]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - crypto/gf128mul.c
Merge branch 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / crypto / gf128mul.c
CommitLineData
c494e070
RS
1/* gf128mul.c - GF(2^128) multiplication functions
2 *
3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5 *
6 * Based on Dr Brian Gladman's (GPL'd) work published at
8c882f64 7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
c494e070
RS
8 * See the original copyright notice below.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 */
15
16/*
17 ---------------------------------------------------------------------------
18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
19
20 LICENSE TERMS
21
22 The free distribution and use of this software in both source and binary
23 form is allowed (with or without changes) provided that:
24
25 1. distributions of this source code include the above copyright
26 notice, this list of conditions and the following disclaimer;
27
28 2. distributions in binary form include the above copyright
29 notice, this list of conditions and the following disclaimer
30 in the documentation and/or other associated materials;
31
32 3. the copyright holder's name is not used to endorse products
33 built using this software without specific written permission.
34
35 ALTERNATIVELY, provided that this notice is retained in full, this product
36 may be distributed under the terms of the GNU General Public License (GPL),
37 in which case the provisions of the GPL apply INSTEAD OF those given above.
38
39 DISCLAIMER
40
41 This software is provided 'as is' with no explicit or implied warranties
42 in respect of its properties, including, but not limited to, correctness
43 and/or fitness for purpose.
44 ---------------------------------------------------------------------------
45 Issue 31/01/2006
46
47 This file provides fast multiplication in GF(128) as required by several
48 cryptographic authentication modes
49*/
50
51#include <crypto/gf128mul.h>
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/slab.h>
55
56#define gf128mul_dat(q) { \
57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89}
90
91/* Given the value i in 0..255 as the byte overflow when a field element
25985edc 92 in GHASH is multiplied by x^8, this function will return the values that
c494e070
RS
93 are generated in the lo 16-bit word of the field value by applying the
94 modular polynomial. The values lo_byte and hi_byte are returned via the
95 macro xp_fun(lo_byte, hi_byte) so that the values can be assembled into
96 memory as required by a suitable definition of this macro operating on
97 the table above
98*/
99
100#define xx(p, q) 0x##p##q
101
102#define xda_bbe(i) ( \
103 (i & 0x80 ? xx(43, 80) : 0) ^ (i & 0x40 ? xx(21, c0) : 0) ^ \
104 (i & 0x20 ? xx(10, e0) : 0) ^ (i & 0x10 ? xx(08, 70) : 0) ^ \
105 (i & 0x08 ? xx(04, 38) : 0) ^ (i & 0x04 ? xx(02, 1c) : 0) ^ \
106 (i & 0x02 ? xx(01, 0e) : 0) ^ (i & 0x01 ? xx(00, 87) : 0) \
107)
108
109#define xda_lle(i) ( \
110 (i & 0x80 ? xx(e1, 00) : 0) ^ (i & 0x40 ? xx(70, 80) : 0) ^ \
111 (i & 0x20 ? xx(38, 40) : 0) ^ (i & 0x10 ? xx(1c, 20) : 0) ^ \
112 (i & 0x08 ? xx(0e, 10) : 0) ^ (i & 0x04 ? xx(07, 08) : 0) ^ \
113 (i & 0x02 ? xx(03, 84) : 0) ^ (i & 0x01 ? xx(01, c2) : 0) \
114)
115
116static const u16 gf128mul_table_lle[256] = gf128mul_dat(xda_lle);
117static const u16 gf128mul_table_bbe[256] = gf128mul_dat(xda_bbe);
118
119/* These functions multiply a field element by x, by x^4 and by x^8
120 * in the polynomial field representation. It uses 32-bit word operations
121 * to gain speed but compensates for machine endianess and hence works
122 * correctly on both styles of machine.
