]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_typeck/src/check/mod.rs
New upstream version 1.53.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / check / mod.rs
CommitLineData
1b1a35ee
XL
1/*!
2
3# typeck: check phase
4
5Within the check phase of type check, we check each item one at a time
6(bodies of function expressions are checked as part of the containing
7function). Inference is used to supply types wherever they are unknown.
8
9By far the most complex case is checking the body of a function. This
10can be broken down into several distinct phases:
11
12- gather: creates type variables to represent the type of each local
13 variable and pattern binding.
14
15- main: the main pass does the lion's share of the work: it
16 determines the types of all expressions, resolves
17 methods, checks for most invalid conditions, and so forth. In
18 some cases, where a type is unknown, it may create a type or region
19 variable and use that as the type of an expression.
20
21 In the process of checking, various constraints will be placed on
22 these type variables through the subtyping relationships requested
23 through the `demand` module. The `infer` module is in charge
24 of resolving those constraints.
25
26- regionck: after main is complete, the regionck pass goes over all
27 types looking for regions and making sure that they did not escape
28 into places they are not in scope. This may also influence the
29 final assignments of the various region variables if there is some
30 flexibility.
31
32- writeback: writes the final types within a function body, replacing
33 type variables with their final inferred types. These final types
34 are written into the `tcx.node_types` table, which should *never* contain
35 any reference to a type variable.
36
37## Intermediate types
38
39While type checking a function, the intermediate types for the
40expressions, blocks, and so forth contained within the function are
41stored in `fcx.node_types` and `fcx.node_substs`. These types
42may contain unresolved type variables. After type checking is
43complete, the functions in the writeback module are used to take the
44types from this table, resolve them, and then write them into their
45permanent home in the type context `tcx`.
46
47This means that during inferencing you should use `fcx.write_ty()`
48and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
49nodes within the function.
50
51The types of top-level items, which never contain unbound type
52variables, are stored directly into the `tcx` typeck_results.
53
54N.B., a type variable is not the same thing as a type parameter. A
5869c6ff
XL
55type variable is an instance of a type parameter. That is,
56given a generic function `fn foo<T>(t: T)`, while checking the
1b1a35ee 57function `foo`, the type `ty_param(0)` refers to the type `T`, which
5869c6ff 58is treated in abstract. However, when `foo()` is called, `T` will be
1b1a35ee
XL
59substituted for a fresh type variable `N`. This variable will
60eventually be resolved to some concrete type (which might itself be
5869c6ff 61a type parameter).
1b1a35ee
XL
62
63*/
64
65pub mod _match;
66mod autoderef;
67mod callee;
68pub mod cast;
69mod check;
70mod closure;
71pub mod coercion;
72mod compare_method;
73pub mod demand;
74mod diverges;
75pub mod dropck;
76mod expectation;
77mod expr;
78mod fn_ctxt;
79mod gather_locals;
80mod generator_interior;
81mod inherited;
82pub mod intrinsic;
83pub mod method;
84mod op;
85mod pat;
86mod place_op;
87mod regionck;
88mod upvar;
89mod wfcheck;
90pub mod writeback;
91
92use check::{
93 check_abi, check_fn, check_impl_item_well_formed, check_item_well_formed, check_mod_item_types,
94 check_trait_item_well_formed,
95};
96pub use check::{check_item_type, check_wf_new};
97pub use diverges::Diverges;
98pub use expectation::Expectation;
29967ef6 99pub use fn_ctxt::*;
1b1a35ee
XL
100pub use inherited::{Inherited, InheritedBuilder};
101
102use crate::astconv::AstConv;
103use crate::check::gather_locals::GatherLocalsVisitor;
104use rustc_data_structures::fx::{FxHashMap, FxHashSet};
105use rustc_errors::{pluralize, struct_span_err, Applicability};
106use rustc_hir as hir;
107use rustc_hir::def::Res;
108use rustc_hir::def_id::{CrateNum, DefId, LocalDefId, LOCAL_CRATE};
109use rustc_hir::intravisit::Visitor;
110use rustc_hir::itemlikevisit::ItemLikeVisitor;
fc512014 111use rustc_hir::{HirIdMap, ImplicitSelfKind, Node};
1b1a35ee
XL
112use rustc_index::bit_set::BitSet;
113use rustc_index::vec::Idx;
29967ef6 114use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
1b1a35ee
XL
115use rustc_middle::ty::fold::{TypeFoldable, TypeFolder};
116use rustc_middle::ty::query::Providers;
117use rustc_middle::ty::subst::GenericArgKind;
118use rustc_middle::ty::subst::{InternalSubsts, Subst, SubstsRef};
1b1a35ee
XL
119use rustc_middle::ty::{self, RegionKind, Ty, TyCtxt, UserType};
120use rustc_session::config;
121use rustc_session::parse::feature_err;
122use rustc_session::Session;
1b1a35ee
XL
123use rustc_span::symbol::{kw, Ident};
124use rustc_span::{self, BytePos, MultiSpan, Span};
6a06907d 125use rustc_span::{source_map::DUMMY_SP, sym};
1b1a35ee
XL
126use rustc_target::abi::VariantIdx;
127use rustc_target::spec::abi::Abi;
128use rustc_trait_selection::traits;
129use rustc_trait_selection::traits::error_reporting::recursive_type_with_infinite_size_error;
130use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
131
132use std::cell::{Ref, RefCell, RefMut};
133
134use crate::require_c_abi_if_c_variadic;
135use crate::util::common::indenter;
136
137use self::coercion::DynamicCoerceMany;
138pub use self::Expectation::*;
139
140#[macro_export]
141macro_rules! type_error_struct {
142 ($session:expr, $span:expr, $typ:expr, $code:ident, $($message:tt)*) => ({
143 if $typ.references_error() {
144 $session.diagnostic().struct_dummy()
145 } else {
146 rustc_errors::struct_span_err!($session, $span, $code, $($message)*)
147 }
148 })
149}
150
151/// The type of a local binding, including the revealed type for anon types.
