]>
Commit | Line | Data |
---|---|---|
f1939f7c SW |
1 | /* |
2 | * Modified to interface to the Linux kernel | |
3 | * Copyright (c) 2009, Intel Corporation. | |
4 | * | |
5 | * This program is free software; you can redistribute it and/or modify it | |
6 | * under the terms and conditions of the GNU General Public License, | |
7 | * version 2, as published by the Free Software Foundation. | |
8 | * | |
9 | * This program is distributed in the hope it will be useful, but WITHOUT | |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
12 | * more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License along with | |
15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple | |
16 | * Place - Suite 330, Boston, MA 02111-1307 USA. | |
17 | */ | |
18 | ||
19 | /* -------------------------------------------------------------------------- | |
20 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. | |
21 | * This implementation is herby placed in the public domain. | |
22 | * The authors offers no warranty. Use at your own risk. | |
23 | * Please send bug reports to the authors. | |
24 | * Last modified: 17 APR 08, 1700 PDT | |
25 | * ----------------------------------------------------------------------- */ | |
26 | ||
27 | #include <linux/init.h> | |
28 | #include <linux/types.h> | |
29 | #include <linux/crypto.h> | |
4bb33cc8 | 30 | #include <linux/module.h> |
f1939f7c SW |
31 | #include <linux/scatterlist.h> |
32 | #include <asm/byteorder.h> | |
33 | #include <crypto/scatterwalk.h> | |
34 | #include <crypto/vmac.h> | |
35 | #include <crypto/internal/hash.h> | |
36 | ||
37 | /* | |
38 | * Constants and masks | |
39 | */ | |
40 | #define UINT64_C(x) x##ULL | |
66ce0b0f JK |
41 | static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
42 | static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ | |
43 | static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ | |
44 | static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ | |
45 | static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ | |
f1939f7c | 46 | |
304a204e SW |
47 | #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
48 | ||
f1939f7c SW |
49 | #ifdef __LITTLE_ENDIAN |
50 | #define INDEX_HIGH 1 | |
51 | #define INDEX_LOW 0 | |
52 | #else | |
53 | #define INDEX_HIGH 0 | |
54 | #define INDEX_LOW 1 | |
55 | #endif | |
56 | ||
57 | /* | |
58 | * The following routines are used in this implementation. They are | |
59 | * written via macros to simulate zero-overhead call-by-reference. | |
60 | * | |
61 | * MUL64: 64x64->128-bit multiplication | |
62 | * PMUL64: assumes top bits cleared on inputs | |
63 | * ADD128: 128x128->128-bit addition | |
64 | */ | |
65 | ||
66 | #define ADD128(rh, rl, ih, il) \ | |
67 | do { \ | |
68 | u64 _il = (il); \ | |
69 | (rl) += (_il); \ | |
70 | if ((rl) < (_il)) \ | |
71 | (rh)++; \ | |
72 | (rh) += (ih); \ | |
73 | } while (0) | |
74 | ||
75 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) | |
76 | ||
77 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ | |
78 | do { \ | |
79 | u64 _i1 = (i1), _i2 = (i2); \ | |
80 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ | |
81 | rh = MUL32(_i1>>32, _i2>>32); \ | |
82 | rl = MUL32(_i1, _i2); \ | |
83 | ADD128(rh, rl, (m >> 32), (m << 32)); \ | |
84 | } while (0) | |
85 | ||
86 | #define MUL64(rh, rl, i1, i2) \ | |
87 | do { \ | |
88 | u64 _i1 = (i1), _i2 = (i2); \ | |
89 | u64 m1 = MUL32(_i1, _i2>>32); \ | |
90 | u64 m2 = MUL32(_i1>>32, _i2); \ | |
91 | rh = MUL32(_i1>>32, _i2>>32); \ | |
92 | rl = MUL32(_i1, _i2); \ | |
93 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ | |
94 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ | |
95 | } while (0) | |
