]>
Commit | Line | Data |
---|---|---|
685784aa DW |
1 | # |
2 | # Generic algorithms support | |
3 | # | |
4 | config XOR_BLOCKS | |
5 | tristate | |
6 | ||
1da177e4 | 7 | # |
9bc89cd8 | 8 | # async_tx api: hardware offloaded memory transfer/transform support |
1da177e4 | 9 | # |
9bc89cd8 | 10 | source "crypto/async_tx/Kconfig" |
1da177e4 | 11 | |
9bc89cd8 DW |
12 | # |
13 | # Cryptographic API Configuration | |
14 | # | |
2e290f43 | 15 | menuconfig CRYPTO |
c3715cb9 | 16 | tristate "Cryptographic API" |
1da177e4 LT |
17 | help |
18 | This option provides the core Cryptographic API. | |
19 | ||
cce9e06d HX |
20 | if CRYPTO |
21 | ||
584fffc8 SS |
22 | comment "Crypto core or helper" |
23 | ||
ccb778e1 NH |
24 | config CRYPTO_FIPS |
25 | bool "FIPS 200 compliance" | |
f2c89a10 | 26 | depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS |
1f696097 | 27 | depends on (MODULE_SIG || !MODULES) |
ccb778e1 NH |
28 | help |
29 | This options enables the fips boot option which is | |
30 | required if you want to system to operate in a FIPS 200 | |
31 | certification. You should say no unless you know what | |
e84c5480 | 32 | this is. |
ccb778e1 | 33 | |
cce9e06d HX |
34 | config CRYPTO_ALGAPI |
35 | tristate | |
6a0fcbb4 | 36 | select CRYPTO_ALGAPI2 |
cce9e06d HX |
37 | help |
38 | This option provides the API for cryptographic algorithms. | |
39 | ||
6a0fcbb4 HX |
40 | config CRYPTO_ALGAPI2 |
41 | tristate | |
42 | ||
1ae97820 HX |
43 | config CRYPTO_AEAD |
44 | tristate | |
6a0fcbb4 | 45 | select CRYPTO_AEAD2 |
1ae97820 HX |
46 | select CRYPTO_ALGAPI |
47 | ||
6a0fcbb4 HX |
48 | config CRYPTO_AEAD2 |
49 | tristate | |
50 | select CRYPTO_ALGAPI2 | |
149a3971 HX |
51 | select CRYPTO_NULL2 |
52 | select CRYPTO_RNG2 | |
6a0fcbb4 | 53 | |
5cde0af2 HX |
54 | config CRYPTO_BLKCIPHER |
55 | tristate | |
6a0fcbb4 | 56 | select CRYPTO_BLKCIPHER2 |
5cde0af2 | 57 | select CRYPTO_ALGAPI |
6a0fcbb4 HX |
58 | |
59 | config CRYPTO_BLKCIPHER2 | |
60 | tristate | |
61 | select CRYPTO_ALGAPI2 | |
62 | select CRYPTO_RNG2 | |
0a2e821d | 63 | select CRYPTO_WORKQUEUE |
5cde0af2 | 64 | |
055bcee3 HX |
65 | config CRYPTO_HASH |
66 | tristate | |
6a0fcbb4 | 67 | select CRYPTO_HASH2 |
055bcee3 HX |
68 | select CRYPTO_ALGAPI |
69 | ||
6a0fcbb4 HX |
70 | config CRYPTO_HASH2 |
71 | tristate | |
72 | select CRYPTO_ALGAPI2 | |
73 | ||
17f0f4a4 NH |
74 | config CRYPTO_RNG |
75 | tristate | |
6a0fcbb4 | 76 | select CRYPTO_RNG2 |
17f0f4a4 NH |
77 | select CRYPTO_ALGAPI |
78 | ||
6a0fcbb4 HX |
79 | config CRYPTO_RNG2 |
80 | tristate | |
81 | select CRYPTO_ALGAPI2 | |
82 | ||
401e4238 HX |
83 | config CRYPTO_RNG_DEFAULT |
84 | tristate | |
85 | select CRYPTO_DRBG_MENU | |
86 | ||
3c339ab8 TS |
87 | config CRYPTO_AKCIPHER2 |
88 | tristate | |
89 | select CRYPTO_ALGAPI2 | |
90 | ||
91 | config CRYPTO_AKCIPHER | |
92 | tristate | |
93 | select CRYPTO_AKCIPHER2 | |
94 | select CRYPTO_ALGAPI | |
95 | ||
4e5f2c40 SB |
96 | config CRYPTO_KPP2 |
97 | tristate | |
98 | select CRYPTO_ALGAPI2 | |
99 | ||
100 | config CRYPTO_KPP | |
101 | tristate | |
102 | select CRYPTO_ALGAPI | |
103 | select CRYPTO_KPP2 | |
104 | ||
2ebda74f GC |
105 | config CRYPTO_ACOMP2 |
106 | tristate | |
107 | select CRYPTO_ALGAPI2 | |
108 | ||
109 | config CRYPTO_ACOMP | |
110 | tristate | |
111 | select CRYPTO_ALGAPI | |
112 | select CRYPTO_ACOMP2 | |
113 | ||
cfc2bb32 TS |
114 | config CRYPTO_RSA |
115 | tristate "RSA algorithm" | |
425e0172 | 116 | select CRYPTO_AKCIPHER |
58446fef | 117 | select CRYPTO_MANAGER |
cfc2bb32 TS |
118 | select MPILIB |
119 | select ASN1 | |
120 | help | |
121 | Generic implementation of the RSA public key algorithm. | |
122 | ||
802c7f1c SB |
123 | config CRYPTO_DH |
124 | tristate "Diffie-Hellman algorithm" | |
125 | select CRYPTO_KPP | |
126 | select MPILIB | |
127 | help | |
128 | Generic implementation of the Diffie-Hellman algorithm. | |
129 | ||
3c4b2390 SB |
130 | config CRYPTO_ECDH |
131 | tristate "ECDH algorithm" | |
132 | select CRYTPO_KPP | |
133 | help | |
134 | Generic implementation of the ECDH algorithm | |
802c7f1c | 135 | |
2b8c19db HX |
136 | config CRYPTO_MANAGER |
137 | tristate "Cryptographic algorithm manager" | |
6a0fcbb4 | 138 | select CRYPTO_MANAGER2 |
2b8c19db HX |
139 | help |
140 | Create default cryptographic template instantiations such as | |
141 | cbc(aes). | |
142 | ||
6a0fcbb4 HX |
143 | config CRYPTO_MANAGER2 |
144 | def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) | |
145 | select CRYPTO_AEAD2 | |
146 | select CRYPTO_HASH2 | |
147 | select CRYPTO_BLKCIPHER2 | |
946cc463 | 148 | select CRYPTO_AKCIPHER2 |
4e5f2c40 | 149 | select CRYPTO_KPP2 |
2ebda74f | 150 | select CRYPTO_ACOMP2 |
6a0fcbb4 | 151 | |
a38f7907 SK |
152 | config CRYPTO_USER |
153 | tristate "Userspace cryptographic algorithm configuration" | |
5db017aa | 154 | depends on NET |
a38f7907 SK |
155 | select CRYPTO_MANAGER |
156 | help | |
d19978f5 | 157 | Userspace configuration for cryptographic instantiations such as |
a38f7907 SK |
158 | cbc(aes). |
159 | ||
326a6346 HX |
160 | config CRYPTO_MANAGER_DISABLE_TESTS |
161 | bool "Disable run-time self tests" | |
00ca28a5 HX |
162 | default y |
163 | depends on CRYPTO_MANAGER2 | |
0b767f96 | 164 | help |
326a6346 HX |
165 | Disable run-time self tests that normally take place at |
166 | algorithm registration. | |
0b767f96 | 167 | |
584fffc8 | 168 | config CRYPTO_GF128MUL |
08c70fc3 | 169 | tristate "GF(2^128) multiplication functions" |
333b0d7e | 170 | help |
584fffc8 SS |
171 | Efficient table driven implementation of multiplications in the |
172 | field GF(2^128). This is needed by some cypher modes. This | |
173 | option will be selected automatically if you select such a | |
174 | cipher mode. Only select this option by hand if you expect to load | |
175 | an external module that requires these functions. | |
333b0d7e | 176 | |
1da177e4 LT |
177 | config CRYPTO_NULL |
178 | tristate "Null algorithms" | |
149a3971 | 179 | select CRYPTO_NULL2 |
1da177e4 LT |
180 | help |
181 | These are 'Null' algorithms, used by IPsec, which do nothing. | |
182 | ||
149a3971 | 183 | config CRYPTO_NULL2 |
dd43c4e9 | 184 | tristate |
149a3971 HX |
185 | select CRYPTO_ALGAPI2 |
186 | select CRYPTO_BLKCIPHER2 | |
187 | select CRYPTO_HASH2 | |
188 | ||
5068c7a8 | 189 | config CRYPTO_PCRYPT |
3b4afaf2 KC |
190 | tristate "Parallel crypto engine" |
191 | depends on SMP | |
5068c7a8 SK |
192 | select PADATA |
193 | select CRYPTO_MANAGER | |
194 | select CRYPTO_AEAD | |
195 | help | |
196 | This converts an arbitrary crypto algorithm into a parallel | |
197 | algorithm that executes in kernel threads. | |
198 | ||
25c38d3f HY |
199 | config CRYPTO_WORKQUEUE |
200 | tristate | |
201 | ||
584fffc8 SS |
202 | config CRYPTO_CRYPTD |
203 | tristate "Software async crypto daemon" | |
204 | select CRYPTO_BLKCIPHER | |
b8a28251 | 205 | select CRYPTO_HASH |
584fffc8 | 206 | select CRYPTO_MANAGER |
254eff77 | 207 | select CRYPTO_WORKQUEUE |
1da177e4 | 208 | help |
584fffc8 SS |
209 | This is a generic software asynchronous crypto daemon that |
210 | converts an arbitrary synchronous software crypto algorithm | |
211 | into an asynchronous algorithm that executes in a kernel thread. | |
1da177e4 | 212 | |
1e65b81a TC |
213 | config CRYPTO_MCRYPTD |
214 | tristate "Software async multi-buffer crypto daemon" | |
215 | select CRYPTO_BLKCIPHER | |
216 | select CRYPTO_HASH | |
217 | select CRYPTO_MANAGER | |
218 | select CRYPTO_WORKQUEUE | |
219 | help | |
220 | This is a generic software asynchronous crypto daemon that | |
221 | provides the kernel thread to assist multi-buffer crypto | |
222 | algorithms for submitting jobs and flushing jobs in multi-buffer | |
223 | crypto algorithms. Multi-buffer crypto algorithms are executed | |
224 | in the context of this kernel thread and drivers can post | |
0e56673b | 225 | their crypto request asynchronously to be processed by this daemon. |
1e65b81a | 226 | |
584fffc8 SS |
227 | config CRYPTO_AUTHENC |
228 | tristate "Authenc support" | |
229 | select CRYPTO_AEAD | |
230 | select CRYPTO_BLKCIPHER | |
231 | select CRYPTO_MANAGER | |
232 | select CRYPTO_HASH | |
e94c6a7a | 233 | select CRYPTO_NULL |
1da177e4 | 234 | help |
584fffc8 SS |
235 | Authenc: Combined mode wrapper for IPsec. |
236 | This is required for IPSec. | |
1da177e4 | 237 | |
584fffc8 SS |
238 | config CRYPTO_TEST |
239 | tristate "Testing module" | |
240 | depends on m | |
da7f033d | 241 | select CRYPTO_MANAGER |
1da177e4 | 242 | help |
584fffc8 | 243 | Quick & dirty crypto test module. |
1da177e4 | 244 | |
a62b01cd | 245 | config CRYPTO_ABLK_HELPER |
ffaf9156 | 246 | tristate |
266d0516 HX |
247 | select CRYPTO_CRYPTD |
248 | ||
249 | config CRYPTO_SIMD | |
250 | tristate | |
ffaf9156 JK |
251 | select CRYPTO_CRYPTD |
252 | ||
596d8750 JK |
