]> git.proxmox.com Git - rustc.git/blame - compiler/rustc_typeck/src/impl_wf_check/min_specialization.rs
New upstream version 1.50.0+dfsg1
[rustc.git] / compiler / rustc_typeck / src / impl_wf_check / min_specialization.rs
CommitLineData
ba9703b0
XL
1//! # Minimal Specialization
2//!
3//! This module contains the checks for sound specialization used when the
4//! `min_specialization` feature is enabled. This requires that the impl is
5//! *always applicable*.
6//!
7//! If `impl1` specializes `impl2` then `impl1` is always applicable if we know
8//! that all the bounds of `impl2` are satisfied, and all of the bounds of
9//! `impl1` are satisfied for some choice of lifetimes then we know that
10//! `impl1` applies for any choice of lifetimes.
11//!
12//! ## Basic approach
13//!
14//! To enforce this requirement on specializations we take the following
15//! approach:
16//!
17//! 1. Match up the substs for `impl2` so that the implemented trait and
18//! self-type match those for `impl1`.
19//! 2. Check for any direct use of `'static` in the substs of `impl2`.
20//! 3. Check that all of the generic parameters of `impl1` occur at most once
21//! in the *unconstrained* substs for `impl2`. A parameter is constrained if
22//! its value is completely determined by an associated type projection
23//! predicate.
24//! 4. Check that all predicates on `impl1` either exist on `impl2` (after
25//! matching substs), or are well-formed predicates for the trait's type
26//! arguments.
27//!
28//! ## Example
29//!
30//! Suppose we have the following always applicable impl:
31//!
32//! ```rust
33//! impl<T> SpecExtend<T> for std::vec::IntoIter<T> { /* specialized impl */ }
34//! impl<T, I: Iterator<Item=T>> SpecExtend<T> for I { /* default impl */ }
35//! ```
36//!
37//! We get that the subst for `impl2` are `[T, std::vec::IntoIter<T>]`. `T` is
38//! constrained to be `<I as Iterator>::Item`, so we check only
39//! `std::vec::IntoIter<T>` for repeated parameters, which it doesn't have. The
40//! predicates of `impl1` are only `T: Sized`, which is also a predicate of
41//! `impl2`. So this specialization is sound.
42//!
43//! ## Extensions
44//!
45//! Unfortunately not all specializations in the standard library are allowed
46//! by this. So there are two extensions to these rules that allow specializing
47//! on some traits: that is, using them as bounds on the specializing impl,
48//! even when they don't occur in the base impl.
49//!
50//! ### rustc_specialization_trait
51//!
52//! If a trait is always applicable, then it's sound to specialize on it. We
53//! check trait is always applicable in the same way as impls, except that step
54//! 4 is now "all predicates on `impl1` are always applicable". We require that
55//! `specialization` or `min_specialization` is enabled to implement these
56//! traits.
57//!
58//! ### rustc_unsafe_specialization_marker
59//!
60//! There are also some specialization on traits with no methods, including the
61//! stable `FusedIterator` trait. We allow marking marker traits with an
62//! unstable attribute that means we ignore them in point 3 of the checks
63//! above. This is unsound, in the sense that the specialized impl may be used
64//! when it doesn't apply, but we allow it in the short term since it can't
65//! cause use after frees with purely safe code in the same way as specializing
66//! on traits with methods can.
67
68use crate::constrained_generic_params as cgp;
69
70use rustc_data_structures::fx::FxHashSet;
71use rustc_hir as hir;
f9f354fc 72use rustc_hir::def_id::{DefId, LocalDefId};
ba9703b0
XL
73use rustc_infer::infer::outlives::env::OutlivesEnvironment;
74use rustc_infer::infer::{InferCtxt, RegionckMode, TyCtxtInferExt};
75use rustc_infer::traits::specialization_graph::Node;
ba9703b0
XL
76use rustc_middle::ty::subst::{GenericArg, InternalSubsts, SubstsRef};
77use rustc_middle::ty::trait_def::TraitSpecializationKind;
78use rustc_middle::ty::{self, InstantiatedPredicates, TyCtxt, TypeFoldable};
79use rustc_span::Span;
80use rustc_trait_selection::traits::{self, translate_substs, wf};
81
82pub(super) fn check_min_specialization(tcx: TyCtxt<'_>, impl_def_id: DefId, span: Span) {
83 if let Some(node) = parent_specialization_node(tcx, impl_def_id) {
84 tcx.infer_ctxt().enter(|infcx| {
85 check_always_applicable(&infcx, impl_def_id, node, span);
86 });
87 }
88}
89
90fn parent_specialization_node(tcx: TyCtxt<'_>, impl1_def_id: DefId) -> Option<Node> {
91 let trait_ref = tcx.impl_trait_ref(impl1_def_id)?;
92 let trait_def = tcx.trait_def(trait_ref.def_id);
93
94 let impl2_node = trait_def.ancestors(tcx, impl1_def_id).ok()?.nth(1)?;
95
96 let always_applicable_trait =
97 matches!(trait_def.specialization_kind, TraitSpecializationKind::AlwaysApplicable);
98 if impl2_node.is_from_trait() && !always_applicable_trait {
99 // Implementing a normal trait isn't a specialization.
