]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_typeck/src/check/check.rs
New upstream version 1.55.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / check.rs
CommitLineData
1b1a35ee 1use super::coercion::CoerceMany;
29967ef6 2use super::compare_method::check_type_bounds;
1b1a35ee
XL
3use super::compare_method::{compare_const_impl, compare_impl_method, compare_ty_impl};
4use super::*;
5
6use rustc_attr as attr;
29967ef6 7use rustc_errors::{Applicability, ErrorReported};
1b1a35ee 8use rustc_hir as hir;
cdc7bbd5 9use rustc_hir::def_id::{DefId, LocalDefId};
6a06907d 10use rustc_hir::intravisit::Visitor;
1b1a35ee 11use rustc_hir::lang_items::LangItem;
6a06907d 12use rustc_hir::{def::Res, ItemKind, Node, PathSegment};
1b1a35ee 13use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
29967ef6 14use rustc_infer::infer::{RegionVariableOrigin, TyCtxtInferExt};
1b1a35ee 15use rustc_middle::ty::fold::TypeFoldable;
6a06907d 16use rustc_middle::ty::layout::MAX_SIMD_LANES;
1b1a35ee 17use rustc_middle::ty::subst::GenericArgKind;
cdc7bbd5 18use rustc_middle::ty::util::{Discr, IntTypeExt};
17df50a5 19use rustc_middle::ty::{self, OpaqueTypeKey, ParamEnv, RegionKind, Ty, TyCtxt};
136023e0 20use rustc_session::lint::builtin::{UNINHABITED_STATIC, UNSUPPORTED_CALLING_CONVENTIONS};
1b1a35ee
XL
21use rustc_span::symbol::sym;
22use rustc_span::{self, MultiSpan, Span};
23use rustc_target::spec::abi::Abi;
29967ef6 24use rustc_trait_selection::opaque_types::InferCtxtExt as _;
cdc7bbd5 25use rustc_trait_selection::traits;
29967ef6 26use rustc_trait_selection::traits::error_reporting::InferCtxtExt as _;
cdc7bbd5 27use rustc_ty_utils::representability::{self, Representability};
1b1a35ee 28
cdc7bbd5 29use std::iter;
29967ef6
XL
30use std::ops::ControlFlow;
31
1b1a35ee
XL
32pub fn check_wf_new(tcx: TyCtxt<'_>) {
33 let visit = wfcheck::CheckTypeWellFormedVisitor::new(tcx);
34 tcx.hir().krate().par_visit_all_item_likes(&visit);
35}
36
136023e0
XL
37pub(super) fn check_abi(tcx: TyCtxt<'_>, hir_id: hir::HirId, span: Span, abi: Abi) {
38 match tcx.sess.target.is_abi_supported(abi) {
39 Some(true) => (),
40 Some(false) => struct_span_err!(
1b1a35ee
XL
41 tcx.sess,
42 span,
43 E0570,
136023e0 44 "`{}` is not a supported ABI for the current target",
1b1a35ee
XL
45 abi
46 )
136023e0
XL
47 .emit(),
48 None => {
49 tcx.struct_span_lint_hir(UNSUPPORTED_CALLING_CONVENTIONS, hir_id, span, |lint| {
50 lint.build("use of calling convention not supported on this target").emit()
51 });
52 }
1b1a35ee 53 }
5869c6ff
XL
54
55 // This ABI is only allowed on function pointers
56 if abi == Abi::CCmseNonSecureCall {
57 struct_span_err!(
58 tcx.sess,
59 span,
60 E0781,
61 "the `\"C-cmse-nonsecure-call\"` ABI is only allowed on function pointers."
62 )
63 .emit()
64 }
1b1a35ee
XL
65}
66
67/// Helper used for fns and closures. Does the grungy work of checking a function
68/// body and returns the function context used for that purpose, since in the case of a fn item
69/// there is still a bit more to do.
70///
71/// * ...
72/// * inherited: other fields inherited from the enclosing fn (if any)
73pub(super) fn check_fn<'a, 'tcx>(
74 inherited: &'a Inherited<'a, 'tcx>,
75 param_env: ty::ParamEnv<'tcx>,
76 fn_sig: ty::FnSig<'tcx>,
77 decl: &'tcx hir::FnDecl<'tcx>,
78 fn_id: hir::HirId,
79 body: &'tcx hir::Body<'tcx>,
80 can_be_generator: Option<hir::Movability>,
81) -> (FnCtxt<'a, 'tcx>, Option<GeneratorTypes<'tcx>>) {
82 let mut fn_sig = fn_sig;
83
84 debug!("check_fn(sig={:?}, fn_id={}, param_env={:?})", fn_sig, fn_id, param_env);
85
86 // Create the function context. This is either derived from scratch or,
87 // in the case of closures, based on the outer context.
88 let mut fcx = FnCtxt::new(inherited, param_env, body.value.hir_id);
5869c6ff 89 fcx.ps.set(UnsafetyState::function(fn_sig.unsafety, fn_id));
1b1a35ee
XL
90
91 let tcx = fcx.tcx;
92 let sess = tcx.sess;
93 let hir = tcx.hir();
94
95 let declared_ret_ty = fn_sig.output();
96
6a06907d
XL
97 let feature = match tcx.hir().get(fn_id) {
98 // TAIT usage in function return position.
99 // Example:
100 //
101 // ```rust
102 // type Foo = impl Debug;
103 // fn bar() -> Foo { 42 }
104 // ```
105 Node::Item(hir::Item { kind: ItemKind::Fn(..), .. }) |
106 // TAIT usage in associated function return position.
107 //
108 // Example with a free type alias:
109 //
110 // ```rust
111 // type Foo = impl Debug;
112 // impl SomeTrait for SomeType {
113 // fn bar() -> Foo { 42 }
114 // }
115 // ```
116 //
117 // Example with an associated TAIT:
118 //
119 // ```rust
120 // impl SomeTrait for SomeType {
121 // type Foo = impl Debug;
122 // fn bar() -> Self::Foo { 42 }
123 // }
124 // ```
125 Node::ImplItem(hir::ImplItem {
126 kind: hir::ImplItemKind::Fn(..), ..
127 }) => None,
128 // Forbid TAIT in trait declarations for now.
129 // Examples:
130 //
131 // ```rust
132 // type Foo = impl Debug;
133 // trait Bar {
134 // fn bar() -> Foo;
135 // }
136 // trait Bop {
137 // type Bop: PartialEq<Foo>;
138 // }
139 // ```
140 Node::TraitItem(hir::TraitItem {
141 kind: hir::TraitItemKind::Fn(..),
142 ..
143 }) |
144 // Forbid TAIT in closure return position for now.
145 // Example:
146 //
147 // ```rust
148 // type Foo = impl Debug;
149 // let x = |y| -> Foo { 42 + y };
150 // ```
151 Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => Some(sym::type_alias_impl_trait),
152 node => bug!("Item being checked wasn't a function/closure: {:?}", node),
153 };
154 let revealed_ret_ty = fcx.instantiate_opaque_types_from_value(
155 fn_id,
156 declared_ret_ty,
157 decl.output.span(),
158 feature,
159 );
1b1a35ee
XL
160 debug!("check_fn: declared_ret_ty: {}, revealed_ret_ty: {}", declared_ret_ty, revealed_ret_ty);
161 fcx.ret_coercion = Some(RefCell::new(CoerceMany::new(revealed_ret_ty)));
162 fcx.ret_type_span = Some(decl.output.span());
163 if let ty::Opaque(..) = declared_ret_ty.kind() {
164 fcx.ret_coercion_impl_trait = Some(declared_ret_ty);
165 }
166 fn_sig = tcx.mk_fn_sig(
167 fn_sig.inputs().iter().cloned(),
168 revealed_ret_ty,
169 fn_sig.c_variadic,
170 fn_sig.unsafety,
171 fn_sig.abi,
172 );
173
174 let span = body.value.span;
175
176 fn_maybe_err(tcx, span, fn_sig.abi);
177
fc512014
XL
178 if fn_sig.abi == Abi::RustCall {
179 let expected_args = if let ImplicitSelfKind::None = decl.implicit_self { 1 } else { 2 };
180
181 let err = || {
182 let item = match tcx.hir().get(fn_id) {
183 Node::Item(hir::Item { kind: ItemKind::Fn(header, ..), .. }) => Some(header),
184 Node::ImplItem(hir::ImplItem {
185 kind: hir::ImplItemKind::Fn(header, ..), ..
186 }) => Some(header),
5869c6ff
XL
187 Node::TraitItem(hir::TraitItem {
188 kind: hir::TraitItemKind::Fn(header, ..),
189 ..
