]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_typeck/src/astconv/mod.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / astconv / mod.rs
CommitLineData
0731742a
XL
1//! Conversion from AST representation of types to the `ty.rs` representation.
2//! The main routine here is `ast_ty_to_ty()`; each use is parameterized by an
3//! instance of `AstConv`.
1a4d82fc 4
3dfed10e
XL
5mod errors;
6mod generics;
dfeec247 7
3dfed10e 8use crate::bounds::Bounds;
dfeec247 9use crate::collect::PlaceholderHirTyCollector;
1b1a35ee
XL
10use crate::errors::{
11 AmbiguousLifetimeBound, MultipleRelaxedDefaultBounds, TraitObjectDeclaredWithNoTraits,
12 TypeofReservedKeywordUsed, ValueOfAssociatedStructAlreadySpecified,
13};
9fa01778 14use crate::middle::resolve_lifetime as rl;
dfeec247 15use crate::require_c_abi_if_c_variadic;
dfeec247 16use rustc_data_structures::fx::{FxHashMap, FxHashSet};
3dfed10e 17use rustc_errors::{struct_span_err, Applicability, ErrorReported, FatalError};
dfeec247 18use rustc_hir as hir;
74b04a01 19use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
f9f354fc 20use rustc_hir::def_id::{DefId, LocalDefId};
ba9703b0 21use rustc_hir::intravisit::{walk_generics, Visitor as _};
3dfed10e 22use rustc_hir::lang_items::LangItem;
ba9703b0
XL
23use rustc_hir::{Constness, GenericArg, GenericArgs};
24use rustc_middle::ty::subst::{self, InternalSubsts, Subst, SubstsRef};
3dfed10e
XL
25use rustc_middle::ty::GenericParamDefKind;
26use rustc_middle::ty::{self, Const, DefIdTree, Ty, TyCtxt, TypeFoldable};
27use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
fc512014 28use rustc_span::lev_distance::find_best_match_for_name;
3dfed10e
XL
29use rustc_span::symbol::{Ident, Symbol};
30use rustc_span::{Span, DUMMY_SP};
83c7162d 31use rustc_target::spec::abi;
ba9703b0
XL
32use rustc_trait_selection::traits;
33use rustc_trait_selection::traits::astconv_object_safety_violations;
34use rustc_trait_selection::traits::error_reporting::report_object_safety_error;
35use rustc_trait_selection::traits::wf::object_region_bounds;
0731742a 36
ba9703b0 37use smallvec::SmallVec;
29967ef6 38use std::array;
0731742a 39use std::collections::BTreeSet;
0731742a
XL
40use std::slice;
41
0731742a
XL
42#[derive(Debug)]
43pub struct PathSeg(pub DefId, pub usize);
e9174d1e 44
dc9dc135
XL
45pub trait AstConv<'tcx> {
46 fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;
1a4d82fc 47
60c5eb7d
XL
48 fn item_def_id(&self) -> Option<DefId>;
49
dfeec247
XL
50 fn default_constness_for_trait_bounds(&self) -> Constness;
51
6a06907d
XL
52 /// Returns predicates in scope of the form `X: Foo<T>`, where `X`
53 /// is a type parameter `X` with the given id `def_id` and T
54 /// matches `assoc_name`. This is a subset of the full set of
55 /// predicates.
416331ca
XL
56 ///
57 /// This is used for one specific purpose: resolving "short-hand"
58 /// associated type references like `T::Item`. In principle, we
59 /// would do that by first getting the full set of predicates in
60 /// scope and then filtering down to find those that apply to `T`,
61 /// but this can lead to cycle errors. The problem is that we have
62 /// to do this resolution *in order to create the predicates in
63 /// the first place*. Hence, we have this "special pass".
6a06907d
XL
64 fn get_type_parameter_bounds(
65 &self,
66 span: Span,
67 def_id: DefId,
68 assoc_name: Ident,
69 ) -> ty::GenericPredicates<'tcx>;
c34b1796 70
dc9dc135 71 /// Returns the lifetime to use when a lifetime is omitted (and not elided).
dfeec247
XL
72 fn re_infer(&self, param: Option<&ty::GenericParamDef>, span: Span)
73 -> Option<ty::Region<'tcx>>;
32a655c1 74
dc9dc135
XL
75 /// Returns the type to use when a type is omitted.
76 fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;
9e0c209e 77
dfeec247
XL
78 /// Returns `true` if `_` is allowed in type signatures in the current context.
79 fn allow_ty_infer(&self) -> bool;
80
dc9dc135
XL
81 /// Returns the const to use when a const is omitted.
82 fn ct_infer(
83 &self,
84 ty: Ty<'tcx>,
85 param: Option<&ty::GenericParamDef>,
86 span: Span,
87 ) -> &'tcx Const<'tcx>;
1a4d82fc
JJ
88
89 /// Projecting an associated type from a (potentially)
90 /// higher-ranked trait reference is more complicated, because of
91 /// the possibility of late-bound regions appearing in the
92 /// associated type binding. This is not legal in function
93 /// signatures for that reason. In a function body, we can always
94 /// handle it because we can use inference variables to remove the
95 /// late-bound regions.
dfeec247
XL
96 fn projected_ty_from_poly_trait_ref(
97 &self,
98 span: Span,
99 item_def_id: DefId,
100 item_segment: &hir::PathSegment<'_>,
101 poly_trait_ref: ty::PolyTraitRef<'tcx>,
102 ) -> Ty<'tcx>;
1a4d82fc 103
8bb4bdeb
XL
104 /// Normalize an associated type coming from the user.
105 fn normalize_ty(&self, span: Span, ty: Ty<'tcx>) -> Ty<'tcx>;
a7813a04
XL
106
107 /// Invoked when we encounter an error from some prior pass
0731742a 108 /// (e.g., resolve) that is translated into a ty-error. This is
a7813a04
XL
109 /// used to help suppress derived errors typeck might otherwise
110 /// report.
111 fn set_tainted_by_errors(&self);
ea8adc8c
XL
112
113 fn record_ty(&self, hir_id: hir::HirId, ty: Ty<'tcx>, span: Span);
a7813a04
XL
114}
115
dc9dc135
XL
116pub enum SizedByDefault {
117 Yes,
118 No,
119}
120
5869c6ff 121#[derive(Debug)]
dc9dc135 122struct ConvertedBinding<'a, 'tcx> {
17df50a5 123 hir_id: hir::HirId,
f9f354fc 124 item_name: Ident,
dc9dc135 125 kind: ConvertedBindingKind<'a, 'tcx>,
5869c6ff 126 gen_args: &'a GenericArgs<'a>,
a7813a04 127 span: Span,
1a4d82fc
JJ
128}
129
5869c6ff 130#[derive(Debug)]
dc9dc135
XL
131enum ConvertedBindingKind<'a, 'tcx> {
132 Equality(Ty<'tcx>),
dfeec247 133 Constraint(&'a [hir::GenericBound<'a>]),
dc9dc135
XL
134}
135
f9f354fc
XL
136/// New-typed boolean indicating whether explicit late-bound lifetimes
137/// are present in a set of generic arguments.
138///
139/// For example if we have some method `fn f<'a>(&'a self)` implemented
140/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
141/// is late-bound so should not be provided explicitly. Thus, if `f` is
142/// instantiated with some generic arguments providing `'a` explicitly,
143/// we taint those arguments with `ExplicitLateBound::Yes` so that we
144/// can provide an appropriate diagnostic later.
145#[derive(Copy, Clone, PartialEq)]
146pub enum ExplicitLateBound {
147 Yes,
148 No,
149}
150
5869c6ff
XL
151#[derive(Copy, Clone, PartialEq)]
152pub enum IsMethodCall {
153 Yes,
154 No,
155}
156
3dfed10e
XL
157/// Denotes the "position" of a generic argument, indicating if it is a generic type,
158/// generic function or generic method call.
f9f354fc 159#[derive(Copy, Clone, PartialEq)]
3dfed10e 160pub(crate) enum GenericArgPosition {
b7449926 161 Type,
0731742a 162 Value, // e.g., functions
b7449926 163 MethodCall,
94b46f34
XL
164}
165
74b04a01
XL
166/// A marker denoting that the generic arguments that were
167/// provided did not match the respective generic parameters.
f9f354fc 168#[derive(Clone, Default)]
74b04a01
XL
169pub struct GenericArgCountMismatch {
170 /// Indicates whether a fatal error was reported (`Some`), or just a lint (`None`).
171 pub reported: Option<ErrorReported>,
172 /// A list of spans of arguments provided that were not valid.
173 pub invalid_args: Vec<Span>,
174}
175
f9f354fc
XL
176/// Decorates the result of a generic argument count mismatch
177/// check with whether explicit late bounds were provided.
178#[derive(Clone)]
179pub struct GenericArgCountResult {
180 pub explicit_late_bound: ExplicitLateBound,
181 pub correct: Result<(), GenericArgCountMismatch>,
182}
183
fc512014
XL
184pub trait CreateSubstsForGenericArgsCtxt<'a, 'tcx> {
185 fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'a>>, bool);
186
187 fn provided_kind(
188 &mut self,
189 param: &ty::GenericParamDef,
190 arg: &GenericArg<'_>,
191 ) -> subst::GenericArg<'tcx>;
192
193 fn inferred_kind(
194 &mut self,
195 substs: Option<&[subst::GenericArg<'tcx>]>,
196 param: &ty::GenericParamDef,
197 infer_args: bool,
198 ) -> subst::GenericArg<'tcx>;
199}
200
dc9dc135 201impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
cdc7bbd5 202 #[tracing::instrument(level = "debug", skip(self))]
dfeec247
XL
203 pub fn ast_region_to_region(
204 &self,
32a655c1 205 lifetime: &hir::Lifetime,
dfeec247
XL
206 def: Option<&ty::GenericParamDef>,
207 ) -> ty::Region<'tcx> {
32a655c1 208 let tcx = self.tcx();
3dfed10e 209 let lifetime_name = |def_id| tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id));
ea8adc8c 210
9fa01778 211 let r = match tcx.named_region(lifetime.hir_id) {
dfeec247 212 Some(rl::Region::Static) => tcx.lifetimes.re_static,
32a655c1 213
cdc7bbd5
XL
214 Some(rl::Region::LateBound(debruijn, index, def_id, _)) => {
215 let name = lifetime_name(def_id.expect_local());
216 let br = ty::BoundRegion {
217 var: ty::BoundVar::from_u32(index),
218 kind: ty::BrNamed(def_id, name),
219 };
fc512014 220 tcx.mk_region(ty::ReLateBound(debruijn, br))
32a655c1
SL
221 }
222
cdc7bbd5
XL
223 Some(rl::Region::LateBoundAnon(debruijn, index, anon_index)) => {
224 let br = ty::BoundRegion {
225 var: ty::BoundVar::from_u32(index),
226 kind: ty::BrAnon(anon_index),
227 };
fc512014 228 tcx.mk_region(ty::ReLateBound(debruijn, br))
32a655c1
SL
229 }
230
ff7c6d11 231 Some(rl::Region::EarlyBound(index, id, _)) => {
f9f354fc 232 let name = lifetime_name(id.expect_local());
dfeec247 233 tcx.mk_region(ty::ReEarlyBound(ty::EarlyBoundRegion { def_id: id, index, name }))
32a655c1
SL
234 }
235
ea8adc8c 236 Some(rl::Region::Free(scope, id)) => {
f9f354fc 237 let name = lifetime_name(id.expect_local());
32a655c1 238 tcx.mk_region(ty::ReFree(ty::FreeRegion {
7cac9316 239 scope,
dfeec247 240 bound_region: ty::BrNamed(id, name),
32a655c1 241 }))
5bcae85e 242
0bf4aa26 243 // (*) -- not late-bound, won't change
32a655c1 244 }
5bcae85e 245
32a655c1 246 None => {
dfeec247 247 self.re_infer(def, lifetime.span).unwrap_or_else(|| {
cdc7bbd5
XL
248 debug!(?lifetime, "unelided lifetime in signature");
249
dfeec247
XL
250 // This indicates an illegal lifetime
251 // elision. `resolve_lifetime` should have
252 // reported an error in this case -- but if
253 // not, let's error out.
254 tcx.sess.delay_span_bug(lifetime.span, "unelided lifetime in signature");
255
256 // Supply some dummy value. We don't have an
257 // `re_error`, annoyingly, so use `'static`.
258 tcx.lifetimes.re_static
259 })
32a655c1 260 }
a7813a04 261 };
1a4d82fc 262
dfeec247 263 debug!("ast_region_to_region(lifetime={:?}) yields {:?}", lifetime, r);
1a4d82fc 264
a7813a04
XL
265 r
266 }
1a4d82fc 267
a7813a04
XL
268 /// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
269 /// returns an appropriate set of substitutions for this particular reference to `I`.
dfeec247
XL
270 pub fn ast_path_substs_for_ty(
271 &self,
a7813a04 272 span: Span,
9e0c209e 273 def_id: DefId,
dfeec247
XL
274 item_segment: &hir::PathSegment<'_>,
275 ) -> SubstsRef<'tcx> {
cdc7bbd5 276 let (substs, _) = self.create_substs_for_ast_path(
dc9dc135
XL
277 span,
278 def_id,
dfeec247 279 &[],
5869c6ff
XL
280 item_segment,
281 item_segment.args(),
dc9dc135
XL
282 item_segment.infer_args,
283 None,
284 );
cdc7bbd5 285 let assoc_bindings = self.create_assoc_bindings_for_generic_args(item_segment.args());
1a4d82fc 286
f9f354fc
XL
287 if let Some(b) = assoc_bindings.first() {
288 Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
289 }
1a4d82fc 290
9e0c209e 291 substs
a7813a04 292 }
c34b1796 293
48663c56 294 /// Given the type/lifetime/const arguments provided to some path (along with
dc9dc135 295 /// an implicit `Self`, if this is a trait reference), returns the complete
9e0c209e 296 /// set of substitutions. This may involve applying defaulted type parameters.
74b04a01 297 /// Also returns back constraints on associated types.
dc9dc135
XL
298 ///
299 /// Example:
300 ///
301 /// ```
302 /// T: std::ops::Index<usize, Output = u32>
303 /// ^1 ^^^^^^^^^^^^^^2 ^^^^3 ^^^^^^^^^^^4
304 /// ```
305 ///
306 /// 1. The `self_ty` here would refer to the type `T`.
