]> git.proxmox.com Git - wasi-libc.git/blame - dlmalloc/src/malloc.c
dlmalloc: require __heap_end (#394)
[wasi-libc.git] / dlmalloc / src / malloc.c
CommitLineData
dbfccac2
DG
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
8 Note: There may be an updated version of this malloc obtainable at
9 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
10 Check before installing!
11
12* Quickstart
13
14 This library is all in one file to simplify the most common usage:
15 ftp it, compile it (-O3), and link it into another program. All of
16 the compile-time options default to reasonable values for use on
17 most platforms. You might later want to step through various
18 compile-time and dynamic tuning options.
19
20 For convenience, an include file for code using this malloc is at:
21 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
22 You don't really need this .h file unless you call functions not
23 defined in your system include files. The .h file contains only the
24 excerpts from this file needed for using this malloc on ANSI C/C++
25 systems, so long as you haven't changed compile-time options about
26 naming and tuning parameters. If you do, then you can create your
27 own malloc.h that does include all settings by cutting at the point
28 indicated below. Note that you may already by default be using a C
29 library containing a malloc that is based on some version of this
30 malloc (for example in linux). You might still want to use the one
31 in this file to customize settings or to avoid overheads associated
32 with library versions.
33
34* Vital statistics:
35
36 Supported pointer/size_t representation: 4 or 8 bytes
37 size_t MUST be an unsigned type of the same width as
38 pointers. (If you are using an ancient system that declares
39 size_t as a signed type, or need it to be a different width
40 than pointers, you can use a previous release of this malloc
41 (e.g. 2.7.2) supporting these.)
42
43 Alignment: 8 bytes (minimum)
44 This suffices for nearly all current machines and C compilers.
45 However, you can define MALLOC_ALIGNMENT to be wider than this
46 if necessary (up to 128bytes), at the expense of using more space.
47
48 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
49 8 or 16 bytes (if 8byte sizes)
50 Each malloced chunk has a hidden word of overhead holding size
51 and status information, and additional cross-check word
52 if FOOTERS is defined.
53
54 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
55 8-byte ptrs: 32 bytes (including overhead)
56
57 Even a request for zero bytes (i.e., malloc(0)) returns a
58 pointer to something of the minimum allocatable size.
59 The maximum overhead wastage (i.e., number of extra bytes
60 allocated than were requested in malloc) is less than or equal
61 to the minimum size, except for requests >= mmap_threshold that
62 are serviced via mmap(), where the worst case wastage is about
63 32 bytes plus the remainder from a system page (the minimal
64 mmap unit); typically 4096 or 8192 bytes.
65
66 Security: static-safe; optionally more or less
67 The "security" of malloc refers to the ability of malicious
68 code to accentuate the effects of errors (for example, freeing
69 space that is not currently malloc'ed or overwriting past the
70 ends of chunks) in code that calls malloc. This malloc
71 guarantees not to modify any memory locations below the base of
72 heap, i.e., static variables, even in the presence of usage
73 errors. The routines additionally detect most improper frees
74 and reallocs. All this holds as long as the static bookkeeping
75 for malloc itself is not corrupted by some other means. This
76 is only one aspect of security -- these checks do not, and
77 cannot, detect all possible programming errors.
78
79 If FOOTERS is defined nonzero, then each allocated chunk
80 carries an additional check word to verify that it was malloced
81 from its space. These check words are the same within each
82 execution of a program using malloc, but differ across
83 executions, so externally crafted fake chunks cannot be
84 freed. This improves security by rejecting frees/reallocs that
85 could corrupt heap memory, in addition to the checks preventing
86 writes to statics that are always on. This may further improve
87 security at the expense of time and space overhead. (Note that
88 FOOTERS may also be worth using with MSPACES.)
89
90 By default detected errors cause the program to abort (calling
91 "abort()"). You can override this to instead proceed past
92 errors by defining PROCEED_ON_ERROR. In this case, a bad free
93 has no effect, and a malloc that encounters a bad address
94 caused by user overwrites will ignore the bad address by
95 dropping pointers and indices to all known memory. This may
96 be appropriate for programs that should continue if at all
97 possible in the face of programming errors, although they may
98 run out of memory because dropped memory is never reclaimed.
