]> git.proxmox.com Git - zfsonlinux.git/blame - debian/patches/0019-vdev_disk-rewrite-BIO-filling-machinery-to-avoid-spl.patch
backport 2.2.4 staging for better 6.8 support
[zfsonlinux.git] / debian / patches / 0019-vdev_disk-rewrite-BIO-filling-machinery-to-avoid-spl.patch
CommitLineData
68be554e
TL
1From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
2From: Rob Norris <rob.norris@klarasystems.com>
3Date: Tue, 18 Jul 2023 11:11:29 +1000
4Subject: [PATCH] vdev_disk: rewrite BIO filling machinery to avoid split pages
5
6This commit tackles a number of issues in the way BIOs (`struct bio`)
7are constructed for submission to the Linux block layer.
8
9The kernel has a hard upper limit on the number of pages/segments that
10can be added to a BIO, as well as a separate limit for each device
11(related to its queue depth and other scheduling characteristics).
12
13ZFS counts the number of memory pages in the request ABD
14(`abd_nr_pages_off()`, and then uses that as the number of segments to
15put into the BIO, up to the hard upper limit. If it requires more than
16the limit, it will create multiple BIOs.
17
18Leaving aside the fact that page count method is wrong (see below), not
19limiting to the device segment max means that the device driver will
20need to split the BIO in half. This is alone is not necessarily a
21problem, but it interacts with another issue to cause a much larger
22problem.
23
24The kernel function to add a segment to a BIO (`bio_add_page()`) takes a
25`struct page` pointer, and offset+len within it. `struct page` can
26represent a run of contiguous memory pages (known as a "compound page").
27In can be of arbitrary length.
28
29The ZFS functions that count ABD pages and load them into the BIO
30(`abd_nr_pages_off()`, `bio_map()` and `abd_bio_map_off()`) will never
31consider a page to be more than `PAGE_SIZE` (4K), even if the `struct
32page` is for multiple pages. In this case, it will load the same `struct
33page` into the BIO multiple times, with the offset adjusted each time.
34
35With a sufficiently large ABD, this can easily lead to the BIO being
36entirely filled much earlier than it could have been. This is also
37further contributes to the problem caused by the incorrect segment limit
38calculation, as its much easier to go past the device limit, and so
39require a split.
40
41Again, this is not a problem on its own.
42
43The logic for "never submit more than `PAGE_SIZE`" is actually a little
44more subtle. It will actually never submit a buffer that crosses a 4K
45page boundary.
46
47In practice, this is fine, as most ABDs are scattered, that is a list of
48complete 4K pages, and so are loaded in as such.
49
50Linear ABDs are typically allocated from slabs, and for small sizes they
51are frequently not aligned to page boundaries. For example, a 12K
52allocation can span four pages, eg:
53
54 -- 4K -- -- 4K -- -- 4K -- -- 4K --
55 | | | | |
56 :## ######## ######## ######: [1K, 4K, 4K, 3K]
57
58Such an allocation would be loaded into a BIO as you see:
59
60 [1K, 4K, 4K, 3K]
61
62This tends not to be a problem in practice, because even if the BIO were
63filled and needed to be split, each half would still have either a start
64or end aligned to the logical block size of the device (assuming 4K at
65least).
66
67---
68
69In ideal circumstances, these shortcomings don't cause any particular
70problems. Its when they start to interact with other ZFS features that
71things get interesting.
72
73Aggregation will create a "gang" ABD, which is simply a list of other
74ABDs. Iterating over a gang ABD is just iterating over each ABD within
75it in turn.
76
77Because the segments are simply loaded in order, we can end up with
78uneven segments either side of the "gap" between the two ABDs. For
79example, two 12K ABDs might be aggregated and then loaded as:
80
81 [1K, 4K, 4K, 3K, 2K, 4K, 4K, 2K]
82
83Should a split occur, each individual BIO can end up either having an
84start or end offset that is not aligned to the logical block size, which
85some drivers (eg SCSI) will reject. However, this tends not to happen
86because the default aggregation limit usually keeps the BIO small enough
87to not require more than one split, and most pages are actually full 4K
88pages, so hitting an uneven gap is very rare anyway.