307 /// 2. The path in question is the path to the trait `std::ops::Index`,
308 /// which will have been resolved to a `def_id`
309 /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
310 /// parameters are returned in the `SubstsRef`, the associated type bindings like
311 /// `Output = u32` are returned in the `Vec<ConvertedBinding...>` result.
9e0c209e
SL
312 ///
313 /// Note that the type listing given here is *exactly* what the user provided.
dfeec247
XL
314 ///
315 /// For (generic) associated types
316 ///
317 /// ```
318 /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
319 /// ```
320 ///
321 /// We have the parent substs are the substs for the parent trait:
322 /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
323 /// type itself: `['a]`. The returned `SubstsRef` concatenates these two
324 /// lists: `[Vec<u8>, u8, 'a]`.
cdc7bbd5 325 #[tracing::instrument(level = "debug", skip(self, span))]
dfeec247
XL
326 fn create_substs_for_ast_path<'a>(
327 &self,
a7813a04 328 span: Span,
9e0c209e 329 def_id: DefId,
dfeec247 330 parent_substs: &[subst::GenericArg<'tcx>],
5869c6ff 331 seg: &hir::PathSegment<'_>,
dfeec247 332 generic_args: &'a hir::GenericArgs<'_>,
dc9dc135 333 infer_args: bool,
dfeec247 334 self_ty: Option<Ty<'tcx>>,
cdc7bbd5 335 ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
a7813a04
XL
336 // If the type is parameterized by this region, then replace this
337 // region with the current anon region binding (in other words,
338 // whatever & would get replaced with).
94b46f34 339
b7449926 340 let tcx = self.tcx();
5869c6ff
XL
341 let generics = tcx.generics_of(def_id);
342 debug!("generics: {:?}", generics);
85aaf69f 343
5869c6ff
XL
344 if generics.has_self {
345 if generics.parent.is_some() {
dfeec247
XL
346 // The parent is a trait so it should have at least one subst
347 // for the `Self` type.
348 assert!(!parent_substs.is_empty())
349 } else {
350 // This item (presumably a trait) needs a self-type.
351 assert!(self_ty.is_some());
352 }
353 } else {
354 assert!(self_ty.is_none() && parent_substs.is_empty());
355 }
a7813a04 356
f9f354fc 357 let arg_count = Self::check_generic_arg_count(
0731742a 358 tcx,
b7449926 359 span,
5869c6ff
XL
360 def_id,
361 seg,
362 &generics,
b7449926
XL
363 &generic_args,
364 GenericArgPosition::Type,
dfeec247 365 self_ty.is_some(),
dc9dc135 366 infer_args,
b7449926 367 );
1a4d82fc 368
fc512014
XL
369 // Skip processing if type has no generic parameters.
370 // Traits always have `Self` as a generic parameter, which means they will not return early
371 // here and so associated type bindings will be handled regardless of whether there are any
372 // non-`Self` generic parameters.
5869c6ff 373 if generics.params.len() == 0 {
cdc7bbd5 374 return (tcx.intern_substs(&[]), arg_count);
fc512014
XL
375 }
376
dfeec247 377 let is_object = self_ty.map_or(false, |ty| ty == self.tcx().types.trait_object_dummy_self);
fc512014
XL
378
379 struct SubstsForAstPathCtxt<'a, 'tcx> {
380 astconv: &'a (dyn AstConv<'tcx> + 'a),
381 def_id: DefId,
382 generic_args: &'a GenericArgs<'a>,
383 span: Span,
384 missing_type_params: Vec<String>,
385 inferred_params: Vec<Span>,
386 infer_args: bool,
387 is_object: bool,
388 }
389
390 impl<'tcx, 'a> SubstsForAstPathCtxt<'tcx, 'a> {
391 fn default_needs_object_self(&mut self, param: &ty::GenericParamDef) -> bool {
392 let tcx = self.astconv.tcx();
393 if let GenericParamDefKind::Type { has_default, .. } = param.kind {
394 if self.is_object && has_default {
395 let default_ty = tcx.at(self.span).type_of(param.def_id);
396 let self_param = tcx.types.self_param;
397 if default_ty.walk().any(|arg| arg == self_param.into()) {
398 // There is no suitable inference default for a type parameter
399 // that references self, in an object type.
400 return true;
401 }
94b46f34 402 }
9e0c209e 403 }
9e0c209e 404
fc512014
XL
405 false
406 }
407 }
9e0c209e 408
fc512014
XL
409 impl<'a, 'tcx> CreateSubstsForGenericArgsCtxt<'a, 'tcx> for SubstsForAstPathCtxt<'a, 'tcx> {
410 fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'a>>, bool) {
411 if did == self.def_id {
412 (Some(self.generic_args), self.infer_args)
74b04a01
XL
413 } else {
414 // The last component of this tuple is unimportant.
415 (None, false)
416 }
fc512014
XL
417 }
418
419 fn provided_kind(
420 &mut self,
421 param: &ty::GenericParamDef,
422 arg: &GenericArg<'_>,
423 ) -> subst::GenericArg<'tcx> {
424 let tcx = self.astconv.tcx();
425 match (&param.kind, arg) {
426 (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
427 self.astconv.ast_region_to_region(&lt, Some(param)).into()
428 }
429 (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
430 if has_default {
431 tcx.check_optional_stability(
432 param.def_id,
433 Some(arg.id()),
434 arg.span(),
17df50a5 435 None,
fc512014
XL
436 |_, _| {
437 // Default generic parameters may not be marked
438 // with stability attributes, i.e. when the
439 // default parameter was defined at the same time
440 // as the rest of the type. As such, we ignore missing
441 // stability attributes.
442 },
443 )
444 }
445 if let (hir::TyKind::Infer, false) =
446 (&ty.kind, self.astconv.allow_ty_infer())
447 {
448 self.inferred_params.push(ty.span);
449 tcx.ty_error().into()
450 } else {
451 self.astconv.ast_ty_to_ty(&ty).into()
452 }
453 }
cdc7bbd5 454 (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
fc512014
XL
455 ty::Const::from_opt_const_arg_anon_const(
456 tcx,
457 ty::WithOptConstParam {
458 did: tcx.hir().local_def_id(ct.value.hir_id),
459 const_param_did: Some(param.def_id),
1b1a35ee
XL
460 },
461 )
fc512014 462 .into()
1b1a35ee 463 }
fc512014 464 _ => unreachable!(),
dfeec247 465 }
fc512014
XL
466 }
467
468 fn inferred_kind(
469 &mut self,
470 substs: Option<&[subst::GenericArg<'tcx>]>,
471 param: &ty::GenericParamDef,
472 infer_args: bool,
473 ) -> subst::GenericArg<'tcx> {
474 let tcx = self.astconv.tcx();
b7449926 475 match param.kind {
48663c56 476 GenericParamDefKind::Lifetime => tcx.lifetimes.re_static.into(),
b7449926 477 GenericParamDefKind::Type { has_default, .. } => {
dc9dc135 478 if !infer_args && has_default {
b7449926
XL
479 // No type parameter provided, but a default exists.
480
481 // If we are converting an object type, then the
482 // `Self` parameter is unknown. However, some of the
483 // other type parameters may reference `Self` in their
484 // defaults. This will lead to an ICE if we are not
485 // careful!
fc512014
XL
486 if self.default_needs_object_self(param) {
487 self.missing_type_params.push(param.name.to_string());
f035d41b 488 tcx.ty_error().into()
b7449926
XL
489 } else {
490 // This is a default type parameter.
fc512014
XL
491 self.astconv
492 .normalize_ty(
493 self.span,
494 tcx.at(self.span).type_of(param.def_id).subst_spanned(
495 tcx,
496 substs.unwrap(),
497 Some(self.span),
498 ),
499 )
500 .into()
b7449926 501 }
dc9dc135 502 } else if infer_args {
b7449926 503 // No type parameters were provided, we can infer all.
fc512014
XL
504 let param = if !self.default_needs_object_self(param) {
505 Some(param)
506 } else {
507 None
508 };
509 self.astconv.ty_infer(param, self.span).into()
94b46f34 510 } else {
b7449926 511 // We've already errored above about the mismatch.
f035d41b 512 tcx.ty_error().into()
94b46f34 513 }
94b46f34 514 }
cdc7bbd5 515 GenericParamDefKind::Const { has_default } => {
fc512014 516 let ty = tcx.at(self.span).type_of(param.def_id);
cdc7bbd5
XL
517 if !infer_args && has_default {
518 tcx.const_param_default(param.def_id)
519 .subst_spanned(tcx, substs.unwrap(), Some(self.span))
520 .into()
dc9dc135 521 } else {
cdc7bbd5
XL
522 if infer_args {
523 self.astconv.ct_infer(ty, Some(param), self.span).into()
524 } else {
525 // We've already errored above about the mismatch.
526 tcx.const_error(ty).into()
527 }
dc9dc135 528 }
532ac7d7 529 }
a7813a04 530 }
fc512014
XL
531 }
532 }
533
534 let mut substs_ctx = SubstsForAstPathCtxt {
535 astconv: self,
536 def_id,
537 span,
538 generic_args,
539 missing_type_params: vec![],
540 inferred_params: vec![],
541 infer_args,
542 is_object,
543 };
544 let substs = Self::create_substs_for_generic_args(
545 tcx,
546 def_id,
547 parent_substs,
548 self_ty.is_some(),
549 self_ty,
cdc7bbd5 550 &arg_count,
fc512014 551 &mut substs_ctx,
b7449926 552 );
1a4d82fc 553
dfeec247 554 self.complain_about_missing_type_params(
fc512014 555 substs_ctx.missing_type_params,
dfeec247
XL
556 def_id,
557 span,
558 generic_args.args.is_empty(),
559 );
560
cdc7bbd5
XL
561 debug!(
562 "create_substs_for_ast_path(generic_params={:?}, self_ty={:?}) -> {:?}",
563 generics, self_ty, substs
564 );
565
566 (substs, arg_count)
567 }
568
569 fn create_assoc_bindings_for_generic_args<'a>(
570 &self,
571 generic_args: &'a hir::GenericArgs<'_>,
572 ) -> Vec<ConvertedBinding<'a, 'tcx>> {
dc9dc135
XL
573 // Convert associated-type bindings or constraints into a separate vector.
574 // Example: Given this:
575 //
576 // T: Iterator<Item = u32>
577 //
578 // The `T` is passed in as a self-type; the `Item = u32` is
579 // not a "type parameter" of the `Iterator` trait, but rather
580 // a restriction on `<T as Iterator>::Item`, so it is passed
581 // back separately.
dfeec247
XL
582 let assoc_bindings = generic_args
583 .bindings
584 .iter()
dc9dc135
XL
585 .map(|binding| {
586 let kind = match binding.kind {
dfeec247
XL
587 hir::TypeBindingKind::Equality { ref ty } => {
588 ConvertedBindingKind::Equality(self.ast_ty_to_ty(ty))
589 }
590 hir::TypeBindingKind::Constraint { ref bounds } => {
591 ConvertedBindingKind::Constraint(bounds)
592 }
dc9dc135 593 };
5869c6ff 594 ConvertedBinding {
17df50a5 595 hir_id: binding.hir_id,
5869c6ff
XL
596 item_name: binding.ident,
597 kind,
598 gen_args: binding.gen_args,
599 span: binding.span,
600 }
dc9dc135
XL
601 })
602 .collect();
a7813a04 603
cdc7bbd5 604 assoc_bindings
e9174d1e 605 }
e9174d1e 606
dfeec247
XL
607 crate fn create_substs_for_associated_item(
608 &self,
609 tcx: TyCtxt<'tcx>,
610 span: Span,
611 item_def_id: DefId,
612 item_segment: &hir::PathSegment<'_>,
613 parent_substs: SubstsRef<'tcx>,
614 ) -> SubstsRef<'tcx> {
17df50a5
XL
615 debug!(
616 "create_substs_for_associated_item(span: {:?}, item_def_id: {:?}, item_segment: {:?}",
617 span, item_def_id, item_segment
618 );
dfeec247
XL
619 if tcx.generics_of(item_def_id).params.is_empty() {
620 self.prohibit_generics(slice::from_ref(item_segment));
621
622 parent_substs
623 } else {
624 self.create_substs_for_ast_path(
625 span,
626 item_def_id,
627 parent_substs,
5869c6ff
XL
628 item_segment,
629 item_segment.args(),
dfeec247
XL
630 item_segment.infer_args,
631 None,
632 )
633 .0
634 }
635 }
636
a7813a04 637 /// Instantiates the path for the given trait reference, assuming that it's
dc9dc135 638 /// bound to a valid trait type. Returns the `DefId` of the defining trait.
0531ce1d 639 /// The type _cannot_ be a type other than a trait type.
a7813a04 640 ///
9fa01778 641 /// If the `projections` argument is `None`, then assoc type bindings like `Foo<T = X>`
a7813a04 642 /// are disallowed. Otherwise, they are pushed onto the vector given.
dfeec247
XL
643 pub fn instantiate_mono_trait_ref(
644 &self,
645 trait_ref: &hir::TraitRef<'_>,
646 self_ty: Ty<'tcx>,
647 ) -> ty::TraitRef<'tcx> {
8faf50e0 648 self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
7cac9316 649
dfeec247
XL
650 self.ast_path_to_mono_trait_ref(
651 trait_ref.path.span,
ba9703b0 652 trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
dfeec247
XL
653 self_ty,
654 trait_ref.path.segments.last().unwrap(),
655 )
1a4d82fc 656 }
c34b1796 657
cdc7bbd5
XL
658 /// Given a trait bound like `Debug`, applies that trait bound the given self-type to construct
659 /// a full trait reference. The resulting trait reference is returned. This may also generate
660 /// auxiliary bounds, which are added to `bounds`.
661 ///
662 /// Example:
663 ///
664 /// ```
665 /// poly_trait_ref = Iterator<Item = u32>
666 /// self_ty = Foo
667 /// ```
668 ///
669 /// this would return `Foo: Iterator` and add `<Foo as Iterator>::Item = u32` into `bounds`.
670 ///
671 /// **A note on binders:** against our usual convention, there is an implied bounder around
672 /// the `self_ty` and `poly_trait_ref` parameters here. So they may reference bound regions.
