]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/coherence.rs
New upstream version 1.64.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / coherence.rs
CommitLineData
ba9703b0
XL
1//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on
2//! how this works.
0531ce1d 3//!
ba9703b0
XL
4//! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
5//! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html
1a4d82fc 6
5099ac24 7use crate::infer::outlives::env::OutlivesEnvironment;
923072b8 8use crate::infer::{CombinedSnapshot, InferOk};
9fa01778 9use crate::traits::select::IntercrateAmbiguityCause;
5e7ed085 10use crate::traits::util::impl_subject_and_oblig;
74b04a01 11use crate::traits::SkipLeakCheck;
3c0e092e 12use crate::traits::{
5099ac24 13 self, FulfillmentContext, Normalized, Obligation, ObligationCause, PredicateObligation,
064997fb 14 PredicateObligations, SelectionContext, TraitEngineExt,
3c0e092e 15};
064997fb 16use rustc_data_structures::fx::FxIndexSet;
5e7ed085 17use rustc_errors::Diagnostic;
dfeec247 18use rustc_hir::def_id::{DefId, LOCAL_CRATE};
5e7ed085
FG
19use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
20use rustc_infer::traits::{util, TraitEngine};
5099ac24 21use rustc_middle::traits::specialization_graph::OverlapMode;
923072b8 22use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
ba9703b0 23use rustc_middle::ty::subst::Subst;
064997fb
FG
24use rustc_middle::ty::visit::TypeVisitable;
25use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor};
dfeec247
XL
26use rustc_span::symbol::sym;
27use rustc_span::DUMMY_SP;
5e7ed085 28use std::fmt::Debug;
ba9703b0 29use std::iter;
064997fb 30use std::ops::ControlFlow;
1a4d82fc 31
ff7c6d11
XL
32/// Whether we do the orphan check relative to this crate or
33/// to some remote crate.
34#[derive(Copy, Clone, Debug)]
35enum InCrate {
36 Local,
dfeec247 37 Remote,
ff7c6d11
XL
38}
39
40#[derive(Debug, Copy, Clone)]
41pub enum Conflict {
42 Upstream,
74b04a01 43 Downstream,
ff7c6d11 44}
c34b1796 45
ea8adc8c
XL
46pub struct OverlapResult<'tcx> {
47 pub impl_header: ty::ImplHeader<'tcx>,
064997fb 48 pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause>,
0731742a 49
9fa01778 50 /// `true` if the overlap might've been permitted before the shift
0731742a
XL
51 /// to universes.
52 pub involves_placeholder: bool,
53}
54
5e7ed085 55pub fn add_placeholder_note(err: &mut Diagnostic) {
74b04a01 56 err.note(
0731742a 57 "this behavior recently changed as a result of a bug fix; \
74b04a01
XL
58 see rust-lang/rust#56105 for details",
59 );
ea8adc8c
XL
60}
61
ff7c6d11
XL
62/// If there are types that satisfy both impls, invokes `on_overlap`
63/// with a suitably-freshened `ImplHeader` with those types
64/// substituted. Otherwise, invokes `no_overlap`.
5099ac24 65#[instrument(skip(tcx, skip_leak_check, on_overlap, no_overlap), level = "debug")]
416331ca
XL
66pub fn overlapping_impls<F1, F2, R>(
67 tcx: TyCtxt<'_>,
ff7c6d11
XL
68 impl1_def_id: DefId,
69 impl2_def_id: DefId,
74b04a01 70 skip_leak_check: SkipLeakCheck,
5099ac24 71 overlap_mode: OverlapMode,
ff7c6d11
XL
72 on_overlap: F1,
73 no_overlap: F2,
74) -> R
75where
76 F1: FnOnce(OverlapResult<'_>) -> R,
77 F2: FnOnce() -> R,
1a4d82fc 78{
6a06907d
XL
79 // Before doing expensive operations like entering an inference context, do
80 // a quick check via fast_reject to tell if the impl headers could possibly
81 // unify.
