]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/auto_trait.rs
New upstream version 1.59.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / auto_trait.rs
CommitLineData
60c5eb7d
XL
1//! Support code for rustdoc and external tools.
2//! You really don't want to be using this unless you need to.
94b46f34
XL
3
4use super::*;
5
9fa01778
XL
6use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7use crate::infer::InferCtxt;
ba9703b0
XL
8use rustc_middle::ty::fold::TypeFolder;
9use rustc_middle::ty::{Region, RegionVid};
94b46f34 10
60c5eb7d
XL
11use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13use std::collections::hash_map::Entry;
14use std::collections::VecDeque;
cdc7bbd5 15use std::iter;
60c5eb7d 16
94b46f34
XL
17// FIXME(twk): this is obviously not nice to duplicate like that
18#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
19pub enum RegionTarget<'tcx> {
20 Region(Region<'tcx>),
21 RegionVid(RegionVid),
22}
23
24#[derive(Default, Debug, Clone)]
25pub struct RegionDeps<'tcx> {
26 larger: FxHashSet<RegionTarget<'tcx>>,
27 smaller: FxHashSet<RegionTarget<'tcx>>,
28}
29
30pub enum AutoTraitResult<A> {
31 ExplicitImpl,
32 PositiveImpl(A),
33 NegativeImpl,
34}
35
1b1a35ee 36#[allow(dead_code)]
94b46f34
XL
37impl<A> AutoTraitResult<A> {
38 fn is_auto(&self) -> bool {
5869c6ff 39 matches!(self, AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl)
94b46f34
XL
40 }
41}
42
43pub struct AutoTraitInfo<'cx> {
44 pub full_user_env: ty::ParamEnv<'cx>,
45 pub region_data: RegionConstraintData<'cx>,
94b46f34
XL
46 pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
47}
48
dc9dc135
XL
49pub struct AutoTraitFinder<'tcx> {
50 tcx: TyCtxt<'tcx>,
94b46f34
XL
51}
52
dc9dc135
XL
53impl<'tcx> AutoTraitFinder<'tcx> {
54 pub fn new(tcx: TyCtxt<'tcx>) -> Self {
94b46f34
XL
55 AutoTraitFinder { tcx }
56 }
57
9fa01778 58 /// Makes a best effort to determine whether and under which conditions an auto trait is
94b46f34
XL
59 /// implemented for a type. For example, if you have
60 ///
61 /// ```
62 /// struct Foo<T> { data: Box<T> }
63 /// ```
0bf4aa26 64 ///
94b46f34
XL
65 /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
66 /// The analysis attempts to account for custom impls as well as other complex cases. This
67 /// result is intended for use by rustdoc and other such consumers.
0bf4aa26 68 ///
94b46f34
XL
69 /// (Note that due to the coinductive nature of Send, the full and correct result is actually
70 /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
71 /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
72 /// But this is often not the best way to present to the user.)
0bf4aa26 73 ///
94b46f34
XL
74 /// Warning: The API should be considered highly unstable, and it may be refactored or removed
75 /// in the future.
76 pub fn find_auto_trait_generics<A>(
77 &self,
48663c56
XL
78 ty: Ty<'tcx>,
79 orig_env: ty::ParamEnv<'tcx>,
94b46f34 80 trait_did: DefId,
6a06907d 81 mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
94b46f34
XL
82 ) -> AutoTraitResult<A> {
83 let tcx = self.tcx;
94b46f34 84
dfeec247 85 let trait_ref = ty::TraitRef { def_id: trait_did, substs: tcx.mk_substs_trait(ty, &[]) };
94b46f34 86
cdc7bbd5 87 let trait_pred = ty::Binder::dummy(trait_ref);
94b46f34
XL
88
89 let bail_out = tcx.infer_ctxt().enter(|infcx| {
90 let mut selcx = SelectionContext::with_negative(&infcx, true);
91 let result = selcx.select(&Obligation::new(
92 ObligationCause::dummy(),
48663c56 93 orig_env,
94b46f34
XL
94 trait_pred.to_poly_trait_predicate(),
95 ));
0bf4aa26 96
94b46f34 97 match result {
1b1a35ee 98 Ok(Some(ImplSource::UserDefined(_))) => {
94b46f34 99 debug!(
48663c56 100 "find_auto_trait_generics({:?}): \
94b46f34 101 manual impl found, bailing out",
48663c56 102 trait_ref
94b46f34 103 );
0bf4aa26 104 true
94b46f34 105 }
dfeec247 106 _ => false,
0bf4aa26 107 }
94b46f34
XL
108 });
109
110 // If an explicit impl exists, it always takes priority over an auto impl
111 if bail_out {
112 return AutoTraitResult::ExplicitImpl;
113 }
114
ba9703b0 115 tcx.infer_ctxt().enter(|infcx| {
0bf4aa26 116 let mut fresh_preds = FxHashSet::default();
94b46f34
XL
117
118 // Due to the way projections are handled by SelectionContext, we need to run
119 // evaluate_predicates twice: once on the original param env, and once on the result of
120 // the first evaluate_predicates call.
