]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/mod.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / mod.rs
CommitLineData
ba9703b0
XL
1//! Trait Resolution. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html
4
ba9703b0 5pub mod auto_trait;
f9f354fc 6mod chalk_fulfill;
ba9703b0
XL
7pub mod codegen;
8mod coherence;
5869c6ff 9pub mod const_evaluatable;
ba9703b0
XL
10mod engine;
11pub mod error_reporting;
12mod fulfill;
13pub mod misc;
14mod object_safety;
15mod on_unimplemented;
16mod project;
17pub mod query;
c295e0f8 18pub(crate) mod relationships;
ba9703b0
XL
19mod select;
20mod specialize;
21mod structural_match;
22mod util;
23pub mod wf;
24
25use crate::infer::outlives::env::OutlivesEnvironment;
26use crate::infer::{InferCtxt, RegionckMode, TyCtxtInferExt};
27use crate::traits::error_reporting::InferCtxtExt as _;
28use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
ee023bcb 29use rustc_errors::ErrorGuaranteed;
ba9703b0
XL
30use rustc_hir as hir;
31use rustc_hir::def_id::DefId;
94222f64 32use rustc_hir::lang_items::LangItem;
ba9703b0
XL
33use rustc_middle::ty::fold::TypeFoldable;
34use rustc_middle::ty::subst::{InternalSubsts, SubstsRef};
f9f354fc 35use rustc_middle::ty::{
a2a8927a 36 self, GenericParamDefKind, ToPredicate, Ty, TyCtxt, VtblEntry, COMMON_VTABLE_ENTRIES,
f9f354fc 37};
94222f64
XL
38use rustc_span::{sym, Span};
39use smallvec::SmallVec;
ba9703b0
XL
40
41use std::fmt::Debug;
94222f64 42use std::ops::ControlFlow;
ba9703b0
XL
43
44pub use self::FulfillmentErrorCode::*;
f035d41b 45pub use self::ImplSource::*;
ba9703b0
XL
46pub use self::ObligationCauseCode::*;
47pub use self::SelectionError::*;
ba9703b0
XL
48
49pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
50pub use self::coherence::{OrphanCheckErr, OverlapResult};
51pub use self::engine::TraitEngineExt;
52pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
53pub use self::object_safety::astconv_object_safety_violations;
54pub use self::object_safety::is_vtable_safe_method;
55pub use self::object_safety::MethodViolationCode;
56pub use self::object_safety::ObjectSafetyViolation;
57pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
f9652781 58pub use self::project::{normalize, normalize_projection_type, normalize_to};
ba9703b0
XL
59pub use self::select::{EvaluationCache, SelectionCache, SelectionContext};
60pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
61pub use self::specialize::specialization_graph::FutureCompatOverlapError;
62pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
63pub use self::specialize::{specialization_graph, translate_substs, OverlapError};
64pub use self::structural_match::search_for_structural_match_violation;
ba9703b0 65pub use self::structural_match::NonStructuralMatchTy;
c295e0f8 66pub use self::util::{
3c0e092e
XL
67 elaborate_obligations, elaborate_predicates, elaborate_predicates_with_span,
68 elaborate_trait_ref, elaborate_trait_refs,
c295e0f8 69};
ba9703b0
XL
70pub use self::util::{expand_trait_aliases, TraitAliasExpander};
71pub use self::util::{
72 get_vtable_index_of_object_method, impl_item_is_final, predicate_for_trait_def, upcast_choices,
73};
74pub use self::util::{
6a06907d
XL
75 supertrait_def_ids, supertraits, transitive_bounds, transitive_bounds_that_define_assoc_type,
76 SupertraitDefIds, Supertraits,
ba9703b0
XL
77};
78
f9f354fc
XL
79pub use self::chalk_fulfill::FulfillmentContext as ChalkFulfillmentContext;
80
ba9703b0
XL
81pub use rustc_infer::traits::*;
82
83/// Whether to skip the leak check, as part of a future compatibility warning step.
3c0e092e
XL
84///
85/// The "default" for skip-leak-check corresponds to the current
86/// behavior (do not skip the leak check) -- not the behavior we are
87/// transitioning into.
88#[derive(Copy, Clone, PartialEq, Eq, Debug, Default)]
ba9703b0
XL
89pub enum SkipLeakCheck {
90 Yes,
3c0e092e 91 #[default]
ba9703b0
XL
92 No,
93}
94
95impl SkipLeakCheck {
96 fn is_yes(self) -> bool {
97 self == SkipLeakCheck::Yes
98 }
99}
100
ba9703b0
XL
101/// The mode that trait queries run in.