673 /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
674 /// where `'a` is a bound region at depth 0. Similarly, the `poly_trait_ref` would be
675 /// `Bar<'a>`. The returned poly-trait-ref will have this binder instantiated explicitly,
676 /// however.
677 #[tracing::instrument(level = "debug", skip(self, span, constness, bounds, speculative))]
678 pub fn instantiate_poly_trait_ref(
dfeec247
XL
679 &self,
680 trait_ref: &hir::TraitRef<'_>,
416331ca 681 span: Span,
dfeec247 682 constness: Constness,
9e0c209e 683 self_ty: Ty<'tcx>,
dc9dc135
XL
684 bounds: &mut Bounds<'tcx>,
685 speculative: bool,
f9f354fc 686 ) -> GenericArgCountResult {
ba9703b0 687 let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
32a655c1 688
8faf50e0 689 self.prohibit_generics(trait_ref.path.segments.split_last().unwrap().1);
7cac9316 690
cdc7bbd5
XL
691 let tcx = self.tcx();
692 let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
693 debug!(?bound_vars);
694
695 let (substs, arg_count) = self.create_substs_for_ast_trait_ref(
f9f354fc 696 trait_ref.path.span,
a1dfa0c6
XL
697 trait_def_id,
698 self_ty,
699 trait_ref.path.segments.last().unwrap(),
700 );
cdc7bbd5
XL
701 let assoc_bindings = self
702 .create_assoc_bindings_for_generic_args(trait_ref.path.segments.last().unwrap().args());
703
704 let poly_trait_ref =
705 ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
a7813a04 706
cdc7bbd5 707 debug!(?poly_trait_ref, ?assoc_bindings);
dfeec247 708 bounds.trait_bounds.push((poly_trait_ref, span, constness));
416331ca 709
94b46f34 710 let mut dup_bindings = FxHashMap::default();
dc9dc135
XL
711 for binding in &assoc_bindings {
712 // Specify type to assert that error was already reported in `Err` case.
dfeec247
XL
713 let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
714 trait_ref.hir_ref_id,
715 poly_trait_ref,
716 binding,
717 bounds,
718 speculative,
719 &mut dup_bindings,
ba9703b0 720 binding.span,
dfeec247 721 );
dc9dc135
XL
722 // Okay to ignore `Err` because of `ErrorReported` (see above).
723 }
724
f9f354fc 725 arg_count
c34b1796
AL
726 }
727
3dfed10e
XL
728 pub fn instantiate_lang_item_trait_ref(
729 &self,
730 lang_item: hir::LangItem,
731 span: Span,
732 hir_id: hir::HirId,
733 args: &GenericArgs<'_>,
734 self_ty: Ty<'tcx>,
735 bounds: &mut Bounds<'tcx>,
736 ) {
737 let trait_def_id = self.tcx().require_lang_item(lang_item, Some(span));
738
cdc7bbd5 739 let (substs, _) = self.create_substs_for_ast_path(
5869c6ff
XL
740 span,
741 trait_def_id,
742 &[],
743 &hir::PathSegment::invalid(),
744 args,
745 false,
746 Some(self_ty),
747 );
cdc7bbd5
XL
748 let assoc_bindings = self.create_assoc_bindings_for_generic_args(args);
749 let tcx = self.tcx();
750 let bound_vars = tcx.late_bound_vars(hir_id);
751 let poly_trait_ref =
752 ty::Binder::bind_with_vars(ty::TraitRef::new(trait_def_id, substs), bound_vars);
3dfed10e
XL
753 bounds.trait_bounds.push((poly_trait_ref, span, Constness::NotConst));
754
755 let mut dup_bindings = FxHashMap::default();
756 for binding in assoc_bindings {
757 let _: Result<_, ErrorReported> = self.add_predicates_for_ast_type_binding(
758 hir_id,
759 poly_trait_ref,
760 &binding,
761 bounds,
762 false,
763 &mut dup_bindings,
764 span,
765 );
766 }
767 }
768
dfeec247
XL
769 fn ast_path_to_mono_trait_ref(
770 &self,
dc9dc135
XL
771 span: Span,
772 trait_def_id: DefId,
773 self_ty: Ty<'tcx>,
dfeec247
XL
774 trait_segment: &hir::PathSegment<'_>,
775 ) -> ty::TraitRef<'tcx> {
cdc7bbd5 776 let (substs, _) =
dfeec247 777 self.create_substs_for_ast_trait_ref(span, trait_def_id, self_ty, trait_segment);
cdc7bbd5 778 let assoc_bindings = self.create_assoc_bindings_for_generic_args(trait_segment.args());
f9f354fc 779 if let Some(b) = assoc_bindings.first() {
3dfed10e 780 Self::prohibit_assoc_ty_binding(self.tcx(), b.span);
f9f354fc 781 }
a7813a04
XL
782 ty::TraitRef::new(trait_def_id, substs)
783 }
c34b1796 784
cdc7bbd5 785 #[tracing::instrument(level = "debug", skip(self, span))]
dfeec247
XL
786 fn create_substs_for_ast_trait_ref<'a>(
787 &self,
788 span: Span,
789 trait_def_id: DefId,
790 self_ty: Ty<'tcx>,
791 trait_segment: &'a hir::PathSegment<'a>,
cdc7bbd5 792 ) -> (SubstsRef<'tcx>, GenericArgCountResult) {
dfeec247
XL
793 self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment);
794
795 self.create_substs_for_ast_path(
796 span,
797 trait_def_id,
798 &[],
5869c6ff
XL
799 trait_segment,
800 trait_segment.args(),
dfeec247
XL
801 trait_segment.infer_args,
802 Some(self_ty),
803 )
a7813a04 804 }
1a4d82fc 805
f9f354fc 806 fn trait_defines_associated_type_named(&self, trait_def_id: DefId, assoc_name: Ident) -> bool {
74b04a01
XL
807 self.tcx()
808 .associated_items(trait_def_id)
809 .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, trait_def_id)
810 .is_some()
476ff2be
SL
811 }
812
dc9dc135 813 // Returns `true` if a bounds list includes `?Sized`.
cdc7bbd5 814 pub fn is_unsized(&self, ast_bounds: &[hir::GenericBound<'_>], span: Span) -> bool {
dc9dc135
XL
815 let tcx = self.tcx();
816
817 // Try to find an unbound in bounds.
818 let mut unbound = None;
819 for ab in ast_bounds {
5869c6ff 820 if let hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::Maybe) = ab {
dc9dc135
XL
821 if unbound.is_none() {
822 unbound = Some(&ptr.trait_ref);
823 } else {
1b1a35ee 824 tcx.sess.emit_err(MultipleRelaxedDefaultBounds { span });
dc9dc135
XL
825 }
826 }
827 }
828
3dfed10e 829 let kind_id = tcx.lang_items().require(LangItem::Sized);
dc9dc135
XL
830 match unbound {
831 Some(tpb) => {
832 // FIXME(#8559) currently requires the unbound to be built-in.
833 if let Ok(kind_id) = kind_id {
834 if tpb.path.res != Res::Def(DefKind::Trait, kind_id) {
835 tcx.sess.span_warn(
836 span,
837 "default bound relaxed for a type parameter, but \
e74abb32
XL
838 this does nothing because the given bound is not \
839 a default; only `?Sized` is supported",
dc9dc135
XL
840 );
841 }
842 }
843 }
844 _ if kind_id.is_ok() => {
845 return false;
846 }
847 // No lang item for `Sized`, so we can't add it as a bound.
848 None => {}
849 }
850
851 true
852 }
853
854 /// This helper takes a *converted* parameter type (`param_ty`)
855 /// and an *unconverted* list of bounds:
856 ///
ba9703b0 857 /// ```text
dc9dc135
XL
858 /// fn foo<T: Debug>
859 /// ^ ^^^^^ `ast_bounds` parameter, in HIR form
860 /// |
861 /// `param_ty`, in ty form
862 /// ```
863 ///
864 /// It adds these `ast_bounds` into the `bounds` structure.
865 ///
866 /// **A note on binders:** there is an implied binder around
867 /// `param_ty` and `ast_bounds`. See `instantiate_poly_trait_ref`
868 /// for more details.
cdc7bbd5 869 #[tracing::instrument(level = "debug", skip(self, bounds))]
dfeec247
XL
870 fn add_bounds(
871 &self,
dc9dc135 872 param_ty: Ty<'tcx>,
cdc7bbd5 873 ast_bounds: &[hir::GenericBound<'_>],
dc9dc135 874 bounds: &mut Bounds<'tcx>,
cdc7bbd5 875 bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
dc9dc135 876 ) {
dfeec247 877 let constness = self.default_constness_for_trait_bounds();
dc9dc135
XL
878 for ast_bound in ast_bounds {
879 match *ast_bound {
dfeec247 880 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::None) => {
cdc7bbd5
XL
881 self.instantiate_poly_trait_ref(
882 &b.trait_ref,
883 b.span,
884 constness,
885 param_ty,
886 bounds,
887 false,
888 );
dfeec247
XL
889 }
890 hir::GenericBound::Trait(ref b, hir::TraitBoundModifier::MaybeConst) => {
cdc7bbd5
XL
891 self.instantiate_poly_trait_ref(
892 &b.trait_ref,
893 b.span,
894 Constness::NotConst,
895 param_ty,
896 bounds,
897 false,
898 );
dfeec247 899 }
dc9dc135 900 hir::GenericBound::Trait(_, hir::TraitBoundModifier::Maybe) => {}
3dfed10e
XL
901 hir::GenericBound::LangItemTrait(lang_item, span, hir_id, args) => self
902 .instantiate_lang_item_trait_ref(
cdc7bbd5 903 lang_item, span, hir_id, args, param_ty, bounds,
3dfed10e 904 ),
cdc7bbd5
XL
905 hir::GenericBound::Outlives(ref l) => bounds.region_bounds.push((
906 ty::Binder::bind_with_vars(self.ast_region_to_region(l, None), bound_vars),
907 l.span,
908 )),
dc9dc135
XL
909 }
910 }
dc9dc135
XL
911 }
912
913 /// Translates a list of bounds from the HIR into the `Bounds` data structure.
914 /// The self-type for the bounds is given by `param_ty`.
915 ///
916 /// Example:
917 ///
918 /// ```
919 /// fn foo<T: Bar + Baz>() { }
920 /// ^ ^^^^^^^^^ ast_bounds
921 /// param_ty
922 /// ```
923 ///
924 /// The `sized_by_default` parameter indicates if, in this context, the `param_ty` should be
925 /// considered `Sized` unless there is an explicit `?Sized` bound. This would be true in the
926 /// example above, but is not true in supertrait listings like `trait Foo: Bar + Baz`.
927 ///
928 /// `span` should be the declaration size of the parameter.
dfeec247
XL
929 pub fn compute_bounds(
930 &self,
dc9dc135 931 param_ty: Ty<'tcx>,
dfeec247 932 ast_bounds: &[hir::GenericBound<'_>],
dc9dc135
XL
933 sized_by_default: SizedByDefault,
934 span: Span,
6a06907d 935 ) -> Bounds<'tcx> {
6a06907d
XL
936 self.compute_bounds_inner(param_ty, &ast_bounds, sized_by_default, span)
937 }
938
939 /// Convert the bounds in `ast_bounds` that refer to traits which define an associated type
940 /// named `assoc_name` into ty::Bounds. Ignore the rest.
941 pub fn compute_bounds_that_match_assoc_type(
942 &self,
943 param_ty: Ty<'tcx>,
944 ast_bounds: &[hir::GenericBound<'_>],
945 sized_by_default: SizedByDefault,
946 span: Span,
947 assoc_name: Ident,
948 ) -> Bounds<'tcx> {
949 let mut result = Vec::new();
950
951 for ast_bound in ast_bounds {
952 if let Some(trait_ref) = ast_bound.trait_ref() {
953 if let Some(trait_did) = trait_ref.trait_def_id() {
954 if self.tcx().trait_may_define_assoc_type(trait_did, assoc_name) {
cdc7bbd5 955 result.push(ast_bound.clone());
6a06907d
XL
956 }
957 }
958 }
959 }
960
961 self.compute_bounds_inner(param_ty, &result, sized_by_default, span)
962 }
963
964 fn compute_bounds_inner(
965 &self,
966 param_ty: Ty<'tcx>,
cdc7bbd5 967 ast_bounds: &[hir::GenericBound<'_>],
6a06907d
XL
968 sized_by_default: SizedByDefault,
969 span: Span,
dc9dc135
XL
970 ) -> Bounds<'tcx> {
971 let mut bounds = Bounds::default();
972
cdc7bbd5 973 self.add_bounds(param_ty, ast_bounds, &mut bounds, ty::List::empty());
dc9dc135
XL
974
975 bounds.implicitly_sized = if let SizedByDefault::Yes = sized_by_default {
dfeec247 976 if !self.is_unsized(ast_bounds, span) { Some(span) } else { None }
dc9dc135
XL
977 } else {
978 None
979 };
980
981 bounds
982 }
983
984 /// Given an HIR binding like `Item = Foo` or `Item: Foo`, pushes the corresponding predicates
985 /// onto `bounds`.
986 ///
987 /// **A note on binders:** given something like `T: for<'a> Iterator<Item = &'a u32>`, the
988 /// `trait_ref` here will be `for<'a> T: Iterator`. The `binding` data however is from *inside*
989 /// the binder (e.g., `&'a u32`) and hence may reference bound regions.
cdc7bbd5
XL
990 #[tracing::instrument(
991 level = "debug",
992 skip(self, bounds, speculative, dup_bindings, path_span)
993 )]
dc9dc135 994 fn add_predicates_for_ast_type_binding(
a7813a04 995 &self,
532ac7d7 996 hir_ref_id: hir::HirId,
9e0c209e 997 trait_ref: ty::PolyTraitRef<'tcx>,
dc9dc135
XL
998 binding: &ConvertedBinding<'_, 'tcx>,
999 bounds: &mut Bounds<'tcx>,
94b46f34 1000 speculative: bool,
dc9dc135 1001 dup_bindings: &mut FxHashMap<DefId, Span>,
dfeec247 1002 path_span: Span,
dc9dc135 1003 ) -> Result<(), ErrorReported> {
5869c6ff
XL
1004 // Given something like `U: SomeTrait<T = X>`, we want to produce a
1005 // predicate like `<U as SomeTrait>::T = X`. This is somewhat
1006 // subtle in the event that `T` is defined in a supertrait of
1007 // `SomeTrait`, because in that case we need to upcast.