121 //
122 // The problem is this: most of rustc, including SelectionContext and traits::project,
0731742a 123 // are designed to work with a concrete usage of a type (e.g., Vec<u8>
94b46f34
XL
124 // fn<T>() { Vec<T> }. This information will generally never change - given
125 // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
126 // If we're unable to prove that 'T' implements a particular trait, we're done -
127 // there's nothing left to do but error out.
128 //
129 // However, synthesizing an auto trait impl works differently. Here, we start out with
130 // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
131 // with - and progressively discover the conditions we need to fulfill for it to
132 // implement a certain auto trait. This ends up breaking two assumptions made by trait
133 // selection and projection:
134 //
135 // * We can always cache the result of a particular trait selection for the lifetime of
136 // an InfCtxt
137 // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
138 // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
139 //
140 // We fix the first assumption by manually clearing out all of the InferCtxt's caches
141 // in between calls to SelectionContext.select. This allows us to keep all of the
142 // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
143 // them between calls.
144 //
145 // We fix the second assumption by reprocessing the result of our first call to
146 // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
147 // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
148 // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
149 // SelectionContext to return it back to us.
150
151 let (new_env, user_env) = match self.evaluate_predicates(
74b04a01 152 &infcx,
94b46f34
XL
153 trait_did,
154 ty,
48663c56
XL
155 orig_env,
156 orig_env,
94b46f34
XL
157 &mut fresh_preds,
158 false,
159 ) {
160 Some(e) => e,
161 None => return AutoTraitResult::NegativeImpl,
162 };
163
dfeec247
XL
164 let (full_env, full_user_env) = self
165 .evaluate_predicates(
ba9703b0 166 &infcx,
dfeec247
XL
167 trait_did,
168 ty,
169 new_env,
170 user_env,
171 &mut fresh_preds,
172 true,
94b46f34 173 )
dfeec247
XL
174 .unwrap_or_else(|| {
175 panic!("Failed to fully process: {:?} {:?} {:?}", ty, trait_did, orig_env)
176 });
94b46f34
XL
177
178 debug!(
48663c56 179 "find_auto_trait_generics({:?}): fulfilling \
94b46f34 180 with {:?}",
48663c56 181 trait_ref, full_env
94b46f34
XL
182 );
183 infcx.clear_caches();
184
185 // At this point, we already have all of the bounds we need. FulfillmentContext is used
186 // to store all of the necessary region/lifetime bounds in the InferContext, as well as
187 // an additional sanity check.
188 let mut fulfill = FulfillmentContext::new();
ba9703b0 189 fulfill.register_bound(&infcx, full_env, ty, trait_did, ObligationCause::dummy());
3c0e092e
XL
190 let errors = fulfill.select_all_or_error(&infcx);
191
192 if !errors.is_empty() {
193 panic!("Unable to fulfill trait {:?} for '{:?}': {:?}", trait_did, ty, errors);
194 }
94b46f34 195
74b04a01
XL
196 let body_id_map: FxHashMap<_, _> = infcx
197 .inner
198 .borrow()
f9f354fc 199 .region_obligations()
74b04a01
XL
200 .iter()
201 .map(|&(id, _)| (id, vec![]))
202 .collect();
94b46f34 203
48663c56 204 infcx.process_registered_region_obligations(&body_id_map, None, full_env);
94b46f34 205
74b04a01
XL
206 let region_data = infcx
207 .inner
208 .borrow_mut()
209 .unwrap_region_constraints()
210 .region_constraint_data()
211 .clone();
94b46f34
XL
212
213 let vid_to_region = self.map_vid_to_region(&region_data);
214
dfeec247 215 let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
94b46f34 216
6a06907d 217 AutoTraitResult::PositiveImpl(auto_trait_callback(info))
ba9703b0 218 })
94b46f34
XL
219 }
220}
221
a2a8927a 222impl<'tcx> AutoTraitFinder<'tcx> {
60c5eb7d
XL
223 /// The core logic responsible for computing the bounds for our synthesized impl.