152#[derive(Copy, Clone, Debug)]
153pub struct LocalTy<'tcx> {
154 decl_ty: Ty<'tcx>,
155 revealed_ty: Ty<'tcx>,
156}
157
158#[derive(Copy, Clone, Debug, PartialEq, Eq)]
159pub enum Needs {
160 MutPlace,
161 None,
162}
163
164impl Needs {
165 fn maybe_mut_place(m: hir::Mutability) -> Self {
166 match m {
167 hir::Mutability::Mut => Needs::MutPlace,
168 hir::Mutability::Not => Needs::None,
169 }
170 }
171}
172
173#[derive(Copy, Clone)]
174pub struct UnsafetyState {
175 pub def: hir::HirId,
176 pub unsafety: hir::Unsafety,
177 pub unsafe_push_count: u32,
178 from_fn: bool,
179}
180
181impl UnsafetyState {
182 pub fn function(unsafety: hir::Unsafety, def: hir::HirId) -> UnsafetyState {
183 UnsafetyState { def, unsafety, unsafe_push_count: 0, from_fn: true }
184 }
185
5869c6ff 186 pub fn recurse(self, blk: &hir::Block<'_>) -> UnsafetyState {
1b1a35ee
XL
187 use hir::BlockCheckMode;
188 match self.unsafety {
189 // If this unsafe, then if the outer function was already marked as
190 // unsafe we shouldn't attribute the unsafe'ness to the block. This
191 // way the block can be warned about instead of ignoring this
192 // extraneous block (functions are never warned about).
5869c6ff 193 hir::Unsafety::Unsafe if self.from_fn => self,
1b1a35ee
XL
194
195 unsafety => {
196 let (unsafety, def, count) = match blk.rules {
197 BlockCheckMode::PushUnsafeBlock(..) => {
198 (unsafety, blk.hir_id, self.unsafe_push_count.checked_add(1).unwrap())
199 }
200 BlockCheckMode::PopUnsafeBlock(..) => {
201 (unsafety, blk.hir_id, self.unsafe_push_count.checked_sub(1).unwrap())
202 }
203 BlockCheckMode::UnsafeBlock(..) => {
204 (hir::Unsafety::Unsafe, blk.hir_id, self.unsafe_push_count)
205 }
206 BlockCheckMode::DefaultBlock => (unsafety, self.def, self.unsafe_push_count),
207 };
208 UnsafetyState { def, unsafety, unsafe_push_count: count, from_fn: false }
209 }
210 }
211 }
212}
213
214#[derive(Debug, Copy, Clone)]
215pub enum PlaceOp {
216 Deref,
217 Index,
218}
219
220pub struct BreakableCtxt<'tcx> {
221 may_break: bool,
222
223 // this is `null` for loops where break with a value is illegal,
224 // such as `while`, `for`, and `while let`
225 coerce: Option<DynamicCoerceMany<'tcx>>,
226}
227
228pub struct EnclosingBreakables<'tcx> {
229 stack: Vec<BreakableCtxt<'tcx>>,
230 by_id: HirIdMap<usize>,
231}
232
233impl<'tcx> EnclosingBreakables<'tcx> {
234 fn find_breakable(&mut self, target_id: hir::HirId) -> &mut BreakableCtxt<'tcx> {
235 self.opt_find_breakable(target_id).unwrap_or_else(|| {
236 bug!("could not find enclosing breakable with id {}", target_id);
237 })
238 }
239
240 fn opt_find_breakable(&mut self, target_id: hir::HirId) -> Option<&mut BreakableCtxt<'tcx>> {
241 match self.by_id.get(&target_id) {
242 Some(ix) => Some(&mut self.stack[*ix]),
243 None => None,
244 }
245 }
246}
247
248pub fn provide(providers: &mut Providers) {
249 method::provide(providers);
250 *providers = Providers {
251 typeck_item_bodies,
252 typeck_const_arg,
253 typeck,
254 diagnostic_only_typeck,
255 has_typeck_results,
256 adt_destructor,
257 used_trait_imports,
258 check_item_well_formed,
259 check_trait_item_well_formed,
260 check_impl_item_well_formed,
261 check_mod_item_types,
262 ..*providers
263 };
264}
265
266fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
29967ef6 267 tcx.calculate_dtor(def_id, dropck::check_drop_impl)
1b1a35ee
XL
268}
269
270/// If this `DefId` is a "primary tables entry", returns
271/// `Some((body_id, header, decl))` with information about
fc512014 272/// its body-id, fn-header and fn-decl (if any). Otherwise,
1b1a35ee
XL
273/// returns `None`.
274///
275/// If this function returns `Some`, then `typeck_results(def_id)` will
276/// succeed; if it returns `None`, then `typeck_results(def_id)` may or
277/// may not succeed. In some cases where this function returns `None`
278/// (notably closures), `typeck_results(def_id)` would wind up
279/// redirecting to the owning function.
