]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - crypto/lrw.c
crypto: cavium/nitrox - use pci_alloc_irq_vectors() while enabling MSI-X.
[mirror_ubuntu-focal-kernel.git] / crypto / lrw.c
CommitLineData
64470f1b
RS
1/* LRW: as defined by Cyril Guyot in
2 * http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3 *
4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5 *
6c2205b8 6 * Based on ecb.c
64470f1b
RS
7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 */
14/* This implementation is checked against the test vectors in the above
15 * document and by a test vector provided by Ken Buchanan at
16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17 *
18 * The test vectors are included in the testing module tcrypt.[ch] */
6c2205b8 19
700cb3f5
HX
20#include <crypto/internal/skcipher.h>
21#include <crypto/scatterwalk.h>
64470f1b
RS
22#include <linux/err.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/scatterlist.h>
27#include <linux/slab.h>
28
29#include <crypto/b128ops.h>
30#include <crypto/gf128mul.h>
64470f1b 31
217afccf
EB
32#define LRW_BLOCK_SIZE 16
33
171c0204 34struct priv {
700cb3f5 35 struct crypto_skcipher *child;
217afccf
EB
36
37 /*
38 * optimizes multiplying a random (non incrementing, as at the
39 * start of a new sector) value with key2, we could also have
40 * used 4k optimization tables or no optimization at all. In the
41 * latter case we would have to store key2 here
42 */
43 struct gf128mul_64k *table;
44
45 /*
46 * stores:
47 * key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
48 * key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
49 * key2*{ 0,0,...1,1,1,1,1 }, etc
50 * needed for optimized multiplication of incrementing values
51 * with key2
52 */
53 be128 mulinc[128];
171c0204
JK
54};
55
700cb3f5 56struct rctx {
700cb3f5 57 be128 t;
700cb3f5
HX
58 struct skcipher_request subreq;
59};
60
64470f1b
RS
61static inline void setbit128_bbe(void *b, int bit)
62{
8eb2dfac
HX
63 __set_bit(bit ^ (0x80 -
64#ifdef __BIG_ENDIAN
65 BITS_PER_LONG
66#else
67 BITS_PER_BYTE
68#endif
69 ), b);
64470f1b
RS
70}
71
217afccf
EB
72static int setkey(struct crypto_skcipher *parent, const u8 *key,
73 unsigned int keylen)
64470f1b 74{
217afccf
EB
75 struct priv *ctx = crypto_skcipher_ctx(parent);
76 struct crypto_skcipher *child = ctx->child;
77 int err, bsize = LRW_BLOCK_SIZE;
78 const u8 *tweak = key + keylen - bsize;
64470f1b 79 be128 tmp = { 0 };
171c0204 80 int i;
64470f1b 81
217afccf
EB
82 crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
83 crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
84 CRYPTO_TFM_REQ_MASK);
85 err = crypto_skcipher_setkey(child, key, keylen - bsize);
86 crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
87 CRYPTO_TFM_RES_MASK);
88 if (err)
89 return err;
90
64470f1b
RS
91 if (ctx->table)
92 gf128mul_free_64k(ctx->table);
93
94 /* initialize multiplication table for Key2 */
171c0204 95 ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
64470f1b
RS
96 if (!ctx->table)
97 return -ENOMEM;
98
99 /* initialize optimization table */
100 for (i = 0; i < 128; i++) {
101 setbit128_bbe(&tmp, i);
102 ctx->mulinc[i] = tmp;
103 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
104 }
105
106 return 0;
107}
171c0204 108
c778f96b
OM
109/*
110 * Returns the number of trailing '1' bits in the words of the counter, which is
111 * represented by 4 32-bit words, arranged from least to most significant.
112 * At the same time, increments the counter by one.
