba9703b0
XL
217 AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info))
218 })
94b46f34
XL
219 }
220}
221
dc9dc135 222impl AutoTraitFinder<'tcx> {
60c5eb7d
XL
223 /// The core logic responsible for computing the bounds for our synthesized impl.
224 ///
225 /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
226 /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
227 /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
228 /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
229 /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
230 ///
231 /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
232 /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
233 /// user code. According, it considers all possible ways that a `Predicate` could be met, which
234 /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
235 /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
236 /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
237 /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
238 /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
239 /// like this:
240 ///
241 /// impl<T> Send for Foo<T> where T: IntoIterator
242 ///
243 /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
244 /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
245 ///
246 /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
247 /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
248 /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
249 /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
250 /// needs to hold.
251 ///
252 /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
253 /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
254 /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
255 /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
256 /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
257 /// else `SelectionContext` will choke on the missing predicates. However, this should never
258 /// show up in the final synthesized generics: we don't want our generated docs page to contain
259 /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
260 /// separate `user_env`, which only holds the predicates that will actually be displayed to the
261 /// user.
dc9dc135 262 fn evaluate_predicates(
94b46f34 263 &self,
dc9dc135 264 infcx: &InferCtxt<'_, 'tcx>,
94b46f34 265 trait_did: DefId,
dc9dc135
XL
266 ty: Ty<'tcx>,
267 param_env: ty::ParamEnv<'tcx>,
268 user_env: ty::ParamEnv<'tcx>,
269 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
94b46f34 270 only_projections: bool,
dc9dc135 271 ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
94b46f34
XL
272 let tcx = infcx.tcx;
273
3dfed10e
XL
274 // Don't try to proess any nested obligations involving predicates
275 // that are already in the `ParamEnv` (modulo regions): we already
276 // know that they must hold.
277 for predicate in param_env.caller_bounds() {
278 fresh_preds.insert(self.clean_pred(infcx, predicate));
279 }
280
a1dfa0c6 281 let mut select = SelectionContext::with_negative(&infcx, true);
94b46f34 282
0bf4aa26 283 let mut already_visited = FxHashSet::default();
94b46f34
XL
284 let mut predicates = VecDeque::new();
285 predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
286 trait_ref: ty::TraitRef {
287 def_id: trait_did,
288 substs: infcx.tcx.mk_substs_trait(ty, &[]),
289 },
290 }));
291
f035d41b
XL
292 let computed_preds = param_env.caller_bounds().iter();
293 let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
94b46f34 294
48663c56 295 let mut new_env = param_env;
ba9703b0 296 let dummy_cause = ObligationCause::dummy();
94b46f34
XL
297
298 while let Some(pred) = predicates.pop_front() {
299 infcx.clear_caches();
300
48663c56 301 if !already_visited.insert(pred) {
94b46f34
XL
302 continue;
303 }
304
60c5eb7d 305 // Call `infcx.resolve_vars_if_possible` to see if we can
69743fb6 306 // get rid of any inference variables.
dfeec247
XL
307 let obligation = infcx.resolve_vars_if_possible(&Obligation::new(
308 dummy_cause.clone(),
309 new_env,
310 pred,
311 ));
69743fb6 312 let result = select.select(&obligation);
94b46f34
XL
313
314 match &result {
f035d41b 315 &Ok(Some(ref impl_source)) => {
60c5eb7d 316 // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
a1dfa0c6 317 // we immediately bail out, since it's impossible for us to continue.
ba9703b0 318
1b1a35ee
XL
319 if let ImplSource::UserDefined(ImplSourceUserDefinedData {
320 impl_def_id, ..
f035d41b
XL
321 }) = impl_source
322 {
ba9703b0
XL
323 // Blame 'tidy' for the weird bracket placement.