280fn primary_body_of(
281 tcx: TyCtxt<'_>,
282 id: hir::HirId,
283) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnHeader>, Option<&hir::FnDecl<'_>>)> {
284 match tcx.hir().get(id) {
285 Node::Item(item) => match item.kind {
286 hir::ItemKind::Const(ref ty, body) | hir::ItemKind::Static(ref ty, _, body) => {
287 Some((body, Some(ty), None, None))
288 }
289 hir::ItemKind::Fn(ref sig, .., body) => {
290 Some((body, None, Some(&sig.header), Some(&sig.decl)))
291 }
292 _ => None,
293 },
294 Node::TraitItem(item) => match item.kind {
295 hir::TraitItemKind::Const(ref ty, Some(body)) => Some((body, Some(ty), None, None)),
296 hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
297 Some((body, None, Some(&sig.header), Some(&sig.decl)))
298 }
299 _ => None,
300 },
301 Node::ImplItem(item) => match item.kind {
302 hir::ImplItemKind::Const(ref ty, body) => Some((body, Some(ty), None, None)),
303 hir::ImplItemKind::Fn(ref sig, body) => {
304 Some((body, None, Some(&sig.header), Some(&sig.decl)))
305 }
306 _ => None,
307 },
308 Node::AnonConst(constant) => Some((constant.body, None, None, None)),
309 _ => None,
310 }
311}
312
313fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
314 // Closures' typeck results come from their outermost function,
315 // as they are part of the same "inference environment".
316 let outer_def_id = tcx.closure_base_def_id(def_id);
317 if outer_def_id != def_id {
318 return tcx.has_typeck_results(outer_def_id);
319 }
320
321 if let Some(def_id) = def_id.as_local() {
322 let id = tcx.hir().local_def_id_to_hir_id(def_id);
323 primary_body_of(tcx, id).is_some()
324 } else {
325 false
326 }
327}
328
329fn used_trait_imports(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &FxHashSet<LocalDefId> {
330 &*tcx.typeck(def_id).used_trait_imports
331}
332
333/// Inspects the substs of opaque types, replacing any inference variables
334/// with proper generic parameter from the identity substs.
335///
336/// This is run after we normalize the function signature, to fix any inference
337/// variables introduced by the projection of associated types. This ensures that
338/// any opaque types used in the signature continue to refer to generic parameters,
339/// allowing them to be considered for defining uses in the function body
340///
341/// For example, consider this code.
342///
343/// ```rust
344/// trait MyTrait {
345/// type MyItem;
346/// fn use_it(self) -> Self::MyItem
347/// }
348/// impl<T, I> MyTrait for T where T: Iterator<Item = I> {
349/// type MyItem = impl Iterator<Item = I>;
350/// fn use_it(self) -> Self::MyItem {
351/// self
352/// }
353/// }
354/// ```
355///
356/// When we normalize the signature of `use_it` from the impl block,
357/// we will normalize `Self::MyItem` to the opaque type `impl Iterator<Item = I>`
358/// However, this projection result may contain inference variables, due
359/// to the way that projection works. We didn't have any inference variables
360/// in the signature to begin with - leaving them in will cause us to incorrectly
361/// conclude that we don't have a defining use of `MyItem`. By mapping inference
362/// variables back to the actual generic parameters, we will correctly see that
363/// we have a defining use of `MyItem`
fc512014 364fn fixup_opaque_types<'tcx, T>(tcx: TyCtxt<'tcx>, val: T) -> T
1b1a35ee
XL
365where
366 T: TypeFoldable<'tcx>,
367{
368 struct FixupFolder<'tcx> {
369 tcx: TyCtxt<'tcx>,
370 }
371
372 impl<'tcx> TypeFolder<'tcx> for FixupFolder<'tcx> {
373 fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
374 self.tcx
375 }
376
377 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
378 match *ty.kind() {
379 ty::Opaque(def_id, substs) => {
380 debug!("fixup_opaque_types: found type {:?}", ty);
381 // Here, we replace any inference variables that occur within
382 // the substs of an opaque type. By definition, any type occurring
383 // in the substs has a corresponding generic parameter, which is what
384 // we replace it with.
385 // This replacement is only run on the function signature, so any
386 // inference variables that we come across must be the rust of projection
387 // (there's no other way for a user to get inference variables into
388 // a function signature).
389 if ty.needs_infer() {
390 let new_substs = InternalSubsts::for_item(self.tcx, def_id, |param, _| {
391 let old_param = substs[param.index as usize];
392 match old_param.unpack() {
393 GenericArgKind::Type(old_ty) => {
394 if let ty::Infer(_) = old_ty.kind() {
395 // Replace inference type with a generic parameter
396 self.tcx.mk_param_from_def(param)
397 } else {
398 old_param.fold_with(self)
399 }
400 }
401 GenericArgKind::Const(old_const) => {
402 if let ty::ConstKind::Infer(_) = old_const.val {
403 // This should never happen - we currently do not support
404 // 'const projections', e.g.:
405 // `impl<T: SomeTrait> MyTrait for T where <T as SomeTrait>::MyConst == 25`
406 // which should be the only way for us to end up with a const inference
407 // variable after projection. If Rust ever gains support for this kind
408 // of projection, this should *probably* be changed to
409 // `self.tcx.mk_param_from_def(param)`
410 bug!(
411 "Found infer const: `{:?}` in opaque type: {:?}",
412 old_const,
413 ty
414 );
415 } else {
416 old_param.fold_with(self)
417 }
418 }
419 GenericArgKind::Lifetime(old_region) => {
420 if let RegionKind::ReVar(_) = old_region {
421 self.tcx.mk_param_from_def(param)
422 } else {
423 old_param.fold_with(self)
424 }
425 }
426 }
427 });
428 let new_ty = self.tcx.mk_opaque(def_id, new_substs);
429 debug!("fixup_opaque_types: new type: {:?}", new_ty);
430 new_ty
431 } else {
432 ty
433 }
434 }
435 _ => ty.super_fold_with(self),
436 }
437 }
438 }
439
440 debug!("fixup_opaque_types({:?})", val);
441 val.fold_with(&mut FixupFolder { tcx })
442}
443
444fn typeck_const_arg<'tcx>(
445 tcx: TyCtxt<'tcx>,
446 (did, param_did): (LocalDefId, DefId),
447) -> &ty::TypeckResults<'tcx> {
448 let fallback = move || tcx.type_of(param_did);
449 typeck_with_fallback(tcx, did, fallback)
450}
451
452fn typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
453 if let Some(param_did) = tcx.opt_const_param_of(def_id) {
454 tcx.typeck_const_arg((def_id, param_did))
455 } else {
456 let fallback = move || tcx.type_of(def_id.to_def_id());
457 typeck_with_fallback(tcx, def_id, fallback)
458 }
459}
460
461/// Used only to get `TypeckResults` for type inference during error recovery.
