]>
Commit | Line | Data |
---|---|---|
0cac1b66 BS |
1 | /* |
2 | * Common CPU TLB handling | |
3 | * | |
4 | * Copyright (c) 2003 Fabrice Bellard | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
7b31bbc2 | 20 | #include "qemu/osdep.h" |
8d04fb55 | 21 | #include "qemu/main-loop.h" |
0cac1b66 | 22 | #include "cpu.h" |
022c62cb PB |
23 | #include "exec/exec-all.h" |
24 | #include "exec/memory.h" | |
25 | #include "exec/address-spaces.h" | |
f08b6170 | 26 | #include "exec/cpu_ldst.h" |
022c62cb | 27 | #include "exec/cputlb.h" |
022c62cb | 28 | #include "exec/memory-internal.h" |
220c3ebd | 29 | #include "exec/ram_addr.h" |
0f590e74 | 30 | #include "tcg/tcg.h" |
d7f30403 PM |
31 | #include "qemu/error-report.h" |
32 | #include "exec/log.h" | |
c482cb11 RH |
33 | #include "exec/helper-proto.h" |
34 | #include "qemu/atomic.h" | |
0cac1b66 | 35 | |
8526e1f4 AB |
36 | /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ |
37 | /* #define DEBUG_TLB */ | |
38 | /* #define DEBUG_TLB_LOG */ | |
39 | ||
40 | #ifdef DEBUG_TLB | |
41 | # define DEBUG_TLB_GATE 1 | |
42 | # ifdef DEBUG_TLB_LOG | |
43 | # define DEBUG_TLB_LOG_GATE 1 | |
44 | # else | |
45 | # define DEBUG_TLB_LOG_GATE 0 | |
46 | # endif | |
47 | #else | |
48 | # define DEBUG_TLB_GATE 0 | |
49 | # define DEBUG_TLB_LOG_GATE 0 | |
50 | #endif | |
51 | ||
52 | #define tlb_debug(fmt, ...) do { \ | |
53 | if (DEBUG_TLB_LOG_GATE) { \ | |
54 | qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ | |
55 | ## __VA_ARGS__); \ | |
56 | } else if (DEBUG_TLB_GATE) { \ | |
57 | fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ | |
58 | } \ | |
59 | } while (0) | |
0cac1b66 | 60 | |
f0aff0f1 AB |
61 | #define assert_cpu_is_self(this_cpu) do { \ |
62 | if (DEBUG_TLB_GATE) { \ | |
63 | g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ | |
64 | } \ | |
65 | } while (0) | |
66 | ||
e3b9ca81 FK |
67 | /* run_on_cpu_data.target_ptr should always be big enough for a |
68 | * target_ulong even on 32 bit builds */ | |
69 | QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); | |
70 | ||
e7218445 AB |
71 | /* We currently can't handle more than 16 bits in the MMUIDX bitmask. |
72 | */ | |
73 | QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); | |
74 | #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) | |
75 | ||
c3b9a07a AB |
76 | /* flush_all_helper: run fn across all cpus |
77 | * | |
78 | * If the wait flag is set then the src cpu's helper will be queued as | |
79 | * "safe" work and the loop exited creating a synchronisation point | |
80 | * where all queued work will be finished before execution starts | |
81 | * again. | |
82 | */ | |
83 | static void flush_all_helper(CPUState *src, run_on_cpu_func fn, | |
84 | run_on_cpu_data d) | |
85 | { | |
86 | CPUState *cpu; | |
87 | ||
88 | CPU_FOREACH(cpu) { | |
89 | if (cpu != src) { | |
90 | async_run_on_cpu(cpu, fn, d); | |
91 | } | |
92 | } | |
93 | } | |
94 | ||
0cac1b66 BS |
95 | /* statistics */ |
96 | int tlb_flush_count; | |
97 | ||
d10eb08f AB |
98 | /* This is OK because CPU architectures generally permit an |
99 | * implementation to drop entries from the TLB at any time, so | |
100 | * flushing more entries than required is only an efficiency issue, | |
101 | * not a correctness issue. | |
0cac1b66 | 102 | */ |
e3b9ca81 | 103 | static void tlb_flush_nocheck(CPUState *cpu) |
0cac1b66 | 104 | { |
00c8cb0a | 105 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 | 106 | |
e3b9ca81 FK |
107 | /* The QOM tests will trigger tlb_flushes without setting up TCG |
108 | * so we bug out here in that case. | |
109 | */ | |
110 | if (!tcg_enabled()) { | |
111 | return; | |
112 | } | |
113 | ||
f0aff0f1 AB |
114 | assert_cpu_is_self(cpu); |
115 | tlb_debug("(count: %d)\n", tlb_flush_count++); | |
116 | ||
e3b9ca81 FK |
117 | tb_lock(); |
118 | ||
4fadb3bb | 119 | memset(env->tlb_table, -1, sizeof(env->tlb_table)); |
88e89a57 | 120 | memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); |
8cd70437 | 121 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
0cac1b66 | 122 | |
88e89a57 | 123 | env->vtlb_index = 0; |
0cac1b66 BS |
124 | env->tlb_flush_addr = -1; |
125 | env->tlb_flush_mask = 0; | |
e3b9ca81 FK |
126 | |
127 | tb_unlock(); | |
128 | ||
e7218445 | 129 | atomic_mb_set(&cpu->pending_tlb_flush, 0); |
e3b9ca81 FK |
130 | } |
131 | ||
132 | static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) | |
133 | { | |
134 | tlb_flush_nocheck(cpu); | |
135 | } | |
136 | ||
137 | void tlb_flush(CPUState *cpu) | |
138 | { | |
139 | if (cpu->created && !qemu_cpu_is_self(cpu)) { | |
e7218445 AB |
140 | if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { |
141 | atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); | |
e3b9ca81 FK |
142 | async_run_on_cpu(cpu, tlb_flush_global_async_work, |
143 | RUN_ON_CPU_NULL); | |
144 | } | |
145 | } else { | |
146 | tlb_flush_nocheck(cpu); | |
147 | } | |
0cac1b66 BS |
148 | } |
149 | ||
c3b9a07a AB |
150 | void tlb_flush_all_cpus(CPUState *src_cpu) |
151 | { | |
152 | const run_on_cpu_func fn = tlb_flush_global_async_work; | |
153 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); | |
154 | fn(src_cpu, RUN_ON_CPU_NULL); | |
