]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/auto_trait.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
CommitLineData
60c5eb7d
XL
1//! Support code for rustdoc and external tools.
2//! You really don't want to be using this unless you need to.
94b46f34
XL
3
4use super::*;
5
f2b60f7d 6use crate::errors::UnableToConstructConstantValue;
9fa01778
XL
7use crate::infer::region_constraints::{Constraint, RegionConstraintData};
8use crate::infer::InferCtxt;
5e7ed085 9use crate::traits::project::ProjectAndUnifyResult;
923072b8
FG
10use rustc_middle::mir::interpret::ErrorHandled;
11use rustc_middle::ty::fold::{TypeFolder, TypeSuperFoldable};
064997fb 12use rustc_middle::ty::visit::TypeVisitable;
487cf647 13use rustc_middle::ty::{ImplPolarity, Region, RegionVid};
94b46f34 14
487cf647 15use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
60c5eb7d
XL
16
17use std::collections::hash_map::Entry;
18use std::collections::VecDeque;
cdc7bbd5 19use std::iter;
60c5eb7d 20
94b46f34
XL
21// FIXME(twk): this is obviously not nice to duplicate like that
22#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
23pub enum RegionTarget<'tcx> {
24 Region(Region<'tcx>),
25 RegionVid(RegionVid),
26}
27
28#[derive(Default, Debug, Clone)]
29pub struct RegionDeps<'tcx> {
487cf647
FG
30 larger: FxIndexSet<RegionTarget<'tcx>>,
31 smaller: FxIndexSet<RegionTarget<'tcx>>,
94b46f34
XL
32}
33
34pub enum AutoTraitResult<A> {
35 ExplicitImpl,
36 PositiveImpl(A),
37 NegativeImpl,
38}
39
1b1a35ee 40#[allow(dead_code)]
94b46f34
XL
41impl<A> AutoTraitResult<A> {
42 fn is_auto(&self) -> bool {
5869c6ff 43 matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
94b46f34
XL
44 }
45}
46
47pub struct AutoTraitInfo<'cx> {
48 pub full_user_env: ty::ParamEnv<'cx>,
49 pub region_data: RegionConstraintData<'cx>,
94b46f34
XL
50 pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
51}
52
dc9dc135
XL
53pub struct AutoTraitFinder<'tcx> {
54 tcx: TyCtxt<'tcx>,
94b46f34
XL
55}
56
dc9dc135
XL
57impl<'tcx> AutoTraitFinder<'tcx> {
58 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
94b46f34
XL
59 AutoTraitFinder { tcx }
60 }
61
9fa01778 62 /// Makes a best effort to determine whether and under which conditions an auto trait is
94b46f34
XL
63 /// implemented for a type. For example, if you have
64 ///
65 /// ```
66 /// struct Foo<T> { data: Box<T> }
67 /// ```
0bf4aa26 68 ///
2b03887a
FG
69 /// then this might return that `Foo<T>: Send` if `T: Send` (encoded in the AutoTraitResult
70 /// type). The analysis attempts to account for custom impls as well as other complex cases.
71 /// This result is intended for use by rustdoc and other such consumers.
0bf4aa26 72 ///
94b46f34
XL
73 /// (Note that due to the coinductive nature of Send, the full and correct result is actually
74 /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
2b03887a 75 /// types are all Send. So, in our example, we might have that `Foo<T>: Send` if `Box<T>: Send`.
94b46f34 76 /// But this is often not the best way to present to the user.)
0bf4aa26 77 ///
94b46f34
XL
78 /// Warning: The API should be considered highly unstable, and it may be refactored or removed
79 /// in the future.