190 }) => Some(header),
fc512014
XL
191 // Closures are RustCall, but they tuple their arguments, so shouldn't be checked
192 Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(..), .. }) => None,
193 node => bug!("Item being checked wasn't a function/closure: {:?}", node),
194 };
195
196 if let Some(header) = item {
5869c6ff 197 tcx.sess.span_err(header.span, "functions with the \"rust-call\" ABI must take a single non-self argument that is a tuple")
fc512014
XL
198 }
199 };
200
201 if fn_sig.inputs().len() != expected_args {
202 err()
203 } else {
204 // FIXME(CraftSpider) Add a check on parameter expansion, so we don't just make the ICE happen later on
205 // This will probably require wide-scale changes to support a TupleKind obligation
206 // We can't resolve this without knowing the type of the param
207 if !matches!(fn_sig.inputs()[expected_args - 1].kind(), ty::Tuple(_) | ty::Param(_)) {
208 err()
209 }
210 }
211 }
212
1b1a35ee
XL
213 if body.generator_kind.is_some() && can_be_generator.is_some() {
214 let yield_ty = fcx
215 .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::TypeInference, span });
216 fcx.require_type_is_sized(yield_ty, span, traits::SizedYieldType);
217
218 // Resume type defaults to `()` if the generator has no argument.
219 let resume_ty = fn_sig.inputs().get(0).copied().unwrap_or_else(|| tcx.mk_unit());
220
221 fcx.resume_yield_tys = Some((resume_ty, yield_ty));
222 }
223
136023e0 224 GatherLocalsVisitor::new(&fcx).visit_body(body);
1b1a35ee
XL
225
226 // C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
227 // (as it's created inside the body itself, not passed in from outside).
228 let maybe_va_list = if fn_sig.c_variadic {
229 let span = body.params.last().unwrap().span;
230 let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(span));
231 let region = fcx.next_region_var(RegionVariableOrigin::MiscVariable(span));
232
233 Some(tcx.type_of(va_list_did).subst(tcx, &[region.into()]))
234 } else {
235 None
236 };
237
238 // Add formal parameters.
239 let inputs_hir = hir.fn_decl_by_hir_id(fn_id).map(|decl| &decl.inputs);
240 let inputs_fn = fn_sig.inputs().iter().copied();
241 for (idx, (param_ty, param)) in inputs_fn.chain(maybe_va_list).zip(body.params).enumerate() {
242 // Check the pattern.
243 let ty_span = try { inputs_hir?.get(idx)?.span };
244 fcx.check_pat_top(&param.pat, param_ty, ty_span, false);
245
246 // Check that argument is Sized.
247 // The check for a non-trivial pattern is a hack to avoid duplicate warnings
248 // for simple cases like `fn foo(x: Trait)`,
249 // where we would error once on the parameter as a whole, and once on the binding `x`.
29967ef6 250 if param.pat.simple_ident().is_none() && !tcx.features().unsized_fn_params {
1b1a35ee
XL
251 fcx.require_type_is_sized(param_ty, param.pat.span, traits::SizedArgumentType(ty_span));
252 }
253
254 fcx.write_ty(param.hir_id, param_ty);
255 }
256
257 inherited.typeck_results.borrow_mut().liberated_fn_sigs_mut().insert(fn_id, fn_sig);
258
259 fcx.in_tail_expr = true;
260 if let ty::Dynamic(..) = declared_ret_ty.kind() {
261 // FIXME: We need to verify that the return type is `Sized` after the return expression has
262 // been evaluated so that we have types available for all the nodes being returned, but that
263 // requires the coerced evaluated type to be stored. Moving `check_return_expr` before this
264 // causes unsized errors caused by the `declared_ret_ty` to point at the return expression,
265 // while keeping the current ordering we will ignore the tail expression's type because we
266 // don't know it yet. We can't do `check_expr_kind` while keeping `check_return_expr`
267 // because we will trigger "unreachable expression" lints unconditionally.
268 // Because of all of this, we perform a crude check to know whether the simplest `!Sized`
269 // case that a newcomer might make, returning a bare trait, and in that case we populate
270 // the tail expression's type so that the suggestion will be correct, but ignore all other
271 // possible cases.
272 fcx.check_expr(&body.value);
273 fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
1b1a35ee
XL
274 } else {
275 fcx.require_type_is_sized(declared_ret_ty, decl.output.span(), traits::SizedReturnType);
276 fcx.check_return_expr(&body.value);
277 }
278 fcx.in_tail_expr = false;
279
280 // We insert the deferred_generator_interiors entry after visiting the body.
281 // This ensures that all nested generators appear before the entry of this generator.
282 // resolve_generator_interiors relies on this property.
283 let gen_ty = if let (Some(_), Some(gen_kind)) = (can_be_generator, body.generator_kind) {
284 let interior = fcx
285 .next_ty_var(TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span });
286 fcx.deferred_generator_interiors.borrow_mut().push((body.id(), interior, gen_kind));
287
288 let (resume_ty, yield_ty) = fcx.resume_yield_tys.unwrap();
289 Some(GeneratorTypes {
290 resume_ty,
291 yield_ty,
292 interior,
293 movability: can_be_generator.unwrap(),
294 })
295 } else {
296 None
297 };
298
299 // Finalize the return check by taking the LUB of the return types
300 // we saw and assigning it to the expected return type. This isn't
301 // really expected to fail, since the coercions would have failed
302 // earlier when trying to find a LUB.
303 //
304 // However, the behavior around `!` is sort of complex. In the
305 // event that the `actual_return_ty` comes back as `!`, that
306 // indicates that the fn either does not return or "returns" only
307 // values of type `!`. In this case, if there is an expected
308 // return type that is *not* `!`, that should be ok. But if the
309 // return type is being inferred, we want to "fallback" to `!`:
310 //
311 // let x = move || panic!();
312 //
313 // To allow for that, I am creating a type variable with diverging
314 // fallback. This was deemed ever so slightly better than unifying
315 // the return value with `!` because it allows for the caller to
316 // make more assumptions about the return type (e.g., they could do
317 //
318 // let y: Option<u32> = Some(x());
319 //
320 // which would then cause this return type to become `u32`, not
321 // `!`).
322 let coercion = fcx.ret_coercion.take().unwrap().into_inner();
323 let mut actual_return_ty = coercion.complete(&fcx);
324 if actual_return_ty.is_never() {
325 actual_return_ty = fcx.next_diverging_ty_var(TypeVariableOrigin {
326 kind: TypeVariableOriginKind::DivergingFn,
327 span,
328 });
329 }
330 fcx.demand_suptype(span, revealed_ret_ty, actual_return_ty);
331
1b1a35ee
XL
332 // Check that a function marked as `#[panic_handler]` has signature `fn(&PanicInfo) -> !`
333 if let Some(panic_impl_did) = tcx.lang_items().panic_impl() {
334 if panic_impl_did == hir.local_def_id(fn_id).to_def_id() {
335 if let Some(panic_info_did) = tcx.lang_items().panic_info() {
336 if *declared_ret_ty.kind() != ty::Never {
337 sess.span_err(decl.output.span(), "return type should be `!`");
338 }
339
340 let inputs = fn_sig.inputs();
341 let span = hir.span(fn_id);
342 if inputs.len() == 1 {
343 let arg_is_panic_info = match *inputs[0].kind() {
344 ty::Ref(region, ty, mutbl) => match *ty.kind() {
345 ty::Adt(ref adt, _) => {
346 adt.did == panic_info_did
347 && mutbl == hir::Mutability::Not
348 && *region != RegionKind::ReStatic
349 }
350 _ => false,
351 },
352 _ => false,
353 };
354
355 if !arg_is_panic_info {
356 sess.span_err(decl.inputs[0].span, "argument should be `&PanicInfo`");
357 }
358
359 if let Node::Item(item) = hir.get(fn_id) {
360 if let ItemKind::Fn(_, ref generics, _) = item.kind {
361 if !generics.params.is_empty() {
362 sess.span_err(span, "should have no type parameters");
363 }
364 }
365 }
366 } else {
367 let span = sess.source_map().guess_head_span(span);
368 sess.span_err(span, "function should have one argument");
369 }
370 } else {
371 sess.err("language item required, but not found: `panic_info`");
372 }
373 }
374 }
375
376 // Check that a function marked as `#[alloc_error_handler]` has signature `fn(Layout) -> !`
377 if let Some(alloc_error_handler_did) = tcx.lang_items().oom() {
378 if alloc_error_handler_did == hir.local_def_id(fn_id).to_def_id() {
379 if let Some(alloc_layout_did) = tcx.lang_items().alloc_layout() {
380 if *declared_ret_ty.kind() != ty::Never {
381 sess.span_err(decl.output.span(), "return type should be `!`");
382 }
383
384 let inputs = fn_sig.inputs();
385 let span = hir.span(fn_id);
386 if inputs.len() == 1 {
387 let arg_is_alloc_layout = match inputs[0].kind() {
388 ty::Adt(ref adt, _) => adt.did == alloc_layout_did,
389 _ => false,
390 };
391
392 if !arg_is_alloc_layout {
393 sess.span_err(decl.inputs[0].span, "argument should be `Layout`");
394 }
395
396 if let Node::Item(item) = hir.get(fn_id) {
397 if let ItemKind::Fn(_, ref generics, _) = item.kind {
398 if !generics.params.is_empty() {
399 sess.span_err(
400 span,
401 "`#[alloc_error_handler]` function should have no type \
402 parameters",
403 );
404 }
405 }
406 }
407 } else {
408 let span = sess.source_map().guess_head_span(span);
409 sess.span_err(span, "function should have one argument");
410 }
411 } else {
412 sess.err("language item required, but not found: `alloc_layout`");
413 }
414 }
415 }
416
417 (fcx, gen_ty)
418}
419
6a06907d 420fn check_struct(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) {
1b1a35ee
XL
421 let def = tcx.adt_def(def_id);
422 def.destructor(tcx); // force the destructor to be evaluated
423 check_representable(tcx, span, def_id);
424
425 if def.repr.simd() {
426 check_simd(tcx, span, def_id);
427 }
428
429 check_transparent(tcx, span, def);
430 check_packed(tcx, span, def);
431}
432
6a06907d 433fn check_union(tcx: TyCtxt<'_>, def_id: LocalDefId, span: Span) {
1b1a35ee
XL
434 let def = tcx.adt_def(def_id);
435 def.destructor(tcx); // force the destructor to be evaluated
436 check_representable(tcx, span, def_id);
437 check_transparent(tcx, span, def);
438 check_union_fields(tcx, span, def_id);
439 check_packed(tcx, span, def);
440}
441
29967ef6
XL
442/// Check that the fields of the `union` do not need dropping.
