]> git.proxmox.com Git - mirror_qemu.git/blame - cpu-exec.c
update
[mirror_qemu.git] / cpu-exec.c
CommitLineData
7d13299d
FB
1/*
2 * i386 emulator main execution loop
3 *
66321a11 4 * Copyright (c) 2003-2005 Fabrice Bellard
7d13299d 5 *
3ef693a0
FB
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
7d13299d 10 *
3ef693a0
FB
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
7d13299d 15 *
3ef693a0
FB
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
7d13299d 19 */
e4533c7a 20#include "config.h"
93ac68bc 21#include "exec.h"
956034d7 22#include "disas.h"
7d13299d 23
fbf9eeb3
FB
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
36bdbe54
FB
38int tb_invalidated_flag;
39
dc99065b 40//#define DEBUG_EXEC
9de5e440 41//#define DEBUG_SIGNAL
7d13299d 42
93ac68bc 43#if defined(TARGET_ARM) || defined(TARGET_SPARC)
e4533c7a
FB
44/* XXX: unify with i386 target */
45void cpu_loop_exit(void)
46{
47 longjmp(env->jmp_env, 1);
48}
49#endif
9c2a9ea1 50#if !(defined(TARGET_SPARC) || defined(TARGET_SH4))
3475187d
FB
51#define reg_T2
52#endif
e4533c7a 53
fbf9eeb3
FB
54/* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
56 */
57void cpu_resume_from_signal(CPUState *env1, void *puc)
58{
59#if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
61#endif
62
63 env = env1;
64
65 /* XXX: restore cpu registers saved in host registers */
66
67#if !defined(CONFIG_SOFTMMU)
68 if (puc) {
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71 }
72#endif
73 longjmp(env->jmp_env, 1);
74}
75
8a40a180
FB
76
77static TranslationBlock *tb_find_slow(target_ulong pc,
78 target_ulong cs_base,
79 unsigned int flags)
80{
81 TranslationBlock *tb, **ptb1;
82 int code_gen_size;
83 unsigned int h;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85 uint8_t *tc_ptr;
86
87 spin_lock(&tb_lock);
88
89 tb_invalidated_flag = 0;
90
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
96 phys_page2 = -1;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
99 for(;;) {
100 tb = *ptb1;
101 if (!tb)
102 goto not_found;
103 if (tb->pc == pc &&
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
110 TARGET_PAGE_SIZE;
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
113 goto found;
114 } else {
115 goto found;
116 }
117 }
118 ptb1 = &tb->phys_hash_next;
119 }
120 not_found:
121 /* if no translated code available, then translate it now */
122 tb = tb_alloc(pc);
123 if (!tb) {
124 /* flush must be done */
125 tb_flush(env);
126 /* cannot fail at this point */
127 tb = tb_alloc(pc);
128 /* don't forget to invalidate previous TB info */
15388002 129 tb_invalidated_flag = 1;
8a40a180
FB
130 }
131 tc_ptr = code_gen_ptr;
132 tb->tc_ptr = tc_ptr;
133 tb->cs_base = cs_base;
134 tb->flags = flags;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140 phys_page2 = -1;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
143 }
144 tb_link_phys(tb, phys_pc, phys_page2);
145
146 found:
8a40a180
FB
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
150 return tb;
151}
152
153static inline TranslationBlock *tb_find_fast(void)
154{
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
157 unsigned int flags;
158
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
161 is executed. */
162#if defined(TARGET_I386)
163 flags = env->hflags;
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167#elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
b5ff1b31
FB
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171 flags |= (1 << 6);
40f137e1
PB
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173 flags |= (1 << 7);
8a40a180
FB
174 cs_base = 0;
175 pc = env->regs[15];
176#elif defined(TARGET_SPARC)
177#ifdef TARGET_SPARC64
a80dde08
FB
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
8a40a180 181#else
a80dde08
FB
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184 | env->psrs;
8a40a180
FB
185#endif
186 cs_base = env->npc;
187 pc = env->pc;
188#elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
191 cs_base = 0;
192 pc = env->nip;
193#elif defined(TARGET_MIPS)
56b19403 194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cc9442b9 195 cs_base = 0;
8a40a180 196 pc = env->PC;
fdf9b3e8
FB
197#elif defined(TARGET_SH4)
198 flags = env->sr & (SR_MD | SR_RB);
199 cs_base = 0; /* XXXXX */
200 pc = env->pc;
8a40a180
FB
201#else
202#error unsupported CPU
203#endif
204 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
205 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
206 tb->flags != flags, 0)) {
207 tb = tb_find_slow(pc, cs_base, flags);
15388002
FB
208 /* Note: we do it here to avoid a gcc bug on Mac OS X when
209 doing it in tb_find_slow */
210 if (tb_invalidated_flag) {
211 /* as some TB could have been invalidated because
212 of memory exceptions while generating the code, we
213 must recompute the hash index here */
214 T0 = 0;
215 }
8a40a180
FB
216 }
217 return tb;
218}
219
220
7d13299d
FB
221/* main execution loop */
222
e4533c7a 223int cpu_exec(CPUState *env1)
7d13299d 224{
3475187d
FB
225 int saved_T0, saved_T1;
226#if defined(reg_T2)
227 int saved_T2;
228#endif
e4533c7a 229 CPUState *saved_env;
3475187d 230#if defined(TARGET_I386)
04369ff2
FB
231#ifdef reg_EAX
232 int saved_EAX;
233#endif
234#ifdef reg_ECX
235 int saved_ECX;
236#endif
237#ifdef reg_EDX
238 int saved_EDX;
239#endif
240#ifdef reg_EBX
241 int saved_EBX;
242#endif
243#ifdef reg_ESP
244 int saved_ESP;
245#endif