224 ///
225 /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
226 /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
227 /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
228 /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
229 /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
230 ///
231 /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
232 /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
233 /// user code. According, it considers all possible ways that a `Predicate` could be met, which
234 /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
235 /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
236 /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
237 /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
238 /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
239 /// like this:
240 ///
241 /// impl<T> Send for Foo<T> where T: IntoIterator
242 ///
243 /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
244 /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
245 ///
246 /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
247 /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
248 /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
249 /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
250 /// needs to hold.
251 ///
252 /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
253 /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
254 /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
255 /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
256 /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
257 /// else `SelectionContext` will choke on the missing predicates. However, this should never
258 /// show up in the final synthesized generics: we don't want our generated docs page to contain
259 /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
260 /// separate `user_env`, which only holds the predicates that will actually be displayed to the
261 /// user.
dc9dc135 262 fn evaluate_predicates(
94b46f34 263 &self,
dc9dc135 264 infcx: &InferCtxt<'_, 'tcx>,
94b46f34 265 trait_did: DefId,
dc9dc135
XL
266 ty: Ty<'tcx>,
267 param_env: ty::ParamEnv<'tcx>,
268 user_env: ty::ParamEnv<'tcx>,
269 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
94b46f34 270 only_projections: bool,
dc9dc135 271 ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
94b46f34
XL
272 let tcx = infcx.tcx;
273
3dfed10e
XL
274 // Don't try to proess any nested obligations involving predicates
275 // that are already in the `ParamEnv` (modulo regions): we already
276 // know that they must hold.
277 for predicate in param_env.caller_bounds() {
278 fresh_preds.insert(self.clean_pred(infcx, predicate));
279 }
280
a1dfa0c6 281 let mut select = SelectionContext::with_negative(&infcx, true);
94b46f34 282
0bf4aa26 283 let mut already_visited = FxHashSet::default();
94b46f34 284 let mut predicates = VecDeque::new();
cdc7bbd5 285 predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
94b46f34
XL
286 trait_ref: ty::TraitRef {
287 def_id: trait_did,
288 substs: infcx.tcx.mk_substs_trait(ty, &[]),
289 },
94222f64 290 constness: ty::BoundConstness::NotConst,
3c0e092e
XL
291 // Auto traits are positive
292 polarity: ty::ImplPolarity::Positive,
94b46f34
XL
293 }));
294
f035d41b
XL
295 let computed_preds = param_env.caller_bounds().iter();
296 let mut user_computed_preds: FxHashSet<_> = user_env.caller_bounds().iter().collect();
94b46f34 297
48663c56 298 let mut new_env = param_env;
ba9703b0 299 let dummy_cause = ObligationCause::dummy();
94b46f34
XL
300
301 while let Some(pred) = predicates.pop_front() {
302 infcx.clear_caches();
303
48663c56 304 if !already_visited.insert(pred) {
94b46f34
XL
305 continue;
306 }
307
60c5eb7d 308 // Call `infcx.resolve_vars_if_possible` to see if we can
69743fb6 309 // get rid of any inference variables.
fc512014
XL
310 let obligation =
311 infcx.resolve_vars_if_possible(Obligation::new(dummy_cause.clone(), new_env, pred));
69743fb6 312 let result = select.select(&obligation);
94b46f34 313
5869c6ff
XL
314 match result {
315 Ok(Some(ref impl_source)) => {
60c5eb7d 316 // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
a1dfa0c6 317 // we immediately bail out, since it's impossible for us to continue.
ba9703b0 318
1b1a35ee
XL
319 if let ImplSource::UserDefined(ImplSourceUserDefinedData {
320 impl_def_id, ..
f035d41b
XL
321 }) = impl_source
322 {
ba9703b0
XL
323 // Blame 'tidy' for the weird bracket placement.