923072b8 82 let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer };
6a06907d
XL
83 let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
84 let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
923072b8
FG
85 let may_overlap = match (impl1_ref, impl2_ref) {
86 (Some(a), Some(b)) => iter::zip(a.substs, b.substs)
87 .all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)),
88 (None, None) => {
89 let self_ty1 = tcx.type_of(impl1_def_id);
90 let self_ty2 = tcx.type_of(impl2_def_id);
91 drcx.types_may_unify(self_ty1, self_ty2)
cdc7bbd5 92 }
923072b8
FG
93 _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
94 };
95
96 if !may_overlap {
6a06907d
XL
97 // Some types involved are definitely different, so the impls couldn't possibly overlap.
98 debug!("overlapping_impls: fast_reject early-exit");
99 return no_overlap();
100 }
1a4d82fc 101
ff7c6d11 102 let overlaps = tcx.infer_ctxt().enter(|infcx| {
74b04a01 103 let selcx = &mut SelectionContext::intercrate(&infcx);
5099ac24 104 overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some()
ff7c6d11
XL
105 });
106
107 if !overlaps {
108 return no_overlap();
109 }
110
111 // In the case where we detect an error, run the check again, but
5e7ed085 112 // this time tracking intercrate ambiguity causes for better
ff7c6d11
XL
113 // diagnostics. (These take time and can lead to false errors.)
114 tcx.infer_ctxt().enter(|infcx| {
74b04a01 115 let selcx = &mut SelectionContext::intercrate(&infcx);
ff7c6d11 116 selcx.enable_tracking_intercrate_ambiguity_causes();
5099ac24
FG
117 on_overlap(
118 overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap(),
119 )
ff7c6d11 120 })
85aaf69f
SL
121}
122
dc9dc135
XL
123fn with_fresh_ty_vars<'cx, 'tcx>(
124 selcx: &mut SelectionContext<'cx, 'tcx>,
125 param_env: ty::ParamEnv<'tcx>,
126 impl_def_id: DefId,
127) -> ty::ImplHeader<'tcx> {
7cac9316
XL
128 let tcx = selcx.tcx();
129 let impl_substs = selcx.infcx().fresh_substs_for_item(DUMMY_SP, impl_def_id);
130
131 let header = ty::ImplHeader {
041b39d2 132 impl_def_id,
04454e1e
FG
133 self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs),
134 trait_ref: tcx.bound_impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)),
0bf4aa26
XL
135 predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates,
136 };
7cac9316
XL
137
138 let Normalized { value: mut header, obligations } =
fc512014 139 traits::normalize(selcx, param_env, ObligationCause::dummy(), header);
7cac9316
XL
140
141 header.predicates.extend(obligations.into_iter().map(|o| o.predicate));
142 header
143}
144
9cc50fc6 145/// Can both impl `a` and impl `b` be satisfied by a common type (including
9fa01778 146/// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls.
dc9dc135
XL
147fn overlap<'cx, 'tcx>(
148 selcx: &mut SelectionContext<'cx, 'tcx>,
74b04a01 149 skip_leak_check: SkipLeakCheck,
5099ac24
FG
150 impl1_def_id: DefId,
151 impl2_def_id: DefId,
152 overlap_mode: OverlapMode,
0731742a 153) -> Option<OverlapResult<'tcx>> {
5099ac24
FG
154 debug!(
155 "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})",
156 impl1_def_id, impl2_def_id, overlap_mode
157 );
c34b1796 158
74b04a01 159 selcx.infcx().probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| {
5e7ed085 160 overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot)
74b04a01 161 })
0731742a
XL
162}
163
a2a8927a 164fn overlap_within_probe<'cx, 'tcx>(
dc9dc135 165 selcx: &mut SelectionContext<'cx, 'tcx>,
5099ac24
FG
166 impl1_def_id: DefId,
167 impl2_def_id: DefId,
168 overlap_mode: OverlapMode,
0731742a
XL
169 snapshot: &CombinedSnapshot<'_, 'tcx>,
170) -> Option<OverlapResult<'tcx>> {
5099ac24 171 let infcx = selcx.infcx();
3c0e092e 172
5099ac24
FG
173 if overlap_mode.use_negative_impl() {
174 if negative_impl(selcx, impl1_def_id, impl2_def_id)
175 || negative_impl(selcx, impl2_def_id, impl1_def_id)
176 {
177 return None;
178 }
3c0e092e
XL
179 }
180
0bf4aa26 181 // For the purposes of this check, we don't bring any placeholder
7cac9316
XL
182 // types into scope; instead, we replace the generic types with
183 // fresh type variables, and hence we do our evaluations in an
184 // empty environment.