1008 //
1009 // That is, consider this case:
1010 //
1011 // ```
1012 // trait SubTrait: SuperTrait<i32> { }
1013 // trait SuperTrait<A> { type T; }
1014 //
1015 // ... B: SubTrait<T = foo> ...
1016 // ```
1017 //
1018 // We want to produce `<B as SuperTrait<i32>>::T == foo`.
3dfed10e 1019
5869c6ff 1020 let tcx = self.tcx();
a7813a04 1021
dfeec247
XL
1022 let candidate =
1023 if self.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
1024 // Simple case: X is defined in the current trait.
1025 trait_ref
1026 } else {
1027 // Otherwise, we have to walk through the supertraits to find
1028 // those that do.
1029 self.one_bound_for_assoc_type(
1030 || traits::supertraits(tcx, trait_ref),
1031 || trait_ref.print_only_trait_path().to_string(),
1032 binding.item_name,
1033 path_span,
1034 || match binding.kind {
1035 ConvertedBindingKind::Equality(ty) => Some(ty.to_string()),
1036 _ => None,
1037 },
1038 )?
1039 };
ff7c6d11 1040
94b46f34 1041 let (assoc_ident, def_scope) =
dc9dc135 1042 tcx.adjust_ident_and_get_scope(binding.item_name, candidate.def_id(), hir_ref_id);
74b04a01 1043
ba9703b0 1044 // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
74b04a01 1045 // of calling `filter_by_name_and_kind`.
dfeec247
XL
1046 let assoc_ty = tcx
1047 .associated_items(candidate.def_id())
74b04a01 1048 .filter_by_name_unhygienic(assoc_ident.name)
ba9703b0
XL
1049 .find(|i| {
1050 i.kind == ty::AssocKind::Type && i.ident.normalize_to_macros_2_0() == assoc_ident
1051 })
dfeec247 1052 .expect("missing associated type");
ff7c6d11
XL
1053
1054 if !assoc_ty.vis.is_accessible_from(def_scope, tcx) {
ba9703b0
XL
1055 tcx.sess
1056 .struct_span_err(
1057 binding.span,
1058 &format!("associated type `{}` is private", binding.item_name),
1059 )
1060 .span_label(binding.span, "private associated type")
1061 .emit();
a7813a04 1062 }
17df50a5 1063 tcx.check_stability(assoc_ty.def_id, Some(hir_ref_id), binding.span, None);
a7813a04 1064
94b46f34 1065 if !speculative {
dfeec247
XL
1066 dup_bindings
1067 .entry(assoc_ty.def_id)
94b46f34 1068 .and_modify(|prev_span| {
1b1a35ee
XL
1069 self.tcx().sess.emit_err(ValueOfAssociatedStructAlreadySpecified {
1070 span: binding.span,
1071 prev_span: *prev_span,
1072 item_name: binding.item_name,
1073 def_path: tcx.def_path_str(assoc_ty.container.id()),
1074 });
94b46f34
XL
1075 })
1076 .or_insert(binding.span);
1077 }
1078
5869c6ff
XL
1079 // Include substitutions for generic parameters of associated types
1080 let projection_ty = candidate.map_bound(|trait_ref| {
17df50a5 1081 let ident = Ident::new(assoc_ty.ident.name, binding.item_name.span);
5869c6ff 1082 let item_segment = hir::PathSegment {
17df50a5
XL
1083 ident,
1084 hir_id: Some(binding.hir_id),
5869c6ff
XL
1085 res: None,
1086 args: Some(binding.gen_args),
1087 infer_args: false,
1088 };
1089
1090 let substs_trait_ref_and_assoc_item = self.create_substs_for_associated_item(
1091 tcx,
1092 path_span,
1093 assoc_ty.def_id,
1094 &item_segment,
1095 trait_ref.substs,
1096 );
1097
1098 debug!(
1099 "add_predicates_for_ast_type_binding: substs for trait-ref and assoc_item: {:?}",
1100 substs_trait_ref_and_assoc_item
1101 );
1102
1103 ty::ProjectionTy {
1104 item_def_id: assoc_ty.def_id,
1105 substs: substs_trait_ref_and_assoc_item,
1106 }
1107 });
1108
1109 if !speculative {
1110 // Find any late-bound regions declared in `ty` that are not
1111 // declared in the trait-ref or assoc_ty. These are not well-formed.
1112 //
1113 // Example:
1114 //
1115 // for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
1116 // for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
1117 if let ConvertedBindingKind::Equality(ty) = binding.kind {
1118 let late_bound_in_trait_ref =
1119 tcx.collect_constrained_late_bound_regions(&projection_ty);
1120 let late_bound_in_ty =
cdc7bbd5 1121 tcx.collect_referenced_late_bound_regions(&trait_ref.rebind(ty));
5869c6ff
XL
1122 debug!("late_bound_in_trait_ref = {:?}", late_bound_in_trait_ref);
1123 debug!("late_bound_in_ty = {:?}", late_bound_in_ty);
1124
1125 // FIXME: point at the type params that don't have appropriate lifetimes:
1126 // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
1127 // ---- ---- ^^^^^^^
1128 self.validate_late_bound_regions(
1129 late_bound_in_trait_ref,
1130 late_bound_in_ty,
1131 |br_name| {
1132 struct_span_err!(
1133 tcx.sess,
1134 binding.span,
1135 E0582,
1136 "binding for associated type `{}` references {}, \
1137 which does not appear in the trait input types",
1138 binding.item_name,
1139 br_name
1140 )
1141 },
1142 );
1143 }
1144 }
1145
dc9dc135
XL
1146 match binding.kind {
1147 ConvertedBindingKind::Equality(ref ty) => {
1148 // "Desugar" a constraint like `T: Iterator<Item = u32>` this to
1149 // the "projection predicate" for:
1150 //
1151 // `<T as Iterator>::Item = u32`
dfeec247 1152 bounds.projection_bounds.push((
5869c6ff
XL
1153 projection_ty.map_bound(|projection_ty| {
1154 debug!(
1155 "add_predicates_for_ast_type_binding: projection_ty {:?}, substs: {:?}",
1156 projection_ty, projection_ty.substs
1157 );
1158 ty::ProjectionPredicate { projection_ty, ty }
dfeec247
XL
1159 }),
1160 binding.span,
1161 ));
9e0c209e 1162 }
dc9dc135
XL
1163 ConvertedBindingKind::Constraint(ast_bounds) => {
1164 // "Desugar" a constraint like `T: Iterator<Item: Debug>` to
1165 //
1166 // `<T as Iterator>::Item: Debug`
1167 //
1168 // Calling `skip_binder` is okay, because `add_bounds` expects the `param_ty`
1169 // parameter to have a skipped binder.
cdc7bbd5
XL
1170 let param_ty = tcx.mk_ty(ty::Projection(projection_ty.skip_binder()));
1171 self.add_bounds(param_ty, ast_bounds, bounds, candidate.bound_vars());
dc9dc135
XL
1172 }
1173 }
1174 Ok(())
1a4d82fc
JJ
1175 }
1176
dfeec247
XL
1177 fn ast_path_to_ty(
1178 &self,
a7813a04 1179 span: Span,
a7813a04 1180 did: DefId,
dfeec247
XL
1181 item_segment: &hir::PathSegment<'_>,
1182 ) -> Ty<'tcx> {
32a655c1 1183 let substs = self.ast_path_substs_for_ty(span, did, item_segment);
dfeec247 1184 self.normalize_ty(span, self.tcx().at(span).type_of(did).subst(self.tcx(), substs))
1a4d82fc
JJ
1185 }
1186
dfeec247
XL
1187 fn conv_object_ty_poly_trait_ref(
1188 &self,
32a655c1 1189 span: Span,
dfeec247
XL
1190 trait_bounds: &[hir::PolyTraitRef<'_>],
1191 lifetime: &hir::Lifetime,
3dfed10e 1192 borrowed: bool,
dfeec247 1193 ) -> Ty<'tcx> {
a7813a04 1194 let tcx = self.tcx();
9e0c209e 1195
dc9dc135
XL
1196 let mut bounds = Bounds::default();
1197 let mut potential_assoc_types = Vec::new();
532ac7d7 1198 let dummy_self = self.tcx().types.trait_object_dummy_self;
416331ca 1199 for trait_bound in trait_bounds.iter().rev() {
f9f354fc
XL
1200 if let GenericArgCountResult {
1201 correct:
1202 Err(GenericArgCountMismatch { invalid_args: cur_potential_assoc_types, .. }),
1203 ..
1204 } = self.instantiate_poly_trait_ref(
cdc7bbd5
XL
1205 &trait_bound.trait_ref,
1206 trait_bound.span,
dfeec247 1207 Constness::NotConst,
416331ca
XL
1208 dummy_self,
1209 &mut bounds,
cdc7bbd5 1210 false,
74b04a01 1211 ) {
5869c6ff 1212 potential_assoc_types.extend(cur_potential_assoc_types);
74b04a01 1213 }
416331ca 1214 }
dc9dc135
XL
1215
1216 // Expand trait aliases recursively and check that only one regular (non-auto) trait
1217 // is used and no 'maybe' bounds are used.
74b04a01
XL
1218 let expanded_traits =
1219 traits::expand_trait_aliases(tcx, bounds.trait_bounds.iter().map(|&(a, b, _)| (a, b)));
dc9dc135
XL
1220 let (mut auto_traits, regular_traits): (Vec<_>, Vec<_>) =
1221 expanded_traits.partition(|i| tcx.trait_is_auto(i.trait_ref().def_id()));
1222 if regular_traits.len() > 1 {
1223 let first_trait = &regular_traits[0];
1224 let additional_trait = &regular_traits[1];
dfeec247
XL
1225 let mut err = struct_span_err!(
1226 tcx.sess,
1227 additional_trait.bottom().1,
1228 E0225,
dc9dc135
XL
1229 "only auto traits can be used as additional traits in a trait object"
1230 );
dfeec247
XL
1231 additional_trait.label_with_exp_info(
1232 &mut err,
1233 "additional non-auto trait",
1234 "additional use",
1235 );
1236 first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
3dfed10e
XL
1237 err.help(&format!(
1238 "consider creating a new trait with all of these as super-traits and using that \
1239 trait here instead: `trait NewTrait: {} {{}}`",
1240 regular_traits
1241 .iter()
1242 .map(|t| t.trait_ref().print_only_trait_path().to_string())
1243 .collect::<Vec<_>>()
1244 .join(" + "),
1245 ));
1246 err.note(
1247 "auto-traits like `Send` and `Sync` are traits that have special properties; \
1248 for more information on them, visit \
1249 <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
1250 );
dc9dc135 1251 err.emit();
7cac9316
XL
1252 }
1253
dc9dc135 1254 if regular_traits.is_empty() && auto_traits.is_empty() {
1b1a35ee 1255 tcx.sess.emit_err(TraitObjectDeclaredWithNoTraits { span });
f035d41b 1256 return tcx.ty_error();
9e0c209e
SL
1257 }
1258
a1dfa0c6
XL
1259 // Check that there are no gross object safety violations;
1260 // most importantly, that the supertraits don't contain `Self`,
1261 // to avoid ICEs.
dc9dc135
XL
1262 for item in &regular_traits {
1263 let object_safety_violations =
dfeec247 1264 astconv_object_safety_violations(tcx, item.trait_ref().def_id());
dc9dc135 1265 if !object_safety_violations.is_empty() {
dfeec247
XL
1266 report_object_safety_error(
1267 tcx,
dc9dc135
XL
1268 span,
1269 item.trait_ref().def_id(),
ba9703b0 1270 &object_safety_violations[..],
dfeec247
XL
1271 )
1272 .emit();
f035d41b 1273 return tcx.ty_error();
dc9dc135 1274 }
a7813a04
XL
1275 }
1276
a1dfa0c6 1277 // Use a `BTreeSet` to keep output in a more consistent order.
dfeec247 1278 let mut associated_types: FxHashMap<Span, BTreeSet<DefId>> = FxHashMap::default();
b7449926 1279
dfeec247
XL
1280 let regular_traits_refs_spans = bounds
1281 .trait_bounds
dc9dc135 1282 .into_iter()
dfeec247 1283 .filter(|(trait_ref, _, _)| !tcx.trait_is_auto(trait_ref.def_id()));
a7813a04 1284
dfeec247 1285 for (base_trait_ref, span, constness) in regular_traits_refs_spans {
74b04a01 1286 assert_eq!(constness, Constness::NotConst);
a7813a04 1287
ba9703b0 1288 for obligation in traits::elaborate_trait_ref(tcx, base_trait_ref) {
dfeec247
XL
1289 debug!(
1290 "conv_object_ty_poly_trait_ref: observing object predicate `{:?}`",
ba9703b0 1291 obligation.predicate
a1dfa0c6 1292 );
3dfed10e 1293
5869c6ff 1294 let bound_predicate = obligation.predicate.kind();
29967ef6 1295 match bound_predicate.skip_binder() {
5869c6ff 1296 ty::PredicateKind::Trait(pred, _) => {
29967ef6 1297 let pred = bound_predicate.rebind(pred);
dfeec247
XL
1298 associated_types.entry(span).or_default().extend(
1299 tcx.associated_items(pred.def_id())
74b04a01 1300 .in_definition_order()
dfeec247
XL
1301 .filter(|item| item.kind == ty::AssocKind::Type)
1302 .map(|item| item.def_id),
1303 );
1304 }
5869c6ff 1305 ty::PredicateKind::Projection(pred) => {
29967ef6 1306 let pred = bound_predicate.rebind(pred);
dfeec247
XL
1307 // A `Self` within the original bound will be substituted with a
1308 // `trait_object_dummy_self`, so check for that.
ba9703b0
XL
1309 let references_self =
1310 pred.skip_binder().ty.walk().any(|arg| arg == dummy_self.into());
dfeec247
XL
1311
1312 // If the projection output contains `Self`, force the user to
1313 // elaborate it explicitly to avoid a lot of complexity.