113 *
114 * For example:
115 *
116 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
117 * int i = next_index(&counter);
118 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
119 */
120static int next_index(u32 *counter)
64470f1b 121{
c778f96b 122 int i, res = 0;
64470f1b 123
c778f96b
OM
124 for (i = 0; i < 4; i++) {
125 if (counter[i] + 1 != 0) {
126 res += ffz(counter[i]++);
127 break;
128 }
129 counter[i] = 0;
130 res += 32;
64470f1b
RS
131 }
132
fbe1a850
OM
133 /*
134 * If we get here, then x == 128 and we are incrementing the counter
135 * from all ones to all zeros. This means we must return index 127, i.e.
136 * the one corresponding to key2*{ 1,...,1 }.
137 */
138 return 127;
64470f1b
RS
139}
140
ac3c8f36
OM
141/*
142 * We compute the tweak masks twice (both before and after the ECB encryption or
143 * decryption) to avoid having to allocate a temporary buffer and/or make
144 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
145 * just doing the next_index() calls again.
146 */
147static int xor_tweak(struct skcipher_request *req, bool second_pass)
64470f1b 148{
700cb3f5 149 const int bs = LRW_BLOCK_SIZE;
700cb3f5 150 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
700cb3f5 151 struct priv *ctx = crypto_skcipher_ctx(tfm);
ac3c8f36
OM
152 struct rctx *rctx = skcipher_request_ctx(req);
153 be128 t = rctx->t;
700cb3f5 154 struct skcipher_walk w;
c778f96b
OM
155 __be32 *iv;
156 u32 counter[4];
700cb3f5 157 int err;
64470f1b 158
ac3c8f36
OM
159 if (second_pass) {
160 req = &rctx->subreq;
161 /* set to our TFM to enforce correct alignment: */
162 skcipher_request_set_tfm(req, tfm);
163 }
64470f1b 164
ac3c8f36 165 err = skcipher_walk_virt(&w, req, false);
c778f96b
OM
166 iv = (__be32 *)w.iv;
167
168 counter[0] = be32_to_cpu(iv[3]);
169 counter[1] = be32_to_cpu(iv[2]);
170 counter[2] = be32_to_cpu(iv[1]);
171 counter[3] = be32_to_cpu(iv[0]);
64470f1b 172
700cb3f5
HX
173 while (w.nbytes) {
174 unsigned int avail = w.nbytes;
175 be128 *wsrc;
176 be128 *wdst;
177
178 wsrc = w.src.virt.addr;
179 wdst = w.dst.virt.addr;
64470f1b 180
64470f1b 181 do {
ac3c8f36 182 be128_xor(wdst++, &t, wsrc++);
700cb3f5 183
64470f1b
RS
184 /* T <- I*Key2, using the optimization
185 * discussed in the specification */
ac3c8f36 186 be128_xor(&t, &t, &ctx->mulinc[next_index(counter)]);
700cb3f5 187 } while ((avail -= bs) >= bs);
64470f1b 188
ac3c8f36 189 if (second_pass && w.nbytes == w.total) {
c778f96b
OM
190 iv[0] = cpu_to_be32(counter[3]);
191 iv[1] = cpu_to_be32(counter[2]);
192 iv[2] = cpu_to_be32(counter[1]);
193 iv[3] = cpu_to_be32(counter[0]);
194 }
195
700cb3f5
HX
196 err = skcipher_walk_done(&w, avail);
197 }
64470f1b 198
700cb3f5
HX
199 return err;
200}
201
ac3c8f36 202static int xor_tweak_pre(struct skcipher_request *req)
700cb3f5 203{
ac3c8f36 204 return xor_tweak(req, false);
700cb3f5
HX
205}
206
ac3c8f36 207static int xor_tweak_post(struct skcipher_request *req)
700cb3f5 208{
ac3c8f36 209 return xor_tweak(req, true);
64470f1b
RS
210}
211
ac3c8f36 212static void crypt_done(struct crypto_async_request *areq, int err)
700cb3f5
HX
213{
214 struct skcipher_request *req = areq->data;
700cb3f5 215
ac3c8f36
OM
216 if (!err)
217 err = xor_tweak_post(req);
700cb3f5
HX
218
219 skcipher_request_complete(req, err);
220}
221