246#ifdef reg_EBP
247 int saved_EBP;
248#endif
249#ifdef reg_ESI
250 int saved_ESI;
251#endif
252#ifdef reg_EDI
253 int saved_EDI;
8c6939c0 254#endif
3475187d
FB
255#elif defined(TARGET_SPARC)
256#if defined(reg_REGWPTR)
257 uint32_t *saved_regwptr;
258#endif
259#endif
fdbb4691 260#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 261 int saved_i7, tmp_T0;
04369ff2 262#endif
8a40a180 263 int ret, interrupt_request;
7d13299d 264 void (*gen_func)(void);
8a40a180 265 TranslationBlock *tb;
c27004ec 266 uint8_t *tc_ptr;
8c6939c0 267
5a1e3cfc
FB
268#if defined(TARGET_I386)
269 /* handle exit of HALTED state */
270 if (env1->hflags & HF_HALTED_MASK) {
271 /* disable halt condition */
272 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273 (env1->eflags & IF_MASK)) {
274 env1->hflags &= ~HF_HALTED_MASK;
275 } else {
276 return EXCP_HALTED;
e80e1cc4
FB
277 }
278 }
279#elif defined(TARGET_PPC)
50443c98 280 if (env1->halted) {
e80e1cc4
FB
281 if (env1->msr[MSR_EE] &&
282 (env1->interrupt_request &
283 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
50443c98 284 env1->halted = 0;
e80e1cc4
FB
285 } else {
286 return EXCP_HALTED;
5a1e3cfc
FB
287 }
288 }
ba3c64fb
FB
289#elif defined(TARGET_SPARC)
290 if (env1->halted) {
291 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
292 (env1->psret != 0)) {
293 env1->halted = 0;
294 } else {
295 return EXCP_HALTED;
296 }
297 }
9332f9da
FB
298#elif defined(TARGET_ARM)
299 if (env1->halted) {
300 /* An interrupt wakes the CPU even if the I and F CPSR bits are
301 set. */
302 if (env1->interrupt_request
303 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
304 env1->halted = 0;
305 } else {
306 return EXCP_HALTED;
307 }
308 }
6810e154
FB
309#elif defined(TARGET_MIPS)
310 if (env1->halted) {
311 if (env1->interrupt_request &
312 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
313 env1->halted = 0;
314 } else {
315 return EXCP_HALTED;
316 }
317 }
5a1e3cfc
FB
318#endif
319
6a00d601
FB
320 cpu_single_env = env1;
321
7d13299d 322 /* first we save global registers */
c27004ec
FB
323 saved_env = env;
324 env = env1;
7d13299d
FB
325 saved_T0 = T0;
326 saved_T1 = T1;
3475187d 327#if defined(reg_T2)
e4533c7a 328 saved_T2 = T2;
3475187d 329#endif
fdbb4691 330#if defined(__sparc__) && !defined(HOST_SOLARIS)
e4533c7a
FB
331 /* we also save i7 because longjmp may not restore it */
332 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
333#endif
334
335#if defined(TARGET_I386)
04369ff2
FB
336#ifdef reg_EAX
337 saved_EAX = EAX;
04369ff2
FB
338#endif
339#ifdef reg_ECX
340 saved_ECX = ECX;
04369ff2
FB
341#endif
342#ifdef reg_EDX
343 saved_EDX = EDX;
04369ff2
FB
344#endif
345#ifdef reg_EBX
346 saved_EBX = EBX;
04369ff2
FB
347#endif
348#ifdef reg_ESP
349 saved_ESP = ESP;
04369ff2
FB
350#endif
351#ifdef reg_EBP
352 saved_EBP = EBP;
04369ff2
FB
353#endif
354#ifdef reg_ESI
355 saved_ESI = ESI;
04369ff2
FB
356#endif
357#ifdef reg_EDI
358 saved_EDI = EDI;
04369ff2 359#endif
0d1a29f9
FB
360
361 env_to_regs();
9de5e440 362 /* put eflags in CPU temporary format */
fc2b4c48
FB
363 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
364 DF = 1 - (2 * ((env->eflags >> 10) & 1));
9de5e440 365 CC_OP = CC_OP_EFLAGS;
fc2b4c48 366 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 367#elif defined(TARGET_ARM)
93ac68bc 368#elif defined(TARGET_SPARC)
3475187d
FB
369#if defined(reg_REGWPTR)
370 saved_regwptr = REGWPTR;
371#endif
67867308 372#elif defined(TARGET_PPC)
6af0bf9c 373#elif defined(TARGET_MIPS)
fdf9b3e8
FB
374#elif defined(TARGET_SH4)
375 /* XXXXX */
e4533c7a
FB
376#else
377#error unsupported target CPU
378#endif
3fb2ded1 379 env->exception_index = -1;
9d27abd9 380
7d13299d 381 /* prepare setjmp context for exception handling */
3fb2ded1
FB
382 for(;;) {
383 if (setjmp(env->jmp_env) == 0) {
ee8b7021 384 env->current_tb = NULL;
3fb2ded1
FB
385 /* if an exception is pending, we execute it here */
386 if (env->exception_index >= 0) {
387 if (env->exception_index >= EXCP_INTERRUPT) {
388 /* exit request from the cpu execution loop */
389 ret = env->exception_index;
390 break;
391 } else if (env->user_mode_only) {
392 /* if user mode only, we simulate a fake exception
393 which will be hanlded outside the cpu execution
394 loop */
83479e77 395#if defined(TARGET_I386)
3fb2ded1
FB
396 do_interrupt_user(env->exception_index,
397 env->exception_is_int,
398 env->error_code,
399 env->exception_next_eip);
83479e77 400#endif
3fb2ded1
FB
401 ret = env->exception_index;
402 break;
403 } else {
83479e77 404#if defined(TARGET_I386)
3fb2ded1
FB
405 /* simulate a real cpu exception. On i386, it can
406 trigger new exceptions, but we do not handle
407 double or triple faults yet. */
408 do_interrupt(env->exception_index,
409 env->exception_is_int,
410 env->error_code,
d05e66d2 411 env->exception_next_eip, 0);
ce09776b
FB
412#elif defined(TARGET_PPC)
413 do_interrupt(env);
6af0bf9c
FB
414#elif defined(TARGET_MIPS)
415 do_interrupt(env);
e95c8d51 416#elif defined(TARGET_SPARC)
1a0c3292 417 do_interrupt(env->exception_index);
b5ff1b31
FB
418#elif defined(TARGET_ARM)
419 do_interrupt(env);
fdf9b3e8
FB
420#elif defined(TARGET_SH4)
421 do_interrupt(env);
83479e77 422#endif
3fb2ded1
FB
423 }
424 env->exception_index = -1;
9df217a3
FB
425 }
426#ifdef USE_KQEMU
427 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
428 int ret;