123 */
124
125static void gf128mul_x_lle(be128 *r, const be128 *x)
126{
127 u64 a = be64_to_cpu(x->a);
128 u64 b = be64_to_cpu(x->b);
129 u64 _tt = gf128mul_table_lle[(b << 7) & 0xff];
130
131 r->b = cpu_to_be64((b >> 1) | (a << 63));
132 r->a = cpu_to_be64((a >> 1) ^ (_tt << 48));
133}
134
135static void gf128mul_x_bbe(be128 *r, const be128 *x)
136{
137 u64 a = be64_to_cpu(x->a);
138 u64 b = be64_to_cpu(x->b);
139 u64 _tt = gf128mul_table_bbe[a >> 63];
140
141 r->a = cpu_to_be64((a << 1) | (b >> 63));
142 r->b = cpu_to_be64((b << 1) ^ _tt);
143}
144
f19f5111
RS
145void gf128mul_x_ble(be128 *r, const be128 *x)
146{
147 u64 a = le64_to_cpu(x->a);
148 u64 b = le64_to_cpu(x->b);
149 u64 _tt = gf128mul_table_bbe[b >> 63];
150
151 r->a = cpu_to_le64((a << 1) ^ _tt);
152 r->b = cpu_to_le64((b << 1) | (a >> 63));
153}
154EXPORT_SYMBOL(gf128mul_x_ble);
155
c494e070
RS
156static void gf128mul_x8_lle(be128 *x)
157{
158 u64 a = be64_to_cpu(x->a);
159 u64 b = be64_to_cpu(x->b);
160 u64 _tt = gf128mul_table_lle[b & 0xff];
161
162 x->b = cpu_to_be64((b >> 8) | (a << 56));
163 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
164}
165
166static void gf128mul_x8_bbe(be128 *x)
167{
168 u64 a = be64_to_cpu(x->a);
169 u64 b = be64_to_cpu(x->b);
170 u64 _tt = gf128mul_table_bbe[a >> 56];
171
172 x->a = cpu_to_be64((a << 8) | (b >> 56));
173 x->b = cpu_to_be64((b << 8) ^ _tt);
174}
175
176void gf128mul_lle(be128 *r, const be128 *b)
177{
178 be128 p[8];
179 int i;
180
181 p[0] = *r;
182 for (i = 0; i < 7; ++i)
183 gf128mul_x_lle(&p[i + 1], &p[i]);
184
62542663 185 memset(r, 0, sizeof(*r));
c494e070
RS
186 for (i = 0;;) {
187 u8 ch = ((u8 *)b)[15 - i];
188
189 if (ch & 0x80)
190 be128_xor(r, r, &p[0]);
191 if (ch & 0x40)
192 be128_xor(r, r, &p[1]);
193 if (ch & 0x20)
194 be128_xor(r, r, &p[2]);
195 if (ch & 0x10)
196 be128_xor(r, r, &p[3]);
197 if (ch & 0x08)
198 be128_xor(r, r, &p[4]);
199 if (ch & 0x04)
200 be128_xor(r, r, &p[5]);
201 if (ch & 0x02)
202 be128_xor(r, r, &p[6]);
203 if (ch & 0x01)
204 be128_xor(r, r, &p[7]);
205
206 if (++i >= 16)
207 break;
208
209 gf128mul_x8_lle(r);
210 }
211}
212EXPORT_SYMBOL(gf128mul_lle);
213
214void gf128mul_bbe(be128 *r, const be128 *b)
215{
216 be128 p[8];
217 int i;
218
219 p[0] = *r;
220 for (i = 0; i < 7; ++i)
221 gf128mul_x_bbe(&p[i + 1], &p[i]);
222
62542663 223 memset(r, 0, sizeof(*r));
c494e070
RS
224 for (i = 0;;) {
225 u8 ch = ((u8 *)b)[i];
226
227 if (ch & 0x80)
228 be128_xor(r, r, &p[7]);
229 if (ch & 0x40)
230 be128_xor(r, r, &p[6]);
231 if (ch & 0x20)
232 be128_xor(r, r, &p[5]);
233 if (ch & 0x10)
234 be128_xor(r, r, &p[4]);
235 if (ch & 0x08)
236 be128_xor(r, r, &p[3]);
237 if (ch & 0x04)
238 be128_xor(r, r, &p[2]);
239 if (ch & 0x02)
240 be128_xor(r, r, &p[1]);
241 if (ch & 0x01)
242 be128_xor(r, r, &p[0]);
243
244 if (++i >= 16)
245 break;
246
247 gf128mul_x8_bbe(r);
248 }
249}
250EXPORT_SYMBOL(gf128mul_bbe);
251
252/* This version uses 64k bytes of table space.
253 A 16 byte buffer has to be multiplied by a 16 byte key
254 value in GF(128). If we consider a GF(128) value in
255 the buffer's lowest byte, we can construct a table of
256 the 256 16 byte values that result from the 256 values
257 of this byte. This requires 4096 bytes. But we also
258 need tables for each of the 16 higher bytes in the
259 buffer as well, which makes 64 kbytes in total.
260*/
261/* additional explanation
262 * t[0][BYTE] contains g*BYTE
263 * t[1][BYTE] contains g*x^8*BYTE
264 * ..