443fn check_union_fields(tcx: TyCtxt<'_>, span: Span, item_def_id: LocalDefId) -> bool {
1b1a35ee
XL
444 let item_type = tcx.type_of(item_def_id);
445 if let ty::Adt(def, substs) = item_type.kind() {
446 assert!(def.is_union());
447 let fields = &def.non_enum_variant().fields;
448 let param_env = tcx.param_env(item_def_id);
449 for field in fields {
450 let field_ty = field.ty(tcx, substs);
451 // We are currently checking the type this field came from, so it must be local.
452 let field_span = tcx.hir().span_if_local(field.did).unwrap();
453 if field_ty.needs_drop(tcx, param_env) {
454 struct_span_err!(
455 tcx.sess,
456 field_span,
457 E0740,
458 "unions may not contain fields that need dropping"
459 )
460 .span_note(field_span, "`std::mem::ManuallyDrop` can be used to wrap the type")
461 .emit();
462 return false;
463 }
464 }
465 } else {
466 span_bug!(span, "unions must be ty::Adt, but got {:?}", item_type.kind());
467 }
468 true
469}
470
29967ef6
XL
471/// Check that a `static` is inhabited.
472fn check_static_inhabited<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId, span: Span) {
473 // Make sure statics are inhabited.
474 // Other parts of the compiler assume that there are no uninhabited places. In principle it
475 // would be enough to check this for `extern` statics, as statics with an initializer will
476 // have UB during initialization if they are uninhabited, but there also seems to be no good
477 // reason to allow any statics to be uninhabited.
478 let ty = tcx.type_of(def_id);
479 let layout = match tcx.layout_of(ParamEnv::reveal_all().and(ty)) {
480 Ok(l) => l,
481 Err(_) => {
482 // Generic statics are rejected, but we still reach this case.
483 tcx.sess.delay_span_bug(span, "generic static must be rejected");
484 return;
485 }
486 };
487 if layout.abi.is_uninhabited() {
488 tcx.struct_span_lint_hir(
489 UNINHABITED_STATIC,
490 tcx.hir().local_def_id_to_hir_id(def_id),
491 span,
492 |lint| {
493 lint.build("static of uninhabited type")
494 .note("uninhabited statics cannot be initialized, and any access would be an immediate error")
495 .emit();
496 },
497 );
498 }
499}
500
1b1a35ee
XL
501/// Checks that an opaque type does not contain cycles and does not use `Self` or `T::Foo`
502/// projections that would result in "inheriting lifetimes".
503pub(super) fn check_opaque<'tcx>(
504 tcx: TyCtxt<'tcx>,
505 def_id: LocalDefId,
506 substs: SubstsRef<'tcx>,
507 span: Span,
508 origin: &hir::OpaqueTyOrigin,
509) {
510 check_opaque_for_inheriting_lifetimes(tcx, def_id, span);
29967ef6
XL
511 if tcx.type_of(def_id).references_error() {
512 return;
513 }
514 if check_opaque_for_cycles(tcx, def_id, substs, span, origin).is_err() {
515 return;
516 }
517 check_opaque_meets_bounds(tcx, def_id, substs, span, origin);
1b1a35ee
XL
518}
519
520/// Checks that an opaque type does not use `Self` or `T::Foo` projections that would result
521/// in "inheriting lifetimes".
6a06907d 522#[instrument(level = "debug", skip(tcx, span))]
1b1a35ee
XL
523pub(super) fn check_opaque_for_inheriting_lifetimes(
524 tcx: TyCtxt<'tcx>,
525 def_id: LocalDefId,
526 span: Span,
527) {
528 let item = tcx.hir().expect_item(tcx.hir().local_def_id_to_hir_id(def_id));
fc512014 529 debug!(?item, ?span);
1b1a35ee 530
fc512014
XL
531 struct FoundParentLifetime;
532 struct FindParentLifetimeVisitor<'tcx>(&'tcx ty::Generics);
533 impl<'tcx> ty::fold::TypeVisitor<'tcx> for FindParentLifetimeVisitor<'tcx> {
534 type BreakTy = FoundParentLifetime;
1b1a35ee 535
fc512014
XL
536 fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow<Self::BreakTy> {
537 debug!("FindParentLifetimeVisitor: r={:?}", r);
1b1a35ee 538 if let RegionKind::ReEarlyBound(ty::EarlyBoundRegion { index, .. }) = r {
fc512014
XL
539 if *index < self.0.parent_count as u32 {
540 return ControlFlow::Break(FoundParentLifetime);
29967ef6
XL
541 } else {
542 return ControlFlow::CONTINUE;
543 }
1b1a35ee
XL
544 }
545
546 r.super_visit_with(self)
547 }
548
fc512014 549 fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
1b1a35ee 550 if let ty::ConstKind::Unevaluated(..) = c.val {
fc512014 551 // FIXME(#72219) We currently don't detect lifetimes within substs
1b1a35ee
XL
552 // which would violate this check. Even though the particular substitution is not used
553 // within the const, this should still be fixed.
29967ef6 554 return ControlFlow::CONTINUE;
1b1a35ee
XL
555 }
556 c.super_visit_with(self)
557 }
558 }
559
fc512014
XL
560 struct ProhibitOpaqueVisitor<'tcx> {
561 opaque_identity_ty: Ty<'tcx>,
562 generics: &'tcx ty::Generics,
6a06907d
XL
563 tcx: TyCtxt<'tcx>,
564 selftys: Vec<(Span, Option<String>)>,
fc512014
XL
565 }
566
567 impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
568 type BreakTy = Ty<'tcx>;
569
570 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
571 debug!("check_opaque_for_inheriting_lifetimes: (visit_ty) t={:?}", t);
572 if t == self.opaque_identity_ty {
573 ControlFlow::CONTINUE
574 } else {
575 t.super_visit_with(&mut FindParentLifetimeVisitor(self.generics))
576 .map_break(|FoundParentLifetime| t)
577 }
578 }
579 }
580
6a06907d
XL
581 impl Visitor<'tcx> for ProhibitOpaqueVisitor<'tcx> {
582 type Map = rustc_middle::hir::map::Map<'tcx>;
583
584 fn nested_visit_map(&mut self) -> hir::intravisit::NestedVisitorMap<Self::Map> {
585 hir::intravisit::NestedVisitorMap::OnlyBodies(self.tcx.hir())
586 }
587
588 fn visit_ty(&mut self, arg: &'tcx hir::Ty<'tcx>) {
589 match arg.kind {
590 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => match &path.segments {
591 [PathSegment { res: Some(Res::SelfTy(_, impl_ref)), .. }] => {
592 let impl_ty_name =
593 impl_ref.map(|(def_id, _)| self.tcx.def_path_str(def_id));
594 self.selftys.push((path.span, impl_ty_name));
595 }
596 _ => {}
597 },
598 _ => {}
599 }
600 hir::intravisit::walk_ty(self, arg);
601 }
602 }
603
1b1a35ee
XL
604 if let ItemKind::OpaqueTy(hir::OpaqueTy {
605 origin: hir::OpaqueTyOrigin::AsyncFn | hir::OpaqueTyOrigin::FnReturn,
606 ..