429 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
430 ret = kqemu_cpu_exec(env);
431 /* put eflags in CPU temporary format */
432 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
433 DF = 1 - (2 * ((env->eflags >> 10) & 1));
434 CC_OP = CC_OP_EFLAGS;
435 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
436 if (ret == 1) {
437 /* exception */
438 longjmp(env->jmp_env, 1);
439 } else if (ret == 2) {
440 /* softmmu execution needed */
441 } else {
442 if (env->interrupt_request != 0) {
443 /* hardware interrupt will be executed just after */
444 } else {
445 /* otherwise, we restart */
446 longjmp(env->jmp_env, 1);
447 }
448 }
3fb2ded1 449 }
9df217a3
FB
450#endif
451
3fb2ded1
FB
452 T0 = 0; /* force lookup of first TB */
453 for(;;) {
fdbb4691 454#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1
FB
455 /* g1 can be modified by some libc? functions */
456 tmp_T0 = T0;
8c6939c0 457#endif
68a79315 458 interrupt_request = env->interrupt_request;
2e255c6b 459 if (__builtin_expect(interrupt_request, 0)) {
68a79315 460#if defined(TARGET_I386)
3b21e03e
FB
461 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
462 !(env->hflags & HF_SMM_MASK)) {
463 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
464 do_smm_enter();
465#if defined(__sparc__) && !defined(HOST_SOLARIS)
466 tmp_T0 = 0;
467#else
468 T0 = 0;
469#endif
470 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
3f337316
FB
471 (env->eflags & IF_MASK) &&
472 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
68a79315 473 int intno;
fbf9eeb3 474 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
a541f297 475 intno = cpu_get_pic_interrupt(env);
f193c797 476 if (loglevel & CPU_LOG_TB_IN_ASM) {
68a79315
FB
477 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
478 }
d05e66d2 479 do_interrupt(intno, 0, 0, 0, 1);
907a5b26
FB
480 /* ensure that no TB jump will be modified as
481 the program flow was changed */
fdbb4691 482#if defined(__sparc__) && !defined(HOST_SOLARIS)
907a5b26
FB
483 tmp_T0 = 0;
484#else
485 T0 = 0;
486#endif
68a79315 487 }
ce09776b 488#elif defined(TARGET_PPC)
9fddaa0c
FB
489#if 0
490 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
491 cpu_ppc_reset(env);
492 }
493#endif
494 if (msr_ee != 0) {
8a40a180 495 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
9fddaa0c
FB
496 /* Raise it */
497 env->exception_index = EXCP_EXTERNAL;
498 env->error_code = 0;
ce09776b 499 do_interrupt(env);
8a40a180 500 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 501#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
502 tmp_T0 = 0;
503#else
504 T0 = 0;
505#endif
506 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
507 /* Raise it */
508 env->exception_index = EXCP_DECR;
509 env->error_code = 0;
510 do_interrupt(env);
9fddaa0c 511 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
fdbb4691 512#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
513 tmp_T0 = 0;
514#else
515 T0 = 0;
516#endif
517 }
ce09776b 518 }
6af0bf9c
FB
519#elif defined(TARGET_MIPS)
520 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
521 (env->CP0_Status & (1 << CP0St_IE)) &&
7ebab699 522 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
6af0bf9c
FB
523 !(env->hflags & MIPS_HFLAG_EXL) &&
524 !(env->hflags & MIPS_HFLAG_ERL) &&
525 !(env->hflags & MIPS_HFLAG_DM)) {
526 /* Raise it */
527 env->exception_index = EXCP_EXT_INTERRUPT;
528 env->error_code = 0;
529 do_interrupt(env);
530 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
fdbb4691 531#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
532 tmp_T0 = 0;
533#else
534 T0 = 0;
535#endif
6af0bf9c 536 }
e95c8d51 537#elif defined(TARGET_SPARC)
66321a11
FB
538 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
539 (env->psret != 0)) {
540 int pil = env->interrupt_index & 15;
541 int type = env->interrupt_index & 0xf0;
542
543 if (((type == TT_EXTINT) &&
544 (pil == 15 || pil > env->psrpil)) ||
545 type != TT_EXTINT) {
546 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
547 do_interrupt(env->interrupt_index);
548 env->interrupt_index = 0;
fdbb4691 549#if defined(__sparc__) && !defined(HOST_SOLARIS)
8a40a180
FB
550 tmp_T0 = 0;
551#else
552 T0 = 0;
553#endif
66321a11 554 }
e95c8d51
FB
555 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
556 //do_interrupt(0, 0, 0, 0, 0);
557 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
ba3c64fb 558 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
df52b000
FB
559 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
560 env->halted = 1;
561 env->exception_index = EXCP_HLT;
562 cpu_loop_exit();
ba3c64fb 563 }
b5ff1b31
FB
564#elif defined(TARGET_ARM)
565 if (interrupt_request & CPU_INTERRUPT_FIQ
566 && !(env->uncached_cpsr & CPSR_F)) {
567 env->exception_index = EXCP_FIQ;
568 do_interrupt(env);
569 }
570 if (interrupt_request & CPU_INTERRUPT_HARD
571 && !(env->uncached_cpsr & CPSR_I)) {
572 env->exception_index = EXCP_IRQ;
573 do_interrupt(env);
574 }
fdf9b3e8
FB
575#elif defined(TARGET_SH4)
576 /* XXXXX */
68a79315 577#endif
9d05095e
FB
578 /* Don't use the cached interupt_request value,
579 do_interrupt may have updated the EXITTB flag. */
b5ff1b31 580 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
bf3e8bf1
FB
581 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
582 /* ensure that no TB jump will be modified as
583 the program flow was changed */