102#[derive(Copy, Clone, PartialEq, Eq, Debug)]
103pub enum TraitQueryMode {
fc512014
XL
104 /// Standard/un-canonicalized queries get accurate
105 /// spans etc. passed in and hence can do reasonable
106 /// error reporting on their own.
ba9703b0 107 Standard,
fc512014
XL
108 /// Canonicalized queries get dummy spans and hence
109 /// must generally propagate errors to
110 /// pre-canonicalization callsites.
ba9703b0
XL
111 Canonical,
112}
113
114/// Creates predicate obligations from the generic bounds.
115pub fn predicates_for_generics<'tcx>(
116 cause: ObligationCause<'tcx>,
117 param_env: ty::ParamEnv<'tcx>,
118 generic_bounds: ty::InstantiatedPredicates<'tcx>,
119) -> impl Iterator<Item = PredicateObligation<'tcx>> {
120 util::predicates_for_generics(cause, 0, param_env, generic_bounds)
121}
122
123/// Determines whether the type `ty` is known to meet `bound` and
124/// returns true if so. Returns false if `ty` either does not meet
125/// `bound` or is not known to meet bound (note that this is
126/// conservative towards *no impl*, which is the opposite of the
127/// `evaluate` methods).
128pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
129 infcx: &InferCtxt<'a, 'tcx>,
130 param_env: ty::ParamEnv<'tcx>,
131 ty: Ty<'tcx>,
132 def_id: DefId,
133 span: Span,
134) -> bool {
135 debug!(
136 "type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
137 ty,
138 infcx.tcx.def_path_str(def_id)
139 );
140
c295e0f8
XL
141 let trait_ref =
142 ty::Binder::dummy(ty::TraitRef { def_id, substs: infcx.tcx.mk_substs_trait(ty, &[]) });
ba9703b0
XL
143 let obligation = Obligation {
144 param_env,
145 cause: ObligationCause::misc(span, hir::CRATE_HIR_ID),
146 recursion_depth: 0,
f9f354fc 147 predicate: trait_ref.without_const().to_predicate(infcx.tcx),
ba9703b0
XL
148 };
149
150 let result = infcx.predicate_must_hold_modulo_regions(&obligation);
151 debug!(
152 "type_known_to_meet_ty={:?} bound={} => {:?}",
153 ty,
154 infcx.tcx.def_path_str(def_id),
155 result
156 );
157
158 if result && ty.has_infer_types_or_consts() {
159 // Because of inference "guessing", selection can sometimes claim
160 // to succeed while the success requires a guess. To ensure
161 // this function's result remains infallible, we must confirm
162 // that guess. While imperfect, I believe this is sound.
163
164 // The handling of regions in this area of the code is terrible,
165 // see issue #29149. We should be able to improve on this with
166 // NLL.
167 let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
168
169 // We can use a dummy node-id here because we won't pay any mind
170 // to region obligations that arise (there shouldn't really be any
171 // anyhow).
172 let cause = ObligationCause::misc(span, hir::CRATE_HIR_ID);
173
174 fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
175
176 // Note: we only assume something is `Copy` if we can
177 // *definitively* show that it implements `Copy`. Otherwise,
178 // assume it is move; linear is always ok.
3c0e092e
XL
179 match fulfill_cx.select_all_or_error(infcx).as_slice() {
180 [] => {
ba9703b0
XL
181 debug!(
182 "type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
183 ty,
184 infcx.tcx.def_path_str(def_id)
185 );
186 true
187 }
3c0e092e 188 errors => {
ba9703b0 189 debug!(
3c0e092e
XL
190 ?ty,
191 bound = %infcx.tcx.def_path_str(def_id),
192 ?errors,
193 "type_known_to_meet_bound_modulo_regions"
ba9703b0
XL
194 );
195 false
196 }
197 }
198 } else {
199 result
200 }
201}
202
203fn do_normalize_predicates<'tcx>(
204 tcx: TyCtxt<'tcx>,
205 region_context: DefId,
206 cause: ObligationCause<'tcx>,
207 elaborated_env: ty::ParamEnv<'tcx>,
208 predicates: Vec<ty::Predicate<'tcx>>,
ee023bcb 209) -> Result<Vec<ty::Predicate<'tcx>>, ErrorGuaranteed> {
ba9703b0
XL
210 debug!(
211 "do_normalize_predicates(predicates={:?}, region_context={:?}, cause={:?})",
212 predicates, region_context, cause,
213 );
214 let span = cause.span;
215 tcx.infer_ctxt().enter(|infcx| {
216 // FIXME. We should really... do something with these region
217 // obligations. But this call just continues the older
218 // behavior (i.e., doesn't cause any new bugs), and it would
219 // take some further refactoring to actually solve them. In
220 // particular, we would have to handle implied bounds
221 // properly, and that code is currently largely confined to
222 // regionck (though I made some efforts to extract it
223 // out). -nmatsakis
224 //
225 // @arielby: In any case, these obligations are checked
226 // by wfcheck anyway, so I'm not sure we have to check
227 // them here too, and we will remove this function when
228 // we move over to lazy normalization *anyway*.