324 if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative {
325 debug!(
326 "evaluate_nested_obligations: found explicit negative impl\
dfeec247 327 {:?}, bailing out",
ba9703b0
XL
328 impl_def_id
329 );
330 return None;
dfeec247 331 }
a1dfa0c6
XL
332 }
333
f035d41b 334 let obligations = impl_source.clone().nested_obligations().into_iter();
94b46f34
XL
335
336 if !self.evaluate_nested_obligations(
337 ty,
338 obligations,
339 &mut user_computed_preds,
340 fresh_preds,
341 &mut predicates,
342 &mut select,
343 only_projections,
344 ) {
345 return None;
346 }
347 }
5869c6ff
XL
348 Ok(None) => {}
349 Err(SelectionError::Unimplemented) => {
69743fb6 350 if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
94b46f34 351 already_visited.remove(&pred);
94222f64 352 self.add_user_pred(&mut user_computed_preds, pred.to_predicate(self.tcx));
94b46f34
XL
353 predicates.push_back(pred);
354 } else {
355 debug!(
60c5eb7d 356 "evaluate_nested_obligations: `Unimplemented` found, bailing: \
94b46f34
XL
357 {:?} {:?} {:?}",
358 ty,
359 pred,
360 pred.skip_binder().trait_ref.substs
361 );
362 return None;
363 }
364 }
365 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
366 };
367
ba9703b0
XL
368 let normalized_preds = elaborate_predicates(
369 tcx,
370 computed_preds.clone().chain(user_computed_preds.iter().cloned()),
371 )
372 .map(|o| o.predicate);
a2a8927a
XL
373 new_env = ty::ParamEnv::new(
374 tcx.mk_predicates(normalized_preds),
375 param_env.reveal(),
376 param_env.constness(),
377 );
94b46f34
XL
378 }
379
380 let final_user_env = ty::ParamEnv::new(
381 tcx.mk_predicates(user_computed_preds.into_iter()),
f035d41b 382 user_env.reveal(),
a2a8927a 383 user_env.constness(),
94b46f34
XL
384 );
385 debug!(
48663c56 386 "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
94b46f34 387 '{:?}'",
48663c56 388 ty, trait_did, new_env, final_user_env
94b46f34
XL
389 );
390
ba9703b0 391 Some((new_env, final_user_env))
94b46f34
XL
392 }
393
60c5eb7d
XL
394 /// This method is designed to work around the following issue:
395 /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
396 /// progressively building a `ParamEnv` based on the results we get.
397 /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
398 /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
399 ///
400 /// This can lead to a corner case when dealing with region parameters.
401 /// During our selection loop in `evaluate_predicates`, we might end up with
402 /// two trait predicates that differ only in their region parameters:
403 /// one containing a HRTB lifetime parameter, and one containing a 'normal'
404 /// lifetime parameter. For example:
405 ///
406 /// T as MyTrait<'a>
407 /// T as MyTrait<'static>
408 ///
409 /// If we put both of these predicates in our computed `ParamEnv`, we'll
410 /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
411 ///
412 /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
413 /// Our end goal is to generate a user-visible description of the conditions
414 /// under which a type implements an auto trait. A trait predicate involving
415 /// a HRTB means that the type needs to work with any choice of lifetime,
416 /// not just one specific lifetime (e.g., `'static`).
3dfed10e 417 fn add_user_pred(
0bf4aa26 418 &self,
3dfed10e
XL
419 user_computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
420 new_pred: ty::Predicate<'tcx>,
0bf4aa26 421 ) {
b7449926
XL
422 let mut should_add_new = true;
423 user_computed_preds.retain(|&old_pred| {
94222f64
XL
424 if let (ty::PredicateKind::Trait(new_trait), ty::PredicateKind::Trait(old_trait)) =
425 (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
ba9703b0
XL
426 {
427 if new_trait.def_id() == old_trait.def_id() {
3dfed10e
XL
428 let new_substs = new_trait.trait_ref.substs;
429 let old_substs = old_trait.trait_ref.substs;
ba9703b0
XL
430
431 if !new_substs.types().eq(old_substs.types()) {
432 // We can't compare lifetimes if the types are different,
433 // so skip checking `old_pred`.
434 return true;
435 }
b7449926 436
cdc7bbd5
XL
437 for (new_region, old_region) in
438 iter::zip(new_substs.regions(), old_substs.regions())
439 {
ba9703b0
XL
440 match (new_region, old_region) {
441 // If both predicates have an `ReLateBound` (a HRTB) in the
442 // same spot, we do nothing.