fdbb4691 584#if defined(__sparc__) && !defined(HOST_SOLARIS)
bf3e8bf1
FB
585 tmp_T0 = 0;
586#else
587 T0 = 0;
588#endif
589 }
68a79315
FB
590 if (interrupt_request & CPU_INTERRUPT_EXIT) {
591 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
592 env->exception_index = EXCP_INTERRUPT;
593 cpu_loop_exit();
594 }
3fb2ded1 595 }
7d13299d 596#ifdef DEBUG_EXEC
b5ff1b31 597 if ((loglevel & CPU_LOG_TB_CPU)) {
e4533c7a 598#if defined(TARGET_I386)
3fb2ded1 599 /* restore flags in standard format */
fc9f715d 600#ifdef reg_EAX
3fb2ded1 601 env->regs[R_EAX] = EAX;
fc9f715d
FB
602#endif
603#ifdef reg_EBX
3fb2ded1 604 env->regs[R_EBX] = EBX;
fc9f715d
FB
605#endif
606#ifdef reg_ECX
3fb2ded1 607 env->regs[R_ECX] = ECX;
fc9f715d
FB
608#endif
609#ifdef reg_EDX
3fb2ded1 610 env->regs[R_EDX] = EDX;
fc9f715d
FB
611#endif
612#ifdef reg_ESI
3fb2ded1 613 env->regs[R_ESI] = ESI;
fc9f715d
FB
614#endif
615#ifdef reg_EDI
3fb2ded1 616 env->regs[R_EDI] = EDI;
fc9f715d
FB
617#endif
618#ifdef reg_EBP
3fb2ded1 619 env->regs[R_EBP] = EBP;
fc9f715d
FB
620#endif
621#ifdef reg_ESP
3fb2ded1 622 env->regs[R_ESP] = ESP;
fc9f715d 623#endif
3fb2ded1 624 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
7fe48483 625 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
3fb2ded1 626 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
e4533c7a 627#elif defined(TARGET_ARM)
7fe48483 628 cpu_dump_state(env, logfile, fprintf, 0);
93ac68bc 629#elif defined(TARGET_SPARC)
3475187d
FB
630 REGWPTR = env->regbase + (env->cwp * 16);
631 env->regwptr = REGWPTR;
632 cpu_dump_state(env, logfile, fprintf, 0);
67867308 633#elif defined(TARGET_PPC)
7fe48483 634 cpu_dump_state(env, logfile, fprintf, 0);
6af0bf9c
FB
635#elif defined(TARGET_MIPS)
636 cpu_dump_state(env, logfile, fprintf, 0);
fdf9b3e8
FB
637#elif defined(TARGET_SH4)
638 cpu_dump_state(env, logfile, fprintf, 0);
e4533c7a
FB
639#else
640#error unsupported target CPU
641#endif
3fb2ded1 642 }
7d13299d 643#endif
8a40a180 644 tb = tb_find_fast();
9d27abd9 645#ifdef DEBUG_EXEC
c1135f61 646 if ((loglevel & CPU_LOG_EXEC)) {
c27004ec
FB
647 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
648 (long)tb->tc_ptr, tb->pc,
649 lookup_symbol(tb->pc));
3fb2ded1 650 }
9d27abd9 651#endif
fdbb4691 652#if defined(__sparc__) && !defined(HOST_SOLARIS)
3fb2ded1 653 T0 = tmp_T0;
8c6939c0 654#endif
8a40a180
FB
655 /* see if we can patch the calling TB. When the TB
656 spans two pages, we cannot safely do a direct
657 jump. */
c27004ec 658 {
8a40a180 659 if (T0 != 0 &&
f32fc648
FB
660#if USE_KQEMU
661 (env->kqemu_enabled != 2) &&
662#endif
8a40a180 663 tb->page_addr[1] == -1
bf3e8bf1
FB
664#if defined(TARGET_I386) && defined(USE_CODE_COPY)
665 && (tb->cflags & CF_CODE_COPY) ==
666 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
667#endif
668 ) {
3fb2ded1 669 spin_lock(&tb_lock);
c27004ec 670 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
97eb5b14
FB
671#if defined(USE_CODE_COPY)
672 /* propagates the FP use info */
673 ((TranslationBlock *)(T0 & ~3))->cflags |=
674 (tb->cflags & CF_FP_USED);
675#endif
3fb2ded1
FB
676 spin_unlock(&tb_lock);
677 }
c27004ec 678 }
3fb2ded1 679 tc_ptr = tb->tc_ptr;
83479e77 680 env->current_tb = tb;
3fb2ded1
FB
681 /* execute the generated code */
682 gen_func = (void *)tc_ptr;
8c6939c0 683#if defined(__sparc__)
3fb2ded1
FB
684 __asm__ __volatile__("call %0\n\t"
685 "mov %%o7,%%i0"
686 : /* no outputs */
687 : "r" (gen_func)
fdbb4691
FB
688 : "i0", "i1", "i2", "i3", "i4", "i5",
689 "l0", "l1", "l2", "l3", "l4", "l5",
690 "l6", "l7");
8c6939c0 691#elif defined(__arm__)
3fb2ded1
FB
692 asm volatile ("mov pc, %0\n\t"
693 ".global exec_loop\n\t"
694 "exec_loop:\n\t"
695 : /* no outputs */
696 : "r" (gen_func)
697 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
bf3e8bf1
FB
698#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
699{
700 if (!(tb->cflags & CF_CODE_COPY)) {
97eb5b14
FB
701 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
702 save_native_fp_state(env);
703 }
bf3e8bf1
FB
704 gen_func();
705 } else {
97eb5b14
FB
706 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
707 restore_native_fp_state(env);
708 }
bf3e8bf1
FB
709 /* we work with native eflags */
710 CC_SRC = cc_table[CC_OP].compute_all();
711 CC_OP = CC_OP_EFLAGS;
712 asm(".globl exec_loop\n"
713 "\n"
714 "debug1:\n"
715 " pushl %%ebp\n"
716 " fs movl %10, %9\n"
717 " fs movl %11, %%eax\n"
718 " andl $0x400, %%eax\n"
719 " fs orl %8, %%eax\n"
720 " pushl %%eax\n"
721 " popf\n"
722 " fs movl %%esp, %12\n"
723 " fs movl %0, %%eax\n"
724 " fs movl %1, %%ecx\n"
725 " fs movl %2, %%edx\n"
726 " fs movl %3, %%ebx\n"
727 " fs movl %4, %%esp\n"
728 " fs movl %5, %%ebp\n"
729 " fs movl %6, %%esi\n"
730 " fs movl %7, %%edi\n"
731 " fs jmp *%9\n"
732 "exec_loop:\n"
733 " fs movl %%esp, %4\n"
734 " fs movl %12, %%esp\n"
735 " fs movl %%eax, %0\n"
736 " fs movl %%ecx, %1\n"
737 " fs movl %%edx, %2\n"
738 " fs movl %%ebx, %3\n"
739 " fs movl %%ebp, %5\n"
740 " fs movl %%esi, %6\n"
741 " fs movl %%edi, %7\n"
742 " pushf\n"
743 " popl %%eax\n"
744 " movl %%eax, %%ecx\n"
745 " andl $0x400, %%ecx\n"
746 " shrl $9, %%ecx\n"
747 " andl $0x8d5, %%eax\n"
748 " fs movl %%eax, %8\n"
749 " movl $1, %%eax\n"
750 " subl %%ecx, %%eax\n"
751 " fs movl %%eax, %11\n"
752 " fs movl %9, %%ebx\n" /* get T0 value */
753 " popl %%ebp\n"
754 :
755 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