462/// Currently only used for type inference of `static`s and `const`s to avoid type cycle errors.
463fn diagnostic_only_typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
464 let fallback = move || {
465 let span = tcx.hir().span(tcx.hir().local_def_id_to_hir_id(def_id));
466 tcx.ty_error_with_message(span, "diagnostic only typeck table used")
467 };
468 typeck_with_fallback(tcx, def_id, fallback)
469}
470
471fn typeck_with_fallback<'tcx>(
472 tcx: TyCtxt<'tcx>,
473 def_id: LocalDefId,
474 fallback: impl Fn() -> Ty<'tcx> + 'tcx,
475) -> &'tcx ty::TypeckResults<'tcx> {
476 // Closures' typeck results come from their outermost function,
477 // as they are part of the same "inference environment".
478 let outer_def_id = tcx.closure_base_def_id(def_id.to_def_id()).expect_local();
479 if outer_def_id != def_id {
480 return tcx.typeck(outer_def_id);
481 }
482
483 let id = tcx.hir().local_def_id_to_hir_id(def_id);
484 let span = tcx.hir().span(id);
485
486 // Figure out what primary body this item has.
487 let (body_id, body_ty, fn_header, fn_decl) = primary_body_of(tcx, id).unwrap_or_else(|| {
488 span_bug!(span, "can't type-check body of {:?}", def_id);
489 });
490 let body = tcx.hir().body(body_id);
491
492 let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
493 let param_env = tcx.param_env(def_id);
494 let fcx = if let (Some(header), Some(decl)) = (fn_header, fn_decl) {
495 let fn_sig = if crate::collect::get_infer_ret_ty(&decl.output).is_some() {
496 let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
6a06907d 497 <dyn AstConv<'_>>::ty_of_fn(
1b1a35ee 498 &fcx,
cdc7bbd5 499 id,
1b1a35ee
XL
500 header.unsafety,
501 header.abi,
502 decl,
503 &hir::Generics::empty(),
504 None,
6a06907d 505 None,
1b1a35ee
XL
506 )
507 } else {
508 tcx.fn_sig(def_id)
509 };
510
511 check_abi(tcx, span, fn_sig.abi());
512
513 // Compute the fty from point of view of inside the fn.
fc512014 514 let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
1b1a35ee
XL
515 let fn_sig = inh.normalize_associated_types_in(
516 body.value.span,
517 body_id.hir_id,
518 param_env,
fc512014 519 fn_sig,
1b1a35ee
XL
520 );
521
fc512014 522 let fn_sig = fixup_opaque_types(tcx, fn_sig);
1b1a35ee
XL
523
524 let fcx = check_fn(&inh, param_env, fn_sig, decl, id, body, None).0;
525 fcx
526 } else {
527 let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
528 let expected_type = body_ty
529 .and_then(|ty| match ty.kind {
6a06907d 530 hir::TyKind::Infer => Some(<dyn AstConv<'_>>::ast_ty_to_ty(&fcx, ty)),
1b1a35ee
XL
531 _ => None,
532 })
29967ef6
XL
533 .unwrap_or_else(|| match tcx.hir().get(id) {
534 Node::AnonConst(_) => match tcx.hir().get(tcx.hir().get_parent_node(id)) {
535 Node::Expr(&hir::Expr {
536 kind: hir::ExprKind::ConstBlock(ref anon_const),
537 ..
538 }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
539 kind: TypeVariableOriginKind::TypeInference,
540 span,
541 }),
cdc7bbd5
XL
542 Node::Ty(&hir::Ty {
543 kind: hir::TyKind::Typeof(ref anon_const), ..
544 }) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
545 kind: TypeVariableOriginKind::TypeInference,
546 span,
547 }),
548 Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(ia), .. })
549 if ia.operands.iter().any(|(op, _op_sp)| match op {
550 hir::InlineAsmOperand::Const { anon_const } => {
551 anon_const.hir_id == id
552 }
553 _ => false,
554 }) =>
555 {
556 fcx.next_ty_var(TypeVariableOrigin {
557 kind: TypeVariableOriginKind::MiscVariable,
558 span,
559 })
560 }
29967ef6
XL
561 _ => fallback(),
562 },
563 _ => fallback(),
564 });
565
fc512014 566 let expected_type = fcx.normalize_associated_types_in(body.value.span, expected_type);
1b1a35ee
XL
567 fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
568
6a06907d
XL
569 let revealed_ty = fcx.instantiate_opaque_types_from_value(
570 id,
571 expected_type,
572 body.value.span,
573 Some(sym::impl_trait_in_bindings),
574 );
1b1a35ee
XL
575
576 // Gather locals in statics (because of block expressions).