80 pub fn find_auto_trait_generics<A>(
81 &self,
48663c56
XL
82 ty: Ty<'tcx>,
83 orig_env: ty::ParamEnv<'tcx>,
94b46f34 84 trait_did: DefId,
6a06907d 85 mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
94b46f34
XL
86 ) -> AutoTraitResult<A> {
87 let tcx = self.tcx;
94b46f34 88
487cf647 89 let trait_ref = tcx.mk_trait_ref(trait_did, [ty]);
94b46f34 90
2b03887a
FG
91 let infcx = tcx.infer_ctxt().build();
92 let mut selcx = SelectionContext::new(&infcx);
487cf647
FG
93 for polarity in [true, false] {
94 let result = selcx.select(&Obligation::new(
95 tcx,
96 ObligationCause::dummy(),
97 orig_env,
98 ty::Binder::dummy(ty::TraitPredicate {
99 trait_ref,
100 constness: ty::BoundConstness::NotConst,
101 polarity: if polarity {
102 ImplPolarity::Positive
103 } else {
104 ImplPolarity::Negative
105 },
106 }),
107 ));
2b03887a
FG
108 if let Ok(Some(ImplSource::UserDefined(_))) = result {
109 debug!(
110 "find_auto_trait_generics({:?}): \
111 manual impl found, bailing out",
112 trait_ref
113 );
114 // If an explicit impl exists, it always takes priority over an auto impl
115 return AutoTraitResult::ExplicitImpl;
5e7ed085 116 }
94b46f34
XL
117 }
118
2b03887a
FG
119 let infcx = tcx.infer_ctxt().build();
120 let mut fresh_preds = FxHashSet::default();
121
122 // Due to the way projections are handled by SelectionContext, we need to run
123 // evaluate_predicates twice: once on the original param env, and once on the result of
124 // the first evaluate_predicates call.
125 //
126 // The problem is this: most of rustc, including SelectionContext and traits::project,
127 // are designed to work with a concrete usage of a type (e.g., Vec<u8>
128 // fn<T>() { Vec<T> }. This information will generally never change - given
129 // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
130 // If we're unable to prove that 'T' implements a particular trait, we're done -
131 // there's nothing left to do but error out.
132 //
133 // However, synthesizing an auto trait impl works differently. Here, we start out with
134 // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
135 // with - and progressively discover the conditions we need to fulfill for it to
136 // implement a certain auto trait. This ends up breaking two assumptions made by trait
137 // selection and projection:
138 //
139 // * We can always cache the result of a particular trait selection for the lifetime of
140 // an InfCtxt
141 // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
142 // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
143 //
144 // We fix the first assumption by manually clearing out all of the InferCtxt's caches
145 // in between calls to SelectionContext.select. This allows us to keep all of the
146 // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
147 // them between calls.
148 //
149 // We fix the second assumption by reprocessing the result of our first call to
150 // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
151 // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
152 // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
153 // SelectionContext to return it back to us.
154
155 let Some((new_env, user_env)) = self.evaluate_predicates(
156 &infcx,
157 trait_did,
158 ty,
159 orig_env,
160 orig_env,
161 &mut fresh_preds,
2b03887a
FG
162 ) else {
163 return AutoTraitResult::NegativeImpl;
164 };
165
166 let (full_env, full_user_env) = self
9c376795 167 .evaluate_predicates(&infcx, trait_did, ty, new_env, user_env, &mut fresh_preds)
2b03887a
FG
168 .unwrap_or_else(|| {
169 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
170 });
94b46f34 171
2b03887a
FG
172 debug!(
173 "find_auto_trait_generics({:?}): fulfilling \
174 with {:?}",
175 trait_ref, full_env
176 );
177 infcx.clear_caches();
178
179 // At this point, we already have all of the bounds we need. FulfillmentContext is used
180 // to store all of the necessary region/lifetime bounds in the InferContext, as well as
181 // an additional sanity check.
182 let errors =
183 super::fully_solve_bound(&infcx, ObligationCause::dummy(), full_env, ty, trait_did);
184 if !errors.is_empty() {
185 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
186 }
94b46f34 187
2b03887a 188 infcx.process_registered_region_obligations(&Default::default(), full_env);
94b46f34 189
2b03887a
FG
190 let region_data =
191 infcx.inner.borrow_mut().unwrap_region_constraints().region_constraint_data().clone();
94b46f34 192
2b03887a 193 let vid_to_region = self.map_vid_to_region(&region_data);
94b46f34 194
2b03887a 195 let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
94b46f34 196
2b03887a 197 AutoTraitResult::PositiveImpl(auto_trait_callback(info))
94b46f34
XL
198 }
199}
200
a2a8927a 201impl<'tcx> AutoTraitFinder<'tcx> {
60c5eb7d
XL
202 /// The core logic responsible for computing the bounds for our synthesized impl.