99
100 If you don't like either of these options, you can define
101 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
102 else. And if if you are sure that your program using malloc has
103 no errors or vulnerabilities, you can define INSECURE to 1,
104 which might (or might not) provide a small performance improvement.
105
106 It is also possible to limit the maximum total allocatable
107 space, using malloc_set_footprint_limit. This is not
108 designed as a security feature in itself (calls to set limits
109 are not screened or privileged), but may be useful as one
110 aspect of a secure implementation.
111
112 Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
113 When USE_LOCKS is defined, each public call to malloc, free,
114 etc is surrounded with a lock. By default, this uses a plain
115 pthread mutex, win32 critical section, or a spin-lock if if
116 available for the platform and not disabled by setting
117 USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
118 recursive versions are used instead (which are not required for
119 base functionality but may be needed in layered extensions).
120 Using a global lock is not especially fast, and can be a major
121 bottleneck. It is designed only to provide minimal protection
122 in concurrent environments, and to provide a basis for
123 extensions. If you are using malloc in a concurrent program,
124 consider instead using nedmalloc
125 (http://www.nedprod.com/programs/portable/nedmalloc/) or
126 ptmalloc (See http://www.malloc.de), which are derived from
127 versions of this malloc.
128
129 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
130 This malloc can use unix sbrk or any emulation (invoked using
131 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
132 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
133 memory. On most unix systems, it tends to work best if both
134 MORECORE and MMAP are enabled. On Win32, it uses emulations
135 based on VirtualAlloc. It also uses common C library functions
136 like memset.
137
138 Compliance: I believe it is compliant with the Single Unix Specification
139 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
140 others as well.
141
142* Overview of algorithms
143
144 This is not the fastest, most space-conserving, most portable, or
145 most tunable malloc ever written. However it is among the fastest
146 while also being among the most space-conserving, portable and
147 tunable. Consistent balance across these factors results in a good
148 general-purpose allocator for malloc-intensive programs.
149
150 In most ways, this malloc is a best-fit allocator. Generally, it
151 chooses the best-fitting existing chunk for a request, with ties
152 broken in approximately least-recently-used order. (This strategy
153 normally maintains low fragmentation.) However, for requests less
154 than 256bytes, it deviates from best-fit when there is not an
155 exactly fitting available chunk by preferring to use space adjacent
156 to that used for the previous small request, as well as by breaking
157 ties in approximately most-recently-used order. (These enhance
158 locality of series of small allocations.) And for very large requests
159 (>= 256Kb by default), it relies on system memory mapping
160 facilities, if supported. (This helps avoid carrying around and
161 possibly fragmenting memory used only for large chunks.)
162
163 All operations (except malloc_stats and mallinfo) have execution
164 times that are bounded by a constant factor of the number of bits in
165 a size_t, not counting any clearing in calloc or copying in realloc,
166 or actions surrounding MORECORE and MMAP that have times
167 proportional to the number of non-contiguous regions returned by
168 system allocation routines, which is often just 1. In real-time
169 applications, you can optionally suppress segment traversals using
170 NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
171 system allocators return non-contiguous spaces, at the typical
172 expense of carrying around more memory and increased fragmentation.
173
174 The implementation is not very modular and seriously overuses
175 macros. Perhaps someday all C compilers will do as good a job
176 inlining modular code as can now be done by brute-force expansion,
177 but now, enough of them seem not to.
178
179 Some compilers issue a lot of warnings about code that is
180 dead/unreachable only on some platforms, and also about intentional
181 uses of negation on unsigned types. All known cases of each can be
182 ignored.
183
184 For a longer but out of date high-level description, see
185 http://gee.cs.oswego.edu/dl/html/malloc.html
186
187* MSPACES
188 If MSPACES is defined, then in addition to malloc, free, etc.,
189 this file also defines mspace_malloc, mspace_free, etc. These
190 are versions of malloc routines that take an "mspace" argument
191 obtained using create_mspace, to control all internal bookkeeping.
192 If ONLY_MSPACES is defined, only these versions are compiled.
193 So if you would like to use this allocator for only some allocations,
194 and your system malloc for others, you can compile with
195 ONLY_MSPACES and then do something like...
196 static mspace mymspace = create_mspace(0,0); // for example
197 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
198
199 (Note: If you only need one instance of an mspace, you can instead
200 use "USE_DL_PREFIX" to relabel the global malloc.)