0531ce1d 185 let param_env = ty::ParamEnv::empty();
7cac9316 186
5099ac24
FG
187 let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id);
188 let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id);
c34b1796 189
5099ac24
FG
190 let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?;
191 debug!("overlap: unification check succeeded");
85aaf69f 192
5099ac24
FG
193 if overlap_mode.use_implicit_negative() {
194 if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) {
74b04a01
XL
195 return None;
196 }
5099ac24 197 }
85aaf69f 198
5e7ed085
FG
199 // We disable the leak when when creating the `snapshot` by using
200 // `infcx.probe_maybe_disable_leak_check`.
201 if infcx.leak_check(true, snapshot).is_err() {
202 debug!("overlap: leak check failed");
203 return None;
5099ac24
FG
204 }
205
206 let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes();
207 debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes);
208
209 let involves_placeholder =
210 matches!(selcx.infcx().region_constraints_added_in_snapshot(snapshot), Some(true));
211
212 let impl_header = selcx.infcx().resolve_vars_if_possible(impl1_header);
213 Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder })
214}
215
216fn equate_impl_headers<'cx, 'tcx>(
217 selcx: &mut SelectionContext<'cx, 'tcx>,
218 impl1_header: &ty::ImplHeader<'tcx>,
219 impl2_header: &ty::ImplHeader<'tcx>,
220) -> Option<PredicateObligations<'tcx>> {
221 // Do `a` and `b` unify? If not, no overlap.
222 debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header);
223 selcx
224 .infcx()
225 .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
226 .eq_impl_headers(impl1_header, impl2_header)
227 .map(|infer_ok| infer_ok.obligations)
228 .ok()
229}
c34b1796 230
5099ac24
FG
231/// Given impl1 and impl2 check if both impls can be satisfied by a common type (including
232/// where-clauses) If so, return false, otherwise return true, they are disjoint.
233fn implicit_negative<'cx, 'tcx>(
234 selcx: &mut SelectionContext<'cx, 'tcx>,
235 param_env: ty::ParamEnv<'tcx>,
236 impl1_header: &ty::ImplHeader<'tcx>,
237 impl2_header: ty::ImplHeader<'tcx>,
238 obligations: PredicateObligations<'tcx>,
239) -> bool {
3c0e092e
XL
240 // There's no overlap if obligations are unsatisfiable or if the obligation negated is
241 // satisfied.
242 //
243 // For example, given these two impl headers:
244 //
245 // `impl<'a> From<&'a str> for Box<dyn Error>`
246 // `impl<E> From<E> for Box<dyn Error> where E: Error`
247 //
248 // So we have:
249 //
250 // `Box<dyn Error>: From<&'?a str>`
251 // `Box<dyn Error>: From<?E>`
252 //
253 // After equating the two headers:
254 //
255 // `Box<dyn Error> = Box<dyn Error>`
256 // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`.
257 //
258 // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't
259 // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because
260 // at some point an impl for `&'?a str: Error` could be added.
