]>
Commit | Line | Data |
---|---|---|
0cac1b66 BS |
1 | /* |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "config.h" | |
21 | #include "cpu.h" | |
022c62cb PB |
22 | #include "exec/exec-all.h" |
23 | #include "exec/memory.h" | |
24 | #include "exec/address-spaces.h" | |
0cac1b66 | 25 | |
022c62cb | 26 | #include "exec/cputlb.h" |
0cac1b66 | 27 | |
022c62cb | 28 | #include "exec/memory-internal.h" |
220c3ebd | 29 | #include "exec/ram_addr.h" |
0cac1b66 BS |
30 | |
31 | //#define DEBUG_TLB | |
32 | //#define DEBUG_TLB_CHECK | |
33 | ||
34 | /* statistics */ | |
35 | int tlb_flush_count; | |
36 | ||
0cac1b66 BS |
37 | /* NOTE: |
38 | * If flush_global is true (the usual case), flush all tlb entries. | |
39 | * If flush_global is false, flush (at least) all tlb entries not | |
40 | * marked global. | |
41 | * | |
42 | * Since QEMU doesn't currently implement a global/not-global flag | |
43 | * for tlb entries, at the moment tlb_flush() will also flush all | |
44 | * tlb entries in the flush_global == false case. This is OK because | |
45 | * CPU architectures generally permit an implementation to drop | |
46 | * entries from the TLB at any time, so flushing more entries than | |
47 | * required is only an efficiency issue, not a correctness issue. | |
48 | */ | |
49 | void tlb_flush(CPUArchState *env, int flush_global) | |
50 | { | |
d77953b9 | 51 | CPUState *cpu = ENV_GET_CPU(env); |
0cac1b66 BS |
52 | |
53 | #if defined(DEBUG_TLB) | |
54 | printf("tlb_flush:\n"); | |
55 | #endif | |
56 | /* must reset current TB so that interrupts cannot modify the | |
57 | links while we are modifying them */ | |
d77953b9 | 58 | cpu->current_tb = NULL; |
0cac1b66 | 59 | |
4fadb3bb | 60 | memset(env->tlb_table, -1, sizeof(env->tlb_table)); |
eb2535f4 | 61 | memset(env->tb_jmp_cache, 0, sizeof(env->tb_jmp_cache)); |
0cac1b66 BS |
62 | |
63 | env->tlb_flush_addr = -1; | |
64 | env->tlb_flush_mask = 0; | |
65 | tlb_flush_count++; | |
66 | } | |
67 | ||
68 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) | |
69 | { | |
70 | if (addr == (tlb_entry->addr_read & | |
71 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
72 | addr == (tlb_entry->addr_write & | |
73 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
74 | addr == (tlb_entry->addr_code & | |
75 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
4fadb3bb | 76 | memset(tlb_entry, -1, sizeof(*tlb_entry)); |
0cac1b66 BS |
77 | } |
78 | } | |
79 | ||
80 | void tlb_flush_page(CPUArchState *env, target_ulong addr) | |
81 | { | |
d77953b9 | 82 | CPUState *cpu = ENV_GET_CPU(env); |
0cac1b66 BS |
83 | int i; |
84 | int mmu_idx; | |
85 | ||
86 | #if defined(DEBUG_TLB) | |
87 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); | |
88 | #endif | |
89 | /* Check if we need to flush due to large pages. */ | |
90 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
91 | #if defined(DEBUG_TLB) | |
92 | printf("tlb_flush_page: forced full flush (" | |
93 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
94 | env->tlb_flush_addr, env->tlb_flush_mask); | |
95 | #endif | |
96 | tlb_flush(env, 1); | |
97 | return; | |
98 | } | |
99 | /* must reset current TB so that interrupts cannot modify the | |
100 | links while we are modifying them */ | |
d77953b9 | 101 | cpu->current_tb = NULL; |
0cac1b66 BS |
102 | |
103 | addr &= TARGET_PAGE_MASK; | |
104 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
105 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
106 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
107 | } | |
108 | ||
109 | tb_flush_jmp_cache(env, addr); | |
110 | } | |
111 | ||
112 | /* update the TLBs so that writes to code in the virtual page 'addr' | |
113 | can be detected */ | |
114 | void tlb_protect_code(ram_addr_t ram_addr) | |
115 | { | |
a2f4d5be | 116 | cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE, |
52159192 | 117 | DIRTY_MEMORY_CODE); |
0cac1b66 BS |
118 | } |
119 | ||
120 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
121 | tested for self modifying code */ | |
122 | void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, | |
123 | target_ulong vaddr) | |