756 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
757 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
758 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
759 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
760 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
761 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
762 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
763 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
764 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
765 "a" (gen_func),
766 "m" (*(uint8_t *)offsetof(CPUState, df)),
767 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
768 : "%ecx", "%edx"
769 );
770 }
771}
b8076a74
FB
772#elif defined(__ia64)
773 struct fptr {
774 void *ip;
775 void *gp;
776 } fp;
777
778 fp.ip = tc_ptr;
779 fp.gp = code_gen_buffer + 2 * (1 << 20);
780 (*(void (*)(void)) &fp)();
ae228531 781#else
3fb2ded1 782 gen_func();
ae228531 783#endif
83479e77 784 env->current_tb = NULL;
4cbf74b6
FB
785 /* reset soft MMU for next block (it can currently
786 only be set by a memory fault) */
787#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
3f337316
FB
788 if (env->hflags & HF_SOFTMMU_MASK) {
789 env->hflags &= ~HF_SOFTMMU_MASK;
4cbf74b6
FB
790 /* do not allow linking to another block */
791 T0 = 0;
792 }
f32fc648
FB
793#endif
794#if defined(USE_KQEMU)
795#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
796 if (kqemu_is_ok(env) &&
797 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
798 cpu_loop_exit();
799 }
4cbf74b6 800#endif
3fb2ded1
FB
801 }
802 } else {
0d1a29f9 803 env_to_regs();
7d13299d 804 }
3fb2ded1
FB
805 } /* for(;;) */
806
7d13299d 807
e4533c7a 808#if defined(TARGET_I386)
97eb5b14
FB
809#if defined(USE_CODE_COPY)
810 if (env->native_fp_regs) {
811 save_native_fp_state(env);
812 }
813#endif
9de5e440 814 /* restore flags in standard format */
fc2b4c48 815 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
9de5e440 816
7d13299d 817 /* restore global registers */
04369ff2
FB
818#ifdef reg_EAX
819 EAX = saved_EAX;
820#endif
821#ifdef reg_ECX
822 ECX = saved_ECX;
823#endif
824#ifdef reg_EDX
825 EDX = saved_EDX;
826#endif
827#ifdef reg_EBX
828 EBX = saved_EBX;
829#endif
830#ifdef reg_ESP
831 ESP = saved_ESP;
832#endif
833#ifdef reg_EBP
834 EBP = saved_EBP;
835#endif
836#ifdef reg_ESI
837 ESI = saved_ESI;
838#endif
839#ifdef reg_EDI
840 EDI = saved_EDI;
8c6939c0 841#endif
e4533c7a 842#elif defined(TARGET_ARM)
b7bcbe95 843 /* XXX: Save/restore host fpu exception state?. */
93ac68bc 844#elif defined(TARGET_SPARC)
3475187d
FB
845#if defined(reg_REGWPTR)
846 REGWPTR = saved_regwptr;
847#endif
67867308 848#elif defined(TARGET_PPC)
6af0bf9c 849#elif defined(TARGET_MIPS)
fdf9b3e8
FB
850#elif defined(TARGET_SH4)
851 /* XXXXX */
e4533c7a
FB
852#else
853#error unsupported target CPU
854#endif
fdbb4691 855#if defined(__sparc__) && !defined(HOST_SOLARIS)
8c6939c0 856 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
04369ff2 857#endif
7d13299d
FB
858 T0 = saved_T0;
859 T1 = saved_T1;
3475187d 860#if defined(reg_T2)
e4533c7a 861 T2 = saved_T2;
3475187d 862#endif
7d13299d 863 env = saved_env;
6a00d601
FB
864 /* fail safe : never use cpu_single_env outside cpu_exec() */
865 cpu_single_env = NULL;
7d13299d
FB
866 return ret;
867}
6dbad63e 868
fbf9eeb3
FB
869/* must only be called from the generated code as an exception can be
870 generated */
871void tb_invalidate_page_range(target_ulong start, target_ulong end)
872{
dc5d0b3d
FB
873 /* XXX: cannot enable it yet because it yields to MMU exception
874 where NIP != read address on PowerPC */
875#if 0
fbf9eeb3
FB
876 target_ulong phys_addr;
877 phys_addr = get_phys_addr_code(env, start);
878 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
dc5d0b3d 879#endif
fbf9eeb3
FB
880}
881
1a18c71b 882#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
e4533c7a 883
6dbad63e
FB
884void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
885{
886 CPUX86State *saved_env;
887
888 saved_env = env;
889 env = s;
a412ac57 890 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
a513fe19 891 selector &= 0xffff;
2e255c6b 892 cpu_x86_load_seg_cache(env, seg_reg, selector,
c27004ec 893 (selector << 4), 0xffff, 0);
a513fe19 894 } else {
b453b70b 895 load_seg(seg_reg, selector);
a513fe19 896 }
6dbad63e
FB
897 env = saved_env;
898}
9de5e440 899
d0a1ffc9
FB
900void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
901{
902 CPUX86State *saved_env;
903
904 saved_env = env;
905 env = s;
906
c27004ec 907 helper_fsave((target_ulong)ptr, data32);
d0a1ffc9
FB
908
909 env = saved_env;
910}
911
912void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
913{
914 CPUX86State *saved_env;
915
916 saved_env = env;
917 env = s;
918
c27004ec 919 helper_frstor((target_ulong)ptr, data32);
d0a1ffc9
FB
920
921 env = saved_env;
922}
923
e4533c7a
FB
924#endif /* TARGET_I386 */
925
67b915a5
FB
926#if !defined(CONFIG_SOFTMMU)
927
3fb2ded1
FB
928#if defined(TARGET_I386)
929
b56dad1c 930/* 'pc' is the host PC at which the exception was raised. 'address' is
fd6ce8f6
FB
931 the effective address of the memory exception. 'is_write' is 1 if a
932 write caused the exception and otherwise 0'. 'old_set' is the
933 signal set which should be restored */
2b413144 934static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
935 int is_write, sigset_t *old_set,
936 void *puc)