229 let fulfill_cx = FulfillmentContext::new_ignoring_regions();
230 let predicates =
fc512014 231 match fully_normalize(&infcx, fulfill_cx, cause, elaborated_env, predicates) {
ba9703b0
XL
232 Ok(predicates) => predicates,
233 Err(errors) => {
ee023bcb
FG
234 let reported = infcx.report_fulfillment_errors(&errors, None, false);
235 return Err(reported);
ba9703b0
XL
236 }
237 };
238
239 debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
240
ba9703b0
XL
241 // We can use the `elaborated_env` here; the region code only
242 // cares about declarations like `'a: 'b`.
243 let outlives_env = OutlivesEnvironment::new(elaborated_env);
244
245 infcx.resolve_regions_and_report_errors(
246 region_context,
ba9703b0
XL
247 &outlives_env,
248 RegionckMode::default(),
249 );
250
fc512014 251 let predicates = match infcx.fully_resolve(predicates) {
ba9703b0
XL
252 Ok(predicates) => predicates,
253 Err(fixup_err) => {
254 // If we encounter a fixup error, it means that some type
255 // variable wound up unconstrained. I actually don't know
256 // if this can happen, and I certainly don't expect it to
257 // happen often, but if it did happen it probably
258 // represents a legitimate failure due to some kind of
259 // unconstrained variable, and it seems better not to ICE,
260 // all things considered.
ee023bcb
FG
261 let reported = tcx.sess.span_err(span, &fixup_err.to_string());
262 return Err(reported);
ba9703b0
XL
263 }
264 };
265 if predicates.needs_infer() {
ee023bcb
FG
266 let reported = tcx
267 .sess
268 .delay_span_bug(span, "encountered inference variables after `fully_resolve`");
269 Err(reported)
ba9703b0
XL
270 } else {
271 Ok(predicates)
272 }
273 })
274}
275
276// FIXME: this is gonna need to be removed ...
277/// Normalizes the parameter environment, reporting errors if they occur.
278pub fn normalize_param_env_or_error<'tcx>(
279 tcx: TyCtxt<'tcx>,
280 region_context: DefId,
281 unnormalized_env: ty::ParamEnv<'tcx>,
282 cause: ObligationCause<'tcx>,
283) -> ty::ParamEnv<'tcx> {
284 // I'm not wild about reporting errors here; I'd prefer to
285 // have the errors get reported at a defined place (e.g.,
286 // during typeck). Instead I have all parameter
287 // environments, in effect, going through this function
288 // and hence potentially reporting errors. This ensures of
289 // course that we never forget to normalize (the
290 // alternative seemed like it would involve a lot of
291 // manual invocations of this fn -- and then we'd have to
292 // deal with the errors at each of those sites).
293 //
294 // In any case, in practice, typeck constructs all the
295 // parameter environments once for every fn as it goes,
5099ac24 296 // and errors will get reported then; so outside of type inference we
ba9703b0
XL
297 // can be sure that no errors should occur.
298
299 debug!(
300 "normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
301 region_context, unnormalized_env, cause
302 );
303
304 let mut predicates: Vec<_> =
f035d41b 305 util::elaborate_predicates(tcx, unnormalized_env.caller_bounds().into_iter())
ba9703b0
XL
306 .map(|obligation| obligation.predicate)
307 .collect();
308
309 debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates);
310
a2a8927a
XL
311 let elaborated_env = ty::ParamEnv::new(
312 tcx.intern_predicates(&predicates),
313 unnormalized_env.reveal(),
314 unnormalized_env.constness(),
315 );
ba9703b0
XL
316
317 // HACK: we are trying to normalize the param-env inside *itself*. The problem is that
318 // normalization expects its param-env to be already normalized, which means we have
319 // a circularity.
320 //
321 // The way we handle this is by normalizing the param-env inside an unnormalized version
322 // of the param-env, which means that if the param-env contains unnormalized projections,
323 // we'll have some normalization failures. This is unfortunate.
324 //
325 // Lazy normalization would basically handle this by treating just the
326 // normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
327 //
328 // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
329 // types, so to make the situation less bad, we normalize all the predicates *but*
330 // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
331 // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
332 //
333 // This works fairly well because trait matching does not actually care about param-env
334 // TypeOutlives predicates - these are normally used by regionck.