203 ///
204 /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
205 /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
206 /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
207 /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
208 /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
209 ///
210 /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
211 /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
212 /// user code. According, it considers all possible ways that a `Predicate` could be met, which
213 /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
214 /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
215 /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
216 /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
217 /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
218 /// like this:
04454e1e
FG
219 /// ```ignore (illustrative)
220 /// impl<T> Send for Foo<T> where T: IntoIterator
221 /// ```
60c5eb7d
XL
222 /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
223 /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
224 ///
225 /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
226 /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
227 /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
228 /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
229 /// needs to hold.
230 ///
231 /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
232 /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
233 /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
234 /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
235 /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
236 /// else `SelectionContext` will choke on the missing predicates. However, this should never
237 /// show up in the final synthesized generics: we don't want our generated docs page to contain
238 /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
239 /// separate `user_env`, which only holds the predicates that will actually be displayed to the
240 /// user.
dc9dc135 241 fn evaluate_predicates(
94b46f34 242 &self,
2b03887a 243 infcx: &InferCtxt<'tcx>,
94b46f34 244 trait_did: DefId,
dc9dc135
XL
245 ty: Ty<'tcx>,
246 param_env: ty::ParamEnv<'tcx>,
247 user_env: ty::ParamEnv<'tcx>,
248 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
dc9dc135 249 ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
94b46f34
XL
250 let tcx = infcx.tcx;
251
5e7ed085 252 // Don't try to process any nested obligations involving predicates
3dfed10e
XL
253 // that are already in the `ParamEnv` (modulo regions): we already
254 // know that they must hold.
255 for predicate in param_env.caller_bounds() {
256 fresh_preds.insert(self.clean_pred(infcx, predicate));
257 }
258
5e7ed085 259 let mut select = SelectionContext::new(&infcx);
94b46f34 260
0bf4aa26 261 let mut already_visited = FxHashSet::default();
94b46f34 262 let mut predicates = VecDeque::new();
cdc7bbd5 263 predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
487cf647
FG
264 trait_ref: infcx.tcx.mk_trait_ref(trait_did, [ty]),
265
94222f64 266 constness: ty::BoundConstness::NotConst,
3c0e092e
XL
267 // Auto traits are positive
268 polarity: ty::ImplPolarity::Positive,
94b46f34
XL
269 }));
270
f035d41b 271 let computed_preds = param_env.caller_bounds().iter();
487cf647 272 let mut user_computed_preds: FxIndexSet<_> = user_env.caller_bounds().iter().collect();
94b46f34 273
48663c56 274 let mut new_env = param_env;
ba9703b0 275 let dummy_cause = ObligationCause::dummy();
94b46f34
XL
276
277 while let Some(pred) = predicates.pop_front() {
278 infcx.clear_caches();
279
48663c56 280 if !already_visited.insert(pred) {
94b46f34
XL
281 continue;
282 }
283
60c5eb7d 284 // Call `infcx.resolve_vars_if_possible` to see if we can
69743fb6 285 // get rid of any inference variables.
487cf647
FG
286 let obligation = infcx.resolve_vars_if_possible(Obligation::new(
287 tcx,
288 dummy_cause.clone(),
289 new_env,
290 pred,
291 ));
69743fb6 292 let result = select.select(&obligation);
94b46f34 293
5869c6ff
XL
294 match result {
295 Ok(Some(ref impl_source)) => {
60c5eb7d 296 // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
a1dfa0c6 297 // we immediately bail out, since it's impossible for us to continue.
ba9703b0 298
1b1a35ee
XL
299 if let ImplSource::UserDefined(ImplSourceUserDefinedData {
300 impl_def_id, ..
f035d41b
XL
301 }) = impl_source
302 {
ba9703b0
XL
303 // Blame 'tidy' for the weird bracket placement.
