]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Cryptographic API. | |
3 | * | |
4 | * AES Cipher Algorithm. | |
5 | * | |
6 | * Based on Brian Gladman's code. | |
7 | * | |
8 | * Linux developers: | |
9 | * Alexander Kjeldaas <astor@fast.no> | |
10 | * Herbert Valerio Riedel <hvr@hvrlab.org> | |
11 | * Kyle McMartin <kyle@debian.org> | |
12 | * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). | |
13 | * | |
14 | * This program is free software; you can redistribute it and/or modify | |
15 | * it under the terms of the GNU General Public License as published by | |
16 | * the Free Software Foundation; either version 2 of the License, or | |
17 | * (at your option) any later version. | |
18 | * | |
19 | * --------------------------------------------------------------------------- | |
20 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | |
21 | * All rights reserved. | |
22 | * | |
23 | * LICENSE TERMS | |
24 | * | |
25 | * The free distribution and use of this software in both source and binary | |
26 | * form is allowed (with or without changes) provided that: | |
27 | * | |
28 | * 1. distributions of this source code include the above copyright | |
29 | * notice, this list of conditions and the following disclaimer; | |
30 | * | |
31 | * 2. distributions in binary form include the above copyright | |
32 | * notice, this list of conditions and the following disclaimer | |
33 | * in the documentation and/or other associated materials; | |
34 | * | |
35 | * 3. the copyright holder's name is not used to endorse products | |
36 | * built using this software without specific written permission. | |
37 | * | |
38 | * ALTERNATIVELY, provided that this notice is retained in full, this product | |
39 | * may be distributed under the terms of the GNU General Public License (GPL), | |
40 | * in which case the provisions of the GPL apply INSTEAD OF those given above. | |
41 | * | |
42 | * DISCLAIMER | |
43 | * | |
44 | * This software is provided 'as is' with no explicit or implied warranties | |
45 | * in respect of its properties, including, but not limited to, correctness | |
46 | * and/or fitness for purpose. | |
47 | * --------------------------------------------------------------------------- | |
48 | */ | |
49 | ||
50 | /* Some changes from the Gladman version: | |
51 | s/RIJNDAEL(e_key)/E_KEY/g | |
52 | s/RIJNDAEL(d_key)/D_KEY/g | |
53 | */ | |
54 | ||
55 | #include <linux/module.h> | |
56 | #include <linux/init.h> | |
57 | #include <linux/types.h> | |
58 | #include <linux/errno.h> | |
59 | #include <linux/crypto.h> | |
60 | #include <asm/byteorder.h> | |
61 | ||
62 | #define AES_MIN_KEY_SIZE 16 | |
63 | #define AES_MAX_KEY_SIZE 32 | |
64 | ||
65 | #define AES_BLOCK_SIZE 16 | |
66 | ||
67 | /* | |
68 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) | |
69 | */ | |
77933d72 | 70 | static inline u8 |
1da177e4 LT |
71 | byte(const u32 x, const unsigned n) |
72 | { | |
73 | return x >> (n << 3); | |
74 | } | |
75 | ||
1da177e4 LT |
76 | struct aes_ctx { |
77 | int key_length; | |
55e9dce3 | 78 | u32 buf[120]; |
1da177e4 LT |
79 | }; |
80 | ||
55e9dce3 DM |
81 | #define E_KEY (&ctx->buf[0]) |
82 | #define D_KEY (&ctx->buf[60]) | |
1da177e4 LT |
83 | |
84 | static u8 pow_tab[256] __initdata; | |
85 | static u8 log_tab[256] __initdata; | |
86 | static u8 sbx_tab[256] __initdata; | |
87 | static u8 isb_tab[256] __initdata; | |
88 | static u32 rco_tab[10]; | |
89 | static u32 ft_tab[4][256]; | |
90 | static u32 it_tab[4][256]; | |
91 | ||
92 | static u32 fl_tab[4][256]; | |
93 | static u32 il_tab[4][256]; | |
94 | ||
95 | static inline u8 __init | |
96 | f_mult (u8 a, u8 b) | |
97 | { | |
98 | u8 aa = log_tab[a], cc = aa + log_tab[b]; | |
99 | ||
100 | return pow_tab[cc + (cc < aa ? 1 : 0)]; | |
101 | } | |
102 | ||
103 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) | |
104 | ||
105 | #define f_rn(bo, bi, n, k) \ | |
106 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ | |
107 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | |
108 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | |
109 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | |
110 | ||
111 | #define i_rn(bo, bi, n, k) \ | |
112 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ | |
113 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | |
114 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | |
115 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | |
116 | ||
117 | #define ls_box(x) \ | |
118 | ( fl_tab[0][byte(x, 0)] ^ \ | |
119 | fl_tab[1][byte(x, 1)] ^ \ | |
120 | fl_tab[2][byte(x, 2)] ^ \ | |
121 | fl_tab[3][byte(x, 3)] ) | |
122 | ||
123 | #define f_rl(bo, bi, n, k) \ | |
124 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ | |
125 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ | |
126 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | |
127 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | |
128 | ||
129 | #define i_rl(bo, bi, n, k) \ | |
130 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ | |
131 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ | |
132 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ | |
133 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | |
134 | ||
135 | static void __init | |
136 | gen_tabs (void) | |
137 | { | |
138 | u32 i, t; | |
139 | u8 p, q; | |
140 | ||
141 | /* log and power tables for GF(2**8) finite field with | |
142 | 0x011b as modular polynomial - the simplest primitive | |
143 | root is 0x03, used here to generate the tables */ | |
144 | ||
145 | for (i = 0, p = 1; i < 256; ++i) { | |
146 | pow_tab[i] = (u8) p; | |
147 | log_tab[p] = (u8) i; | |
148 | ||
149 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | |
150 | } | |
151 | ||
152 | log_tab[1] = 0; | |
153 | ||
154 | for (i = 0, p = 1; i < 10; ++i) { | |
155 | rco_tab[i] = p; | |
156 | ||
157 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | |
158 | } | |
159 | ||
160 | for (i = 0; i < 256; ++i) { | |
161 | p = (i ? pow_tab[255 - log_tab[i]] : 0); | |
162 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | |
163 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | |
164 | sbx_tab[i] = p; | |
165 | isb_tab[p] = (u8) i; | |
166 | } | |
167 | ||
168 | for (i = 0; i < 256; ++i) { | |
169 | p = sbx_tab[i]; | |
170 | ||
171 | t = p; | |
172 | fl_tab[0][i] = t; | |
173 | fl_tab[1][i] = rol32(t, 8); | |
174 | fl_tab[2][i] = rol32(t, 16); | |
175 | fl_tab[3][i] = rol32(t, 24); | |
176 | ||
177 | t = ((u32) ff_mult (2, p)) | | |
178 | ((u32) p << 8) | | |
179 | ((u32) p << 16) | ((u32) ff_mult (3, p) << 24); | |
180 | ||
181 | ft_tab[0][i] = t; | |
182 | ft_tab[1][i] = rol32(t, 8); | |
183 | ft_tab[2][i] = rol32(t, 16); | |
184 | ft_tab[3][i] = rol32(t, 24); | |
185 | ||
186 | p = isb_tab[i]; | |
187 | ||
188 | t = p; | |
189 | il_tab[0][i] = t; | |
190 | il_tab[1][i] = rol32(t, 8); | |
191 | il_tab[2][i] = rol32(t, 16); | |
192 | il_tab[3][i] = rol32(t, 24); | |
193 | ||
194 | t = ((u32) ff_mult (14, p)) | | |
195 | ((u32) ff_mult (9, p) << 8) | | |
196 | ((u32) ff_mult (13, p) << 16) | | |
197 | ((u32) ff_mult (11, p) << 24); | |
198 | ||
199 | it_tab[0][i] = t; | |
200 | it_tab[1][i] = rol32(t, 8); | |
201 | it_tab[2][i] = rol32(t, 16); | |
202 | it_tab[3][i] = rol32(t, 24); | |
203 | } | |
204 | } | |
205 | ||
206 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | |
207 | ||
208 | #define imix_col(y,x) \ | |
209 | u = star_x(x); \ | |
210 | v = star_x(u); \ | |
211 | w = star_x(v); \ | |
212 | t = w ^ (x); \ | |
213 | (y) = u ^ v ^ w; \ | |
214 | (y) ^= ror32(u ^ t, 8) ^ \ | |
215 | ror32(v ^ t, 16) ^ \ | |
216 | ror32(t,24) | |
217 | ||
218 | /* initialise the key schedule from the user supplied key */ | |
219 | ||
220 | #define loop4(i) \ | |
221 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | |
222 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ | |
223 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ | |
224 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ | |
225 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ | |
226 | } | |
227 | ||
228 | #define loop6(i) \ | |
229 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ | |
230 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ | |
231 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ | |
232 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ | |
233 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ | |
234 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ | |
235 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ | |
236 | } | |
237 | ||
238 | #define loop8(i) \ | |
239 | { t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ | |
240 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ | |
241 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ | |
242 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ | |
243 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ | |
244 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ | |
245 | E_KEY[8 * i + 12] = t; \ | |
246 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ | |
247 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ | |
248 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ | |
249 | } | |
250 | ||
6c2bb98b | 251 | static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, |
560c06ae | 252 | unsigned int key_len) |
1da177e4 | 253 | { |
6c2bb98b | 254 | struct aes_ctx *ctx = crypto_tfm_ctx(tfm); |
06ace7a9 | 255 | const __le32 *key = (const __le32 *)in_key; |
560c06ae | 256 | u32 *flags = &tfm->crt_flags; |
1da177e4 LT |
257 | u32 i, t, u, v, w; |
258 | ||
560c06ae | 259 | if (key_len % 8) { |
1da177e4 LT |
260 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
261 | return -EINVAL; | |
262 | } | |
263 | ||
264 | ctx->key_length = key_len; | |
265 | ||
06ace7a9 HX |
266 | E_KEY[0] = le32_to_cpu(key[0]); |
267 | E_KEY[1] = le32_to_cpu(key[1]); | |
268 | E_KEY[2] = le32_to_cpu(key[2]); | |
269 | E_KEY[3] = le32_to_cpu(key[3]); | |
1da177e4 LT |
270 | |
271 | switch (key_len) { | |
272 | case 16: | |
273 | t = E_KEY[3]; | |
274 | for (i = 0; i < 10; ++i) | |
275 | loop4 (i); | |
276 | break; | |
277 | ||
278 | case 24: | |
06ace7a9 HX |
279 | E_KEY[4] = le32_to_cpu(key[4]); |
280 | t = E_KEY[5] = le32_to_cpu(key[5]); | |
1da177e4 LT |
281 | for (i = 0; i < 8; ++i) |
282 | loop6 (i); | |
283 | break; | |
284 | ||
285 | case 32: | |
06ace7a9 HX |
286 | E_KEY[4] = le32_to_cpu(key[4]); |
287 | E_KEY[5] = le32_to_cpu(key[5]); | |
288 | E_KEY[6] = le32_to_cpu(key[6]); | |
289 | t = E_KEY[7] = le32_to_cpu(key[7]); | |
1da177e4 LT |
290 | for (i = 0; i < 7; ++i) |
291 | loop8 (i); | |
292 | break; | |
293 | } | |
294 | ||
295 | D_KEY[0] = E_KEY[0]; | |
296 | D_KEY[1] = E_KEY[1]; | |
297 | D_KEY[2] = E_KEY[2]; | |
298 | D_KEY[3] = E_KEY[3]; | |
299 | ||
300 | for (i = 4; i < key_len + 24; ++i) { | |
301 | imix_col (D_KEY[i], E_KEY[i]); | |
302 | } | |
303 | ||
304 | return 0; | |
305 | } | |
306 | ||
307 | /* encrypt a block of text */ | |
308 | ||
309 | #define f_nround(bo, bi, k) \ | |
310 | f_rn(bo, bi, 0, k); \ | |
311 | f_rn(bo, bi, 1, k); \ | |
312 | f_rn(bo, bi, 2, k); \ | |
313 | f_rn(bo, bi, 3, k); \ | |
314 | k += 4 | |
315 | ||
316 | #define f_lround(bo, bi, k) \ | |
317 | f_rl(bo, bi, 0, k); \ | |
318 | f_rl(bo, bi, 1, k); \ | |
319 | f_rl(bo, bi, 2, k); \ | |
320 | f_rl(bo, bi, 3, k) | |
321 | ||
6c2bb98b | 322 | static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
1da177e4 | 323 | { |
6c2bb98b | 324 | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); |
06ace7a9 HX |
325 | const __le32 *src = (const __le32 *)in; |
326 | __le32 *dst = (__le32 *)out; | |
1da177e4 LT |
327 | u32 b0[4], b1[4]; |
328 | const u32 *kp = E_KEY + 4; | |
329 | ||
06ace7a9 HX |
330 | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0]; |
331 | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1]; | |
332 | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2]; | |
333 | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3]; | |