5099ac24
FG
261 debug!(
262 "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})",
263 impl1_header, impl2_header, obligations
264 );
c34b1796 265 let infcx = selcx.infcx();
5099ac24 266 let opt_failing_obligation = impl1_header
dfeec247
XL
267 .predicates
268 .iter()
fc512014 269 .copied()
5099ac24 270 .chain(impl2_header.predicates)
dfeec247
XL
271 .map(|p| infcx.resolve_vars_if_possible(p))
272 .map(|p| Obligation {
273 cause: ObligationCause::dummy(),
274 param_env,
275 recursion_depth: 0,
276 predicate: p,
277 })
278 .chain(obligations)
5099ac24 279 .find(|o| !selcx.predicate_may_hold_fatal(o));
c34b1796
AL
280
281 if let Some(failing_obligation) = opt_failing_obligation {
62682a34 282 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
5099ac24
FG
283 true
284 } else {
285 false
c34b1796 286 }
5099ac24 287}
c34b1796 288
5099ac24
FG
289/// Given impl1 and impl2 check if both impls are never satisfied by a common type (including
290/// where-clauses) If so, return true, they are disjoint and false otherwise.
291fn negative_impl<'cx, 'tcx>(
292 selcx: &mut SelectionContext<'cx, 'tcx>,
293 impl1_def_id: DefId,
294 impl2_def_id: DefId,
295) -> bool {
296 debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id);
297 let tcx = selcx.infcx().tcx;
298
5099ac24
FG
299 // Create an infcx, taking the predicates of impl1 as assumptions:
300 tcx.infer_ctxt().enter(|infcx| {
5e7ed085
FG
301 // create a parameter environment corresponding to a (placeholder) instantiation of impl1
302 let impl_env = tcx.param_env(impl1_def_id);
303 let subject1 = match traits::fully_normalize(
5099ac24
FG
304 &infcx,
305 FulfillmentContext::new(),
306 ObligationCause::dummy(),
5e7ed085
FG
307 impl_env,
308 tcx.impl_subject(impl1_def_id),
5099ac24 309 ) {
5e7ed085
FG
310 Ok(s) => s,
311 Err(err) => bug!("failed to fully normalize {:?}: {:?}", impl1_def_id, err),
5099ac24
FG
312 };
313
314 // Attempt to prove that impl2 applies, given all of the above.
315 let selcx = &mut SelectionContext::new(&infcx);
316 let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id);
5e7ed085
FG
317 let (subject2, obligations) =
318 impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs);
5099ac24 319
064997fb 320 !equate(&infcx, impl_env, subject1, subject2, obligations)
5e7ed085
FG
321 })
322}
5099ac24 323
5e7ed085
FG
324fn equate<'cx, 'tcx>(
325 infcx: &InferCtxt<'cx, 'tcx>,
326 impl_env: ty::ParamEnv<'tcx>,
5e7ed085
FG
327 subject1: ImplSubject<'tcx>,
328 subject2: ImplSubject<'tcx>,
329 obligations: impl Iterator<Item = PredicateObligation<'tcx>>,
330) -> bool {
331 // do the impls unify? If not, not disjoint.
332 let Ok(InferOk { obligations: more_obligations, .. }) =
333 infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2)
334 else {
335 debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2);
336 return true;
337 };
5099ac24 338
5e7ed085
FG
339 let selcx = &mut SelectionContext::new(&infcx);
340 let opt_failing_obligation = obligations
341 .into_iter()
342 .chain(more_obligations)
064997fb 343 .find(|o| negative_impl_exists(selcx, impl_env, o));
5e7ed085
FG
344
345 if let Some(failing_obligation) = opt_failing_obligation {
346 debug!("overlap: obligation unsatisfiable {:?}", failing_obligation);
347 false
348 } else {
349 true
350 }
5099ac24 351}
f035d41b 352
5e7ed085
FG
353/// Try to prove that a negative impl exist for the given obligation and its super predicates.