253 | config CRYPTO_GLUE_HELPER_X86 |
254 | tristate | |
255 | depends on X86 | |
065ce327 | 256 | select CRYPTO_BLKCIPHER |
596d8750 | 257 | |
735d37b5 BW |
258 | config CRYPTO_ENGINE |
259 | tristate | |
260 | ||
584fffc8 | 261 | comment "Authenticated Encryption with Associated Data" |
cd12fb90 | 262 | |
584fffc8 SS |
263 | config CRYPTO_CCM |
264 | tristate "CCM support" | |
265 | select CRYPTO_CTR | |
266 | select CRYPTO_AEAD | |
1da177e4 | 267 | help |
584fffc8 | 268 | Support for Counter with CBC MAC. Required for IPsec. |
1da177e4 | 269 | |
584fffc8 SS |
270 | config CRYPTO_GCM |
271 | tristate "GCM/GMAC support" | |
272 | select CRYPTO_CTR | |
273 | select CRYPTO_AEAD | |
9382d97a | 274 | select CRYPTO_GHASH |
9489667d | 275 | select CRYPTO_NULL |
1da177e4 | 276 | help |
584fffc8 SS |
277 | Support for Galois/Counter Mode (GCM) and Galois Message |
278 | Authentication Code (GMAC). Required for IPSec. | |
1da177e4 | 279 | |
71ebc4d1 MW |
280 | config CRYPTO_CHACHA20POLY1305 |
281 | tristate "ChaCha20-Poly1305 AEAD support" | |
282 | select CRYPTO_CHACHA20 | |
283 | select CRYPTO_POLY1305 | |
284 | select CRYPTO_AEAD | |
285 | help | |
286 | ChaCha20-Poly1305 AEAD support, RFC7539. | |
287 | ||
288 | Support for the AEAD wrapper using the ChaCha20 stream cipher combined | |
289 | with the Poly1305 authenticator. It is defined in RFC7539 for use in | |
290 | IETF protocols. | |
291 | ||
584fffc8 SS |
292 | config CRYPTO_SEQIV |
293 | tristate "Sequence Number IV Generator" | |
294 | select CRYPTO_AEAD | |
295 | select CRYPTO_BLKCIPHER | |
856e3f40 | 296 | select CRYPTO_NULL |
401e4238 | 297 | select CRYPTO_RNG_DEFAULT |
1da177e4 | 298 | help |
584fffc8 SS |
299 | This IV generator generates an IV based on a sequence number by |
300 | xoring it with a salt. This algorithm is mainly useful for CTR | |
1da177e4 | 301 | |
a10f554f HX |
302 | config CRYPTO_ECHAINIV |
303 | tristate "Encrypted Chain IV Generator" | |
304 | select CRYPTO_AEAD | |
305 | select CRYPTO_NULL | |
401e4238 | 306 | select CRYPTO_RNG_DEFAULT |
3491244c | 307 | default m |
a10f554f HX |
308 | help |
309 | This IV generator generates an IV based on the encryption of | |
310 | a sequence number xored with a salt. This is the default | |
311 | algorithm for CBC. | |
312 | ||
584fffc8 | 313 | comment "Block modes" |
c494e070 | 314 | |
584fffc8 SS |
315 | config CRYPTO_CBC |
316 | tristate "CBC support" | |
db131ef9 | 317 | select CRYPTO_BLKCIPHER |
43518407 | 318 | select CRYPTO_MANAGER |
db131ef9 | 319 | help |
584fffc8 SS |
320 | CBC: Cipher Block Chaining mode |
321 | This block cipher algorithm is required for IPSec. | |
db131ef9 | 322 | |
584fffc8 SS |
323 | config CRYPTO_CTR |
324 | tristate "CTR support" | |
db131ef9 | 325 | select CRYPTO_BLKCIPHER |
584fffc8 | 326 | select CRYPTO_SEQIV |
43518407 | 327 | select CRYPTO_MANAGER |
db131ef9 | 328 | help |
584fffc8 | 329 | CTR: Counter mode |
db131ef9 HX |
330 | This block cipher algorithm is required for IPSec. |
331 | ||
584fffc8 SS |
332 | config CRYPTO_CTS |
333 | tristate "CTS support" | |
334 | select CRYPTO_BLKCIPHER | |
335 | help | |
336 | CTS: Cipher Text Stealing | |
337 | This is the Cipher Text Stealing mode as described by | |
338 | Section 8 of rfc2040 and referenced by rfc3962. | |
339 | (rfc3962 includes errata information in its Appendix A) | |
340 | This mode is required for Kerberos gss mechanism support | |
341 | for AES encryption. | |
342 | ||
343 | config CRYPTO_ECB | |
344 | tristate "ECB support" | |
91652be5 DH |
345 | select CRYPTO_BLKCIPHER |
346 | select CRYPTO_MANAGER | |
91652be5 | 347 | help |
584fffc8 SS |
348 | ECB: Electronic CodeBook mode |
349 | This is the simplest block cipher algorithm. It simply encrypts | |
350 | the input block by block. | |
91652be5 | 351 | |
64470f1b | 352 | config CRYPTO_LRW |
2470a2b2 | 353 | tristate "LRW support" |
64470f1b RS |
354 | select CRYPTO_BLKCIPHER |
355 | select CRYPTO_MANAGER | |
356 | select CRYPTO_GF128MUL | |
357 | help | |
358 | LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable | |
359 | narrow block cipher mode for dm-crypt. Use it with cipher | |
360 | specification string aes-lrw-benbi, the key must be 256, 320 or 384. | |
361 | The first 128, 192 or 256 bits in the key are used for AES and the | |
362 | rest is used to tie each cipher block to its logical position. | |
363 | ||
584fffc8 SS |
364 | config CRYPTO_PCBC |
365 | tristate "PCBC support" | |
366 | select CRYPTO_BLKCIPHER | |
367 | select CRYPTO_MANAGER | |
368 | help | |
369 | PCBC: Propagating Cipher Block Chaining mode | |
370 | This block cipher algorithm is required for RxRPC. | |
371 | ||
f19f5111 | 372 | config CRYPTO_XTS |
5bcf8e6d | 373 | tristate "XTS support" |
f19f5111 RS |
374 | select CRYPTO_BLKCIPHER |
375 | select CRYPTO_MANAGER | |
376 | select CRYPTO_GF128MUL | |
377 | help | |
378 | XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, | |
379 | key size 256, 384 or 512 bits. This implementation currently | |
380 | can't handle a sectorsize which is not a multiple of 16 bytes. | |
381 | ||
1c49678e SM |
382 | config CRYPTO_KEYWRAP |
383 | tristate "Key wrapping support" | |
384 | select CRYPTO_BLKCIPHER | |
385 | help | |
386 | Support for key wrapping (NIST SP800-38F / RFC3394) without | |
387 | padding. | |
388 | ||
584fffc8 SS |
389 | comment "Hash modes" |
390 | ||
93b5e86a JK |
391 | config CRYPTO_CMAC |
392 | tristate "CMAC support" | |
393 | select CRYPTO_HASH | |
394 | select CRYPTO_MANAGER | |
395 | help | |
396 | Cipher-based Message Authentication Code (CMAC) specified by | |
397 | The National Institute of Standards and Technology (NIST). | |
398 | ||
399 | https://tools.ietf.org/html/rfc4493 | |
400 | http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf | |
401 | ||
584fffc8 SS |
402 | config CRYPTO_HMAC |
403 | tristate "HMAC support" | |
404 | select CRYPTO_HASH | |
23e353c8 | 405 | select CRYPTO_MANAGER |
23e353c8 | 406 | help |
584fffc8 SS |
407 | HMAC: Keyed-Hashing for Message Authentication (RFC2104). |
408 | This is required for IPSec. | |
23e353c8 | 409 | |
584fffc8 SS |
410 | config CRYPTO_XCBC |
411 | tristate "XCBC support" | |
584fffc8 SS |
412 | select CRYPTO_HASH |
413 | select CRYPTO_MANAGER | |
76cb9521 | 414 | help |
584fffc8 SS |
415 | XCBC: Keyed-Hashing with encryption algorithm |
416 | http://www.ietf.org/rfc/rfc3566.txt | |
417 | http://csrc.nist.gov/encryption/modes/proposedmodes/ | |
418 | xcbc-mac/xcbc-mac-spec.pdf | |
76cb9521 | 419 | |
f1939f7c SW |
420 | config CRYPTO_VMAC |
421 | tristate "VMAC support" | |
f1939f7c SW |
422 | select CRYPTO_HASH |
423 | select CRYPTO_MANAGER | |
424 | help | |
425 | VMAC is a message authentication algorithm designed for | |
426 | very high speed on 64-bit architectures. | |
427 | ||
428 | See also: | |
429 | <http://fastcrypto.org/vmac> | |
430 | ||
584fffc8 | 431 | comment "Digest" |
28db8e3e | 432 | |
584fffc8 SS |
433 | config CRYPTO_CRC32C |
434 | tristate "CRC32c CRC algorithm" | |
5773a3e6 | 435 | select CRYPTO_HASH |
6a0962b2 | 436 | select CRC32 |
4a49b499 | 437 | help |
584fffc8 SS |
438 | Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used |
439 | by iSCSI for header and data digests and by others. | |
69c35efc | 440 | See Castagnoli93. Module will be crc32c. |
4a49b499 | 441 | |
8cb51ba8 AZ |
442 | config CRYPTO_CRC32C_INTEL |
443 | tristate "CRC32c INTEL hardware acceleration" | |
444 | depends on X86 | |
445 | select CRYPTO_HASH | |
446 | help | |
447 | In Intel processor with SSE4.2 supported, the processor will | |
448 | support CRC32C implementation using hardware accelerated CRC32 | |
449 | instruction. This option will create 'crc32c-intel' module, | |
450 | which will enable any routine to use the CRC32 instruction to | |
451 | gain performance compared with software implementation. | |
452 | Module will be crc32c-intel. | |
453 | ||
7cf31864 | 454 | config CRYPTO_CRC32C_VPMSUM |
6dd7a82c | 455 | tristate "CRC32c CRC algorithm (powerpc64)" |
c12abf34 | 456 | depends on PPC64 && ALTIVEC |
6dd7a82c AB |
457 | select CRYPTO_HASH |
458 | select CRC32 | |
459 | help | |
460 | CRC32c algorithm implemented using vector polynomial multiply-sum | |
461 | (vpmsum) instructions, introduced in POWER8. Enable on POWER8 | |
462 | and newer processors for improved performance. | |
463 | ||
464 | ||
442a7c40 DM |
465 | config CRYPTO_CRC32C_SPARC64 |
466 | tristate "CRC32c CRC algorithm (SPARC64)" | |
467 | depends on SPARC64 | |
468 | select CRYPTO_HASH | |
469 | select CRC32 | |
470 | help | |
471 | CRC32c CRC algorithm implemented using sparc64 crypto instructions, | |
472 | when available. | |
473 | ||
78c37d19 AB |
474 | config CRYPTO_CRC32 |
475 | tristate "CRC32 CRC algorithm" | |
476 | select CRYPTO_HASH | |
477 | select CRC32 | |
478 | help | |
