]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_trait_selection/src/traits/project.rs
New upstream version 1.69.0+dfsg1
[rustc.git] / compiler / rustc_trait_selection / src / traits / project.rs
CommitLineData
ba9703b0
XL
1//! Code for projecting associated types out of trait references.
2
ba9703b0
XL
3use super::specialization_graph;
4use super::translate_substs;
5use super::util;
6use super::MismatchedProjectionTypes;
7use super::Obligation;
8use super::ObligationCause;
9use super::PredicateObligation;
10use super::Selection;
11use super::SelectionContext;
12use super::SelectionError;
f9f354fc 13use super::{
487cf647
FG
14 ImplSourceClosureData, ImplSourceFnPointerData, ImplSourceFutureData, ImplSourceGeneratorData,
15 ImplSourceUserDefinedData,
f9f354fc 16};
f035d41b 17use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
ba9703b0
XL
18
19use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
20use crate::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
2b03887a 21use crate::traits::error_reporting::TypeErrCtxtExt as _;
04454e1e 22use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
5099ac24 23use crate::traits::select::ProjectionMatchesProjection;
3c0e092e 24use rustc_data_structures::sso::SsoHashSet;
f9f354fc 25use rustc_data_structures::stack::ensure_sufficient_stack;
5e7ed085 26use rustc_errors::ErrorGuaranteed;
5099ac24 27use rustc_hir::def::DefKind;
3dfed10e 28use rustc_hir::lang_items::LangItem;
487cf647 29use rustc_infer::infer::at::At;
f035d41b 30use rustc_infer::infer::resolve::OpportunisticRegionResolver;
487cf647 31use rustc_infer::traits::ImplSourceBuiltinData;
5e7ed085 32use rustc_middle::traits::select::OverflowError;
064997fb 33use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
9ffffee4 34use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable, TypeVisitableExt};
f2b60f7d 35use rustc_middle::ty::DefIdTree;
064997fb 36use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
f035d41b 37use rustc_span::symbol::sym;
ba9703b0 38
136023e0
XL
39use std::collections::BTreeMap;
40
ba9703b0
XL
41pub use rustc_middle::traits::Reveal;
42
43pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
44
45pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
46
9c376795 47pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::AliasTy<'tcx>>;
ba9703b0 48
f9652781
XL
49pub(super) struct InProgress;
50
487cf647
FG
51pub trait NormalizeExt<'tcx> {
52 /// Normalize a value using the `AssocTypeNormalizer`.
53 ///
54 /// This normalization should be used when the type contains inference variables or the
55 /// projection may be fallible.
9ffffee4 56 fn normalize<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> InferOk<'tcx, T>;
487cf647
FG
57}
58
59impl<'tcx> NormalizeExt<'tcx> for At<'_, 'tcx> {
9ffffee4 60 fn normalize<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> InferOk<'tcx, T> {
487cf647
FG
61 let mut selcx = SelectionContext::new(self.infcx);
62 let Normalized { value, obligations } =
63 normalize_with_depth(&mut selcx, self.param_env, self.cause.clone(), 0, value);
64 InferOk { value, obligations }
65 }
66}
67
ba9703b0
XL
68/// When attempting to resolve `<T as TraitRef>::Name` ...
69#[derive(Debug)]
5099ac24 70pub enum ProjectionError<'tcx> {
ba9703b0
XL
71 /// ...we found multiple sources of information and couldn't resolve the ambiguity.
72 TooManyCandidates,
73
74 /// ...an error occurred matching `T : TraitRef`
75 TraitSelectionError(SelectionError<'tcx>),
76}
77
78#[derive(PartialEq, Eq, Debug)]
5099ac24 79enum ProjectionCandidate<'tcx> {
29967ef6 80 /// From a where-clause in the env or object type
ba9703b0
XL
81 ParamEnv(ty::PolyProjectionPredicate<'tcx>),
82
2b03887a
FG
83 /// From the definition of `Trait` when you have something like
84 /// `<<A as Trait>::B as Trait2>::C`.
ba9703b0
XL
85 TraitDef(ty::PolyProjectionPredicate<'tcx>),
86
29967ef6
XL
87 /// Bounds specified on an object type
88 Object(ty::PolyProjectionPredicate<'tcx>),
89
94222f64 90 /// From an "impl" (or a "pseudo-impl" returned by select)
ba9703b0 91 Select(Selection<'tcx>),
f2b60f7d 92
9ffffee4 93 ImplTraitInTrait(ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>),
ba9703b0
XL
94}
95
5099ac24 96enum ProjectionCandidateSet<'tcx> {
ba9703b0 97 None,
5099ac24 98 Single(ProjectionCandidate<'tcx>),
ba9703b0
XL
99 Ambiguous,
100 Error(SelectionError<'tcx>),
101}
102
5099ac24 103impl<'tcx> ProjectionCandidateSet<'tcx> {
ba9703b0 104 fn mark_ambiguous(&mut self) {
5099ac24 105 *self = ProjectionCandidateSet::Ambiguous;
ba9703b0
XL
106 }
107
108 fn mark_error(&mut self, err: SelectionError<'tcx>) {
5099ac24 109 *self = ProjectionCandidateSet::Error(err);
ba9703b0
XL
110 }
111
112 // Returns true if the push was successful, or false if the candidate
113 // was discarded -- this could be because of ambiguity, or because
114 // a higher-priority candidate is already there.
5099ac24
FG
115 fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
116 use self::ProjectionCandidate::*;
117 use self::ProjectionCandidateSet::*;
ba9703b0
XL
118
119 // This wacky variable is just used to try and
120 // make code readable and avoid confusing paths.
121 // It is assigned a "value" of `()` only on those
122 // paths in which we wish to convert `*self` to
123 // ambiguous (and return false, because the candidate
124 // was not used). On other paths, it is not assigned,
125 // and hence if those paths *could* reach the code that
126 // comes after the match, this fn would not compile.
127 let convert_to_ambiguous;
128
129 match self {
130 None => {
131 *self = Single(candidate);
132 return true;
133 }
134
135 Single(current) => {
136 // Duplicates can happen inside ParamEnv. In the case, we
137 // perform a lazy deduplication.
138 if current == &candidate {
139 return false;
140 }
141
142 // Prefer where-clauses. As in select, if there are multiple
9c376795 143 // candidates, we prefer where-clause candidates over impls. This
ba9703b0
XL
144 // may seem a bit surprising, since impls are the source of
145 // "truth" in some sense, but in fact some of the impls that SEEM
146 // applicable are not, because of nested obligations. Where
147 // clauses are the safer choice. See the comment on
148 // `select::SelectionCandidate` and #21974 for more details.
149 match (current, candidate) {
150 (ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
151 (ParamEnv(..), _) => return false,
152 (_, ParamEnv(..)) => unreachable!(),
153 (_, _) => convert_to_ambiguous = (),
154 }
155 }
156
157 Ambiguous | Error(..) => {
158 return false;
159 }
160 }
161
162 // We only ever get here when we moved from a single candidate
163 // to ambiguous.
164 let () = convert_to_ambiguous;
165 *self = Ambiguous;
166 false
167 }
168}
169
923072b8
FG
170/// States returned from `poly_project_and_unify_type`. Takes the place
171/// of the old return type, which was:
172/// ```ignore (not-rust)
5e7ed085
FG
173/// Result<
174/// Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
175/// MismatchedProjectionTypes<'tcx>,
176/// >
923072b8 177/// ```
5e7ed085 178pub(super) enum ProjectAndUnifyResult<'tcx> {
923072b8
FG
179 /// The projection bound holds subject to the given obligations. If the
180 /// projection cannot be normalized because the required trait bound does
181 /// not hold, this is returned, with `obligations` being a predicate that
182 /// cannot be proven.
5e7ed085 183 Holds(Vec<PredicateObligation<'tcx>>),
923072b8
FG
184 /// The projection cannot be normalized due to ambiguity. Resolving some
185 /// inference variables in the projection may fix this.
5e7ed085 186 FailedNormalization,
923072b8
FG
187 /// The project cannot be normalized because `poly_project_and_unify_type`
188 /// is called recursively while normalizing the same projection.
5e7ed085 189 Recursive,
923072b8
FG
190 // the projection can be normalized, but is not equal to the expected type.
191 // Returns the type error that arose from the mismatch.
5e7ed085
FG
192 MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
193}
194
ba9703b0 195/// Evaluates constraints of the form:
04454e1e
FG
196/// ```ignore (not-rust)
197/// for<...> <T as Trait>::U == V
198/// ```
ba9703b0
XL
199/// If successful, this may result in additional obligations. Also returns
200/// the projection cache key used to track these additional obligations.
29967ef6 201#[instrument(level = "debug", skip(selcx))]
f9652781 202pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
ba9703b0
XL
203 selcx: &mut SelectionContext<'cx, 'tcx>,
204 obligation: &PolyProjectionObligation<'tcx>,
5e7ed085 205) -> ProjectAndUnifyResult<'tcx> {
487cf647 206 let infcx = selcx.infcx;
5e7ed085
FG
207 let r = infcx.commit_if_ok(|_snapshot| {
208 let old_universe = infcx.universe();
29967ef6 209 let placeholder_predicate =
9ffffee4 210 infcx.instantiate_binder_with_placeholders(obligation.predicate);
5e7ed085 211 let new_universe = infcx.universe();
ba9703b0 212
487cf647 213 let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
5e7ed085
FG
214 match project_and_unify_type(selcx, &placeholder_obligation) {
215 ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
216 ProjectAndUnifyResult::Holds(obligations)
217 if old_universe != new_universe
218 && selcx.tcx().features().generic_associated_types_extended =>
219 {
220 // If the `generic_associated_types_extended` feature is active, then we ignore any
221 // obligations references lifetimes from any universe greater than or equal to the
222 // universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
223 // which isn't quite what we want. Ideally, we want either an implied
224 // `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
225 // substitute concrete regions. There is design work to be done here; until then,
226 // however, this allows experimenting potential GAT features without running into
227 // well-formedness issues.
228 let new_obligations = obligations
229 .into_iter()
230 .filter(|obligation| {
231 let mut visitor = MaxUniverse::new();
232 obligation.predicate.visit_with(&mut visitor);
233 visitor.max_universe() < new_universe
234 })
235 .collect();
236 Ok(ProjectAndUnifyResult::Holds(new_obligations))
237 }
238 other => Ok(other),
239 }
240 });
241
242 match r {
243 Ok(inner) => inner,
244 Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
245 }
ba9703b0
XL
246}
247
248/// Evaluates constraints of the form:
04454e1e
FG
249/// ```ignore (not-rust)
250/// <T as Trait>::U == V
251/// ```
ba9703b0 252/// If successful, this may result in additional obligations.
f9652781
XL
253///
254/// See [poly_project_and_unify_type] for an explanation of the return value.
f2b60f7d 255#[instrument(level = "debug", skip(selcx))]
ba9703b0
XL
256fn project_and_unify_type<'cx, 'tcx>(
257 selcx: &mut SelectionContext<'cx, 'tcx>,
258 obligation: &ProjectionObligation<'tcx>,
5e7ed085 259) -> ProjectAndUnifyResult<'tcx> {
ba9703b0 260 let mut obligations = vec![];
5099ac24 261
487cf647 262 let infcx = selcx.infcx;
5099ac24 263 let normalized = match opt_normalize_projection_type(
ba9703b0
XL
264 selcx,
265 obligation.param_env,
266 obligation.predicate.projection_ty,
267 obligation.cause.clone(),
268 obligation.recursion_depth,
269 &mut obligations,
270 ) {
f9652781 271 Ok(Some(n)) => n,
5e7ed085
FG
272 Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
273 Err(InProgress) => return ProjectAndUnifyResult::Recursive,
ba9703b0 274 };
5099ac24 275 debug!(?normalized, ?obligations, "project_and_unify_type result");
5e7ed085 276 let actual = obligation.predicate.term;
9c376795 277 // For an example where this is necessary see tests/ui/impl-trait/nested-return-type2.rs
064997fb
FG
278 // This allows users to omit re-mentioning all bounds on an associated type and just use an
279 // `impl Trait` for the assoc type to add more bounds.
5e7ed085 280 let InferOk { value: actual, obligations: new } =
487cf647 281 selcx.infcx.replace_opaque_types_with_inference_vars(
5e7ed085
FG
282 actual,
283 obligation.cause.body_id,
284 obligation.cause.span,
285 obligation.param_env,
286 );
287 obligations.extend(new);
288
9ffffee4
FG
289 match infcx
290 .at(&obligation.cause, obligation.param_env)
291 // This is needed to support nested opaque types like `impl Fn() -> impl Trait`
292 .define_opaque_types(true)
293 .eq(normalized, actual)
294 {
ba9703b0
XL
295 Ok(InferOk { obligations: inferred_obligations, value: () }) => {
296 obligations.extend(inferred_obligations);
5e7ed085 297 ProjectAndUnifyResult::Holds(obligations)
ba9703b0
XL
298 }
299 Err(err) => {
5e7ed085
FG
300 debug!("equating types encountered error {:?}", err);
301 ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
ba9703b0
XL
302 }
303 }
304}
305
ba9703b0 306/// As `normalize`, but with a custom depth.