155 | } | |
156 | ||
157 | void tlb_flush_all_cpus_synced(CPUState *src_cpu) | |
158 | { | |
159 | const run_on_cpu_func fn = tlb_flush_global_async_work; | |
160 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); | |
161 | async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); | |
162 | } | |
163 | ||
e7218445 | 164 | static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) |
d7a74a9d PM |
165 | { |
166 | CPUArchState *env = cpu->env_ptr; | |
e7218445 | 167 | unsigned long mmu_idx_bitmask = data.host_int; |
0336cbf8 | 168 | int mmu_idx; |
d7a74a9d | 169 | |
f0aff0f1 | 170 | assert_cpu_is_self(cpu); |
d7a74a9d | 171 | |
e3b9ca81 FK |
172 | tb_lock(); |
173 | ||
e7218445 AB |
174 | tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); |
175 | ||
0336cbf8 | 176 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
d7a74a9d | 177 | |
0336cbf8 AB |
178 | if (test_bit(mmu_idx, &mmu_idx_bitmask)) { |
179 | tlb_debug("%d\n", mmu_idx); | |
d7a74a9d | 180 | |
0336cbf8 AB |
181 | memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); |
182 | memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); | |
183 | } | |
d7a74a9d PM |
184 | } |
185 | ||
d7a74a9d | 186 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
e3b9ca81 | 187 | |
e7218445 AB |
188 | tlb_debug("done\n"); |
189 | ||
e3b9ca81 | 190 | tb_unlock(); |
d7a74a9d PM |
191 | } |
192 | ||
0336cbf8 | 193 | void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) |
d7a74a9d | 194 | { |
e7218445 AB |
195 | tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); |
196 | ||
197 | if (!qemu_cpu_is_self(cpu)) { | |
198 | uint16_t pending_flushes = idxmap; | |
199 | pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); | |
200 | ||
201 | if (pending_flushes) { | |
202 | tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); | |
203 | ||
204 | atomic_or(&cpu->pending_tlb_flush, pending_flushes); | |
205 | async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, | |
206 | RUN_ON_CPU_HOST_INT(pending_flushes)); | |
207 | } | |
208 | } else { | |
209 | tlb_flush_by_mmuidx_async_work(cpu, | |
210 | RUN_ON_CPU_HOST_INT(idxmap)); | |
211 | } | |
d7a74a9d PM |
212 | } |
213 | ||
c3b9a07a AB |
214 | void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) |
215 | { | |
216 | const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; | |
217 | ||
218 | tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); | |
219 | ||
220 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); | |
221 | fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); | |
222 | } | |
223 | ||
224 | void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, | |
225 | uint16_t idxmap) | |
226 | { | |
227 | const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; | |
228 | ||
229 | tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); | |
230 | ||
231 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); | |
232 | async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); | |
233 | } | |
234 | ||
235 | ||
236 | ||
0cac1b66 BS |
237 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) |
238 | { | |
239 | if (addr == (tlb_entry->addr_read & | |
240 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
241 | addr == (tlb_entry->addr_write & | |
242 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || | |
243 | addr == (tlb_entry->addr_code & | |
244 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
4fadb3bb | 245 | memset(tlb_entry, -1, sizeof(*tlb_entry)); |
0cac1b66 BS |
246 | } |
247 | } | |
248 | ||
e3b9ca81 | 249 | static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) |
0cac1b66 | 250 | { |
31b030d4 | 251 | CPUArchState *env = cpu->env_ptr; |
e3b9ca81 | 252 | target_ulong addr = (target_ulong) data.target_ptr; |
0cac1b66 BS |
253 | int i; |
254 | int mmu_idx; | |
255 | ||
f0aff0f1 | 256 | assert_cpu_is_self(cpu); |
e3b9ca81 | 257 | |
8526e1f4 AB |
258 | tlb_debug("page :" TARGET_FMT_lx "\n", addr); |
259 | ||
0cac1b66 BS |
260 | /* Check if we need to flush due to large pages. */ |
261 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
8526e1f4 AB |
262 | tlb_debug("forcing full flush (" |
263 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
264 | env->tlb_flush_addr, env->tlb_flush_mask); | |
265 | ||
d10eb08f | 266 | tlb_flush(cpu); |
0cac1b66 BS |
267 | return; |
268 | } | |
0cac1b66 BS |
269 | |
270 | addr &= TARGET_PAGE_MASK; | |
271 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
272 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
273 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); | |
274 | } | |
275 | ||
88e89a57 XT |
276 | /* check whether there are entries that need to be flushed in the vtlb */ |
277 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
278 | int k; | |
279 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
280 | tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); | |
281 | } | |
282 | } | |
283 | ||
611d4f99 | 284 | tb_flush_jmp_cache(cpu, addr); |
0cac1b66 BS |
285 | } |
286 | ||
e3b9ca81 FK |
287 | void tlb_flush_page(CPUState *cpu, target_ulong addr) |
288 | { | |
289 | tlb_debug("page :" TARGET_FMT_lx "\n", addr); | |
290 | ||