1314 //
1315 // The "classicaly useful" case is the following:
1316 // ```
1317 // trait MyTrait: FnMut() -> <Self as MyTrait>::MyOutput {
1318 // type MyOutput;
1319 // }
1320 // ```
1321 //
1322 // Here, the user could theoretically write `dyn MyTrait<Output = X>`,
1323 // but actually supporting that would "expand" to an infinitely-long type
1324 // `fix $ τ → dyn MyTrait<MyOutput = X, Output = <τ as MyTrait>::MyOutput`.
1325 //
1326 // Instead, we force the user to write
1327 // `dyn MyTrait<MyOutput = X, Output = X>`, which is uglier but works. See
1328 // the discussion in #56288 for alternatives.
1329 if !references_self {
1330 // Include projections defined on supertraits.
1331 bounds.projection_bounds.push((pred, span));
1332 }
a1dfa0c6 1333 }
dfeec247 1334 _ => (),
a1dfa0c6
XL
1335 }
1336 }
dfeec247
XL
1337 }
1338
1339 for (projection_bound, _) in &bounds.projection_bounds {
74b04a01 1340 for def_ids in associated_types.values_mut() {
dfeec247 1341 def_ids.remove(&projection_bound.projection_def_id());
a1dfa0c6 1342 }
a7813a04 1343 }
9346a6ac 1344
dfeec247
XL
1345 self.complain_about_missing_associated_types(
1346 associated_types,
1347 potential_assoc_types,
1348 trait_bounds,
1349 );
1350
dc9dc135
XL
1351 // De-duplicate auto traits so that, e.g., `dyn Trait + Send + Send` is the same as
1352 // `dyn Trait + Send`.
6a06907d
XL
1353 // We remove duplicates by inserting into a `FxHashSet` to avoid re-ordering
1354 // the bounds
1355 let mut duplicates = FxHashSet::default();
1356 auto_traits.retain(|i| duplicates.insert(i.trait_ref().def_id()));
dc9dc135
XL
1357 debug!("regular_traits: {:?}", regular_traits);
1358 debug!("auto_traits: {:?}", auto_traits);
1359
532ac7d7 1360 // Erase the `dummy_self` (`trait_object_dummy_self`) used above.
6a06907d
XL
1361 let existential_trait_refs = regular_traits.iter().map(|i| {
1362 i.trait_ref().map_bound(|trait_ref: ty::TraitRef<'tcx>| {
1363 if trait_ref.self_ty() != dummy_self {
1364 // FIXME: There appears to be a missing filter on top of `expand_trait_aliases`,
1365 // which picks up non-supertraits where clauses - but also, the object safety
1366 // completely ignores trait aliases, which could be object safety hazards. We
1367 // `delay_span_bug` here to avoid an ICE in stable even when the feature is
1368 // disabled. (#66420)
1369 tcx.sess.delay_span_bug(
1370 DUMMY_SP,
1371 &format!(
1372 "trait_ref_to_existential called on {:?} with non-dummy Self",
1373 trait_ref,
1374 ),
1375 );
1376 }
1377 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
1378 })
1379 });
dc9dc135 1380 let existential_projections = bounds.projection_bounds.iter().map(|(bound, _)| {
a1dfa0c6 1381 bound.map_bound(|b| {
6a06907d
XL
1382 if b.projection_ty.self_ty() != dummy_self {
1383 tcx.sess.delay_span_bug(
1384 DUMMY_SP,
1385 &format!("trait_ref_to_existential called on {:?} with non-dummy Self", b),
1386 );
a1dfa0c6 1387 }
6a06907d 1388 ty::ExistentialProjection::erase_self_ty(tcx, b)
a1dfa0c6
XL
1389 })
1390 });
1391
5869c6ff
XL
1392 let regular_trait_predicates = existential_trait_refs
1393 .map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait));
fc512014
XL
1394 let auto_trait_predicates = auto_traits.into_iter().map(|trait_ref| {
1395 ty::Binder::dummy(ty::ExistentialPredicate::AutoTrait(trait_ref.trait_ref().def_id()))
1396 });
17df50a5
XL
1397 // N.b. principal, projections, auto traits
1398 // FIXME: This is actually wrong with multiple principals in regards to symbol mangling
dfeec247 1399 let mut v = regular_trait_predicates
dfeec247 1400 .chain(
5869c6ff 1401 existential_projections.map(|x| x.map_bound(ty::ExistentialPredicate::Projection)),
dfeec247 1402 )
17df50a5 1403 .chain(auto_trait_predicates)
b7449926 1404 .collect::<SmallVec<[_; 8]>>();
fc512014 1405 v.sort_by(|a, b| a.skip_binder().stable_cmp(tcx, &b.skip_binder()));
0731742a 1406 v.dedup();
fc512014 1407 let existential_predicates = tcx.mk_poly_existential_predicates(v.into_iter());
476ff2be 1408
a1dfa0c6 1409 // Use explicitly-specified region bound.
32a655c1
SL
1410 let region_bound = if !lifetime.is_elided() {
1411 self.ast_region_to_region(lifetime, None)
1412 } else {
1413 self.compute_object_lifetime_bound(span, existential_predicates).unwrap_or_else(|| {
9fa01778 1414 if tcx.named_region(lifetime.hir_id).is_some() {
32a655c1
SL
1415 self.ast_region_to_region(lifetime, None)
1416 } else {
dc9dc135 1417 self.re_infer(None, span).unwrap_or_else(|| {
3dfed10e 1418 let mut err = struct_span_err!(
dfeec247
XL
1419 tcx.sess,
1420 span,
1421 E0228,
dc9dc135 1422 "the lifetime bound for this object type cannot be deduced \
dfeec247 1423 from context; please supply an explicit bound"
3dfed10e
XL
1424 );
1425 if borrowed {
1426 // We will have already emitted an error E0106 complaining about a
1427 // missing named lifetime in `&dyn Trait`, so we elide this one.
1428 err.delay_as_bug();
1429 } else {
1430 err.emit();
1431 }
48663c56 1432 tcx.lifetimes.re_static
32a655c1
SL
1433 })
1434 }
1435 })
476ff2be 1436 };
476ff2be
SL
1437 debug!("region_bound: {:?}", region_bound);
1438
1439 let ty = tcx.mk_dynamic(existential_predicates, region_bound);
9e0c209e
SL
1440 debug!("trait_object_type: {:?}", ty);
1441 ty
9346a6ac
AL
1442 }
1443
48663c56
XL
1444 fn report_ambiguous_associated_type(
1445 &self,
1446 span: Span,
1447 type_str: &str,
1448 trait_str: &str,
f9f354fc 1449 name: Symbol,
48663c56
XL
1450 ) {
1451 let mut err = struct_span_err!(self.tcx().sess, span, E0223, "ambiguous associated type");
6a06907d
XL
1452 if let (true, Ok(snippet)) = (
1453 self.tcx()
1454 .sess
1455 .confused_type_with_std_module
1456 .borrow()
1457 .keys()
1458 .any(|full_span| full_span.contains(span)),
48663c56 1459 self.tcx().sess.source_map().span_to_snippet(span),
dfeec247 1460 ) {
48663c56 1461 err.span_suggestion(
0bf4aa26 1462 span,
48663c56
XL
1463 "you are looking for the module in `std`, not the primitive type",
1464 format!("std::{}", snippet),
1465 Applicability::MachineApplicable,
1466 );
1467 } else {
1468 err.span_suggestion(
dfeec247
XL
1469 span,
1470 "use fully-qualified syntax",
1471 format!("<{} as {}>::{}", type_str, trait_str, name),
1472 Applicability::HasPlaceholders,
48663c56
XL
1473 );
1474 }
1475 err.emit();
a7813a04 1476 }
9346a6ac 1477
a7813a04 1478 // Search for a bound on a type parameter which includes the associated item
dc9dc135 1479 // given by `assoc_name`. `ty_param_def_id` is the `DefId` of the type parameter
8bb4bdeb 1480 // This function will fail if there are no suitable bounds or there is
a7813a04 1481 // any ambiguity.
dfeec247
XL
1482 fn find_bound_for_assoc_item(
1483 &self,
f9f354fc
XL
1484 ty_param_def_id: LocalDefId,
1485 assoc_name: Ident,
dfeec247
XL
1486 span: Span,
1487 ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported> {
a7813a04 1488 let tcx = self.tcx();
c34b1796 1489
416331ca
XL
1490 debug!(
1491 "find_bound_for_assoc_item(ty_param_def_id={:?}, assoc_name={:?}, span={:?})",
dfeec247 1492 ty_param_def_id, assoc_name, span,
416331ca
XL
1493 );
1494
6a06907d
XL
1495 let predicates = &self
1496 .get_type_parameter_bounds(span, ty_param_def_id.to_def_id(), assoc_name)
1497 .predicates;
416331ca
XL
1498
1499 debug!("find_bound_for_assoc_item: predicates={:#?}", predicates);
1500
3dfed10e 1501 let param_hir_id = tcx.hir().local_def_id_to_hir_id(ty_param_def_id);
532ac7d7 1502 let param_name = tcx.hir().ty_param_name(param_hir_id);
dfeec247
XL
1503 self.one_bound_for_assoc_type(
1504 || {
6a06907d 1505 traits::transitive_bounds_that_define_assoc_type(
dfeec247 1506 tcx,
fc512014
XL
1507 predicates.iter().filter_map(|(p, _)| {
1508 p.to_opt_poly_trait_ref().map(|trait_ref| trait_ref.value)
1509 }),
6a06907d 1510 assoc_name,
dfeec247
XL
1511 )
1512 },
1513 || param_name.to_string(),
1514 assoc_name,
1515 span,
1516 || None,
1517 )
9346a6ac
AL
1518 }
1519
a1dfa0c6 1520 // Checks that `bounds` contains exactly one element and reports appropriate
a7813a04 1521 // errors otherwise.
dfeec247
XL
1522 fn one_bound_for_assoc_type<I>(
1523 &self,
1524 all_candidates: impl Fn() -> I,
1525 ty_param_name: impl Fn() -> String,
f9f354fc 1526 assoc_name: Ident,
dfeec247
XL
1527 span: Span,
1528 is_equality: impl Fn() -> Option<String>,
1529 ) -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
1530 where
1531 I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
a7813a04 1532 {
dfeec247
XL
1533 let mut matching_candidates = all_candidates()
1534 .filter(|r| self.trait_defines_associated_type_named(r.def_id(), assoc_name));
1535
1536 let bound = match matching_candidates.next() {
476ff2be
SL
1537 Some(bound) => bound,
1538 None => {
dfeec247
XL
1539 self.complain_about_assoc_type_not_found(
1540 all_candidates,
1541 &ty_param_name(),
1542 assoc_name,
1543 span,
1544 );
476ff2be
SL
1545 return Err(ErrorReported);
1546 }
1547 };
c30ab7b3 1548
416331ca
XL
1549 debug!("one_bound_for_assoc_type: bound = {:?}", bound);
1550
dfeec247 1551 if let Some(bound2) = matching_candidates.next() {
416331ca
XL
1552 debug!("one_bound_for_assoc_type: bound2 = {:?}", bound2);
1553
dfeec247 1554 let is_equality = is_equality();
29967ef6 1555 let bounds = array::IntoIter::new([bound, bound2]).chain(matching_candidates);
dfeec247
XL
1556 let mut err = if is_equality.is_some() {
1557 // More specific Error Index entry.
1558 struct_span_err!(
1559 self.tcx().sess,
1560 span,
1561 E0222,
1562 "ambiguous associated type `{}` in bounds of `{}`",
1563 assoc_name,
1564 ty_param_name()
1565 )
1566 } else {
1567 struct_span_err!(
1568 self.tcx().sess,
1569 span,
1570 E0221,
1571 "ambiguous associated type `{}` in bounds of `{}`",
1572 assoc_name,
1573 ty_param_name()
1574 )
1575 };
7cac9316 1576 err.span_label(span, format!("ambiguous associated type `{}`", assoc_name));
9346a6ac 1577
dfeec247 1578 let mut where_bounds = vec![];
476ff2be 1579 for bound in bounds {
74b04a01 1580 let bound_id = bound.def_id();
dfeec247
XL
1581 let bound_span = self
1582 .tcx()
74b04a01
XL
1583 .associated_items(bound_id)
1584 .find_by_name_and_kind(self.tcx(), assoc_name, ty::AssocKind::Type, bound_id)
416331ca 1585 .and_then(|item| self.tcx().hir().span_if_local(item.def_id));
476ff2be 1586
dfeec247
XL
1587 if let Some(bound_span) = bound_span {
1588 err.span_label(
1589 bound_span,
1590 format!(
1591 "ambiguous `{}` from `{}`",
1592 assoc_name,
1593 bound.print_only_trait_path(),
1594 ),
1595 );
1596 if let Some(constraint) = &is_equality {
1597 where_bounds.push(format!(
1598 " T: {trait}::{assoc} = {constraint}",
1599 trait=bound.print_only_trait_path(),
1600 assoc=assoc_name,
1601 constraint=constraint,
1602 ));
1603 } else {
1604 err.span_suggestion(
1605 span,
1606 "use fully qualified syntax to disambiguate",
1607 format!(
1608 "<{} as {}>::{}",
1609 ty_param_name(),
1610 bound.print_only_trait_path(),
1611 assoc_name,
1612 ),
1613 Applicability::MaybeIncorrect,
1614 );
1615 }
c30ab7b3 1616 } else {
dfeec247
XL
1617 err.note(&format!(
1618 "associated type `{}` could derive from `{}`",
1619 ty_param_name(),
1620 bound.print_only_trait_path(),
1621 ));
c30ab7b3 1622 }
a7813a04 1623 }
dfeec247
XL
1624 if !where_bounds.is_empty() {
1625 err.help(&format!(
1626 "consider introducing a new type parameter `T` and adding `where` constraints:\
1627 \n where\n T: {},\n{}",
1628 ty_param_name(),
1629 where_bounds.join(",\n"),
1630 ));
1631 }
a7813a04 1632 err.emit();
dfeec247
XL
1633 if !where_bounds.is_empty() {
1634 return Err(ErrorReported);
1635 }
9346a6ac 1636 }
ba9703b0 1637 Ok(bound)
9346a6ac
AL
1638 }
1639
a7813a04 1640 // Create a type from a path to an associated type.