ac3c8f36 222static void init_crypt(struct skcipher_request *req)
64470f1b 223{
ac3c8f36 224 struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
700cb3f5 225 struct rctx *rctx = skcipher_request_ctx(req);
ac3c8f36 226 struct skcipher_request *subreq = &rctx->subreq;
700cb3f5 227
ac3c8f36
OM
228 skcipher_request_set_tfm(subreq, ctx->child);
229 skcipher_request_set_callback(subreq, req->base.flags, crypt_done, req);
230 /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
231 skcipher_request_set_crypt(subreq, req->dst, req->dst,
232 req->cryptlen, req->iv);
700cb3f5 233
ac3c8f36
OM
234 /* calculate first value of T */
235 memcpy(&rctx->t, req->iv, sizeof(rctx->t));
64470f1b 236
ac3c8f36
OM
237 /* T <- I*Key2 */
238 gf128mul_64k_bbe(&rctx->t, ctx->table);
64470f1b
RS
239}
240
ac3c8f36 241static int encrypt(struct skcipher_request *req)
64470f1b 242{
ac3c8f36
OM
243 struct rctx *rctx = skcipher_request_ctx(req);
244 struct skcipher_request *subreq = &rctx->subreq;
64470f1b 245
ac3c8f36
OM
246 init_crypt(req);
247 return xor_tweak_pre(req) ?:
248 crypto_skcipher_encrypt(subreq) ?:
249 xor_tweak_post(req);
700cb3f5
HX
250}
251
252static int decrypt(struct skcipher_request *req)
253{
ac3c8f36
OM
254 struct rctx *rctx = skcipher_request_ctx(req);
255 struct skcipher_request *subreq = &rctx->subreq;
256
257 init_crypt(req);
258 return xor_tweak_pre(req) ?:
259 crypto_skcipher_decrypt(subreq) ?:
260 xor_tweak_post(req);
64470f1b
RS
261}
262
700cb3f5 263static int init_tfm(struct crypto_skcipher *tfm)
64470f1b 264{
700cb3f5
HX
265 struct skcipher_instance *inst = skcipher_alg_instance(tfm);
266 struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
267 struct priv *ctx = crypto_skcipher_ctx(tfm);
268 struct crypto_skcipher *cipher;
64470f1b 269
700cb3f5 270 cipher = crypto_spawn_skcipher(spawn);
2e306ee0
HX
271 if (IS_ERR(cipher))
272 return PTR_ERR(cipher);
64470f1b 273
2e306ee0 274 ctx->child = cipher;
700cb3f5
HX
275
276 crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
277 sizeof(struct rctx));
278
64470f1b
RS
279 return 0;
280}
281
700cb3f5 282static void exit_tfm(struct crypto_skcipher *tfm)
64470f1b 283{
700cb3f5 284 struct priv *ctx = crypto_skcipher_ctx(tfm);
171c0204 285
217afccf
EB
286 if (ctx->table)
287 gf128mul_free_64k(ctx->table);
700cb3f5
HX
288 crypto_free_skcipher(ctx->child);
289}
290
291static void free(struct skcipher_instance *inst)
292{
293 crypto_drop_skcipher(skcipher_instance_ctx(inst));
294 kfree(inst);
64470f1b
RS
295}
296
700cb3f5 297static int create(struct crypto_template *tmpl, struct rtattr **tb)
64470f1b 298{
700cb3f5
HX
299 struct crypto_skcipher_spawn *spawn;
300 struct skcipher_instance *inst;
301 struct crypto_attr_type *algt;
302 struct skcipher_alg *alg;
303 const char *cipher_name;
304 char ecb_name[CRYPTO_MAX_ALG_NAME];
ebc610e5
HX
305 int err;
306
700cb3f5
HX
307 algt = crypto_get_attr_type(tb);
308 if (IS_ERR(algt))
309 return PTR_ERR(algt);
310
311 if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
312 return -EINVAL;
313
314 cipher_name = crypto_attr_alg_name(tb[1]);
315 if (IS_ERR(cipher_name))
316 return PTR_ERR(cipher_name);
317
318 inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
319 if (!inst)
320 return -ENOMEM;
321
322 spawn = skcipher_instance_ctx(inst);
323