487cf647 307pub(crate) fn normalize_with_depth<'a, 'b, 'tcx, T>(
ba9703b0
XL
308 selcx: &'a mut SelectionContext<'b, 'tcx>,
309 param_env: ty::ParamEnv<'tcx>,
310 cause: ObligationCause<'tcx>,
311 depth: usize,
fc512014 312 value: T,
ba9703b0
XL
313) -> Normalized<'tcx, T>
314where
9ffffee4 315 T: TypeFoldable<TyCtxt<'tcx>>,
ba9703b0
XL
316{
317 let mut obligations = Vec::new();
318 let value = normalize_with_depth_to(selcx, param_env, cause, depth, value, &mut obligations);
319 Normalized { value, obligations }
320}
321
136023e0 322#[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
487cf647 323pub(crate) fn normalize_with_depth_to<'a, 'b, 'tcx, T>(
ba9703b0
XL
324 selcx: &'a mut SelectionContext<'b, 'tcx>,
325 param_env: ty::ParamEnv<'tcx>,
326 cause: ObligationCause<'tcx>,
327 depth: usize,
fc512014 328 value: T,
ba9703b0
XL
329 obligations: &mut Vec<PredicateObligation<'tcx>>,
330) -> T
331where
9ffffee4 332 T: TypeFoldable<TyCtxt<'tcx>>,
ba9703b0 333{
136023e0 334 debug!(obligations.len = obligations.len());
ba9703b0 335 let mut normalizer = AssocTypeNormalizer::new(selcx, param_env, cause, depth, obligations);
f9f354fc 336 let result = ensure_sufficient_stack(|| normalizer.fold(value));
29967ef6
XL
337 debug!(?result, obligations.len = normalizer.obligations.len());
338 debug!(?normalizer.obligations,);
ba9703b0
XL
339 result
340}
341
5e7ed085 342#[instrument(level = "info", skip(selcx, param_env, cause, obligations))]
487cf647 343pub(crate) fn try_normalize_with_depth_to<'a, 'b, 'tcx, T>(
5e7ed085
FG
344 selcx: &'a mut SelectionContext<'b, 'tcx>,
345 param_env: ty::ParamEnv<'tcx>,
346 cause: ObligationCause<'tcx>,
347 depth: usize,
348 value: T,
349 obligations: &mut Vec<PredicateObligation<'tcx>>,
350) -> T
351where
9ffffee4 352 T: TypeFoldable<TyCtxt<'tcx>>,
5e7ed085
FG
353{
354 debug!(obligations.len = obligations.len());
355 let mut normalizer = AssocTypeNormalizer::new_without_eager_inference_replacement(
356 selcx,
357 param_env,
358 cause,
359 depth,
360 obligations,
361 );
362 let result = ensure_sufficient_stack(|| normalizer.fold(value));
363 debug!(?result, obligations.len = normalizer.obligations.len());
364 debug!(?normalizer.obligations,);
365 result
366}
367
9ffffee4
FG
368pub(crate) fn needs_normalization<'tcx, T: TypeVisitable<TyCtxt<'tcx>>>(
369 value: &T,
370 reveal: Reveal,
371) -> bool {
136023e0
XL
372 match reveal {
373 Reveal::UserFacing => value
374 .has_type_flags(ty::TypeFlags::HAS_TY_PROJECTION | ty::TypeFlags::HAS_CT_PROJECTION),
375 Reveal::All => value.has_type_flags(
376 ty::TypeFlags::HAS_TY_PROJECTION
377 | ty::TypeFlags::HAS_TY_OPAQUE
378 | ty::TypeFlags::HAS_CT_PROJECTION,
379 ),
380 }
381}
382
ba9703b0
XL
383struct AssocTypeNormalizer<'a, 'b, 'tcx> {
384 selcx: &'a mut SelectionContext<'b, 'tcx>,
385 param_env: ty::ParamEnv<'tcx>,
386 cause: ObligationCause<'tcx>,
387 obligations: &'a mut Vec<PredicateObligation<'tcx>>,
388 depth: usize,
136023e0 389 universes: Vec<Option<ty::UniverseIndex>>,
5e7ed085
FG
390 /// If true, when a projection is unable to be completed, an inference
391 /// variable will be created and an obligation registered to project to that
392 /// inference variable. Also, constants will be eagerly evaluated.
393 eager_inference_replacement: bool,
ba9703b0
XL
394}
395
396impl<'a, 'b, 'tcx> AssocTypeNormalizer<'a, 'b, 'tcx> {
397 fn new(
398 selcx: &'a mut SelectionContext<'b, 'tcx>,
399 param_env: ty::ParamEnv<'tcx>,
400 cause: ObligationCause<'tcx>,
401 depth: usize,
402 obligations: &'a mut Vec<PredicateObligation<'tcx>>,
403 ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
5e7ed085
FG
404 AssocTypeNormalizer {
405 selcx,
406 param_env,
407 cause,
408 obligations,
409 depth,
410 universes: vec![],
411 eager_inference_replacement: true,
412 }
413 }
414
415 fn new_without_eager_inference_replacement(
416 selcx: &'a mut SelectionContext<'b, 'tcx>,
417 param_env: ty::ParamEnv<'tcx>,
418 cause: ObligationCause<'tcx>,
419 depth: usize,
420 obligations: &'a mut Vec<PredicateObligation<'tcx>>,
421 ) -> AssocTypeNormalizer<'a, 'b, 'tcx> {
422 AssocTypeNormalizer {
423 selcx,
424 param_env,
425 cause,
426 obligations,
427 depth,
428 universes: vec![],
429 eager_inference_replacement: false,
430 }
ba9703b0
XL
431 }
432
9ffffee4 433 fn fold<T: TypeFoldable<TyCtxt<'tcx>>>(&mut self, value: T) -> T {
487cf647 434 let value = self.selcx.infcx.resolve_vars_if_possible(value);
136023e0
XL
435 debug!(?value);
436
437 assert!(
438 !value.has_escaping_bound_vars(),
439 "Normalizing {:?} without wrapping in a `Binder`",
440 value
441 );
ba9703b0 442
136023e0
XL
443 if !needs_normalization(&value, self.param_env.reveal()) {
444 value
445 } else {
446 value.fold_with(self)
447 }
ba9703b0
XL
448 }
449}
450
9ffffee4
FG
451impl<'a, 'b, 'tcx> TypeFolder<TyCtxt<'tcx>> for AssocTypeNormalizer<'a, 'b, 'tcx> {
452 fn interner(&self) -> TyCtxt<'tcx> {
ba9703b0
XL
453 self.selcx.tcx()
454 }
455
9ffffee4 456 fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
136023e0
XL
457 &mut self,
458 t: ty::Binder<'tcx, T>,
459 ) -> ty::Binder<'tcx, T> {
460 self.universes.push(None);
461 let t = t.super_fold_with(self);
462 self.universes.pop();
463 t
464 }
465
ba9703b0 466 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
136023e0 467 if !needs_normalization(&ty, self.param_env.reveal()) {
ba9703b0
XL
468 return ty;
469 }
94222f64
XL
470
471 // We try to be a little clever here as a performance optimization in
472 // cases where there are nested projections under binders.
473 // For example:
474 // ```
475 // for<'a> fn(<T as Foo>::One<'a, Box<dyn Bar<'a, Item=<T as Foo>::Two<'a>>>>)
476 // ```
477 // We normalize the substs on the projection before the projecting, but
478 // if we're naive, we'll
479 // replace bound vars on inner, project inner, replace placeholders on inner,
480 // replace bound vars on outer, project outer, replace placeholders on outer
ba9703b0 481 //
94222f64
XL
482 // However, if we're a bit more clever, we can replace the bound vars
483 // on the entire type before normalizing nested projections, meaning we
484 // replace bound vars on outer, project inner,
485 // project outer, replace placeholders on outer
ba9703b0 486 //
94222f64
XL
487 // This is possible because the inner `'a` will already be a placeholder
488 // when we need to normalize the inner projection
ba9703b0 489 //
94222f64
XL
490 // On the other hand, this does add a bit of complexity, since we only
491 // replace bound vars if the current type is a `Projection` and we need
492 // to make sure we don't forget to fold the substs regardless.
ba9703b0 493
1b1a35ee 494 match *ty.kind() {
94222f64
XL
495 // This is really important. While we *can* handle this, this has
496 // severe performance implications for large opaque types with
497 // late-bound regions. See `issue-88862` benchmark.
9c376795
FG
498 ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. })
499 if !substs.has_escaping_bound_vars() =>
500 {
5099ac24 501 // Only normalize `impl Trait` outside of type inference, usually in codegen.
f035d41b 502 match self.param_env.reveal() {
94222f64 503 Reveal::UserFacing => ty.super_fold_with(self),
ba9703b0
XL
504
505 Reveal::All => {
9ffffee4 506 let recursion_limit = self.interner().recursion_limit();
f9f354fc 507 if !recursion_limit.value_within_limit(self.depth) {
487cf647
FG
508 self.selcx.infcx.err_ctxt().report_overflow_error(
509 &ty,
510 self.cause.span,
511 true,
512 |_| {},
ba9703b0 513 );
ba9703b0
XL
514 }
515
923072b8 516 let substs = substs.fold_with(self);
9ffffee4
FG
517 let generic_ty = self.interner().type_of(def_id);
518 let concrete_ty = generic_ty.subst(self.interner(), substs);
ba9703b0
XL
519 self.depth += 1;
520 let folded_ty = self.fold_ty(concrete_ty);
521 self.depth -= 1;
522 folded_ty
523 }
524 }
525 }
526
9c376795 527 ty::Alias(ty::Projection, data) if !data.has_escaping_bound_vars() => {
94222f64
XL
528 // This branch is *mostly* just an optimization: when we don't
529 // have escaping bound vars, we don't need to replace them with
530 // placeholders (see branch below). *Also*, we know that we can
531 // register an obligation to *later* project, since we know
532 // there won't be bound vars there.
923072b8 533 let data = data.fold_with(self);
5e7ed085
FG
534 let normalized_ty = if self.eager_inference_replacement {
535 normalize_projection_type(
536 self.selcx,
537 self.param_env,
538 data,
539 self.cause.clone(),
540 self.depth,
541 &mut self.obligations,
542 )
543 } else {
544 opt_normalize_projection_type(
545 self.selcx,
546 self.param_env,
547 data,
548 self.cause.clone(),
549 self.depth,
550 &mut self.obligations,
551 )
552 .ok()
553 .flatten()
f2b60f7d 554 .unwrap_or_else(|| ty.super_fold_with(self).into())
5e7ed085 555 };
ba9703b0 556 debug!(
29967ef6
XL
557 ?self.depth,
558 ?ty,
559 ?normalized_ty,
560 obligations.len = ?self.obligations.len(),
561 "AssocTypeNormalizer: normalized type"
ba9703b0 562 );
5099ac24 563 normalized_ty.ty().unwrap()
ba9703b0
XL
564 }
565
9c376795 566 ty::Alias(ty::Projection, data) => {
94222f64
XL
567 // If there are escaping bound vars, we temporarily replace the
568 // bound vars with placeholders. Note though, that in the case
569 // that we still can't project for whatever reason (e.g. self
570 // type isn't known enough), we *can't* register an obligation
571 // and return an inference variable (since then that obligation
572 // would have bound vars and that's a can of worms). Instead,
573 // we just give up and fall back to pretending like we never tried!
574 //
575 // Note: this isn't necessarily the final approach here; we may
576 // want to figure out how to register obligations with escaping vars
577 // or handle this some other way.