100 return None;
101 }
102 Some(impl2_node)
103}
104
105/// Check that `impl1` is a sound specialization
106fn check_always_applicable(
107 infcx: &InferCtxt<'_, '_>,
108 impl1_def_id: DefId,
109 impl2_node: Node,
110 span: Span,
111) {
112 if let Some((impl1_substs, impl2_substs)) =
113 get_impl_substs(infcx, impl1_def_id, impl2_node, span)
114 {
115 let impl2_def_id = impl2_node.def_id();
116 debug!(
117 "check_always_applicable(\nimpl1_def_id={:?},\nimpl2_def_id={:?},\nimpl2_substs={:?}\n)",
118 impl1_def_id, impl2_def_id, impl2_substs
119 );
120
121 let tcx = infcx.tcx;
122
123 let parent_substs = if impl2_node.is_from_trait() {
124 impl2_substs.to_vec()
125 } else {
126 unconstrained_parent_impl_substs(tcx, impl2_def_id, impl2_substs)
127 };
128
129 check_static_lifetimes(tcx, &parent_substs, span);
130 check_duplicate_params(tcx, impl1_substs, &parent_substs, span);
131
f9f354fc
XL
132 check_predicates(
133 infcx,
134 impl1_def_id.expect_local(),
135 impl1_substs,
136 impl2_node,
137 impl2_substs,
138 span,
139 );
ba9703b0
XL
140 }
141}
142
143/// Given a specializing impl `impl1`, and the base impl `impl2`, returns two
144/// substitutions `(S1, S2)` that equate their trait references. The returned
145/// types are expressed in terms of the generics of `impl1`.
146///
147/// Example
148///
149/// impl<A, B> Foo<A> for B { /* impl2 */ }
150/// impl<C> Foo<Vec<C>> for C { /* impl1 */ }
151///
152/// Would return `S1 = [C]` and `S2 = [Vec<C>, C]`.
153fn get_impl_substs<'tcx>(
154 infcx: &InferCtxt<'_, 'tcx>,
155 impl1_def_id: DefId,
156 impl2_node: Node,
157 span: Span,
158) -> Option<(SubstsRef<'tcx>, SubstsRef<'tcx>)> {
159 let tcx = infcx.tcx;
160 let param_env = tcx.param_env(impl1_def_id);
161
162 let impl1_substs = InternalSubsts::identity_for_item(tcx, impl1_def_id);
163 let impl2_substs = translate_substs(infcx, param_env, impl1_def_id, impl1_substs, impl2_node);
164
165 // Conservatively use an empty `ParamEnv`.
166 let outlives_env = OutlivesEnvironment::new(ty::ParamEnv::empty());
f9f354fc 167 infcx.resolve_regions_and_report_errors(impl1_def_id, &outlives_env, RegionckMode::default());
fc512014 168 let impl2_substs = match infcx.fully_resolve(impl2_substs) {
ba9703b0
XL
169 Ok(s) => s,
170 Err(_) => {
171 tcx.sess.struct_span_err(span, "could not resolve substs on overridden impl").emit();
172 return None;
173 }
174 };
175 Some((impl1_substs, impl2_substs))
176}
177
178/// Returns a list of all of the unconstrained subst of the given impl.
179///
180/// For example given the impl:
181///
182/// impl<'a, T, I> ... where &'a I: IntoIterator<Item=&'a T>
183///
184/// This would return the substs corresponding to `['a, I]`, because knowing
185/// `'a` and `I` determines the value of `T`.
186fn unconstrained_parent_impl_substs<'tcx>(
187 tcx: TyCtxt<'tcx>,
188 impl_def_id: DefId,
189 impl_substs: SubstsRef<'tcx>,
190) -> Vec<GenericArg<'tcx>> {
191 let impl_generic_predicates = tcx.predicates_of(impl_def_id);
192 let mut unconstrained_parameters = FxHashSet::default();
193 let mut constrained_params = FxHashSet::default();
194 let impl_trait_ref = tcx.impl_trait_ref(impl_def_id);
195
196 // Unfortunately the functions in `constrained_generic_parameters` don't do
197 // what we want here. We want only a list of constrained parameters while
198 // the functions in `cgp` add the constrained parameters to a list of
199 // unconstrained parameters.