201
202 You can similarly create thread-local allocators by storing
203 mspaces as thread-locals. For example:
204 static __thread mspace tlms = 0;
205 void* tlmalloc(size_t bytes) {
206 if (tlms == 0) tlms = create_mspace(0, 0);
207 return mspace_malloc(tlms, bytes);
208 }
209 void tlfree(void* mem) { mspace_free(tlms, mem); }
210
211 Unless FOOTERS is defined, each mspace is completely independent.
212 You cannot allocate from one and free to another (although
213 conformance is only weakly checked, so usage errors are not always
214 caught). If FOOTERS is defined, then each chunk carries around a tag
215 indicating its originating mspace, and frees are directed to their
216 originating spaces. Normally, this requires use of locks.
217
218 ------------------------- Compile-time options ---------------------------
219
220Be careful in setting #define values for numerical constants of type
221size_t. On some systems, literal values are not automatically extended
222to size_t precision unless they are explicitly casted. You can also
223use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
224
225WIN32 default: defined if _WIN32 defined
226 Defining WIN32 sets up defaults for MS environment and compilers.
227 Otherwise defaults are for unix. Beware that there seem to be some
228 cases where this malloc might not be a pure drop-in replacement for
229 Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
230 SetDIBits()) may be due to bugs in some video driver implementations
231 when pixel buffers are malloc()ed, and the region spans more than
232 one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
233 default granularity, pixel buffers may straddle virtual allocation
234 regions more often than when using the Microsoft allocator. You can
235 avoid this by using VirtualAlloc() and VirtualFree() for all pixel
236 buffers rather than using malloc(). If this is not possible,
237 recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
238 in cases where MSC and gcc (cygwin) are known to differ on WIN32,
239 conditions use _MSC_VER to distinguish them.
240
241DLMALLOC_EXPORT default: extern
242 Defines how public APIs are declared. If you want to export via a
243 Windows DLL, you might define this as
244 #define DLMALLOC_EXPORT extern __declspec(dllexport)
245 If you want a POSIX ELF shared object, you might use
246 #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
247
248MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
249 Controls the minimum alignment for malloc'ed chunks. It must be a
250 power of two and at least 8, even on machines for which smaller
251 alignments would suffice. It may be defined as larger than this
252 though. Note however that code and data structures are optimized for
253 the case of 8-byte alignment.
254
255MSPACES default: 0 (false)
256 If true, compile in support for independent allocation spaces.
257 This is only supported if HAVE_MMAP is true.
258
259ONLY_MSPACES default: 0 (false)
260 If true, only compile in mspace versions, not regular versions.
261
262USE_LOCKS default: 0 (false)
263 Causes each call to each public routine to be surrounded with
264 pthread or WIN32 mutex lock/unlock. (If set true, this can be
265 overridden on a per-mspace basis for mspace versions.) If set to a
266 non-zero value other than 1, locks are used, but their
267 implementation is left out, so lock functions must be supplied manually,
268 as described below.
269
270USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
271 If true, uses custom spin locks for locking. This is currently
272 supported only gcc >= 4.1, older gccs on x86 platforms, and recent
273 MS compilers. Otherwise, posix locks or win32 critical sections are
274 used.
275
276USE_RECURSIVE_LOCKS default: not defined
277 If defined nonzero, uses recursive (aka reentrant) locks, otherwise
278 uses plain mutexes. This is not required for malloc proper, but may
279 be needed for layered allocators such as nedmalloc.
280
281LOCK_AT_FORK default: not defined
282 If defined nonzero, performs pthread_atfork upon initialization
283 to initialize child lock while holding parent lock. The implementation
284 assumes that pthread locks (not custom locks) are being used. In other
285 cases, you may need to customize the implementation.
286
287FOOTERS default: 0
288 If true, provide extra checking and dispatching by placing
289 information in the footers of allocated chunks. This adds
290 space and time overhead.
291
292INSECURE default: 0
293 If true, omit checks for usage errors and heap space overwrites.
294
295USE_DL_PREFIX default: NOT defined
296 Causes compiler to prefix all public routines with the string 'dl'.
297 This can be useful when you only want to use this malloc in one part
298 of a program, using your regular system malloc elsewhere.