291 | if (!qemu_cpu_is_self(cpu)) { | |
292 | async_run_on_cpu(cpu, tlb_flush_page_async_work, | |
293 | RUN_ON_CPU_TARGET_PTR(addr)); | |
294 | } else { | |
295 | tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); | |
296 | } | |
297 | } | |
298 | ||
e7218445 AB |
299 | /* As we are going to hijack the bottom bits of the page address for a |
300 | * mmuidx bit mask we need to fail to build if we can't do that | |
301 | */ | |
302 | QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); | |
303 | ||
304 | static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, | |
305 | run_on_cpu_data data) | |
d7a74a9d PM |
306 | { |
307 | CPUArchState *env = cpu->env_ptr; | |
e7218445 AB |
308 | target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; |
309 | target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; | |
310 | unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; | |
311 | int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
312 | int mmu_idx; | |
313 | int i; | |
d7a74a9d | 314 | |
f0aff0f1 | 315 | assert_cpu_is_self(cpu); |
d7a74a9d | 316 | |
e7218445 AB |
317 | tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", |
318 | page, addr, mmu_idx_bitmap); | |
d7a74a9d | 319 | |
0336cbf8 AB |
320 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { |
321 | if (test_bit(mmu_idx, &mmu_idx_bitmap)) { | |
322 | tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); | |
d7a74a9d | 323 | |
0336cbf8 AB |
324 | /* check whether there are vltb entries that need to be flushed */ |
325 | for (i = 0; i < CPU_VTLB_SIZE; i++) { | |
326 | tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); | |
327 | } | |
d7a74a9d PM |
328 | } |
329 | } | |
d7a74a9d | 330 | |
d7a74a9d PM |
331 | tb_flush_jmp_cache(cpu, addr); |
332 | } | |
333 | ||
e7218445 AB |
334 | static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, |
335 | run_on_cpu_data data) | |
336 | { | |
337 | CPUArchState *env = cpu->env_ptr; | |
338 | target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; | |
339 | target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; | |
340 | unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; | |
341 | ||
342 | tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); | |
343 | ||
344 | /* Check if we need to flush due to large pages. */ | |
345 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { | |
346 | tlb_debug("forced full flush (" | |
347 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", | |
348 | env->tlb_flush_addr, env->tlb_flush_mask); | |
349 | ||
350 | tlb_flush_by_mmuidx_async_work(cpu, | |
351 | RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); | |
352 | } else { | |
353 | tlb_flush_page_by_mmuidx_async_work(cpu, data); | |
354 | } | |
355 | } | |
356 | ||
357 | void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) | |
358 | { | |
359 | target_ulong addr_and_mmu_idx; | |
360 | ||
361 | tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); | |
362 | ||
363 | /* This should already be page aligned */ | |
364 | addr_and_mmu_idx = addr & TARGET_PAGE_MASK; | |
365 | addr_and_mmu_idx |= idxmap; | |
366 | ||
367 | if (!qemu_cpu_is_self(cpu)) { | |
368 | async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, | |
369 | RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
370 | } else { | |
371 | tlb_check_page_and_flush_by_mmuidx_async_work( | |
372 | cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
373 | } | |
374 | } | |
375 | ||
c3b9a07a AB |
376 | void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, |
377 | uint16_t idxmap) | |
e3b9ca81 | 378 | { |
c3b9a07a AB |
379 | const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; |
380 | target_ulong addr_and_mmu_idx; | |
e3b9ca81 | 381 | |
c3b9a07a AB |
382 | tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); |
383 | ||
384 | /* This should already be page aligned */ | |
385 | addr_and_mmu_idx = addr & TARGET_PAGE_MASK; | |
386 | addr_and_mmu_idx |= idxmap; | |
387 | ||
388 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
389 | fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
390 | } | |
391 | ||
392 | void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, | |
393 | target_ulong addr, | |
394 | uint16_t idxmap) | |
395 | { | |
396 | const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; | |
397 | target_ulong addr_and_mmu_idx; | |
398 | ||
399 | tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); | |
400 | ||
401 | /* This should already be page aligned */ | |
402 | addr_and_mmu_idx = addr & TARGET_PAGE_MASK; | |
403 | addr_and_mmu_idx |= idxmap; | |
404 | ||
405 | flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
406 | async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); | |
407 | } | |
408 | ||
409 | void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) | |
410 | { | |
411 | const run_on_cpu_func fn = tlb_flush_page_async_work; | |
412 | ||
413 | flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); | |
414 | fn(src, RUN_ON_CPU_TARGET_PTR(addr)); | |
415 | } | |
416 | ||
417 | void tlb_flush_page_all_cpus_synced(CPUState *src, | |
418 | target_ulong addr) | |
419 | { | |