335 let outlives_predicates: Vec<_> = predicates
5869c6ff
XL
336 .drain_filter(|predicate| {
337 matches!(predicate.kind().skip_binder(), ty::PredicateKind::TypeOutlives(..))
ba9703b0
XL
338 })
339 .collect();
340
341 debug!(
342 "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
343 predicates, outlives_predicates
344 );
ee023bcb 345 let Ok(non_outlives_predicates) = do_normalize_predicates(
ba9703b0
XL
346 tcx,
347 region_context,
348 cause.clone(),
349 elaborated_env,
350 predicates,
ee023bcb 351 ) else {
ba9703b0 352 // An unnormalized env is better than nothing.
ee023bcb
FG
353 debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
354 return elaborated_env;
ba9703b0
XL
355 };
356
357 debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
358
359 // Not sure whether it is better to include the unnormalized TypeOutlives predicates
360 // here. I believe they should not matter, because we are ignoring TypeOutlives param-env
361 // predicates here anyway. Keeping them here anyway because it seems safer.
362 let outlives_env: Vec<_> =
363 non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
a2a8927a
XL
364 let outlives_env = ty::ParamEnv::new(
365 tcx.intern_predicates(&outlives_env),
366 unnormalized_env.reveal(),
367 unnormalized_env.constness(),
368 );
ee023bcb 369 let Ok(outlives_predicates) = do_normalize_predicates(
ba9703b0
XL
370 tcx,
371 region_context,
372 cause,
373 outlives_env,
374 outlives_predicates,
ee023bcb 375 ) else {
ba9703b0 376 // An unnormalized env is better than nothing.
ee023bcb
FG
377 debug!("normalize_param_env_or_error: errored resolving outlives predicates");
378 return elaborated_env;
ba9703b0
XL
379 };
380 debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
381
382 let mut predicates = non_outlives_predicates;
383 predicates.extend(outlives_predicates);
384 debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
a2a8927a
XL
385 ty::ParamEnv::new(
386 tcx.intern_predicates(&predicates),
387 unnormalized_env.reveal(),
388 unnormalized_env.constness(),
389 )
ba9703b0
XL
390}
391
392pub fn fully_normalize<'a, 'tcx, T>(
393 infcx: &InferCtxt<'a, 'tcx>,
394 mut fulfill_cx: FulfillmentContext<'tcx>,
395 cause: ObligationCause<'tcx>,
396 param_env: ty::ParamEnv<'tcx>,
fc512014 397 value: T,
ba9703b0
XL
398) -> Result<T, Vec<FulfillmentError<'tcx>>>
399where
400 T: TypeFoldable<'tcx>,
401{
402 debug!("fully_normalize_with_fulfillcx(value={:?})", value);
403 let selcx = &mut SelectionContext::new(infcx);
404 let Normalized { value: normalized_value, obligations } =
405 project::normalize(selcx, param_env, cause, value);
406 debug!(
407 "fully_normalize: normalized_value={:?} obligations={:?}",
408 normalized_value, obligations
409 );
410 for obligation in obligations {
411 fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
412 }
413
414 debug!("fully_normalize: select_all_or_error start");
3c0e092e
XL
415 let errors = fulfill_cx.select_all_or_error(infcx);
416 if !errors.is_empty() {
417 return Err(errors);
418 }
ba9703b0 419 debug!("fully_normalize: select_all_or_error complete");
fc512014 420 let resolved_value = infcx.resolve_vars_if_possible(normalized_value);
ba9703b0
XL
421 debug!("fully_normalize: resolved_value={:?}", resolved_value);
422 Ok(resolved_value)
423}
424
3dfed10e
XL
425/// Normalizes the predicates and checks whether they hold in an empty environment. If this
426/// returns true, then either normalize encountered an error or one of the predicates did not
427/// hold. Used when creating vtables to check for unsatisfiable methods.