136023e0 578
487cf647 579 let infcx = self.selcx.infcx;
136023e0
XL
580 let (data, mapped_regions, mapped_types, mapped_consts) =
581 BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
923072b8 582 let data = data.fold_with(self);
136023e0
XL
583 let normalized_ty = opt_normalize_projection_type(
584 self.selcx,
585 self.param_env,
586 data,
587 self.cause.clone(),
588 self.depth,
589 &mut self.obligations,
590 )
591 .ok()
592 .flatten()
5099ac24 593 .map(|term| term.ty().unwrap())
94222f64
XL
594 .map(|normalized_ty| {
595 PlaceholderReplacer::replace_placeholders(
596 infcx,
597 mapped_regions,
598 mapped_types,
599 mapped_consts,
600 &self.universes,
601 normalized_ty,
602 )
603 })
604 .unwrap_or_else(|| ty.super_fold_with(self));
605
136023e0
XL
606 debug!(
607 ?self.depth,
608 ?ty,
609 ?normalized_ty,
610 obligations.len = ?self.obligations.len(),
611 "AssocTypeNormalizer: normalized type"
612 );
613 normalized_ty
614 }
615
94222f64 616 _ => ty.super_fold_with(self),
ba9703b0
XL
617 }
618 }
619
923072b8 620 #[instrument(skip(self), level = "debug")]
5099ac24 621 fn fold_const(&mut self, constant: ty::Const<'tcx>) -> ty::Const<'tcx> {
f2b60f7d 622 let tcx = self.selcx.tcx();
487cf647 623 if tcx.lazy_normalization() || !needs_normalization(&constant, self.param_env.reveal()) {
f9f354fc
XL
624 constant
625 } else {
626 let constant = constant.super_fold_with(self);
f2b60f7d
FG
627 debug!(?constant, ?self.param_env);
628 with_replaced_escaping_bound_vars(
487cf647 629 self.selcx.infcx,
f2b60f7d
FG
630 &mut self.universes,
631 constant,
632 |constant| constant.eval(tcx, self.param_env),
633 )
634 }
635 }
636
637 #[inline]
638 fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
639 if p.allow_normalization() && needs_normalization(&p, self.param_env.reveal()) {
640 p.super_fold_with(self)
641 } else {
642 p
f9f354fc 643 }
ba9703b0
XL
644 }
645}
646
136023e0 647pub struct BoundVarReplacer<'me, 'tcx> {
2b03887a 648 infcx: &'me InferCtxt<'tcx>,
136023e0
XL
649 // These three maps track the bound variable that were replaced by placeholders. It might be
650 // nice to remove these since we already have the `kind` in the placeholder; we really just need
651 // the `var` (but we *could* bring that into scope if we were to track them as we pass them).
652 mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
653 mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
654 mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
655 // The current depth relative to *this* folding, *not* the entire normalization. In other words,
656 // the depth of binders we've passed here.
657 current_index: ty::DebruijnIndex,
658 // The `UniverseIndex` of the binding levels above us. These are optional, since we are lazy:
659 // we don't actually create a universe until we see a bound var we have to replace.
660 universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
661}
662
f2b60f7d
FG
663/// Executes `f` on `value` after replacing all escaping bound variables with placeholders
664/// and then replaces these placeholders with the original bound variables in the result.
665///
666/// In most places, bound variables should be replaced right when entering a binder, making
667/// this function unnecessary. However, normalization currently does not do that, so we have
668/// to do this lazily.
669///
670/// You should not add any additional uses of this function, at least not without first
671/// discussing it with t-types.
672///
673/// FIXME(@lcnr): We may even consider experimenting with eagerly replacing bound vars during
674/// normalization as well, at which point this function will be unnecessary and can be removed.
9ffffee4
FG
675pub fn with_replaced_escaping_bound_vars<
676 'a,
677 'tcx,
678 T: TypeFoldable<TyCtxt<'tcx>>,
679 R: TypeFoldable<TyCtxt<'tcx>>,
680>(
2b03887a 681 infcx: &'a InferCtxt<'tcx>,
f2b60f7d
FG
682 universe_indices: &'a mut Vec<Option<ty::UniverseIndex>>,
683 value: T,
684 f: impl FnOnce(T) -> R,
685) -> R {
686 if value.has_escaping_bound_vars() {
687 let (value, mapped_regions, mapped_types, mapped_consts) =
688 BoundVarReplacer::replace_bound_vars(infcx, universe_indices, value);
689 let result = f(value);
690 PlaceholderReplacer::replace_placeholders(
691 infcx,
692 mapped_regions,
693 mapped_types,
694 mapped_consts,
695 universe_indices,
696 result,
697 )
698 } else {
699 f(value)
700 }
701}
702
136023e0
XL
703impl<'me, 'tcx> BoundVarReplacer<'me, 'tcx> {
704 /// Returns `Some` if we *were* able to replace bound vars. If there are any bound vars that
705 /// use a binding level above `universe_indices.len()`, we fail.
9ffffee4 706 pub fn replace_bound_vars<T: TypeFoldable<TyCtxt<'tcx>>>(
2b03887a 707 infcx: &'me InferCtxt<'tcx>,
136023e0
XL
708 universe_indices: &'me mut Vec<Option<ty::UniverseIndex>>,
709 value: T,
710 ) -> (
711 T,
712 BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
713 BTreeMap<ty::PlaceholderType, ty::BoundTy>,
714 BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
715 ) {
716 let mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion> = BTreeMap::new();
717 let mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy> = BTreeMap::new();
718 let mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar> = BTreeMap::new();
719
720 let mut replacer = BoundVarReplacer {
721 infcx,
722 mapped_regions,
723 mapped_types,
724 mapped_consts,
725 current_index: ty::INNERMOST,
726 universe_indices,
727 };
728
923072b8 729 let value = value.fold_with(&mut replacer);
136023e0
XL
730
731 (value, replacer.mapped_regions, replacer.mapped_types, replacer.mapped_consts)
732 }
733
734 fn universe_for(&mut self, debruijn: ty::DebruijnIndex) -> ty::UniverseIndex {
735 let infcx = self.infcx;
736 let index =
c295e0f8 737 self.universe_indices.len() + self.current_index.as_usize() - debruijn.as_usize() - 1;
136023e0
XL
738 let universe = self.universe_indices[index].unwrap_or_else(|| {
739 for i in self.universe_indices.iter_mut().take(index + 1) {
740 *i = i.or_else(|| Some(infcx.create_next_universe()))
741 }
742 self.universe_indices[index].unwrap()
743 });
744 universe
745 }
746}
747
9ffffee4
FG
748impl<'tcx> TypeFolder<TyCtxt<'tcx>> for BoundVarReplacer<'_, 'tcx> {
749 fn interner(&self) -> TyCtxt<'tcx> {
136023e0
XL
750 self.infcx.tcx
751 }
752
9ffffee4 753 fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
136023e0
XL
754 &mut self,
755 t: ty::Binder<'tcx, T>,
756 ) -> ty::Binder<'tcx, T> {
757 self.current_index.shift_in(1);
758 let t = t.super_fold_with(self);
759 self.current_index.shift_out(1);
760 t
761 }
762
763 fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
764 match *r {
765 ty::ReLateBound(debruijn, _)
766 if debruijn.as_usize() + 1
767 > self.current_index.as_usize() + self.universe_indices.len() =>
768 {
769 bug!("Bound vars outside of `self.universe_indices`");
770 }
771 ty::ReLateBound(debruijn, br) if debruijn >= self.current_index => {
772 let universe = self.universe_for(debruijn);
773 let p = ty::PlaceholderRegion { universe, name: br.kind };
c295e0f8 774 self.mapped_regions.insert(p, br);
9ffffee4 775 self.infcx.tcx.mk_re_placeholder(p)
136023e0
XL
776 }
777 _ => r,
778 }
779 }
780
781 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
782 match *t.kind() {
783 ty::Bound(debruijn, _)
784 if debruijn.as_usize() + 1
785 > self.current_index.as_usize() + self.universe_indices.len() =>
786 {
787 bug!("Bound vars outside of `self.universe_indices`");
788 }
789 ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => {
790 let universe = self.universe_for(debruijn);
9ffffee4 791 let p = ty::PlaceholderType { universe, name: bound_ty.kind };
c295e0f8 792 self.mapped_types.insert(p, bound_ty);
9ffffee4 793 self.infcx.tcx.mk_placeholder(p)
136023e0
XL
794 }
795 _ if t.has_vars_bound_at_or_above(self.current_index) => t.super_fold_with(self),
796 _ => t,
797 }
798 }
799
5099ac24 800 fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
923072b8 801 match ct.kind() {
5099ac24 802 ty::ConstKind::Bound(debruijn, _)
136023e0
XL
803 if debruijn.as_usize() + 1
804 > self.current_index.as_usize() + self.universe_indices.len() =>
805 {
806 bug!("Bound vars outside of `self.universe_indices`");
807 }
5099ac24 808 ty::ConstKind::Bound(debruijn, bound_const) if debruijn >= self.current_index => {
136023e0 809 let universe = self.universe_for(debruijn);
064997fb 810 let p = ty::PlaceholderConst { universe, name: bound_const };
c295e0f8 811 self.mapped_consts.insert(p, bound_const);
487cf647 812 self.infcx.tcx.mk_const(p, ct.ty())
136023e0 813 }
064997fb 814 _ => ct.super_fold_with(self),
136023e0
XL
815 }
816 }
064997fb
FG
817
818 fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
819 if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p }
820 }
136023e0
XL
821}
822
487cf647 823/// The inverse of [`BoundVarReplacer`]: replaces placeholders with the bound vars from which they came.
136023e0 824pub struct PlaceholderReplacer<'me, 'tcx> {
2b03887a 825 infcx: &'me InferCtxt<'tcx>,
136023e0
XL
826 mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
827 mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
828 mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
923072b8 829 universe_indices: &'me [Option<ty::UniverseIndex>],
136023e0
XL
830 current_index: ty::DebruijnIndex,
831}
832
833impl<'me, 'tcx> PlaceholderReplacer<'me, 'tcx> {
9ffffee4 834 pub fn replace_placeholders<T: TypeFoldable<TyCtxt<'tcx>>>(
2b03887a 835 infcx: &'me InferCtxt<'tcx>,
136023e0
XL
836 mapped_regions: BTreeMap<ty::PlaceholderRegion, ty::BoundRegion>,
837 mapped_types: BTreeMap<ty::PlaceholderType, ty::BoundTy>,
838 mapped_consts: BTreeMap<ty::PlaceholderConst<'tcx>, ty::BoundVar>,
923072b8 839 universe_indices: &'me [Option<ty::UniverseIndex>],
136023e0
XL
840 value: T,
841 ) -> T {
842 let mut replacer = PlaceholderReplacer {
843 infcx,
844 mapped_regions,
845 mapped_types,
846 mapped_consts,
847 universe_indices,
848 current_index: ty::INNERMOST,
849 };
923072b8 850 value.fold_with(&mut replacer)
136023e0
XL
851 }
852}
853
9ffffee4
FG
854impl<'tcx> TypeFolder<TyCtxt<'tcx>> for PlaceholderReplacer<'_, 'tcx> {
855 fn interner(&self) -> TyCtxt<'tcx> {
136023e0
XL
856 self.infcx.tcx
857 }
858
9ffffee4 859 fn fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
136023e0
XL
860 &mut self,
861 t: ty::Binder<'tcx, T>,
862 ) -> ty::Binder<'tcx, T> {
863 if !t.has_placeholders() && !t.has_infer_regions() {
864 return t;
865 }
866 self.current_index.shift_in(1);
867 let t = t.super_fold_with(self);
868 self.current_index.shift_out(1);
869 t
870 }
871
872 fn fold_region(&mut self, r0: ty::Region<'tcx>) -> ty::Region<'tcx> {
5099ac24 873 let r1 = match *r0 {
136023e0
XL
874 ty::ReVar(_) => self
875 .infcx
876 .inner
877 .borrow_mut()
878 .unwrap_region_constraints()
879 .opportunistic_resolve_region(self.infcx.tcx, r0),
880 _ => r0,
881 };
882
883 let r2 = match *r1 {
884 ty::RePlaceholder(p) => {
885 let replace_var = self.mapped_regions.get(&p);
886 match replace_var {
887 Some(replace_var) => {
888 let index = self
889 .universe_indices
890 .iter()
891 .position(|u| matches!(u, Some(pu) if *pu == p.universe))
892 .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
893 let db = ty::DebruijnIndex::from_usize(
894 self.universe_indices.len() - index + self.current_index.as_usize() - 1,
895 );
9ffffee4 896 self.interner().mk_re_late_bound(db, *replace_var)
136023e0
XL
897 }
898 None => r1,
899 }
900 }
901 _ => r1,
902 };
903
904 debug!(?r0, ?r1, ?r2, "fold_region");
905
906 r2
907 }
908
909 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
910 match *ty.kind() {
911 ty::Placeholder(p) => {
912 let replace_var = self.mapped_types.get(&p);
913 match replace_var {
914 Some(replace_var) => {
915 let index = self
916 .universe_indices
917 .iter()
918 .position(|u| matches!(u, Some(pu) if *pu == p.universe))
919 .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
920 let db = ty::DebruijnIndex::from_usize(
921 self.universe_indices.len() - index + self.current_index.as_usize() - 1,
922 );
9ffffee4 923 self.interner().mk_bound(db, *replace_var)
136023e0
XL
924 }
925 None => ty,
926 }
927 }
928
929 _ if ty.has_placeholders() || ty.has_infer_regions() => ty.super_fold_with(self),
930 _ => ty,
931 }
932 }
933
5099ac24 934 fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
923072b8 935 if let ty::ConstKind::Placeholder(p) = ct.kind() {
136023e0
XL
936 let replace_var = self.mapped_consts.get(&p);
937 match replace_var {
938 Some(replace_var) => {
939 let index = self
940 .universe_indices
941 .iter()
942 .position(|u| matches!(u, Some(pu) if *pu == p.universe))
943 .unwrap_or_else(|| bug!("Unexpected placeholder universe."));
944 let db = ty::DebruijnIndex::from_usize(
945 self.universe_indices.len() - index + self.current_index.as_usize() - 1,
946 );
9ffffee4 947 self.interner().mk_const(ty::ConstKind::Bound(db, *replace_var), ct.ty())
136023e0
XL
948 }
949 None => ct,
950 }
951 } else {
952 ct.super_fold_with(self)
953 }
954 }
955}
956
ba9703b0
XL
957/// The guts of `normalize`: normalize a specific projection like `<T
958/// as Trait>::Item`. The result is always a type (and possibly
959/// additional obligations). If ambiguity arises, which implies that
960/// there are unresolved type variables in the projection, we will
961/// substitute a fresh type variable `$X` and generate a new
962/// obligation `<T as Trait>::Item == $X` for later.