420 | const run_on_cpu_func fn = tlb_flush_page_async_work; | |
421 | ||
422 | flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); | |
423 | async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); | |
e3b9ca81 FK |
424 | } |
425 | ||
0cac1b66 BS |
426 | /* update the TLBs so that writes to code in the virtual page 'addr' |
427 | can be detected */ | |
428 | void tlb_protect_code(ram_addr_t ram_addr) | |
429 | { | |
03eebc9e SH |
430 | cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, |
431 | DIRTY_MEMORY_CODE); | |
0cac1b66 BS |
432 | } |
433 | ||
434 | /* update the TLB so that writes in physical page 'phys_addr' are no longer | |
435 | tested for self modifying code */ | |
9564f52d | 436 | void tlb_unprotect_code(ram_addr_t ram_addr) |
0cac1b66 | 437 | { |
52159192 | 438 | cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); |
0cac1b66 BS |
439 | } |
440 | ||
0cac1b66 | 441 | |
b0706b71 AB |
442 | /* |
443 | * Dirty write flag handling | |
444 | * | |
445 | * When the TCG code writes to a location it looks up the address in | |
446 | * the TLB and uses that data to compute the final address. If any of | |
447 | * the lower bits of the address are set then the slow path is forced. | |
448 | * There are a number of reasons to do this but for normal RAM the | |
449 | * most usual is detecting writes to code regions which may invalidate | |
450 | * generated code. | |
451 | * | |
452 | * Because we want other vCPUs to respond to changes straight away we | |
453 | * update the te->addr_write field atomically. If the TLB entry has | |
454 | * been changed by the vCPU in the mean time we skip the update. | |
455 | * | |
456 | * As this function uses atomic accesses we also need to ensure | |
457 | * updates to tlb_entries follow the same access rules. We don't need | |
458 | * to worry about this for oversized guests as MTTCG is disabled for | |
459 | * them. | |
460 | */ | |
461 | ||
462 | static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, | |
0cac1b66 BS |
463 | uintptr_t length) |
464 | { | |
b0706b71 AB |
465 | #if TCG_OVERSIZED_GUEST |
466 | uintptr_t addr = tlb_entry->addr_write; | |
0cac1b66 | 467 | |
b0706b71 AB |
468 | if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { |
469 | addr &= TARGET_PAGE_MASK; | |
470 | addr += tlb_entry->addend; | |
0cac1b66 BS |
471 | if ((addr - start) < length) { |
472 | tlb_entry->addr_write |= TLB_NOTDIRTY; | |
473 | } | |
474 | } | |
b0706b71 AB |
475 | #else |
476 | /* paired with atomic_mb_set in tlb_set_page_with_attrs */ | |
477 | uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); | |
478 | uintptr_t addr = orig_addr; | |
479 | ||
480 | if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { | |
481 | addr &= TARGET_PAGE_MASK; | |
482 | addr += atomic_read(&tlb_entry->addend); | |
483 | if ((addr - start) < length) { | |
484 | uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; | |
485 | atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); | |
486 | } | |
487 | } | |
488 | #endif | |
489 | } | |
490 | ||
491 | /* For atomic correctness when running MTTCG we need to use the right | |
492 | * primitives when copying entries */ | |
493 | static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, | |
494 | bool atomic_set) | |
495 | { | |
496 | #if TCG_OVERSIZED_GUEST | |
497 | *d = *s; | |
498 | #else | |
499 | if (atomic_set) { | |
500 | d->addr_read = s->addr_read; | |
501 | d->addr_code = s->addr_code; | |
502 | atomic_set(&d->addend, atomic_read(&s->addend)); | |
503 | /* Pairs with flag setting in tlb_reset_dirty_range */ | |
504 | atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); | |
505 | } else { | |
506 | d->addr_read = s->addr_read; | |
507 | d->addr_write = atomic_read(&s->addr_write); | |
508 | d->addr_code = s->addr_code; | |
509 | d->addend = atomic_read(&s->addend); | |
510 | } | |
511 | #endif | |
0cac1b66 BS |
512 | } |
513 | ||
b0706b71 AB |
514 | /* This is a cross vCPU call (i.e. another vCPU resetting the flags of |
515 | * the target vCPU). As such care needs to be taken that we don't | |
516 | * dangerously race with another vCPU update. The only thing actually | |
517 | * updated is the target TLB entry ->addr_write flags. | |
518 | */ | |
9a13565d | 519 | void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) |
0cac1b66 BS |
520 | { |
521 | CPUArchState *env; | |
522 | ||
9a13565d | 523 | int mmu_idx; |
0cac1b66 | 524 | |
9a13565d PC |
525 | env = cpu->env_ptr; |
526 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
527 | unsigned int i; | |
0cac1b66 | 528 | |
9a13565d PC |
529 | for (i = 0; i < CPU_TLB_SIZE; i++) { |
530 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], | |
531 | start1, length); | |
532 | } | |
88e89a57 | 533 | |
9a13565d PC |
534 | for (i = 0; i < CPU_VTLB_SIZE; i++) { |
535 | tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], | |
536 | start1, length); | |
0cac1b66 BS |
537 | } |
538 | } | |
539 | } | |
540 | ||
541 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) | |
542 | { | |
543 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { | |
544 | tlb_entry->addr_write = vaddr; | |
545 | } | |
546 | } | |
547 | ||