443 (
444 ty::RegionKind::ReLateBound(_, _),
445 ty::RegionKind::ReLateBound(_, _),
446 ) => {}
447
448 (ty::RegionKind::ReLateBound(_, _), _)
449 | (_, ty::RegionKind::ReVar(_)) => {
450 // One of these is true:
451 // The new predicate has a HRTB in a spot where the old
452 // predicate does not (if they both had a HRTB, the previous
453 // match arm would have executed). A HRBT is a 'stricter'
454 // bound than anything else, so we want to keep the newer
455 // predicate (with the HRBT) in place of the old predicate.
456 //
457 // OR
458 //
459 // The old predicate has a region variable where the new
460 // predicate has some other kind of region. An region
461 // variable isn't something we can actually display to a user,
462 // so we choose their new predicate (which doesn't have a region
463 // variable).
464 //
465 // In both cases, we want to remove the old predicate,
466 // from `user_computed_preds`, and replace it with the new
467 // one. Having both the old and the new
468 // predicate in a `ParamEnv` would confuse `SelectionContext`.
469 //
470 // We're currently in the predicate passed to 'retain',
471 // so we return `false` to remove the old predicate from
472 // `user_computed_preds`.
473 return false;
b7449926 474 }
ba9703b0
XL
475 (_, ty::RegionKind::ReLateBound(_, _))
476 | (ty::RegionKind::ReVar(_), _) => {
477 // This is the opposite situation as the previous arm.
478 // One of these is true:
479 //
480 // The old predicate has a HRTB lifetime in a place where the
481 // new predicate does not.
482 //
483 // OR
484 //
485 // The new predicate has a region variable where the old
486 // predicate has some other type of region.
487 //
488 // We want to leave the old
489 // predicate in `user_computed_preds`, and skip adding
490 // new_pred to `user_computed_params`.
491 should_add_new = false
492 }
493 _ => {}
b7449926
XL
494 }
495 }
0bf4aa26 496 }
b7449926 497 }
ba9703b0 498 true
b7449926
XL
499 });
500
501 if should_add_new {
502 user_computed_preds.insert(new_pred);
503 }
504 }
505
60c5eb7d
XL
506 /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
507 /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
48663c56 508 fn map_vid_to_region<'cx>(
94b46f34
XL
509 &self,
510 regions: &RegionConstraintData<'cx>,
511 ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
0bf4aa26
XL
512 let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
513 let mut finished_map = FxHashMap::default();
94b46f34
XL
514
515 for constraint in regions.constraints.keys() {
516 match constraint {
517 &Constraint::VarSubVar(r1, r2) => {
518 {
0bf4aa26 519 let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
94b46f34
XL
520 deps1.larger.insert(RegionTarget::RegionVid(r2));
521 }
522
0bf4aa26 523 let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
94b46f34
XL
524 deps2.smaller.insert(RegionTarget::RegionVid(r1));
525 }
526 &Constraint::RegSubVar(region, vid) => {
527 {
0bf4aa26 528 let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
94b46f34
XL
529 deps1.larger.insert(RegionTarget::RegionVid(vid));
530 }
531
0bf4aa26 532 let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
94b46f34
XL
533 deps2.smaller.insert(RegionTarget::Region(region));
534 }
535 &Constraint::VarSubReg(vid, region) => {
536 finished_map.insert(vid, region);
537 }
538 &Constraint::RegSubReg(r1, r2) => {
539 {
0bf4aa26 540 let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
94b46f34
XL
541 deps1.larger.insert(RegionTarget::Region(r2));
542 }
543
0bf4aa26 544 let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
94b46f34
XL
545 deps2.smaller.insert(RegionTarget::Region(r1));
546 }
547 }
548 }
549
550 while !vid_map.is_empty() {
dfeec247 551 let target = *vid_map.keys().next().expect("Keys somehow empty");
94b46f34
XL
552 let deps = vid_map.remove(&target).expect("Entry somehow missing");
553
554 for smaller in deps.smaller.iter() {
555 for larger in deps.larger.iter() {
556 match (smaller, larger) {
557 (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
558 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
559 let smaller_deps = v.into_mut();
560 smaller_deps.larger.insert(*larger);
561 smaller_deps.larger.remove(&target);
562 }
563
564 if let Entry::Occupied(v) = vid_map.entry(*larger) {
565 let larger_deps = v.into_mut();
566 larger_deps.smaller.insert(*smaller);
567 larger_deps.smaller.remove(&target);
568 }
569 }
570 (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
571 finished_map.insert(v1, r1);
572 }
573 (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
60c5eb7d 574 // Do nothing; we don't care about regions that are smaller than vids.