963pub fn normalize_projection_type<'a, 'b, 'tcx>(
964 selcx: &'a mut SelectionContext<'b, 'tcx>,
965 param_env: ty::ParamEnv<'tcx>,
9c376795 966 projection_ty: ty::AliasTy<'tcx>,
ba9703b0
XL
967 cause: ObligationCause<'tcx>,
968 depth: usize,
969 obligations: &mut Vec<PredicateObligation<'tcx>>,
5099ac24 970) -> Term<'tcx> {
ba9703b0
XL
971 opt_normalize_projection_type(
972 selcx,
973 param_env,
974 projection_ty,
975 cause.clone(),
976 depth,
977 obligations,
978 )
f9652781
XL
979 .ok()
980 .flatten()
ba9703b0
XL
981 .unwrap_or_else(move || {
982 // if we bottom out in ambiguity, create a type variable
983 // and a deferred predicate to resolve this when more type
984 // information is available.
985
487cf647 986 selcx.infcx.infer_projection(param_env, projection_ty, cause, depth + 1, obligations).into()
ba9703b0
XL
987 })
988}
989
990/// The guts of `normalize`: normalize a specific projection like `<T
991/// as Trait>::Item`. The result is always a type (and possibly
992/// additional obligations). Returns `None` in the case of ambiguity,
993/// which indicates that there are unbound type variables.
994///
995/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
996/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
997/// often immediately appended to another obligations vector. So now this
998/// function takes an obligations vector and appends to it directly, which is
999/// slightly uglier but avoids the need for an extra short-lived allocation.
29967ef6 1000#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
ba9703b0
XL
1001fn opt_normalize_projection_type<'a, 'b, 'tcx>(
1002 selcx: &'a mut SelectionContext<'b, 'tcx>,
1003 param_env: ty::ParamEnv<'tcx>,
9c376795 1004 projection_ty: ty::AliasTy<'tcx>,
ba9703b0
XL
1005 cause: ObligationCause<'tcx>,
1006 depth: usize,
1007 obligations: &mut Vec<PredicateObligation<'tcx>>,
5099ac24 1008) -> Result<Option<Term<'tcx>>, InProgress> {
487cf647 1009 let infcx = selcx.infcx;
94222f64
XL
1010 // Don't use the projection cache in intercrate mode -
1011 // the `infcx` may be re-used between intercrate in non-intercrate
1012 // mode, which could lead to using incorrect cache results.
1013 let use_cache = !selcx.is_intercrate();
ba9703b0 1014
fc512014 1015 let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
ba9703b0
XL
1016 let cache_key = ProjectionCacheKey::new(projection_ty);
1017
ba9703b0
XL
1018 // FIXME(#20304) For now, I am caching here, which is good, but it
1019 // means we don't capture the type variables that are created in
1020 // the case of ambiguity. Which means we may create a large stream
1021 // of such variables. OTOH, if we move the caching up a level, we
1022 // would not benefit from caching when proving `T: Trait<U=Foo>`
1023 // bounds. It might be the case that we want two distinct caches,
1024 // or else another kind of cache entry.
1025
94222f64
XL
1026 let cache_result = if use_cache {
1027 infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
1028 } else {
1029 Ok(())
1030 };
ba9703b0 1031 match cache_result {
136023e0 1032 Ok(()) => debug!("no cache"),
ba9703b0
XL
1033 Err(ProjectionCacheEntry::Ambiguous) => {
1034 // If we found ambiguity the last time, that means we will continue
1035 // to do so until some type in the key changes (and we know it
1036 // hasn't, because we just fully resolved it).
29967ef6 1037 debug!("found cache entry: ambiguous");
f9652781 1038 return Ok(None);
ba9703b0
XL
1039 }
1040 Err(ProjectionCacheEntry::InProgress) => {
ba9703b0 1041 // Under lazy normalization, this can arise when
9c376795 1042 // bootstrapping. That is, imagine an environment with a
ba9703b0
XL
1043 // where-clause like `A::B == u32`. Now, if we are asked
1044 // to normalize `A::B`, we will want to check the
1045 // where-clauses in scope. So we will try to unify `A::B`
1046 // with `A::B`, which can trigger a recursive
f9652781 1047 // normalization.
ba9703b0 1048
29967ef6 1049 debug!("found cache entry: in-progress");
ba9703b0 1050
b9856134
XL
1051 // Cache that normalizing this projection resulted in a cycle. This
1052 // should ensure that, unless this happens within a snapshot that's
1053 // rolled back, fulfillment or evaluation will notice the cycle.
1054
94222f64
XL
1055 if use_cache {
1056 infcx.inner.borrow_mut().projection_cache().recur(cache_key);
1057 }
b9856134
XL
1058 return Err(InProgress);
1059 }
1060 Err(ProjectionCacheEntry::Recur) => {
136023e0 1061 debug!("recur cache");
f9652781 1062 return Err(InProgress);
ba9703b0 1063 }
a2a8927a 1064 Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
ba9703b0
XL
1065 // This is the hottest path in this function.
1066 //
1067 // If we find the value in the cache, then return it along
1068 // with the obligations that went along with it. Note
1069 // that, when using a fulfillment context, these
1070 // obligations could in principle be ignored: they have
1071 // already been registered when the cache entry was
1072 // created (and hence the new ones will quickly be
1073 // discarded as duplicated). But when doing trait
1074 // evaluation this is not the case, and dropping the trait
1075 // evaluations can causes ICEs (e.g., #43132).
29967ef6 1076 debug!(?ty, "found normalized ty");
17df50a5 1077 obligations.extend(ty.obligations);
f9652781 1078 return Ok(Some(ty.value));
ba9703b0
XL
1079 }
1080 Err(ProjectionCacheEntry::Error) => {
29967ef6 1081 debug!("opt_normalize_projection_type: found error");
ba9703b0
XL
1082 let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
1083 obligations.extend(result.obligations);
5099ac24 1084 return Ok(Some(result.value.into()));
ba9703b0
XL
1085 }
1086 }
1087
487cf647
FG
1088 let obligation =
1089 Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_ty);
94222f64 1090
5099ac24
FG
1091 match project(selcx, &obligation) {
1092 Ok(Projected::Progress(Progress {
1093 term: projected_term,
ba9703b0
XL
1094 obligations: mut projected_obligations,
1095 })) => {
1096 // if projection succeeded, then what we get out of this
1097 // is also non-normalized (consider: it was derived from
1098 // an impl, where-clause etc) and hence we must
1099 // re-normalize it
1100
487cf647 1101 let projected_term = selcx.infcx.resolve_vars_if_possible(projected_term);
ba9703b0 1102
5099ac24 1103 let mut result = if projected_term.has_projections() {
ba9703b0
XL
1104 let mut normalizer = AssocTypeNormalizer::new(
1105 selcx,
1106 param_env,
1107 cause,
1108 depth + 1,
1109 &mut projected_obligations,
1110 );
5099ac24 1111 let normalized_ty = normalizer.fold(projected_term);
ba9703b0
XL
1112
1113 Normalized { value: normalized_ty, obligations: projected_obligations }
1114 } else {
5099ac24 1115 Normalized { value: projected_term, obligations: projected_obligations }
ba9703b0
XL
1116 };
1117
3c0e092e 1118 let mut deduped: SsoHashSet<_> = Default::default();
94222f64 1119 result.obligations.drain_filter(|projected_obligation| {
3c0e092e
XL
1120 if !deduped.insert(projected_obligation.clone()) {
1121 return true;
1122 }
a2a8927a 1123 false
94222f64
XL
1124 });
1125
1126 if use_cache {
5099ac24 1127 infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
94222f64 1128 }
ba9703b0 1129 obligations.extend(result.obligations);
f9652781 1130 Ok(Some(result.value))
ba9703b0 1131 }
5099ac24 1132 Ok(Projected::NoProgress(projected_ty)) => {
ba9703b0 1133 let result = Normalized { value: projected_ty, obligations: vec![] };
94222f64 1134 if use_cache {
5099ac24 1135 infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
94222f64 1136 }
ba9703b0 1137 // No need to extend `obligations`.
f9652781 1138 Ok(Some(result.value))
ba9703b0 1139 }
5099ac24 1140 Err(ProjectionError::TooManyCandidates) => {
29967ef6 1141 debug!("opt_normalize_projection_type: too many candidates");
94222f64
XL
1142 if use_cache {
1143 infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
1144 }
f9652781 1145 Ok(None)
ba9703b0 1146 }
5099ac24 1147 Err(ProjectionError::TraitSelectionError(_)) => {
ba9703b0
XL
1148 debug!("opt_normalize_projection_type: ERROR");
1149 // if we got an error processing the `T as Trait` part,
1150 // just return `ty::err` but add the obligation `T :
1151 // Trait`, which when processed will cause the error to be
1152 // reported later
1153
94222f64
XL
1154 if use_cache {
1155 infcx.inner.borrow_mut().projection_cache().error(cache_key);
1156 }
ba9703b0
XL
1157 let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
1158 obligations.extend(result.obligations);
5099ac24 1159 Ok(Some(result.value.into()))
ba9703b0
XL
1160 }
1161 }
1162}
1163
ba9703b0
XL
1164/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
1165/// hold. In various error cases, we cannot generate a valid
1166/// normalized projection. Therefore, we create an inference variable
1167/// return an associated obligation that, when fulfilled, will lead to
1168/// an error.
1169///
1170/// Note that we used to return `Error` here, but that was quite
1171/// dubious -- the premise was that an error would *eventually* be
1172/// reported, when the obligation was processed. But in general once
94222f64 1173/// you see an `Error` you are supposed to be able to assume that an
ba9703b0
XL
1174/// error *has been* reported, so that you can take whatever heuristic
1175/// paths you want to take. To make things worse, it was possible for
1176/// cycles to arise, where you basically had a setup like `<MyType<$0>
1177/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
9ffffee4 1178/// Trait>::Foo>` to `[type error]` would lead to an obligation of
ba9703b0
XL
1179/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
1180/// an error for this obligation, but we legitimately should not,
1181/// because it contains `[type error]`. Yuck! (See issue #29857 for
1182/// one case where this arose.)
1183fn normalize_to_error<'a, 'tcx>(
1184 selcx: &mut SelectionContext<'a, 'tcx>,
1185 param_env: ty::ParamEnv<'tcx>,
9c376795 1186 projection_ty: ty::AliasTy<'tcx>,
ba9703b0
XL
1187 cause: ObligationCause<'tcx>,
1188 depth: usize,
1189) -> NormalizedTy<'tcx> {
c295e0f8 1190 let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
ba9703b0
XL
1191 let trait_obligation = Obligation {
1192 cause,
1193 recursion_depth: depth,
1194 param_env,
f9f354fc 1195 predicate: trait_ref.without_const().to_predicate(selcx.tcx()),
ba9703b0 1196 };
487cf647 1197 let tcx = selcx.infcx.tcx;
487cf647 1198 let new_value = selcx.infcx.next_ty_var(TypeVariableOrigin {
ba9703b0 1199 kind: TypeVariableOriginKind::NormalizeProjectionType,
9c376795 1200 span: tcx.def_span(projection_ty.def_id),
ba9703b0
XL
1201 });
1202 Normalized { value: new_value, obligations: vec![trait_obligation] }
1203}
1204
5099ac24 1205enum Projected<'tcx> {
ba9703b0 1206 Progress(Progress<'tcx>),
5099ac24 1207 NoProgress(ty::Term<'tcx>),
ba9703b0
XL
1208}
1209
1210struct Progress<'tcx> {
5099ac24 1211 term: ty::Term<'tcx>,
ba9703b0
XL
1212 obligations: Vec<PredicateObligation<'tcx>>,
1213}
1214
1215impl<'tcx> Progress<'tcx> {
9ffffee4
FG
1216 fn error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
1217 Progress { term: tcx.ty_error(guar).into(), obligations: vec![] }
ba9703b0
XL
1218 }
1219
1220 fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
ba9703b0
XL
1221 self.obligations.append(&mut obligations);
1222 self
1223 }
1224}
1225
1226/// Computes the result of a projection type (if we can).