9de5e440 937{
a513fe19
FB
938 TranslationBlock *tb;
939 int ret;
68a79315 940
83479e77
FB
941 if (cpu_single_env)
942 env = cpu_single_env; /* XXX: find a correct solution for multithread */
fd6ce8f6 943#if defined(DEBUG_SIGNAL)
bf3e8bf1
FB
944 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
945 pc, address, is_write, *(unsigned long *)old_set);
9de5e440 946#endif
25eb4484 947 /* XXX: locking issue */
53a5960a 948 if (is_write && page_unprotect(h2g(address), pc, puc)) {
fd6ce8f6
FB
949 return 1;
950 }
fbf9eeb3 951
3fb2ded1 952 /* see if it is an MMU fault */
93a40ea9
FB
953 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
954 ((env->hflags & HF_CPL_MASK) == 3), 0);
3fb2ded1
FB
955 if (ret < 0)
956 return 0; /* not an MMU fault */
957 if (ret == 0)
958 return 1; /* the MMU fault was handled without causing real CPU fault */
959 /* now we have a real cpu fault */
a513fe19
FB
960 tb = tb_find_pc(pc);
961 if (tb) {
9de5e440
FB
962 /* the PC is inside the translated code. It means that we have
963 a virtual CPU fault */
bf3e8bf1 964 cpu_restore_state(tb, env, pc, puc);
3fb2ded1 965 }
4cbf74b6 966 if (ret == 1) {
3fb2ded1 967#if 0
4cbf74b6
FB
968 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
969 env->eip, env->cr[2], env->error_code);
3fb2ded1 970#endif
4cbf74b6
FB
971 /* we restore the process signal mask as the sigreturn should
972 do it (XXX: use sigsetjmp) */
973 sigprocmask(SIG_SETMASK, old_set, NULL);
54ca9095 974 raise_exception_err(env->exception_index, env->error_code);
4cbf74b6
FB
975 } else {
976 /* activate soft MMU for this block */
3f337316 977 env->hflags |= HF_SOFTMMU_MASK;
fbf9eeb3 978 cpu_resume_from_signal(env, puc);
4cbf74b6 979 }
3fb2ded1
FB
980 /* never comes here */
981 return 1;
982}
983
e4533c7a 984#elif defined(TARGET_ARM)
3fb2ded1 985static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
986 int is_write, sigset_t *old_set,
987 void *puc)
3fb2ded1 988{
68016c62
FB
989 TranslationBlock *tb;
990 int ret;
991
992 if (cpu_single_env)
993 env = cpu_single_env; /* XXX: find a correct solution for multithread */
994#if defined(DEBUG_SIGNAL)
995 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
996 pc, address, is_write, *(unsigned long *)old_set);
997#endif
9f0777ed 998 /* XXX: locking issue */
53a5960a 999 if (is_write && page_unprotect(h2g(address), pc, puc)) {
9f0777ed
FB
1000 return 1;
1001 }
68016c62
FB
1002 /* see if it is an MMU fault */
1003 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
1004 if (ret < 0)
1005 return 0; /* not an MMU fault */
1006 if (ret == 0)
1007 return 1; /* the MMU fault was handled without causing real CPU fault */
1008 /* now we have a real cpu fault */
1009 tb = tb_find_pc(pc);
1010 if (tb) {
1011 /* the PC is inside the translated code. It means that we have
1012 a virtual CPU fault */
1013 cpu_restore_state(tb, env, pc, puc);
1014 }
1015 /* we restore the process signal mask as the sigreturn should
1016 do it (XXX: use sigsetjmp) */
1017 sigprocmask(SIG_SETMASK, old_set, NULL);
1018 cpu_loop_exit();
3fb2ded1 1019}
93ac68bc
FB
1020#elif defined(TARGET_SPARC)
1021static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
1022 int is_write, sigset_t *old_set,
1023 void *puc)
93ac68bc 1024{
68016c62
FB
1025 TranslationBlock *tb;
1026 int ret;
1027
1028 if (cpu_single_env)
1029 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1030#if defined(DEBUG_SIGNAL)
1031 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1032 pc, address, is_write, *(unsigned long *)old_set);
1033#endif
b453b70b 1034 /* XXX: locking issue */
53a5960a 1035 if (is_write && page_unprotect(h2g(address), pc, puc)) {
b453b70b
FB
1036 return 1;
1037 }
68016c62
FB
1038 /* see if it is an MMU fault */
1039 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1040 if (ret < 0)
1041 return 0; /* not an MMU fault */
1042 if (ret == 0)
1043 return 1; /* the MMU fault was handled without causing real CPU fault */
1044 /* now we have a real cpu fault */
1045 tb = tb_find_pc(pc);
1046 if (tb) {
1047 /* the PC is inside the translated code. It means that we have
1048 a virtual CPU fault */
1049 cpu_restore_state(tb, env, pc, puc);
1050 }
1051 /* we restore the process signal mask as the sigreturn should
1052 do it (XXX: use sigsetjmp) */
1053 sigprocmask(SIG_SETMASK, old_set, NULL);
1054 cpu_loop_exit();
93ac68bc 1055}
67867308
FB
1056#elif defined (TARGET_PPC)
1057static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
bf3e8bf1
FB
1058 int is_write, sigset_t *old_set,
1059 void *puc)
67867308
FB
1060{
1061 TranslationBlock *tb;
ce09776b 1062 int ret;
67867308 1063
67867308
FB
1064 if (cpu_single_env)
1065 env = cpu_single_env; /* XXX: find a correct solution for multithread */
67867308
FB
1066#if defined(DEBUG_SIGNAL)
1067 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1068 pc, address, is_write, *(unsigned long *)old_set);
1069#endif
1070 /* XXX: locking issue */
53a5960a 1071 if (is_write && page_unprotect(h2g(address), pc, puc)) {
67867308
FB
1072 return 1;
1073 }
1074
ce09776b 1075 /* see if it is an MMU fault */
7f957d28 1076 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
ce09776b
FB
1077 if (ret < 0)
1078 return 0; /* not an MMU fault */
1079 if (ret == 0)
1080 return 1; /* the MMU fault was handled without causing real CPU fault */
1081
67867308
FB
1082 /* now we have a real cpu fault */