324 crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
325 err = crypto_grab_skcipher(spawn, cipher_name, 0,
326 crypto_requires_sync(algt->type,
327 algt->mask));
328 if (err == -ENOENT) {
329 err = -ENAMETOOLONG;
330 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
331 cipher_name) >= CRYPTO_MAX_ALG_NAME)
332 goto err_free_inst;
333
334 err = crypto_grab_skcipher(spawn, ecb_name, 0,
335 crypto_requires_sync(algt->type,
336 algt->mask));
337 }
338
ebc610e5 339 if (err)
700cb3f5 340 goto err_free_inst;
64470f1b 341
700cb3f5 342 alg = crypto_skcipher_spawn_alg(spawn);
64470f1b 343
700cb3f5
HX
344 err = -EINVAL;
345 if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
346 goto err_drop_spawn;
64470f1b 347
700cb3f5
HX
348 if (crypto_skcipher_alg_ivsize(alg))
349 goto err_drop_spawn;
64470f1b 350
700cb3f5
HX
351 err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
352 &alg->base);
353 if (err)
354 goto err_drop_spawn;
64470f1b 355
700cb3f5
HX
356 err = -EINVAL;
357 cipher_name = alg->base.cra_name;
64470f1b 358
700cb3f5
HX
359 /* Alas we screwed up the naming so we have to mangle the
360 * cipher name.
361 */
362 if (!strncmp(cipher_name, "ecb(", 4)) {
363 unsigned len;
64470f1b 364
700cb3f5
HX
365 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
366 if (len < 2 || len >= sizeof(ecb_name))
367 goto err_drop_spawn;
64470f1b 368
700cb3f5
HX
369 if (ecb_name[len - 1] != ')')
370 goto err_drop_spawn;
64470f1b 371
700cb3f5 372 ecb_name[len - 1] = 0;
64470f1b 373
700cb3f5 374 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
616129cc
CJ
375 "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
376 err = -ENAMETOOLONG;
377 goto err_drop_spawn;
378 }
d38efad2
CJ
379 } else
380 goto err_drop_spawn;
700cb3f5
HX
381
382 inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
383 inst->alg.base.cra_priority = alg->base.cra_priority;
384 inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
385 inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
c778f96b 386 (__alignof__(__be32) - 1);
700cb3f5
HX
387
388 inst->alg.ivsize = LRW_BLOCK_SIZE;
389 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
390 LRW_BLOCK_SIZE;
391 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
392 LRW_BLOCK_SIZE;
393
394 inst->alg.base.cra_ctxsize = sizeof(struct priv);
395
396 inst->alg.init = init_tfm;
397 inst->alg.exit = exit_tfm;
398
399 inst->alg.setkey = setkey;
400 inst->alg.encrypt = encrypt;
401 inst->alg.decrypt = decrypt;
402
403 inst->free = free;
404
405 err = skcipher_register_instance(tmpl, inst);
406 if (err)
407 goto err_drop_spawn;
408
409out:
410 return err;
411
412err_drop_spawn:
413 crypto_drop_skcipher(spawn);
414err_free_inst:
64470f1b 415 kfree(inst);
700cb3f5 416 goto out;
64470f1b
RS
417}
418
419static struct crypto_template crypto_tmpl = {
420 .name = "lrw",
700cb3f5 421 .create = create,
64470f1b
RS
422 .module = THIS_MODULE,
423};
424
425static int __init crypto_module_init(void)
426{
427 return crypto_register_template(&crypto_tmpl);
428}
429
430static void __exit crypto_module_exit(void)
431{
432 crypto_unregister_template(&crypto_tmpl);
433}
434
435module_init(crypto_module_init);
436module_exit(crypto_module_exit);
437
438MODULE_LICENSE("GPL");
439MODULE_DESCRIPTION("LRW block cipher mode");
4943ba16 440MODULE_ALIAS_CRYPTO("lrw");