479 | CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. | |
480 | Shash crypto api wrappers to crc32_le function. | |
481 | ||
482 | config CRYPTO_CRC32_PCLMUL | |
483 | tristate "CRC32 PCLMULQDQ hardware acceleration" | |
484 | depends on X86 | |
485 | select CRYPTO_HASH | |
486 | select CRC32 | |
487 | help | |
488 | From Intel Westmere and AMD Bulldozer processor with SSE4.2 | |
489 | and PCLMULQDQ supported, the processor will support | |
490 | CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ | |
491 | instruction. This option will create 'crc32-plcmul' module, | |
492 | which will enable any routine to use the CRC-32-IEEE 802.3 checksum | |
493 | and gain better performance as compared with the table implementation. | |
494 | ||
68411521 HX |
495 | config CRYPTO_CRCT10DIF |
496 | tristate "CRCT10DIF algorithm" | |
497 | select CRYPTO_HASH | |
498 | help | |
499 | CRC T10 Data Integrity Field computation is being cast as | |
500 | a crypto transform. This allows for faster crc t10 diff | |
501 | transforms to be used if they are available. | |
502 | ||
503 | config CRYPTO_CRCT10DIF_PCLMUL | |
504 | tristate "CRCT10DIF PCLMULQDQ hardware acceleration" | |
505 | depends on X86 && 64BIT && CRC_T10DIF | |
506 | select CRYPTO_HASH | |
507 | help | |
508 | For x86_64 processors with SSE4.2 and PCLMULQDQ supported, | |
509 | CRC T10 DIF PCLMULQDQ computation can be hardware | |
510 | accelerated PCLMULQDQ instruction. This option will create | |
511 | 'crct10dif-plcmul' module, which is faster when computing the | |
512 | crct10dif checksum as compared with the generic table implementation. | |
513 | ||
2cdc6899 HY |
514 | config CRYPTO_GHASH |
515 | tristate "GHASH digest algorithm" | |
2cdc6899 | 516 | select CRYPTO_GF128MUL |
578c60fb | 517 | select CRYPTO_HASH |
2cdc6899 HY |
518 | help |
519 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
520 | ||
f979e014 MW |
521 | config CRYPTO_POLY1305 |
522 | tristate "Poly1305 authenticator algorithm" | |
578c60fb | 523 | select CRYPTO_HASH |
f979e014 MW |
524 | help |
525 | Poly1305 authenticator algorithm, RFC7539. | |
526 | ||
527 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
528 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
529 | in IETF protocols. This is the portable C implementation of Poly1305. | |
530 | ||
c70f4abe | 531 | config CRYPTO_POLY1305_X86_64 |
b1ccc8f4 | 532 | tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" |
c70f4abe MW |
533 | depends on X86 && 64BIT |
534 | select CRYPTO_POLY1305 | |
535 | help | |
536 | Poly1305 authenticator algorithm, RFC7539. | |
537 | ||
538 | Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. | |
539 | It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use | |
540 | in IETF protocols. This is the x86_64 assembler implementation using SIMD | |
541 | instructions. | |
542 | ||
584fffc8 SS |
543 | config CRYPTO_MD4 |
544 | tristate "MD4 digest algorithm" | |
808a1763 | 545 | select CRYPTO_HASH |
124b53d0 | 546 | help |
584fffc8 | 547 | MD4 message digest algorithm (RFC1320). |
124b53d0 | 548 | |
584fffc8 SS |
549 | config CRYPTO_MD5 |
550 | tristate "MD5 digest algorithm" | |
14b75ba7 | 551 | select CRYPTO_HASH |
1da177e4 | 552 | help |
584fffc8 | 553 | MD5 message digest algorithm (RFC1321). |
1da177e4 | 554 | |
d69e75de AK |
555 | config CRYPTO_MD5_OCTEON |
556 | tristate "MD5 digest algorithm (OCTEON)" | |
557 | depends on CPU_CAVIUM_OCTEON | |
558 | select CRYPTO_MD5 | |
559 | select CRYPTO_HASH | |
560 | help | |
561 | MD5 message digest algorithm (RFC1321) implemented | |
562 | using OCTEON crypto instructions, when available. | |
563 | ||
e8e59953 MS |
564 | config CRYPTO_MD5_PPC |
565 | tristate "MD5 digest algorithm (PPC)" | |
566 | depends on PPC | |
567 | select CRYPTO_HASH | |
568 | help | |
569 | MD5 message digest algorithm (RFC1321) implemented | |
570 | in PPC assembler. | |
571 | ||
fa4dfedc DM |
572 | config CRYPTO_MD5_SPARC64 |
573 | tristate "MD5 digest algorithm (SPARC64)" | |
574 | depends on SPARC64 | |
575 | select CRYPTO_MD5 | |
576 | select CRYPTO_HASH | |
577 | help | |
578 | MD5 message digest algorithm (RFC1321) implemented | |
579 | using sparc64 crypto instructions, when available. | |
580 | ||
584fffc8 SS |
581 | config CRYPTO_MICHAEL_MIC |
582 | tristate "Michael MIC keyed digest algorithm" | |
19e2bf14 | 583 | select CRYPTO_HASH |
90831639 | 584 | help |
584fffc8 SS |
585 | Michael MIC is used for message integrity protection in TKIP |
586 | (IEEE 802.11i). This algorithm is required for TKIP, but it | |
587 | should not be used for other purposes because of the weakness | |
588 | of the algorithm. | |
90831639 | 589 | |
82798f90 | 590 | config CRYPTO_RMD128 |
b6d44341 | 591 | tristate "RIPEMD-128 digest algorithm" |
7c4468bc | 592 | select CRYPTO_HASH |
b6d44341 AB |
593 | help |
594 | RIPEMD-128 (ISO/IEC 10118-3:2004). | |
82798f90 | 595 | |
b6d44341 | 596 | RIPEMD-128 is a 128-bit cryptographic hash function. It should only |
35ed4b35 | 597 | be used as a secure replacement for RIPEMD. For other use cases, |
b6d44341 | 598 | RIPEMD-160 should be used. |
82798f90 | 599 | |
b6d44341 | 600 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 601 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 AKR |
602 | |
603 | config CRYPTO_RMD160 | |
b6d44341 | 604 | tristate "RIPEMD-160 digest algorithm" |
e5835fba | 605 | select CRYPTO_HASH |
b6d44341 AB |
606 | help |
607 | RIPEMD-160 (ISO/IEC 10118-3:2004). | |
82798f90 | 608 | |
b6d44341 AB |
609 | RIPEMD-160 is a 160-bit cryptographic hash function. It is intended |
610 | to be used as a secure replacement for the 128-bit hash functions | |
611 | MD4, MD5 and it's predecessor RIPEMD | |
612 | (not to be confused with RIPEMD-128). | |
82798f90 | 613 | |
b6d44341 AB |
614 | It's speed is comparable to SHA1 and there are no known attacks |
615 | against RIPEMD-160. | |
534fe2c1 | 616 | |
b6d44341 | 617 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 618 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
619 | |
620 | config CRYPTO_RMD256 | |
b6d44341 | 621 | tristate "RIPEMD-256 digest algorithm" |
d8a5e2e9 | 622 | select CRYPTO_HASH |
b6d44341 AB |
623 | help |
624 | RIPEMD-256 is an optional extension of RIPEMD-128 with a | |
625 | 256 bit hash. It is intended for applications that require | |
626 | longer hash-results, without needing a larger security level | |
627 | (than RIPEMD-128). | |
534fe2c1 | 628 | |
b6d44341 | 629 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 630 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
534fe2c1 AKR |
631 | |
632 | config CRYPTO_RMD320 | |
b6d44341 | 633 | tristate "RIPEMD-320 digest algorithm" |
3b8efb4c | 634 | select CRYPTO_HASH |
b6d44341 AB |
635 | help |
636 | RIPEMD-320 is an optional extension of RIPEMD-160 with a | |
637 | 320 bit hash. It is intended for applications that require | |
638 | longer hash-results, without needing a larger security level | |
639 | (than RIPEMD-160). | |
534fe2c1 | 640 | |
b6d44341 | 641 | Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. |
6d8de74c | 642 | See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> |
82798f90 | 643 | |
584fffc8 SS |
644 | config CRYPTO_SHA1 |
645 | tristate "SHA1 digest algorithm" | |
54ccb367 | 646 | select CRYPTO_HASH |
1da177e4 | 647 | help |
584fffc8 | 648 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). |
1da177e4 | 649 | |
66be8951 | 650 | config CRYPTO_SHA1_SSSE3 |
e38b6b7f | 651 | tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
66be8951 MK |
652 | depends on X86 && 64BIT |
653 | select CRYPTO_SHA1 | |
654 | select CRYPTO_HASH | |
655 | help | |
656 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
657 | using Supplemental SSE3 (SSSE3) instructions or Advanced Vector | |
e38b6b7f | 658 | Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), |
659 | when available. | |
66be8951 | 660 | |
8275d1aa | 661 | config CRYPTO_SHA256_SSSE3 |
e38b6b7f | 662 | tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" |
8275d1aa TC |
663 | depends on X86 && 64BIT |
664 | select CRYPTO_SHA256 | |
665 | select CRYPTO_HASH | |
666 | help | |
667 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
668 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
669 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
e38b6b7f | 670 | version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New |
671 | Instructions) when available. | |
87de4579 TC |
672 | |
673 | config CRYPTO_SHA512_SSSE3 | |
674 | tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" | |
675 | depends on X86 && 64BIT | |
676 | select CRYPTO_SHA512 | |
677 | select CRYPTO_HASH | |
678 | help | |
679 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
680 | using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector | |
681 | Extensions version 1 (AVX1), or Advanced Vector Extensions | |
8275d1aa TC |
682 | version 2 (AVX2) instructions, when available. |
683 | ||
efdb6f6e AK |
684 | config CRYPTO_SHA1_OCTEON |
685 | tristate "SHA1 digest algorithm (OCTEON)" | |
686 | depends on CPU_CAVIUM_OCTEON | |
687 | select CRYPTO_SHA1 | |
688 | select CRYPTO_HASH | |
689 | help | |
690 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
691 | using OCTEON crypto instructions, when available. | |
692 | ||
4ff28d4c DM |
693 | config CRYPTO_SHA1_SPARC64 |
694 | tristate "SHA1 digest algorithm (SPARC64)" | |
695 | depends on SPARC64 | |
696 | select CRYPTO_SHA1 | |
697 | select CRYPTO_HASH | |
698 | help | |
699 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
700 | using sparc64 crypto instructions, when available. | |
701 | ||
323a6bf1 ME |
702 | config CRYPTO_SHA1_PPC |
703 | tristate "SHA1 digest algorithm (powerpc)" | |
704 | depends on PPC | |
705 | help | |
706 | This is the powerpc hardware accelerated implementation of the | |
707 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). | |
708 | ||
d9850fc5 MS |
709 | config CRYPTO_SHA1_PPC_SPE |
710 | tristate "SHA1 digest algorithm (PPC SPE)" | |
711 | depends on PPC && SPE | |
712 | help | |
713 | SHA-1 secure hash standard (DFIPS 180-4) implemented | |
714 | using powerpc SPE SIMD instruction set. | |
715 | ||
1e65b81a TC |
716 | config CRYPTO_SHA1_MB |
717 | tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
718 | depends on X86 && 64BIT | |
719 | select CRYPTO_SHA1 | |
720 | select CRYPTO_HASH | |
721 | select CRYPTO_MCRYPTD | |
722 | help | |
723 | SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
724 | using multi-buffer technique. This algorithm computes on | |
725 | multiple data lanes concurrently with SIMD instructions for | |
726 | better throughput. It should not be enabled by default but | |
727 | used when there is significant amount of work to keep the keep | |
728 | the data lanes filled to get performance benefit. If the data | |
729 | lanes remain unfilled, a flush operation will be initiated to | |
730 | process the crypto jobs, adding a slight latency. | |
731 | ||
9be7e244 MD |
732 | config CRYPTO_SHA256_MB |
733 | tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
734 | depends on X86 && 64BIT | |
735 | select CRYPTO_SHA256 | |
736 | select CRYPTO_HASH | |
737 | select CRYPTO_MCRYPTD | |
738 | help | |
739 | SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
740 | using multi-buffer technique. This algorithm computes on | |
741 | multiple data lanes concurrently with SIMD instructions for | |
742 | better throughput. It should not be enabled by default but | |
743 | used when there is significant amount of work to keep the keep | |
744 | the data lanes filled to get performance benefit. If the data | |
745 | lanes remain unfilled, a flush operation will be initiated to | |
746 | process the crypto jobs, adding a slight latency. | |
747 | ||
026bb8aa MD |
748 | config CRYPTO_SHA512_MB |
749 | tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)" | |
750 | depends on X86 && 64BIT | |
751 | select CRYPTO_SHA512 | |
752 | select CRYPTO_HASH | |
753 | select CRYPTO_MCRYPTD | |
754 | help | |
755 | SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented | |
756 | using multi-buffer technique. This algorithm computes on | |
757 | multiple data lanes concurrently with SIMD instructions for | |
758 | better throughput. It should not be enabled by default but | |
759 | used when there is significant amount of work to keep the keep | |
760 | the data lanes filled to get performance benefit. If the data | |
761 | lanes remain unfilled, a flush operation will be initiated to | |
762 | process the crypto jobs, adding a slight latency. | |
763 | ||
584fffc8 SS |
764 | config CRYPTO_SHA256 |
765 | tristate "SHA224 and SHA256 digest algorithm" | |
50e109b5 | 766 | select CRYPTO_HASH |
1da177e4 | 767 | help |
584fffc8 | 768 | SHA256 secure hash standard (DFIPS 180-2). |
1da177e4 | 769 | |
584fffc8 SS |
770 | This version of SHA implements a 256 bit hash with 128 bits of |
771 | security against collision attacks. | |
2729bb42 | 772 | |
b6d44341 AB |
773 | This code also includes SHA-224, a 224 bit hash with 112 bits |
774 | of security against collision attacks. | |
584fffc8 | 775 | |
2ecc1e95 MS |
776 | config CRYPTO_SHA256_PPC_SPE |
777 | tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" | |
778 | depends on PPC && SPE | |
779 | select CRYPTO_SHA256 | |
780 | select CRYPTO_HASH | |
781 | help | |
782 | SHA224 and SHA256 secure hash standard (DFIPS 180-2) | |
783 | implemented using powerpc SPE SIMD instruction set. | |
784 | ||
efdb6f6e AK |
785 | config CRYPTO_SHA256_OCTEON |
786 | tristate "SHA224 and SHA256 digest algorithm (OCTEON)" | |
787 | depends on CPU_CAVIUM_OCTEON | |
788 | select CRYPTO_SHA256 | |
789 | select CRYPTO_HASH | |
790 | help | |
791 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
792 | using OCTEON crypto instructions, when available. | |
793 | ||
86c93b24 DM |
794 | config CRYPTO_SHA256_SPARC64 |
795 | tristate "SHA224 and SHA256 digest algorithm (SPARC64)" | |
796 | depends on SPARC64 | |
797 | select CRYPTO_SHA256 | |
798 | select CRYPTO_HASH | |
799 | help | |
800 | SHA-256 secure hash standard (DFIPS 180-2) implemented | |
801 | using sparc64 crypto instructions, when available. | |
802 | ||
584fffc8 SS |
803 | config CRYPTO_SHA512 |
804 | tristate "SHA384 and SHA512 digest algorithms" | |
bd9d20db | 805 | select CRYPTO_HASH |
b9f535ff | 806 | help |
584fffc8 | 807 | SHA512 secure hash standard (DFIPS 180-2). |
b9f535ff | 808 | |
584fffc8 SS |
809 | This version of SHA implements a 512 bit hash with 256 bits of |
810 | security against collision attacks. | |
b9f535ff | 811 | |
584fffc8 SS |
812 | This code also includes SHA-384, a 384 bit hash with 192 bits |
813 | of security against collision attacks. | |
b9f535ff | 814 | |
efdb6f6e AK |
815 | config CRYPTO_SHA512_OCTEON |
816 | tristate "SHA384 and SHA512 digest algorithms (OCTEON)" | |
817 | depends on CPU_CAVIUM_OCTEON | |
818 | select CRYPTO_SHA512 | |
819 | select CRYPTO_HASH | |
820 | help | |
821 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
822 | using OCTEON crypto instructions, when available. | |
823 | ||
775e0c69 DM |
824 | config CRYPTO_SHA512_SPARC64 |
825 | tristate "SHA384 and SHA512 digest algorithm (SPARC64)" | |
826 | depends on SPARC64 | |
827 | select CRYPTO_SHA512 | |
828 | select CRYPTO_HASH | |
829 | help | |
830 | SHA-512 secure hash standard (DFIPS 180-2) implemented | |
831 | using sparc64 crypto instructions, when available. | |
832 | ||
53964b9e JG |
833 | config CRYPTO_SHA3 |
834 | tristate "SHA3 digest algorithm" | |
835 | select CRYPTO_HASH | |
836 | help | |
837 | SHA-3 secure hash standard (DFIPS 202). It's based on | |
838 | cryptographic sponge function family called Keccak. | |
839 | ||
840 | References: | |
841 | http://keccak.noekeon.org/ | |
842 | ||
584fffc8 SS |
843 | config CRYPTO_TGR192 |
844 | tristate "Tiger digest algorithms" | |
f63fbd3d | 845 | select CRYPTO_HASH |
eaf44088 | 846 | help |
584fffc8 | 847 | Tiger hash algorithm 192, 160 and 128-bit hashes |
eaf44088 | 848 | |
584fffc8 SS |
849 | Tiger is a hash function optimized for 64-bit processors while |
850 | still having decent performance on 32-bit processors. | |
851 | Tiger was developed by Ross Anderson and Eli Biham. | |
eaf44088 JF |
852 | |
853 | See also: | |
584fffc8 | 854 | <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. |
eaf44088 | 855 | |
584fffc8 SS |
856 | config CRYPTO_WP512 |
857 | tristate "Whirlpool digest algorithms" | |
4946510b | 858 | select CRYPTO_HASH |
1da177e4 | 859 | help |
584fffc8 | 860 | Whirlpool hash algorithm 512, 384 and 256-bit hashes |
1da177e4 | 861 | |
584fffc8 SS |
862 | Whirlpool-512 is part of the NESSIE cryptographic primitives. |
863 | Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard | |
1da177e4 LT |
864 | |
865 | See also: | |
6d8de74c | 866 | <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> |
584fffc8 | 867 | |
0e1227d3 HY |
868 | config CRYPTO_GHASH_CLMUL_NI_INTEL |
869 | tristate "GHASH digest algorithm (CLMUL-NI accelerated)" | |
8af00860 | 870 | depends on X86 && 64BIT |
0e1227d3 HY |
871 | select CRYPTO_CRYPTD |
872 | help | |
873 | GHASH is message digest algorithm for GCM (Galois/Counter Mode). | |
874 | The implementation is accelerated by CLMUL-NI of Intel. | |
875 | ||
584fffc8 | 876 | comment "Ciphers" |
1da177e4 LT |
877 | |
878 | config CRYPTO_AES | |
879 | tristate "AES cipher algorithms" | |
cce9e06d | 880 | select CRYPTO_ALGAPI |
1da177e4 | 881 | help |
584fffc8 | 882 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
883 | algorithm. |
884 | ||