577 GatherLocalsVisitor::new(&fcx, id).visit_body(body);
578
579 fcx.check_expr_coercable_to_type(&body.value, revealed_ty, None);
580
581 fcx.write_ty(id, revealed_ty);
582
583 fcx
584 };
585
586 // All type checking constraints were added, try to fallback unsolved variables.
587 fcx.select_obligations_where_possible(false, |_| {});
588 let mut fallback_has_occurred = false;
589
590 // We do fallback in two passes, to try to generate
591 // better error messages.
592 // The first time, we do *not* replace opaque types.
593 for ty in &fcx.unsolved_variables() {
594 fallback_has_occurred |= fcx.fallback_if_possible(ty, FallbackMode::NoOpaque);
595 }
596 // We now see if we can make progress. This might
597 // cause us to unify inference variables for opaque types,
598 // since we may have unified some other type variables
599 // during the first phase of fallback.
600 // This means that we only replace inference variables with their underlying
601 // opaque types as a last resort.
602 //
603 // In code like this:
604 //
605 // ```rust
606 // type MyType = impl Copy;
607 // fn produce() -> MyType { true }
608 // fn bad_produce() -> MyType { panic!() }
609 // ```
610 //
611 // we want to unify the opaque inference variable in `bad_produce`
612 // with the diverging fallback for `panic!` (e.g. `()` or `!`).
613 // This will produce a nice error message about conflicting concrete
614 // types for `MyType`.
615 //
616 // If we had tried to fallback the opaque inference variable to `MyType`,
617 // we will generate a confusing type-check error that does not explicitly
618 // refer to opaque types.
619 fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});
620
621 // We now run fallback again, but this time we allow it to replace
622 // unconstrained opaque type variables, in addition to performing
623 // other kinds of fallback.
624 for ty in &fcx.unsolved_variables() {
625 fallback_has_occurred |= fcx.fallback_if_possible(ty, FallbackMode::All);
626 }
627
628 // See if we can make any more progress.
629 fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});
630
631 // Even though coercion casts provide type hints, we check casts after fallback for
632 // backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
633 fcx.check_casts();
634
635 // Closure and generator analysis may run after fallback
636 // because they don't constrain other type variables.
637 fcx.closure_analyze(body);
638 assert!(fcx.deferred_call_resolutions.borrow().is_empty());
639 fcx.resolve_generator_interiors(def_id.to_def_id());
640
641 for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
642 let ty = fcx.normalize_ty(span, ty);
643 fcx.require_type_is_sized(ty, span, code);
644 }
645
646 fcx.select_all_obligations_or_error();
647
648 if fn_decl.is_some() {
649 fcx.regionck_fn(id, body);
650 } else {
651 fcx.regionck_expr(body);
652 }
653
654 fcx.resolve_type_vars_in_body(body)
655 });
656
657 // Consistency check our TypeckResults instance can hold all ItemLocalIds
658 // it will need to hold.
659 assert_eq!(typeck_results.hir_owner, id.owner);
660
661 typeck_results
662}
663
664/// When `check_fn` is invoked on a generator (i.e., a body that
665/// includes yield), it returns back some information about the yield
666/// points.
667struct GeneratorTypes<'tcx> {
668 /// Type of generator argument / values returned by `yield`.
669 resume_ty: Ty<'tcx>,
670
671 /// Type of value that is yielded.
672 yield_ty: Ty<'tcx>,
673
674 /// Types that are captured (see `GeneratorInterior` for more).
675 interior: Ty<'tcx>,
676
677 /// Indicates if the generator is movable or static (immovable).
678 movability: hir::Movability,
679}
680
681/// Given a `DefId` for an opaque type in return position, find its parent item's return
682/// expressions.
683fn get_owner_return_paths(
684 tcx: TyCtxt<'tcx>,
685 def_id: LocalDefId,
686) -> Option<(hir::HirId, ReturnsVisitor<'tcx>)> {
687 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
688 let id = tcx.hir().get_parent_item(hir_id);
689 tcx.hir()
690 .find(id)
691 .map(|n| (id, n))
692 .and_then(|(hir_id, node)| node.body_id().map(|b| (hir_id, b)))
693 .map(|(hir_id, body_id)| {
694 let body = tcx.hir().body(body_id);
695 let mut visitor = ReturnsVisitor::default();
696 visitor.visit_body(body);
697 (hir_id, visitor)
698 })
699}
700
701/// Emit an error for recursive opaque types in a `let` binding.
702fn binding_opaque_type_cycle_error(
703 tcx: TyCtxt<'tcx>,
704 def_id: LocalDefId,
705 span: Span,
706 partially_expanded_type: Ty<'tcx>,
707) {
708 let mut err = struct_span_err!(tcx.sess, span, E0720, "cannot resolve opaque type");
709 err.span_label(span, "cannot resolve opaque type");
710 // Find the owner that declared this `impl Trait` type.
711 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
712 let mut prev_hir_id = hir_id;
713 let mut hir_id = tcx.hir().get_parent_node(hir_id);
714 while let Some(node) = tcx.hir().find(hir_id) {
715 match node {
716 hir::Node::Local(hir::Local {
717 pat,
718 init: None,
719 ty: Some(ty),
720 source: hir::LocalSource::Normal,
721 ..