124 | { | |
52159192 | 125 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); |
0cac1b66 BS |
126 | } |
127 | ||
128 | static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) | |
129 | { | |
130 | return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; | |
131 | } | |
132 | ||
133 | void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
134 | uintptr_t length) | |
135 | { | |
136 | uintptr_t addr; | |
137 | ||
138 | if (tlb_is_dirty_ram(tlb_entry)) { | |
139 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; | |
140 | if ((addr - start) < length) { | |
141 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
142 | } | |
143 | } | |
144 | } | |
145 | ||
7443b437 PB |
146 | static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) |
147 | { | |
148 | ram_addr_t ram_addr; | |
149 | ||
1b5ec234 | 150 | if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) { |
7443b437 PB |
151 | fprintf(stderr, "Bad ram pointer %p\n", ptr); |
152 | abort(); | |
153 | } | |
154 | return ram_addr; | |
155 | } | |
156 | ||
0cac1b66 BS |
157 | void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) |
158 | { | |
182735ef | 159 | CPUState *cpu; |
0cac1b66 BS |
160 | CPUArchState *env; |
161 | ||
bdc44640 | 162 | CPU_FOREACH(cpu) { |
0cac1b66 BS |
163 | int mmu_idx; |
164 | ||
182735ef | 165 | env = cpu->env_ptr; |
0cac1b66 BS |
166 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
167 | unsigned int i; | |
168 | ||
169 | for (i = 0; i < CPU_TLB_SIZE; i++) { | |
170 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
171 | start1, length); | |
172 | } | |
173 | } | |
174 | } | |
175 | } | |
176 | ||
177 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
178 | { | |
179 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
180 | tlb_entry->addr_write = vaddr; | |
181 | } | |
182 | } | |
183 | ||
184 | /* update the TLB corresponding to virtual page vaddr | |
185 | so that it is no longer dirty */ | |
186 | void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) | |
187 | { | |
188 | int i; | |
189 | int mmu_idx; | |
190 | ||
191 | vaddr &= TARGET_PAGE_MASK; | |
192 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
193 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
194 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
195 | } | |
196 | } | |
197 | ||
198 | /* Our TLB does not support large pages, so remember the area covered by | |
199 | large pages and trigger a full TLB flush if these are invalidated. */ | |
200 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
201 | target_ulong size) | |
202 | { | |
203 | target_ulong mask = ~(size - 1); | |
204 | ||
205 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
206 | env->tlb_flush_addr = vaddr & mask; | |
207 | env->tlb_flush_mask = mask; | |
208 | return; | |
209 | } | |
210 | /* Extend the existing region to include the new page. | |
211 | This is a compromise between unnecessary flushes and the cost | |
212 | of maintaining a full variable size TLB. */ | |
213 | mask &= env->tlb_flush_mask; | |
214 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
215 | mask <<= 1; | |
216 | } | |
217 | env->tlb_flush_addr &= mask; | |
218 | env->tlb_flush_mask = mask; | |
219 | } | |
220 | ||
221 | /* Add a new TLB entry. At most one entry for a given virtual address | |
222 | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the | |
223 | supplied size is only used by tlb_flush_page. */ | |
224 | void tlb_set_page(CPUArchState *env, target_ulong vaddr, | |
a8170e5e | 225 | hwaddr paddr, int prot, |
0cac1b66 BS |
226 | int mmu_idx, target_ulong size) |
227 | { | |
228 | MemoryRegionSection *section; | |
229 | unsigned int index; | |
230 | target_ulong address; | |
231 | target_ulong code_address; | |
232 | uintptr_t addend; | |
233 | CPUTLBEntry *te; | |
149f54b5 | 234 | hwaddr iotlb, xlat, sz; |
09daed84 | 235 | CPUState *cpu = ENV_GET_CPU(env); |
0cac1b66 BS |
236 | |
237 | assert(size >= TARGET_PAGE_SIZE); | |
238 | if (size != TARGET_PAGE_SIZE) { | |
239 | tlb_add_large_page(env, vaddr, size); | |
240 | } | |
149f54b5 PB |
241 | |
242 | sz = size; | |