607 }) = item.kind
608 {
609 let mut visitor = ProhibitOpaqueVisitor {
610 opaque_identity_ty: tcx.mk_opaque(
611 def_id.to_def_id(),
612 InternalSubsts::identity_for_item(tcx, def_id.to_def_id()),
613 ),
614 generics: tcx.generics_of(def_id),
6a06907d
XL
615 tcx,
616 selftys: vec![],
1b1a35ee
XL
617 };
618 let prohibit_opaque = tcx
29967ef6 619 .explicit_item_bounds(def_id)
1b1a35ee 620 .iter()
fc512014 621 .try_for_each(|(predicate, _)| predicate.visit_with(&mut visitor));
1b1a35ee 622 debug!(
6a06907d
XL
623 "check_opaque_for_inheriting_lifetimes: prohibit_opaque={:?}, visitor.opaque_identity_ty={:?}, visitor.generics={:?}",
624 prohibit_opaque, visitor.opaque_identity_ty, visitor.generics
1b1a35ee
XL
625 );
626
fc512014 627 if let Some(ty) = prohibit_opaque.break_value() {
6a06907d 628 visitor.visit_item(&item);
1b1a35ee 629 let is_async = match item.kind {
5869c6ff
XL
630 ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
631 matches!(origin, hir::OpaqueTyOrigin::AsyncFn)
632 }
1b1a35ee
XL
633 _ => unreachable!(),
634 };
635
636 let mut err = struct_span_err!(
637 tcx.sess,
638 span,
639 E0760,
640 "`{}` return type cannot contain a projection or `Self` that references lifetimes from \
29967ef6 641 a parent scope",
1b1a35ee
XL
642 if is_async { "async fn" } else { "impl Trait" },
643 );
644
6a06907d
XL
645 for (span, name) in visitor.selftys {
646 err.span_suggestion(
647 span,
648 "consider spelling out the type instead",
649 name.unwrap_or_else(|| format!("{:?}", ty)),
650 Applicability::MaybeIncorrect,
651 );
1b1a35ee
XL
652 }
653 err.emit();
654 }
655 }
656}
657
658/// Checks that an opaque type does not contain cycles.
659pub(super) fn check_opaque_for_cycles<'tcx>(
660 tcx: TyCtxt<'tcx>,
661 def_id: LocalDefId,
662 substs: SubstsRef<'tcx>,
663 span: Span,
664 origin: &hir::OpaqueTyOrigin,
29967ef6 665) -> Result<(), ErrorReported> {
136023e0 666 if tcx.try_expand_impl_trait_type(def_id.to_def_id(), substs).is_err() {
1b1a35ee
XL
667 match origin {
668 hir::OpaqueTyOrigin::AsyncFn => async_opaque_type_cycle_error(tcx, span),
1b1a35ee
XL
669 _ => opaque_type_cycle_error(tcx, def_id, span),
670 }
29967ef6
XL
671 Err(ErrorReported)
672 } else {
673 Ok(())
1b1a35ee
XL
674 }
675}
676
29967ef6
XL
677/// Check that the concrete type behind `impl Trait` actually implements `Trait`.
678///
679/// This is mostly checked at the places that specify the opaque type, but we
680/// check those cases in the `param_env` of that function, which may have
681/// bounds not on this opaque type:
682///
683/// type X<T> = impl Clone
684/// fn f<T: Clone>(t: T) -> X<T> {
685/// t
686/// }
687///
688/// Without this check the above code is incorrectly accepted: we would ICE if
689/// some tried, for example, to clone an `Option<X<&mut ()>>`.
690fn check_opaque_meets_bounds<'tcx>(
691 tcx: TyCtxt<'tcx>,
692 def_id: LocalDefId,
693 substs: SubstsRef<'tcx>,
694 span: Span,
695 origin: &hir::OpaqueTyOrigin,
696) {
697 match origin {
698 // Checked when type checking the function containing them.
699 hir::OpaqueTyOrigin::FnReturn | hir::OpaqueTyOrigin::AsyncFn => return,
700 // Can have different predicates to their defining use
136023e0 701 hir::OpaqueTyOrigin::TyAlias => {}
29967ef6
XL
702 }
703
704 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
705 let param_env = tcx.param_env(def_id);
706
707 tcx.infer_ctxt().enter(move |infcx| {
708 let inh = Inherited::new(infcx, def_id);
709 let infcx = &inh.infcx;
710 let opaque_ty = tcx.mk_opaque(def_id.to_def_id(), substs);
711
712 let misc_cause = traits::ObligationCause::misc(span, hir_id);
713
714 let (_, opaque_type_map) = inh.register_infer_ok_obligations(
fc512014 715 infcx.instantiate_opaque_types(def_id, hir_id, param_env, opaque_ty, span),
29967ef6
XL
716 );
717
17df50a5 718 for (OpaqueTypeKey { def_id, substs }, opaque_defn) in opaque_type_map {
29967ef6
XL
719 match infcx
720 .at(&misc_cause, param_env)
17df50a5 721 .eq(opaque_defn.concrete_ty, tcx.type_of(def_id).subst(tcx, substs))
29967ef6
XL
722 {
723 Ok(infer_ok) => inh.register_infer_ok_obligations(infer_ok),
724 Err(ty_err) => tcx.sess.delay_span_bug(
725 opaque_defn.definition_span,
726 &format!(
727 "could not unify `{}` with revealed type:\n{}",
728 opaque_defn.concrete_ty, ty_err,
729 ),
730 ),
731 }
732 }
733
734 // Check that all obligations are satisfied by the implementation's
735 // version.
736 if let Err(ref errors) = inh.fulfillment_cx.borrow_mut().select_all_or_error(&infcx) {
737 infcx.report_fulfillment_errors(errors, None, false);
738 }
739
740 // Finally, resolve all regions. This catches wily misuses of
741 // lifetime parameters.
742 let fcx = FnCtxt::new(&inh, param_env, hir_id);
743 fcx.regionck_item(hir_id, span, &[]);
744 });
745}
746
1b1a35ee
XL
747pub fn check_item_type<'tcx>(tcx: TyCtxt<'tcx>, it: &'tcx hir::Item<'tcx>) {
748 debug!(
6a06907d
XL
749 "check_item_type(it.def_id={:?}, it.name={})",
750 it.def_id,
751 tcx.def_path_str(it.def_id.to_def_id())
1b1a35ee
XL
752 );
753 let _indenter = indenter();
754 match it.kind {
755 // Consts can play a role in type-checking, so they are included here.