89
90If the pool is under particular memory pressure, then an IO can be
91broken down into a "gang block", a 512-byte block composed of a header
92and up to three block pointers. Each points to a fragment of the
93original write, or in turn, another gang block, breaking the original
94data up over and over until space can be found in the pool for each of
95them.
96
97Each gang header is a separate 512-byte memory allocation from a slab,
98that needs to be written down to disk. When the gang header is added to
99the BIO, its a single 512-byte segment.
100
101Pulling all this together, consider a large aggregated write of gang
102blocks. This results a BIO containing lots of 512-byte segments. Given
103our tendency to overfill the BIO, a split is likely, and most possible
104split points will yield a pair of BIOs that are misaligned. Drivers that
105care, like the SCSI driver, will reject them.
106
107---
108
109This commit is a substantial refactor and rewrite of much of `vdev_disk`
110to sort all this out.
111
112`vdev_bio_max_segs()` now returns the ideal maximum size for the device,
113if available. There's also a tuneable `zfs_vdev_disk_max_segs` to
114override this, to assist with testing.
115
116We scan the ABD up front to count the number of pages within it, and to
117confirm that if we submitted all those pages to one or more BIOs, it
118could be split at any point with creating a misaligned BIO. If the
119pages in the BIO are not usable (as in any of the above situations), the
120ABD is linearised, and then checked again. This is the same technique
121used in `vdev_geom` on FreeBSD, adjusted for Linux's variable page size
122and allocator quirks.
123
124`vbio_t` is a cleanup and enhancement of the old `dio_request_t`. The
125idea is simply that it can hold all the state needed to create, submit
126and return multiple BIOs, including all the refcounts, the ABD copy if
127it was needed, and so on. Apart from what I hope is a clearer interface,
128the major difference is that because we know how many BIOs we'll need up
129front, we don't need the old overflow logic that would grow the BIO
130array, throw away all the old work and restart. We can get it right from
131the start.
132
133Reviewed-by: Alexander Motin <mav@FreeBSD.org>
134Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
135Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
136Sponsored-by: Klara, Inc.
137Sponsored-by: Wasabi Technology, Inc.
138Closes #15533
139Closes #15588
140(cherry picked from commit 06a196020e6f70d2fedbd4d0d05bbe0c1ac6e4d8)
141---
142 include/os/linux/kernel/linux/mod_compat.h | 1 +
143 man/man4/zfs.4 | 10 +-
144 module/os/linux/zfs/vdev_disk.c | 439 ++++++++++++++++++++-
145 3 files changed, 447 insertions(+), 3 deletions(-)
146
147diff --git a/include/os/linux/kernel/linux/mod_compat.h b/include/os/linux/kernel/linux/mod_compat.h
148index 8e20a9613..039865b70 100644
149--- a/include/os/linux/kernel/linux/mod_compat.h
150+++ b/include/os/linux/kernel/linux/mod_compat.h
151@@ -68,6 +68,7 @@ enum scope_prefix_types {
152 zfs_trim,
153 zfs_txg,
154 zfs_vdev,
155+ zfs_vdev_disk,
156 zfs_vdev_file,
157 zfs_vdev_mirror,
158 zfs_vnops,
159diff --git a/man/man4/zfs.4 b/man/man4/zfs.4
160index 352990e02..b5679f2f0 100644
161--- a/man/man4/zfs.4
162+++ b/man/man4/zfs.4
163@@ -2,6 +2,7 @@
164 .\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
165 .\" Copyright (c) 2019, 2021 by Delphix. All rights reserved.
166 .\" Copyright (c) 2019 Datto Inc.
167+.\" Copyright (c) 2023, 2024 Klara, Inc.
168 .\" The contents of this file are subject to the terms of the Common Development
169 .\" and Distribution License (the "License"). You may not use this file except
170 .\" in compliance with the License. You can obtain a copy of the license at
171@@ -15,7 +16,7 @@
172 .\" own identifying information:
173 .\" Portions Copyright [yyyy] [name of copyright owner]
174 .\"
175-.Dd July 21, 2023
176+.Dd January 9, 2024
177 .Dt ZFS 4
178 .Os
179 .
180@@ -1345,6 +1346,13 @@ _
181 4 Driver No driver retries on driver errors.
182 .TE
183 .