885 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
886 | both hardware and software across a wide range of computing |
887 | environments regardless of its use in feedback or non-feedback | |
888 | modes. Its key setup time is excellent, and its key agility is | |
889 | good. Rijndael's very low memory requirements make it very well | |
890 | suited for restricted-space environments, in which it also | |
891 | demonstrates excellent performance. Rijndael's operations are | |
892 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 893 | |
584fffc8 | 894 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
895 | |
896 | See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. | |
897 | ||
898 | config CRYPTO_AES_586 | |
899 | tristate "AES cipher algorithms (i586)" | |
cce9e06d HX |
900 | depends on (X86 || UML_X86) && !64BIT |
901 | select CRYPTO_ALGAPI | |
5157dea8 | 902 | select CRYPTO_AES |
1da177e4 | 903 | help |
584fffc8 | 904 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
1da177e4 LT |
905 | algorithm. |
906 | ||
907 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
908 | both hardware and software across a wide range of computing |
909 | environments regardless of its use in feedback or non-feedback | |
910 | modes. Its key setup time is excellent, and its key agility is | |
911 | good. Rijndael's very low memory requirements make it very well | |
912 | suited for restricted-space environments, in which it also | |
913 | demonstrates excellent performance. Rijndael's operations are | |
914 | among the easiest to defend against power and timing attacks. | |
1da177e4 | 915 | |
584fffc8 | 916 | The AES specifies three key sizes: 128, 192 and 256 bits |
a2a892a2 AS |
917 | |
918 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
919 | ||
920 | config CRYPTO_AES_X86_64 | |
921 | tristate "AES cipher algorithms (x86_64)" | |
cce9e06d HX |
922 | depends on (X86 || UML_X86) && 64BIT |
923 | select CRYPTO_ALGAPI | |
81190b32 | 924 | select CRYPTO_AES |
a2a892a2 | 925 | help |
584fffc8 | 926 | AES cipher algorithms (FIPS-197). AES uses the Rijndael |
a2a892a2 AS |
927 | algorithm. |
928 | ||
929 | Rijndael appears to be consistently a very good performer in | |
584fffc8 SS |
930 | both hardware and software across a wide range of computing |
931 | environments regardless of its use in feedback or non-feedback | |
932 | modes. Its key setup time is excellent, and its key agility is | |
54b6a1bd HY |
933 | good. Rijndael's very low memory requirements make it very well |
934 | suited for restricted-space environments, in which it also | |
935 | demonstrates excellent performance. Rijndael's operations are | |
936 | among the easiest to defend against power and timing attacks. | |
937 | ||
938 | The AES specifies three key sizes: 128, 192 and 256 bits | |
939 | ||
940 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
941 | ||
942 | config CRYPTO_AES_NI_INTEL | |
943 | tristate "AES cipher algorithms (AES-NI)" | |
8af00860 | 944 | depends on X86 |
85671860 | 945 | select CRYPTO_AEAD |
0d258efb MK |
946 | select CRYPTO_AES_X86_64 if 64BIT |
947 | select CRYPTO_AES_586 if !64BIT | |
54b6a1bd | 948 | select CRYPTO_ALGAPI |
85671860 | 949 | select CRYPTO_BLKCIPHER |
7643a11a | 950 | select CRYPTO_GLUE_HELPER_X86 if 64BIT |
85671860 | 951 | select CRYPTO_SIMD |
54b6a1bd HY |
952 | help |
953 | Use Intel AES-NI instructions for AES algorithm. | |
954 | ||
955 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
956 | algorithm. | |
957 | ||
958 | Rijndael appears to be consistently a very good performer in | |
959 | both hardware and software across a wide range of computing | |
960 | environments regardless of its use in feedback or non-feedback | |
961 | modes. Its key setup time is excellent, and its key agility is | |
584fffc8 SS |
962 | good. Rijndael's very low memory requirements make it very well |
963 | suited for restricted-space environments, in which it also | |
964 | demonstrates excellent performance. Rijndael's operations are | |
965 | among the easiest to defend against power and timing attacks. | |
a2a892a2 | 966 | |
584fffc8 | 967 | The AES specifies three key sizes: 128, 192 and 256 bits |
1da177e4 LT |
968 | |
969 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
970 | ||
0d258efb MK |
971 | In addition to AES cipher algorithm support, the acceleration |
972 | for some popular block cipher mode is supported too, including | |
973 | ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional | |
974 | acceleration for CTR. | |
2cf4ac8b | 975 | |
9bf4852d DM |
976 | config CRYPTO_AES_SPARC64 |
977 | tristate "AES cipher algorithms (SPARC64)" | |
978 | depends on SPARC64 | |
979 | select CRYPTO_CRYPTD | |
980 | select CRYPTO_ALGAPI | |
981 | help | |
982 | Use SPARC64 crypto opcodes for AES algorithm. | |
983 | ||
984 | AES cipher algorithms (FIPS-197). AES uses the Rijndael | |
985 | algorithm. | |
986 | ||
987 | Rijndael appears to be consistently a very good performer in | |
988 | both hardware and software across a wide range of computing | |
989 | environments regardless of its use in feedback or non-feedback | |
990 | modes. Its key setup time is excellent, and its key agility is | |
991 | good. Rijndael's very low memory requirements make it very well | |
992 | suited for restricted-space environments, in which it also | |
993 | demonstrates excellent performance. Rijndael's operations are | |
994 | among the easiest to defend against power and timing attacks. | |
995 | ||
996 | The AES specifies three key sizes: 128, 192 and 256 bits | |
997 | ||
998 | See <http://csrc.nist.gov/encryption/aes/> for more information. | |
999 | ||
1000 | In addition to AES cipher algorithm support, the acceleration | |
1001 | for some popular block cipher mode is supported too, including | |
1002 | ECB and CBC. | |
1003 | ||
504c6143 MS |
1004 | config CRYPTO_AES_PPC_SPE |
1005 | tristate "AES cipher algorithms (PPC SPE)" | |
1006 | depends on PPC && SPE | |
1007 | help | |
1008 | AES cipher algorithms (FIPS-197). Additionally the acceleration | |
1009 | for popular block cipher modes ECB, CBC, CTR and XTS is supported. | |
1010 | This module should only be used for low power (router) devices | |
1011 | without hardware AES acceleration (e.g. caam crypto). It reduces the | |
1012 | size of the AES tables from 16KB to 8KB + 256 bytes and mitigates | |
1013 | timining attacks. Nevertheless it might be not as secure as other | |
1014 | architecture specific assembler implementations that work on 1KB | |
1015 | tables or 256 bytes S-boxes. | |
1016 | ||
584fffc8 SS |
1017 | config CRYPTO_ANUBIS |
1018 | tristate "Anubis cipher algorithm" | |
1019 | select CRYPTO_ALGAPI | |
1020 | help | |
1021 | Anubis cipher algorithm. | |
1022 | ||
1023 | Anubis is a variable key length cipher which can use keys from | |
1024 | 128 bits to 320 bits in length. It was evaluated as a entrant | |
1025 | in the NESSIE competition. | |
1026 | ||
1027 | See also: | |
6d8de74c JM |
1028 | <https://www.cosic.esat.kuleuven.be/nessie/reports/> |
1029 | <http://www.larc.usp.br/~pbarreto/AnubisPage.html> | |
584fffc8 SS |
1030 | |
1031 | config CRYPTO_ARC4 | |
1032 | tristate "ARC4 cipher algorithm" | |
b9b0f080 | 1033 | select CRYPTO_BLKCIPHER |
584fffc8 SS |
1034 | help |
1035 | ARC4 cipher algorithm. | |
1036 | ||
1037 | ARC4 is a stream cipher using keys ranging from 8 bits to 2048 | |
1038 | bits in length. This algorithm is required for driver-based | |
1039 | WEP, but it should not be for other purposes because of the | |
1040 | weakness of the algorithm. | |
1041 | ||
1042 | config CRYPTO_BLOWFISH | |
1043 | tristate "Blowfish cipher algorithm" | |
1044 | select CRYPTO_ALGAPI | |
52ba867c | 1045 | select CRYPTO_BLOWFISH_COMMON |
584fffc8 SS |
1046 | help |
1047 | Blowfish cipher algorithm, by Bruce Schneier. | |
1048 | ||
1049 | This is a variable key length cipher which can use keys from 32 | |
1050 | bits to 448 bits in length. It's fast, simple and specifically | |
1051 | designed for use on "large microprocessors". | |
1052 | ||
1053 | See also: | |
1054 | <http://www.schneier.com/blowfish.html> | |
1055 | ||
52ba867c JK |
1056 | config CRYPTO_BLOWFISH_COMMON |
1057 | tristate | |
1058 | help | |
1059 | Common parts of the Blowfish cipher algorithm shared by the | |
1060 | generic c and the assembler implementations. | |
1061 | ||
1062 | See also: | |
1063 | <http://www.schneier.com/blowfish.html> | |
1064 | ||
64b94cea JK |
1065 | config CRYPTO_BLOWFISH_X86_64 |
1066 | tristate "Blowfish cipher algorithm (x86_64)" | |
f21a7c19 | 1067 | depends on X86 && 64BIT |
64b94cea JK |
1068 | select CRYPTO_ALGAPI |
1069 | select CRYPTO_BLOWFISH_COMMON | |
1070 | help | |
1071 | Blowfish cipher algorithm (x86_64), by Bruce Schneier. | |
1072 | ||