354#[instrument(level = "debug", skip(selcx))]
5099ac24
FG
355fn negative_impl_exists<'cx, 'tcx>(
356 selcx: &SelectionContext<'cx, 'tcx>,
357 param_env: ty::ParamEnv<'tcx>,
5099ac24
FG
358 o: &PredicateObligation<'tcx>,
359) -> bool {
360 let infcx = &selcx.infcx().fork();
5e7ed085 361
064997fb 362 if resolve_negative_obligation(infcx, param_env, o) {
5e7ed085
FG
363 return true;
364 }
365
366 // Try to prove a negative obligation exists for super predicates
367 for o in util::elaborate_predicates(infcx.tcx, iter::once(o.predicate)) {
064997fb 368 if resolve_negative_obligation(infcx, param_env, &o) {
5e7ed085
FG
369 return true;
370 }
371 }
372
373 false
374}
375
376#[instrument(level = "debug", skip(infcx))]
377fn resolve_negative_obligation<'cx, 'tcx>(
378 infcx: &InferCtxt<'cx, 'tcx>,
379 param_env: ty::ParamEnv<'tcx>,
5e7ed085
FG
380 o: &PredicateObligation<'tcx>,
381) -> bool {
5099ac24 382 let tcx = infcx.tcx;
0731742a 383
5e7ed085
FG
384 let Some(o) = o.flip_polarity(tcx) else {
385 return false;
386 };
0731742a 387
064997fb 388 let mut fulfillment_cx = <dyn TraitEngine<'tcx>>::new(infcx.tcx);
5e7ed085
FG
389 fulfillment_cx.register_predicate_obligation(infcx, o);
390
391 let errors = fulfillment_cx.select_all_or_error(infcx);
392
393 if !errors.is_empty() {
394 return false;
395 }
396
064997fb
FG
397 // FIXME -- also add "assumed to be well formed" types into the `outlives_env`
398 let outlives_env = OutlivesEnvironment::new(param_env);
399 infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env);
5e7ed085 400
064997fb 401 infcx.resolve_regions(&outlives_env).is_empty()
c34b1796
AL
402}
403
dc9dc135
XL
404pub fn trait_ref_is_knowable<'tcx>(
405 tcx: TyCtxt<'tcx>,
406 trait_ref: ty::TraitRef<'tcx>,
407) -> Option<Conflict> {
62682a34 408 debug!("trait_ref_is_knowable(trait_ref={:?})", trait_ref);
ff7c6d11
XL
409 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Remote).is_ok() {
410 // A downstream or cousin crate is allowed to implement some
411 // substitution of this trait-ref.
74b04a01 412 return Some(Conflict::Downstream);
c34b1796
AL
413 }
414
ff7c6d11
XL
415 if trait_ref_is_local_or_fundamental(tcx, trait_ref) {
416 // This is a local or fundamental trait, so future-compatibility
417 // is no concern. We know that downstream/cousin crates are not
418 // allowed to implement a substitution of this trait ref, which
419 // means impls could only come from dependencies of this crate,
420 // which we already know about.
421 return None;
c34b1796
AL
422 }
423
ff7c6d11
XL
424 // This is a remote non-fundamental trait, so if another crate
425 // can be the "final owner" of a substitution of this trait-ref,
426 // they are allowed to implement it future-compatibly.
427 //
428 // However, if we are a final owner, then nobody else can be,
429 // and if we are an intermediate owner, then we don't care
430 // about future-compatibility, which means that we're OK if
431 // we are an owner.
432 if orphan_check_trait_ref(tcx, trait_ref, InCrate::Local).is_ok() {
433 debug!("trait_ref_is_knowable: orphan check passed");
ba9703b0 434 None
ff7c6d11
XL
435 } else {
436 debug!("trait_ref_is_knowable: nonlocal, nonfundamental, unowned");
ba9703b0 437 Some(Conflict::Upstream)
ff7c6d11 438 }
85aaf69f
SL
439}
440
dc9dc135
XL
441pub fn trait_ref_is_local_or_fundamental<'tcx>(
442 tcx: TyCtxt<'tcx>,
443 trait_ref: ty::TraitRef<'tcx>,
444) -> bool {
48663c56 445 trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental)
ea8adc8c
XL
446}
447
1a4d82fc 448pub enum OrphanCheckErr<'tcx> {
e74abb32 449 NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>),
60c5eb7d 450 UncoveredTy(Ty<'tcx>, Option<Ty<'tcx>>),
1a4d82fc
JJ
451}
452
453/// Checks the coherence orphan rules. `impl_def_id` should be the
9fa01778 454/// `DefId` of a trait impl. To pass, either the trait must be local, or else
1a4d82fc
JJ
455/// two conditions must be satisfied:
456///
457/// 1. All type parameters in `Self` must be "covered" by some local type constructor.