324 if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
325 debug!(
326 "evaluate_nested_obligations: found explicit negative impl\
dfeec247 327 {:?}, bailing out",
ba9703b0
XL
328 impl_def_id
329 );
330 return None;
dfeec247 331 }
a1dfa0c6
XL
332 }
333
f035d41b 334 let obligations = impl_source.clone().nested_obligations().into_iter();
94b46f34
XL
335
336 if !self.evaluate_nested_obligations(
337 ty,
338 obligations,
339 &mut user_computed_preds,
340 fresh_preds,
341 &mut predicates,
342 &mut select,
343 only_projections,
344 ) {
345 return None;
346 }
347 }
348 &Ok(None) => {}
349 &Err(SelectionError::Unimplemented) => {
69743fb6 350 if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
94b46f34 351 already_visited.remove(&pred);
0bf4aa26
XL
352 self.add_user_pred(
353 &mut user_computed_preds,
3dfed10e 354 pred.without_const().to_predicate(self.tcx),
0bf4aa26 355 );
94b46f34
XL
356 predicates.push_back(pred);
357 } else {
358 debug!(
60c5eb7d 359 "evaluate_nested_obligations: `Unimplemented` found, bailing: \
94b46f34
XL
360 {:?} {:?} {:?}",
361 ty,
362 pred,
363 pred.skip_binder().trait_ref.substs
364 );
365 return None;
366 }
367 }
368 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
369 };
370
ba9703b0
XL
371 let normalized_preds = elaborate_predicates(
372 tcx,
373 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
374 )
375 .map(|o| o.predicate);
1b1a35ee 376 new_env = ty::ParamEnv::new(tcx.mk_predicates(normalized_preds), param_env.reveal());
94b46f34
XL
377 }
378
379 let final_user_env = ty::ParamEnv::new(
380 tcx.mk_predicates(user_computed_preds.into_iter()),
f035d41b 381 user_env.reveal(),
94b46f34
XL
382 );
383 debug!(
48663c56 384 "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
94b46f34 385 '{:?}'",
48663c56 386 ty, trait_did, new_env, final_user_env
94b46f34
XL
387 );
388
ba9703b0 389 Some((new_env, final_user_env))
94b46f34
XL
390 }
391
60c5eb7d
XL
392 /// This method is designed to work around the following issue:
393 /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
394 /// progressively building a `ParamEnv` based on the results we get.
395 /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
396 /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
397 ///
398 /// This can lead to a corner case when dealing with region parameters.
399 /// During our selection loop in `evaluate_predicates`, we might end up with
400 /// two trait predicates that differ only in their region parameters:
401 /// one containing a HRTB lifetime parameter, and one containing a 'normal'
402 /// lifetime parameter. For example:
403 ///
404 /// T as MyTrait<'a>
405 /// T as MyTrait<'static>
406 ///
407 /// If we put both of these predicates in our computed `ParamEnv`, we'll
408 /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
409 ///
410 /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
411 /// Our end goal is to generate a user-visible description of the conditions
412 /// under which a type implements an auto trait. A trait predicate involving
413 /// a HRTB means that the type needs to work with any choice of lifetime,
414 /// not just one specific lifetime (e.g., `'static`).
3dfed10e 415 fn add_user_pred(
0bf4aa26 416 &self,
3dfed10e
XL
417 user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
418 new_pred: ty::Predicate<'tcx>,
0bf4aa26 419 ) {
b7449926
XL
420 let mut should_add_new = true;
421 user_computed_preds.retain(|&old_pred| {
f9f354fc 422 if let (
3dfed10e
XL
423 ty::PredicateAtom::Trait(new_trait, _),
424 ty::PredicateAtom::Trait(old_trait, _),
425 ) = (new_pred.skip_binders(), old_pred.skip_binders())
ba9703b0
XL
426 {
427 if new_trait.def_id() == old_trait.def_id() {
3dfed10e
XL
428 let new_substs = new_trait.trait_ref.substs;
429 let old_substs = old_trait.trait_ref.substs;
ba9703b0
XL
430
431 if !new_substs.types().eq(old_substs.types()) {
432 // We can't compare lifetimes if the types are different,
433 // so skip checking `old_pred`.
434 return true;
435 }
b7449926 436
ba9703b0
XL
437 for (new_region, old_region) in new_substs.regions().zip(old_substs.regions()) {
438 match (new_region, old_region) {
439 // If both predicates have an `ReLateBound` (a HRTB) in the
440 // same spot, we do nothing.