548 | /* update the TLB corresponding to virtual page vaddr | |
549 | so that it is no longer dirty */ | |
bcae01e4 | 550 | void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) |
0cac1b66 | 551 | { |
bcae01e4 | 552 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 BS |
553 | int i; |
554 | int mmu_idx; | |
555 | ||
f0aff0f1 AB |
556 | assert_cpu_is_self(cpu); |
557 | ||
0cac1b66 BS |
558 | vaddr &= TARGET_PAGE_MASK; |
559 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
560 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
561 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); | |
562 | } | |
88e89a57 XT |
563 | |
564 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { | |
565 | int k; | |
566 | for (k = 0; k < CPU_VTLB_SIZE; k++) { | |
567 | tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); | |
568 | } | |
569 | } | |
0cac1b66 BS |
570 | } |
571 | ||
572 | /* Our TLB does not support large pages, so remember the area covered by | |
573 | large pages and trigger a full TLB flush if these are invalidated. */ | |
574 | static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, | |
575 | target_ulong size) | |
576 | { | |
577 | target_ulong mask = ~(size - 1); | |
578 | ||
579 | if (env->tlb_flush_addr == (target_ulong)-1) { | |
580 | env->tlb_flush_addr = vaddr & mask; | |
581 | env->tlb_flush_mask = mask; | |
582 | return; | |
583 | } | |
584 | /* Extend the existing region to include the new page. | |
585 | This is a compromise between unnecessary flushes and the cost | |
586 | of maintaining a full variable size TLB. */ | |
587 | mask &= env->tlb_flush_mask; | |
588 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { | |
589 | mask <<= 1; | |
590 | } | |
591 | env->tlb_flush_addr &= mask; | |
592 | env->tlb_flush_mask = mask; | |
593 | } | |
594 | ||
595 | /* Add a new TLB entry. At most one entry for a given virtual address | |
79e2b9ae PB |
596 | * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the |
597 | * supplied size is only used by tlb_flush_page. | |
598 | * | |
599 | * Called from TCG-generated code, which is under an RCU read-side | |
600 | * critical section. | |
601 | */ | |
fadc1cbe PM |
602 | void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, |
603 | hwaddr paddr, MemTxAttrs attrs, int prot, | |
604 | int mmu_idx, target_ulong size) | |
0cac1b66 | 605 | { |
0c591eb0 | 606 | CPUArchState *env = cpu->env_ptr; |
0cac1b66 BS |
607 | MemoryRegionSection *section; |
608 | unsigned int index; | |
609 | target_ulong address; | |
610 | target_ulong code_address; | |
611 | uintptr_t addend; | |
b0706b71 | 612 | CPUTLBEntry *te, *tv, tn; |
149f54b5 | 613 | hwaddr iotlb, xlat, sz; |
88e89a57 | 614 | unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; |
d7898cda | 615 | int asidx = cpu_asidx_from_attrs(cpu, attrs); |
0cac1b66 | 616 | |
f0aff0f1 | 617 | assert_cpu_is_self(cpu); |
0cac1b66 BS |
618 | assert(size >= TARGET_PAGE_SIZE); |
619 | if (size != TARGET_PAGE_SIZE) { | |
620 | tlb_add_large_page(env, vaddr, size); | |
621 | } | |
149f54b5 PB |
622 | |
623 | sz = size; | |
d7898cda | 624 | section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz); |
149f54b5 PB |
625 | assert(sz >= TARGET_PAGE_SIZE); |
626 | ||
8526e1f4 AB |
627 | tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx |
628 | " prot=%x idx=%d\n", | |
629 | vaddr, paddr, prot, mmu_idx); | |
0cac1b66 BS |
630 | |
631 | address = vaddr; | |
8f3e03cb PB |
632 | if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { |
633 | /* IO memory case */ | |
0cac1b66 | 634 | address |= TLB_MMIO; |
8f3e03cb PB |
635 | addend = 0; |
636 | } else { | |
637 | /* TLB_MMIO for rom/romd handled below */ | |
149f54b5 | 638 | addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; |
0cac1b66 | 639 | } |
0cac1b66 BS |
640 | |
641 | code_address = address; | |
bb0e627a | 642 | iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, |
149f54b5 | 643 | prot, &address); |
0cac1b66 BS |
644 | |
645 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
0cac1b66 | 646 | te = &env->tlb_table[mmu_idx][index]; |
88e89a57 | 647 | /* do not discard the translation in te, evict it into a victim tlb */ |
b0706b71 AB |
648 | tv = &env->tlb_v_table[mmu_idx][vidx]; |
649 | ||
650 | /* addr_write can race with tlb_reset_dirty_range */ | |
651 | copy_tlb_helper(tv, te, true); | |
652 | ||
88e89a57 XT |
653 | env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; |
654 | ||
655 | /* refill the tlb */ | |
e469b22f | 656 | env->iotlb[mmu_idx][index].addr = iotlb - vaddr; |
fadc1cbe | 657 | env->iotlb[mmu_idx][index].attrs = attrs; |
b0706b71 AB |
658 | |
659 | /* Now calculate the new entry */ | |
660 | tn.addend = addend - vaddr; | |
0cac1b66 | 661 | if (prot & PAGE_READ) { |
b0706b71 | 662 | tn.addr_read = address; |
0cac1b66 | 663 | } else { |
b0706b71 | 664 | tn.addr_read = -1; |
0cac1b66 BS |
665 | } |
666 | ||
667 | if (prot & PAGE_EXEC) { | |
b0706b71 | 668 | tn.addr_code = code_address; |
0cac1b66 | 669 | } else { |
b0706b71 | 670 | tn.addr_code = -1; |
0cac1b66 | 671 | } |
b0706b71 AB |
672 | |
673 | tn.addr_write = -1; | |
0cac1b66 BS |
674 | if (prot & PAGE_WRITE) { |