9fa01778 1641 // For a path `A::B::C::D`, `qself_ty` and `qself_def` are the type and def for `A::B::C`
a1dfa0c6 1642 // and item_segment is the path segment for `D`. We return a type and a def for
a7813a04 1643 // the whole path.
9fa01778 1644 // Will fail except for `T::A` and `Self::A`; i.e., if `qself_ty`/`qself_def` are not a type
a1dfa0c6 1645 // parameter or `Self`.
6a06907d
XL
1646 // NOTE: When this function starts resolving `Trait::AssocTy` successfully
1647 // it should also start reportint the `BARE_TRAIT_OBJECTS` lint.
9fa01778
XL
1648 pub fn associated_path_to_ty(
1649 &self,
532ac7d7 1650 hir_ref_id: hir::HirId,
9fa01778
XL
1651 span: Span,
1652 qself_ty: Ty<'tcx>,
48663c56 1653 qself_res: Res,
dfeec247 1654 assoc_segment: &hir::PathSegment<'_>,
9fa01778 1655 permit_variants: bool,
48663c56 1656 ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorReported> {
a7813a04 1657 let tcx = self.tcx();
9fa01778 1658 let assoc_ident = assoc_segment.ident;
a7813a04 1659
9fa01778 1660 debug!("associated_path_to_ty: {:?}::{}", qself_ty, assoc_ident);
a7813a04 1661
9fa01778
XL
1662 // Check if we have an enum variant.
1663 let mut variant_resolution = None;
1b1a35ee 1664 if let ty::Adt(adt_def, _) = qself_ty.kind() {
9fa01778 1665 if adt_def.is_enum() {
dfeec247
XL
1666 let variant_def = adt_def
1667 .variants
1668 .iter()
1669 .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident, adt_def.did));
9fa01778 1670 if let Some(variant_def) = variant_def {
9fa01778 1671 if permit_variants {
17df50a5 1672 tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
dfeec247 1673 self.prohibit_generics(slice::from_ref(assoc_segment));
48663c56 1674 return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
9fa01778 1675 } else {
48663c56 1676 variant_resolution = Some(variant_def.def_id);
9fa01778
XL
1677 }
1678 }
1679 }
1680 }
a7813a04
XL
1681
1682 // Find the type of the associated item, and the trait where the associated
1683 // item is declared.
1b1a35ee
XL
1684 let bound = match (&qself_ty.kind(), qself_res) {
1685 (_, Res::SelfTy(Some(_), Some((impl_def_id, _)))) => {
0731742a 1686 // `Self` in an impl of a trait -- we have a concrete self type and a
a7813a04 1687 // trait reference.
8bb4bdeb
XL
1688 let trait_ref = match tcx.impl_trait_ref(impl_def_id) {
1689 Some(trait_ref) => trait_ref,
1690 None => {
1691 // A cycle error occurred, most likely.
48663c56 1692 return Err(ErrorReported);
8bb4bdeb
XL
1693 }
1694 };
1695
dfeec247 1696 self.one_bound_for_assoc_type(
cdc7bbd5 1697 || traits::supertraits(tcx, ty::Binder::bind(trait_ref, tcx)),
dfeec247
XL
1698 || "Self".to_string(),
1699 assoc_ident,
1700 span,
1701 || None,
1702 )?
c1a9b12d 1703 }
ba9703b0
XL
1704 (
1705 &ty::Param(_),
1706 Res::SelfTy(Some(param_did), None) | Res::Def(DefKind::TyParam, param_did),
f9f354fc 1707 ) => self.find_bound_for_assoc_item(param_did.expect_local(), assoc_ident, span)?,
9fa01778
XL
1708 _ => {
1709 if variant_resolution.is_some() {
1710 // Variant in type position
1711 let msg = format!("expected type, found variant `{}`", assoc_ident);
1712 tcx.sess.span_err(span, &msg);
1713 } else if qself_ty.is_enum() {
dfeec247
XL
1714 let mut err = struct_span_err!(
1715 tcx.sess,
48663c56 1716 assoc_ident.span,
dfeec247
XL
1717 E0599,
1718 "no variant named `{}` found for enum `{}`",
1719 assoc_ident,
1720 qself_ty,
a1dfa0c6 1721 );
48663c56 1722
9fa01778
XL
1723 let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
1724 if let Some(suggested_name) = find_best_match_for_name(
fc512014
XL
1725 &adt_def
1726 .variants
1727 .iter()
1728 .map(|variant| variant.ident.name)
1729 .collect::<Vec<Symbol>>(),
3dfed10e 1730 assoc_ident.name,
9fa01778
XL
1731 None,
1732 ) {
1733 err.span_suggestion(
48663c56
XL
1734 assoc_ident.span,
1735 "there is a variant with a similar name",
1736 suggested_name.to_string(),
9fa01778
XL
1737 Applicability::MaybeIncorrect,
1738 );
1739 } else {
416331ca
XL
1740 err.span_label(
1741 assoc_ident.span,
1742 format!("variant not found in `{}`", qself_ty),
1743 );
48663c56
XL
1744 }
1745
1746 if let Some(sp) = tcx.hir().span_if_local(adt_def.did) {
ba9703b0 1747 let sp = tcx.sess.source_map().guess_head_span(sp);
48663c56 1748 err.span_label(sp, format!("variant `{}` not found here", assoc_ident));
9fa01778 1749 }
48663c56 1750
9fa01778
XL
1751 err.emit();
1752 } else if !qself_ty.references_error() {
1753 // Don't print `TyErr` to the user.
48663c56
XL
1754 self.report_ambiguous_associated_type(
1755 span,
1756 &qself_ty.to_string(),
1757 "Trait",
e1599b0c 1758 assoc_ident.name,
48663c56 1759 );
9e0c209e 1760 }
48663c56 1761 return Err(ErrorReported);
9346a6ac 1762 }
a7813a04 1763 };
c34b1796 1764
83c7162d 1765 let trait_did = bound.def_id();
dc9dc135
XL
1766 let (assoc_ident, def_scope) =
1767 tcx.adjust_ident_and_get_scope(assoc_ident, trait_did, hir_ref_id);
74b04a01 1768
ba9703b0 1769 // We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
74b04a01 1770 // of calling `filter_by_name_and_kind`.
dfeec247
XL
1771 let item = tcx
1772 .associated_items(trait_did)
74b04a01 1773 .in_definition_order()
ba9703b0
XL
1774 .find(|i| {
1775 i.kind.namespace() == Namespace::TypeNS
1776 && i.ident.normalize_to_macros_2_0() == assoc_ident
1777 })
dfeec247 1778 .expect("missing associated type");
041b39d2 1779
dfeec247 1780 let ty = self.projected_ty_from_poly_trait_ref(span, item.def_id, assoc_segment, bound);
041b39d2
XL
1781 let ty = self.normalize_ty(span, ty);
1782
dc9dc135 1783 let kind = DefKind::AssocTy;
7cac9316 1784 if !item.vis.is_accessible_from(def_scope, tcx) {
ba9703b0
XL
1785 let kind = kind.descr(item.def_id);
1786 let msg = format!("{} `{}` is private", kind, assoc_ident);
1787 tcx.sess
1788 .struct_span_err(span, &msg)
1789 .span_label(span, &format!("private {}", kind))
1790 .emit();
7cac9316 1791 }
17df50a5 1792 tcx.check_stability(item.def_id, Some(hir_ref_id), span, None);
7cac9316 1793
48663c56 1794 if let Some(variant_def_id) = variant_resolution {
74b04a01
XL
1795 tcx.struct_span_lint_hir(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
1796 let mut err = lint.build("ambiguous associated item");
1797 let mut could_refer_to = |kind: DefKind, def_id, also| {
1798 let note_msg = format!(
1799 "`{}` could{} refer to the {} defined here",
1800 assoc_ident,
1801 also,
1802 kind.descr(def_id)
1803 );
1804 err.span_note(tcx.def_span(def_id), &note_msg);
1805 };
9fa01778 1806
74b04a01
XL
1807 could_refer_to(DefKind::Variant, variant_def_id, "");
1808 could_refer_to(kind, item.def_id, " also");
1809
1810 err.span_suggestion(
1811 span,
1812 "use fully-qualified syntax",
1813 format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
1814 Applicability::MachineApplicable,
dfeec247 1815 );
9fa01778 1816
74b04a01
XL
1817 err.emit();
1818 });
9fa01778 1819 }
48663c56 1820 Ok((ty, kind, item.def_id))
a7813a04 1821 }
1a4d82fc 1822
dfeec247
XL
1823 fn qpath_to_ty(
1824 &self,
1825 span: Span,
1826 opt_self_ty: Option<Ty<'tcx>>,
1827 item_def_id: DefId,
1828 trait_segment: &hir::PathSegment<'_>,
1829 item_segment: &hir::PathSegment<'_>,
1830 ) -> Ty<'tcx> {
a7813a04 1831 let tcx = self.tcx();
60c5eb7d 1832
532ac7d7 1833 let trait_def_id = tcx.parent(item_def_id).unwrap();
1a4d82fc 1834
60c5eb7d
XL
1835 debug!("qpath_to_ty: trait_def_id={:?}", trait_def_id);
1836
a7813a04
XL
1837 let self_ty = if let Some(ty) = opt_self_ty {
1838 ty
1839 } else {
532ac7d7 1840 let path_str = tcx.def_path_str(trait_def_id);
60c5eb7d
XL
1841
1842 let def_id = self.item_def_id();
1843
1844 debug!("qpath_to_ty: self.item_def_id()={:?}", def_id);
1845
dfeec247 1846 let parent_def_id = def_id
f9f354fc 1847 .and_then(|def_id| {
3dfed10e 1848 def_id.as_local().map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id))
f9f354fc 1849 })
ba9703b0 1850 .map(|hir_id| tcx.hir().get_parent_did(hir_id).to_def_id());
60c5eb7d
XL
1851
1852 debug!("qpath_to_ty: parent_def_id={:?}", parent_def_id);
1853
1854 // If the trait in segment is the same as the trait defining the item,
1855 // use the `<Self as ..>` syntax in the error.
1856 let is_part_of_self_trait_constraints = def_id == Some(trait_def_id);
1857 let is_part_of_fn_in_self_trait = parent_def_id == Some(trait_def_id);
1858
1859 let type_name = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
1860 "Self"
1861 } else {
1862 "Type"
1863 };
1864
48663c56
XL
1865 self.report_ambiguous_associated_type(
1866 span,
60c5eb7d 1867 type_name,
48663c56 1868 &path_str,
e1599b0c 1869 item_segment.ident.name,
48663c56 1870 );
f035d41b 1871 return tcx.ty_error();
a7813a04 1872 };
1a4d82fc 1873
a7813a04 1874 debug!("qpath_to_ty: self_type={:?}", self_ty);
1a4d82fc 1875
dfeec247
XL
1876 let trait_ref = self.ast_path_to_mono_trait_ref(span, trait_def_id, self_ty, trait_segment);
1877
1878 let item_substs = self.create_substs_for_associated_item(
1879 tcx,
1880 span,
1881 item_def_id,
1882 item_segment,
1883 trait_ref.substs,
1884 );
1a4d82fc 1885
a7813a04 1886 debug!("qpath_to_ty: trait_ref={:?}", trait_ref);
85aaf69f 1887
dfeec247 1888 self.normalize_ty(span, tcx.mk_projection(item_def_id, item_substs))
8bb4bdeb
XL
1889 }
1890
dfeec247
XL
1891 pub fn prohibit_generics<'a, T: IntoIterator<Item = &'a hir::PathSegment<'a>>>(
1892 &self,
1893 segments: T,
1894 ) -> bool {
0731742a 1895 let mut has_err = false;
8bb4bdeb 1896 for segment in segments {
dc9dc135 1897 let (mut err_for_lt, mut err_for_ty, mut err_for_ct) = (false, false, false);
5869c6ff 1898 for arg in segment.args().args {
dc9dc135
XL
1899 let (span, kind) = match arg {
1900 hir::GenericArg::Lifetime(lt) => {
dfeec247
XL
1901 if err_for_lt {
1902 continue;
1903 }
dc9dc135
XL
1904 err_for_lt = true;
1905 has_err = true;
1906 (lt.span, "lifetime")
8faf50e0 1907 }
dc9dc135 1908 hir::GenericArg::Type(ty) => {
dfeec247
XL
1909 if err_for_ty {
1910 continue;
1911 }
dc9dc135
XL
1912 err_for_ty = true;
1913 has_err = true;
1914 (ty.span, "type")
1915 }
1916 hir::GenericArg::Const(ct) => {
dfeec247
XL
1917 if err_for_ct {
1918 continue;
1919 }
dc9dc135 1920 err_for_ct = true;
ba9703b0 1921 has_err = true;
dc9dc135
XL
1922 (ct.span, "const")
1923 }
1924 };
1925 let mut err = struct_span_err!(
1926 self.tcx().sess,
1927 span,
1928 E0109,
1929 "{} arguments are not allowed for this type",
1930 kind,
1931 );
1932 err.span_label(span, format!("{} argument not allowed", kind));
1933 err.emit();
1934 if err_for_lt && err_for_ty && err_for_ct {
ea8adc8c
XL
1935 break;
1936 }
dc9dc135 1937 }
74b04a01
XL
1938
1939 // Only emit the first error to avoid overloading the user with error messages.
5869c6ff 1940 if let [binding, ..] = segment.args().bindings {
dc9dc135
XL
1941 has_err = true;
1942 Self::prohibit_assoc_ty_binding(self.tcx(), binding.span);
dc9dc135 1943 }
8bb4bdeb 1944 }
0731742a 1945 has_err
8bb4bdeb
XL
1946 }
1947
48663c56
XL
1948 // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
1949 pub fn def_ids_for_value_path_segments(
1950 &self,
dfeec247 1951 segments: &[hir::PathSegment<'_>],
48663c56
XL
1952 self_ty: Option<Ty<'tcx>>,
1953 kind: DefKind,
1954 def_id: DefId,
1955 ) -> Vec<PathSeg> {
0731742a
XL
1956 // We need to extract the type parameters supplied by the user in
1957 // the path `path`. Due to the current setup, this is a bit of a
1958 // tricky-process; the problem is that resolve only tells us the
1959 // end-point of the path resolution, and not the intermediate steps.