756 hir::ItemKind::Static(..) => {
6a06907d
XL
757 tcx.ensure().typeck(it.def_id);
758 maybe_check_static_with_link_section(tcx, it.def_id, it.span);
759 check_static_inhabited(tcx, it.def_id, it.span);
1b1a35ee
XL
760 }
761 hir::ItemKind::Const(..) => {
6a06907d 762 tcx.ensure().typeck(it.def_id);
1b1a35ee
XL
763 }
764 hir::ItemKind::Enum(ref enum_definition, _) => {
6a06907d 765 check_enum(tcx, it.span, &enum_definition.variants, it.def_id);
1b1a35ee
XL
766 }
767 hir::ItemKind::Fn(..) => {} // entirely within check_item_body
5869c6ff 768 hir::ItemKind::Impl(ref impl_) => {
6a06907d
XL
769 debug!("ItemKind::Impl {} with id {:?}", it.ident, it.def_id);
770 if let Some(impl_trait_ref) = tcx.impl_trait_ref(it.def_id) {
5869c6ff
XL
771 check_impl_items_against_trait(
772 tcx,
773 it.span,
6a06907d 774 it.def_id,
5869c6ff
XL
775 impl_trait_ref,
776 &impl_.items,
777 );
1b1a35ee
XL
778 let trait_def_id = impl_trait_ref.def_id;
779 check_on_unimplemented(tcx, trait_def_id, it);
780 }
781 }
782 hir::ItemKind::Trait(_, _, _, _, ref items) => {
6a06907d 783 check_on_unimplemented(tcx, it.def_id.to_def_id(), it);
1b1a35ee
XL
784
785 for item in items.iter() {
786 let item = tcx.hir().trait_item(item.id);
29967ef6
XL
787 match item.kind {
788 hir::TraitItemKind::Fn(ref sig, _) => {
789 let abi = sig.header.abi;
790 fn_maybe_err(tcx, item.ident.span, abi);
791 }
792 hir::TraitItemKind::Type(.., Some(_default)) => {
6a06907d 793 let assoc_item = tcx.associated_item(item.def_id);
29967ef6 794 let trait_substs =
6a06907d 795 InternalSubsts::identity_for_item(tcx, it.def_id.to_def_id());
29967ef6
XL
796 let _: Result<_, rustc_errors::ErrorReported> = check_type_bounds(
797 tcx,
798 assoc_item,
799 assoc_item,
800 item.span,
6a06907d 801 ty::TraitRef { def_id: it.def_id.to_def_id(), substs: trait_substs },
29967ef6
XL
802 );
803 }
804 _ => {}
1b1a35ee
XL
805 }
806 }
807 }
808 hir::ItemKind::Struct(..) => {
6a06907d 809 check_struct(tcx, it.def_id, it.span);
1b1a35ee
XL
810 }
811 hir::ItemKind::Union(..) => {
6a06907d 812 check_union(tcx, it.def_id, it.span);
1b1a35ee
XL
813 }
814 hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin, .. }) => {
815 // HACK(jynelson): trying to infer the type of `impl trait` breaks documenting
816 // `async-std` (and `pub async fn` in general).
817 // Since rustdoc doesn't care about the concrete type behind `impl Trait`, just don't look at it!
818 // See https://github.com/rust-lang/rust/issues/75100
819 if !tcx.sess.opts.actually_rustdoc {
6a06907d
XL
820 let substs = InternalSubsts::identity_for_item(tcx, it.def_id.to_def_id());
821 check_opaque(tcx, it.def_id, substs, it.span, &origin);
1b1a35ee
XL
822 }
823 }
824 hir::ItemKind::TyAlias(..) => {
6a06907d
XL
825 let pty_ty = tcx.type_of(it.def_id);
826 let generics = tcx.generics_of(it.def_id);
1b1a35ee
XL
827 check_type_params_are_used(tcx, &generics, pty_ty);
828 }
fc512014 829 hir::ItemKind::ForeignMod { abi, items } => {
136023e0 830 check_abi(tcx, it.hir_id(), it.span, abi);
1b1a35ee 831
fc512014
XL
832 if abi == Abi::RustIntrinsic {
833 for item in items {
834 let item = tcx.hir().foreign_item(item.id);
1b1a35ee
XL
835 intrinsic::check_intrinsic_type(tcx, item);
836 }
fc512014
XL
837 } else if abi == Abi::PlatformIntrinsic {
838 for item in items {
839 let item = tcx.hir().foreign_item(item.id);
1b1a35ee
XL
840 intrinsic::check_platform_intrinsic_type(tcx, item);
841 }
842 } else {
fc512014 843 for item in items {
6a06907d 844 let def_id = item.id.def_id;
29967ef6 845 let generics = tcx.generics_of(def_id);
1b1a35ee
XL
846 let own_counts = generics.own_counts();
847 if generics.params.len() - own_counts.lifetimes != 0 {
848 let (kinds, kinds_pl, egs) = match (own_counts.types, own_counts.consts) {
849 (_, 0) => ("type", "types", Some("u32")),
850 // We don't specify an example value, because we can't generate
851 // a valid value for any type.
852 (0, _) => ("const", "consts", None),
853 _ => ("type or const", "types or consts", None),
854 };
855 struct_span_err!(
856 tcx.sess,
857 item.span,
858 E0044,
859 "foreign items may not have {} parameters",
860 kinds,
861 )
862 .span_label(item.span, &format!("can't have {} parameters", kinds))
863 .help(
864 // FIXME: once we start storing spans for type arguments, turn this
865 // into a suggestion.
866 &format!(
867 "replace the {} parameters with concrete {}{}",
868 kinds,
869 kinds_pl,
870 egs.map(|egs| format!(" like `{}`", egs)).unwrap_or_default(),
871 ),
872 )
873 .emit();
874 }
875
fc512014 876 let item = tcx.hir().foreign_item(item.id);
29967ef6
XL
877 match item.kind {
878 hir::ForeignItemKind::Fn(ref fn_decl, _, _) => {
fc512014 879 require_c_abi_if_c_variadic(tcx, fn_decl, abi, item.span);
29967ef6
XL
880 }
881 hir::ForeignItemKind::Static(..) => {
882 check_static_inhabited(tcx, def_id, item.span);
883 }
884 _ => {}
1b1a35ee
XL
885 }
886 }
887 }
888 }
889 _ => { /* nothing to do */ }
890 }
891}
892
893pub(super) fn check_on_unimplemented(tcx: TyCtxt<'_>, trait_def_id: DefId, item: &hir::Item<'_>) {
1b1a35ee 894 // an error would be reported if this fails.
6a06907d 895 let _ = traits::OnUnimplementedDirective::of_item(tcx, trait_def_id, item.def_id.to_def_id());
1b1a35ee
XL
896}
897
898pub(super) fn check_specialization_validity<'tcx>(
899 tcx: TyCtxt<'tcx>,
900 trait_def: &ty::TraitDef,
901 trait_item: &ty::AssocItem,
902 impl_id: DefId,
903 impl_item: &hir::ImplItem<'_>,
904) {
905 let kind = match impl_item.kind {
906 hir::ImplItemKind::Const(..) => ty::AssocKind::Const,
907 hir::ImplItemKind::Fn(..) => ty::AssocKind::Fn,
908 hir::ImplItemKind::TyAlias(_) => ty::AssocKind::Type,
909 };
910
911 let ancestors = match trait_def.ancestors(tcx, impl_id) {
912 Ok(ancestors) => ancestors,
913 Err(_) => return,
914 };
5869c6ff
XL
915 let mut ancestor_impls = ancestors.skip(1).filter_map(|parent| {
916 if parent.is_from_trait() {
917 None
918 } else {
919 Some((parent, parent.item(tcx, trait_item.ident, kind, trait_def.def_id)))
920 }
921 });
1b1a35ee
XL
922
923 let opt_result = ancestor_impls.find_map(|(parent_impl, parent_item)| {
924 match parent_item {
925 // Parent impl exists, and contains the parent item we're trying to specialize, but
926 // doesn't mark it `default`.
927 Some(parent_item) if traits::impl_item_is_final(tcx, &parent_item) => {
928 Some(Err(parent_impl.def_id()))
929 }
930
931 // Parent impl contains item and makes it specializable.
932 Some(_) => Some(Ok(())),
933
934 // Parent impl doesn't mention the item. This means it's inherited from the
935 // grandparent. In that case, if parent is a `default impl`, inherited items use the
936 // "defaultness" from the grandparent, else they are final.
937 None => {
938 if tcx.impl_defaultness(parent_impl.def_id()).is_default() {
939 None
940 } else {
941 Some(Err(parent_impl.def_id()))
942 }
943 }
944 }
945 });
946
947 // If `opt_result` is `None`, we have only encountered `default impl`s that don't contain the
948 // item. This is allowed, the item isn't actually getting specialized here.
949 let result = opt_result.unwrap_or(Ok(()));
950
951 if let Err(parent_impl) = result {
952 report_forbidden_specialization(tcx, impl_item, parent_impl);
953 }
954}
955
956pub(super) fn check_impl_items_against_trait<'tcx>(
957 tcx: TyCtxt<'tcx>,
958 full_impl_span: Span,
959 impl_id: LocalDefId,
960 impl_trait_ref: ty::TraitRef<'tcx>,
961 impl_item_refs: &[hir::ImplItemRef<'_>],
962) {
1b1a35ee
XL
963 // If the trait reference itself is erroneous (so the compilation is going
964 // to fail), skip checking the items here -- the `impl_item` table in `tcx`
965 // isn't populated for such impls.