200 for (predicate, _) in impl_generic_predicates.predicates.iter() {
3dfed10e
XL
201 if let ty::PredicateAtom::Projection(proj) = predicate.skip_binders() {
202 let projection_ty = proj.projection_ty;
203 let projected_ty = proj.ty;
ba9703b0
XL
204
205 let unbound_trait_ref = projection_ty.trait_ref(tcx);
206 if Some(unbound_trait_ref) == impl_trait_ref {
207 continue;
208 }
209
210 unconstrained_parameters.extend(cgp::parameters_for(&projection_ty, true));
211
212 for param in cgp::parameters_for(&projected_ty, false) {
213 if !unconstrained_parameters.contains(&param) {
214 constrained_params.insert(param.0);
215 }
216 }
217
218 unconstrained_parameters.extend(cgp::parameters_for(&projected_ty, true));
219 }
220 }
221
222 impl_substs
223 .iter()
224 .enumerate()
225 .filter(|&(idx, _)| !constrained_params.contains(&(idx as u32)))
f9f354fc 226 .map(|(_, arg)| arg)
ba9703b0
XL
227 .collect()
228}
229
230/// Check that parameters of the derived impl don't occur more than once in the
231/// equated substs of the base impl.
232///
233/// For example forbid the following:
234///
235/// impl<A> Tr for A { }
236/// impl<B> Tr for (B, B) { }
237///
238/// Note that only consider the unconstrained parameters of the base impl:
239///
240/// impl<S, I: IntoIterator<Item = S>> Tr<S> for I { }
241/// impl<T> Tr<T> for Vec<T> { }
242///
243/// The substs for the parent impl here are `[T, Vec<T>]`, which repeats `T`,
244/// but `S` is constrained in the parent impl, so `parent_substs` is only
245/// `[Vec<T>]`. This means we allow this impl.
246fn check_duplicate_params<'tcx>(
247 tcx: TyCtxt<'tcx>,
248 impl1_substs: SubstsRef<'tcx>,
249 parent_substs: &Vec<GenericArg<'tcx>>,
250 span: Span,
251) {
252 let mut base_params = cgp::parameters_for(parent_substs, true);
253 base_params.sort_by_key(|param| param.0);
254 if let (_, [duplicate, ..]) = base_params.partition_dedup() {
255 let param = impl1_substs[duplicate.0 as usize];
256 tcx.sess
257 .struct_span_err(span, &format!("specializing impl repeats parameter `{}`", param))
258 .emit();
259 }
260}
261
262/// Check that `'static` lifetimes are not introduced by the specializing impl.
263///
264/// For example forbid the following:
265///
266/// impl<A> Tr for A { }
267/// impl Tr for &'static i32 { }
268fn check_static_lifetimes<'tcx>(
269 tcx: TyCtxt<'tcx>,
270 parent_substs: &Vec<GenericArg<'tcx>>,
271 span: Span,
272) {
273 if tcx.any_free_region_meets(parent_substs, |r| *r == ty::ReStatic) {
274 tcx.sess.struct_span_err(span, "cannot specialize on `'static` lifetime").emit();
275 }
276}
277
278/// Check whether predicates on the specializing impl (`impl1`) are allowed.
279///
280/// Each predicate `P` must be:
281///
282/// * global (not reference any parameters)
283/// * `T: Tr` predicate where `Tr` is an always-applicable trait
284/// * on the base `impl impl2`
285/// * Currently this check is done using syntactic equality, which is
286/// conservative but generally sufficient.
287/// * a well-formed predicate of a type argument of the trait being implemented,
288/// including the `Self`-type.
289fn check_predicates<'tcx>(
290 infcx: &InferCtxt<'_, 'tcx>,
f9f354fc 291 impl1_def_id: LocalDefId,
ba9703b0
XL
292 impl1_substs: SubstsRef<'tcx>,
293 impl2_node: Node,
294 impl2_substs: SubstsRef<'tcx>,
295 span: Span,
296) {
297 let tcx = infcx.tcx;
298 let impl1_predicates = tcx.predicates_of(impl1_def_id).instantiate(tcx, impl1_substs);
299 let mut impl2_predicates = if impl2_node.is_from_trait() {
300 // Always applicable traits have to be always applicable without any
301 // assumptions.
302 InstantiatedPredicates::empty()
303 } else {
304 tcx.predicates_of(impl2_node.def_id()).instantiate(tcx, impl2_substs)
305 };
306 debug!(
307 "check_always_applicable(\nimpl1_predicates={:?},\nimpl2_predicates={:?}\n)",
308 impl1_predicates, impl2_predicates,
309 );
310
311 // Since impls of always applicable traits don't get to assume anything, we
312 // can also assume their supertraits apply.