184+.It Sy zfs_vdev_disk_max_segs Ns = Ns Sy 0 Pq uint
185+Maximum number of segments to add to a BIO (min 4).
186+If this is higher than the maximum allowed by the device queue or the kernel
187+itself, it will be clamped.
188+Setting it to zero will cause the kernel's ideal size to be used.
189+This parameter only applies on Linux.
190+.
191 .It Sy zfs_expire_snapshot Ns = Ns Sy 300 Ns s Pq int
192 Time before expiring
193 .Pa .zfs/snapshot .
194diff --git a/module/os/linux/zfs/vdev_disk.c b/module/os/linux/zfs/vdev_disk.c
195index de4dba72f..0ccb9ad96 100644
196--- a/module/os/linux/zfs/vdev_disk.c
197+++ b/module/os/linux/zfs/vdev_disk.c
198@@ -24,6 +24,7 @@
199 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
200 * LLNL-CODE-403049.
201 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
202+ * Copyright (c) 2023, 2024, Klara Inc.
203 */
204
205 #include <sys/zfs_context.h>
206@@ -66,6 +67,13 @@ typedef struct vdev_disk {
207 krwlock_t vd_lock;
208 } vdev_disk_t;
209
210+/*
211+ * Maximum number of segments to add to a bio (min 4). If this is higher than
212+ * the maximum allowed by the device queue or the kernel itself, it will be
213+ * clamped. Setting it to zero will cause the kernel's ideal size to be used.
214+ */
215+uint_t zfs_vdev_disk_max_segs = 0;
216+
217 /*
218 * Unique identifier for the exclusive vdev holder.
219 */
220@@ -607,10 +615,433 @@ vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
221 return (bio);
222 }
223
224+static inline uint_t
225+vdev_bio_max_segs(struct block_device *bdev)
226+{
227+ /*
228+ * Smallest of the device max segs and the tuneable max segs. Minimum
229+ * 4, so there's room to finish split pages if they come up.
230+ */
231+ const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
232+ const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
233+ MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
234+ const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
235+
236+#ifdef HAVE_BIO_MAX_SEGS
237+ return (bio_max_segs(max_segs));
238+#else
239+ return (MIN(max_segs, BIO_MAX_PAGES));
240+#endif
241+}
242+
243+static inline uint_t
244+vdev_bio_max_bytes(struct block_device *bdev)
245+{
246+ return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
247+}
248+
249+
250+/*
251+ * Virtual block IO object (VBIO)
252+ *
253+ * Linux block IO (BIO) objects have a limit on how many data segments (pages)
254+ * they can hold. Depending on how they're allocated and structured, a large
255+ * ZIO can require more than one BIO to be submitted to the kernel, which then
256+ * all have to complete before we can return the completed ZIO back to ZFS.
257+ *
258+ * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
259+ * translate a ZIO down into the kernel block layer and back again.
260+ *
261+ * Note that these are only used for data ZIOs (read/write). Meta-operations
262+ * (flush/trim) don't need multiple BIOs and so can just make the call
263+ * directly.
264+ */
265+typedef struct {
266+ zio_t *vbio_zio; /* parent zio */
267+
268+ struct block_device *vbio_bdev; /* blockdev to submit bios to */
269+
270+ abd_t *vbio_abd; /* abd carrying borrowed linear buf */
271+
272+ atomic_t vbio_ref; /* bio refcount */
273+ int vbio_error; /* error from failed bio */
274+
275+ uint_t vbio_max_segs; /* max segs per bio */
276+
277+ uint_t vbio_max_bytes; /* max bytes per bio */
278+ uint_t vbio_lbs_mask; /* logical block size mask */
279+
280+ uint64_t vbio_offset; /* start offset of next bio */
281+
282+ struct bio *vbio_bio; /* pointer to the current bio */
283+ struct bio *vbio_bios; /* list of all bios */
284+} vbio_t;
285+
286+static vbio_t *
287+vbio_alloc(zio_t *zio, struct block_device *bdev)
288+{
289+ vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
290+
291+ vbio->vbio_zio = zio;
292+ vbio->vbio_bdev = bdev;
293+ atomic_set(&vbio->vbio_ref, 0);
294+ vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
295+ vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
296+ vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
297+ vbio->vbio_offset = zio->io_offset;
298+
299+ return (vbio);
300+}
301+
302+static int
303+vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
304+{
305+ struct bio *bio;
306+ uint_t ssize;
307+
308+ while (size > 0) {
309+ bio = vbio->vbio_bio;
310+ if (bio == NULL) {
311+ /* New BIO, allocate and set up */
312+ bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
313+ vbio->vbio_max_segs);
314+ if (unlikely(bio == NULL))
315+ return (SET_ERROR(ENOMEM));
316+ BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
317+
318+ bio->bi_next = vbio->vbio_bios;
319+ vbio->vbio_bios = vbio->vbio_bio = bio;
320+ }
321+
322+ /*
323+ * Only load as much of the current page data as will fit in
324+ * the space left in the BIO, respecting lbs alignment. Older
325+ * kernels will error if we try to overfill the BIO, while
326+ * newer ones will accept it and split the BIO. This ensures
327+ * everything works on older kernels, and avoids an additional
328+ * overhead on the new.