441 (
442 ty::RegionKind::ReLateBound(_, _),
443 ty::RegionKind::ReLateBound(_, _),
444 ) => {}
445
446 (ty::RegionKind::ReLateBound(_, _), _)
447 | (_, ty::RegionKind::ReVar(_)) => {
448 // One of these is true:
449 // The new predicate has a HRTB in a spot where the old
450 // predicate does not (if they both had a HRTB, the previous
451 // match arm would have executed). A HRBT is a 'stricter'
452 // bound than anything else, so we want to keep the newer
453 // predicate (with the HRBT) in place of the old predicate.
454 //
455 // OR
456 //
457 // The old predicate has a region variable where the new
458 // predicate has some other kind of region. An region
459 // variable isn't something we can actually display to a user,
460 // so we choose their new predicate (which doesn't have a region
461 // variable).
462 //
463 // In both cases, we want to remove the old predicate,
464 // from `user_computed_preds`, and replace it with the new
465 // one. Having both the old and the new
466 // predicate in a `ParamEnv` would confuse `SelectionContext`.
467 //
468 // We're currently in the predicate passed to 'retain',
469 // so we return `false` to remove the old predicate from
470 // `user_computed_preds`.
471 return false;
b7449926 472 }
ba9703b0
XL
473 (_, ty::RegionKind::ReLateBound(_, _))
474 | (ty::RegionKind::ReVar(_), _) => {
475 // This is the opposite situation as the previous arm.
476 // One of these is true:
477 //
478 // The old predicate has a HRTB lifetime in a place where the
479 // new predicate does not.
480 //
481 // OR
482 //
483 // The new predicate has a region variable where the old
484 // predicate has some other type of region.
485 //
486 // We want to leave the old
487 // predicate in `user_computed_preds`, and skip adding
488 // new_pred to `user_computed_params`.
489 should_add_new = false
490 }
491 _ => {}
b7449926
XL
492 }
493 }
0bf4aa26 494 }
b7449926 495 }
ba9703b0 496 true
b7449926
XL
497 });
498
499 if should_add_new {
500 user_computed_preds.insert(new_pred);
501 }
502 }
503
60c5eb7d
XL
504 /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
505 /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
48663c56 506 fn map_vid_to_region<'cx>(
94b46f34
XL
507 &self,
508 regions: &RegionConstraintData<'cx>,
509 ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
0bf4aa26
XL
510 let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
511 let mut finished_map = FxHashMap::default();
94b46f34
XL
512
513 for constraint in regions.constraints.keys() {
514 match constraint {
515 &Constraint::VarSubVar(r1, r2) => {
516 {
0bf4aa26 517 let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
94b46f34
XL
518 deps1.larger.insert(RegionTarget::RegionVid(r2));
519 }
520
0bf4aa26 521 let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
94b46f34
XL
522 deps2.smaller.insert(RegionTarget::RegionVid(r1));
523 }
524 &Constraint::RegSubVar(region, vid) => {
525 {
0bf4aa26 526 let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
94b46f34
XL
527 deps1.larger.insert(RegionTarget::RegionVid(vid));
528 }
529
0bf4aa26 530 let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
94b46f34
XL
531 deps2.smaller.insert(RegionTarget::Region(region));
532 }
533 &Constraint::VarSubReg(vid, region) => {
534 finished_map.insert(vid, region);
535 }
536 &Constraint::RegSubReg(r1, r2) => {
537 {
0bf4aa26 538 let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
94b46f34
XL
539 deps1.larger.insert(RegionTarget::Region(r2));
540 }
541
0bf4aa26 542 let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
94b46f34
XL
543 deps2.smaller.insert(RegionTarget::Region(r1));
544 }
545 }
546 }
547
548 while !vid_map.is_empty() {
dfeec247 549 let target = *vid_map.keys().next().expect("Keys somehow empty");
94b46f34
XL
550 let deps = vid_map.remove(&target).expect("Entry somehow missing");
551
552 for smaller in deps.smaller.iter() {
553 for larger in deps.larger.iter() {
554 match (smaller, larger) {
555 (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
556 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
557 let smaller_deps = v.into_mut();
558 smaller_deps.larger.insert(*larger);
559 smaller_deps.larger.remove(&target);
560 }
561
562 if let Entry::Occupied(v) = vid_map.entry(*larger) {
563 let larger_deps = v.into_mut();
564 larger_deps.smaller.insert(*smaller);
565 larger_deps.smaller.remove(&target);
566 }
567 }
568 (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
569 finished_map.insert(v1, r1);
570 }
571 (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
60c5eb7d 572 // Do nothing; we don't care about regions that are smaller than vids.