458/// 2. Some local type must appear in `Self`.
dfeec247 459pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> {
62682a34 460 debug!("orphan_check({:?})", impl_def_id);
1a4d82fc
JJ
461
462 // We only except this routine to be invoked on implementations
463 // of a trait, not inherent implementations.
c1a9b12d 464 let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
62682a34 465 debug!("orphan_check: trait_ref={:?}", trait_ref);
1a4d82fc
JJ
466
467 // If the *trait* is local to the crate, ok.
e9174d1e 468 if trait_ref.def_id.is_local() {
dfeec247 469 debug!("trait {:?} is local to current crate", trait_ref.def_id);
1a4d82fc
JJ
470 return Ok(());
471 }
472
ff7c6d11 473 orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
c34b1796
AL
474}
475
9fa01778 476/// Checks whether a trait-ref is potentially implementable by a crate.
ff7c6d11
XL
477///
478/// The current rule is that a trait-ref orphan checks in a crate C:
479///
480/// 1. Order the parameters in the trait-ref in subst order - Self first,
0731742a 481/// others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
ff7c6d11
XL
482/// 2. Of these type parameters, there is at least one type parameter
483/// in which, walking the type as a tree, you can reach a type local
484/// to C where all types in-between are fundamental types. Call the
485/// first such parameter the "local key parameter".
0731742a 486/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
ff7c6d11
XL
487/// going through `Box`, which is fundamental.
488/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
489/// the same reason.
490/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
491/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
492/// the local type and the type parameter.
3dfed10e
XL
493/// 3. Before this local type, no generic type parameter of the impl must
494/// be reachable through fundamental types.
495/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
923072b8 496/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
3dfed10e 497/// reachable through the fundamental type `Box`.
ff7c6d11
XL
498/// 4. Every type in the local key parameter not known in C, going
499/// through the parameter's type tree, must appear only as a subtree of
500/// a type local to C, with only fundamental types between the type
501/// local to C and the local key parameter.
0731742a 502/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
ff7c6d11
XL
503/// is bad, because the only local type with `T` as a subtree is
504/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
505/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
0531ce1d 506/// the second occurrence of `T` is not a subtree of *any* local type.
ff7c6d11
XL
507/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
508/// `LocalType<Vec<T>>`, which is local and has no types between it and
509/// the type parameter.
510///
511/// The orphan rules actually serve several different purposes:
512///
0731742a 513/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
ff7c6d11
XL
514/// every type local to one crate is unknown in the other) can't implement
515/// the same trait-ref. This follows because it can be seen that no such
516/// type can orphan-check in 2 such crates.
517///
518/// To check that a local impl follows the orphan rules, we check it in
519/// InCrate::Local mode, using type parameters for the "generic" types.
520///
521/// 2. They ground negative reasoning for coherence. If a user wants to
522/// write both a conditional blanket impl and a specific impl, we need to
523/// make sure they do not overlap. For example, if we write
04454e1e 524/// ```ignore (illustrative)
ff7c6d11
XL
525/// impl<T> IntoIterator for Vec<T>
526/// impl<T: Iterator> IntoIterator for T
527/// ```
528/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
529/// We can observe that this holds in the current crate, but we need to make
530/// sure this will also hold in all unknown crates (both "independent" crates,
531/// which we need for link-safety, and also child crates, because we don't want
532/// child crates to get error for impl conflicts in a *dependency*).