329+ */
330+ ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
331+ vbio->vbio_lbs_mask);
332+ if (ssize > 0 &&
333+ bio_add_page(bio, page, ssize, offset) == ssize) {
334+ /* Accepted, adjust and load any remaining. */
335+ size -= ssize;
336+ offset += ssize;
337+ continue;
338+ }
339+
340+ /* No room, set up for a new BIO and loop */
341+ vbio->vbio_offset += BIO_BI_SIZE(bio);
342+
343+ /* Signal new BIO allocation wanted */
344+ vbio->vbio_bio = NULL;
345+ }
346+
347+ return (0);
348+}
349+
350+BIO_END_IO_PROTO(vdev_disk_io_rw_completion, bio, error);
351+static void vbio_put(vbio_t *vbio);
352+
353+static void
354+vbio_submit(vbio_t *vbio, int flags)
355+{
356+ ASSERT(vbio->vbio_bios);
357+ struct bio *bio = vbio->vbio_bios;
358+ vbio->vbio_bio = vbio->vbio_bios = NULL;
359+
360+ /*
361+ * We take a reference for each BIO as we submit it, plus one to
362+ * protect us from BIOs completing before we're done submitting them
363+ * all, causing vbio_put() to free vbio out from under us and/or the
364+ * zio to be returned before all its IO has completed.
365+ */
366+ atomic_set(&vbio->vbio_ref, 1);
367+
368+ /*
369+ * If we're submitting more than one BIO, inform the block layer so
370+ * it can batch them if it wants.
371+ */
372+ struct blk_plug plug;
373+ boolean_t do_plug = (bio->bi_next != NULL);
374+ if (do_plug)
375+ blk_start_plug(&plug);
376+
377+ /* Submit all the BIOs */
378+ while (bio != NULL) {
379+ atomic_inc(&vbio->vbio_ref);
380+
381+ struct bio *next = bio->bi_next;
382+ bio->bi_next = NULL;
383+
384+ bio->bi_end_io = vdev_disk_io_rw_completion;
385+ bio->bi_private = vbio;
386+ bio_set_op_attrs(bio,
387+ vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
388+ WRITE : READ, flags);
389+
390+ vdev_submit_bio(bio);
391+
392+ bio = next;
393+ }
394+
395+ /* Finish the batch */
396+ if (do_plug)
397+ blk_finish_plug(&plug);
398+
399+ /* Release the extra reference */
400+ vbio_put(vbio);
401+}
402+
403+static void
404+vbio_return_abd(vbio_t *vbio)
405+{
406+ zio_t *zio = vbio->vbio_zio;
407+ if (vbio->vbio_abd == NULL)
408+ return;
409+
410+ /*
411+ * If we copied the ABD before issuing it, clean up and return the copy
412+ * to the ADB, with changes if appropriate.