722 }) => {
723 err.span_label(pat.span, "this binding might not have a concrete type");
724 err.span_suggestion_verbose(
725 ty.span.shrink_to_hi(),
726 "set the binding to a value for a concrete type to be resolved",
727 " = /* value */".to_string(),
728 Applicability::HasPlaceholders,
729 );
730 }
731 hir::Node::Local(hir::Local {
732 init: Some(expr),
733 source: hir::LocalSource::Normal,
734 ..
735 }) => {
736 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
737 let typeck_results =
738 tcx.typeck(tcx.hir().local_def_id(tcx.hir().get_parent_item(hir_id)));
739 if let Some(ty) = typeck_results.node_type_opt(expr.hir_id) {
740 err.span_label(
741 expr.span,
742 &format!(
743 "this is of type `{}`, which doesn't constrain \
744 `{}` enough to arrive to a concrete type",
745 ty, partially_expanded_type
746 ),
747 );
748 }
749 }
750 _ => {}
751 }
752 if prev_hir_id == hir_id {
753 break;
754 }
755 prev_hir_id = hir_id;
756 hir_id = tcx.hir().get_parent_node(hir_id);
757 }
758 err.emit();
759}
760
761// Forbid defining intrinsics in Rust code,
762// as they must always be defined by the compiler.
763fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
764 if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
765 tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
766 }
767}
768
769fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId, span: Span) {
770 // Only restricted on wasm32 target for now
771 if !tcx.sess.opts.target_triple.triple().starts_with("wasm32") {
772 return;
773 }
774
775 // If `#[link_section]` is missing, then nothing to verify
776 let attrs = tcx.codegen_fn_attrs(id);
777 if attrs.link_section.is_none() {
778 return;
779 }
780
781 // For the wasm32 target statics with `#[link_section]` are placed into custom
782 // sections of the final output file, but this isn't link custom sections of
783 // other executable formats. Namely we can only embed a list of bytes,
784 // nothing with pointers to anything else or relocations. If any relocation
785 // show up, reject them here.
786 // `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
787 // the consumer's responsibility to ensure all bytes that have been read
788 // have defined values.
789 match tcx.eval_static_initializer(id.to_def_id()) {
790 Ok(alloc) => {
791 if alloc.relocations().len() != 0 {
792 let msg = "statics with a custom `#[link_section]` must be a \
793 simple list of bytes on the wasm target with no \
794 extra levels of indirection such as references";
795 tcx.sess.span_err(span, msg);
796 }
797 }
798 Err(_) => {}
799 }
800}
801
802fn report_forbidden_specialization(
803 tcx: TyCtxt<'_>,
804 impl_item: &hir::ImplItem<'_>,
805 parent_impl: DefId,
806) {
807 let mut err = struct_span_err!(
808 tcx.sess,
809 impl_item.span,
810 E0520,
811 "`{}` specializes an item from a parent `impl`, but \
812 that item is not marked `default`",
813 impl_item.ident
814 );
815 err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));
816
817 match tcx.span_of_impl(parent_impl) {
818 Ok(span) => {
819 err.span_label(span, "parent `impl` is here");
820 err.note(&format!(
821 "to specialize, `{}` in the parent `impl` must be marked `default`",
822 impl_item.ident
823 ));
824 }
825 Err(cname) => {
826 err.note(&format!("parent implementation is in crate `{}`", cname));
827 }
828 }
829
830 err.emit();
831}
832
833fn missing_items_err(
834 tcx: TyCtxt<'_>,
835 impl_span: Span,
836 missing_items: &[ty::AssocItem],
837 full_impl_span: Span,
838) {
839 let missing_items_msg = missing_items
840 .iter()
841 .map(|trait_item| trait_item.ident.to_string())
842 .collect::<Vec<_>>()
843 .join("`, `");
844
845 let mut err = struct_span_err!(
846 tcx.sess,
847 impl_span,
848 E0046,
849 "not all trait items implemented, missing: `{}`",
850 missing_items_msg
851 );
852 err.span_label(impl_span, format!("missing `{}` in implementation", missing_items_msg));
853
854 // `Span` before impl block closing brace.
855 let hi = full_impl_span.hi() - BytePos(1);
856 // Point at the place right before the closing brace of the relevant `impl` to suggest
857 // adding the associated item at the end of its body.
858 let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
859 // Obtain the level of indentation ending in `sugg_sp`.
860 let indentation = tcx.sess.source_map().span_to_margin(sugg_sp).unwrap_or(0);
861 // Make the whitespace that will make the suggestion have the right indentation.
6a06907d 862 let padding: String = std::iter::repeat(" ").take(indentation).collect();
1b1a35ee
XL
863
864 for trait_item in missing_items {
865 let snippet = suggestion_signature(&trait_item, tcx);
866 let code = format!("{}{}\n{}", padding, snippet, padding);
867 let msg = format!("implement the missing item: `{}`", snippet);
868 let appl = Applicability::HasPlaceholders;
869 if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
870 err.span_label(span, format!("`{}` from trait", trait_item.ident));
871 err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
872 } else {
873 err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
874 }
875 }
876 err.emit();
877}
878
879/// Resugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
880fn bounds_from_generic_predicates<'tcx>(
881 tcx: TyCtxt<'tcx>,
882 predicates: ty::GenericPredicates<'tcx>,
883) -> (String, String) {
884 let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
885 let mut projections = vec![];
886 for (predicate, _) in predicates.predicates {
887 debug!("predicate {:?}", predicate);
5869c6ff 888 let bound_predicate = predicate.kind();
29967ef6 889 match bound_predicate.skip_binder() {
5869c6ff 890 ty::PredicateKind::Trait(trait_predicate, _) => {
1b1a35ee
XL
891 let entry = types.entry(trait_predicate.self_ty()).or_default();
892 let def_id = trait_predicate.def_id();
893 if Some(def_id) != tcx.lang_items().sized_trait() {
894 // Type params are `Sized` by default, do not add that restriction to the list
895 // if it is a positive requirement.