1960 // Luckily, we can (at least for now) deduce the intermediate steps
1961 // just from the end-point.
1962 //
1963 // There are basically five cases to consider:
1964 //
1965 // 1. Reference to a constructor of a struct:
1966 //
1967 // struct Foo<T>(...)
1968 //
1969 // In this case, the parameters are declared in the type space.
1970 //
1971 // 2. Reference to a constructor of an enum variant:
1972 //
1973 // enum E<T> { Foo(...) }
1974 //
1975 // In this case, the parameters are defined in the type space,
1976 // but may be specified either on the type or the variant.
1977 //
1978 // 3. Reference to a fn item or a free constant:
1979 //
1980 // fn foo<T>() { }
1981 //
1982 // In this case, the path will again always have the form
1983 // `a::b::foo::<T>` where only the final segment should have
1984 // type parameters. However, in this case, those parameters are
1985 // declared on a value, and hence are in the `FnSpace`.
1986 //
1987 // 4. Reference to a method or an associated constant:
1988 //
1989 // impl<A> SomeStruct<A> {
1990 // fn foo<B>(...)
1991 // }
1992 //
1993 // Here we can have a path like
1994 // `a::b::SomeStruct::<A>::foo::<B>`, in which case parameters
1995 // may appear in two places. The penultimate segment,
1996 // `SomeStruct::<A>`, contains parameters in TypeSpace, and the
1997 // final segment, `foo::<B>` contains parameters in fn space.
1998 //
0731742a
XL
1999 // The first step then is to categorize the segments appropriately.
2000
2001 let tcx = self.tcx();
2002
2003 assert!(!segments.is_empty());
2004 let last = segments.len() - 1;
2005
2006 let mut path_segs = vec![];
2007
48663c56 2008 match kind {
0731742a 2009 // Case 1. Reference to a struct constructor.
48663c56 2010 DefKind::Ctor(CtorOf::Struct, ..) => {
0731742a
XL
2011 // Everything but the final segment should have no
2012 // parameters at all.
2013 let generics = tcx.generics_of(def_id);
2014 // Variant and struct constructors use the
2015 // generics of their parent type definition.
2016 let generics_def_id = generics.parent.unwrap_or(def_id);
2017 path_segs.push(PathSeg(generics_def_id, last));
2018 }
2019
2020 // Case 2. Reference to a variant constructor.
dfeec247 2021 DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
0731742a
XL
2022 let adt_def = self_ty.map(|t| t.ty_adt_def().unwrap());
2023 let (generics_def_id, index) = if let Some(adt_def) = adt_def {
2024 debug_assert!(adt_def.is_enum());
2025 (adt_def.did, last)
2026 } else if last >= 1 && segments[last - 1].args.is_some() {
2027 // Everything but the penultimate segment should have no
2028 // parameters at all.
532ac7d7
XL
2029 let mut def_id = def_id;
2030
48663c56
XL
2031 // `DefKind::Ctor` -> `DefKind::Variant`
2032 if let DefKind::Ctor(..) = kind {
532ac7d7
XL
2033 def_id = tcx.parent(def_id).unwrap()
2034 }
2035
48663c56 2036 // `DefKind::Variant` -> `DefKind::Enum`
532ac7d7 2037 let enum_def_id = tcx.parent(def_id).unwrap();
0731742a
XL
2038 (enum_def_id, last - 1)
2039 } else {
2040 // FIXME: lint here recommending `Enum::<...>::Variant` form
2041 // instead of `Enum::Variant::<...>` form.
2042
2043 // Everything but the final segment should have no
2044 // parameters at all.
2045 let generics = tcx.generics_of(def_id);
2046 // Variant and struct constructors use the
2047 // generics of their parent type definition.
2048 (generics.parent.unwrap_or(def_id), last)
2049 };
2050 path_segs.push(PathSeg(generics_def_id, index));
2051 }
2052
2053 // Case 3. Reference to a top-level value.
dfeec247 2054 DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static => {
0731742a
XL
2055 path_segs.push(PathSeg(def_id, last));
2056 }
2057
2058 // Case 4. Reference to a method or associated const.
ba9703b0 2059 DefKind::AssocFn | DefKind::AssocConst => {
0731742a
XL
2060 if segments.len() >= 2 {
2061 let generics = tcx.generics_of(def_id);
2062 path_segs.push(PathSeg(generics.parent.unwrap(), last - 1));
2063 }
2064 path_segs.push(PathSeg(def_id, last));
2065 }
2066
48663c56 2067 kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
0731742a
XL
2068 }
2069
2070 debug!("path_segs = {:?}", path_segs);
2071
2072 path_segs
2073 }
2074
a1dfa0c6 2075 // Check a type `Path` and convert it to a `Ty`.
dfeec247
XL
2076 pub fn res_to_ty(
2077 &self,
2078 opt_self_ty: Option<Ty<'tcx>>,
2079 path: &hir::Path<'_>,
2080 permit_variants: bool,
2081 ) -> Ty<'tcx> {
a7813a04
XL
2082 let tcx = self.tcx();
2083
dfeec247
XL
2084 debug!(
2085 "res_to_ty(res={:?}, opt_self_ty={:?}, path_segments={:?})",
2086 path.res, opt_self_ty, path.segments
2087 );
a7813a04 2088
476ff2be 2089 let span = path.span;
48663c56 2090 match path.res {
416331ca 2091 Res::Def(DefKind::OpaqueTy, did) => {
dc9dc135 2092 // Check for desugared `impl Trait`.
0bf4aa26 2093 assert!(ty::is_impl_trait_defn(tcx, did).is_none());
8faf50e0
XL
2094 let item_segment = path.segments.split_last().unwrap();
2095 self.prohibit_generics(item_segment.1);
2096 let substs = self.ast_path_substs_for_ty(span, did, item_segment.0);
dfeec247 2097 self.normalize_ty(span, tcx.mk_opaque(did, substs))
8faf50e0 2098 }
ba9703b0
XL
2099 Res::Def(
2100 DefKind::Enum
2101 | DefKind::TyAlias
2102 | DefKind::Struct
2103 | DefKind::Union
2104 | DefKind::ForeignTy,
2105 did,
2106 ) => {
476ff2be 2107 assert_eq!(opt_self_ty, None);
8faf50e0 2108 self.prohibit_generics(path.segments.split_last().unwrap().1);
32a655c1 2109 self.ast_path_to_ty(span, did, path.segments.last().unwrap())
a7813a04 2110 }
48663c56 2111 Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
c30ab7b3
SL
2112 // Convert "variant type" as if it were a real type.
2113 // The resulting `Ty` is type of the variant's enum for now.
476ff2be 2114 assert_eq!(opt_self_ty, None);
0731742a 2115
48663c56
XL
2116 let path_segs =
2117 self.def_ids_for_value_path_segments(&path.segments, None, kind, def_id);
0731742a
XL
2118 let generic_segs: FxHashSet<_> =
2119 path_segs.iter().map(|PathSeg(_, index)| index).collect();
dfeec247
XL
2120 self.prohibit_generics(path.segments.iter().enumerate().filter_map(
2121 |(index, seg)| {
2122 if !generic_segs.contains(&index) { Some(seg) } else { None }
2123 },
2124 ));
0731742a
XL
2125
2126 let PathSeg(def_id, index) = path_segs.last().unwrap();
2127 self.ast_path_to_ty(span, *def_id, &path.segments[*index])
c30ab7b3 2128 }
dc9dc135 2129 Res::Def(DefKind::TyParam, def_id) => {
476ff2be 2130 assert_eq!(opt_self_ty, None);
dfeec247 2131 self.prohibit_generics(path.segments);
9e0c209e 2132
3dfed10e 2133 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id.expect_local());
dc9dc135 2134 let item_id = tcx.hir().get_parent_node(hir_id);
416331ca 2135 let item_def_id = tcx.hir().local_def_id(item_id);
7cac9316 2136 let generics = tcx.generics_of(item_def_id);
dc9dc135 2137 let index = generics.param_def_id_to_index[&def_id];
e74abb32 2138 tcx.mk_ty_param(index, tcx.hir().name(hir_id))
a7813a04 2139 }
dc9dc135
XL
2140 Res::SelfTy(Some(_), None) => {
2141 // `Self` in trait or type alias.
476ff2be 2142 assert_eq!(opt_self_ty, None);
dfeec247 2143 self.prohibit_generics(path.segments);
e1599b0c 2144 tcx.types.self_param
9346a6ac 2145 }
1b1a35ee 2146 Res::SelfTy(_, Some((def_id, forbid_generic))) => {
dc9dc135 2147 // `Self` in impl (we know the concrete type).
476ff2be 2148 assert_eq!(opt_self_ty, None);
dfeec247 2149 self.prohibit_generics(path.segments);
dc9dc135 2150 // Try to evaluate any array length constants.
1b1a35ee
XL
2151 let normalized_ty = self.normalize_ty(span, tcx.at(span).type_of(def_id));
2152 if forbid_generic && normalized_ty.needs_subst() {
2153 let mut err = tcx.sess.struct_span_err(
2154 path.span,
2155 "generic `Self` types are currently not permitted in anonymous constants",
2156 );
2157 if let Some(hir::Node::Item(&hir::Item {
5869c6ff 2158 kind: hir::ItemKind::Impl(ref impl_),
1b1a35ee
XL
2159 ..
2160 })) = tcx.hir().get_if_local(def_id)
2161 {
5869c6ff 2162 err.span_note(impl_.self_ty.span, "not a concrete type");
1b1a35ee
XL
2163 }
2164 err.emit();
2165 tcx.ty_error()
2166 } else {
2167 normalized_ty
2168 }
a7813a04 2169 }
dc9dc135 2170 Res::Def(DefKind::AssocTy, def_id) => {
0731742a
XL
2171 debug_assert!(path.segments.len() >= 2);
2172 self.prohibit_generics(&path.segments[..path.segments.len() - 2]);
dfeec247
XL
2173 self.qpath_to_ty(
2174 span,
2175 opt_self_ty,
2176 def_id,
2177 &path.segments[path.segments.len() - 2],
2178 path.segments.last().unwrap(),
2179 )
a7813a04 2180 }
48663c56 2181 Res::PrimTy(prim_ty) => {
476ff2be 2182 assert_eq!(opt_self_ty, None);
dfeec247 2183 self.prohibit_generics(path.segments);
8bb4bdeb 2184 match prim_ty {
dfeec247
XL
2185 hir::PrimTy::Bool => tcx.types.bool,
2186 hir::PrimTy::Char => tcx.types.char,
5869c6ff
XL
2187 hir::PrimTy::Int(it) => tcx.mk_mach_int(ty::int_ty(it)),
2188 hir::PrimTy::Uint(uit) => tcx.mk_mach_uint(ty::uint_ty(uit)),
2189 hir::PrimTy::Float(ft) => tcx.mk_mach_float(ty::float_ty(ft)),
f035d41b 2190 hir::PrimTy::Str => tcx.types.str_,
8bb4bdeb 2191 }
a7813a04 2192 }
48663c56 2193 Res::Err => {
a7813a04 2194 self.set_tainted_by_errors();
f035d41b 2195 self.tcx().ty_error()
a7813a04 2196 }
dfeec247 2197 _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
c34b1796 2198 }
9346a6ac 2199 }
c34b1796 2200
a7813a04
XL
2201 /// Parses the programmer's textual representation of a type into our
2202 /// internal notion of a type.
dfeec247 2203 pub fn ast_ty_to_ty(&self, ast_ty: &hir::Ty<'_>) -> Ty<'tcx> {
3dfed10e
XL
2204 self.ast_ty_to_ty_inner(ast_ty, false)
2205 }
2206
2207 /// Turns a `hir::Ty` into a `Ty`. For diagnostics' purposes we keep track of whether trait
2208 /// objects are borrowed like `&dyn Trait` to avoid emitting redundant errors.