94b46f34
XL
573 }
574 (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
575 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
576 let smaller_deps = v.into_mut();
577 smaller_deps.larger.insert(*larger);
578 smaller_deps.larger.remove(&target);
579 }
580
581 if let Entry::Occupied(v) = vid_map.entry(*larger) {
582 let larger_deps = v.into_mut();
583 larger_deps.smaller.insert(*smaller);
584 larger_deps.smaller.remove(&target);
585 }
586 }
587 }
588 }
589 }
590 }
591 finished_map
592 }
593
532ac7d7 594 fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
ba9703b0 595 self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
69743fb6 596 }
94b46f34 597
69743fb6 598 pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
1b1a35ee 599 match ty.kind() {
b7449926 600 ty::Param(_) => true,
69743fb6 601 ty::Projection(p) => self.is_of_param(p.self_ty()),
94b46f34 602 _ => false,
ba9703b0 603 }
94b46f34
XL
604 }
605
69743fb6 606 fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
1b1a35ee 607 match *p.ty().skip_binder().kind() {
dfeec247
XL
608 ty::Projection(proj) if proj == p.skip_binder().projection_ty => true,
609 _ => false,
69743fb6
XL
610 }
611 }
612
dc9dc135 613 fn evaluate_nested_obligations(
94b46f34 614 &self,
48663c56 615 ty: Ty<'_>,
dc9dc135
XL
616 nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
617 computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
618 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
619 predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
620 select: &mut SelectionContext<'_, 'tcx>,
94b46f34
XL
621 only_projections: bool,
622 ) -> bool {
ba9703b0 623 let dummy_cause = ObligationCause::dummy();
94b46f34 624
3dfed10e
XL
625 for obligation in nested {
626 let is_new_pred =
627 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
94b46f34 628
69743fb6 629 // Resolve any inference variables that we can, to help selection succeed
3dfed10e 630 let predicate = select.infcx().resolve_vars_if_possible(&obligation.predicate);
69743fb6
XL
631
632 // We only add a predicate as a user-displayable bound if
633 // it involves a generic parameter, and doesn't contain
634 // any inference variables.
635 //
636 // Displaying a bound involving a concrete type (instead of a generic
637 // parameter) would be pointless, since it's always true
638 // (e.g. u8: Copy)
639 // Displaying an inference variable is impossible, since they're
640 // an internal compiler detail without a defined visual representation
641 //
642 // We check this by calling is_of_param on the relevant types
643 // from the various possible predicates
3dfed10e 644
29967ef6
XL
645 let bound_predicate = predicate.bound_atom();
646 match bound_predicate.skip_binder() {
3dfed10e
XL
647 ty::PredicateAtom::Trait(p, _) => {
648 if self.is_param_no_infer(p.trait_ref.substs)
69743fb6 649 && !only_projections
dfeec247
XL
650 && is_new_pred
651 {
b7449926 652 self.add_user_pred(computed_preds, predicate);
94b46f34 653 }
29967ef6 654 predicates.push_back(bound_predicate.rebind(p));
94b46f34 655 }
3dfed10e 656 ty::PredicateAtom::Projection(p) => {
29967ef6 657 let p = bound_predicate.rebind(p);
dfeec247
XL
658 debug!(
659 "evaluate_nested_obligations: examining projection predicate {:?}",
660 predicate
661 );
69743fb6
XL
662
663 // As described above, we only want to display
664 // bounds which include a generic parameter but don't include
665 // an inference variable.