304 if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
305 debug!(
306 "evaluate_nested_obligations: found explicit negative impl\
dfeec247 307 {:?}, bailing out",
ba9703b0
XL
308 impl_def_id
309 );
310 return None;
dfeec247 311 }
a1dfa0c6
XL
312 }
313
f2b60f7d 314 let obligations = impl_source.borrow_nested_obligations().iter().cloned();
94b46f34
XL
315
316 if !self.evaluate_nested_obligations(
317 ty,
318 obligations,
319 &mut user_computed_preds,
320 fresh_preds,
321 &mut predicates,
322 &mut select,
94b46f34
XL
323 ) {
324 return None;
325 }
326 }
5869c6ff
XL
327 Ok(None) => {}
328 Err(SelectionError::Unimplemented) => {
69743fb6 329 if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
94b46f34 330 already_visited.remove(&pred);
94222f64 331 self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
94b46f34
XL
332 predicates.push_back(pred);
333 } else {
334 debug!(
60c5eb7d 335 "evaluate_nested_obligations: `Unimplemented` found, bailing: \
94b46f34
XL
336 {:?} {:?} {:?}",
337 ty,
338 pred,
339 pred.skip_binder().trait_ref.substs
340 );
341 return None;
342 }
343 }
344 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
345 };
346
ba9703b0
XL
347 let normalized_preds = elaborate_predicates(
348 tcx,
349 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
350 )
351 .map(|o| o.predicate);
a2a8927a
XL
352 new_env = ty::ParamEnv::new(
353 tcx.mk_predicates(normalized_preds),
354 param_env.reveal(),
355 param_env.constness(),
356 );
94b46f34
XL
357 }
358
359 let final_user_env = ty::ParamEnv::new(
360 tcx.mk_predicates(user_computed_preds.into_iter()),
f035d41b 361 user_env.reveal(),
a2a8927a 362 user_env.constness(),
94b46f34
XL
363 );
364 debug!(
48663c56 365 "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
94b46f34 366 '{:?}'",
48663c56 367 ty, trait_did, new_env, final_user_env
94b46f34
XL
368 );
369
ba9703b0 370 Some((new_env, final_user_env))
94b46f34
XL
371 }
372
60c5eb7d
XL
373 /// This method is designed to work around the following issue:
374 /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
375 /// progressively building a `ParamEnv` based on the results we get.
376 /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
377 /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
378 ///
379 /// This can lead to a corner case when dealing with region parameters.
380 /// During our selection loop in `evaluate_predicates`, we might end up with
381 /// two trait predicates that differ only in their region parameters:
382 /// one containing a HRTB lifetime parameter, and one containing a 'normal'
383 /// lifetime parameter. For example:
04454e1e
FG
384 /// ```ignore (illustrative)
385 /// T as MyTrait<'a>
386 /// T as MyTrait<'static>
387 /// ```
60c5eb7d
XL
388 /// If we put both of these predicates in our computed `ParamEnv`, we'll
389 /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
390 ///
391 /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
392 /// Our end goal is to generate a user-visible description of the conditions
393 /// under which a type implements an auto trait. A trait predicate involving
394 /// a HRTB means that the type needs to work with any choice of lifetime,
395 /// not just one specific lifetime (e.g., `'static`).
3dfed10e 396 fn add_user_pred(
0bf4aa26 397 &self,
487cf647 398 user_computed_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
3dfed10e 399 new_pred: ty::Predicate<'tcx>,
0bf4aa26 400 ) {
b7449926
XL
401 let mut should_add_new = true;
402 user_computed_preds.retain(|&old_pred| {
487cf647
FG
403 if let (
404 ty::PredicateKind::Clause(ty::Clause::Trait(new_trait)),
405 ty::PredicateKind::Clause(ty::Clause::Trait(old_trait)),
406 ) = (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
ba9703b0
XL
407 {
408 if new_trait.def_id() == old_trait.def_id() {
3dfed10e
XL
409 let new_substs = new_trait.trait_ref.substs;
410 let old_substs = old_trait.trait_ref.substs;
ba9703b0
XL
411
412 if !new_substs.types().eq(old_substs.types()) {
413 // We can't compare lifetimes if the types are different,
414 // so skip checking `old_pred`.
415 return true;
416 }
b7449926 417
cdc7bbd5
XL
418 for (new_region, old_region) in
419 iter::zip(new_substs.regions(), old_substs.regions())
420 {
5099ac24 421 match (*new_region, *old_region) {
ba9703b0
XL
422 // If both predicates have an `ReLateBound` (a HRTB) in the
423 // same spot, we do nothing.
5099ac24 424 (ty::ReLateBound(_, _), ty::ReLateBound(_, _)) => {}
ba9703b0 425
5099ac24 426 (ty::ReLateBound(_, _), _) | (_, ty::ReVar(_)) => {
ba9703b0
XL
427 // One of these is true:
428 // The new predicate has a HRTB in a spot where the old
429 // predicate does not (if they both had a HRTB, the previous
430 // match arm would have executed). A HRBT is a 'stricter'
431 // bound than anything else, so we want to keep the newer
432 // predicate (with the HRBT) in place of the old predicate.