428pub fn impossible_predicates<'tcx>(
ba9703b0
XL
429 tcx: TyCtxt<'tcx>,
430 predicates: Vec<ty::Predicate<'tcx>>,
431) -> bool {
3dfed10e 432 debug!("impossible_predicates(predicates={:?})", predicates);
ba9703b0
XL
433
434 let result = tcx.infer_ctxt().enter(|infcx| {
435 let param_env = ty::ParamEnv::reveal_all();
436 let mut selcx = SelectionContext::new(&infcx);
437 let mut fulfill_cx = FulfillmentContext::new();
438 let cause = ObligationCause::dummy();
439 let Normalized { value: predicates, obligations } =
fc512014 440 normalize(&mut selcx, param_env, cause.clone(), predicates);
ba9703b0
XL
441 for obligation in obligations {
442 fulfill_cx.register_predicate_obligation(&infcx, obligation);
443 }
444 for predicate in predicates {
445 let obligation = Obligation::new(cause.clone(), param_env, predicate);
446 fulfill_cx.register_predicate_obligation(&infcx, obligation);
447 }
448
3c0e092e
XL
449 let errors = fulfill_cx.select_all_or_error(&infcx);
450
451 !errors.is_empty()
ba9703b0 452 });
fc512014 453 debug!("impossible_predicates = {:?}", result);
ba9703b0
XL
454 result
455}
456
3dfed10e 457fn subst_and_check_impossible_predicates<'tcx>(
ba9703b0
XL
458 tcx: TyCtxt<'tcx>,
459 key: (DefId, SubstsRef<'tcx>),
460) -> bool {
3dfed10e 461 debug!("subst_and_check_impossible_predicates(key={:?})", key);
ba9703b0 462
3dfed10e 463 let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
5099ac24 464 predicates.retain(|predicate| !predicate.needs_subst());
3dfed10e 465 let result = impossible_predicates(tcx, predicates);
ba9703b0 466
3dfed10e 467 debug!("subst_and_check_impossible_predicates(key={:?}) = {:?}", key, result);
ba9703b0
XL
468 result
469}
470
94222f64
XL
471#[derive(Clone, Debug)]
472enum VtblSegment<'tcx> {
473 MetadataDSA,
474 TraitOwnEntries { trait_ref: ty::PolyTraitRef<'tcx>, emit_vptr: bool },
475}
476
477/// Prepare the segments for a vtable
478fn prepare_vtable_segments<'tcx, T>(
479 tcx: TyCtxt<'tcx>,
480 trait_ref: ty::PolyTraitRef<'tcx>,
481 mut segment_visitor: impl FnMut(VtblSegment<'tcx>) -> ControlFlow<T>,
482) -> Option<T> {
483 // The following constraints holds for the final arrangement.
484 // 1. The whole virtual table of the first direct super trait is included as the
485 // the prefix. If this trait doesn't have any super traits, then this step
486 // consists of the dsa metadata.
487 // 2. Then comes the proper pointer metadata(vptr) and all own methods for all
488 // other super traits except those already included as part of the first
489 // direct super trait virtual table.
490 // 3. finally, the own methods of this trait.
491
492 // This has the advantage that trait upcasting to the first direct super trait on each level
493 // is zero cost, and to another trait includes only replacing the pointer with one level indirection,
494 // while not using too much extra memory.
495
496 // For a single inheritance relationship like this,
497 // D --> C --> B --> A
498 // The resulting vtable will consists of these segments:
499 // DSA, A, B, C, D
500
501 // For a multiple inheritance relationship like this,
502 // D --> C --> A
503 // \-> B
504 // The resulting vtable will consists of these segments:
505 // DSA, A, B, B-vptr, C, D
506
507 // For a diamond inheritance relationship like this,
508 // D --> B --> A
509 // \-> C -/
510 // The resulting vtable will consists of these segments:
511 // DSA, A, B, C, C-vptr, D
512
513 // For a more complex inheritance relationship like this:
514 // O --> G --> C --> A
515 // \ \ \-> B
516 // | |-> F --> D
517 // | \-> E
518 // |-> N --> J --> H
519 // \ \-> I
520 // |-> M --> K
521 // \-> L
522 // The resulting vtable will consists of these segments:
523 // DSA, A, B, B-vptr, C, D, D-vptr, E, E-vptr, F, F-vptr, G,
524 // H, H-vptr, I, I-vptr, J, J-vptr, K, K-vptr, L, L-vptr, M, M-vptr,
525 // N, N-vptr, O
526
527 // emit dsa segment first.
528 if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::MetadataDSA) {
529 return Some(v);
530 }
531
532 let mut emit_vptr_on_new_entry = false;
533 let mut visited = util::PredicateSet::new(tcx);
534 let predicate = trait_ref.without_const().to_predicate(tcx);
535 let mut stack: SmallVec<[(ty::PolyTraitRef<'tcx>, _, _); 5]> =
536 smallvec![(trait_ref, emit_vptr_on_new_entry, None)];
537 visited.insert(predicate);
538
539 // the main traversal loop:
540 // basically we want to cut the inheritance directed graph into a few non-overlapping slices of nodes
ee023bcb
FG
541 // that each node is emitted after all its descendents have been emitted.
542 // so we convert the directed graph into a tree by skipping all previously visited nodes using a visited set.
94222f64
XL
543 // this is done on the fly.
544 // Each loop run emits a slice - it starts by find a "childless" unvisited node, backtracking upwards, and it
545 // stops after it finds a node that has a next-sibling node.
546 // This next-sibling node will used as the starting point of next slice.