96 | ||
97 | /* | |
98 | * For highest performance the L1 NH and L2 polynomial hashes should be | |
25985edc | 99 | * carefully implemented to take advantage of one's target architecture. |
f1939f7c SW |
100 | * Here these two hash functions are defined multiple time; once for |
101 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once | |
102 | * for the rest (32-bit) architectures. | |
103 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). | |
104 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of | |
105 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two | |
106 | * NH computations at once). | |
107 | */ | |
108 | ||
109 | #ifdef CONFIG_64BIT | |
110 | ||
111 | #define nh_16(mp, kp, nw, rh, rl) \ | |
112 | do { \ | |
113 | int i; u64 th, tl; \ | |
114 | rh = rl = 0; \ | |
115 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
116 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
117 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c SW |
118 | ADD128(rh, rl, th, tl); \ |
119 | } \ | |
120 | } while (0) | |
121 | ||
122 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
123 | do { \ | |
124 | int i; u64 th, tl; \ | |
125 | rh1 = rl1 = rh = rl = 0; \ | |
126 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
127 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
128 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 129 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
130 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
131 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c SW |
132 | ADD128(rh1, rl1, th, tl); \ |
133 | } \ | |
134 | } while (0) | |
135 | ||
136 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ | |
137 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
138 | do { \ | |
139 | int i; u64 th, tl; \ | |
140 | rh = rl = 0; \ | |
141 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
142 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
143 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 144 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
145 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
146 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 147 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
148 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
149 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 150 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
151 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
152 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c SW |
153 | ADD128(rh, rl, th, tl); \ |
154 | } \ | |
155 | } while (0) | |
156 | ||
157 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ | |
158 | do { \ | |
159 | int i; u64 th, tl; \ | |
160 | rh1 = rl1 = rh = rl = 0; \ | |
161 | for (i = 0; i < nw; i += 8) { \ | |
304a204e SW |
162 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
163 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ | |
f1939f7c | 164 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
165 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
166 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ | |
f1939f7c | 167 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
168 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
169 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ | |
f1939f7c | 170 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
171 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
172 | pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ | |
f1939f7c | 173 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
174 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
175 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ | |
f1939f7c | 176 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
177 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
178 | pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ | |
f1939f7c | 179 | ADD128(rh1, rl1, th, tl); \ |
304a204e SW |
180 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
181 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ | |
f1939f7c | 182 | ADD128(rh, rl, th, tl); \ |
304a204e SW |
183 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
184 | pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ | |
f1939f7c SW |
185 | ADD128(rh1, rl1, th, tl); \ |
186 | } \ | |
187 | } while (0) | |
188 | #endif | |
189 | ||
190 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
191 | do { \ | |
192 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ | |
193 | /* compute ab*cd, put bd into result registers */ \ | |
194 | PMUL64(t3h, t3l, al, kh); \ | |
195 | PMUL64(t2h, t2l, ah, kl); \ | |
196 | PMUL64(t1h, t1l, ah, 2*kh); \ | |
197 | PMUL64(ah, al, al, kl); \ | |
198 | /* add 2 * ac to result */ \ | |
199 | ADD128(ah, al, t1h, t1l); \ | |
200 | /* add together ad + bc */ \ | |
201 | ADD128(t2h, t2l, t3h, t3l); \ | |
202 | /* now (ah,al), (t2l,2*t2h) need summing */ \ | |
203 | /* first add the high registers, carrying into t2h */ \ | |
204 | ADD128(t2h, ah, z, t2l); \ | |
205 | /* double t2h and add top bit of ah */ \ | |
206 | t2h = 2 * t2h + (ah >> 63); \ | |
207 | ah &= m63; \ | |
208 | /* now add the low registers */ \ | |
209 | ADD128(ah, al, mh, ml); \ | |
210 | ADD128(ah, al, z, t2h); \ | |
211 | } while (0) | |
212 | ||
213 | #else /* ! CONFIG_64BIT */ | |
214 | ||
215 | #ifndef nh_16 | |
216 | #define nh_16(mp, kp, nw, rh, rl) \ | |
217 | do { \ | |
218 | u64 t1, t2, m1, m2, t; \ | |
219 | int i; \ | |
220 | rh = rl = t = 0; \ | |
221 | for (i = 0; i < nw; i += 2) { \ | |
304a204e SW |
222 | t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
223 | t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ | |
f1939f7c SW |
224 | m2 = MUL32(t1 >> 32, t2); \ |
225 | m1 = MUL32(t1, t2 >> 32); \ | |
226 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ | |
227 | MUL32(t1, t2)); \ | |
228 | rh += (u64)(u32)(m1 >> 32) \ | |
229 | + (u32)(m2 >> 32); \ | |
230 | t += (u64)(u32)m1 + (u32)m2; \ | |
231 | } \ | |
232 | ADD128(rh, rl, (t >> 32), (t << 32)); \ | |
233 | } while (0) | |
234 | #endif | |
235 | ||
236 | static void poly_step_func(u64 *ahi, u64 *alo, | |
237 | const u64 *kh, const u64 *kl, | |
238 | const u64 *mh, const u64 *ml) | |
239 | { | |
240 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) | |
241 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) | |
242 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) | |
243 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) | |
244 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) | |
245 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) | |
246 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) | |
247 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) | |
248 | ||
249 | u64 p, q, t; | |
250 | u32 t2; | |
251 | ||
252 | p = MUL32(a3, k3); | |
253 | p += p; | |
254 | p += *(u64 *)mh; | |
255 | p += MUL32(a0, k2); | |
256 | p += MUL32(a1, k1); | |
257 | p += MUL32(a2, k0); | |
258 | t = (u32)(p); | |
259 | p >>= 32; | |
260 | p += MUL32(a0, k3); | |
261 | p += MUL32(a1, k2); | |
262 | p += MUL32(a2, k1); | |
263 | p += MUL32(a3, k0); | |
264 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; | |
265 | p >>= 31; | |
266 | p += (u64)(((u32 *)ml)[INDEX_LOW]); | |
267 | p += MUL32(a0, k0); | |
268 | q = MUL32(a1, k3); | |
269 | q += MUL32(a2, k2); | |
270 | q += MUL32(a3, k1); | |