1227///
1228/// IMPORTANT:
1229/// - `obligation` must be fully normalized
f2b60f7d 1230#[instrument(level = "info", skip(selcx))]
5099ac24 1231fn project<'cx, 'tcx>(
ba9703b0
XL
1232 selcx: &mut SelectionContext<'cx, 'tcx>,
1233 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1234) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
136023e0 1235 if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
fc512014
XL
1236 // This should really be an immediate error, but some existing code
1237 // relies on being able to recover from this.
5e7ed085
FG
1238 return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
1239 OverflowError::Canonical,
1240 )));
ba9703b0
XL
1241 }
1242
9ffffee4
FG
1243 if let Err(guar) = obligation.predicate.error_reported() {
1244 return Ok(Projected::Progress(Progress::error(selcx.tcx(), guar)));
ba9703b0
XL
1245 }
1246
5099ac24 1247 let mut candidates = ProjectionCandidateSet::None;
ba9703b0 1248
f2b60f7d
FG
1249 assemble_candidate_for_impl_trait_in_trait(selcx, obligation, &mut candidates);
1250
ba9703b0
XL
1251 // Make sure that the following procedures are kept in order. ParamEnv
1252 // needs to be first because it has highest priority, and Select checks
1253 // the return value of push_candidate which assumes it's ran at last.
6a06907d 1254 assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
ba9703b0 1255
6a06907d 1256 assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
ba9703b0 1257
6a06907d 1258 assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
29967ef6 1259
5099ac24 1260 if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
29967ef6
XL
1261 // Avoid normalization cycle from selection (see
1262 // `assemble_candidates_from_object_ty`).
1263 // FIXME(lazy_normalization): Lazy normalization should save us from
6a06907d 1264 // having to special case this.
29967ef6 1265 } else {
6a06907d 1266 assemble_candidates_from_impls(selcx, obligation, &mut candidates);
29967ef6 1267 };
ba9703b0
XL
1268
1269 match candidates {
5099ac24
FG
1270 ProjectionCandidateSet::Single(candidate) => {
1271 Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
29967ef6 1272 }
5099ac24
FG
1273 ProjectionCandidateSet::None => Ok(Projected::NoProgress(
1274 // FIXME(associated_const_generics): this may need to change in the future?
1275 // need to investigate whether or not this is fine.
ba9703b0
XL
1276 selcx
1277 .tcx()
9c376795 1278 .mk_projection(obligation.predicate.def_id, obligation.predicate.substs)
5099ac24 1279 .into(),
ba9703b0
XL
1280 )),
1281 // Error occurred while trying to processing impls.
5099ac24 1282 ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
ba9703b0
XL
1283 // Inherent ambiguity that prevents us from even enumerating the
1284 // candidates.
5099ac24 1285 ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
ba9703b0
XL
1286 }
1287}
1288
f2b60f7d
FG
1289/// If the predicate's item is an `ImplTraitPlaceholder`, we do a select on the
1290/// corresponding trait ref. If this yields an `impl`, then we're able to project
1291/// to a concrete type, since we have an `impl`'s method to provide the RPITIT.
1292fn assemble_candidate_for_impl_trait_in_trait<'cx, 'tcx>(
1293 selcx: &mut SelectionContext<'cx, 'tcx>,
1294 obligation: &ProjectionTyObligation<'tcx>,
1295 candidate_set: &mut ProjectionCandidateSet<'tcx>,
1296) {
1297 let tcx = selcx.tcx();
9c376795
FG
1298 if tcx.def_kind(obligation.predicate.def_id) == DefKind::ImplTraitPlaceholder {
1299 let trait_fn_def_id = tcx.impl_trait_in_trait_parent(obligation.predicate.def_id);
2b03887a 1300
f2b60f7d
FG
1301 let trait_def_id = tcx.parent(trait_fn_def_id);
1302 let trait_substs =
1303 obligation.predicate.substs.truncate_to(tcx, tcx.generics_of(trait_def_id));
1304 // FIXME(named-returns): Binders
9c376795 1305 let trait_predicate = ty::Binder::dummy(tcx.mk_trait_ref(trait_def_id, trait_substs));
f2b60f7d 1306
487cf647
FG
1307 let _ = selcx.infcx.commit_if_ok(|_| {
1308 match selcx.select(&obligation.with(tcx, trait_predicate)) {
f2b60f7d 1309 Ok(Some(super::ImplSource::UserDefined(data))) => {
9ffffee4 1310 candidate_set.push_candidate(ProjectionCandidate::ImplTraitInTrait(data));
f2b60f7d
FG
1311 Ok(())
1312 }
1313 Ok(None) => {
1314 candidate_set.mark_ambiguous();
9ffffee4 1315 Err(())
f2b60f7d
FG
1316 }
1317 Ok(Some(_)) => {
1318 // Don't know enough about the impl to provide a useful signature
9ffffee4 1319 Err(())
f2b60f7d
FG
1320 }
1321 Err(e) => {
1322 debug!(error = ?e, "selection error");
1323 candidate_set.mark_error(e);
9ffffee4 1324 Err(())
f2b60f7d 1325 }
487cf647
FG
1326 }
1327 });
f2b60f7d
FG
1328 }
1329}
1330
ba9703b0
XL
1331/// The first thing we have to do is scan through the parameter
1332/// environment to see whether there are any projection predicates
1333/// there that can answer this question.
1334fn assemble_candidates_from_param_env<'cx, 'tcx>(
1335 selcx: &mut SelectionContext<'cx, 'tcx>,
1336 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1337 candidate_set: &mut ProjectionCandidateSet<'tcx>,
ba9703b0 1338) {
ba9703b0
XL
1339 assemble_candidates_from_predicates(
1340 selcx,
1341 obligation,
ba9703b0 1342 candidate_set,
5099ac24 1343 ProjectionCandidate::ParamEnv,
f035d41b 1344 obligation.param_env.caller_bounds().iter(),
29967ef6 1345 false,
ba9703b0
XL
1346 );
1347}
1348
2b03887a 1349/// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
ba9703b0
XL
1350/// that the definition of `Foo` has some clues:
1351///
04454e1e 1352/// ```ignore (illustrative)
ba9703b0
XL
1353/// trait Foo {
1354/// type FooT : Bar<BarT=i32>
1355/// }
1356/// ```
1357///
1358/// Here, for example, we could conclude that the result is `i32`.
1359fn assemble_candidates_from_trait_def<'cx, 'tcx>(
1360 selcx: &mut SelectionContext<'cx, 'tcx>,
1361 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1362 candidate_set: &mut ProjectionCandidateSet<'tcx>,
ba9703b0
XL
1363) {
1364 debug!("assemble_candidates_from_trait_def(..)");
1365
1366 let tcx = selcx.tcx();
1367 // Check whether the self-type is itself a projection.
f035d41b 1368 // If so, extract what we know from the trait and try to come up with a good answer.
6a06907d 1369 let bounds = match *obligation.predicate.self_ty().kind() {
9c376795 1370 ty::Alias(_, ref data) => tcx.item_bounds(data.def_id).subst(tcx, data.substs),
ba9703b0
XL
1371 ty::Infer(ty::TyVar(_)) => {
1372 // If the self-type is an inference variable, then it MAY wind up
1373 // being a projected type, so induce an ambiguity.
1374 candidate_set.mark_ambiguous();
1375 return;
1376 }
1377 _ => return,
1378 };
1379
ba9703b0
XL
1380 assemble_candidates_from_predicates(
1381 selcx,
1382 obligation,
ba9703b0 1383 candidate_set,
5099ac24 1384 ProjectionCandidate::TraitDef,
f035d41b 1385 bounds.iter(),
29967ef6 1386 true,
5099ac24 1387 );
ba9703b0
XL
1388}
1389
29967ef6
XL
1390/// In the case of a trait object like
1391/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
1392/// predicate in the trait object.
1393///
1394/// We don't go through the select candidate for these bounds to avoid cycles:
1395/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
1396/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
1397/// this then has to be normalized without having to prove
1398/// `dyn Iterator<Item = ()>: Iterator` again.
1399fn assemble_candidates_from_object_ty<'cx, 'tcx>(
1400 selcx: &mut SelectionContext<'cx, 'tcx>,
1401 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1402 candidate_set: &mut ProjectionCandidateSet<'tcx>,
29967ef6
XL
1403) {
1404 debug!("assemble_candidates_from_object_ty(..)");
1405
1406 let tcx = selcx.tcx();
1407
6a06907d 1408 let self_ty = obligation.predicate.self_ty();
487cf647 1409 let object_ty = selcx.infcx.shallow_resolve(self_ty);
29967ef6
XL
1410 let data = match object_ty.kind() {
1411 ty::Dynamic(data, ..) => data,
1412 ty::Infer(ty::TyVar(_)) => {
1413 // If the self-type is an inference variable, then it MAY wind up
1414 // being an object type, so induce an ambiguity.
1415 candidate_set.mark_ambiguous();
1416 return;
1417 }
1418 _ => return,
1419 };
1420 let env_predicates = data
1421 .projection_bounds()
9c376795 1422 .filter(|bound| bound.item_def_id() == obligation.predicate.def_id)
29967ef6
XL
1423 .map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
1424
1425 assemble_candidates_from_predicates(
1426 selcx,
1427 obligation,
29967ef6 1428 candidate_set,
5099ac24 1429 ProjectionCandidate::Object,
29967ef6
XL
1430 env_predicates,
1431 false,
1432 );
1433}
1434
f2b60f7d 1435#[instrument(
5099ac24
FG
1436 level = "debug",
1437 skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
1438)]
ba9703b0
XL
1439fn assemble_candidates_from_predicates<'cx, 'tcx>(
1440 selcx: &mut SelectionContext<'cx, 'tcx>,
1441 obligation: &ProjectionTyObligation<'tcx>,
5099ac24
FG
1442 candidate_set: &mut ProjectionCandidateSet<'tcx>,
1443 ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
ba9703b0 1444 env_predicates: impl Iterator<Item = ty::Predicate<'tcx>>,
29967ef6 1445 potentially_unnormalized_candidates: bool,
ba9703b0 1446) {
487cf647 1447 let infcx = selcx.infcx;
ba9703b0 1448 for predicate in env_predicates {
5869c6ff 1449 let bound_predicate = predicate.kind();
487cf647
FG
1450 if let ty::PredicateKind::Clause(ty::Clause::Projection(data)) =
1451 predicate.kind().skip_binder()
1452 {
29967ef6 1453 let data = bound_predicate.rebind(data);
9c376795 1454 if data.projection_def_id() != obligation.predicate.def_id {
5099ac24
FG
1455 continue;
1456 }
ba9703b0 1457
5099ac24
FG
1458 let is_match = infcx.probe(|_| {
1459 selcx.match_projection_projections(
1460 obligation,
1461 data,
1462 potentially_unnormalized_candidates,
1463 )
1464 });
29967ef6 1465
5099ac24
FG
1466 match is_match {
1467 ProjectionMatchesProjection::Yes => {
1468 candidate_set.push_candidate(ctor(data));
1469
1470 if potentially_unnormalized_candidates
2b03887a 1471 && !obligation.predicate.has_non_region_infer()
5099ac24
FG
1472 {
1473 // HACK: Pick the first trait def candidate for a fully
1474 // inferred predicate. This is to allow duplicates that
1475 // differ only in normalization.