94b46f34
XL
575 }
576 (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
577 if let Entry::Occupied(v) = vid_map.entry(*smaller) {
578 let smaller_deps = v.into_mut();
579 smaller_deps.larger.insert(*larger);
580 smaller_deps.larger.remove(&target);
581 }
582
583 if let Entry::Occupied(v) = vid_map.entry(*larger) {
584 let larger_deps = v.into_mut();
585 larger_deps.smaller.insert(*smaller);
586 larger_deps.smaller.remove(&target);
587 }
588 }
589 }
590 }
591 }
592 }
593 finished_map
594 }
595
532ac7d7 596 fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
ba9703b0 597 self.is_of_param(substs.type_at(0)) && !substs.types().any(|t| t.has_infer_types())
69743fb6 598 }
94b46f34 599
69743fb6 600 pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
1b1a35ee 601 match ty.kind() {
b7449926 602 ty::Param(_) => true,
69743fb6 603 ty::Projection(p) => self.is_of_param(p.self_ty()),
94b46f34 604 _ => false,
ba9703b0 605 }
94b46f34
XL
606 }
607
69743fb6 608 fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
5869c6ff 609 matches!(*p.ty().skip_binder().kind(), ty::Projection(proj) if proj == p.skip_binder().projection_ty)
69743fb6
XL
610 }
611
dc9dc135 612 fn evaluate_nested_obligations(
94b46f34 613 &self,
48663c56 614 ty: Ty<'_>,
dc9dc135
XL
615 nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
616 computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
617 fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
618 predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
619 select: &mut SelectionContext<'_, 'tcx>,
94b46f34
XL
620 only_projections: bool,
621 ) -> bool {
ba9703b0 622 let dummy_cause = ObligationCause::dummy();
94b46f34 623
3dfed10e
XL
624 for obligation in nested {
625 let is_new_pred =
626 fresh_preds.insert(self.clean_pred(select.infcx(), obligation.predicate));
94b46f34 627
69743fb6 628 // Resolve any inference variables that we can, to help selection succeed
fc512014 629 let predicate = select.infcx().resolve_vars_if_possible(obligation.predicate);
69743fb6
XL
630
631 // We only add a predicate as a user-displayable bound if
632 // it involves a generic parameter, and doesn't contain
633 // any inference variables.
634 //
635 // Displaying a bound involving a concrete type (instead of a generic
636 // parameter) would be pointless, since it's always true
637 // (e.g. u8: Copy)
638 // Displaying an inference variable is impossible, since they're
639 // an internal compiler detail without a defined visual representation
640 //
641 // We check this by calling is_of_param on the relevant types
642 // from the various possible predicates
3dfed10e 643
5869c6ff 644 let bound_predicate = predicate.kind();
29967ef6 645 match bound_predicate.skip_binder() {
94222f64 646 ty::PredicateKind::Trait(p) => {
5869c6ff
XL
647 // Add this to `predicates` so that we end up calling `select`
648 // with it. If this predicate ends up being unimplemented,
649 // then `evaluate_predicates` will handle adding it the `ParamEnv`
650 // if possible.
29967ef6 651 predicates.push_back(bound_predicate.rebind(p));
94b46f34 652 }
5869c6ff 653 ty::PredicateKind::Projection(p) => {
29967ef6 654 let p = bound_predicate.rebind(p);
dfeec247
XL
655 debug!(
656 "evaluate_nested_obligations: examining projection predicate {:?}",
657 predicate
658 );
69743fb6
XL
659
660 // As described above, we only want to display
661 // bounds which include a generic parameter but don't include
662 // an inference variable.
663 // Additionally, we check if we've seen this predicate before,
664 // to avoid rendering duplicate bounds to the user.