896 entry.push(trait_predicate.def_id());
897 }
898 }
5869c6ff 899 ty::PredicateKind::Projection(projection_pred) => {
29967ef6 900 projections.push(bound_predicate.rebind(projection_pred));
1b1a35ee
XL
901 }
902 _ => {}
903 }
904 }
905 let generics = if types.is_empty() {
906 "".to_string()
907 } else {
908 format!(
909 "<{}>",
910 types
911 .keys()
912 .filter_map(|t| match t.kind() {
913 ty::Param(_) => Some(t.to_string()),
914 // Avoid suggesting the following:
915 // fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
916 _ => None,
917 })
918 .collect::<Vec<_>>()
919 .join(", ")
920 )
921 };
922 let mut where_clauses = vec![];
923 for (ty, bounds) in types {
924 for bound in &bounds {
925 where_clauses.push(format!("{}: {}", ty, tcx.def_path_str(*bound)));
926 }
927 }
928 for projection in &projections {
929 let p = projection.skip_binder();
930 // FIXME: this is not currently supported syntax, we should be looking at the `types` and
931 // insert the associated types where they correspond, but for now let's be "lazy" and
932 // propose this instead of the following valid resugaring:
933 // `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
934 where_clauses.push(format!("{} = {}", tcx.def_path_str(p.projection_ty.item_def_id), p.ty));
935 }
936 let where_clauses = if where_clauses.is_empty() {
937 String::new()
938 } else {
939 format!(" where {}", where_clauses.join(", "))
940 };
941 (generics, where_clauses)
942}
943
944/// Return placeholder code for the given function.
945fn fn_sig_suggestion<'tcx>(
946 tcx: TyCtxt<'tcx>,
947 sig: ty::FnSig<'tcx>,
948 ident: Ident,
949 predicates: ty::GenericPredicates<'tcx>,
950 assoc: &ty::AssocItem,
951) -> String {
952 let args = sig
953 .inputs()
954 .iter()
955 .enumerate()
956 .map(|(i, ty)| {
957 Some(match ty.kind() {
958 ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
959 ty::Ref(reg, ref_ty, mutability) if i == 0 => {
960 let reg = match &format!("{}", reg)[..] {
961 "'_" | "" => String::new(),
962 reg => format!("{} ", reg),
963 };
964 if assoc.fn_has_self_parameter {
965 match ref_ty.kind() {
966 ty::Param(param) if param.name == kw::SelfUpper => {
967 format!("&{}{}self", reg, mutability.prefix_str())
968 }
969
970 _ => format!("self: {}", ty),
971 }
972 } else {
973 format!("_: {}", ty)
974 }
975 }
976 _ => {
977 if assoc.fn_has_self_parameter && i == 0 {
978 format!("self: {}", ty)
979 } else {
980 format!("_: {}", ty)
981 }
982 }
983 })
984 })
985 .chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
986 .filter_map(|arg| arg)
987 .collect::<Vec<String>>()
988 .join(", ");
989 let output = sig.output();
990 let output = if !output.is_unit() { format!(" -> {}", output) } else { String::new() };
991
992 let unsafety = sig.unsafety.prefix_str();
993 let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
994
995 // FIXME: this is not entirely correct, as the lifetimes from borrowed params will
996 // not be present in the `fn` definition, not will we account for renamed
997 // lifetimes between the `impl` and the `trait`, but this should be good enough to
998 // fill in a significant portion of the missing code, and other subsequent
999 // suggestions can help the user fix the code.
1000 format!(
1001 "{}fn {}{}({}){}{} {{ todo!() }}",
1002 unsafety, ident, generics, args, output, where_clauses
1003 )
1004}
1005
1006/// Return placeholder code for the given associated item.
1007/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
1008/// structured suggestion.
1009fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
1010 match assoc.kind {
1011 ty::AssocKind::Fn => {
1012 // We skip the binder here because the binder would deanonymize all
1013 // late-bound regions, and we don't want method signatures to show up
1014 // `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
1015 // regions just fine, showing `fn(&MyType)`.
1016 fn_sig_suggestion(
1017 tcx,
1018 tcx.fn_sig(assoc.def_id).skip_binder(),
1019 assoc.ident,
1020 tcx.predicates_of(assoc.def_id),
1021 assoc,
1022 )
1023 }
1024 ty::AssocKind::Type => format!("type {} = Type;", assoc.ident),
1025 ty::AssocKind::Const => {
1026 let ty = tcx.type_of(assoc.def_id);
1027 let val = expr::ty_kind_suggestion(ty).unwrap_or("value");
1028 format!("const {}: {} = {};", assoc.ident, ty, val)
1029 }
1030 }
1031}
1032
1033/// Emit an error when encountering more or less than one variant in a transparent enum.
1034fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: &'tcx ty::AdtDef, sp: Span, did: DefId) {
1035 let variant_spans: Vec<_> = adt
1036 .variants
1037 .iter()
1038 .map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
1039 .collect();
1040 let msg = format!("needs exactly one variant, but has {}", adt.variants.len(),);
1041 let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {}", msg);
1042 err.span_label(sp, &msg);
1043 if let [start @ .., end] = &*variant_spans {
1044 for variant_span in start {
1045 err.span_label(*variant_span, "");
1046 }
1047 err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
1048 }
1049 err.emit();
1050}
1051
1052/// Emit an error when encountering more or less than one non-zero-sized field in a transparent
1053/// enum.