1476 return;
1477 }
1478 }
1479 ProjectionMatchesProjection::Ambiguous => {
1480 candidate_set.mark_ambiguous();
29967ef6 1481 }
5099ac24 1482 ProjectionMatchesProjection::No => {}
ba9703b0
XL
1483 }
1484 }
1485 }
1486}
1487
f2b60f7d 1488#[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
ba9703b0
XL
1489fn assemble_candidates_from_impls<'cx, 'tcx>(
1490 selcx: &mut SelectionContext<'cx, 'tcx>,
1491 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1492 candidate_set: &mut ProjectionCandidateSet<'tcx>,
ba9703b0 1493) {
f2b60f7d 1494 // Can't assemble candidate from impl for RPITIT
9c376795 1495 if selcx.tcx().def_kind(obligation.predicate.def_id) == DefKind::ImplTraitPlaceholder {
f2b60f7d
FG
1496 return;
1497 }
1498
ba9703b0
XL
1499 // If we are resolving `<T as TraitRef<...>>::Item == Type`,
1500 // start out by selecting the predicate `T as TraitRef<...>`:
c295e0f8 1501 let poly_trait_ref = ty::Binder::dummy(obligation.predicate.trait_ref(selcx.tcx()));
487cf647
FG
1502 let trait_obligation = obligation.with(selcx.tcx(), poly_trait_ref);
1503 let _ = selcx.infcx.commit_if_ok(|_| {
f035d41b
XL
1504 let impl_source = match selcx.select(&trait_obligation) {
1505 Ok(Some(impl_source)) => impl_source,
ba9703b0
XL
1506 Ok(None) => {
1507 candidate_set.mark_ambiguous();
1508 return Err(());
1509 }
1510 Err(e) => {
29967ef6 1511 debug!(error = ?e, "selection error");
ba9703b0
XL
1512 candidate_set.mark_error(e);
1513 return Err(());
1514 }
1515 };
1516
f035d41b 1517 let eligible = match &impl_source {
1b1a35ee
XL
1518 super::ImplSource::Closure(_)
1519 | super::ImplSource::Generator(_)
487cf647 1520 | super::ImplSource::Future(_)
1b1a35ee 1521 | super::ImplSource::FnPointer(_)
5099ac24 1522 | super::ImplSource::TraitAlias(_) => true,
1b1a35ee 1523 super::ImplSource::UserDefined(impl_data) => {
ba9703b0
XL
1524 // We have to be careful when projecting out of an
1525 // impl because of specialization. If we are not in
1526 // codegen (i.e., projection mode is not "any"), and the
1527 // impl's type is declared as default, then we disable
1528 // projection (even if the trait ref is fully
1529 // monomorphic). In the case where trait ref is not
1530 // fully monomorphic (i.e., includes type parameters),
1531 // this is because those type parameters may
1532 // ultimately be bound to types from other crates that
1533 // may have specialized impls we can't see. In the
1534 // case where the trait ref IS fully monomorphic, this
1535 // is a policy decision that we made in the RFC in
1536 // order to preserve flexibility for the crate that
1537 // defined the specializable impl to specialize later
1538 // for existing types.
1539 //
1540 // In either case, we handle this by not adding a
1541 // candidate for an impl if it contains a `default`
1542 // type.
1543 //
1544 // NOTE: This should be kept in sync with the similar code in
fc512014 1545 // `rustc_ty_utils::instance::resolve_associated_item()`.
ba9703b0 1546 let node_item =
9c376795 1547 specialization_graph::assoc_def(selcx.tcx(), impl_data.impl_def_id, obligation.predicate.def_id)
5e7ed085 1548 .map_err(|ErrorGuaranteed { .. }| ())?;
ba9703b0
XL
1549
1550 if node_item.is_final() {
1551 // Non-specializable items are always projectable.
1552 true
1553 } else {
1554 // Only reveal a specializable default if we're past type-checking
1555 // and the obligation is monomorphic, otherwise passes such as
1556 // transmute checking and polymorphic MIR optimizations could
1557 // get a result which isn't correct for all monomorphizations.
f035d41b 1558 if obligation.param_env.reveal() == Reveal::All {
ba9703b0
XL
1559 // NOTE(eddyb) inference variables can resolve to parameters, so
1560 // assume `poly_trait_ref` isn't monomorphic, if it contains any.
487cf647 1561 let poly_trait_ref = selcx.infcx.resolve_vars_if_possible(poly_trait_ref);
ba9703b0
XL
1562 !poly_trait_ref.still_further_specializable()
1563 } else {
1564 debug!(
29967ef6
XL
1565 assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
1566 ?obligation.predicate,
1567 "assemble_candidates_from_impls: not eligible due to default",
ba9703b0
XL
1568 );
1569 false
1570 }
1571 }
1572 }
487cf647
FG
1573 super::ImplSource::Builtin(..) => {
1574 // While a builtin impl may be known to exist, the associated type may not yet
1575 // be known. Any type with multiple potential associated types is therefore
1576 // not eligible.
1577 let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
1578
1579 let lang_items = selcx.tcx().lang_items();
1580 if lang_items.discriminant_kind_trait() == Some(poly_trait_ref.def_id()) {
1581 match self_ty.kind() {
1582 ty::Bool
1583 | ty::Char
1584 | ty::Int(_)
1585 | ty::Uint(_)
1586 | ty::Float(_)
1587 | ty::Adt(..)
1588 | ty::Foreign(_)
1589 | ty::Str
1590 | ty::Array(..)
1591 | ty::Slice(_)
1592 | ty::RawPtr(..)
1593 | ty::Ref(..)
1594 | ty::FnDef(..)
1595 | ty::FnPtr(..)
1596 | ty::Dynamic(..)
1597 | ty::Closure(..)
1598 | ty::Generator(..)
1599 | ty::GeneratorWitness(..)
9ffffee4 1600 | ty::GeneratorWitnessMIR(..)
487cf647
FG
1601 | ty::Never
1602 | ty::Tuple(..)
1603 // Integers and floats always have `u8` as their discriminant.
1604 | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1605
1606 // type parameters, opaques, and unnormalized projections have pointer
1607 // metadata if they're known (e.g. by the param_env) to be sized
1608 ty::Param(_)
9c376795 1609 | ty::Alias(..)
487cf647
FG
1610 | ty::Bound(..)
1611 | ty::Placeholder(..)
1612 | ty::Infer(..)
1613 | ty::Error(_) => false,
5e7ed085 1614 }
487cf647
FG
1615 } else if lang_items.pointee_trait() == Some(poly_trait_ref.def_id()) {
1616 let tail = selcx.tcx().struct_tail_with_normalize(
1617 self_ty,
1618 |ty| {
1619 // We throw away any obligations we get from this, since we normalize
1620 // and confirm these obligations once again during confirmation
1621 normalize_with_depth(
1622 selcx,
1623 obligation.param_env,
1624 obligation.cause.clone(),
1625 obligation.recursion_depth + 1,
1626 ty,
1627 )
1628 .value
1629 },
1630 || {},
1631 );
5e7ed085 1632
487cf647
FG
1633 match tail.kind() {
1634 ty::Bool
1635 | ty::Char
1636 | ty::Int(_)
1637 | ty::Uint(_)
1638 | ty::Float(_)
1639 | ty::Str
1640 | ty::Array(..)
1641 | ty::Slice(_)
1642 | ty::RawPtr(..)
1643 | ty::Ref(..)
1644 | ty::FnDef(..)
1645 | ty::FnPtr(..)
1646 | ty::Dynamic(..)
1647 | ty::Closure(..)
1648 | ty::Generator(..)
1649 | ty::GeneratorWitness(..)
9ffffee4 1650 | ty::GeneratorWitnessMIR(..)
487cf647
FG
1651 | ty::Never
1652 // Extern types have unit metadata, according to RFC 2850
1653 | ty::Foreign(_)
1654 // If returned by `struct_tail_without_normalization` this is a unit struct
1655 // without any fields, or not a struct, and therefore is Sized.
1656 | ty::Adt(..)
1657 // If returned by `struct_tail_without_normalization` this is the empty tuple.
1658 | ty::Tuple(..)
1659 // Integers and floats are always Sized, and so have unit type metadata.
1660 | ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
1661
1662 // type parameters, opaques, and unnormalized projections have pointer
1663 // metadata if they're known (e.g. by the param_env) to be sized
9c376795 1664 ty::Param(_) | ty::Alias(..)
487cf647
FG
1665 if selcx.infcx.predicate_must_hold_modulo_regions(
1666 &obligation.with(
1667 selcx.tcx(),
1668 ty::Binder::dummy(
1669 selcx.tcx().at(obligation.cause.span()).mk_trait_ref(LangItem::Sized, [self_ty]),
1670 )
1671 .without_const(),
1672 ),
1673 ) =>
1674 {
1675 true
1676 }
1677
1678 // FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
1679 ty::Param(_)
9c376795 1680 | ty::Alias(..)
487cf647
FG
1681 | ty::Bound(..)
1682 | ty::Placeholder(..)
1683 | ty::Infer(..)
1684 | ty::Error(_) => {
1685 if tail.has_infer_types() {
1686 candidate_set.mark_ambiguous();
1687 }
1688 false
5099ac24 1689 }
5e7ed085 1690 }
487cf647
FG
1691 } else {
1692 bug!("unexpected builtin trait with associated type: {poly_trait_ref:?}")
6a06907d
XL
1693 }
1694 }
1b1a35ee 1695 super::ImplSource::Param(..) => {
ba9703b0
XL
1696 // This case tell us nothing about the value of an
1697 // associated type. Consider:
1698 //
1699 // ```
1700 // trait SomeTrait { type Foo; }
1701 // fn foo<T:SomeTrait>(...) { }
1702 // ```
1703 //
1704 // If the user writes `<T as SomeTrait>::Foo`, then the `T
1705 // : SomeTrait` binding does not help us decide what the
1706 // type `Foo` is (at least, not more specifically than
1707 // what we already knew).
1708 //
1709 // But wait, you say! What about an example like this:
1710 //
1711 // ```
1712 // fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
1713 // ```
1714 //
5e7ed085 1715 // Doesn't the `T : SomeTrait<Foo=usize>` predicate help
ba9703b0
XL
1716 // resolve `T::Foo`? And of course it does, but in fact
1717 // that single predicate is desugared into two predicates
1718 // in the compiler: a trait predicate (`T : SomeTrait`) and a
1719 // projection. And the projection where clause is handled
1720 // in `assemble_candidates_from_param_env`.
1721 false
1722 }
29967ef6
XL
1723 super::ImplSource::Object(_) => {
1724 // Handled by the `Object` projection candidate. See
1725 // `assemble_candidates_from_object_ty` for an explanation of
1726 // why we special case object types.
1727 false
1728 }
94222f64 1729 super::ImplSource::AutoImpl(..)
c295e0f8 1730 | super::ImplSource::TraitUpcasting(_)
2b03887a 1731 | super::ImplSource::ConstDestruct(_) => {
ba9703b0 1732 // These traits have no associated types.
f9652781 1733 selcx.tcx().sess.delay_span_bug(
ba9703b0 1734 obligation.cause.span,
f9652781 1735 &format!("Cannot project an associated type from `{:?}`", impl_source),
ba9703b0 1736 );
f9652781 1737 return Err(());
ba9703b0
XL
1738 }
1739 };
1740
1741 if eligible {
5099ac24 1742 if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
ba9703b0
XL
1743 Ok(())
1744 } else {
1745 Err(())
1746 }
1747 } else {
1748 Err(())
1749 }
1750 });
1751}
1752
1753fn confirm_candidate<'cx, 'tcx>(
1754 selcx: &mut SelectionContext<'cx, 'tcx>,
1755 obligation: &ProjectionTyObligation<'tcx>,
5099ac24 1756 candidate: ProjectionCandidate<'tcx>,
ba9703b0 1757) -> Progress<'tcx> {
29967ef6 1758 debug!(?obligation, ?candidate, "confirm_candidate");
f035d41b 1759 let mut progress = match candidate {
5099ac24
FG
1760 ProjectionCandidate::ParamEnv(poly_projection)
1761 | ProjectionCandidate::Object(poly_projection) => {
29967ef6
XL
1762 confirm_param_env_candidate(selcx, obligation, poly_projection, false)
1763 }
1764
5099ac24 1765 ProjectionCandidate::TraitDef(poly_projection) => {
29967ef6 1766 confirm_param_env_candidate(selcx, obligation, poly_projection, true)
ba9703b0
XL
1767 }
1768
5099ac24 1769 ProjectionCandidate::Select(impl_source) => {
29967ef6 1770 confirm_select_candidate(selcx, obligation, impl_source)
ba9703b0 1771 }
9ffffee4 1772 ProjectionCandidate::ImplTraitInTrait(data) => {
f2b60f7d
FG
1773 confirm_impl_trait_in_trait_candidate(selcx, obligation, data)
1774 }
f035d41b 1775 };
5099ac24 1776
f035d41b
XL
1777 // When checking for cycle during evaluation, we compare predicates with
1778 // "syntactic" equality. Since normalization generally introduces a type
1779 // with new region variables, we need to resolve them to existing variables
1780 // when possible for this to work. See `auto-trait-projection-recursion.rs`
1781 // for a case where this matters.
5099ac24 1782 if progress.term.has_infer_regions() {
487cf647 1783 progress.term = progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx));
ba9703b0 1784 }
f035d41b 1785 progress
ba9703b0
XL
1786}
1787
1788fn confirm_select_candidate<'cx, 'tcx>(
1789 selcx: &mut SelectionContext<'cx, 'tcx>,
1790 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1791 impl_source: Selection<'tcx>,
ba9703b0 1792) -> Progress<'tcx> {
f035d41b 1793 match impl_source {
1b1a35ee
XL
1794 super::ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
1795 super::ImplSource::Generator(data) => confirm_generator_candidate(selcx, obligation, data),
487cf647 1796 super::ImplSource::Future(data) => confirm_future_candidate(selcx, obligation, data),
1b1a35ee
XL
1797 super::ImplSource::Closure(data) => confirm_closure_candidate(selcx, obligation, data),
1798 super::ImplSource::FnPointer(data) => confirm_fn_pointer_candidate(selcx, obligation, data),
487cf647 1799 super::ImplSource::Builtin(data) => confirm_builtin_candidate(selcx, obligation, data),
29967ef6
XL
1800 super::ImplSource::Object(_)
1801 | super::ImplSource::AutoImpl(..)