547
548 // Example:
549 // For a diamond inheritance relationship like this,
550 // D#1 --> B#0 --> A#0
551 // \-> C#1 -/
552
553 // Starting point 0 stack [D]
554 // Loop run #0: Stack after diving in is [D B A], A is "childless"
555 // after this point, all newly visited nodes won't have a vtable that equals to a prefix of this one.
ee023bcb 556 // Loop run #0: Emitting the slice [B A] (in reverse order), B has a next-sibling node, so this slice stops here.
94222f64
XL
557 // Loop run #0: Stack after exiting out is [D C], C is the next starting point.
558 // Loop run #1: Stack after diving in is [D C], C is "childless", since its child A is skipped(already emitted).
ee023bcb 559 // Loop run #1: Emitting the slice [D C] (in reverse order). No one has a next-sibling node.
94222f64
XL
560 // Loop run #1: Stack after exiting out is []. Now the function exits.
561
562 loop {
563 // dive deeper into the stack, recording the path
564 'diving_in: loop {
565 if let Some((inner_most_trait_ref, _, _)) = stack.last() {
566 let inner_most_trait_ref = *inner_most_trait_ref;
567 let mut direct_super_traits_iter = tcx
568 .super_predicates_of(inner_most_trait_ref.def_id())
569 .predicates
570 .into_iter()
571 .filter_map(move |(pred, _)| {
a2a8927a 572 pred.subst_supertrait(tcx, &inner_most_trait_ref).to_opt_poly_trait_pred()
94222f64
XL
573 });
574
575 'diving_in_skip_visited_traits: loop {
576 if let Some(next_super_trait) = direct_super_traits_iter.next() {
577 if visited.insert(next_super_trait.to_predicate(tcx)) {
a2a8927a
XL
578 // We're throwing away potential constness of super traits here.
579 // FIXME: handle ~const super traits
580 let next_super_trait = next_super_trait.map_bound(|t| t.trait_ref);
94222f64 581 stack.push((
a2a8927a 582 next_super_trait,
94222f64
XL
583 emit_vptr_on_new_entry,
584 Some(direct_super_traits_iter),
585 ));
586 break 'diving_in_skip_visited_traits;
587 } else {
588 continue 'diving_in_skip_visited_traits;
589 }
590 } else {
591 break 'diving_in;
592 }
593 }
594 }
595 }
596
597 // Other than the left-most path, vptr should be emitted for each trait.
598 emit_vptr_on_new_entry = true;
599
600 // emit innermost item, move to next sibling and stop there if possible, otherwise jump to outer level.
601 'exiting_out: loop {
602 if let Some((inner_most_trait_ref, emit_vptr, siblings_opt)) = stack.last_mut() {
603 if let ControlFlow::Break(v) = (segment_visitor)(VtblSegment::TraitOwnEntries {
604 trait_ref: *inner_most_trait_ref,
605 emit_vptr: *emit_vptr,
606 }) {
607 return Some(v);
608 }
609
610 'exiting_out_skip_visited_traits: loop {
611 if let Some(siblings) = siblings_opt {
612 if let Some(next_inner_most_trait_ref) = siblings.next() {
613 if visited.insert(next_inner_most_trait_ref.to_predicate(tcx)) {
a2a8927a
XL
614 // We're throwing away potential constness of super traits here.
615 // FIXME: handle ~const super traits
616 let next_inner_most_trait_ref =
617 next_inner_most_trait_ref.map_bound(|t| t.trait_ref);
618 *inner_most_trait_ref = next_inner_most_trait_ref;
94222f64
XL
619 *emit_vptr = emit_vptr_on_new_entry;
620 break 'exiting_out;
621 } else {
622 continue 'exiting_out_skip_visited_traits;
623 }
624 }
625 }
626 stack.pop();
627 continue 'exiting_out;
628 }
629 }
630 // all done
631 return None;
632 }
633 }
634}
635
636fn dump_vtable_entries<'tcx>(
637 tcx: TyCtxt<'tcx>,
638 sp: Span,
639 trait_ref: ty::PolyTraitRef<'tcx>,
640 entries: &[VtblEntry<'tcx>],
641) {
c295e0f8 642 let msg = format!("vtable entries for `{}`: {:#?}", trait_ref, entries);
94222f64
XL
643 tcx.sess.struct_span_err(sp, &msg).emit();
644}
645
c295e0f8
XL
646fn own_existential_vtable_entries<'tcx>(
647 tcx: TyCtxt<'tcx>,
648 trait_ref: ty::PolyExistentialTraitRef<'tcx>,
649) -> &'tcx [DefId] {
650 let trait_methods = tcx
651 .associated_items(trait_ref.def_id())
652 .in_definition_order()
653 .filter(|item| item.kind == ty::AssocKind::Fn);
654 // Now list each method's DefId (for within its trait).