1073 | This is a variable key length cipher which can use keys from 32 | |
1074 | bits to 448 bits in length. It's fast, simple and specifically | |
1075 | designed for use on "large microprocessors". | |
1076 | ||
1077 | See also: | |
1078 | <http://www.schneier.com/blowfish.html> | |
1079 | ||
584fffc8 SS |
1080 | config CRYPTO_CAMELLIA |
1081 | tristate "Camellia cipher algorithms" | |
1082 | depends on CRYPTO | |
1083 | select CRYPTO_ALGAPI | |
1084 | help | |
1085 | Camellia cipher algorithms module. | |
1086 | ||
1087 | Camellia is a symmetric key block cipher developed jointly | |
1088 | at NTT and Mitsubishi Electric Corporation. | |
1089 | ||
1090 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1091 | ||
1092 | See also: | |
1093 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1094 | ||
0b95ec56 JK |
1095 | config CRYPTO_CAMELLIA_X86_64 |
1096 | tristate "Camellia cipher algorithm (x86_64)" | |
f21a7c19 | 1097 | depends on X86 && 64BIT |
0b95ec56 JK |
1098 | depends on CRYPTO |
1099 | select CRYPTO_ALGAPI | |
964263af | 1100 | select CRYPTO_GLUE_HELPER_X86 |
0b95ec56 JK |
1101 | select CRYPTO_LRW |
1102 | select CRYPTO_XTS | |
1103 | help | |
1104 | Camellia cipher algorithm module (x86_64). | |
1105 | ||
1106 | Camellia is a symmetric key block cipher developed jointly | |
1107 | at NTT and Mitsubishi Electric Corporation. | |
1108 | ||
1109 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1110 | ||
1111 | See also: | |
d9b1d2e7 JK |
1112 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1113 | ||
1114 | config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1115 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" | |
1116 | depends on X86 && 64BIT | |
1117 | depends on CRYPTO | |
1118 | select CRYPTO_ALGAPI | |
1119 | select CRYPTO_CRYPTD | |
801201aa | 1120 | select CRYPTO_ABLK_HELPER |
d9b1d2e7 JK |
1121 | select CRYPTO_GLUE_HELPER_X86 |
1122 | select CRYPTO_CAMELLIA_X86_64 | |
1123 | select CRYPTO_LRW | |
1124 | select CRYPTO_XTS | |
1125 | help | |
1126 | Camellia cipher algorithm module (x86_64/AES-NI/AVX). | |
1127 | ||
1128 | Camellia is a symmetric key block cipher developed jointly | |
1129 | at NTT and Mitsubishi Electric Corporation. | |
1130 | ||
1131 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1132 | ||
1133 | See also: | |
0b95ec56 JK |
1134 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> |
1135 | ||
f3f935a7 JK |
1136 | config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 |
1137 | tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" | |
1138 | depends on X86 && 64BIT | |
1139 | depends on CRYPTO | |
1140 | select CRYPTO_ALGAPI | |
1141 | select CRYPTO_CRYPTD | |
801201aa | 1142 | select CRYPTO_ABLK_HELPER |
f3f935a7 JK |
1143 | select CRYPTO_GLUE_HELPER_X86 |
1144 | select CRYPTO_CAMELLIA_X86_64 | |
1145 | select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 | |
1146 | select CRYPTO_LRW | |
1147 | select CRYPTO_XTS | |
1148 | help | |
1149 | Camellia cipher algorithm module (x86_64/AES-NI/AVX2). | |
1150 | ||
1151 | Camellia is a symmetric key block cipher developed jointly | |
1152 | at NTT and Mitsubishi Electric Corporation. | |
1153 | ||
1154 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1155 | ||
1156 | See also: | |
1157 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1158 | ||
81658ad0 DM |
1159 | config CRYPTO_CAMELLIA_SPARC64 |
1160 | tristate "Camellia cipher algorithm (SPARC64)" | |
1161 | depends on SPARC64 | |
1162 | depends on CRYPTO | |
1163 | select CRYPTO_ALGAPI | |
1164 | help | |
1165 | Camellia cipher algorithm module (SPARC64). | |
1166 | ||
1167 | Camellia is a symmetric key block cipher developed jointly | |
1168 | at NTT and Mitsubishi Electric Corporation. | |
1169 | ||
1170 | The Camellia specifies three key sizes: 128, 192 and 256 bits. | |
1171 | ||
1172 | See also: | |
1173 | <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> | |
1174 | ||
044ab525 JK |
1175 | config CRYPTO_CAST_COMMON |
1176 | tristate | |
1177 | help | |
1178 | Common parts of the CAST cipher algorithms shared by the | |
1179 | generic c and the assembler implementations. | |
1180 | ||
1da177e4 LT |
1181 | config CRYPTO_CAST5 |
1182 | tristate "CAST5 (CAST-128) cipher algorithm" | |
cce9e06d | 1183 | select CRYPTO_ALGAPI |
044ab525 | 1184 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1185 | help |
1186 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1187 | described in RFC2144. | |
1188 | ||
4d6d6a2c JG |
1189 | config CRYPTO_CAST5_AVX_X86_64 |
1190 | tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" | |
1191 | depends on X86 && 64BIT | |
1192 | select CRYPTO_ALGAPI | |
1193 | select CRYPTO_CRYPTD | |
801201aa | 1194 | select CRYPTO_ABLK_HELPER |
044ab525 | 1195 | select CRYPTO_CAST_COMMON |
4d6d6a2c JG |
1196 | select CRYPTO_CAST5 |
1197 | help | |
1198 | The CAST5 encryption algorithm (synonymous with CAST-128) is | |
1199 | described in RFC2144. | |
1200 | ||
1201 | This module provides the Cast5 cipher algorithm that processes | |
1202 | sixteen blocks parallel using the AVX instruction set. | |
1203 | ||
1da177e4 LT |
1204 | config CRYPTO_CAST6 |
1205 | tristate "CAST6 (CAST-256) cipher algorithm" | |
cce9e06d | 1206 | select CRYPTO_ALGAPI |
044ab525 | 1207 | select CRYPTO_CAST_COMMON |
1da177e4 LT |
1208 | help |
1209 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1210 | described in RFC2612. | |
1211 | ||
4ea1277d JG |
1212 | config CRYPTO_CAST6_AVX_X86_64 |
1213 | tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" | |
1214 | depends on X86 && 64BIT | |
1215 | select CRYPTO_ALGAPI | |
1216 | select CRYPTO_CRYPTD | |
801201aa | 1217 | select CRYPTO_ABLK_HELPER |
4ea1277d | 1218 | select CRYPTO_GLUE_HELPER_X86 |
044ab525 | 1219 | select CRYPTO_CAST_COMMON |
4ea1277d JG |
1220 | select CRYPTO_CAST6 |
1221 | select CRYPTO_LRW | |
1222 | select CRYPTO_XTS | |
1223 | help | |
1224 | The CAST6 encryption algorithm (synonymous with CAST-256) is | |
1225 | described in RFC2612. | |
1226 | ||
1227 | This module provides the Cast6 cipher algorithm that processes | |
1228 | eight blocks parallel using the AVX instruction set. | |
1229 | ||
584fffc8 SS |
1230 | config CRYPTO_DES |
1231 | tristate "DES and Triple DES EDE cipher algorithms" | |
cce9e06d | 1232 | select CRYPTO_ALGAPI |
1da177e4 | 1233 | help |
584fffc8 | 1234 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). |
fb4f10ed | 1235 | |
c5aac2df DM |
1236 | config CRYPTO_DES_SPARC64 |
1237 | tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" | |
97da37b3 | 1238 | depends on SPARC64 |
c5aac2df DM |
1239 | select CRYPTO_ALGAPI |
1240 | select CRYPTO_DES | |
1241 | help | |
1242 | DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), | |
1243 | optimized using SPARC64 crypto opcodes. | |
1244 | ||
6574e6c6 JK |
1245 | config CRYPTO_DES3_EDE_X86_64 |
1246 | tristate "Triple DES EDE cipher algorithm (x86-64)" | |
1247 | depends on X86 && 64BIT | |
1248 | select CRYPTO_ALGAPI | |
1249 | select CRYPTO_DES | |
1250 | help | |
1251 | Triple DES EDE (FIPS 46-3) algorithm. | |
1252 | ||
1253 | This module provides implementation of the Triple DES EDE cipher | |
1254 | algorithm that is optimized for x86-64 processors. Two versions of | |
1255 | algorithm are provided; regular processing one input block and | |
1256 | one that processes three blocks parallel. | |
1257 | ||
584fffc8 SS |
1258 | config CRYPTO_FCRYPT |
1259 | tristate "FCrypt cipher algorithm" | |
cce9e06d | 1260 | select CRYPTO_ALGAPI |
584fffc8 | 1261 | select CRYPTO_BLKCIPHER |
1da177e4 | 1262 | help |
584fffc8 | 1263 | FCrypt algorithm used by RxRPC. |
1da177e4 LT |
1264 | |
1265 | config CRYPTO_KHAZAD | |
1266 | tristate "Khazad cipher algorithm" | |
cce9e06d | 1267 | select CRYPTO_ALGAPI |
1da177e4 LT |
1268 | help |
1269 | Khazad cipher algorithm. | |
1270 | ||
1271 | Khazad was a finalist in the initial NESSIE competition. It is | |
1272 | an algorithm optimized for 64-bit processors with good performance | |
1273 | on 32-bit processors. Khazad uses an 128 bit key size. | |
1274 | ||
1275 | See also: | |
6d8de74c | 1276 | <http://www.larc.usp.br/~pbarreto/KhazadPage.html> |
1da177e4 | 1277 | |
2407d608 | 1278 | config CRYPTO_SALSA20 |
3b4afaf2 | 1279 | tristate "Salsa20 stream cipher algorithm" |
2407d608 TSH |
1280 | select CRYPTO_BLKCIPHER |
1281 | help | |
1282 | Salsa20 stream cipher algorithm. | |
1283 | ||
1284 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1285 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
974e4b75 TSH |
1286 | |
1287 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1288 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> | |
1289 | ||
1290 | config CRYPTO_SALSA20_586 | |
3b4afaf2 | 1291 | tristate "Salsa20 stream cipher algorithm (i586)" |