533///
534/// For that, we only allow negative reasoning if, for every assignment to the
535/// inference variables, every unknown crate would get an orphan error if they
536/// try to implement this trait-ref. To check for this, we use InCrate::Remote
537/// mode. That is sound because we already know all the impls from known crates.
538///
f9f354fc 539/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
ff7c6d11
XL
540/// add "non-blanket" impls without breaking negative reasoning in dependent
541/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
542///
543/// For that, we only a allow crate to perform negative reasoning on
f9f354fc 544/// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2).
ff7c6d11
XL
545///
546/// Because we never perform negative reasoning generically (coherence does
547/// not involve type parameters), this can be interpreted as doing the full
548/// orphan check (using InCrate::Local mode), substituting non-local known
549/// types for all inference variables.
550///
551/// This allows for crates to future-compatibly add impls as long as they
552/// can't apply to types with a key parameter in a child crate - applying
553/// the rules, this basically means that every type parameter in the impl
554/// must appear behind a non-fundamental type (because this is not a
555/// type-system requirement, crate owners might also go for "semantic
556/// future-compatibility" involving things such as sealed traits, but
557/// the above requirement is sufficient, and is necessary in "open world"
558/// cases).
559///
560/// Note that this function is never called for types that have both type
561/// parameters and inference variables.
dc9dc135 562fn orphan_check_trait_ref<'tcx>(
e74abb32 563 tcx: TyCtxt<'tcx>,
dc9dc135
XL
564 trait_ref: ty::TraitRef<'tcx>,
565 in_crate: InCrate,
566) -> Result<(), OrphanCheckErr<'tcx>> {
dfeec247 567 debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})", trait_ref, in_crate);
ff7c6d11 568
5099ac24 569 if trait_ref.needs_infer() && trait_ref.needs_subst() {
dfeec247
XL
570 bug!(
571 "can't orphan check a trait ref with both params and inference variables {:?}",
572 trait_ref
573 );
ff7c6d11 574 }
c34b1796 575
064997fb
FG
576 let mut checker = OrphanChecker::new(tcx, in_crate);
577 match trait_ref.visit_with(&mut checker) {
578 ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
579 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => {
580 // Does there exist some local type after the `ParamTy`.
581 checker.search_first_local_ty = true;
582 if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) =
583 trait_ref.visit_with(&mut checker).break_value()
584 {
585 Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty)))
586 } else {
587 Err(OrphanCheckErr::UncoveredTy(ty, None))
ba9703b0 588 }
e74abb32 589 }
064997fb 590 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()),
60c5eb7d 591 }
c34b1796
AL
592}
593
064997fb 594struct OrphanChecker<'tcx> {
a2a8927a 595 tcx: TyCtxt<'tcx>,
a2a8927a 596 in_crate: InCrate,
064997fb
FG
597 in_self_ty: bool,
598 /// Ignore orphan check failures and exclusively search for the first
599 /// local type.
600 search_first_local_ty: bool,
601 non_local_tys: Vec<(Ty<'tcx>, bool)>,
602}
603
604impl<'tcx> OrphanChecker<'tcx> {
605 fn new(tcx: TyCtxt<'tcx>, in_crate: InCrate) -> Self {
606 OrphanChecker {
607 tcx,
608 in_crate,
609 in_self_ty: true,
610 search_first_local_ty: false,
611 non_local_tys: Vec::new(),
dfeec247 612 }
e74abb32 613 }
c34b1796 614
064997fb
FG
615 fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
616 self.non_local_tys.push((t, self.in_self_ty));
617 ControlFlow::CONTINUE
618 }
ba9703b0 619
064997fb
FG
620 fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<OrphanCheckEarlyExit<'tcx>> {
621 if self.search_first_local_ty {
622 ControlFlow::CONTINUE
623 } else {
624 ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t))
ba9703b0 625 }
064997fb 626 }
ba9703b0 627
064997fb
FG
628 fn def_id_is_local(&mut self, def_id: DefId) -> bool {
629 match self.in_crate {
630 InCrate::Local => def_id.is_local(),
631 InCrate::Remote => false,
632 }
633 }
c34b1796
AL
634}
635
064997fb
FG
636enum OrphanCheckEarlyExit<'tcx> {
637 ParamTy(Ty<'tcx>),
638 LocalTy(Ty<'tcx>),
ff7c6d11
XL
639}
640
064997fb
FG
641impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> {
642 type BreakTy = OrphanCheckEarlyExit<'tcx>;
643 fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
644 ControlFlow::CONTINUE
645 }
abe05a73 646
064997fb
FG
647 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
648 let result = match *ty.kind() {
649 ty::Bool
650 | ty::Char
651 | ty::Int(..)