1054fn bad_non_zero_sized_fields<'tcx>(
1055 tcx: TyCtxt<'tcx>,
1056 adt: &'tcx ty::AdtDef,
1057 field_count: usize,
1058 field_spans: impl Iterator<Item = Span>,
1059 sp: Span,
1060) {
1061 let msg = format!("needs exactly one non-zero-sized field, but has {}", field_count);
1062 let mut err = struct_span_err!(
1063 tcx.sess,
1064 sp,
1065 E0690,
1066 "{}transparent {} {}",
1067 if adt.is_enum() { "the variant of a " } else { "" },
1068 adt.descr(),
1069 msg,
1070 );
1071 err.span_label(sp, &msg);
1072 for sp in field_spans {
1073 err.span_label(sp, "this field is non-zero-sized");
1074 }
1075 err.emit();
1076}
1077
1078fn report_unexpected_variant_res(tcx: TyCtxt<'_>, res: Res, span: Span) {
1079 struct_span_err!(
1080 tcx.sess,
1081 span,
1082 E0533,
1083 "expected unit struct, unit variant or constant, found {}{}",
1084 res.descr(),
6a06907d
XL
1085 tcx.sess
1086 .source_map()
1087 .span_to_snippet(span)
1088 .map_or_else(|_| String::new(), |s| format!(" `{}`", s)),
1b1a35ee
XL
1089 )
1090 .emit();
1091}
1092
1093/// Controls whether the arguments are tupled. This is used for the call
1094/// operator.
1095///
1096/// Tupling means that all call-side arguments are packed into a tuple and
1097/// passed as a single parameter. For example, if tupling is enabled, this
1098/// function:
1099///
1100/// fn f(x: (isize, isize))
1101///
1102/// Can be called as:
1103///
1104/// f(1, 2);
1105///
1106/// Instead of:
1107///
1108/// f((1, 2));
1109#[derive(Clone, Eq, PartialEq)]
1110enum TupleArgumentsFlag {
1111 DontTupleArguments,
1112 TupleArguments,
1113}
1114
1115/// Controls how we perform fallback for unconstrained
1116/// type variables.
1117enum FallbackMode {
1118 /// Do not fallback type variables to opaque types.
1119 NoOpaque,
1120 /// Perform all possible kinds of fallback, including
1121 /// turning type variables to opaque types.
1122 All,
1123}
1124
1125/// A wrapper for `InferCtxt`'s `in_progress_typeck_results` field.
1126#[derive(Copy, Clone)]
1127struct MaybeInProgressTables<'a, 'tcx> {
1128 maybe_typeck_results: Option<&'a RefCell<ty::TypeckResults<'tcx>>>,
1129}
1130
1131impl<'a, 'tcx> MaybeInProgressTables<'a, 'tcx> {
1132 fn borrow(self) -> Ref<'a, ty::TypeckResults<'tcx>> {
1133 match self.maybe_typeck_results {
1134 Some(typeck_results) => typeck_results.borrow(),
1135 None => bug!(
1136 "MaybeInProgressTables: inh/fcx.typeck_results.borrow() with no typeck results"
1137 ),
1138 }
1139 }
1140
1141 fn borrow_mut(self) -> RefMut<'a, ty::TypeckResults<'tcx>> {
1142 match self.maybe_typeck_results {
1143 Some(typeck_results) => typeck_results.borrow_mut(),
1144 None => bug!(
1145 "MaybeInProgressTables: inh/fcx.typeck_results.borrow_mut() with no typeck results"
1146 ),
1147 }
1148 }
1149}
1150
1151struct CheckItemTypesVisitor<'tcx> {
1152 tcx: TyCtxt<'tcx>,
1153}
1154
1155impl ItemLikeVisitor<'tcx> for CheckItemTypesVisitor<'tcx> {
1156 fn visit_item(&mut self, i: &'tcx hir::Item<'tcx>) {
1157 check_item_type(self.tcx, i);
1158 }
1159 fn visit_trait_item(&mut self, _: &'tcx hir::TraitItem<'tcx>) {}
1160 fn visit_impl_item(&mut self, _: &'tcx hir::ImplItem<'tcx>) {}
fc512014 1161 fn visit_foreign_item(&mut self, _: &'tcx hir::ForeignItem<'tcx>) {}
1b1a35ee
XL
1162}
1163
1164fn typeck_item_bodies(tcx: TyCtxt<'_>, crate_num: CrateNum) {
1165 debug_assert!(crate_num == LOCAL_CRATE);
1166 tcx.par_body_owners(|body_owner_def_id| {
1167 tcx.ensure().typeck(body_owner_def_id);
1168 });
1169}
1170
1171fn fatally_break_rust(sess: &Session) {
1172 let handler = sess.diagnostic();
1173 handler.span_bug_no_panic(
1174 MultiSpan::new(),
1175 "It looks like you're trying to break rust; would you like some ICE?",
1176 );
1177 handler.note_without_error("the compiler expectedly panicked. this is a feature.");
1178 handler.note_without_error(
1179 "we would appreciate a joke overview: \
1180 https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675",
1181 );
1182 handler.note_without_error(&format!(
1183 "rustc {} running on {}",
1184 option_env!("CFG_VERSION").unwrap_or("unknown_version"),
1185 config::host_triple(),
1186 ));
1187}
1188
1189fn potentially_plural_count(count: usize, word: &str) -> String {
1190 format!("{} {}{}", count, word, pluralize!(count))
1191}