974e4b75 | 1292 | depends on (X86 || UML_X86) && !64BIT |
974e4b75 | 1293 | select CRYPTO_BLKCIPHER |
974e4b75 TSH |
1294 | help |
1295 | Salsa20 stream cipher algorithm. | |
1296 | ||
1297 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1298 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
9a7dafbb TSH |
1299 | |
1300 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1301 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> | |
1302 | ||
1303 | config CRYPTO_SALSA20_X86_64 | |
3b4afaf2 | 1304 | tristate "Salsa20 stream cipher algorithm (x86_64)" |
9a7dafbb | 1305 | depends on (X86 || UML_X86) && 64BIT |
9a7dafbb | 1306 | select CRYPTO_BLKCIPHER |
9a7dafbb TSH |
1307 | help |
1308 | Salsa20 stream cipher algorithm. | |
1309 | ||
1310 | Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT | |
1311 | Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> | |
2407d608 TSH |
1312 | |
1313 | The Salsa20 stream cipher algorithm is designed by Daniel J. | |
1314 | Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> | |
1da177e4 | 1315 | |
c08d0e64 MW |
1316 | config CRYPTO_CHACHA20 |
1317 | tristate "ChaCha20 cipher algorithm" | |
1318 | select CRYPTO_BLKCIPHER | |
1319 | help | |
1320 | ChaCha20 cipher algorithm, RFC7539. | |
1321 | ||
1322 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1323 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1324 | This is the portable C implementation of ChaCha20. | |
1325 | ||
1326 | See also: | |
1327 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1328 | ||
c9320b6d | 1329 | config CRYPTO_CHACHA20_X86_64 |
3d1e93cd | 1330 | tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)" |
c9320b6d MW |
1331 | depends on X86 && 64BIT |
1332 | select CRYPTO_BLKCIPHER | |
1333 | select CRYPTO_CHACHA20 | |
1334 | help | |
1335 | ChaCha20 cipher algorithm, RFC7539. | |
1336 | ||
1337 | ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. | |
1338 | Bernstein and further specified in RFC7539 for use in IETF protocols. | |
1339 | This is the x86_64 assembler implementation using SIMD instructions. | |
1340 | ||
1341 | See also: | |
1342 | <http://cr.yp.to/chacha/chacha-20080128.pdf> | |
1343 | ||
584fffc8 SS |
1344 | config CRYPTO_SEED |
1345 | tristate "SEED cipher algorithm" | |
cce9e06d | 1346 | select CRYPTO_ALGAPI |
1da177e4 | 1347 | help |
584fffc8 | 1348 | SEED cipher algorithm (RFC4269). |
1da177e4 | 1349 | |
584fffc8 SS |
1350 | SEED is a 128-bit symmetric key block cipher that has been |
1351 | developed by KISA (Korea Information Security Agency) as a | |
1352 | national standard encryption algorithm of the Republic of Korea. | |
1353 | It is a 16 round block cipher with the key size of 128 bit. | |
1354 | ||
1355 | See also: | |
1356 | <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> | |
1357 | ||
1358 | config CRYPTO_SERPENT | |
1359 | tristate "Serpent cipher algorithm" | |
cce9e06d | 1360 | select CRYPTO_ALGAPI |
1da177e4 | 1361 | help |
584fffc8 | 1362 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. |
1da177e4 | 1363 | |
584fffc8 SS |
1364 | Keys are allowed to be from 0 to 256 bits in length, in steps |
1365 | of 8 bits. Also includes the 'Tnepres' algorithm, a reversed | |
1366 | variant of Serpent for compatibility with old kerneli.org code. | |
1367 | ||
1368 | See also: | |
1369 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1370 | ||
937c30d7 JK |
1371 | config CRYPTO_SERPENT_SSE2_X86_64 |
1372 | tristate "Serpent cipher algorithm (x86_64/SSE2)" | |
1373 | depends on X86 && 64BIT | |
1374 | select CRYPTO_ALGAPI | |
341975bf | 1375 | select CRYPTO_CRYPTD |
801201aa | 1376 | select CRYPTO_ABLK_HELPER |
596d8750 | 1377 | select CRYPTO_GLUE_HELPER_X86 |
937c30d7 | 1378 | select CRYPTO_SERPENT |
feaf0cfc JK |
1379 | select CRYPTO_LRW |
1380 | select CRYPTO_XTS | |
937c30d7 JK |
1381 | help |
1382 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1383 | ||
1384 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1385 | of 8 bits. | |
1386 | ||
1e6232f8 | 1387 | This module provides Serpent cipher algorithm that processes eight |
937c30d7 JK |
1388 | blocks parallel using SSE2 instruction set. |
1389 | ||
1390 | See also: | |
1391 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1392 | ||
251496db JK |
1393 | config CRYPTO_SERPENT_SSE2_586 |
1394 | tristate "Serpent cipher algorithm (i586/SSE2)" | |
1395 | depends on X86 && !64BIT | |
1396 | select CRYPTO_ALGAPI | |
341975bf | 1397 | select CRYPTO_CRYPTD |
801201aa | 1398 | select CRYPTO_ABLK_HELPER |
596d8750 | 1399 | select CRYPTO_GLUE_HELPER_X86 |
251496db | 1400 | select CRYPTO_SERPENT |
feaf0cfc JK |
1401 | select CRYPTO_LRW |
1402 | select CRYPTO_XTS | |
251496db JK |
1403 | help |
1404 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1405 | ||
1406 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1407 | of 8 bits. | |
1408 | ||
1409 | This module provides Serpent cipher algorithm that processes four | |
1410 | blocks parallel using SSE2 instruction set. | |
1411 | ||
1412 | See also: | |
1413 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
7efe4076 JG |
1414 | |
1415 | config CRYPTO_SERPENT_AVX_X86_64 | |
1416 | tristate "Serpent cipher algorithm (x86_64/AVX)" | |
1417 | depends on X86 && 64BIT | |
1418 | select CRYPTO_ALGAPI | |
1419 | select CRYPTO_CRYPTD | |
801201aa | 1420 | select CRYPTO_ABLK_HELPER |
1d0debbd | 1421 | select CRYPTO_GLUE_HELPER_X86 |
7efe4076 JG |
1422 | select CRYPTO_SERPENT |
1423 | select CRYPTO_LRW | |
1424 | select CRYPTO_XTS | |
1425 | help | |
1426 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1427 | ||
1428 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1429 | of 8 bits. | |
1430 | ||
1431 | This module provides the Serpent cipher algorithm that processes | |
1432 | eight blocks parallel using the AVX instruction set. | |
1433 | ||
1434 | See also: | |
1435 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
251496db | 1436 | |
56d76c96 JK |
1437 | config CRYPTO_SERPENT_AVX2_X86_64 |
1438 | tristate "Serpent cipher algorithm (x86_64/AVX2)" | |
1439 | depends on X86 && 64BIT | |
1440 | select CRYPTO_ALGAPI | |
1441 | select CRYPTO_CRYPTD | |
801201aa | 1442 | select CRYPTO_ABLK_HELPER |
56d76c96 JK |
1443 | select CRYPTO_GLUE_HELPER_X86 |
1444 | select CRYPTO_SERPENT | |
1445 | select CRYPTO_SERPENT_AVX_X86_64 | |
1446 | select CRYPTO_LRW | |
1447 | select CRYPTO_XTS | |
1448 | help | |
1449 | Serpent cipher algorithm, by Anderson, Biham & Knudsen. | |
1450 | ||
1451 | Keys are allowed to be from 0 to 256 bits in length, in steps | |
1452 | of 8 bits. | |
1453 | ||
1454 | This module provides Serpent cipher algorithm that processes 16 | |
1455 | blocks parallel using AVX2 instruction set. | |
1456 | ||
1457 | See also: | |
1458 | <http://www.cl.cam.ac.uk/~rja14/serpent.html> | |
1459 | ||
584fffc8 SS |
1460 | config CRYPTO_TEA |
1461 | tristate "TEA, XTEA and XETA cipher algorithms" | |
cce9e06d | 1462 | select CRYPTO_ALGAPI |
1da177e4 | 1463 | help |
584fffc8 | 1464 | TEA cipher algorithm. |
1da177e4 | 1465 | |
584fffc8 SS |
1466 | Tiny Encryption Algorithm is a simple cipher that uses |
1467 | many rounds for security. It is very fast and uses | |
1468 | little memory. | |
1469 | ||
1470 | Xtendend Tiny Encryption Algorithm is a modification to | |
1471 | the TEA algorithm to address a potential key weakness | |
1472 | in the TEA algorithm. | |
1473 | ||
1474 | Xtendend Encryption Tiny Algorithm is a mis-implementation | |
1475 | of the XTEA algorithm for compatibility purposes. | |
1476 | ||
1477 | config CRYPTO_TWOFISH | |
1478 | tristate "Twofish cipher algorithm" | |
04ac7db3 | 1479 | select CRYPTO_ALGAPI |
584fffc8 | 1480 | select CRYPTO_TWOFISH_COMMON |
04ac7db3 | 1481 | help |
584fffc8 | 1482 | Twofish cipher algorithm. |
04ac7db3 | 1483 | |
584fffc8 SS |
1484 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1485 | candidate cipher by researchers at CounterPane Systems. It is a | |
1486 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1487 | bits. | |
04ac7db3 | 1488 | |
584fffc8 SS |
1489 | See also: |
1490 | <http://www.schneier.com/twofish.html> | |
1491 | ||
1492 | config CRYPTO_TWOFISH_COMMON | |
1493 | tristate | |
1494 | help | |
1495 | Common parts of the Twofish cipher algorithm shared by the | |
1496 | generic c and the assembler implementations. | |
1497 | ||
1498 | config CRYPTO_TWOFISH_586 | |
1499 | tristate "Twofish cipher algorithms (i586)" | |
1500 | depends on (X86 || UML_X86) && !64BIT | |
1501 | select CRYPTO_ALGAPI | |
1502 | select CRYPTO_TWOFISH_COMMON | |
1503 | help | |
1504 | Twofish cipher algorithm. | |
1505 | ||
1506 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1507 | candidate cipher by researchers at CounterPane Systems. It is a | |