271 | q += q; | |
272 | p += q; | |
273 | t2 = (u32)(p); | |
274 | p >>= 32; | |
275 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); | |
276 | p += MUL32(a0, k1); | |
277 | p += MUL32(a1, k0); | |
278 | q = MUL32(a2, k3); | |
279 | q += MUL32(a3, k2); | |
280 | q += q; | |
281 | p += q; | |
282 | *(u64 *)(alo) = (p << 32) | t2; | |
283 | p >>= 32; | |
284 | *(u64 *)(ahi) = p + t; | |
285 | ||
286 | #undef a0 | |
287 | #undef a1 | |
288 | #undef a2 | |
289 | #undef a3 | |
290 | #undef k0 | |
291 | #undef k1 | |
292 | #undef k2 | |
293 | #undef k3 | |
294 | } | |
295 | ||
296 | #define poly_step(ah, al, kh, kl, mh, ml) \ | |
297 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) | |
298 | ||
299 | #endif /* end of specialized NH and poly definitions */ | |
300 | ||
301 | /* At least nh_16 is defined. Defined others as needed here */ | |
302 | #ifndef nh_16_2 | |
303 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
304 | do { \ | |
305 | nh_16(mp, kp, nw, rh, rl); \ | |
306 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ | |
307 | } while (0) | |
308 | #endif | |
309 | #ifndef nh_vmac_nhbytes | |
310 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ | |
311 | nh_16(mp, kp, nw, rh, rl) | |
312 | #endif | |
313 | #ifndef nh_vmac_nhbytes_2 | |
314 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ | |
315 | do { \ | |
316 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ | |
317 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ | |
318 | } while (0) | |
319 | #endif | |
320 | ||
321 | static void vhash_abort(struct vmac_ctx *ctx) | |
322 | { | |
323 | ctx->polytmp[0] = ctx->polykey[0] ; | |
324 | ctx->polytmp[1] = ctx->polykey[1] ; | |
325 | ctx->first_block_processed = 0; | |
326 | } | |
327 | ||
304a204e | 328 | static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
f1939f7c SW |
329 | { |
330 | u64 rh, rl, t, z = 0; | |
331 | ||
332 | /* fully reduce (p1,p2)+(len,0) mod p127 */ | |
333 | t = p1 >> 63; | |
334 | p1 &= m63; | |
335 | ADD128(p1, p2, len, t); | |
336 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ | |
337 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); | |
338 | ADD128(p1, p2, z, t); | |
339 | p1 &= m63; | |
340 | ||
341 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ | |
342 | t = p1 + (p2 >> 32); | |
343 | t += (t >> 32); | |
344 | t += (u32)t > 0xfffffffeu; | |
345 | p1 += (t >> 32); | |
346 | p2 += (p1 << 32); | |
347 | ||
348 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ | |
349 | p1 += k1; | |
350 | p1 += (0 - (p1 < k1)) & 257; | |
351 | p2 += k2; | |
352 | p2 += (0 - (p2 < k2)) & 257; | |
353 | ||
354 | /* compute (p1+k1)*(p2+k2)%p64 */ | |
355 | MUL64(rh, rl, p1, p2); | |
356 | t = rh >> 56; | |
357 | ADD128(t, rl, z, rh); | |
358 | rh <<= 8; | |
359 | ADD128(t, rl, z, rh); | |
360 | t += t << 8; | |
361 | rl += t; | |
362 | rl += (0 - (rl < t)) & 257; | |
363 | rl += (0 - (rl > p64-1)) & 257; | |
364 | return rl; | |
365 | } | |
366 | ||
367 | static void vhash_update(const unsigned char *m, | |
368 | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ | |
369 | struct vmac_ctx *ctx) | |
370 | { | |
371 | u64 rh, rl, *mptr; | |
372 | const u64 *kptr = (u64 *)ctx->nhkey; | |
373 | int i; | |
374 | u64 ch, cl; | |
375 | u64 pkh = ctx->polykey[0]; | |
376 | u64 pkl = ctx->polykey[1]; | |
377 | ||
ba1ee070 SQ |
378 | if (!mbytes) |
379 | return; | |
380 | ||
381 | BUG_ON(mbytes % VMAC_NHBYTES); | |
382 | ||
f1939f7c SW |
383 | mptr = (u64 *)m; |
384 | i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ | |
385 | ||
386 | ch = ctx->polytmp[0]; | |
387 | cl = ctx->polytmp[1]; | |
388 | ||
389 | if (!ctx->first_block_processed) { | |