433 //
434 // OR
435 //
436 // The old predicate has a region variable where the new
437 // predicate has some other kind of region. An region
438 // variable isn't something we can actually display to a user,
439 // so we choose their new predicate (which doesn't have a region
440 // variable).
441 //
442 // In both cases, we want to remove the old predicate,
443 // from `user_computed_preds`, and replace it with the new
444 // one. Having both the old and the new
445 // predicate in a `ParamEnv` would confuse `SelectionContext`.
446 //
447 // We're currently in the predicate passed to 'retain',
448 // so we return `false` to remove the old predicate from
449 // `user_computed_preds`.
450 return false;
b7449926 451 }
5099ac24 452 (_, ty::ReLateBound(_, _)) | (ty::ReVar(_), _) => {
ba9703b0
XL
453 // This is the opposite situation as the previous arm.
454 // One of these is true:
455 //
456 // The old predicate has a HRTB lifetime in a place where the
457 // new predicate does not.
458 //
459 // OR
460 //
461 // The new predicate has a region variable where the old
462 // predicate has some other type of region.
463 //
464 // We want to leave the old
465 // predicate in `user_computed_preds`, and skip adding
466 // new_pred to `user_computed_params`.
467 should_add_new = false
468 }
469 _ => {}
b7449926
XL
470 }
471 }
0bf4aa26 472 }
b7449926 473 }
ba9703b0 474 true
b7449926
XL
475 });
476
477 if should_add_new {
478 user_computed_preds.insert(new_pred);
479 }
480 }
481
60c5eb7d
XL
482 /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
483 /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
48663c56 484 fn map_vid_to_region<'cx>(
94b46f34
XL
485 &self,
486 regions: &RegionConstraintData<'cx>,
487 ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
0bf4aa26
XL
488 let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
489 let mut finished_map = FxHashMap::default();
94b46f34
XL
490
491 for constraint in regions.constraints.keys() {
492 match constraint {
493 &Constraint::VarSubVar(r1, r2) => {
494 {
0bf4aa26 495 let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
94b46f34
XL
496 deps1.larger.insert(RegionTarget::RegionVid(r2));
497 }
498
0bf4aa26 499 let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
94b46f34
XL
500 deps2.smaller.insert(RegionTarget::RegionVid(r1));
501 }
502 &Constraint::RegSubVar(region, vid) => {
503 {
0bf4aa26 504 let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
94b46f34
XL
505 deps1.larger.insert(RegionTarget::RegionVid(vid));
506 }
507
0bf4aa26 508 let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
94b46f34
XL
509 deps2.smaller.insert(RegionTarget::Region(region));
510 }
511 &Constraint::VarSubReg(vid, region) => {
512 finished_map.insert(vid, region);
513 }
514 &Constraint::RegSubReg(r1, r2) => {
515 {
0bf4aa26 516 let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
94b46f34
XL
517 deps1.larger.insert(RegionTarget::Region(r2));
518 }
519
0bf4aa26 520 let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
94b46f34
XL
521 deps2.smaller.insert(RegionTarget::Region(r1));
522 }
523 }
524 }
525
526 while !vid_map.is_empty() {
dfeec247 527 let target = *vid_map.keys().next().expect("Keys somehow empty");
94b46f34
XL
528 let deps = vid_map.remove(&target).expect("Entry somehow missing");
529
530 for smaller in deps.smaller.iter() {
531 for larger in deps.larger.iter() {
532 match (smaller, larger) {
533 (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
534 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
535 let smaller_deps = v.into_mut();
536 smaller_deps.larger.insert(*larger);
537 smaller_deps.larger.remove(&target);
538 }
539
540 if let Entry::Occupied(v) = vid_map.entry(*larger) {
541 let larger_deps = v.into_mut();
542 larger_deps.smaller.insert(*smaller);
543 larger_deps.smaller.remove(&target);
544 }
545 }
546 (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
547 finished_map.insert(v1, r1);
548 }
549 (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
60c5eb7d 550 // Do nothing; we don't care about regions that are smaller than vids.