1508 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1509 | bits. | |
04ac7db3 NT |
1510 | |
1511 | See also: | |
584fffc8 | 1512 | <http://www.schneier.com/twofish.html> |
04ac7db3 | 1513 | |
584fffc8 SS |
1514 | config CRYPTO_TWOFISH_X86_64 |
1515 | tristate "Twofish cipher algorithm (x86_64)" | |
1516 | depends on (X86 || UML_X86) && 64BIT | |
cce9e06d | 1517 | select CRYPTO_ALGAPI |
584fffc8 | 1518 | select CRYPTO_TWOFISH_COMMON |
1da177e4 | 1519 | help |
584fffc8 | 1520 | Twofish cipher algorithm (x86_64). |
1da177e4 | 1521 | |
584fffc8 SS |
1522 | Twofish was submitted as an AES (Advanced Encryption Standard) |
1523 | candidate cipher by researchers at CounterPane Systems. It is a | |
1524 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1525 | bits. | |
1526 | ||
1527 | See also: | |
1528 | <http://www.schneier.com/twofish.html> | |
1529 | ||
8280daad JK |
1530 | config CRYPTO_TWOFISH_X86_64_3WAY |
1531 | tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" | |
f21a7c19 | 1532 | depends on X86 && 64BIT |
8280daad JK |
1533 | select CRYPTO_ALGAPI |
1534 | select CRYPTO_TWOFISH_COMMON | |
1535 | select CRYPTO_TWOFISH_X86_64 | |
414cb5e7 | 1536 | select CRYPTO_GLUE_HELPER_X86 |
e7cda5d2 JK |
1537 | select CRYPTO_LRW |
1538 | select CRYPTO_XTS | |
8280daad JK |
1539 | help |
1540 | Twofish cipher algorithm (x86_64, 3-way parallel). | |
1541 | ||
1542 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1543 | candidate cipher by researchers at CounterPane Systems. It is a | |
1544 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1545 | bits. | |
1546 | ||
1547 | This module provides Twofish cipher algorithm that processes three | |
1548 | blocks parallel, utilizing resources of out-of-order CPUs better. | |
1549 | ||
1550 | See also: | |
1551 | <http://www.schneier.com/twofish.html> | |
1552 | ||
107778b5 JG |
1553 | config CRYPTO_TWOFISH_AVX_X86_64 |
1554 | tristate "Twofish cipher algorithm (x86_64/AVX)" | |
1555 | depends on X86 && 64BIT | |
1556 | select CRYPTO_ALGAPI | |
1557 | select CRYPTO_CRYPTD | |
801201aa | 1558 | select CRYPTO_ABLK_HELPER |
a7378d4e | 1559 | select CRYPTO_GLUE_HELPER_X86 |
107778b5 JG |
1560 | select CRYPTO_TWOFISH_COMMON |
1561 | select CRYPTO_TWOFISH_X86_64 | |
1562 | select CRYPTO_TWOFISH_X86_64_3WAY | |
1563 | select CRYPTO_LRW | |
1564 | select CRYPTO_XTS | |
1565 | help | |
1566 | Twofish cipher algorithm (x86_64/AVX). | |
1567 | ||
1568 | Twofish was submitted as an AES (Advanced Encryption Standard) | |
1569 | candidate cipher by researchers at CounterPane Systems. It is a | |
1570 | 16 round block cipher supporting key sizes of 128, 192, and 256 | |
1571 | bits. | |
1572 | ||
1573 | This module provides the Twofish cipher algorithm that processes | |
1574 | eight blocks parallel using the AVX Instruction Set. | |
1575 | ||
1576 | See also: | |
1577 | <http://www.schneier.com/twofish.html> | |
1578 | ||
584fffc8 SS |
1579 | comment "Compression" |
1580 | ||
1581 | config CRYPTO_DEFLATE | |
1582 | tristate "Deflate compression algorithm" | |
1583 | select CRYPTO_ALGAPI | |
f6ded09d | 1584 | select CRYPTO_ACOMP2 |
584fffc8 SS |
1585 | select ZLIB_INFLATE |
1586 | select ZLIB_DEFLATE | |
3c09f17c | 1587 | help |
584fffc8 SS |
1588 | This is the Deflate algorithm (RFC1951), specified for use in |
1589 | IPSec with the IPCOMP protocol (RFC3173, RFC2394). | |
1590 | ||
1591 | You will most probably want this if using IPSec. | |
3c09f17c | 1592 | |
0b77abb3 ZS |
1593 | config CRYPTO_LZO |
1594 | tristate "LZO compression algorithm" | |
1595 | select CRYPTO_ALGAPI | |
ac9d2c4b | 1596 | select CRYPTO_ACOMP2 |
0b77abb3 ZS |
1597 | select LZO_COMPRESS |
1598 | select LZO_DECOMPRESS | |
1599 | help | |
1600 | This is the LZO algorithm. | |
1601 | ||
35a1fc18 SJ |
1602 | config CRYPTO_842 |
1603 | tristate "842 compression algorithm" | |
2062c5b6 | 1604 | select CRYPTO_ALGAPI |
6a8de3ae | 1605 | select CRYPTO_ACOMP2 |
2062c5b6 DS |
1606 | select 842_COMPRESS |
1607 | select 842_DECOMPRESS | |
35a1fc18 SJ |
1608 | help |
1609 | This is the 842 algorithm. | |
0ea8530d CM |
1610 | |
1611 | config CRYPTO_LZ4 | |
1612 | tristate "LZ4 compression algorithm" | |
1613 | select CRYPTO_ALGAPI | |
8cd9330e | 1614 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1615 | select LZ4_COMPRESS |
1616 | select LZ4_DECOMPRESS | |
1617 | help | |
1618 | This is the LZ4 algorithm. | |
1619 | ||
1620 | config CRYPTO_LZ4HC | |
1621 | tristate "LZ4HC compression algorithm" | |
1622 | select CRYPTO_ALGAPI | |
91d53d96 | 1623 | select CRYPTO_ACOMP2 |
0ea8530d CM |
1624 | select LZ4HC_COMPRESS |
1625 | select LZ4_DECOMPRESS | |
1626 | help | |
1627 | This is the LZ4 high compression mode algorithm. | |
35a1fc18 | 1628 | |
17f0f4a4 NH |
1629 | comment "Random Number Generation" |
1630 | ||
1631 | config CRYPTO_ANSI_CPRNG | |
1632 | tristate "Pseudo Random Number Generation for Cryptographic modules" | |
1633 | select CRYPTO_AES | |
1634 | select CRYPTO_RNG | |
17f0f4a4 NH |
1635 | help |
1636 | This option enables the generic pseudo random number generator | |
1637 | for cryptographic modules. Uses the Algorithm specified in | |
7dd607e8 JK |
1638 | ANSI X9.31 A.2.4. Note that this option must be enabled if |
1639 | CRYPTO_FIPS is selected | |
17f0f4a4 | 1640 | |
f2c89a10 | 1641 | menuconfig CRYPTO_DRBG_MENU |
419090c6 | 1642 | tristate "NIST SP800-90A DRBG" |
419090c6 SM |
1643 | help |
1644 | NIST SP800-90A compliant DRBG. In the following submenu, one or | |
1645 | more of the DRBG types must be selected. | |
1646 | ||
f2c89a10 | 1647 | if CRYPTO_DRBG_MENU |
419090c6 SM |
1648 | |
1649 | config CRYPTO_DRBG_HMAC | |
401e4238 | 1650 | bool |
419090c6 | 1651 | default y |
419090c6 | 1652 | select CRYPTO_HMAC |
826775bb | 1653 | select CRYPTO_SHA256 |
419090c6 SM |
1654 | |
1655 | config CRYPTO_DRBG_HASH | |
1656 | bool "Enable Hash DRBG" | |
826775bb | 1657 | select CRYPTO_SHA256 |
419090c6 SM |
1658 | help |
1659 | Enable the Hash DRBG variant as defined in NIST SP800-90A. | |
1660 | ||
1661 | config CRYPTO_DRBG_CTR | |
1662 | bool "Enable CTR DRBG" | |
419090c6 | 1663 | select CRYPTO_AES |
35591285 | 1664 | depends on CRYPTO_CTR |
419090c6 SM |
1665 | help |
1666 | Enable the CTR DRBG variant as defined in NIST SP800-90A. | |
1667 | ||
f2c89a10 HX |
1668 | config CRYPTO_DRBG |
1669 | tristate | |
401e4238 | 1670 | default CRYPTO_DRBG_MENU |
f2c89a10 | 1671 | select CRYPTO_RNG |
bb5530e4 | 1672 | select CRYPTO_JITTERENTROPY |
f2c89a10 HX |
1673 | |
1674 | endif # if CRYPTO_DRBG_MENU | |
419090c6 | 1675 | |
bb5530e4 SM |
1676 | config CRYPTO_JITTERENTROPY |
1677 | tristate "Jitterentropy Non-Deterministic Random Number Generator" | |
2f313e02 | 1678 | select CRYPTO_RNG |
bb5530e4 SM |
1679 | help |
1680 | The Jitterentropy RNG is a noise that is intended | |
1681 | to provide seed to another RNG. The RNG does not | |
1682 | perform any cryptographic whitening of the generated | |
1683 | random numbers. This Jitterentropy RNG registers with | |
1684 | the kernel crypto API and can be used by any caller. | |
1685 | ||
03c8efc1 HX |
1686 | config CRYPTO_USER_API |
1687 | tristate | |
1688 | ||
fe869cdb HX |
1689 | config CRYPTO_USER_API_HASH |
1690 | tristate "User-space interface for hash algorithms" | |
7451708f | 1691 | depends on NET |
fe869cdb HX |
1692 | select CRYPTO_HASH |
1693 | select CRYPTO_USER_API | |
1694 | help | |
1695 | This option enables the user-spaces interface for hash | |
1696 | algorithms. | |
1697 | ||
8ff59090 HX |
1698 | config CRYPTO_USER_API_SKCIPHER |
1699 | tristate "User-space interface for symmetric key cipher algorithms" | |
7451708f | 1700 | depends on NET |
8ff59090 HX |
1701 | select CRYPTO_BLKCIPHER |
1702 | select CRYPTO_USER_API | |
1703 | help | |
1704 | This option enables the user-spaces interface for symmetric | |
1705 | key cipher algorithms. | |
1706 | ||
2f375538 SM |
1707 | config CRYPTO_USER_API_RNG |
1708 | tristate "User-space interface for random number generator algorithms" | |
1709 | depends on NET | |
1710 | select CRYPTO_RNG | |
1711 | select CRYPTO_USER_API | |
1712 | help | |
1713 | This option enables the user-spaces interface for random | |
1714 | number generator algorithms. | |
1715 | ||
b64a2d95 HX |
1716 | config CRYPTO_USER_API_AEAD |
1717 | tristate "User-space interface for AEAD cipher algorithms" | |
1718 | depends on NET | |
1719 | select CRYPTO_AEAD | |
1720 | select CRYPTO_USER_API | |
1721 | help | |
1722 | This option enables the user-spaces interface for AEAD | |
1723 | cipher algorithms. | |
1724 | ||
ee08997f DK |
1725 | config CRYPTO_HASH_INFO |
1726 | bool | |
1727 | ||
1da177e4 | 1728 | source "drivers/crypto/Kconfig" |
964f3b3b | 1729 | source crypto/asymmetric_keys/Kconfig |
cfc411e7 | 1730 | source certs/Kconfig |
1da177e4 | 1731 | |
cce9e06d | 1732 | endif # if CRYPTO |