675 | if ((memory_region_is_ram(section->mr) && section->readonly) | |
cc5bea60 | 676 | || memory_region_is_romd(section->mr)) { |
0cac1b66 | 677 | /* Write access calls the I/O callback. */ |
b0706b71 | 678 | tn.addr_write = address | TLB_MMIO; |
0cac1b66 | 679 | } else if (memory_region_is_ram(section->mr) |
8e41fb63 FZ |
680 | && cpu_physical_memory_is_clean( |
681 | memory_region_get_ram_addr(section->mr) + xlat)) { | |
b0706b71 | 682 | tn.addr_write = address | TLB_NOTDIRTY; |
0cac1b66 | 683 | } else { |
b0706b71 | 684 | tn.addr_write = address; |
0cac1b66 | 685 | } |
0cac1b66 | 686 | } |
b0706b71 AB |
687 | |
688 | /* Pairs with flag setting in tlb_reset_dirty_range */ | |
689 | copy_tlb_helper(te, &tn, true); | |
690 | /* atomic_mb_set(&te->addr_write, write_address); */ | |
0cac1b66 BS |
691 | } |
692 | ||
fadc1cbe PM |
693 | /* Add a new TLB entry, but without specifying the memory |
694 | * transaction attributes to be used. | |
695 | */ | |
696 | void tlb_set_page(CPUState *cpu, target_ulong vaddr, | |
697 | hwaddr paddr, int prot, | |
698 | int mmu_idx, target_ulong size) | |
699 | { | |
700 | tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, | |
701 | prot, mmu_idx, size); | |
702 | } | |
703 | ||
d7f30403 PM |
704 | static void report_bad_exec(CPUState *cpu, target_ulong addr) |
705 | { | |
706 | /* Accidentally executing outside RAM or ROM is quite common for | |
707 | * several user-error situations, so report it in a way that | |
708 | * makes it clear that this isn't a QEMU bug and provide suggestions | |
709 | * about what a user could do to fix things. | |
710 | */ | |
711 | error_report("Trying to execute code outside RAM or ROM at 0x" | |
712 | TARGET_FMT_lx, addr); | |
713 | error_printf("This usually means one of the following happened:\n\n" | |
714 | "(1) You told QEMU to execute a kernel for the wrong machine " | |
715 | "type, and it crashed on startup (eg trying to run a " | |
716 | "raspberry pi kernel on a versatilepb QEMU machine)\n" | |
717 | "(2) You didn't give QEMU a kernel or BIOS filename at all, " | |
718 | "and QEMU executed a ROM full of no-op instructions until " | |
719 | "it fell off the end\n" | |
720 | "(3) Your guest kernel has a bug and crashed by jumping " | |
721 | "off into nowhere\n\n" | |
722 | "This is almost always one of the first two, so check your " | |
723 | "command line and that you are using the right type of kernel " | |
724 | "for this machine.\n" | |
725 | "If you think option (3) is likely then you can try debugging " | |
726 | "your guest with the -d debug options; in particular " | |
727 | "-d guest_errors will cause the log to include a dump of the " | |
728 | "guest register state at this point.\n\n" | |
729 | "Execution cannot continue; stopping here.\n\n"); | |
730 | ||
731 | /* Report also to the logs, with more detail including register dump */ | |
732 | qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " | |
733 | "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); | |
734 | log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); | |
735 | } | |
736 | ||
857baec1 AB |
737 | static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) |
738 | { | |
739 | ram_addr_t ram_addr; | |
740 | ||
741 | ram_addr = qemu_ram_addr_from_host(ptr); | |
742 | if (ram_addr == RAM_ADDR_INVALID) { | |
743 | error_report("Bad ram pointer %p", ptr); | |
744 | abort(); | |
745 | } | |
746 | return ram_addr; | |
747 | } | |
748 | ||
0cac1b66 BS |
749 | /* NOTE: this function can trigger an exception */ |
750 | /* NOTE2: the returned address is not exactly the physical address: it | |
116aae36 PM |
751 | * is actually a ram_addr_t (in system mode; the user mode emulation |
752 | * version of this function returns a guest virtual address). | |
753 | */ | |
0cac1b66 BS |
754 | tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) |
755 | { | |
756 | int mmu_idx, page_index, pd; | |
757 | void *p; | |
758 | MemoryRegion *mr; | |
09daed84 | 759 | CPUState *cpu = ENV_GET_CPU(env1); |
a54c87b6 | 760 | CPUIOTLBEntry *iotlbentry; |
0cac1b66 BS |
761 | |
762 | page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
97ed5ccd | 763 | mmu_idx = cpu_mmu_index(env1, true); |
0cac1b66 BS |
764 | if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != |
765 | (addr & TARGET_PAGE_MASK))) { | |
0cac1b66 | 766 | cpu_ldub_code(env1, addr); |
0cac1b66 | 767 | } |
a54c87b6 PM |
768 | iotlbentry = &env1->iotlb[mmu_idx][page_index]; |
769 | pd = iotlbentry->addr & ~TARGET_PAGE_MASK; | |
770 | mr = iotlb_to_region(cpu, pd, iotlbentry->attrs); | |
0cac1b66 | 771 | if (memory_region_is_unassigned(mr)) { |
44d7ce0e PM |
772 | cpu_unassigned_access(cpu, addr, false, true, 0, 4); |
773 | /* The CPU's unassigned access hook might have longjumped out | |
774 | * with an exception. If it didn't (or there was no hook) then | |
775 | * we can't proceed further. | |
776 | */ | |
777 | report_bad_exec(cpu, addr); | |
778 | exit(1); | |
0cac1b66 BS |
779 | } |
780 | p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); | |
781 | return qemu_ram_addr_from_host_nofail(p); | |
782 | } | |
783 | ||
82a45b96 RH |
784 | static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, |