1083 tb = tb_find_pc(pc);
1084 if (tb) {
1085 /* the PC is inside the translated code. It means that we have
1086 a virtual CPU fault */
bf3e8bf1 1087 cpu_restore_state(tb, env, pc, puc);
67867308 1088 }
ce09776b 1089 if (ret == 1) {
67867308 1090#if 0
ce09776b
FB
1091 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1092 env->nip, env->error_code, tb);
67867308
FB
1093#endif
1094 /* we restore the process signal mask as the sigreturn should
1095 do it (XXX: use sigsetjmp) */
bf3e8bf1 1096 sigprocmask(SIG_SETMASK, old_set, NULL);
9fddaa0c 1097 do_raise_exception_err(env->exception_index, env->error_code);
ce09776b
FB
1098 } else {
1099 /* activate soft MMU for this block */
fbf9eeb3 1100 cpu_resume_from_signal(env, puc);
ce09776b 1101 }
67867308
FB
1102 /* never comes here */
1103 return 1;
1104}
6af0bf9c
FB
1105
1106#elif defined (TARGET_MIPS)
1107static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1108 int is_write, sigset_t *old_set,
1109 void *puc)
1110{
1111 TranslationBlock *tb;
1112 int ret;
1113
1114 if (cpu_single_env)
1115 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1116#if defined(DEBUG_SIGNAL)
1117 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1118 pc, address, is_write, *(unsigned long *)old_set);
1119#endif
1120 /* XXX: locking issue */
53a5960a 1121 if (is_write && page_unprotect(h2g(address), pc, puc)) {
6af0bf9c
FB
1122 return 1;
1123 }
1124
1125 /* see if it is an MMU fault */
cc9442b9 1126 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
6af0bf9c
FB
1127 if (ret < 0)
1128 return 0; /* not an MMU fault */
1129 if (ret == 0)
1130 return 1; /* the MMU fault was handled without causing real CPU fault */
1131
1132 /* now we have a real cpu fault */
1133 tb = tb_find_pc(pc);
1134 if (tb) {
1135 /* the PC is inside the translated code. It means that we have
1136 a virtual CPU fault */
1137 cpu_restore_state(tb, env, pc, puc);
1138 }
1139 if (ret == 1) {
1140#if 0
1141 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1142 env->nip, env->error_code, tb);
1143#endif
1144 /* we restore the process signal mask as the sigreturn should
1145 do it (XXX: use sigsetjmp) */
1146 sigprocmask(SIG_SETMASK, old_set, NULL);
1147 do_raise_exception_err(env->exception_index, env->error_code);
1148 } else {
1149 /* activate soft MMU for this block */
1150 cpu_resume_from_signal(env, puc);
1151 }
1152 /* never comes here */
1153 return 1;
1154}
1155
fdf9b3e8
FB
1156#elif defined (TARGET_SH4)
1157static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1158 int is_write, sigset_t *old_set,
1159 void *puc)
1160{
1161 TranslationBlock *tb;
1162 int ret;
1163
1164 if (cpu_single_env)
1165 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1166#if defined(DEBUG_SIGNAL)
1167 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1168 pc, address, is_write, *(unsigned long *)old_set);
1169#endif
1170 /* XXX: locking issue */
1171 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1172 return 1;
1173 }
1174
1175 /* see if it is an MMU fault */
1176 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1177 if (ret < 0)
1178 return 0; /* not an MMU fault */
1179 if (ret == 0)
1180 return 1; /* the MMU fault was handled without causing real CPU fault */
1181
1182 /* now we have a real cpu fault */
1183 tb = tb_find_pc(pc);
1184 if (tb) {
1185 /* the PC is inside the translated code. It means that we have
1186 a virtual CPU fault */
1187 cpu_restore_state(tb, env, pc, puc);
1188 }
fdf9b3e8
FB
1189#if 0
1190 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1191 env->nip, env->error_code, tb);
1192#endif
1193 /* we restore the process signal mask as the sigreturn should
1194 do it (XXX: use sigsetjmp) */
355fb23d
PB
1195 sigprocmask(SIG_SETMASK, old_set, NULL);
1196 cpu_loop_exit();
fdf9b3e8
FB
1197 /* never comes here */
1198 return 1;
1199}
e4533c7a
FB
1200#else
1201#error unsupported target CPU
1202#endif
9de5e440 1203
2b413144
FB
1204#if defined(__i386__)
1205
bf3e8bf1
FB
1206#if defined(USE_CODE_COPY)
1207static void cpu_send_trap(unsigned long pc, int trap,
1208 struct ucontext *uc)
1209{
1210 TranslationBlock *tb;
1211
1212 if (cpu_single_env)
1213 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1214 /* now we have a real cpu fault */
1215 tb = tb_find_pc(pc);
1216 if (tb) {
1217 /* the PC is inside the translated code. It means that we have
1218 a virtual CPU fault */
1219 cpu_restore_state(tb, env, pc, uc);
1220 }
1221 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1222 raise_exception_err(trap, env->error_code);
1223}
1224#endif
1225
e4533c7a
FB
1226int cpu_signal_handler(int host_signum, struct siginfo *info,
1227 void *puc)
9de5e440 1228{
9de5e440
FB
1229 struct ucontext *uc = puc;
1230 unsigned long pc;
bf3e8bf1 1231 int trapno;
97eb5b14 1232
d691f669
FB
1233#ifndef REG_EIP
1234/* for glibc 2.1 */
fd6ce8f6
FB
1235#define REG_EIP EIP
1236#define REG_ERR ERR
1237#define REG_TRAPNO TRAPNO
d691f669 1238#endif
fc2b4c48 1239 pc = uc->uc_mcontext.gregs[REG_EIP];
bf3e8bf1
FB
1240 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1241#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1242 if (trapno == 0x00 || trapno == 0x05) {
1243 /* send division by zero or bound exception */
1244 cpu_send_trap(pc, trapno, uc);
1245 return 1;
1246 } else
1247#endif
1248 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1249 trapno == 0xe ?