94b46f34
XL
551 }
552 (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
553 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
554 let smaller_deps = v.into_mut();
555 smaller_deps.larger.insert(*larger);
556 smaller_deps.larger.remove(&target);
557 }
558
559 if let Entry::Occupied(v) = vid_map.entry(*larger) {
560 let larger_deps = v.into_mut();
561 larger_deps.smaller.insert(*smaller);
562 larger_deps.smaller.remove(&target);
563 }
564 }
565 }
566 }
567 }
568 }
569 finished_map
570 }
571
532ac7d7 572 fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
ba9703b0 573 self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
69743fb6 574 }
94b46f34 575
69743fb6 576 pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
1b1a35ee 577 match ty.kind() {
b7449926 578 ty::Param(_) => true,
9c376795 579 ty::Alias(ty::Projection, p) => self.is_of_param(p.self_ty()),
94b46f34 580 _ => false,
ba9703b0 581 }
94b46f34
XL
582 }
583
69743fb6 584 fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
f2b60f7d 585 if let Some(ty) = p.term().skip_binder().ty() {
9c376795 586 matches!(ty.kind(), ty::Alias(ty::Projection, proj) if proj == &p.skip_binder().projection_ty)
5099ac24
FG
587 } else {
588 false
589 }
69743fb6
XL
590 }
591
dc9dc135 592 fn evaluate_nested_obligations(
94b46f34 593 &self,
48663c56 594 ty: Ty<'_>,
dc9dc135 595 nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
487cf647 596 computed_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
dc9dc135
XL
597 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
598 predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
487cf647 599 selcx: &mut SelectionContext<'_, 'tcx>,
94b46f34 600 ) -> bool {
ba9703b0 601 let dummy_cause = ObligationCause::dummy();
94b46f34 602
3dfed10e
XL
603 for obligation in nested {
604 let is_new_pred =
487cf647 605 fresh_preds.insert(self.clean_pred(selcx.infcx, obligation.predicate));
94b46f34 606
69743fb6 607 // Resolve any inference variables that we can, to help selection succeed
487cf647 608 let predicate = selcx.infcx.resolve_vars_if_possible(obligation.predicate);
69743fb6
XL
609
610 // We only add a predicate as a user-displayable bound if
611 // it involves a generic parameter, and doesn't contain
612 // any inference variables.
613 //
614 // Displaying a bound involving a concrete type (instead of a generic
615 // parameter) would be pointless, since it's always true
616 // (e.g. u8: Copy)
617 // Displaying an inference variable is impossible, since they're
618 // an internal compiler detail without a defined visual representation
619 //
620 // We check this by calling is_of_param on the relevant types
621 // from the various possible predicates
3dfed10e 622
5869c6ff 623 let bound_predicate = predicate.kind();
29967ef6 624 match bound_predicate.skip_binder() {
487cf647 625 ty::PredicateKind::Clause(ty::Clause::Trait(p)) => {
5869c6ff
XL
626 // Add this to `predicates` so that we end up calling `select`
627 // with it. If this predicate ends up being unimplemented,
628 // then `evaluate_predicates` will handle adding it the `ParamEnv`
629 // if possible.
29967ef6 630 predicates.push_back(bound_predicate.rebind(p));
94b46f34 631 }
487cf647 632 ty::PredicateKind::Clause(ty::Clause::Projection(p)) => {
29967ef6 633 let p = bound_predicate.rebind(p);
dfeec247
XL
634 debug!(
635 "evaluate_nested_obligations: examining projection predicate {:?}",
636 predicate
637 );
69743fb6
XL
638
639 // As described above, we only want to display
640 // bounds which include a generic parameter but don't include
641 // an inference variable.
642 // Additionally, we check if we've seen this predicate before,
643 // to avoid rendering duplicate bounds to the user.
644 if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
5099ac24 645 && !p.term().skip_binder().has_infer_types()
dfeec247
XL
646 && is_new_pred
647 {
648 debug!(
5e7ed085 649 "evaluate_nested_obligations: adding projection predicate \
dfeec247
XL
650 to computed_preds: {:?}",
651 predicate
652 );
653
5e7ed085 654 // Under unusual circumstances, we can end up with a self-referential
dfeec247
XL
655 // projection predicate. For example:
656 // <T as MyType>::Value == <T as MyType>::Value
657 // Not only is displaying this to the user pointless,
658 // having it in the ParamEnv will cause an issue if we try to call
659 // poly_project_and_unify_type on the predicate, since this kind of
660 // predicate will normally never end up in a ParamEnv.