652 | ty::Uint(..)
653 | ty::Float(..)
654 | ty::Str
655 | ty::FnDef(..)
656 | ty::FnPtr(_)
657 | ty::Array(..)
658 | ty::Slice(..)
659 | ty::RawPtr(..)
660 | ty::Never
661 | ty::Tuple(..)
662 | ty::Projection(..) => self.found_non_local_ty(ty),
663
664 ty::Param(..) => self.found_param_ty(ty),
665
666 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate {
667 InCrate::Local => self.found_non_local_ty(ty),
668 // The inference variable might be unified with a local
669 // type in that remote crate.
670 InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
671 },
672
673 // For fundamental types, we just look inside of them.
674 ty::Ref(_, ty, _) => ty.visit_with(self),
675 ty::Adt(def, substs) => {
676 if self.def_id_is_local(def.did()) {
677 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
678 } else if def.is_fundamental() {
679 substs.visit_with(self)
680 } else {
681 self.found_non_local_ty(ty)
682 }
0731742a 683 }
064997fb
FG
684 ty::Foreign(def_id) => {
685 if self.def_id_is_local(def_id) {
686 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
687 } else {
688 self.found_non_local_ty(ty)
689 }
690 }
691 ty::Dynamic(tt, ..) => {
692 let principal = tt.principal().map(|p| p.def_id());
693 if principal.map_or(false, |p| self.def_id_is_local(p)) {
694 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
695 } else {
696 self.found_non_local_ty(ty)
697 }
698 }
699 ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
700 ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) => {
701 self.tcx.sess.delay_span_bug(
702 DUMMY_SP,
703 format!("ty_is_local invoked on closure or generator: {:?}", ty),
704 );
705 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
706 }
707 ty::Opaque(..) => {
708 // This merits some explanation.
709 // Normally, opaque types are not involved when performing
710 // coherence checking, since it is illegal to directly
711 // implement a trait on an opaque type. However, we might
712 // end up looking at an opaque type during coherence checking
713 // if an opaque type gets used within another type (e.g. as
714 // the type of a field) when checking for auto trait or `Sized`
715 // impls. This requires us to decide whether or not an opaque
716 // type should be considered 'local' or not.
717 //
718 // We choose to treat all opaque types as non-local, even
719 // those that appear within the same crate. This seems
720 // somewhat surprising at first, but makes sense when
721 // you consider that opaque types are supposed to hide
722 // the underlying type *within the same crate*. When an
723 // opaque type is used from outside the module
724 // where it is declared, it should be impossible to observe
725 // anything about it other than the traits that it implements.
726 //
727 // The alternative would be to look at the underlying type
728 // to determine whether or not the opaque type itself should
729 // be considered local. However, this could make it a breaking change
730 // to switch the underlying ('defining') type from a local type
731 // to a remote type. This would violate the rule that opaque
732 // types should be completely opaque apart from the traits
733 // that they implement, so we don't use this behavior.
734 self.found_non_local_ty(ty)
735 }
736 };
737 // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
738 // the first type we visit is always the self type.
739 self.in_self_ty = false;
740 result
741 }
1a4d82fc 742
064997fb
FG
743 // FIXME: Constants should participate in orphan checking.
744 fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
745 ControlFlow::CONTINUE
1a4d82fc
JJ
746 }
747}