1250 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1251 &uc->uc_sigmask, puc);
2b413144
FB
1252}
1253
bc51c5c9
FB
1254#elif defined(__x86_64__)
1255
1256int cpu_signal_handler(int host_signum, struct siginfo *info,
1257 void *puc)
1258{
1259 struct ucontext *uc = puc;
1260 unsigned long pc;
1261
1262 pc = uc->uc_mcontext.gregs[REG_RIP];
1263 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1264 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1265 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1266 &uc->uc_sigmask, puc);
1267}
1268
83fb7adf 1269#elif defined(__powerpc__)
2b413144 1270
83fb7adf
FB
1271/***********************************************************************
1272 * signal context platform-specific definitions
1273 * From Wine
1274 */
1275#ifdef linux
1276/* All Registers access - only for local access */
1277# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1278/* Gpr Registers access */
1279# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1280# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1281# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1282# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1283# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1284# define LR_sig(context) REG_sig(link, context) /* Link register */
1285# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1286/* Float Registers access */
1287# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1288# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1289/* Exception Registers access */
1290# define DAR_sig(context) REG_sig(dar, context)
1291# define DSISR_sig(context) REG_sig(dsisr, context)
1292# define TRAP_sig(context) REG_sig(trap, context)
1293#endif /* linux */
1294
1295#ifdef __APPLE__
1296# include <sys/ucontext.h>
1297typedef struct ucontext SIGCONTEXT;
1298/* All Registers access - only for local access */
1299# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1300# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1301# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1302# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1303/* Gpr Registers access */
1304# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1305# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1306# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1307# define CTR_sig(context) REG_sig(ctr, context)
1308# define XER_sig(context) REG_sig(xer, context) /* Link register */
1309# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1310# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1311/* Float Registers access */
1312# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1313# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1314/* Exception Registers access */
1315# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1316# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1317# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1318#endif /* __APPLE__ */
1319
d1d9f421 1320int cpu_signal_handler(int host_signum, struct siginfo *info,
e4533c7a 1321 void *puc)
2b413144 1322{
25eb4484 1323 struct ucontext *uc = puc;
25eb4484 1324 unsigned long pc;
25eb4484
FB
1325 int is_write;
1326
83fb7adf 1327 pc = IAR_sig(uc);
25eb4484
FB
1328 is_write = 0;
1329#if 0
1330 /* ppc 4xx case */
83fb7adf 1331 if (DSISR_sig(uc) & 0x00800000)
25eb4484
FB
1332 is_write = 1;
1333#else
83fb7adf 1334 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
25eb4484
FB
1335 is_write = 1;
1336#endif
1337 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1338 is_write, &uc->uc_sigmask, puc);
2b413144
FB
1339}
1340
2f87c607
FB
1341#elif defined(__alpha__)
1342
e4533c7a 1343int cpu_signal_handler(int host_signum, struct siginfo *info,
2f87c607
FB
1344 void *puc)
1345{
1346 struct ucontext *uc = puc;
1347 uint32_t *pc = uc->uc_mcontext.sc_pc;
1348 uint32_t insn = *pc;
1349 int is_write = 0;
1350
8c6939c0 1351 /* XXX: need kernel patch to get write flag faster */
2f87c607
FB
1352 switch (insn >> 26) {
1353 case 0x0d: // stw
1354 case 0x0e: // stb
1355 case 0x0f: // stq_u
1356 case 0x24: // stf
1357 case 0x25: // stg
1358 case 0x26: // sts
1359 case 0x27: // stt
1360 case 0x2c: // stl
1361 case 0x2d: // stq
1362 case 0x2e: // stl_c
1363 case 0x2f: // stq_c
1364 is_write = 1;
1365 }
1366
1367 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1368 is_write, &uc->uc_sigmask, puc);
2f87c607 1369}
8c6939c0
FB
1370#elif defined(__sparc__)
1371
e4533c7a
FB
1372int cpu_signal_handler(int host_signum, struct siginfo *info,
1373 void *puc)
8c6939c0
FB
1374{
1375 uint32_t *regs = (uint32_t *)(info + 1);
1376 void *sigmask = (regs + 20);
1377 unsigned long pc;
1378 int is_write;
1379 uint32_t insn;
1380
1381 /* XXX: is there a standard glibc define ? */
1382 pc = regs[1];
1383 /* XXX: need kernel patch to get write flag faster */
1384 is_write = 0;
1385 insn = *(uint32_t *)pc;
1386 if ((insn >> 30) == 3) {
1387 switch((insn >> 19) & 0x3f) {
1388 case 0x05: // stb
1389 case 0x06: // sth
1390 case 0x04: // st
1391 case 0x07: // std
1392 case 0x24: // stf
1393 case 0x27: // stdf
1394 case 0x25: // stfsr
1395 is_write = 1;
1396 break;
1397 }
1398 }
1399 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
bf3e8bf1 1400 is_write, sigmask, NULL);
8c6939c0
FB
1401}
1402
1403#elif defined(__arm__)
1404
e4533c7a
FB
1405int cpu_signal_handler(int host_signum, struct siginfo *info,
1406 void *puc)
8c6939c0
FB
1407{
1408 struct ucontext *uc = puc;
1409 unsigned long pc;
1410 int is_write;
1411
1412 pc = uc->uc_mcontext.gregs[R15];
1413 /* XXX: compute is_write */
1414 is_write = 0;
1415 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1416 is_write,
f3a9676a 1417 &uc->uc_sigmask, puc);
8c6939c0
FB
1418}
1419
38e584a0
FB
1420#elif defined(__mc68000)
1421
1422int cpu_signal_handler(int host_signum, struct siginfo *info,
1423 void *puc)
1424{
1425 struct ucontext *uc = puc;
1426 unsigned long pc;
1427 int is_write;
1428
1429 pc = uc->uc_mcontext.gregs[16];
1430 /* XXX: compute is_write */
1431 is_write = 0;
1432 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1433 is_write,
bf3e8bf1 1434 &uc->uc_sigmask, puc);
38e584a0
FB
1435}
1436
b8076a74
FB
1437#elif defined(__ia64)
1438
1439#ifndef __ISR_VALID
1440 /* This ought to be in <bits/siginfo.h>... */
1441# define __ISR_VALID 1
b8076a74
FB
1442#endif
1443
1444int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1445{
1446 struct ucontext *uc = puc;
1447 unsigned long ip;
1448 int is_write = 0;
1449
1450 ip = uc->uc_mcontext.sc_ip;
1451 switch (host_signum) {
1452 case SIGILL:
1453 case SIGFPE:
1454 case SIGSEGV:
1455 case SIGBUS:
1456 case SIGTRAP:
fd4a43e4 1457 if (info->si_code && (info->si_segvflags & __ISR_VALID))
b8076a74
FB
1458 /* ISR.W (write-access) is bit 33: */
1459 is_write = (info->si_isr >> 33) & 1;
1460 break;
1461
1462 default:
1463 break;
1464 }
1465 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1466 is_write,
1467 &uc->uc_sigmask, puc);
1468}
1469
90cb9493
FB
1470#elif defined(__s390__)
1471
1472int cpu_signal_handler(int host_signum, struct siginfo *info,
1473 void *puc)
1474{
1475 struct ucontext *uc = puc;
1476 unsigned long pc;
1477 int is_write;
1478
1479 pc = uc->uc_mcontext.psw.addr;
1480 /* XXX: compute is_write */
1481 is_write = 0;
1482 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1483 is_write,
1484 &uc->uc_sigmask, puc);
1485}
1486
9de5e440 1487#else
2b413144 1488
3fb2ded1 1489#error host CPU specific signal handler needed
2b413144 1490
9de5e440 1491#endif
67b915a5
FB
1492
1493#endif /* !defined(CONFIG_SOFTMMU) */