665 if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
48663c56 666 && !p.ty().skip_binder().has_infer_types()
dfeec247
XL
667 && is_new_pred
668 {
669 debug!(
670 "evaluate_nested_obligations: adding projection predicate\
671 to computed_preds: {:?}",
672 predicate
673 );
674
675 // Under unusual circumstances, we can end up with a self-refeential
676 // projection predicate. For example:
677 // <T as MyType>::Value == <T as MyType>::Value
678 // Not only is displaying this to the user pointless,
679 // having it in the ParamEnv will cause an issue if we try to call
680 // poly_project_and_unify_type on the predicate, since this kind of
681 // predicate will normally never end up in a ParamEnv.
682 //
683 // For these reasons, we ignore these weird predicates,
684 // ensuring that we're able to properly synthesize an auto trait impl
685 if self.is_self_referential_projection(p) {
686 debug!(
687 "evaluate_nested_obligations: encountered a projection
688 predicate equating a type with itself! Skipping"
689 );
690 } else {
691 self.add_user_pred(computed_preds, predicate);
692 }
69743fb6
XL
693 }
694
dc9dc135
XL
695 // There are three possible cases when we project a predicate:
696 //
697 // 1. We encounter an error. This means that it's impossible for
698 // our current type to implement the auto trait - there's bound
699 // that we could add to our ParamEnv that would 'fix' this kind
700 // of error, as it's not caused by an unimplemented type.
701 //
60c5eb7d 702 // 2. We successfully project the predicate (Ok(Some(_))), generating
dc9dc135
XL
703 // some subobligations. We then process these subobligations
704 // like any other generated sub-obligations.
705 //
74b04a01 706 // 3. We receive an 'ambiguous' result (Ok(None))
dc9dc135
XL
707 // If we were actually trying to compile a crate,
708 // we would need to re-process this obligation later.
709 // However, all we care about is finding out what bounds
710 // are needed for our type to implement a particular auto trait.
711 // We've already added this obligation to our computed ParamEnv
712 // above (if it was necessary). Therefore, we don't need
713 // to do any further processing of the obligation.
714 //
715 // Note that we *must* try to project *all* projection predicates
716 // we encounter, even ones without inference variable.
717 // This ensures that we detect any projection errors,
718 // which indicate that our type can *never* implement the given
719 // auto trait. In that case, we will generate an explicit negative
720 // impl (e.g. 'impl !Send for MyType'). However, we don't
721 // try to process any of the generated subobligations -
722 // they contain no new information, since we already know
723 // that our type implements the projected-through trait,
724 // and can lead to weird region issues.
725 //
726 // Normally, we'll generate a negative impl as a result of encountering
727 // a type with an explicit negative impl of an auto trait
728 // (for example, raw pointers have !Send and !Sync impls)
729 // However, through some **interesting** manipulations of the type
730 // system, it's actually possible to write a type that never
731 // implements an auto trait due to a projection error, not a normal
732 // negative impl error. To properly handle this case, we need
733 // to ensure that we catch any potential projection errors,
734 // and turn them into an explicit negative impl for our type.
dfeec247 735 debug!("Projecting and unifying projection predicate {:?}", predicate);
dc9dc135 736
f9652781 737 match project::poly_project_and_unify_type(select, &obligation.with(p)) {
dc9dc135
XL
738 Err(e) => {
739 debug!(
740 "evaluate_nested_obligations: Unable to unify predicate \
741 '{:?}' '{:?}', bailing out",
742 ty, e
743 );
744 return false;
745 }
f9652781
XL
746 Ok(Err(project::InProgress)) => {
747 debug!("evaluate_nested_obligations: recursive projection predicate");
748 return false;
749 }
750 Ok(Ok(Some(v))) => {
dc9dc135
XL
751 // We only care about sub-obligations
752 // when we started out trying to unify
753 // some inference variables. See the comment above
754 // for more infomration
755 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
756 if !self.evaluate_nested_obligations(
757 ty,
ba9703b0 758 v.into_iter(),
94b46f34
XL
759 computed_preds,
760 fresh_preds,
761 predicates,
762 select,
763 only_projections,
764 ) {
765 return false;
766 }
767 }
dc9dc135 768 }
f9652781
XL
769 Ok(Ok(None)) => {
770 // It's ok not to make progress when have no inference variables -
dc9dc135 771 // in that case, we were only performing unifcation to check if an
60c5eb7d 772 // error occurred (which would indicate that it's impossible for our
dc9dc135
XL
773 // type to implement the auto trait).