655 let own_entries = trait_methods.filter_map(move |trait_method| {
656 debug!("own_existential_vtable_entry: trait_method={:?}", trait_method);
657 let def_id = trait_method.def_id;
658
659 // Some methods cannot be called on an object; skip those.
660 if !is_vtable_safe_method(tcx, trait_ref.def_id(), &trait_method) {
661 debug!("own_existential_vtable_entry: not vtable safe");
662 return None;
663 }
664
665 Some(def_id)
666 });
667
668 tcx.arena.alloc_from_iter(own_entries.into_iter())
669}
670
ba9703b0
XL
671/// Given a trait `trait_ref`, iterates the vtable entries
672/// that come from `trait_ref`, including its supertraits.
136023e0 673fn vtable_entries<'tcx>(
ba9703b0
XL
674 tcx: TyCtxt<'tcx>,
675 trait_ref: ty::PolyTraitRef<'tcx>,
136023e0
XL
676) -> &'tcx [VtblEntry<'tcx>] {
677 debug!("vtable_entries({:?})", trait_ref);
678
94222f64 679 let mut entries = vec![];
ba9703b0 680
94222f64
XL
681 let vtable_segment_callback = |segment| -> ControlFlow<()> {
682 match segment {
683 VtblSegment::MetadataDSA => {
684 entries.extend(COMMON_VTABLE_ENTRIES);
685 }
686 VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
c295e0f8
XL
687 let existential_trait_ref = trait_ref
688 .map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
689
690 // Lookup the shape of vtable for the trait.
691 let own_existential_entries =
692 tcx.own_existential_vtable_entries(existential_trait_ref);
693
694 let own_entries = own_existential_entries.iter().copied().map(|def_id| {
695 debug!("vtable_entries: trait_method={:?}", def_id);
94222f64
XL
696
697 // The method may have some early-bound lifetimes; add regions for those.
698 let substs = trait_ref.map_bound(|trait_ref| {
699 InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
700 GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
701 GenericParamDefKind::Type { .. }
702 | GenericParamDefKind::Const { .. } => {
703 trait_ref.substs[param.index as usize]
704 }
705 })
706 });
707
708 // The trait type may have higher-ranked lifetimes in it;
709 // erase them if they appear, so that we get the type
710 // at some particular call site.
711 let substs = tcx
712 .normalize_erasing_late_bound_regions(ty::ParamEnv::reveal_all(), substs);
713
714 // It's possible that the method relies on where-clauses that
715 // do not hold for this particular set of type parameters.
716 // Note that this method could then never be called, so we
717 // do not want to try and codegen it, in that case (see #23435).
718 let predicates = tcx.predicates_of(def_id).instantiate_own(tcx, substs);
719 if impossible_predicates(tcx, predicates.predicates) {
720 debug!("vtable_entries: predicates do not hold");
721 return VtblEntry::Vacant;
722 }
723
724 let instance = ty::Instance::resolve_for_vtable(
725 tcx,
726 ty::ParamEnv::reveal_all(),
727 def_id,
728 substs,
729 )
730 .expect("resolution failed during building vtable representation");
731 VtblEntry::Method(instance)
136023e0
XL
732 });
733
94222f64
XL
734 entries.extend(own_entries);
735
736 if emit_vptr {
737 entries.push(VtblEntry::TraitVPtr(trait_ref));
136023e0 738 }
94222f64
XL
739 }
740 }
ba9703b0 741
94222f64
XL
742 ControlFlow::Continue(())
743 };
744
745 let _ = prepare_vtable_segments(tcx, trait_ref, vtable_segment_callback);
136023e0 746
94222f64
XL
747 if tcx.has_attr(trait_ref.def_id(), sym::rustc_dump_vtable) {
748 let sp = tcx.def_span(trait_ref.def_id());
749 dump_vtable_entries(tcx, sp, trait_ref, &entries);
750 }
751
752 tcx.arena.alloc_from_iter(entries.into_iter())
ba9703b0
XL
753}
754
136023e0
XL
755/// Find slot base for trait methods within vtable entries of another trait
756fn vtable_trait_first_method_offset<'tcx>(
f9f354fc
XL
757 tcx: TyCtxt<'tcx>,
758 key: (
136023e0
XL
759 ty::PolyTraitRef<'tcx>, // trait_to_be_found
760 ty::PolyTraitRef<'tcx>, // trait_owning_vtable
f9f354fc 761 ),
136023e0
XL
762) -> usize {