413+ */
414+ void *buf = abd_to_buf(vbio->vbio_abd);
415+ abd_free(vbio->vbio_abd);
416+ vbio->vbio_abd = NULL;
417+
418+ if (zio->io_type == ZIO_TYPE_READ)
419+ abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
420+ else
421+ abd_return_buf(zio->io_abd, buf, zio->io_size);
422+}
423+
424+static void
425+vbio_free(vbio_t *vbio)
426+{
427+ VERIFY0(atomic_read(&vbio->vbio_ref));
428+
429+ vbio_return_abd(vbio);
430+
431+ kmem_free(vbio, sizeof (vbio_t));
432+}
433+
434+static void
435+vbio_put(vbio_t *vbio)
436+{
437+ if (atomic_dec_return(&vbio->vbio_ref) > 0)
438+ return;
439+
440+ /*
441+ * This was the last reference, so the entire IO is completed. Clean
442+ * up and submit it for processing.
443+ */
444+
445+ /*
446+ * Get any data buf back to the original ABD, if necessary. We do this
447+ * now so we can get the ZIO into the pipeline as quickly as possible,
448+ * and then do the remaining cleanup after.
449+ */
450+ vbio_return_abd(vbio);
451+
452+ zio_t *zio = vbio->vbio_zio;
453+
454+ /*
455+ * Set the overall error. If multiple BIOs returned an error, only the
456+ * first will be taken; the others are dropped (see
457+ * vdev_disk_io_rw_completion()). Its pretty much impossible for
458+ * multiple IOs to the same device to fail with different errors, so
459+ * there's no real risk.
460+ */
461+ zio->io_error = vbio->vbio_error;
462+ if (zio->io_error)
463+ vdev_disk_error(zio);
464+
465+ /* All done, submit for processing */
466+ zio_delay_interrupt(zio);
467+
468+ /* Finish cleanup */
469+ vbio_free(vbio);
470+}
471+
472+BIO_END_IO_PROTO(vdev_disk_io_rw_completion, bio, error)
473+{
474+ vbio_t *vbio = bio->bi_private;
475+
476+ if (vbio->vbio_error == 0) {
477+#ifdef HAVE_1ARG_BIO_END_IO_T
478+ vbio->vbio_error = BIO_END_IO_ERROR(bio);
479+#else
480+ if (error)
481+ vbio->vbio_error = -(error);
482+ else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
483+ vbio->vbio_error = EIO;
484+#endif
485+ }
486+
487+ /*
488+ * Destroy the BIO. This is safe to do; the vbio owns its data and the
489+ * kernel won't touch it again after the completion function runs.
490+ */
491+ bio_put(bio);
492+
493+ /* Drop this BIOs reference acquired by vbio_submit() */
494+ vbio_put(vbio);
495+}
496+
497+/*
498+ * Iterator callback to count ABD pages and check their size & alignment.
499+ *
500+ * On Linux, each BIO segment can take a page pointer, and an offset+length of
501+ * the data within that page. A page can be arbitrarily large ("compound"
502+ * pages) but we still have to ensure the data portion is correctly sized and
503+ * aligned to the logical block size, to ensure that if the kernel wants to
504+ * split the BIO, the two halves will still be properly aligned.
505+ */
506+typedef struct {
507+ uint_t bmask;
508+ uint_t npages;
509+ uint_t end;
510+} vdev_disk_check_pages_t;
511+
512+static int
513+vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
514+{
515+ vdev_disk_check_pages_t *s = priv;
516+
517+ /*
518+ * If we didn't finish on a block size boundary last time, then there
519+ * would be a gap if we tried to use this ABD as-is, so abort.
520+ */
521+ if (s->end != 0)
522+ return (1);
523+
524+ /*
525+ * Note if we're taking less than a full block, so we can check it
526+ * above on the next call.
527+ */
528+ s->end = len & s->bmask;
529+
530+ /* All blocks after the first must start on a block size boundary. */
531+ if (s->npages != 0 && (off & s->bmask) != 0)
532+ return (1);
533+
534+ s->npages++;
535+ return (0);
536+}
537+
538+/*
539+ * Check if we can submit the pages in this ABD to the kernel as-is. Returns
540+ * the number of pages, or 0 if it can't be submitted like this.