390 | ctx->first_block_processed = 1; | |
391 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
392 | rh &= m62; | |
393 | ADD128(ch, cl, rh, rl); | |
394 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
395 | i--; | |
396 | } | |
397 | ||
398 | while (i--) { | |
399 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
400 | rh &= m62; | |
401 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
402 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
403 | } | |
404 | ||
405 | ctx->polytmp[0] = ch; | |
406 | ctx->polytmp[1] = cl; | |
407 | } | |
408 | ||
409 | static u64 vhash(unsigned char m[], unsigned int mbytes, | |
410 | u64 *tagl, struct vmac_ctx *ctx) | |
411 | { | |
412 | u64 rh, rl, *mptr; | |
413 | const u64 *kptr = (u64 *)ctx->nhkey; | |
414 | int i, remaining; | |
415 | u64 ch, cl; | |
416 | u64 pkh = ctx->polykey[0]; | |
417 | u64 pkl = ctx->polykey[1]; | |
418 | ||
419 | mptr = (u64 *)m; | |
420 | i = mbytes / VMAC_NHBYTES; | |
421 | remaining = mbytes % VMAC_NHBYTES; | |
422 | ||
423 | if (ctx->first_block_processed) { | |
424 | ch = ctx->polytmp[0]; | |
425 | cl = ctx->polytmp[1]; | |
426 | } else if (i) { | |
427 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); | |
428 | ch &= m62; | |
429 | ADD128(ch, cl, pkh, pkl); | |
430 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
431 | i--; | |
432 | } else if (remaining) { | |
433 | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); | |
434 | ch &= m62; | |
435 | ADD128(ch, cl, pkh, pkl); | |
436 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
437 | goto do_l3; | |
438 | } else {/* Empty String */ | |
439 | ch = pkh; cl = pkl; | |
440 | goto do_l3; | |
441 | } | |
442 | ||
443 | while (i--) { | |
444 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); | |
445 | rh &= m62; | |
446 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
447 | mptr += (VMAC_NHBYTES/sizeof(u64)); | |
448 | } | |
449 | if (remaining) { | |
450 | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); | |
451 | rh &= m62; | |
452 | poly_step(ch, cl, pkh, pkl, rh, rl); | |
453 | } | |
454 | ||
455 | do_l3: | |
456 | vhash_abort(ctx); | |
457 | remaining *= 8; | |
458 | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); | |
459 | } | |
460 | ||
461 | static u64 vmac(unsigned char m[], unsigned int mbytes, | |
ba1ee070 | 462 | const unsigned char n[16], u64 *tagl, |
f1939f7c SW |
463 | struct vmac_ctx_t *ctx) |
464 | { | |
465 | u64 *in_n, *out_p; | |
466 | u64 p, h; | |
467 | int i; | |
468 | ||
469 | in_n = ctx->__vmac_ctx.cached_nonce; | |
470 | out_p = ctx->__vmac_ctx.cached_aes; | |
471 | ||
472 | i = n[15] & 1; | |
473 | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { | |
474 | in_n[0] = *(u64 *)(n); | |
475 | in_n[1] = *(u64 *)(n+8); | |
476 | ((unsigned char *)in_n)[15] &= 0xFE; | |
477 | crypto_cipher_encrypt_one(ctx->child, | |
478 | (unsigned char *)out_p, (unsigned char *)in_n); | |
479 | ||
480 | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); | |
481 | } | |
482 | p = be64_to_cpup(out_p + i); | |
483 | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); | |
304a204e | 484 | return le64_to_cpu(p + h); |
f1939f7c SW |
485 | } |
486 | ||
487 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) | |
488 | { | |
489 | u64 in[2] = {0}, out[2]; | |
490 | unsigned i; | |
491 | int err = 0; | |
492 | ||
493 | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); | |
494 | if (err) | |
495 | return err; | |
496 | ||
497 | /* Fill nh key */ | |
498 | ((unsigned char *)in)[0] = 0x80; | |
499 | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { | |
500 | crypto_cipher_encrypt_one(ctx->child, | |