763 let (trait_to_be_found, trait_owning_vtable) = key;
764
3c0e092e
XL
765 // #90177
766 let trait_to_be_found_erased = tcx.erase_regions(trait_to_be_found);
767
94222f64
XL
768 let vtable_segment_callback = {
769 let mut vtable_base = 0;
136023e0 770
94222f64
XL
771 move |segment| {
772 match segment {
773 VtblSegment::MetadataDSA => {
774 vtable_base += COMMON_VTABLE_ENTRIES.len();
775 }
776 VtblSegment::TraitOwnEntries { trait_ref, emit_vptr } => {
3c0e092e 777 if tcx.erase_regions(trait_ref) == trait_to_be_found_erased {
94222f64
XL
778 return ControlFlow::Break(vtable_base);
779 }
780 vtable_base += util::count_own_vtable_entries(tcx, trait_ref);
781 if emit_vptr {
782 vtable_base += 1;
783 }
784 }
785 }
786 ControlFlow::Continue(())
787 }
788 };
789
790 if let Some(vtable_base) =
791 prepare_vtable_segments(tcx, trait_owning_vtable, vtable_segment_callback)
792 {
793 vtable_base
794 } else {
795 bug!("Failed to find info for expected trait in vtable");
796 }
797}
798
799/// Find slot offset for trait vptr within vtable entries of another trait
a2a8927a 800pub fn vtable_trait_upcasting_coercion_new_vptr_slot<'tcx>(
94222f64
XL
801 tcx: TyCtxt<'tcx>,
802 key: (
803 Ty<'tcx>, // trait object type whose trait owning vtable
804 Ty<'tcx>, // trait object for supertrait
805 ),
806) -> Option<usize> {
807 let (source, target) = key;
808 assert!(matches!(&source.kind(), &ty::Dynamic(..)) && !source.needs_infer());
809 assert!(matches!(&target.kind(), &ty::Dynamic(..)) && !target.needs_infer());
810
811 // this has been typecked-before, so diagnostics is not really needed.
812 let unsize_trait_did = tcx.require_lang_item(LangItem::Unsize, None);
813
814 let trait_ref = ty::TraitRef {
815 def_id: unsize_trait_did,
816 substs: tcx.mk_substs_trait(source, &[target.into()]),
817 };
818 let obligation = Obligation::new(
819 ObligationCause::dummy(),
820 ty::ParamEnv::reveal_all(),
821 ty::Binder::dummy(ty::TraitPredicate {
822 trait_ref,
823 constness: ty::BoundConstness::NotConst,
3c0e092e 824 polarity: ty::ImplPolarity::Positive,
94222f64
XL
825 }),
826 );
827
828 let implsrc = tcx.infer_ctxt().enter(|infcx| {
829 let mut selcx = SelectionContext::new(&infcx);
830 selcx.select(&obligation).unwrap()
831 });
832
ee023bcb
FG
833 let Some(ImplSource::TraitUpcasting(implsrc_traitcasting)) = implsrc else {
834 bug!();
94222f64 835 };
136023e0 836
94222f64 837 implsrc_traitcasting.vtable_vptr_slot
f9f354fc
XL
838}
839
f035d41b 840pub fn provide(providers: &mut ty::query::Providers) {
ba9703b0 841 object_safety::provide(providers);
f035d41b 842 structural_match::provide(providers);
ba9703b0
XL
843 *providers = ty::query::Providers {
844 specialization_graph_of: specialize::specialization_graph_provider,
845 specializes: specialize::specializes,
846 codegen_fulfill_obligation: codegen::codegen_fulfill_obligation,
c295e0f8 847 own_existential_vtable_entries,
136023e0 848 vtable_entries,
94222f64 849 vtable_trait_upcasting_coercion_new_vptr_slot,
3dfed10e 850 subst_and_check_impossible_predicates,
c295e0f8 851 thir_abstract_const: |tcx, def_id| {
1b1a35ee
XL
852 let def_id = def_id.expect_local();
853 if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) {
c295e0f8 854 tcx.thir_abstract_const_of_const_arg(def)
1b1a35ee 855 } else {
c295e0f8 856 const_evaluatable::thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id))
1b1a35ee
XL
857 }
858 },
c295e0f8
XL
859 thir_abstract_const_of_const_arg: |tcx, (did, param_did)| {
860 const_evaluatable::thir_abstract_const(
1b1a35ee
XL
861 tcx,
862 ty::WithOptConstParam { did, const_param_did: Some(param_did) },
863 )
864 },
ee023bcb
FG
865 try_unify_abstract_consts: |tcx, param_env_and| {
866 let (param_env, (a, b)) = param_env_and.into_parts();
867 const_evaluatable::try_unify_abstract_consts(tcx, (a, b), param_env)
868 },
ba9703b0
XL
869 ..*providers
870 };
871}