966 if impl_trait_ref.references_error() {
967 return;
968 }
969
970 // Negative impls are not expected to have any items
971 match tcx.impl_polarity(impl_id) {
972 ty::ImplPolarity::Reservation | ty::ImplPolarity::Positive => {}
973 ty::ImplPolarity::Negative => {
974 if let [first_item_ref, ..] = impl_item_refs {
975 let first_item_span = tcx.hir().impl_item(first_item_ref.id).span;
976 struct_span_err!(
977 tcx.sess,
978 first_item_span,
979 E0749,
980 "negative impls cannot have any items"
981 )
982 .emit();
983 }
984 return;
985 }
986 }
987
988 // Locate trait definition and items
989 let trait_def = tcx.trait_def(impl_trait_ref.def_id);
5869c6ff
XL
990 let impl_items = impl_item_refs.iter().map(|iiref| tcx.hir().impl_item(iiref.id));
991 let associated_items = tcx.associated_items(impl_trait_ref.def_id);
1b1a35ee
XL
992
993 // Check existing impl methods to see if they are both present in trait
994 // and compatible with trait signature
5869c6ff 995 for impl_item in impl_items {
6a06907d 996 let ty_impl_item = tcx.associated_item(impl_item.def_id);
5869c6ff
XL
997
998 let mut items =
999 associated_items.filter_by_name(tcx, ty_impl_item.ident, impl_trait_ref.def_id);
1000
1001 let (compatible_kind, ty_trait_item) = if let Some(ty_trait_item) = items.next() {
1002 let is_compatible = |ty: &&ty::AssocItem| match (ty.kind, &impl_item.kind) {
1003 (ty::AssocKind::Const, hir::ImplItemKind::Const(..)) => true,
1004 (ty::AssocKind::Fn, hir::ImplItemKind::Fn(..)) => true,
1005 (ty::AssocKind::Type, hir::ImplItemKind::TyAlias(..)) => true,
1006 _ => false,
1007 };
1008
1009 // If we don't have a compatible item, we'll use the first one whose name matches
1010 // to report an error.
1011 let mut compatible_kind = is_compatible(&ty_trait_item);
1012 let mut trait_item = ty_trait_item;
1013
1014 if !compatible_kind {
1015 if let Some(ty_trait_item) = items.find(is_compatible) {
1016 compatible_kind = true;
1017 trait_item = ty_trait_item;
1018 }
1019 }
1020
1021 (compatible_kind, trait_item)
1022 } else {
1023 continue;
1024 };
1025
1026 if compatible_kind {
1b1a35ee
XL
1027 match impl_item.kind {
1028 hir::ImplItemKind::Const(..) => {
1029 // Find associated const definition.
5869c6ff
XL
1030 compare_const_impl(
1031 tcx,
1032 &ty_impl_item,
1033 impl_item.span,
1034 &ty_trait_item,
1035 impl_trait_ref,
1036 );
1b1a35ee
XL
1037 }
1038 hir::ImplItemKind::Fn(..) => {
1039 let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
5869c6ff
XL
1040 compare_impl_method(
1041 tcx,
1042 &ty_impl_item,
1043 impl_item.span,
1044 &ty_trait_item,
1045 impl_trait_ref,
1046 opt_trait_span,
1047 );
1b1a35ee
XL
1048 }
1049 hir::ImplItemKind::TyAlias(_) => {
1050 let opt_trait_span = tcx.hir().span_if_local(ty_trait_item.def_id);
5869c6ff
XL
1051 compare_ty_impl(
1052 tcx,
1053 &ty_impl_item,
1054 impl_item.span,
1055 &ty_trait_item,
1056 impl_trait_ref,
1057 opt_trait_span,
1058 );
1b1a35ee
XL
1059 }
1060 }
1061
1062 check_specialization_validity(
1063 tcx,
1064 trait_def,
1065 &ty_trait_item,
1066 impl_id.to_def_id(),
1067 impl_item,
1068 );
5869c6ff
XL
1069 } else {
1070 report_mismatch_error(
1071 tcx,
1072 ty_trait_item.def_id,
1073 impl_trait_ref,
1074 impl_item,
1075 &ty_impl_item,
1076 );
1b1a35ee
XL
1077 }
1078 }
1079
1b1a35ee 1080 if let Ok(ancestors) = trait_def.ancestors(tcx, impl_id.to_def_id()) {
5869c6ff
XL
1081 let impl_span = tcx.sess.source_map().guess_head_span(full_impl_span);
1082
1083 // Check for missing items from trait
1084 let mut missing_items = Vec::new();
1b1a35ee
XL
1085 for trait_item in tcx.associated_items(impl_trait_ref.def_id).in_definition_order() {
1086 let is_implemented = ancestors
1087 .leaf_def(tcx, trait_item.ident, trait_item.kind)
1088 .map(|node_item| !node_item.defining_node.is_from_trait())
1089 .unwrap_or(false);
1090
1091 if !is_implemented && tcx.impl_defaultness(impl_id).is_final() {
1092 if !trait_item.defaultness.has_value() {
1093 missing_items.push(*trait_item);
1094 }
1095 }
1096 }
5869c6ff
XL
1097
1098 if !missing_items.is_empty() {
1099 missing_items_err(tcx, impl_span, &missing_items, full_impl_span);
1100 }
1b1a35ee 1101 }
5869c6ff 1102}
1b1a35ee 1103
5869c6ff
XL
1104#[inline(never)]
1105#[cold]
1106fn report_mismatch_error<'tcx>(
1107 tcx: TyCtxt<'tcx>,
1108 trait_item_def_id: DefId,
1109 impl_trait_ref: ty::TraitRef<'tcx>,
1110 impl_item: &hir::ImplItem<'_>,
1111 ty_impl_item: &ty::AssocItem,
1112) {
1113 let mut err = match impl_item.kind {
1114 hir::ImplItemKind::Const(..) => {
1115 // Find associated const definition.
1116 struct_span_err!(
1117 tcx.sess,
1118 impl_item.span,
1119 E0323,
1120 "item `{}` is an associated const, which doesn't match its trait `{}`",
1121 ty_impl_item.ident,
1122 impl_trait_ref.print_only_trait_path()
1123 )
1124 }
1125
1126 hir::ImplItemKind::Fn(..) => {
1127 struct_span_err!(
1128 tcx.sess,
1129 impl_item.span,
1130 E0324,
1131 "item `{}` is an associated method, which doesn't match its trait `{}`",
1132 ty_impl_item.ident,
1133 impl_trait_ref.print_only_trait_path()
1134 )
1135 }
1136
1137 hir::ImplItemKind::TyAlias(_) => {
1138 struct_span_err!(
1139 tcx.sess,
1140 impl_item.span,
1141 E0325,
1142 "item `{}` is an associated type, which doesn't match its trait `{}`",
1143 ty_impl_item.ident,
1144 impl_trait_ref.print_only_trait_path()
1145 )
1146 }
1147 };
1148
1149 err.span_label(impl_item.span, "does not match trait");
1150 if let Some(trait_span) = tcx.hir().span_if_local(trait_item_def_id) {
1151 err.span_label(trait_span, "item in trait");
1b1a35ee 1152 }
5869c6ff 1153 err.emit();
1b1a35ee
XL
1154}
1155
1156/// Checks whether a type can be represented in memory. In particular, it
1157/// identifies types that contain themselves without indirection through a
1158/// pointer, which would mean their size is unbounded.
1159pub(super) fn check_representable(tcx: TyCtxt<'_>, sp: Span, item_def_id: LocalDefId) -> bool {
1160 let rty = tcx.type_of(item_def_id);
1161
1162 // Check that it is possible to represent this type. This call identifies
1163 // (1) types that contain themselves and (2) types that contain a different
1164 // recursive type. It is only necessary to throw an error on those that
1165 // contain themselves. For case 2, there must be an inner type that will be
1166 // caught by case 1.