661 //
662 // For these reasons, we ignore these weird predicates,
663 // ensuring that we're able to properly synthesize an auto trait impl
664 if self.is_self_referential_projection(p) {
665 debug!(
666 "evaluate_nested_obligations: encountered a projection
667 predicate equating a type with itself! Skipping"
668 );
669 } else {
670 self.add_user_pred(computed_preds, predicate);
671 }
69743fb6
XL
672 }
673
dc9dc135
XL
674 // There are three possible cases when we project a predicate:
675 //
676 // 1. We encounter an error. This means that it's impossible for
677 // our current type to implement the auto trait - there's bound
678 // that we could add to our ParamEnv that would 'fix' this kind
679 // of error, as it's not caused by an unimplemented type.
680 //
60c5eb7d 681 // 2. We successfully project the predicate (Ok(Some(_))), generating
dc9dc135
XL
682 // some subobligations. We then process these subobligations
683 // like any other generated sub-obligations.
684 //
74b04a01 685 // 3. We receive an 'ambiguous' result (Ok(None))
dc9dc135
XL
686 // If we were actually trying to compile a crate,
687 // we would need to re-process this obligation later.
688 // However, all we care about is finding out what bounds
689 // are needed for our type to implement a particular auto trait.
690 // We've already added this obligation to our computed ParamEnv
691 // above (if it was necessary). Therefore, we don't need
692 // to do any further processing of the obligation.
693 //
694 // Note that we *must* try to project *all* projection predicates
695 // we encounter, even ones without inference variable.
696 // This ensures that we detect any projection errors,
697 // which indicate that our type can *never* implement the given
698 // auto trait. In that case, we will generate an explicit negative
699 // impl (e.g. 'impl !Send for MyType'). However, we don't
700 // try to process any of the generated subobligations -
701 // they contain no new information, since we already know
702 // that our type implements the projected-through trait,
703 // and can lead to weird region issues.
704 //
705 // Normally, we'll generate a negative impl as a result of encountering
706 // a type with an explicit negative impl of an auto trait
707 // (for example, raw pointers have !Send and !Sync impls)
708 // However, through some **interesting** manipulations of the type
709 // system, it's actually possible to write a type that never
710 // implements an auto trait due to a projection error, not a normal
711 // negative impl error. To properly handle this case, we need
712 // to ensure that we catch any potential projection errors,
713 // and turn them into an explicit negative impl for our type.
dfeec247 714 debug!("Projecting and unifying projection predicate {:?}", predicate);
dc9dc135 715
487cf647
FG
716 match project::poly_project_and_unify_type(selcx, &obligation.with(self.tcx, p))
717 {
5e7ed085 718 ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
dc9dc135
XL
719 debug!(
720 "evaluate_nested_obligations: Unable to unify predicate \
721 '{:?}' '{:?}', bailing out",
722 ty, e
723 );
724 return false;
725 }
5e7ed085 726 ProjectAndUnifyResult::Recursive => {
f9652781
XL
727 debug!("evaluate_nested_obligations: recursive projection predicate");
728 return false;
729 }
5e7ed085 730 ProjectAndUnifyResult::Holds(v) => {
dc9dc135
XL
731 // We only care about sub-obligations
732 // when we started out trying to unify
733 // some inference variables. See the comment above
5e7ed085 734 // for more information
5099ac24 735 if p.term().skip_binder().has_infer_types() {
94b46f34
XL
736 if !self.evaluate_nested_obligations(
737 ty,
ba9703b0 738 v.into_iter(),
94b46f34
XL
739 computed_preds,
740 fresh_preds,
741 predicates,
487cf647 742 selcx,
94b46f34
XL
743 ) {
744 return false;
745 }
746 }
dc9dc135 747 }
5e7ed085 748 ProjectAndUnifyResult::FailedNormalization => {
f9652781 749 // It's ok not to make progress when have no inference variables -
5e7ed085 750 // in that case, we were only performing unification to check if an
60c5eb7d 751 // error occurred (which would indicate that it's impossible for our
dc9dc135
XL
752 // type to implement the auto trait).