1b1a35ee 1802 | super::ImplSource::Param(..)
94222f64 1803 | super::ImplSource::TraitUpcasting(_)
c295e0f8 1804 | super::ImplSource::TraitAlias(..)
2b03887a 1805 | super::ImplSource::ConstDestruct(_) => {
29967ef6 1806 // we don't create Select candidates with this kind of resolution
ba9703b0
XL
1807 span_bug!(
1808 obligation.cause.span,
1809 "Cannot project an associated type from `{:?}`",
f035d41b 1810 impl_source
ba9703b0
XL
1811 )
1812 }
1813 }
1814}
1815
ba9703b0
XL
1816fn confirm_generator_candidate<'cx, 'tcx>(
1817 selcx: &mut SelectionContext<'cx, 'tcx>,
1818 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1819 impl_source: ImplSourceGeneratorData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1820) -> Progress<'tcx> {
f035d41b 1821 let gen_sig = impl_source.substs.as_generator().poly_sig();
ba9703b0
XL
1822 let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1823 selcx,
1824 obligation.param_env,
1825 obligation.cause.clone(),
1826 obligation.recursion_depth + 1,
fc512014 1827 gen_sig,
ba9703b0
XL
1828 );
1829
29967ef6 1830 debug!(?obligation, ?gen_sig, ?obligations, "confirm_generator_candidate");
ba9703b0
XL
1831
1832 let tcx = selcx.tcx();
1833
3dfed10e 1834 let gen_def_id = tcx.require_lang_item(LangItem::Generator, None);
ba9703b0
XL
1835
1836 let predicate = super::util::generator_trait_ref_and_outputs(
1837 tcx,
1838 gen_def_id,
1839 obligation.predicate.self_ty(),
1840 gen_sig,
1841 )
1842 .map_bound(|(trait_ref, yield_ty, return_ty)| {
9c376795 1843 let name = tcx.associated_item(obligation.predicate.def_id).name;
ba9703b0
XL
1844 let ty = if name == sym::Return {
1845 return_ty
1846 } else if name == sym::Yield {
1847 yield_ty
1848 } else {
1849 bug!()
1850 };
1851
1852 ty::ProjectionPredicate {
9c376795 1853 projection_ty: tcx.mk_alias_ty(obligation.predicate.def_id, trait_ref.substs),
5099ac24 1854 term: ty.into(),
ba9703b0
XL
1855 }
1856 });
1857
29967ef6 1858 confirm_param_env_candidate(selcx, obligation, predicate, false)
f035d41b 1859 .with_addl_obligations(impl_source.nested)
ba9703b0
XL
1860 .with_addl_obligations(obligations)
1861}
1862
487cf647 1863fn confirm_future_candidate<'cx, 'tcx>(
f9f354fc
XL
1864 selcx: &mut SelectionContext<'cx, 'tcx>,
1865 obligation: &ProjectionTyObligation<'tcx>,
487cf647 1866 impl_source: ImplSourceFutureData<'tcx, PredicateObligation<'tcx>>,
f9f354fc 1867) -> Progress<'tcx> {
487cf647
FG
1868 let gen_sig = impl_source.substs.as_generator().poly_sig();
1869 let Normalized { value: gen_sig, obligations } = normalize_with_depth(
1870 selcx,
1871 obligation.param_env,
1872 obligation.cause.clone(),
1873 obligation.recursion_depth + 1,
1874 gen_sig,
1875 );
f9f354fc 1876
487cf647 1877 debug!(?obligation, ?gen_sig, ?obligations, "confirm_future_candidate");
f9f354fc 1878
487cf647
FG
1879 let tcx = selcx.tcx();
1880 let fut_def_id = tcx.require_lang_item(LangItem::Future, None);
f9f354fc 1881
487cf647
FG
1882 let predicate = super::util::future_trait_ref_and_outputs(
1883 tcx,
1884 fut_def_id,
1885 obligation.predicate.self_ty(),
1886 gen_sig,
1887 )
1888 .map_bound(|(trait_ref, return_ty)| {
9c376795 1889 debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Output);
f9f354fc 1890
487cf647 1891 ty::ProjectionPredicate {
9c376795 1892 projection_ty: tcx.mk_alias_ty(obligation.predicate.def_id, trait_ref.substs),
487cf647
FG
1893 term: return_ty.into(),
1894 }
1895 });
1896
1897 confirm_param_env_candidate(selcx, obligation, predicate, false)
1898 .with_addl_obligations(impl_source.nested)
1899 .with_addl_obligations(obligations)
f9f354fc
XL
1900}
1901
487cf647 1902fn confirm_builtin_candidate<'cx, 'tcx>(
6a06907d
XL
1903 selcx: &mut SelectionContext<'cx, 'tcx>,
1904 obligation: &ProjectionTyObligation<'tcx>,
487cf647 1905 data: ImplSourceBuiltinData<PredicateObligation<'tcx>>,
6a06907d
XL
1906) -> Progress<'tcx> {
1907 let tcx = selcx.tcx();
487cf647 1908 let self_ty = obligation.predicate.self_ty();
9ffffee4 1909 let substs = tcx.mk_substs(&[self_ty.into()]);
487cf647 1910 let lang_items = tcx.lang_items();
9c376795 1911 let item_def_id = obligation.predicate.def_id;
487cf647
FG
1912 let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
1913 let (term, obligations) = if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
1914 let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
1915 assert_eq!(discriminant_def_id, item_def_id);
1916
1917 (self_ty.discriminant_ty(tcx).into(), Vec::new())
1918 } else if lang_items.pointee_trait() == Some(trait_def_id) {
1919 let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
1920 assert_eq!(metadata_def_id, item_def_id);
1921
1922 let mut obligations = Vec::new();
1923 let (metadata_ty, check_is_sized) = self_ty.ptr_metadata_ty(tcx, |ty| {
1924 normalize_with_depth_to(
1925 selcx,
1926 obligation.param_env,
1927 obligation.cause.clone(),
1928 obligation.recursion_depth + 1,
1929 ty,
1930 &mut obligations,
1931 )
1932 });
1933 if check_is_sized {
1934 let sized_predicate = ty::Binder::dummy(
1935 tcx.at(obligation.cause.span()).mk_trait_ref(LangItem::Sized, [self_ty]),
1936 )
1937 .without_const();
1938 obligations.push(obligation.with(tcx, sized_predicate));
1939 }
1940 (metadata_ty.into(), obligations)
1941 } else {
1942 bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
6a06907d
XL
1943 };
1944
487cf647 1945 let predicate =
9c376795 1946 ty::ProjectionPredicate { projection_ty: tcx.mk_alias_ty(item_def_id, substs), term };
487cf647 1947
136023e0 1948 confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
5099ac24 1949 .with_addl_obligations(obligations)
487cf647 1950 .with_addl_obligations(data.nested)
6a06907d
XL
1951}
1952
ba9703b0
XL
1953fn confirm_fn_pointer_candidate<'cx, 'tcx>(
1954 selcx: &mut SelectionContext<'cx, 'tcx>,
1955 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1956 fn_pointer_impl_source: ImplSourceFnPointerData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1957) -> Progress<'tcx> {
487cf647 1958 let fn_type = selcx.infcx.shallow_resolve(fn_pointer_impl_source.fn_ty);
ba9703b0
XL
1959 let sig = fn_type.fn_sig(selcx.tcx());
1960 let Normalized { value: sig, obligations } = normalize_with_depth(
1961 selcx,
1962 obligation.param_env,
1963 obligation.cause.clone(),
1964 obligation.recursion_depth + 1,
fc512014 1965 sig,
ba9703b0
XL
1966 );
1967
1968 confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
f035d41b 1969 .with_addl_obligations(fn_pointer_impl_source.nested)
ba9703b0
XL
1970 .with_addl_obligations(obligations)
1971}
1972
1973fn confirm_closure_candidate<'cx, 'tcx>(
1974 selcx: &mut SelectionContext<'cx, 'tcx>,
1975 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 1976 impl_source: ImplSourceClosureData<'tcx, PredicateObligation<'tcx>>,
ba9703b0 1977) -> Progress<'tcx> {
f035d41b 1978 let closure_sig = impl_source.substs.as_closure().sig();
ba9703b0
XL
1979 let Normalized { value: closure_sig, obligations } = normalize_with_depth(
1980 selcx,
1981 obligation.param_env,
1982 obligation.cause.clone(),
1983 obligation.recursion_depth + 1,
fc512014 1984 closure_sig,
ba9703b0
XL
1985 );
1986
29967ef6 1987 debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
ba9703b0
XL
1988
1989 confirm_callable_candidate(selcx, obligation, closure_sig, util::TupleArgumentsFlag::No)
f035d41b 1990 .with_addl_obligations(impl_source.nested)
ba9703b0
XL
1991 .with_addl_obligations(obligations)
1992}
1993
1994fn confirm_callable_candidate<'cx, 'tcx>(
1995 selcx: &mut SelectionContext<'cx, 'tcx>,
1996 obligation: &ProjectionTyObligation<'tcx>,
1997 fn_sig: ty::PolyFnSig<'tcx>,
1998 flag: util::TupleArgumentsFlag,
1999) -> Progress<'tcx> {
2000 let tcx = selcx.tcx();
2001
29967ef6 2002 debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
ba9703b0 2003
3dfed10e
XL
2004 let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
2005 let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
ba9703b0
XL
2006
2007 let predicate = super::util::closure_trait_ref_and_return_type(
2008 tcx,
2009 fn_once_def_id,
2010 obligation.predicate.self_ty(),
2011 fn_sig,
2012 flag,
2013 )
2014 .map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
9c376795 2015 projection_ty: tcx.mk_alias_ty(fn_once_output_def_id, trait_ref.substs),
5099ac24 2016 term: ret_type.into(),
ba9703b0
XL
2017 });
2018
3c0e092e 2019 confirm_param_env_candidate(selcx, obligation, predicate, true)
ba9703b0
XL
2020}
2021
2022fn confirm_param_env_candidate<'cx, 'tcx>(
2023 selcx: &mut SelectionContext<'cx, 'tcx>,
2024 obligation: &ProjectionTyObligation<'tcx>,
2025 poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
29967ef6 2026 potentially_unnormalized_candidate: bool,
ba9703b0 2027) -> Progress<'tcx> {
487cf647 2028 let infcx = selcx.infcx;
ba9703b0
XL
2029 let cause = &obligation.cause;
2030 let param_env = obligation.param_env;
2031
9ffffee4 2032 let cache_entry = infcx.instantiate_binder_with_fresh_vars(
ba9703b0
XL
2033 cause.span,
2034 LateBoundRegionConversionTime::HigherRankedType,
fc512014 2035 poly_cache_entry,
ba9703b0
XL
2036 );
2037
6a06907d 2038 let cache_projection = cache_entry.projection_ty;
29967ef6 2039 let mut nested_obligations = Vec::new();
3c0e092e
XL
2040 let obligation_projection = obligation.predicate;
2041 let obligation_projection = ensure_sufficient_stack(|| {
2042 normalize_with_depth_to(
2043 selcx,
2044 obligation.param_env,
2045 obligation.cause.clone(),
2046 obligation.recursion_depth + 1,
2047 obligation_projection,
2048 &mut nested_obligations,
2049 )
2050 });
6a06907d 2051 let cache_projection = if potentially_unnormalized_candidate {
29967ef6
XL
2052 ensure_sufficient_stack(|| {
2053 normalize_with_depth_to(
2054 selcx,
2055 obligation.param_env,
2056 obligation.cause.clone(),
2057 obligation.recursion_depth + 1,
6a06907d 2058 cache_projection,
29967ef6
XL
2059 &mut nested_obligations,
2060 )
2061 })
2062 } else {
6a06907d 2063 cache_projection
29967ef6
XL
2064 };
2065
3c0e092e
XL
2066 debug!(?cache_projection, ?obligation_projection);
2067
6a06907d 2068 match infcx.at(cause, param_env).eq(cache_projection, obligation_projection) {
29967ef6
XL
2069 Ok(InferOk { value: _, obligations }) => {
2070 nested_obligations.extend(obligations);
2071 assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
5099ac24
FG
2072 // FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
2073 // a term instead.