cdc7bbd5 1167 match representability::ty_is_representable(tcx, rty, sp) {
1b1a35ee
XL
1168 Representability::SelfRecursive(spans) => {
1169 recursive_type_with_infinite_size_error(tcx, item_def_id.to_def_id(), spans);
1170 return false;
1171 }
1172 Representability::Representable | Representability::ContainsRecursive => (),
1173 }
1174 true
1175}
1176
1177pub fn check_simd(tcx: TyCtxt<'_>, sp: Span, def_id: LocalDefId) {
1178 let t = tcx.type_of(def_id);
1179 if let ty::Adt(def, substs) = t.kind() {
1180 if def.is_struct() {
1181 let fields = &def.non_enum_variant().fields;
1182 if fields.is_empty() {
1183 struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
1184 return;
1185 }
1186 let e = fields[0].ty(tcx, substs);
1187 if !fields.iter().all(|f| f.ty(tcx, substs) == e) {
1188 struct_span_err!(tcx.sess, sp, E0076, "SIMD vector should be homogeneous")
1189 .span_label(sp, "SIMD elements must have the same type")
1190 .emit();
1191 return;
1192 }
6a06907d
XL
1193
1194 let len = if let ty::Array(_ty, c) = e.kind() {
1195 c.try_eval_usize(tcx, tcx.param_env(def.did))
1196 } else {
1197 Some(fields.len() as u64)
1198 };
1199 if let Some(len) = len {
1200 if len == 0 {
1201 struct_span_err!(tcx.sess, sp, E0075, "SIMD vector cannot be empty").emit();
1202 return;
1203 } else if len > MAX_SIMD_LANES {
1204 struct_span_err!(
1205 tcx.sess,
1206 sp,
1207 E0075,
1208 "SIMD vector cannot have more than {} elements",
1209 MAX_SIMD_LANES,
1210 )
1211 .emit();
1212 return;
1213 }
1214 }
1215
17df50a5
XL
1216 // Check that we use types valid for use in the lanes of a SIMD "vector register"
1217 // These are scalar types which directly match a "machine" type
1218 // Yes: Integers, floats, "thin" pointers
1219 // No: char, "fat" pointers, compound types
1b1a35ee 1220 match e.kind() {
17df50a5
XL
1221 ty::Param(_) => (), // pass struct<T>(T, T, T, T) through, let monomorphization catch errors
1222 ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_) => (), // struct(u8, u8, u8, u8) is ok
1223 ty::Array(t, _clen)
1224 if matches!(
1225 t.kind(),
1226 ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::RawPtr(_)
1227 ) =>
1228 { /* struct([f32; 4]) is ok */ }
1b1a35ee
XL
1229 _ => {
1230 struct_span_err!(
1231 tcx.sess,
1232 sp,
1233 E0077,
fc512014
XL
1234 "SIMD vector element type should be a \
1235 primitive scalar (integer/float/pointer) type"
1b1a35ee
XL
1236 )
1237 .emit();
1238 return;
1239 }
1240 }
1241 }
1242 }
1243}
1244
1245pub(super) fn check_packed(tcx: TyCtxt<'_>, sp: Span, def: &ty::AdtDef) {
1246 let repr = def.repr;
1247 if repr.packed() {
1248 for attr in tcx.get_attrs(def.did).iter() {
1249 for r in attr::find_repr_attrs(&tcx.sess, attr) {
1250 if let attr::ReprPacked(pack) = r {
1251 if let Some(repr_pack) = repr.pack {
1252 if pack as u64 != repr_pack.bytes() {
1253 struct_span_err!(
1254 tcx.sess,
1255 sp,
1256 E0634,
1257 "type has conflicting packed representation hints"
1258 )
1259 .emit();
1260 }
1261 }
1262 }
1263 }
1264 }
1265 if repr.align.is_some() {
1266 struct_span_err!(
1267 tcx.sess,
1268 sp,
1269 E0587,
1270 "type has conflicting packed and align representation hints"
1271 )
1272 .emit();
1273 } else {
1274 if let Some(def_spans) = check_packed_inner(tcx, def.did, &mut vec![]) {
1275 let mut err = struct_span_err!(
1276 tcx.sess,
1277 sp,
1278 E0588,
1279 "packed type cannot transitively contain a `#[repr(align)]` type"
1280 );
1281
1282 err.span_note(
1283 tcx.def_span(def_spans[0].0),
1284 &format!(
1285 "`{}` has a `#[repr(align)]` attribute",
1286 tcx.item_name(def_spans[0].0)
1287 ),
1288 );
1289
1290 if def_spans.len() > 2 {
1291 let mut first = true;
1292 for (adt_def, span) in def_spans.iter().skip(1).rev() {
1293 let ident = tcx.item_name(*adt_def);
1294 err.span_note(
1295 *span,
1296 &if first {
1297 format!(
1298 "`{}` contains a field of type `{}`",
1299 tcx.type_of(def.did),
1300 ident
1301 )
1302 } else {
1303 format!("...which contains a field of type `{}`", ident)
1304 },
1305 );
1306 first = false;
1307 }
1308 }
1309
1310 err.emit();
1311 }
1312 }
1313 }
1314}
1315
1316pub(super) fn check_packed_inner(
1317 tcx: TyCtxt<'_>,
1318 def_id: DefId,
1319 stack: &mut Vec<DefId>,
1320) -> Option<Vec<(DefId, Span)>> {
1321 if let ty::Adt(def, substs) = tcx.type_of(def_id).kind() {
1322 if def.is_struct() || def.is_union() {
1323 if def.repr.align.is_some() {
1324 return Some(vec![(def.did, DUMMY_SP)]);
1325 }
1326
1327 stack.push(def_id);
1328 for field in &def.non_enum_variant().fields {
1329 if let ty::Adt(def, _) = field.ty(tcx, substs).kind() {
1330 if !stack.contains(&def.did) {
1331 if let Some(mut defs) = check_packed_inner(tcx, def.did, stack) {
1332 defs.push((def.did, field.ident.span));
1333 return Some(defs);
1334 }
1335 }
1336 }
1337 }
1338 stack.pop();
1339 }
1340 }
1341
1342 None
1343}
1344
1345pub(super) fn check_transparent<'tcx>(tcx: TyCtxt<'tcx>, sp: Span, adt: &'tcx ty::AdtDef) {
1346 if !adt.repr.transparent() {
1347 return;
1348 }
1349 let sp = tcx.sess.source_map().guess_head_span(sp);
1350
1351 if adt.is_union() && !tcx.features().transparent_unions {
1352 feature_err(
1353 &tcx.sess.parse_sess,
1354 sym::transparent_unions,
1355 sp,
1356 "transparent unions are unstable",
1357 )
1358 .emit();
1359 }
1360
1361 if adt.variants.len() != 1 {
1362 bad_variant_count(tcx, adt, sp, adt.did);
1363 if adt.variants.is_empty() {
1364 // Don't bother checking the fields. No variants (and thus no fields) exist.
1365 return;
1366 }
1367 }
1368
1369 // For each field, figure out if it's known to be a ZST and align(1)
1370 let field_infos = adt.all_fields().map(|field| {
1371 let ty = field.ty(tcx, InternalSubsts::identity_for_item(tcx, field.did));
1372 let param_env = tcx.param_env(field.did);
1373 let layout = tcx.layout_of(param_env.and(ty));
1374 // We are currently checking the type this field came from, so it must be local
1375 let span = tcx.hir().span_if_local(field.did).unwrap();
5869c6ff
XL
1376 let zst = layout.map_or(false, |layout| layout.is_zst());
1377 let align1 = layout.map_or(false, |layout| layout.align.abi.bytes() == 1);
1b1a35ee
XL
1378 (span, zst, align1)
1379 });
1380
1381 let non_zst_fields =
1382 field_infos.clone().filter_map(|(span, zst, _align1)| if !zst { Some(span) } else { None });
1383 let non_zst_count = non_zst_fields.clone().count();
136023e0 1384 if non_zst_count >= 2 {
1b1a35ee
XL
1385 bad_non_zero_sized_fields(tcx, adt, non_zst_count, non_zst_fields, sp);
1386 }
1387 for (span, zst, align1) in field_infos {
1388 if zst && !align1 {
1389 struct_span_err!(
1390 tcx.sess,
1391 span,
1392 E0691,
1393 "zero-sized field in transparent {} has alignment larger than 1",
1394 adt.descr(),
1395 )
1396 .span_label(span, "has alignment larger than 1")
1397 .emit();
1398 }
1399 }
1400}
1401
1402#[allow(trivial_numeric_casts)]
6a06907d 1403fn check_enum<'tcx>(
1b1a35ee
XL
1404 tcx: TyCtxt<'tcx>,
1405 sp: Span,
1406 vs: &'tcx [hir::Variant<'tcx>],
6a06907d 1407 def_id: LocalDefId,
1b1a35ee 1408) {
1b1a35ee
XL
1409 let def = tcx.adt_def(def_id);
1410 def.destructor(tcx); // force the destructor to be evaluated
1411
1412 if vs.is_empty() {
1413 let attributes = tcx.get_attrs(def_id.to_def_id());
1414 if let Some(attr) = tcx.sess.find_by_name(&attributes, sym::repr) {
1415 struct_span_err!(
1416 tcx.sess,
1417 attr.span,
1418 E0084,
1419 "unsupported representation for zero-variant enum"
1420 )
1421 .span_label(sp, "zero-variant enum")
1422 .emit();
1423 }
1424 }
1425
1426 let repr_type_ty = def.repr.discr_type().to_ty(tcx);