09daed84 | 243 | section = address_space_translate_for_iotlb(cpu->as, paddr, |
90260c6c | 244 | &xlat, &sz); |
149f54b5 PB |
245 | assert(sz >= TARGET_PAGE_SIZE); |
246 | ||
0cac1b66 BS |
247 | #if defined(DEBUG_TLB) |
248 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx | |
54b949d2 HP |
249 | " prot=%x idx=%d\n", |
250 | vaddr, paddr, prot, mmu_idx); | |
0cac1b66 BS |
251 | #endif |
252 | ||
253 | address = vaddr; | |
8f3e03cb PB |
254 | if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { |
255 | /* IO memory case */ | |
0cac1b66 | 256 | address |= TLB_MMIO; |
8f3e03cb PB |
257 | addend = 0; |
258 | } else { | |
259 | /* TLB_MMIO for rom/romd handled below */ | |
149f54b5 | 260 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; |
0cac1b66 | 261 | } |
0cac1b66 BS |
262 | |
263 | code_address = address; | |
149f54b5 PB |
264 | iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat, |
265 | prot, &address); | |
0cac1b66 BS |
266 | |
267 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
268 | env->iotlb[mmu_idx][index] = iotlb - vaddr; | |
269 | te = &env->tlb_table[mmu_idx][index]; | |
270 | te->addend = addend - vaddr; | |
271 | if (prot & PAGE_READ) { | |
272 | te->addr_read = address; | |
273 | } else { | |
274 | te->addr_read = -1; | |
275 | } | |
276 | ||
277 | if (prot & PAGE_EXEC) { | |
278 | te->addr_code = code_address; | |
279 | } else { | |
280 | te->addr_code = -1; | |
281 | } | |
282 | if (prot & PAGE_WRITE) { | |
283 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
cc5bea60 | 284 | || memory_region_is_romd(section->mr)) { |
0cac1b66 BS |
285 | /* Write access calls the I/O callback. */ |
286 | te->addr_write = address | TLB_MMIO; | |
287 | } else if (memory_region_is_ram(section->mr) | |
a2cd8c85 JQ |
288 | && cpu_physical_memory_is_clean(section->mr->ram_addr |
289 | + xlat)) { | |
0cac1b66 BS |
290 | te->addr_write = address | TLB_NOTDIRTY; |
291 | } else { | |
292 | te->addr_write = address; | |
293 | } | |
294 | } else { | |
295 | te->addr_write = -1; | |
296 | } | |
297 | } | |
298 | ||
299 | /* NOTE: this function can trigger an exception */ | |
300 | /* NOTE2: the returned address is not exactly the physical address: it | |
116aae36 PM |
301 | * is actually a ram_addr_t (in system mode; the user mode emulation |
302 | * version of this function returns a guest virtual address). | |
303 | */ | |
0cac1b66 BS |
304 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
305 | { | |
306 | int mmu_idx, page_index, pd; | |
307 | void *p; | |
308 | MemoryRegion *mr; | |
09daed84 | 309 | CPUState *cpu = ENV_GET_CPU(env1); |
0cac1b66 BS |
310 | |
311 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
312 | mmu_idx = cpu_mmu_index(env1); | |
313 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != | |
314 | (addr & TARGET_PAGE_MASK))) { | |
0cac1b66 | 315 | cpu_ldub_code(env1, addr); |
0cac1b66 BS |
316 | } |
317 | pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; | |
09daed84 | 318 | mr = iotlb_to_region(cpu->as, pd); |
0cac1b66 | 319 | if (memory_region_is_unassigned(mr)) { |
c658b94f AF |
320 | CPUClass *cc = CPU_GET_CLASS(cpu); |
321 | ||
322 | if (cc->do_unassigned_access) { | |
323 | cc->do_unassigned_access(cpu, addr, false, true, 0, 4); | |
324 | } else { | |
325 | cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" | |
326 | TARGET_FMT_lx "\n", addr); | |
327 | } | |
0cac1b66 BS |
328 | } |
329 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
330 | return qemu_ram_addr_from_host_nofail(p); | |
331 | } | |
332 | ||
333 | #define MMUSUFFIX _cmmu | |
334 | #undef GETPC | |
335 | #define GETPC() ((uintptr_t)0) | |
0cac1b66 BS |
336 | #define SOFTMMU_CODE_ACCESS |
337 | ||
338 | #define SHIFT 0 | |
022c62cb | 339 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
340 | |
341 | #define SHIFT 1 | |
022c62cb | 342 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
343 | |
344 | #define SHIFT 2 | |
022c62cb | 345 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
346 | |
347 | #define SHIFT 3 | |
022c62cb | 348 | #include "exec/softmmu_template.h" |
0cac1b66 BS |
349 | |
350 | #undef env |