313 //
314 // For example, we allow:
315 //
316 // #[rustc_specialization_trait]
317 // trait AlwaysApplicable: Debug { }
318 //
319 // impl<T> Tr for T { }
320 // impl<T: AlwaysApplicable> Tr for T { }
321 //
322 // Specializing on `AlwaysApplicable` allows also specializing on `Debug`
323 // which is sound because we forbid impls like the following
324 //
325 // impl<D: Debug> AlwaysApplicable for D { }
f9f354fc
XL
326 let always_applicable_traits =
327 impl1_predicates.predicates.iter().copied().filter(|&predicate| {
ba9703b0
XL
328 matches!(
329 trait_predicate_kind(tcx, predicate),
330 Some(TraitSpecializationKind::AlwaysApplicable)
331 )
f9f354fc 332 });
ba9703b0
XL
333
334 // Include the well-formed predicates of the type parameters of the impl.
f035d41b 335 for arg in tcx.impl_trait_ref(impl1_def_id).unwrap().substs {
ba9703b0
XL
336 if let Some(obligations) = wf::obligations(
337 infcx,
338 tcx.param_env(impl1_def_id),
3dfed10e 339 tcx.hir().local_def_id_to_hir_id(impl1_def_id),
29967ef6 340 0,
f035d41b 341 arg,
ba9703b0
XL
342 span,
343 ) {
344 impl2_predicates
345 .predicates
346 .extend(obligations.into_iter().map(|obligation| obligation.predicate))
347 }
348 }
349 impl2_predicates.predicates.extend(
350 traits::elaborate_predicates(tcx, always_applicable_traits)
351 .map(|obligation| obligation.predicate),
352 );
353
354 for predicate in impl1_predicates.predicates {
355 if !impl2_predicates.predicates.contains(&predicate) {
f9f354fc 356 check_specialization_on(tcx, predicate, span)
ba9703b0
XL
357 }
358 }
359}
360
f9f354fc 361fn check_specialization_on<'tcx>(tcx: TyCtxt<'tcx>, predicate: ty::Predicate<'tcx>, span: Span) {
ba9703b0 362 debug!("can_specialize_on(predicate = {:?})", predicate);
3dfed10e 363 match predicate.skip_binders() {
ba9703b0
XL
364 // Global predicates are either always true or always false, so we
365 // are fine to specialize on.
366 _ if predicate.is_global() => (),
367 // We allow specializing on explicitly marked traits with no associated
368 // items.
3dfed10e 369 ty::PredicateAtom::Trait(pred, hir::Constness::NotConst) => {
ba9703b0
XL
370 if !matches!(
371 trait_predicate_kind(tcx, predicate),
372 Some(TraitSpecializationKind::Marker)
373 ) {
374 tcx.sess
375 .struct_span_err(
376 span,
377 &format!(
378 "cannot specialize on trait `{}`",
379 tcx.def_path_str(pred.def_id()),
380 ),
381 )
382 .emit()
383 }
384 }
385 _ => tcx
386 .sess
387 .struct_span_err(span, &format!("cannot specialize on `{:?}`", predicate))
388 .emit(),
389 }
390}
391
392fn trait_predicate_kind<'tcx>(
393 tcx: TyCtxt<'tcx>,
f9f354fc 394 predicate: ty::Predicate<'tcx>,
ba9703b0 395) -> Option<TraitSpecializationKind> {
3dfed10e
XL
396 match predicate.skip_binders() {
397 ty::PredicateAtom::Trait(pred, hir::Constness::NotConst) => {
ba9703b0
XL
398 Some(tcx.trait_def(pred.def_id()).specialization_kind)
399 }
3dfed10e
XL
400 ty::PredicateAtom::Trait(_, hir::Constness::Const)
401 | ty::PredicateAtom::RegionOutlives(_)
402 | ty::PredicateAtom::TypeOutlives(_)
403 | ty::PredicateAtom::Projection(_)
404 | ty::PredicateAtom::WellFormed(_)
405 | ty::PredicateAtom::Subtype(_)
406 | ty::PredicateAtom::ObjectSafe(_)
407 | ty::PredicateAtom::ClosureKind(..)
408 | ty::PredicateAtom::ConstEvaluatable(..)
1b1a35ee
XL
409 | ty::PredicateAtom::ConstEquate(..)
410 | ty::PredicateAtom::TypeWellFormedFromEnv(..) => None,
ba9703b0
XL
411 }
412}