1427 if repr_type_ty == tcx.types.i128 || repr_type_ty == tcx.types.u128 {
1428 if !tcx.features().repr128 {
1429 feature_err(
1430 &tcx.sess.parse_sess,
1431 sym::repr128,
1432 sp,
1433 "repr with 128-bit type is unstable",
1434 )
1435 .emit();
1436 }
1437 }
1438
1439 for v in vs {
1440 if let Some(ref e) = v.disr_expr {
1441 tcx.ensure().typeck(tcx.hir().local_def_id(e.hir_id));
1442 }
1443 }
1444
1445 if tcx.adt_def(def_id).repr.int.is_none() && tcx.features().arbitrary_enum_discriminant {
5869c6ff 1446 let is_unit = |var: &hir::Variant<'_>| matches!(var.data, hir::VariantData::Unit(..));
1b1a35ee
XL
1447
1448 let has_disr = |var: &hir::Variant<'_>| var.disr_expr.is_some();
1449 let has_non_units = vs.iter().any(|var| !is_unit(var));
1450 let disr_units = vs.iter().any(|var| is_unit(&var) && has_disr(&var));
1451 let disr_non_unit = vs.iter().any(|var| !is_unit(&var) && has_disr(&var));
1452
1453 if disr_non_unit || (disr_units && has_non_units) {
1454 let mut err =
1455 struct_span_err!(tcx.sess, sp, E0732, "`#[repr(inttype)]` must be specified");
1456 err.emit();
1457 }
1458 }
1459
1460 let mut disr_vals: Vec<Discr<'tcx>> = Vec::with_capacity(vs.len());
cdc7bbd5 1461 for ((_, discr), v) in iter::zip(def.discriminants(tcx), vs) {
1b1a35ee
XL
1462 // Check for duplicate discriminant values
1463 if let Some(i) = disr_vals.iter().position(|&x| x.val == discr.val) {
1464 let variant_did = def.variants[VariantIdx::new(i)].def_id;
1465 let variant_i_hir_id = tcx.hir().local_def_id_to_hir_id(variant_did.expect_local());
1466 let variant_i = tcx.hir().expect_variant(variant_i_hir_id);
1467 let i_span = match variant_i.disr_expr {
1468 Some(ref expr) => tcx.hir().span(expr.hir_id),
1469 None => tcx.hir().span(variant_i_hir_id),
1470 };
1471 let span = match v.disr_expr {
1472 Some(ref expr) => tcx.hir().span(expr.hir_id),
1473 None => v.span,
1474 };
1475 struct_span_err!(
1476 tcx.sess,
1477 span,
1478 E0081,
1479 "discriminant value `{}` already exists",
1480 disr_vals[i]
1481 )
1482 .span_label(i_span, format!("first use of `{}`", disr_vals[i]))
1483 .span_label(span, format!("enum already has `{}`", disr_vals[i]))
1484 .emit();
1485 }
1486 disr_vals.push(discr);
1487 }
1488
1489 check_representable(tcx, sp, def_id);
1490 check_transparent(tcx, sp, def);
1491}
1492
1493pub(super) fn check_type_params_are_used<'tcx>(
1494 tcx: TyCtxt<'tcx>,
1495 generics: &ty::Generics,
1496 ty: Ty<'tcx>,
1497) {
1498 debug!("check_type_params_are_used(generics={:?}, ty={:?})", generics, ty);
1499
1500 assert_eq!(generics.parent, None);
1501
1502 if generics.own_counts().types == 0 {
1503 return;
1504 }
1505
1506 let mut params_used = BitSet::new_empty(generics.params.len());
1507
1508 if ty.references_error() {
1509 // If there is already another error, do not emit
1510 // an error for not using a type parameter.
1511 assert!(tcx.sess.has_errors());
1512 return;
1513 }
1514
1515 for leaf in ty.walk() {
1516 if let GenericArgKind::Type(leaf_ty) = leaf.unpack() {
1517 if let ty::Param(param) = leaf_ty.kind() {
1518 debug!("found use of ty param {:?}", param);
1519 params_used.insert(param.index);
1520 }
1521 }
1522 }
1523
1524 for param in &generics.params {
1525 if !params_used.contains(param.index) {
1526 if let ty::GenericParamDefKind::Type { .. } = param.kind {
1527 let span = tcx.def_span(param.def_id);
1528 struct_span_err!(
1529 tcx.sess,
1530 span,
1531 E0091,
1532 "type parameter `{}` is unused",
1533 param.name,
1534 )
1535 .span_label(span, "unused type parameter")
1536 .emit();
1537 }
1538 }
1539 }
1540}
1541
1542pub(super) fn check_mod_item_types(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
1543 tcx.hir().visit_item_likes_in_module(module_def_id, &mut CheckItemTypesVisitor { tcx });
1544}
1545
1546pub(super) fn check_item_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1547 wfcheck::check_item_well_formed(tcx, def_id);
1548}
1549
1550pub(super) fn check_trait_item_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1551 wfcheck::check_trait_item(tcx, def_id);
1552}
1553
1554pub(super) fn check_impl_item_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) {
1555 wfcheck::check_impl_item(tcx, def_id);
1556}
1557
1558fn async_opaque_type_cycle_error(tcx: TyCtxt<'tcx>, span: Span) {
1559 struct_span_err!(tcx.sess, span, E0733, "recursion in an `async fn` requires boxing")
1560 .span_label(span, "recursive `async fn`")
1561 .note("a recursive `async fn` must be rewritten to return a boxed `dyn Future`")
6a06907d
XL
1562 .note(
1563 "consider using the `async_recursion` crate: https://crates.io/crates/async_recursion",
1564 )
1b1a35ee
XL
1565 .emit();
1566}
1567
1568/// Emit an error for recursive opaque types.
1569///
1570/// If this is a return `impl Trait`, find the item's return expressions and point at them. For
1571/// direct recursion this is enough, but for indirect recursion also point at the last intermediary
1572/// `impl Trait`.
1573///
1574/// If all the return expressions evaluate to `!`, then we explain that the error will go away
1575/// after changing it. This can happen when a user uses `panic!()` or similar as a placeholder.
1576fn opaque_type_cycle_error(tcx: TyCtxt<'tcx>, def_id: LocalDefId, span: Span) {
1577 let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
1578
1579 let mut label = false;
1580 if let Some((hir_id, visitor)) = get_owner_return_paths(tcx, def_id) {
1581 let typeck_results = tcx.typeck(tcx.hir().local_def_id(hir_id));
1582 if visitor
1583 .returns
1584 .iter()
1585 .filter_map(|expr| typeck_results.node_type_opt(expr.hir_id))
1586 .all(|ty| matches!(ty.kind(), ty::Never))
1587 {
1588 let spans = visitor
1589 .returns
1590 .iter()
1591 .filter(|expr| typeck_results.node_type_opt(expr.hir_id).is_some())
1592 .map(|expr| expr.span)
1593 .collect::<Vec<Span>>();
1594 let span_len = spans.len();
1595 if span_len == 1 {
1596 err.span_label(spans[0], "this returned value is of `!` type");
1597 } else {
1598 let mut multispan: MultiSpan = spans.clone().into();
1599 for span in spans {
1600 multispan
1601 .push_span_label(span, "this returned value is of `!` type".to_string());
1602 }
1603 err.span_note(multispan, "these returned values have a concrete \"never\" type");
1604 }
1605 err.help("this error will resolve once the item's body returns a concrete type");
1606 } else {
1607 let mut seen = FxHashSet::default();
1608 seen.insert(span);
1609 err.span_label(span, "recursive opaque type");
1610 label = true;
1611 for (sp, ty) in visitor
1612 .returns
1613 .iter()
1614 .filter_map(|e| typeck_results.node_type_opt(e.hir_id).map(|t| (e.span, t)))
1615 .filter(|(_, ty)| !matches!(ty.kind(), ty::Never))
1616 {
1617 struct VisitTypes(Vec<DefId>);
1618 impl<'tcx> ty::fold::TypeVisitor<'tcx> for VisitTypes {
fc512014 1619 fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
1b1a35ee
XL
1620 match *t.kind() {
1621 ty::Opaque(def, _) => {
1622 self.0.push(def);
29967ef6 1623 ControlFlow::CONTINUE
1b1a35ee
XL
1624 }
1625 _ => t.super_visit_with(self),
1626 }
1627 }
1628 }
1629 let mut visitor = VisitTypes(vec![]);
1630 ty.visit_with(&mut visitor);
1631 for def_id in visitor.0 {
1632 let ty_span = tcx.def_span(def_id);
1633 if !seen.contains(&ty_span) {
1634 err.span_label(ty_span, &format!("returning this opaque type `{}`", ty));
1635 seen.insert(ty_span);
1636 }
1637 err.span_label(sp, &format!("returning here with type `{}`", ty));
1638 }
1639 }
1640 }
1641 }
1642 if !label {
1643 err.span_label(span, "cannot resolve opaque type");
1644 }
1645 err.emit();
1646}