299
300MALLOC_INSPECT_ALL default: NOT defined
301 If defined, compiles malloc_inspect_all and mspace_inspect_all, that
302 perform traversal of all heap space. Unless access to these
303 functions is otherwise restricted, you probably do not want to
304 include them in secure implementations.
305
306ABORT default: defined as abort()
307 Defines how to abort on failed checks. On most systems, a failed
308 check cannot die with an "assert" or even print an informative
309 message, because the underlying print routines in turn call malloc,
310 which will fail again. Generally, the best policy is to simply call
311 abort(). It's not very useful to do more than this because many
312 errors due to overwriting will show up as address faults (null, odd
313 addresses etc) rather than malloc-triggered checks, so will also
314 abort. Also, most compilers know that abort() does not return, so
315 can better optimize code conditionally calling it.
316
317PROCEED_ON_ERROR default: defined as 0 (false)
318 Controls whether detected bad addresses cause them to bypassed
319 rather than aborting. If set, detected bad arguments to free and
320 realloc are ignored. And all bookkeeping information is zeroed out
321 upon a detected overwrite of freed heap space, thus losing the
322 ability to ever return it from malloc again, but enabling the
323 application to proceed. If PROCEED_ON_ERROR is defined, the
324 static variable malloc_corruption_error_count is compiled in
325 and can be examined to see if errors have occurred. This option
326 generates slower code than the default abort policy.
327
328DEBUG default: NOT defined
329 The DEBUG setting is mainly intended for people trying to modify
330 this code or diagnose problems when porting to new platforms.
331 However, it may also be able to better isolate user errors than just
332 using runtime checks. The assertions in the check routines spell
333 out in more detail the assumptions and invariants underlying the
334 algorithms. The checking is fairly extensive, and will slow down
335 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
336 set will attempt to check every non-mmapped allocated and free chunk
337 in the course of computing the summaries.
338
339ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
340 Debugging assertion failures can be nearly impossible if your
341 version of the assert macro causes malloc to be called, which will
342 lead to a cascade of further failures, blowing the runtime stack.
343 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
344 which will usually make debugging easier.
345
346MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
347 The action to take before "return 0" when malloc fails to be able to
348 return memory because there is none available.
349
350HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
351 True if this system supports sbrk or an emulation of it.
352
353MORECORE default: sbrk
354 The name of the sbrk-style system routine to call to obtain more
355 memory. See below for guidance on writing custom MORECORE
356 functions. The type of the argument to sbrk/MORECORE varies across
357 systems. It cannot be size_t, because it supports negative
358 arguments, so it is normally the signed type of the same width as
359 size_t (sometimes declared as "intptr_t"). It doesn't much matter
360 though. Internally, we only call it with arguments less than half
361 the max value of a size_t, which should work across all reasonable
362 possibilities, although sometimes generating compiler warnings.
363
364MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
365 If true, take advantage of fact that consecutive calls to MORECORE
366 with positive arguments always return contiguous increasing
367 addresses. This is true of unix sbrk. It does not hurt too much to
368 set it true anyway, since malloc copes with non-contiguities.
369 Setting it false when definitely non-contiguous saves time
370 and possibly wasted space it would take to discover this though.
371
372MORECORE_CANNOT_TRIM default: NOT defined
373 True if MORECORE cannot release space back to the system when given
374 negative arguments. This is generally necessary only if you are
375 using a hand-crafted MORECORE function that cannot handle negative
376 arguments.
377
378NO_SEGMENT_TRAVERSAL default: 0
379 If non-zero, suppresses traversals of memory segments
380 returned by either MORECORE or CALL_MMAP. This disables
381 merging of segments that are contiguous, and selectively
382 releasing them to the OS if unused, but bounds execution times.
383
384HAVE_MMAP default: 1 (true)
385 True if this system supports mmap or an emulation of it. If so, and
386 HAVE_MORECORE is not true, MMAP is used for all system
387 allocation. If set and HAVE_MORECORE is true as well, MMAP is
388 primarily used to directly allocate very large blocks. It is also
389 used as a backup strategy in cases where MORECORE fails to provide
390 space from system. Note: A single call to MUNMAP is assumed to be
391 able to unmap memory that may have be allocated using multiple calls
392 to MMAP, so long as they are adjacent.
393
394HAVE_MREMAP default: 1 on linux, else 0
395 If true realloc() uses mremap() to re-allocate large blocks and
396 extend or shrink allocation spaces.