785 | target_ulong addr, uintptr_t retaddr, int size) | |
786 | { | |
787 | CPUState *cpu = ENV_GET_CPU(env); | |
788 | hwaddr physaddr = iotlbentry->addr; | |
789 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); | |
790 | uint64_t val; | |
8d04fb55 | 791 | bool locked = false; |
82a45b96 RH |
792 | |
793 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | |
794 | cpu->mem_io_pc = retaddr; | |
795 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { | |
796 | cpu_io_recompile(cpu, retaddr); | |
797 | } | |
798 | ||
799 | cpu->mem_io_vaddr = addr; | |
8d04fb55 JK |
800 | |
801 | if (mr->global_locking) { | |
802 | qemu_mutex_lock_iothread(); | |
803 | locked = true; | |
804 | } | |
82a45b96 | 805 | memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs); |
8d04fb55 JK |
806 | if (locked) { |
807 | qemu_mutex_unlock_iothread(); | |
808 | } | |
809 | ||
82a45b96 RH |
810 | return val; |
811 | } | |
812 | ||
813 | static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, | |
814 | uint64_t val, target_ulong addr, | |
815 | uintptr_t retaddr, int size) | |
816 | { | |
817 | CPUState *cpu = ENV_GET_CPU(env); | |
818 | hwaddr physaddr = iotlbentry->addr; | |
819 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); | |
8d04fb55 | 820 | bool locked = false; |
82a45b96 RH |
821 | |
822 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; | |
823 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { | |
824 | cpu_io_recompile(cpu, retaddr); | |
825 | } | |
82a45b96 RH |
826 | cpu->mem_io_vaddr = addr; |
827 | cpu->mem_io_pc = retaddr; | |
8d04fb55 JK |
828 | |
829 | if (mr->global_locking) { | |
830 | qemu_mutex_lock_iothread(); | |
831 | locked = true; | |
832 | } | |
82a45b96 | 833 | memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs); |
8d04fb55 JK |
834 | if (locked) { |
835 | qemu_mutex_unlock_iothread(); | |
836 | } | |
82a45b96 RH |
837 | } |
838 | ||
7e9a7c50 RH |
839 | /* Return true if ADDR is present in the victim tlb, and has been copied |
840 | back to the main tlb. */ | |
841 | static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, | |
842 | size_t elt_ofs, target_ulong page) | |
843 | { | |
844 | size_t vidx; | |
845 | for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { | |
846 | CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; | |
847 | target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); | |
848 | ||
849 | if (cmp == page) { | |
850 | /* Found entry in victim tlb, swap tlb and iotlb. */ | |
851 | CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; | |
b0706b71 AB |
852 | |
853 | copy_tlb_helper(&tmptlb, tlb, false); | |
854 | copy_tlb_helper(tlb, vtlb, true); | |
855 | copy_tlb_helper(vtlb, &tmptlb, true); | |
856 | ||
7e9a7c50 RH |
857 | CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; |
858 | CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; | |
7e9a7c50 RH |
859 | tmpio = *io; *io = *vio; *vio = tmpio; |
860 | return true; | |
861 | } | |
862 | } | |
863 | return false; | |
864 | } | |
865 | ||
866 | /* Macro to call the above, with local variables from the use context. */ | |
a390284b | 867 | #define VICTIM_TLB_HIT(TY, ADDR) \ |
7e9a7c50 | 868 | victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ |
a390284b | 869 | (ADDR) & TARGET_PAGE_MASK) |
7e9a7c50 | 870 | |
3b08f0a9 RH |
871 | /* Probe for whether the specified guest write access is permitted. |
872 | * If it is not permitted then an exception will be taken in the same | |
873 | * way as if this were a real write access (and we will not return). | |
874 | * Otherwise the function will return, and there will be a valid | |
875 | * entry in the TLB for this access. | |
876 | */ | |
877 | void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, | |
878 | uintptr_t retaddr) | |
879 | { | |
880 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
881 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
882 | ||
883 | if ((addr & TARGET_PAGE_MASK) | |
884 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
885 | /* TLB entry is for a different page */ | |
886 | if (!VICTIM_TLB_HIT(addr_write, addr)) { | |
887 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); | |
888 | } | |
889 | } | |
890 | } | |
891 | ||
c482cb11 RH |
892 | /* Probe for a read-modify-write atomic operation. Do not allow unaligned |
893 | * operations, or io operations to proceed. Return the host address. */ | |
894 | static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, | |
895 | TCGMemOpIdx oi, uintptr_t retaddr) | |
896 | { | |
897 | size_t mmu_idx = get_mmuidx(oi); | |
898 | size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
899 | CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index]; | |
900 | target_ulong tlb_addr = tlbe->addr_write; | |
901 | TCGMemOp mop = get_memop(oi); | |
902 | int a_bits = get_alignment_bits(mop); | |
903 | int s_bits = mop & MO_SIZE; | |
904 | ||
905 | /* Adjust the given return address. */ | |
906 | retaddr -= GETPC_ADJ; | |
907 | ||
908 | /* Enforce guest required alignment. */ | |
909 | if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { | |
910 | /* ??? Maybe indicate atomic op to cpu_unaligned_access */ | |
911 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, | |
912 | mmu_idx, retaddr); | |
913 | } | |
914 | ||
915 | /* Enforce qemu required alignment. */ | |
916 | if (unlikely(addr & ((1 << s_bits) - 1))) { | |
917 | /* We get here if guest alignment was not requested, | |
918 | or was not enforced by cpu_unaligned_access above. | |
919 | We might widen the access and emulate, but for now | |
920 | mark an exception and exit the cpu loop. */ | |
921 | goto stop_the_world; | |
922 | } | |
923 | ||
924 | /* Check TLB entry and enforce page permissions. */ | |
925 | if ((addr & TARGET_PAGE_MASK) | |
926 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
927 | if (!VICTIM_TLB_HIT(addr_write, addr)) { | |
928 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); | |
929 | } | |
930 | tlb_addr = tlbe->addr_write; | |
931 | } | |
932 | ||
7f9af1ab ND |
933 | /* Check notdirty */ |
934 | if (unlikely(tlb_addr & TLB_NOTDIRTY)) { | |
935 | tlb_set_dirty(ENV_GET_CPU(env), addr); | |
936 | tlb_addr = tlb_addr & ~TLB_NOTDIRTY; | |
937 | } | |
938 | ||
939 | /* Notice an IO access */ | |
c482cb11 RH |
940 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { |
941 | /* There's really nothing that can be done to | |
942 | support this apart from stop-the-world. */ | |
943 | goto stop_the_world; | |
944 | } | |
945 | ||
946 | /* Let the guest notice RMW on a write-only page. */ | |
947 | if (unlikely(tlbe->addr_read != tlb_addr)) { | |
948 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr); | |
949 | /* Since we don't support reads and writes to different addresses, | |
950 | and we do have the proper page loaded for write, this shouldn't | |
951 | ever return. But just in case, handle via stop-the-world. */ | |
952 | goto stop_the_world; | |
953 | } | |
954 | ||
955 | return (void *)((uintptr_t)addr + tlbe->addend); | |
956 | ||
957 | stop_the_world: | |
958 | cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); | |
959 | } | |
960 | ||
c86c6e4c RH |
961 | #ifdef TARGET_WORDS_BIGENDIAN |
962 | # define TGT_BE(X) (X) | |
963 | # define TGT_LE(X) BSWAP(X) | |
964 | #else | |
965 | # define TGT_BE(X) BSWAP(X) | |
966 | # define TGT_LE(X) (X) | |
967 | #endif | |
968 | ||
0f590e74 PB |
969 | #define MMUSUFFIX _mmu |
970 | ||
dea21982 | 971 | #define DATA_SIZE 1 |
58ed270d | 972 | #include "softmmu_template.h" |
0f590e74 | 973 | |
dea21982 | 974 | #define DATA_SIZE 2 |
58ed270d | 975 | #include "softmmu_template.h" |
0f590e74 | 976 | |
dea21982 | 977 | #define DATA_SIZE 4 |
58ed270d | 978 | #include "softmmu_template.h" |
0f590e74 | 979 | |
dea21982 | 980 | #define DATA_SIZE 8 |
58ed270d | 981 | #include "softmmu_template.h" |
0f590e74 | 982 | |
c482cb11 RH |
983 | /* First set of helpers allows passing in of OI and RETADDR. This makes |
984 | them callable from other helpers. */ | |
985 | ||
986 | #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr | |
987 | #define ATOMIC_NAME(X) \ | |
988 | HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) | |
989 | #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr) | |
990 | ||
991 | #define DATA_SIZE 1 | |
992 | #include "atomic_template.h" | |
993 | ||
994 | #define DATA_SIZE 2 | |
995 | #include "atomic_template.h" | |
996 | ||
997 | #define DATA_SIZE 4 | |
998 | #include "atomic_template.h" | |
999 | ||
df79b996 | 1000 | #ifdef CONFIG_ATOMIC64 |
c482cb11 RH |
1001 | #define DATA_SIZE 8 |
1002 | #include "atomic_template.h" | |
df79b996 | 1003 | #endif |
c482cb11 | 1004 | |
7ebee43e RH |
1005 | #ifdef CONFIG_ATOMIC128 |
1006 | #define DATA_SIZE 16 | |
1007 | #include "atomic_template.h" | |
1008 | #endif | |
1009 | ||
c482cb11 RH |
1010 | /* Second set of helpers are directly callable from TCG as helpers. */ |
1011 | ||
1012 | #undef EXTRA_ARGS | |
1013 | #undef ATOMIC_NAME | |
1014 | #undef ATOMIC_MMU_LOOKUP | |
1015 | #define EXTRA_ARGS , TCGMemOpIdx oi | |
1016 | #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) | |
1017 | #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC()) | |
1018 | ||
1019 | #define DATA_SIZE 1 | |
1020 | #include "atomic_template.h" | |
1021 | ||
1022 | #define DATA_SIZE 2 | |
1023 | #include "atomic_template.h" | |
1024 | ||
1025 | #define DATA_SIZE 4 | |
1026 | #include "atomic_template.h" | |
1027 | ||
df79b996 | 1028 | #ifdef CONFIG_ATOMIC64 |
c482cb11 RH |
1029 | #define DATA_SIZE 8 |
1030 | #include "atomic_template.h" | |
df79b996 | 1031 | #endif |
c482cb11 RH |
1032 | |
1033 | /* Code access functions. */ | |
1034 | ||
1035 | #undef MMUSUFFIX | |
0cac1b66 | 1036 | #define MMUSUFFIX _cmmu |
01ecaf43 RH |
1037 | #undef GETPC |
1038 | #define GETPC() ((uintptr_t)0) | |
0cac1b66 BS |
1039 | #define SOFTMMU_CODE_ACCESS |
1040 | ||
dea21982 | 1041 | #define DATA_SIZE 1 |
58ed270d | 1042 | #include "softmmu_template.h" |
0cac1b66 | 1043 | |
dea21982 | 1044 | #define DATA_SIZE 2 |
58ed270d | 1045 | #include "softmmu_template.h" |
0cac1b66 | 1046 | |
dea21982 | 1047 | #define DATA_SIZE 4 |
58ed270d | 1048 | #include "softmmu_template.h" |
0cac1b66 | 1049 | |
dea21982 | 1050 | #define DATA_SIZE 8 |
58ed270d | 1051 | #include "softmmu_template.h" |