753 // However, we should always make progress (either by generating
754 // subobligations or getting an error) when we started off with
755 // inference variables
5099ac24 756 if p.term().skip_binder().has_infer_types() {
94b46f34
XL
757 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
758 }
759 }
760 }
761 }
487cf647 762 ty::PredicateKind::Clause(ty::Clause::RegionOutlives(binder)) => {
29967ef6 763 let binder = bound_predicate.rebind(binder);
487cf647 764 selcx.infcx.region_outlives_predicate(&dummy_cause, binder)
94b46f34 765 }
487cf647 766 ty::PredicateKind::Clause(ty::Clause::TypeOutlives(binder)) => {
29967ef6 767 let binder = bound_predicate.rebind(binder);
94b46f34 768 match (
a1dfa0c6
XL
769 binder.no_bound_vars(),
770 binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
94b46f34
XL
771 ) {
772 (None, Some(t_a)) => {
487cf647 773 selcx.infcx.register_region_obligation_with_cause(
0bf4aa26 774 t_a,
487cf647 775 selcx.infcx.tcx.lifetimes.re_static,
0bf4aa26 776 &dummy_cause,
94b46f34
XL
777 );
778 }
779 (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
487cf647 780 selcx.infcx.register_region_obligation_with_cause(
0bf4aa26
XL
781 t_a,
782 r_b,
783 &dummy_cause,
94b46f34
XL
784 );
785 }
786 _ => {}
787 };
788 }
5869c6ff 789 ty::PredicateKind::ConstEquate(c1, c2) => {
5099ac24 790 let evaluate = |c: ty::Const<'tcx>| {
923072b8 791 if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
487cf647 792 match selcx.infcx.const_eval_resolve(
3dfed10e 793 obligation.param_env,
cdc7bbd5 794 unevaluated,
3dfed10e
XL
795 Some(obligation.cause.span),
796 ) {
487cf647 797 Ok(Some(valtree)) => Ok(selcx.tcx().mk_const(valtree, c.ty())),
923072b8
FG
798 Ok(None) => {
799 let tcx = self.tcx;
800 let def_id = unevaluated.def.did;
f2b60f7d
FG
801 let reported =
802 tcx.sess.emit_err(UnableToConstructConstantValue {
803 span: tcx.def_span(def_id),
2b03887a 804 unevaluated: unevaluated,
f2b60f7d 805 });
923072b8
FG
806 Err(ErrorHandled::Reported(reported))
807 }
3dfed10e
XL
808 Err(err) => Err(err),
809 }
810 } else {
811 Ok(c)
812 }
813 };
814
815 match (evaluate(c1), evaluate(c2)) {
816 (Ok(c1), Ok(c2)) => {
487cf647 817 match selcx.infcx.at(&obligation.cause, obligation.param_env).eq(c1, c2)
3dfed10e
XL
818 {
819 Ok(_) => (),
820 Err(_) => return false,
821 }
822 }
823 _ => return false,
824 }
825 }
a2a8927a
XL
826 // There's not really much we can do with these predicates -
827 // we start out with a `ParamEnv` with no inference variables,
828 // and these don't correspond to adding any new bounds to
829 // the `ParamEnv`.
830 ty::PredicateKind::WellFormed(..)
831 | ty::PredicateKind::ObjectSafe(..)
832 | ty::PredicateKind::ClosureKind(..)
833 | ty::PredicateKind::Subtype(..)
834 | ty::PredicateKind::ConstEvaluatable(..)
835 | ty::PredicateKind::Coerce(..)
836 | ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
487cf647 837 ty::PredicateKind::Ambiguous => return false,
94b46f34
XL
838 };
839 }
ba9703b0 840 true
94b46f34
XL
841 }
842
dc9dc135 843 pub fn clean_pred(
94b46f34 844 &self,
2b03887a 845 infcx: &InferCtxt<'tcx>,
dc9dc135
XL
846 p: ty::Predicate<'tcx>,
847 ) -> ty::Predicate<'tcx> {
94b46f34
XL
848 infcx.freshen(p)
849 }
850}
851
487cf647 852/// Replaces all ReVars in a type with ty::Region's, using the provided map
dc9dc135 853pub struct RegionReplacer<'a, 'tcx> {
94b46f34 854 vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
dc9dc135 855 tcx: TyCtxt<'tcx>,
94b46f34
XL
856}
857
dc9dc135
XL
858impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
859 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
94b46f34
XL
860 self.tcx
861 }
862
863 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
5099ac24
FG
864 (match *r {
865 ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
94b46f34 866 _ => None,
dfeec247
XL
867 })
868 .unwrap_or_else(|| r.super_fold_with(self))
94b46f34
XL
869 }
870}