2074 Progress { term: cache_entry.term, obligations: nested_obligations }
29967ef6 2075 }
ba9703b0
XL
2076 Err(e) => {
2077 let msg = format!(
2078 "Failed to unify obligation `{:?}` with poly_projection `{:?}`: {:?}",
2079 obligation, poly_cache_entry, e,
2080 );
2081 debug!("confirm_param_env_candidate: {}", msg);
f035d41b 2082 let err = infcx.tcx.ty_error_with_message(obligation.cause.span, &msg);
5099ac24 2083 Progress { term: err.into(), obligations: vec![] }
ba9703b0
XL
2084 }
2085 }
2086}
2087
2088fn confirm_impl_candidate<'cx, 'tcx>(
2089 selcx: &mut SelectionContext<'cx, 'tcx>,
2090 obligation: &ProjectionTyObligation<'tcx>,
f035d41b 2091 impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
ba9703b0
XL
2092) -> Progress<'tcx> {
2093 let tcx = selcx.tcx();
2094
29967ef6 2095 let ImplSourceUserDefinedData { impl_def_id, substs, mut nested } = impl_impl_source;
9c376795 2096 let assoc_item_id = obligation.predicate.def_id;
ba9703b0
XL
2097 let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
2098
2099 let param_env = obligation.param_env;
9ffffee4
FG
2100 let assoc_ty = match specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) {
2101 Ok(assoc_ty) => assoc_ty,
2102 Err(guar) => return Progress::error(tcx, guar),
ba9703b0
XL
2103 };
2104
064997fb 2105 if !assoc_ty.item.defaultness(tcx).has_value() {
ba9703b0
XL
2106 // This means that the impl is missing a definition for the
2107 // associated type. This error will be reported by the type
2108 // checker method `check_impl_items_against_trait`, so here we
2109 // just return Error.
2110 debug!(
2111 "confirm_impl_candidate: no associated type {:?} for {:?}",
5099ac24 2112 assoc_ty.item.name, obligation.predicate
ba9703b0 2113 );
9ffffee4 2114 return Progress { term: tcx.ty_error_misc().into(), obligations: nested };
ba9703b0 2115 }
f035d41b
XL
2116 // If we're trying to normalize `<Vec<u32> as X>::A<S>` using
2117 //`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
2118 //
2119 // * `obligation.predicate.substs` is `[Vec<u32>, S]`
2120 // * `substs` is `[u32]`
2121 // * `substs` ends up as `[u32, S]`
ba9703b0
XL
2122 let substs = obligation.predicate.substs.rebase_onto(tcx, trait_def_id, substs);
2123 let substs =
487cf647 2124 translate_substs(selcx.infcx, param_env, impl_def_id, substs, assoc_ty.defining_node);
9ffffee4 2125 let ty = tcx.type_of(assoc_ty.item.def_id);
5099ac24 2126 let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
064997fb 2127 let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
5099ac24
FG
2128 let identity_substs =
2129 crate::traits::InternalSubsts::identity_for_item(tcx, assoc_ty.item.def_id);
2130 let did = ty::WithOptConstParam::unknown(assoc_ty.item.def_id);
2b03887a 2131 let kind = ty::ConstKind::Unevaluated(ty::UnevaluatedConst::new(did, identity_substs));
487cf647 2132 ty.map_bound(|ty| tcx.mk_const(kind, ty).into())
5099ac24 2133 } else {
064997fb 2134 ty.map_bound(|ty| ty.into())
5099ac24 2135 };
9ffffee4 2136 if !check_substs_compatible(tcx, assoc_ty.item, substs) {
f035d41b 2137 let err = tcx.ty_error_with_message(
29967ef6 2138 obligation.cause.span,
2b03887a 2139 "impl item and trait item have different parameters",
f035d41b 2140 );
5099ac24 2141 Progress { term: err.into(), obligations: nested }
ba9703b0 2142 } else {
29967ef6 2143 assoc_ty_own_obligations(selcx, obligation, &mut nested);
064997fb 2144 Progress { term: term.subst(tcx, substs), obligations: nested }
ba9703b0
XL
2145 }
2146}
2147
2b03887a
FG
2148// Verify that the trait item and its implementation have compatible substs lists
2149fn check_substs_compatible<'tcx>(
2150 tcx: TyCtxt<'tcx>,
9ffffee4 2151 assoc_item: ty::AssocItem,
2b03887a
FG
2152 substs: ty::SubstsRef<'tcx>,
2153) -> bool {
2154 fn check_substs_compatible_inner<'tcx>(
2155 tcx: TyCtxt<'tcx>,
2156 generics: &'tcx ty::Generics,
2157 args: &'tcx [ty::GenericArg<'tcx>],
2158 ) -> bool {
2159 if generics.count() != args.len() {
2160 return false;
2161 }
2162
2163 let (parent_args, own_args) = args.split_at(generics.parent_count);
2164
2165 if let Some(parent) = generics.parent
2166 && let parent_generics = tcx.generics_of(parent)
2167 && !check_substs_compatible_inner(tcx, parent_generics, parent_args) {
2168 return false;
2169 }
2170
2171 for (param, arg) in std::iter::zip(&generics.params, own_args) {
2172 match (&param.kind, arg.unpack()) {
2173 (ty::GenericParamDefKind::Type { .. }, ty::GenericArgKind::Type(_))
2174 | (ty::GenericParamDefKind::Lifetime, ty::GenericArgKind::Lifetime(_))
2175 | (ty::GenericParamDefKind::Const { .. }, ty::GenericArgKind::Const(_)) => {}
2176 _ => return false,
2177 }
2178 }
2179
2180 true
2181 }
2182
487cf647
FG
2183 let generics = tcx.generics_of(assoc_item.def_id);
2184 // Chop off any additional substs (RPITIT) substs
2185 let substs = &substs[0..generics.count().min(substs.len())];
2186 check_substs_compatible_inner(tcx, generics, substs)
2b03887a
FG
2187}
2188
f2b60f7d
FG
2189fn confirm_impl_trait_in_trait_candidate<'tcx>(
2190 selcx: &mut SelectionContext<'_, 'tcx>,
2191 obligation: &ProjectionTyObligation<'tcx>,
2192 data: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
2193) -> Progress<'tcx> {
2194 let tcx = selcx.tcx();
2195 let mut obligations = data.nested;
2196
9c376795 2197 let trait_fn_def_id = tcx.impl_trait_in_trait_parent(obligation.predicate.def_id);
9ffffee4
FG
2198 let leaf_def = match specialization_graph::assoc_def(tcx, data.impl_def_id, trait_fn_def_id) {
2199 Ok(assoc_ty) => assoc_ty,
2200 Err(guar) => return Progress::error(tcx, guar),
f2b60f7d 2201 };
9ffffee4
FG
2202 // We don't support specialization for RPITITs anyways... yet.
2203 if !leaf_def.is_final() {
2204 return Progress { term: tcx.ty_error_misc().into(), obligations };
f2b60f7d
FG
2205 }
2206
2b03887a
FG
2207 // Use the default `impl Trait` for the trait, e.g., for a default trait body
2208 if leaf_def.item.container == ty::AssocItemContainer::TraitContainer {
2209 return Progress {
9c376795 2210 term: tcx.mk_opaque(obligation.predicate.def_id, obligation.predicate.substs).into(),
2b03887a
FG
2211 obligations,
2212 };
2213 }
2214
2b03887a
FG
2215 // Rebase from {trait}::{fn}::{opaque} to {impl}::{fn}::{opaque},
2216 // since `data.substs` are the impl substs.
2217 let impl_fn_substs =
2218 obligation.predicate.substs.rebase_onto(tcx, tcx.parent(trait_fn_def_id), data.substs);
487cf647
FG
2219 let impl_fn_substs = translate_substs(
2220 selcx.infcx,
2221 obligation.param_env,
2222 data.impl_def_id,
2223 impl_fn_substs,
2224 leaf_def.defining_node,
2225 );
2226
9ffffee4 2227 if !check_substs_compatible(tcx, leaf_def.item, impl_fn_substs) {
487cf647
FG
2228 let err = tcx.ty_error_with_message(
2229 obligation.cause.span,
2230 "impl method and trait method have different parameters",
2231 );
2232 return Progress { term: err.into(), obligations };
2233 }
2234
2235 let impl_fn_def_id = leaf_def.item.def_id;
f2b60f7d
FG
2236
2237 let cause = ObligationCause::new(
2238 obligation.cause.span,
2239 obligation.cause.body_id,
2240 super::ItemObligation(impl_fn_def_id),
2241 );
2242 let predicates = normalize_with_depth_to(
2243 selcx,
2244 obligation.param_env,
2245 cause.clone(),
2246 obligation.recursion_depth + 1,
2247 tcx.predicates_of(impl_fn_def_id).instantiate(tcx, impl_fn_substs),
2248 &mut obligations,
2249 );
9c376795
FG
2250 obligations.extend(predicates.into_iter().map(|(pred, span)| {
2251 Obligation::with_depth(
2252 tcx,
2253 ObligationCause::new(
2254 obligation.cause.span,
2255 obligation.cause.body_id,
2256 if span.is_dummy() {
2257 super::ItemObligation(impl_fn_def_id)
2258 } else {
2259 super::BindingObligation(impl_fn_def_id, span)
2260 },
2261 ),
2262 obligation.recursion_depth + 1,
2263 obligation.param_env,
2264 pred,
2265 )
2266 }));
f2b60f7d 2267
487cf647 2268 let ty = normalize_with_depth_to(
f2b60f7d
FG
2269 selcx,
2270 obligation.param_env,
2271 cause.clone(),
487cf647 2272 obligation.recursion_depth + 1,
9c376795 2273 tcx.bound_return_position_impl_trait_in_trait_tys(impl_fn_def_id)
f2b60f7d 2274 .map_bound(|tys| {
9ffffee4 2275 tys.map_or_else(|guar| tcx.ty_error(guar), |tys| tys[&obligation.predicate.def_id])
f2b60f7d
FG
2276 })
2277 .subst(tcx, impl_fn_substs),
2278 &mut obligations,
2279 );
2280
2281 Progress { term: ty.into(), obligations }
2282}
2283
29967ef6
XL
2284// Get obligations corresponding to the predicates from the where-clause of the
2285// associated type itself.
29967ef6
XL
2286fn assoc_ty_own_obligations<'cx, 'tcx>(
2287 selcx: &mut SelectionContext<'cx, 'tcx>,
2288 obligation: &ProjectionTyObligation<'tcx>,
2289 nested: &mut Vec<PredicateObligation<'tcx>>,
2290) {
2291 let tcx = selcx.tcx();
9c376795
FG
2292 let predicates = tcx
2293 .predicates_of(obligation.predicate.def_id)
487cf647 2294 .instantiate_own(tcx, obligation.predicate.substs);
9c376795 2295 for (predicate, span) in predicates {
29967ef6
XL
2296 let normalized = normalize_with_depth_to(
2297 selcx,
2298 obligation.param_env,
2299 obligation.cause.clone(),
2300 obligation.recursion_depth + 1,
fc512014 2301 predicate,
29967ef6
XL
2302 nested,
2303 );
487cf647
FG
2304
2305 let nested_cause = if matches!(
2306 obligation.cause.code(),
2307 super::CompareImplItemObligation { .. }
2308 | super::CheckAssociatedTypeBounds { .. }
2309 | super::AscribeUserTypeProvePredicate(..)
2310 ) {
2311 obligation.cause.clone()
2312 } else if span.is_dummy() {
2313 ObligationCause::new(
2314 obligation.cause.span,
2315 obligation.cause.body_id,
9c376795 2316 super::ItemObligation(obligation.predicate.def_id),
487cf647
FG
2317 )
2318 } else {
2319 ObligationCause::new(
2320 obligation.cause.span,
2321 obligation.cause.body_id,
9c376795 2322 super::BindingObligation(obligation.predicate.def_id, span),
487cf647
FG
2323 )
2324 };
29967ef6 2325 nested.push(Obligation::with_depth(
487cf647
FG
2326 tcx,
2327 nested_cause,
29967ef6
XL
2328 obligation.recursion_depth + 1,
2329 obligation.param_env,
2330 normalized,
2331 ));
2332 }
2333}
2334
923072b8 2335pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
ba9703b0
XL
2336 fn from_poly_projection_predicate(
2337 selcx: &mut SelectionContext<'cx, 'tcx>,
f9f354fc 2338 predicate: ty::PolyProjectionPredicate<'tcx>,
ba9703b0
XL
2339 ) -> Option<Self>;
2340}
2341
a2a8927a 2342impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
ba9703b0
XL
2343 fn from_poly_projection_predicate(
2344 selcx: &mut SelectionContext<'cx, 'tcx>,
f9f354fc 2345 predicate: ty::PolyProjectionPredicate<'tcx>,
ba9703b0 2346 ) -> Option<Self> {
487cf647 2347 let infcx = selcx.infcx;
ba9703b0
XL
2348 // We don't do cross-snapshot caching of obligations with escaping regions,
2349 // so there's no cache key to use
2350 predicate.no_bound_vars().map(|predicate| {
2351 ProjectionCacheKey::new(
2352 // We don't attempt to match up with a specific type-variable state
2353 // from a specific call to `opt_normalize_projection_type` - if
2354 // there's no precise match, the original cache entry is "stranded"
2355 // anyway.
fc512014 2356 infcx.resolve_vars_if_possible(predicate.projection_ty),
ba9703b0
XL
2357 )
2358 })
2359 }
2360}