265 * t[15][BYTE] contains g*x^120*BYTE */
c494e070
RS
266struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
267{
268 struct gf128mul_64k *t;
269 int i, j, k;
270
271 t = kzalloc(sizeof(*t), GFP_KERNEL);
272 if (!t)
273 goto out;
274
275 for (i = 0; i < 16; i++) {
276 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
277 if (!t->t[i]) {
278 gf128mul_free_64k(t);
279 t = NULL;
280 goto out;
281 }
282 }
283
284 t->t[0]->t[1] = *g;
285 for (j = 1; j <= 64; j <<= 1)
286 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
287
288 for (i = 0;;) {
289 for (j = 2; j < 256; j += j)
290 for (k = 1; k < j; ++k)
291 be128_xor(&t->t[i]->t[j + k],
292 &t->t[i]->t[j], &t->t[i]->t[k]);
293
294 if (++i >= 16)
295 break;
296
297 for (j = 128; j > 0; j >>= 1) {
298 t->t[i]->t[j] = t->t[i - 1]->t[j];
299 gf128mul_x8_bbe(&t->t[i]->t[j]);
300 }
301 }
302
303out:
304 return t;
305}
306EXPORT_SYMBOL(gf128mul_init_64k_bbe);
307
308void gf128mul_free_64k(struct gf128mul_64k *t)
309{
310 int i;
311
312 for (i = 0; i < 16; i++)
75aa0a7c
AC
313 kzfree(t->t[i]);
314 kzfree(t);
c494e070
RS
315}
316EXPORT_SYMBOL(gf128mul_free_64k);
317
c494e070
RS
318void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t)
319{
320 u8 *ap = (u8 *)a;
321 be128 r[1];
322 int i;
323
324 *r = t->t[0]->t[ap[15]];
325 for (i = 1; i < 16; ++i)
326 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
327 *a = *r;
328}
329EXPORT_SYMBOL(gf128mul_64k_bbe);
330
331/* This version uses 4k bytes of table space.
332 A 16 byte buffer has to be multiplied by a 16 byte key
333 value in GF(128). If we consider a GF(128) value in a
334 single byte, we can construct a table of the 256 16 byte
335 values that result from the 256 values of this byte.
336 This requires 4096 bytes. If we take the highest byte in
337 the buffer and use this table to get the result, we then
338 have to multiply by x^120 to get the final value. For the
339 next highest byte the result has to be multiplied by x^112
340 and so on. But we can do this by accumulating the result
341 in an accumulator starting with the result for the top
342 byte. We repeatedly multiply the accumulator value by
343 x^8 and then add in (i.e. xor) the 16 bytes of the next
344 lower byte in the buffer, stopping when we reach the
345 lowest byte. This requires a 4096 byte table.
346*/
347struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
348{
349 struct gf128mul_4k *t;
350 int j, k;
351
352 t = kzalloc(sizeof(*t), GFP_KERNEL);
353 if (!t)
354 goto out;
355
356 t->t[128] = *g;
357 for (j = 64; j > 0; j >>= 1)
358 gf128mul_x_lle(&t->t[j], &t->t[j+j]);
359
360 for (j = 2; j < 256; j += j)
361 for (k = 1; k < j; ++k)
362 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
363
364out:
365 return t;
366}
367EXPORT_SYMBOL(gf128mul_init_4k_lle);
368
369struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
370{
371 struct gf128mul_4k *t;
372 int j, k;
373
374 t = kzalloc(sizeof(*t), GFP_KERNEL);
375 if (!t)
376 goto out;
377
378 t->t[1] = *g;
379 for (j = 1; j <= 64; j <<= 1)
380 gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
381
382 for (j = 2; j < 256; j += j)
383 for (k = 1; k < j; ++k)
384 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
385
386out:
387 return t;
388}
389EXPORT_SYMBOL(gf128mul_init_4k_bbe);
390
391void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t)
392{
393 u8 *ap = (u8 *)a;
394 be128 r[1];
395 int i = 15;
396
397 *r = t->t[ap[15]];
398 while (i--) {
399 gf128mul_x8_lle(r);
400 be128_xor(r, r, &t->t[ap[i]]);
401 }
402 *a = *r;
403}
404EXPORT_SYMBOL(gf128mul_4k_lle);
405
406void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t)
407{
408 u8 *ap = (u8 *)a;
409 be128 r[1];
410 int i = 0;
411
412 *r = t->t[ap[0]];
413 while (++i < 16) {
414 gf128mul_x8_bbe(r);
415 be128_xor(r, r, &t->t[ap[i]]);
416 }
417 *a = *r;
418}
419EXPORT_SYMBOL(gf128mul_4k_bbe);
420
421MODULE_LICENSE("GPL");
422MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");