1da177e4 LT |
334 | |
335 | if (ctx->key_length > 24) { | |
336 | f_nround (b1, b0, kp); | |
337 | f_nround (b0, b1, kp); | |
338 | } | |
339 | ||
340 | if (ctx->key_length > 16) { | |
341 | f_nround (b1, b0, kp); | |
342 | f_nround (b0, b1, kp); | |
343 | } | |
344 | ||
345 | f_nround (b1, b0, kp); | |
346 | f_nround (b0, b1, kp); | |
347 | f_nround (b1, b0, kp); | |
348 | f_nround (b0, b1, kp); | |
349 | f_nround (b1, b0, kp); | |
350 | f_nround (b0, b1, kp); | |
351 | f_nround (b1, b0, kp); | |
352 | f_nround (b0, b1, kp); | |
353 | f_nround (b1, b0, kp); | |
354 | f_lround (b0, b1, kp); | |
355 | ||
06ace7a9 HX |
356 | dst[0] = cpu_to_le32(b0[0]); |
357 | dst[1] = cpu_to_le32(b0[1]); | |
358 | dst[2] = cpu_to_le32(b0[2]); | |
359 | dst[3] = cpu_to_le32(b0[3]); | |
1da177e4 LT |
360 | } |
361 | ||
362 | /* decrypt a block of text */ | |
363 | ||
364 | #define i_nround(bo, bi, k) \ | |
365 | i_rn(bo, bi, 0, k); \ | |
366 | i_rn(bo, bi, 1, k); \ | |
367 | i_rn(bo, bi, 2, k); \ | |
368 | i_rn(bo, bi, 3, k); \ | |
369 | k -= 4 | |
370 | ||
371 | #define i_lround(bo, bi, k) \ | |
372 | i_rl(bo, bi, 0, k); \ | |
373 | i_rl(bo, bi, 1, k); \ | |
374 | i_rl(bo, bi, 2, k); \ | |
375 | i_rl(bo, bi, 3, k) | |
376 | ||
6c2bb98b | 377 | static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) |
1da177e4 | 378 | { |
6c2bb98b | 379 | const struct aes_ctx *ctx = crypto_tfm_ctx(tfm); |
06ace7a9 HX |
380 | const __le32 *src = (const __le32 *)in; |
381 | __le32 *dst = (__le32 *)out; | |
1da177e4 LT |
382 | u32 b0[4], b1[4]; |
383 | const int key_len = ctx->key_length; | |
384 | const u32 *kp = D_KEY + key_len + 20; | |
385 | ||
06ace7a9 HX |
386 | b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24]; |
387 | b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25]; | |
388 | b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26]; | |
389 | b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27]; | |
1da177e4 LT |
390 | |
391 | if (key_len > 24) { | |
392 | i_nround (b1, b0, kp); | |
393 | i_nround (b0, b1, kp); | |
394 | } | |
395 | ||
396 | if (key_len > 16) { | |
397 | i_nround (b1, b0, kp); | |
398 | i_nround (b0, b1, kp); | |
399 | } | |
400 | ||
401 | i_nround (b1, b0, kp); | |
402 | i_nround (b0, b1, kp); | |
403 | i_nround (b1, b0, kp); | |
404 | i_nround (b0, b1, kp); | |
405 | i_nround (b1, b0, kp); | |
406 | i_nround (b0, b1, kp); | |
407 | i_nround (b1, b0, kp); | |
408 | i_nround (b0, b1, kp); | |
409 | i_nround (b1, b0, kp); | |
410 | i_lround (b0, b1, kp); | |
411 | ||
06ace7a9 HX |
412 | dst[0] = cpu_to_le32(b0[0]); |
413 | dst[1] = cpu_to_le32(b0[1]); | |
414 | dst[2] = cpu_to_le32(b0[2]); | |
415 | dst[3] = cpu_to_le32(b0[3]); | |
1da177e4 LT |
416 | } |
417 | ||
418 | ||
419 | static struct crypto_alg aes_alg = { | |
420 | .cra_name = "aes", | |
c8a19c91 HX |
421 | .cra_driver_name = "aes-generic", |
422 | .cra_priority = 100, | |
1da177e4 LT |
423 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
424 | .cra_blocksize = AES_BLOCK_SIZE, | |
425 | .cra_ctxsize = sizeof(struct aes_ctx), | |
a429d260 | 426 | .cra_alignmask = 3, |
1da177e4 LT |
427 | .cra_module = THIS_MODULE, |
428 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), | |
429 | .cra_u = { | |
430 | .cipher = { | |
431 | .cia_min_keysize = AES_MIN_KEY_SIZE, | |
432 | .cia_max_keysize = AES_MAX_KEY_SIZE, | |
433 | .cia_setkey = aes_set_key, | |
434 | .cia_encrypt = aes_encrypt, | |
435 | .cia_decrypt = aes_decrypt | |
436 | } | |
437 | } | |
438 | }; | |
439 | ||
440 | static int __init aes_init(void) | |
441 | { | |
442 | gen_tabs(); | |
443 | return crypto_register_alg(&aes_alg); | |
444 | } | |
445 | ||
446 | static void __exit aes_fini(void) | |
447 | { | |
448 | crypto_unregister_alg(&aes_alg); | |
449 | } | |
450 | ||
451 | module_init(aes_init); | |
452 | module_exit(aes_fini); | |
453 | ||
454 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); | |
455 | MODULE_LICENSE("Dual BSD/GPL"); | |
456 |