666 // Additionally, we check if we've seen this predicate before,
667 // to avoid rendering duplicate bounds to the user.
668 if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
48663c56 669 && !p.ty().skip_binder().has_infer_types()
dfeec247
XL
670 && is_new_pred
671 {
672 debug!(
673 "evaluate_nested_obligations: adding projection predicate\
674 to computed_preds: {:?}",
675 predicate
676 );
677
678 // Under unusual circumstances, we can end up with a self-refeential
679 // projection predicate. For example:
680 // <T as MyType>::Value == <T as MyType>::Value
681 // Not only is displaying this to the user pointless,
682 // having it in the ParamEnv will cause an issue if we try to call
683 // poly_project_and_unify_type on the predicate, since this kind of
684 // predicate will normally never end up in a ParamEnv.
685 //
686 // For these reasons, we ignore these weird predicates,
687 // ensuring that we're able to properly synthesize an auto trait impl
688 if self.is_self_referential_projection(p) {
689 debug!(
690 "evaluate_nested_obligations: encountered a projection
691 predicate equating a type with itself! Skipping"
692 );
693 } else {
694 self.add_user_pred(computed_preds, predicate);
695 }
69743fb6
XL
696 }
697
dc9dc135
XL
698 // There are three possible cases when we project a predicate:
699 //
700 // 1. We encounter an error. This means that it's impossible for
701 // our current type to implement the auto trait - there's bound
702 // that we could add to our ParamEnv that would 'fix' this kind
703 // of error, as it's not caused by an unimplemented type.
704 //
60c5eb7d 705 // 2. We successfully project the predicate (Ok(Some(_))), generating
dc9dc135
XL
706 // some subobligations. We then process these subobligations
707 // like any other generated sub-obligations.
708 //
74b04a01 709 // 3. We receive an 'ambiguous' result (Ok(None))
dc9dc135
XL
710 // If we were actually trying to compile a crate,
711 // we would need to re-process this obligation later.
712 // However, all we care about is finding out what bounds
713 // are needed for our type to implement a particular auto trait.
714 // We've already added this obligation to our computed ParamEnv
715 // above (if it was necessary). Therefore, we don't need
716 // to do any further processing of the obligation.
717 //
718 // Note that we *must* try to project *all* projection predicates
719 // we encounter, even ones without inference variable.
720 // This ensures that we detect any projection errors,
721 // which indicate that our type can *never* implement the given
722 // auto trait. In that case, we will generate an explicit negative
723 // impl (e.g. 'impl !Send for MyType'). However, we don't
724 // try to process any of the generated subobligations -
725 // they contain no new information, since we already know
726 // that our type implements the projected-through trait,
727 // and can lead to weird region issues.
728 //
729 // Normally, we'll generate a negative impl as a result of encountering
730 // a type with an explicit negative impl of an auto trait
731 // (for example, raw pointers have !Send and !Sync impls)
732 // However, through some **interesting** manipulations of the type
733 // system, it's actually possible to write a type that never
734 // implements an auto trait due to a projection error, not a normal
735 // negative impl error. To properly handle this case, we need
736 // to ensure that we catch any potential projection errors,
737 // and turn them into an explicit negative impl for our type.