501 | (unsigned char *)out, (unsigned char *)in); | |
502 | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); | |
503 | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); | |
504 | ((unsigned char *)in)[15] += 1; | |
505 | } | |
506 | ||
507 | /* Fill poly key */ | |
508 | ((unsigned char *)in)[0] = 0xC0; | |
509 | in[1] = 0; | |
510 | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { | |
511 | crypto_cipher_encrypt_one(ctx->child, | |
512 | (unsigned char *)out, (unsigned char *)in); | |
513 | ctx->__vmac_ctx.polytmp[i] = | |
514 | ctx->__vmac_ctx.polykey[i] = | |
515 | be64_to_cpup(out) & mpoly; | |
516 | ctx->__vmac_ctx.polytmp[i+1] = | |
517 | ctx->__vmac_ctx.polykey[i+1] = | |
518 | be64_to_cpup(out+1) & mpoly; | |
519 | ((unsigned char *)in)[15] += 1; | |
520 | } | |
521 | ||
522 | /* Fill ip key */ | |
523 | ((unsigned char *)in)[0] = 0xE0; | |
524 | in[1] = 0; | |
525 | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { | |
526 | do { | |
527 | crypto_cipher_encrypt_one(ctx->child, | |
528 | (unsigned char *)out, (unsigned char *)in); | |
529 | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); | |
530 | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); | |
531 | ((unsigned char *)in)[15] += 1; | |
532 | } while (ctx->__vmac_ctx.l3key[i] >= p64 | |
533 | || ctx->__vmac_ctx.l3key[i+1] >= p64); | |
534 | } | |
535 | ||
536 | /* Invalidate nonce/aes cache and reset other elements */ | |
537 | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ | |
538 | ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ | |
539 | ctx->__vmac_ctx.first_block_processed = 0; | |
540 | ||
541 | return err; | |
542 | } | |
543 | ||
544 | static int vmac_setkey(struct crypto_shash *parent, | |
545 | const u8 *key, unsigned int keylen) | |
546 | { | |
547 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
548 | ||
549 | if (keylen != VMAC_KEY_LEN) { | |
550 | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); | |
551 | return -EINVAL; | |
552 | } | |
553 | ||
554 | return vmac_set_key((u8 *)key, ctx); | |
555 | } | |
556 | ||
557 | static int vmac_init(struct shash_desc *pdesc) | |
558 | { | |
f1939f7c SW |
559 | return 0; |
560 | } | |
561 | ||
562 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, | |
563 | unsigned int len) | |
564 | { | |
565 | struct crypto_shash *parent = pdesc->tfm; | |
566 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
ba1ee070 SQ |
567 | int expand; |
568 | int min; | |
569 | ||
570 | expand = VMAC_NHBYTES - ctx->partial_size > 0 ? | |
571 | VMAC_NHBYTES - ctx->partial_size : 0; | |
572 | ||
573 | min = len < expand ? len : expand; | |
574 | ||
575 | memcpy(ctx->partial + ctx->partial_size, p, min); | |
576 | ctx->partial_size += min; | |
577 | ||
578 | if (len < expand) | |
579 | return 0; | |
f1939f7c | 580 | |
ba1ee070 SQ |
581 | vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx); |
582 | ctx->partial_size = 0; | |
583 | ||
584 | len -= expand; | |
585 | p += expand; | |
586 | ||
587 | if (len % VMAC_NHBYTES) { | |
588 | memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), | |
589 | len % VMAC_NHBYTES); | |
590 | ctx->partial_size = len % VMAC_NHBYTES; | |
591 | } | |
592 | ||
593 | vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); | |
f1939f7c SW |
594 | |
595 | return 0; | |
596 | } | |
597 | ||
598 | static int vmac_final(struct shash_desc *pdesc, u8 *out) | |
599 | { | |
600 | struct crypto_shash *parent = pdesc->tfm; | |
601 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); | |
602 | vmac_t mac; | |
603 | u8 nonce[16] = {}; | |
604 | ||
ba1ee070 SQ |
605 | /* vmac() ends up accessing outside the array bounds that |
606 | * we specify. In appears to access up to the next 2-word | |