774 // However, we should always make progress (either by generating
775 // subobligations or getting an error) when we started off with
776 // inference variables
777 if p.ty().skip_binder().has_infer_types() {
94b46f34
XL
778 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
779 }
780 }
781 }
782 }
5869c6ff 783 ty::PredicateKind::RegionOutlives(binder) => {
29967ef6 784 let binder = bound_predicate.rebind(binder);
dfeec247 785 if select.infcx().region_outlives_predicate(&dummy_cause, binder).is_err() {
94b46f34
XL
786 return false;
787 }
788 }
5869c6ff 789 ty::PredicateKind::TypeOutlives(binder) => {
29967ef6 790 let binder = bound_predicate.rebind(binder);
94b46f34 791 match (
a1dfa0c6
XL
792 binder.no_bound_vars(),
793 binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
94b46f34
XL
794 ) {
795 (None, Some(t_a)) => {
0bf4aa26
XL
796 select.infcx().register_region_obligation_with_cause(
797 t_a,
48663c56 798 select.infcx().tcx.lifetimes.re_static,
0bf4aa26 799 &dummy_cause,
94b46f34
XL
800 );
801 }
802 (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
0bf4aa26
XL
803 select.infcx().register_region_obligation_with_cause(
804 t_a,
805 r_b,
806 &dummy_cause,
94b46f34
XL
807 );
808 }
809 _ => {}
810 };
811 }
5869c6ff 812 ty::PredicateKind::ConstEquate(c1, c2) => {
3dfed10e 813 let evaluate = |c: &'tcx ty::Const<'tcx>| {
cdc7bbd5 814 if let ty::ConstKind::Unevaluated(unevaluated) = c.val {
3dfed10e
XL
815 match select.infcx().const_eval_resolve(
816 obligation.param_env,
cdc7bbd5 817 unevaluated,
3dfed10e
XL
818 Some(obligation.cause.span),
819 ) {
820 Ok(val) => Ok(ty::Const::from_value(select.tcx(), val, c.ty)),
821 Err(err) => Err(err),
822 }
823 } else {
824 Ok(c)
825 }
826 };
827
828 match (evaluate(c1), evaluate(c2)) {
829 (Ok(c1), Ok(c2)) => {
830 match select
831 .infcx()
832 .at(&obligation.cause, obligation.param_env)
833 .eq(c1, c2)
834 {
835 Ok(_) => (),
836 Err(_) => return false,
837 }
838 }
839 _ => return false,
840 }
841 }
a2a8927a
XL
842 // There's not really much we can do with these predicates -
843 // we start out with a `ParamEnv` with no inference variables,
844 // and these don't correspond to adding any new bounds to
845 // the `ParamEnv`.
846 ty::PredicateKind::WellFormed(..)
847 | ty::PredicateKind::ObjectSafe(..)
848 | ty::PredicateKind::ClosureKind(..)
849 | ty::PredicateKind::Subtype(..)
850 | ty::PredicateKind::ConstEvaluatable(..)
851 | ty::PredicateKind::Coerce(..)
852 | ty::PredicateKind::TypeWellFormedFromEnv(..) => {}
94b46f34
XL
853 };
854 }
ba9703b0 855 true
94b46f34
XL
856 }
857
dc9dc135 858 pub fn clean_pred(
94b46f34 859 &self,
dc9dc135
XL
860 infcx: &InferCtxt<'_, 'tcx>,
861 p: ty::Predicate<'tcx>,
862 ) -> ty::Predicate<'tcx> {
94b46f34
XL
863 infcx.freshen(p)
864 }
865}
866
867// Replaces all ReVars in a type with ty::Region's, using the provided map
dc9dc135 868pub struct RegionReplacer<'a, 'tcx> {
94b46f34 869 vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
dc9dc135 870 tcx: TyCtxt<'tcx>,
94b46f34
XL
871}
872
dc9dc135
XL
873impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
874 fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
94b46f34
XL
875 self.tcx
876 }
877
878 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
879 (match r {
5869c6ff 880 ty::ReVar(vid) => self.vid_to_region.get(vid).cloned(),
94b46f34 881 _ => None,
dfeec247
XL
882 })
883 .unwrap_or_else(|| r.super_fold_with(self))
94b46f34
XL
884 }
885}