dfeec247 738 debug!("Projecting and unifying projection predicate {:?}", predicate);
dc9dc135 739
f9652781 740 match project::poly_project_and_unify_type(select, &obligation.with(p)) {
dc9dc135
XL
741 Err(e) => {
742 debug!(
743 "evaluate_nested_obligations: Unable to unify predicate \
744 '{:?}' '{:?}', bailing out",
745 ty, e
746 );
747 return false;
748 }
f9652781
XL
749 Ok(Err(project::InProgress)) => {
750 debug!("evaluate_nested_obligations: recursive projection predicate");
751 return false;
752 }
753 Ok(Ok(Some(v))) => {
dc9dc135
XL
754 // We only care about sub-obligations
755 // when we started out trying to unify
756 // some inference variables. See the comment above
757 // for more infomration
758 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
759 if !self.evaluate_nested_obligations(
760 ty,
ba9703b0 761 v.into_iter(),
94b46f34
XL
762 computed_preds,
763 fresh_preds,
764 predicates,
765 select,
766 only_projections,
767 ) {
768 return false;
769 }
770 }
dc9dc135 771 }
f9652781
XL
772 Ok(Ok(None)) => {
773 // It's ok not to make progress when have no inference variables -
dc9dc135 774 // in that case, we were only performing unifcation to check if an
60c5eb7d 775 // error occurred (which would indicate that it's impossible for our
dc9dc135
XL
776 // type to implement the auto trait).
777 // However, we should always make progress (either by generating
778 // subobligations or getting an error) when we started off with
779 // inference variables
780 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
781 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
782 }
783 }
784 }
785 }
3dfed10e 786 ty::PredicateAtom::RegionOutlives(binder) => {
29967ef6 787 let binder = bound_predicate.rebind(binder);
dfeec247 788 if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
94b46f34
XL
789 return false;
790 }
791 }
3dfed10e 792 ty::PredicateAtom::TypeOutlives(binder) => {
29967ef6 793 let binder = bound_predicate.rebind(binder);
94b46f34 794 match (
a1dfa0c6
XL
795 binder.no_bound_vars(),
796 binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
94b46f34
XL
797 ) {
798 (None, Some(t_a)) => {
0bf4aa26
XL
799 select.infcx().register_region_obligation_with_cause(
800 t_a,
48663c56 801 select.infcx().tcx.lifetimes.re_static,
0bf4aa26 802 &dummy_cause,
94b46f34
XL
803 );
804 }
805 (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
0bf4aa26
XL
806 select.infcx().register_region_obligation_with_cause(
807 t_a,
808 r_b,
809 &dummy_cause,
94b46f34
XL
810 );
811 }
812 _ => {}
813 };
814 }
3dfed10e
XL
815 ty::PredicateAtom::ConstEquate(c1, c2) => {
816 let evaluate = |c: &'tcx ty::Const<'tcx>| {
817 if let ty::ConstKind::Unevaluated(def, substs, promoted) = c.val {
818 match select.infcx().const_eval_resolve(
819 obligation.param_env,
820 def,
821 substs,
822 promoted,
823 Some(obligation.cause.span),
824 ) {
825 Ok(val) => Ok(ty::Const::from_value(select.tcx(), val, c.ty)),
826 Err(err) => Err(err),
827 }
828 } else {
829 Ok(c)
830 }
831 };
832
833 match (evaluate(c1), evaluate(c2)) {
834 (Ok(c1), Ok(c2)) => {
835 match select
836 .infcx()
837 .at(&obligation.cause, obligation.param_env)
838 .eq(c1, c2)
839 {
840 Ok(_) => (),
841 Err(_) => return false,
842 }
843 }
844 _ => return false,
845 }
846 }
94b46f34
XL
847 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
848 };
849 }
ba9703b0 850 true
94b46f34
XL
851 }
852
dc9dc135 853 pub fn clean_pred(
94b46f34 854 &self,
dc9dc135
XL
855 infcx: &InferCtxt<'_, 'tcx>,
856 p: ty::Predicate<'tcx>,
857 ) -> ty::Predicate<'tcx> {
94b46f34
XL
858 infcx.freshen(p)
859 }
860}
861
862// Replaces all ReVars in a type with ty::Region's, using the provided map
dc9dc135 863pub struct RegionReplacer<'a, 'tcx> {
94b46f34 864 vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
dc9dc135 865 tcx: TyCtxt<'tcx>,
94b46f34
XL
866}
867
dc9dc135
XL
868impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
869 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
94b46f34
XL
870 self.tcx
871 }
872
873 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
874 (match r {
875 &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
876 _ => None,
dfeec247
XL
877 })
878 .unwrap_or_else(|| r.super_fold_with(self))
94b46f34
XL
879 }
880}