607 | * boundary. We'll just be uber cautious and zero the | |
608 | * unwritten bytes in the buffer. | |
609 | */ | |
610 | if (ctx->partial_size) { | |
611 | memset(ctx->partial + ctx->partial_size, 0, | |
612 | VMAC_NHBYTES - ctx->partial_size); | |
613 | } | |
614 | mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); | |
f1939f7c | 615 | memcpy(out, &mac, sizeof(vmac_t)); |
7185ad26 | 616 | memzero_explicit(&mac, sizeof(vmac_t)); |
f1939f7c | 617 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); |
ba1ee070 | 618 | ctx->partial_size = 0; |
f1939f7c SW |
619 | return 0; |
620 | } | |
621 | ||
622 | static int vmac_init_tfm(struct crypto_tfm *tfm) | |
623 | { | |
624 | struct crypto_cipher *cipher; | |
625 | struct crypto_instance *inst = (void *)tfm->__crt_alg; | |
626 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | |
627 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | |
628 | ||
629 | cipher = crypto_spawn_cipher(spawn); | |
630 | if (IS_ERR(cipher)) | |
631 | return PTR_ERR(cipher); | |
632 | ||
633 | ctx->child = cipher; | |
634 | return 0; | |
635 | } | |
636 | ||
637 | static void vmac_exit_tfm(struct crypto_tfm *tfm) | |
638 | { | |
639 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); | |
640 | crypto_free_cipher(ctx->child); | |
641 | } | |
642 | ||
643 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) | |
644 | { | |
645 | struct shash_instance *inst; | |
646 | struct crypto_alg *alg; | |
647 | int err; | |
648 | ||
649 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); | |
650 | if (err) | |
651 | return err; | |
652 | ||
653 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | |
654 | CRYPTO_ALG_TYPE_MASK); | |
655 | if (IS_ERR(alg)) | |
656 | return PTR_ERR(alg); | |
657 | ||
658 | inst = shash_alloc_instance("vmac", alg); | |
659 | err = PTR_ERR(inst); | |
660 | if (IS_ERR(inst)) | |
661 | goto out_put_alg; | |
662 | ||
663 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, | |
664 | shash_crypto_instance(inst), | |
665 | CRYPTO_ALG_TYPE_MASK); | |
666 | if (err) | |
667 | goto out_free_inst; | |
668 | ||
669 | inst->alg.base.cra_priority = alg->cra_priority; | |
670 | inst->alg.base.cra_blocksize = alg->cra_blocksize; | |
671 | inst->alg.base.cra_alignmask = alg->cra_alignmask; | |
672 | ||
673 | inst->alg.digestsize = sizeof(vmac_t); | |
674 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); | |
675 | inst->alg.base.cra_init = vmac_init_tfm; | |
676 | inst->alg.base.cra_exit = vmac_exit_tfm; | |
677 | ||
678 | inst->alg.init = vmac_init; | |
679 | inst->alg.update = vmac_update; | |
680 | inst->alg.final = vmac_final; | |
681 | inst->alg.setkey = vmac_setkey; | |
682 | ||
683 | err = shash_register_instance(tmpl, inst); | |
684 | if (err) { | |
685 | out_free_inst: | |
686 | shash_free_instance(shash_crypto_instance(inst)); | |
687 | } | |
688 | ||
689 | out_put_alg: | |
690 | crypto_mod_put(alg); | |
691 | return err; | |
692 | } | |
693 | ||
694 | static struct crypto_template vmac_tmpl = { | |
695 | .name = "vmac", | |
696 | .create = vmac_create, | |
697 | .free = shash_free_instance, | |
698 | .module = THIS_MODULE, | |
699 | }; | |
700 | ||
701 | static int __init vmac_module_init(void) | |
702 | { | |
703 | return crypto_register_template(&vmac_tmpl); | |
704 | } | |
705 | ||
706 | static void __exit vmac_module_exit(void) | |
707 | { | |
708 | crypto_unregister_template(&vmac_tmpl); | |
709 | } | |
710 | ||
711 | module_init(vmac_module_init); | |
712 | module_exit(vmac_module_exit); | |
713 | ||
714 | MODULE_LICENSE("GPL"); | |
715 | MODULE_DESCRIPTION("VMAC hash algorithm"); | |
4943ba16 | 716 | MODULE_ALIAS_CRYPTO("vmac"); |