cdc7bbd5 2209 #[tracing::instrument(level = "debug", skip(self))]
3dfed10e 2210 fn ast_ty_to_ty_inner(&self, ast_ty: &hir::Ty<'_>, borrowed: bool) -> Ty<'tcx> {
a7813a04 2211 let tcx = self.tcx();
1a4d82fc 2212
e74abb32 2213 let result_ty = match ast_ty.kind {
dfeec247 2214 hir::TyKind::Slice(ref ty) => tcx.mk_slice(self.ast_ty_to_ty(&ty)),
8faf50e0 2215 hir::TyKind::Ptr(ref mt) => {
dfeec247 2216 tcx.mk_ptr(ty::TypeAndMut { ty: self.ast_ty_to_ty(&mt.ty), mutbl: mt.mutbl })
a7813a04 2217 }
8faf50e0 2218 hir::TyKind::Rptr(ref region, ref mt) => {
32a655c1 2219 let r = self.ast_region_to_region(region, None);
cdc7bbd5 2220 debug!(?r);
3dfed10e 2221 let t = self.ast_ty_to_ty_inner(&mt.ty, true);
dfeec247 2222 tcx.mk_ref(r, ty::TypeAndMut { ty: t, mutbl: mt.mutbl })
a7813a04 2223 }
dfeec247 2224 hir::TyKind::Never => tcx.types.never,
8faf50e0 2225 hir::TyKind::Tup(ref fields) => {
0531ce1d 2226 tcx.mk_tup(fields.iter().map(|t| self.ast_ty_to_ty(&t)))
a7813a04 2227 }
8faf50e0 2228 hir::TyKind::BareFn(ref bf) => {
532ac7d7 2229 require_c_abi_if_c_variadic(tcx, &bf.decl, bf.abi, ast_ty.span);
6a06907d 2230
74b04a01 2231 tcx.mk_fn_ptr(self.ty_of_fn(
cdc7bbd5 2232 ast_ty.hir_id,
74b04a01
XL
2233 bf.unsafety,
2234 bf.abi,
2235 &bf.decl,
2236 &hir::Generics::empty(),
2237 None,
6a06907d 2238 Some(ast_ty),
74b04a01 2239 ))
1a4d82fc 2240 }
6a06907d 2241 hir::TyKind::TraitObject(ref bounds, ref lifetime, _) => {
3dfed10e 2242 self.conv_object_ty_poly_trait_ref(ast_ty.span, bounds, lifetime, borrowed)
a7813a04 2243 }
8faf50e0 2244 hir::TyKind::Path(hir::QPath::Resolved(ref maybe_qself, ref path)) => {
cdc7bbd5 2245 debug!(?maybe_qself, ?path);
dfeec247 2246 let opt_self_ty = maybe_qself.as_ref().map(|qself| self.ast_ty_to_ty(qself));
48663c56 2247 self.res_to_ty(opt_self_ty, path, false)
476ff2be 2248 }
f035d41b 2249 hir::TyKind::OpaqueDef(item_id, ref lifetimes) => {
6a06907d
XL
2250 let opaque_ty = tcx.hir().item(item_id);
2251 let def_id = item_id.def_id.to_def_id();
f035d41b
XL
2252
2253 match opaque_ty.kind {
2254 hir::ItemKind::OpaqueTy(hir::OpaqueTy { impl_trait_fn, .. }) => {
2255 self.impl_trait_ty_to_ty(def_id, lifetimes, impl_trait_fn.is_some())
2256 }
2257 ref i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
2258 }
dc9dc135 2259 }
8faf50e0 2260 hir::TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
cdc7bbd5 2261 debug!(?qself, ?segment);
32a655c1 2262 let ty = self.ast_ty_to_ty(qself);
c34b1796 2263
e74abb32 2264 let res = if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = qself.kind {
48663c56 2265 path.res
476ff2be 2266 } else {
48663c56 2267 Res::Err
476ff2be 2268 };
48663c56 2269 self.associated_path_to_ty(ast_ty.hir_id, ast_ty.span, ty, res, segment, false)
dfeec247 2270 .map(|(ty, _, _)| ty)
f035d41b 2271 .unwrap_or_else(|_| tcx.ty_error())
a7813a04 2272 }
3dfed10e
XL
2273 hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
2274 let def_id = tcx.require_lang_item(lang_item, Some(span));
cdc7bbd5 2275 let (substs, _) = self.create_substs_for_ast_path(
3dfed10e
XL
2276 span,
2277 def_id,
2278 &[],
5869c6ff 2279 &hir::PathSegment::invalid(),
3dfed10e
XL
2280 &GenericArgs::none(),
2281 true,
2282 None,
2283 );
2284 self.normalize_ty(span, tcx.at(span).type_of(def_id).subst(tcx, substs))
2285 }
8faf50e0 2286 hir::TyKind::Array(ref ty, ref length) => {
f9f354fc 2287 let length_def_id = tcx.hir().local_def_id(length.hir_id);
ba9703b0 2288 let length = ty::Const::from_anon_const(tcx, length_def_id);
b7449926 2289 let array_ty = tcx.mk_ty(ty::Array(self.ast_ty_to_ty(&ty), length));
ea8adc8c 2290 self.normalize_ty(ast_ty.span, array_ty)
1a4d82fc 2291 }
cdc7bbd5 2292 hir::TyKind::Typeof(ref e) => {
1b1a35ee 2293 tcx.sess.emit_err(TypeofReservedKeywordUsed { span: ast_ty.span });
cdc7bbd5 2294 tcx.type_of(tcx.hir().local_def_id(e.hir_id))
a7813a04 2295 }
8faf50e0 2296 hir::TyKind::Infer => {
b7449926 2297 // Infer also appears as the type of arguments or return
8faf50e0 2298 // values in a ExprKind::Closure, or as
a7813a04
XL
2299 // the type of local variables. Both of these cases are
2300 // handled specially and will not descend into this routine.
dc9dc135 2301 self.ty_infer(None, ast_ty.span)
cc61c64b 2302 }
f035d41b 2303 hir::TyKind::Err => tcx.ty_error(),
a7813a04 2304 };
1a4d82fc 2305
cdc7bbd5 2306 debug!(?result_ty);
dc9dc135 2307
ea8adc8c 2308 self.record_ty(ast_ty.hir_id, result_ty, ast_ty.span);
a7813a04 2309 result_ty
1a4d82fc 2310 }
1a4d82fc 2311
cdc7bbd5 2312 fn impl_trait_ty_to_ty(
94b46f34
XL
2313 &self,
2314 def_id: DefId,
dfeec247 2315 lifetimes: &[hir::GenericArg<'_>],
f035d41b 2316 replace_parent_lifetimes: bool,
94b46f34 2317 ) -> Ty<'tcx> {
ff7c6d11
XL
2318 debug!("impl_trait_ty_to_ty(def_id={:?}, lifetimes={:?})", def_id, lifetimes);
2319 let tcx = self.tcx();
94b46f34 2320
ff7c6d11
XL
2321 let generics = tcx.generics_of(def_id);
2322
ff7c6d11 2323 debug!("impl_trait_ty_to_ty: generics={:?}", generics);
532ac7d7 2324 let substs = InternalSubsts::for_item(tcx, def_id, |param, _| {
94b46f34
XL
2325 if let Some(i) = (param.index as usize).checked_sub(generics.parent_count) {
2326 // Our own parameters are the resolved lifetimes.
2327 match param.kind {
2328 GenericParamDefKind::Lifetime => {
8faf50e0
XL
2329 if let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] {
2330 self.ast_region_to_region(lifetime, None).into()
2331 } else {
2332 bug!()
2333 }
94b46f34 2334 }
dfeec247 2335 _ => bug!(),
94b46f34
XL
2336 }
2337 } else {
94b46f34 2338 match param.kind {
f035d41b
XL
2339 // For RPIT (return position impl trait), only lifetimes
2340 // mentioned in the impl Trait predicate are captured by
2341 // the opaque type, so the lifetime parameters from the
2342 // parent item need to be replaced with `'static`.
2343 //
2344 // For `impl Trait` in the types of statics, constants,
2345 // locals and type aliases. These capture all parent
2346 // lifetimes, so they can use their identity subst.
2347 GenericParamDefKind::Lifetime if replace_parent_lifetimes => {
2348 tcx.lifetimes.re_static.into()
2349 }
dfeec247 2350 _ => tcx.mk_param_from_def(param),
ff7c6d11
XL
2351 }
2352 }
94b46f34 2353 });
dc9dc135 2354 debug!("impl_trait_ty_to_ty: substs={:?}", substs);
ff7c6d11 2355
b7449926 2356 let ty = tcx.mk_opaque(def_id, substs);
94b46f34
XL
2357 debug!("impl_trait_ty_to_ty: {}", ty);
2358 ty
ff7c6d11
XL
2359 }
2360
dfeec247 2361 pub fn ty_of_arg(&self, ty: &hir::Ty<'_>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
e74abb32 2362 match ty.kind {
8faf50e0 2363 hir::TyKind::Infer if expected_ty.is_some() => {
ea8adc8c
XL
2364 self.record_ty(ty.hir_id, expected_ty.unwrap(), ty.span);
2365 expected_ty.unwrap()
2366 }
32a655c1 2367 _ => self.ast_ty_to_ty(ty),
a7813a04
XL
2368 }
2369 }
1a4d82fc 2370
dfeec247
XL
2371 pub fn ty_of_fn(
2372 &self,
cdc7bbd5 2373 hir_id: hir::HirId,
dfeec247
XL
2374 unsafety: hir::Unsafety,
2375 abi: abi::Abi,
2376 decl: &hir::FnDecl<'_>,
74b04a01 2377 generics: &hir::Generics<'_>,
dfeec247 2378 ident_span: Option<Span>,
6a06907d 2379 hir_ty: Option<&hir::Ty<'_>>,
dfeec247 2380 ) -> ty::PolyFnSig<'tcx> {
32a655c1 2381 debug!("ty_of_fn");
1a4d82fc 2382
ea8adc8c 2383 let tcx = self.tcx();
cdc7bbd5
XL
2384 let bound_vars = tcx.late_bound_vars(hir_id);
2385 debug!(?bound_vars);
1a4d82fc 2386
74b04a01 2387 // We proactively collect all the inferred type params to emit a single error per fn def.
dfeec247
XL
2388 let mut visitor = PlaceholderHirTyCollector::default();
2389 for ty in decl.inputs {
2390 visitor.visit_ty(ty);
2391 }
74b04a01
XL
2392 walk_generics(&mut visitor, generics);
2393
dfeec247 2394 let input_tys = decl.inputs.iter().map(|a| self.ty_of_arg(a, None));
a7813a04 2395 let output_ty = match decl.output {
74b04a01 2396 hir::FnRetTy::Return(ref output) => {
dfeec247
XL
2397 visitor.visit_ty(output);
2398 self.ast_ty_to_ty(output)
2399 }
74b04a01 2400 hir::FnRetTy::DefaultReturn(..) => tcx.mk_unit(),
a7813a04 2401 };
1a4d82fc 2402
32a655c1 2403 debug!("ty_of_fn: output_ty={:?}", output_ty);
9e0c209e 2404
cdc7bbd5
XL
2405 let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, unsafety, abi);
2406 let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);
dfeec247 2407
3dfed10e 2408 if !self.allow_ty_infer() {
dfeec247
XL
2409 // We always collect the spans for placeholder types when evaluating `fn`s, but we
2410 // only want to emit an error complaining about them if infer types (`_`) are not
ba9703b0
XL
2411 // allowed. `allow_ty_infer` gates this behavior. We check for the presence of
2412 // `ident_span` to not emit an error twice when we have `fn foo(_: fn() -> _)`.
6a06907d 2413
dfeec247
XL
2414 crate::collect::placeholder_type_error(
2415 tcx,
3dfed10e 2416 ident_span.map(|sp| sp.shrink_to_hi()),
6a06907d 2417 generics.params,
dfeec247 2418 visitor.0,
ba9703b0 2419 true,
6a06907d 2420 hir_ty,
dfeec247
XL
2421 );
2422 }
ea8adc8c
XL
2423
2424 // Find any late-bound regions declared in return type that do
0bf4aa26 2425 // not appear in the arguments. These are not well-formed.
ea8adc8c
XL
2426 //
2427 // Example:
2428 // for<'a> fn() -> &'a str <-- 'a is bad
2429 // for<'a> fn(&'a String) -> &'a str <-- 'a is ok
2430 let inputs = bare_fn_ty.inputs();
dfeec247
XL
2431 let late_bound_in_args =
2432 tcx.collect_constrained_late_bound_regions(&inputs.map_bound(|i| i.to_owned()));
ea8adc8c
XL
2433 let output = bare_fn_ty.output();
2434 let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(&output);
3dfed10e
XL
2435
2436 self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
2437 struct_span_err!(
dfeec247
XL
2438 tcx.sess,
2439 decl.output.span(),
2440 E0581,
3dfed10e
XL
2441 "return type references {}, which is not constrained by the fn input types",
2442 br_name
2443 )
2444 });
2445
2446 bare_fn_ty
2447 }
2448
2449 fn validate_late_bound_regions(
2450 &self,
fc512014
XL
2451 constrained_regions: FxHashSet<ty::BoundRegionKind>,
2452 referenced_regions: FxHashSet<ty::BoundRegionKind>,
3dfed10e
XL
2453 generate_err: impl Fn(&str) -> rustc_errors::DiagnosticBuilder<'tcx>,
2454 ) {
2455 for br in referenced_regions.difference(&constrained_regions) {
2456 let br_name = match *br {
2457 ty::BrNamed(_, name) => format!("lifetime `{}`", name),
2458 ty::BrAnon(_) | ty::BrEnv => "an anonymous lifetime".to_string(),
2459 };
2460
2461 let mut err = generate_err(&br_name);
2462
2c00a5a8
XL
2463 if let ty::BrAnon(_) = *br {
2464 // The only way for an anonymous lifetime to wind up
2465 // in the return type but **also** be unconstrained is
2466 // if it only appears in "associated types" in the
3dfed10e 2467 // input. See #47511 and #62200 for examples. In this case,
2c00a5a8
XL
2468 // though we can easily give a hint that ought to be
2469 // relevant.
dfeec247 2470 err.note(
74b04a01 2471 "lifetimes appearing in an associated type are not considered constrained",
dfeec247 2472 );
2c00a5a8 2473 }
3dfed10e 2474
2c00a5a8 2475 err.emit();
ea8adc8c 2476 }
a7813a04 2477 }
1a4d82fc 2478
a7813a04
XL
2479 /// Given the bounds on an object, determines what single region bound (if any) we can
2480 /// use to summarize this type. The basic idea is that we will use the bound the user
2481 /// provided, if they provided one, and otherwise search the supertypes of trait bounds
2482 /// for region bounds. It may be that we can derive no bound at all, in which case
2483 /// we return `None`.
dfeec247
XL
2484 fn compute_object_lifetime_bound(
2485 &self,
a7813a04 2486 span: Span,
cdc7bbd5 2487 existential_predicates: &'tcx ty::List<ty::Binder<'tcx, ty::ExistentialPredicate<'tcx>>>,
dfeec247 2488 ) -> Option<ty::Region<'tcx>> // if None, use the default
a7813a04
XL
2489 {
2490 let tcx = self.tcx();
85aaf69f 2491
dfeec247 2492 debug!("compute_opt_region_bound(existential_predicates={:?})", existential_predicates);
1a4d82fc 2493
a7813a04
XL
2494 // No explicit region bound specified. Therefore, examine trait
2495 // bounds and see if we can derive region bounds from those.
dfeec247 2496 let derived_region_bounds = object_region_bounds(tcx, existential_predicates);
1a4d82fc 2497
a7813a04
XL
2498 // If there are no derived region bounds, then report back that we
2499 // can find no region bound. The caller will use the default.
2500 if derived_region_bounds.is_empty() {
2501 return None;
2502 }
1a4d82fc 2503
a7813a04
XL
2504 // If any of the derived region bounds are 'static, that is always
2505 // the best choice.
9e0c209e 2506 if derived_region_bounds.iter().any(|&r| ty::ReStatic == *r) {
48663c56 2507 return Some(tcx.lifetimes.re_static);
a7813a04 2508 }
1a4d82fc 2509
a7813a04
XL
2510 // Determine whether there is exactly one unique region in the set
2511 // of derived region bounds. If so, use that. Otherwise, report an
2512 // error.
2513 let r = derived_region_bounds[0];
2514 if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
1b1a35ee 2515 tcx.sess.emit_err(AmbiguousLifetimeBound { span });
a7813a04 2516 }
ba9703b0 2517 Some(r)
1a4d82fc 2518 }
1a4d82fc 2519}