541+ */
542+static boolean_t
543+vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
544+{
545+ vdev_disk_check_pages_t s = {
546+ .bmask = bdev_logical_block_size(bdev)-1,
547+ .npages = 0,
548+ .end = 0,
549+ };
550+
551+ if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
552+ return (B_FALSE);
553+
554+ return (B_TRUE);
555+}
556+
557+/* Iterator callback to submit ABD pages to the vbio. */
558+static int
559+vdev_disk_fill_vbio_cb(struct page *page, size_t off, size_t len, void *priv)
560+{
561+ vbio_t *vbio = priv;
562+ return (vbio_add_page(vbio, page, len, off));
563+}
564+
565+static int
566+vdev_disk_io_rw(zio_t *zio)
567+{
568+ vdev_t *v = zio->io_vd;
569+ vdev_disk_t *vd = v->vdev_tsd;
570+ struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
571+ int flags = 0;
572+
573+ /*
574+ * Accessing outside the block device is never allowed.
575+ */
576+ if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
577+ vdev_dbgmsg(zio->io_vd,
578+ "Illegal access %llu size %llu, device size %llu",
579+ (u_longlong_t)zio->io_offset,
580+ (u_longlong_t)zio->io_size,
581+ (u_longlong_t)i_size_read(bdev->bd_inode));
582+ return (SET_ERROR(EIO));
583+ }
584+
585+ if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
586+ v->vdev_failfast == B_TRUE) {
587+ bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
588+ zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
589+ }
590+
591+ /*
592+ * Check alignment of the incoming ABD. If any part of it would require
593+ * submitting a page that is not aligned to the logical block size,
594+ * then we take a copy into a linear buffer and submit that instead.
595+ * This should be impossible on a 512b LBS, and fairly rare on 4K,
596+ * usually requiring abnormally-small data blocks (eg gang blocks)
597+ * mixed into the same ABD as larger ones (eg aggregated).
598+ */
599+ abd_t *abd = zio->io_abd;
600+ if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
601+ void *buf;
602+ if (zio->io_type == ZIO_TYPE_READ)
603+ buf = abd_borrow_buf(zio->io_abd, zio->io_size);
604+ else
605+ buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
606+
607+ /*
608+ * Wrap the copy in an abd_t, so we can use the same iterators
609+ * to count and fill the vbio later.
610+ */
611+ abd = abd_get_from_buf(buf, zio->io_size);
612+
613+ /*
614+ * False here would mean the borrowed copy has an invalid
615+ * alignment too, which would mean we've somehow been passed a
616+ * linear ABD with an interior page that has a non-zero offset
617+ * or a size not a multiple of PAGE_SIZE. This is not possible.
618+ * It would mean either zio_buf_alloc() or its underlying
619+ * allocators have done something extremely strange, or our
620+ * math in vdev_disk_check_pages() is wrong. In either case,
621+ * something in seriously wrong and its not safe to continue.
622+ */
623+ VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
624+ }
625+
626+ /* Allocate vbio, with a pointer to the borrowed ABD if necessary */
627+ int error = 0;
628+ vbio_t *vbio = vbio_alloc(zio, bdev);
629+ if (abd != zio->io_abd)
630+ vbio->vbio_abd = abd;
631+
632+ /* Fill it with pages */
633+ error = abd_iterate_page_func(abd, 0, zio->io_size,
634+ vdev_disk_fill_vbio_cb, vbio);
635+ if (error != 0) {
636+ vbio_free(vbio);
637+ return (error);
638+ }
639+
640+ vbio_submit(vbio, flags);
641+ return (0);
642+}
643+
644 /* ========== */
645
646 /*
647- * This is the classic, battle-tested BIO submission code.
648+ * This is the classic, battle-tested BIO submission code. Until we're totally
649+ * sure that the new code is safe and correct in all cases, this will remain
650+ * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
651+ * load time.
652 *
653 * These functions have been renamed to vdev_classic_* to make it clear what
654 * they belong to, but their implementations are unchanged.
655@@ -1116,7 +1547,8 @@ vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
656 (void) tsd;
657
658 if (vdev_disk_io_rw_fn == NULL)
659- vdev_disk_io_rw_fn = vdev_classic_physio;
660+ /* XXX make configurable */
661+ vdev_disk_io_rw_fn = 0 ? vdev_classic_physio : vdev_disk_io_rw;
662
663 return (0);
664 }
665@@ -1215,3 +1647,6 @@ ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
666
667 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
668 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
669+
670+ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
671+ "Maximum number of data segments to add to an IO request (min 4)");