397
398MMAP_CLEARS default: 1 except on WINCE.
399 True if mmap clears memory so calloc doesn't need to. This is true
400 for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
401
402USE_BUILTIN_FFS default: 0 (i.e., not used)
403 Causes malloc to use the builtin ffs() function to compute indices.
404 Some compilers may recognize and intrinsify ffs to be faster than the
405 supplied C version. Also, the case of x86 using gcc is special-cased
406 to an asm instruction, so is already as fast as it can be, and so
407 this setting has no effect. Similarly for Win32 under recent MS compilers.
408 (On most x86s, the asm version is only slightly faster than the C version.)
409
410malloc_getpagesize default: derive from system includes, or 4096.
411 The system page size. To the extent possible, this malloc manages
412 memory from the system in page-size units. This may be (and
413 usually is) a function rather than a constant. This is ignored
414 if WIN32, where page size is determined using getSystemInfo during
415 initialization.
416
417USE_DEV_RANDOM default: 0 (i.e., not used)
418 Causes malloc to use /dev/random to initialize secure magic seed for
419 stamping footers. Otherwise, the current time is used.
420
421NO_MALLINFO default: 0
422 If defined, don't compile "mallinfo". This can be a simple way
423 of dealing with mismatches between system declarations and
424 those in this file.
425
426MALLINFO_FIELD_TYPE default: size_t
427 The type of the fields in the mallinfo struct. This was originally
428 defined as "int" in SVID etc, but is more usefully defined as
429 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
430
431NO_MALLOC_STATS default: 0
432 If defined, don't compile "malloc_stats". This avoids calls to
433 fprintf and bringing in stdio dependencies you might not want.
434
435REALLOC_ZERO_BYTES_FREES default: not defined
436 This should be set if a call to realloc with zero bytes should
437 be the same as a call to free. Some people think it should. Otherwise,
438 since this malloc returns a unique pointer for malloc(0), so does
439 realloc(p, 0).
440
441LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
442LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
443LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
444 Define these if your system does not have these header files.
445 You might need to manually insert some of the declarations they provide.
446
447DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
448 system_info.dwAllocationGranularity in WIN32,
449 otherwise 64K.
450 Also settable using mallopt(M_GRANULARITY, x)
451 The unit for allocating and deallocating memory from the system. On
452 most systems with contiguous MORECORE, there is no reason to
453 make this more than a page. However, systems with MMAP tend to
454 either require or encourage larger granularities. You can increase
455 this value to prevent system allocation functions to be called so
456 often, especially if they are slow. The value must be at least one
457 page and must be a power of two. Setting to 0 causes initialization
458 to either page size or win32 region size. (Note: In previous
459 versions of malloc, the equivalent of this option was called
460 "TOP_PAD")
461
462DEFAULT_TRIM_THRESHOLD default: 2MB
463 Also settable using mallopt(M_TRIM_THRESHOLD, x)
464 The maximum amount of unused top-most memory to keep before
465 releasing via malloc_trim in free(). Automatic trimming is mainly
466 useful in long-lived programs using contiguous MORECORE. Because
467 trimming via sbrk can be slow on some systems, and can sometimes be
468 wasteful (in cases where programs immediately afterward allocate
469 more large chunks) the value should be high enough so that your
470 overall system performance would improve by releasing this much
471 memory. As a rough guide, you might set to a value close to the
472 average size of a process (program) running on your system.
473 Releasing this much memory would allow such a process to run in
474 memory. Generally, it is worth tuning trim thresholds when a
475 program undergoes phases where several large chunks are allocated
476 and released in ways that can reuse each other's storage, perhaps
477 mixed with phases where there are no such chunks at all. The trim
478 value must be greater than page size to have any useful effect. To
479 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
480 some people use of mallocing a huge space and then freeing it at
481 program startup, in an attempt to reserve system memory, doesn't
482 have the intended effect under automatic trimming, since that memory
483 will immediately be returned to the system.
484
485DEFAULT_MMAP_THRESHOLD default: 256K
486 Also settable using mallopt(M_MMAP_THRESHOLD, x)
487 The request size threshold for using MMAP to directly service a
488 request. Requests of at least this size that cannot be allocated
489 using already-existing space will be serviced via mmap. (If enough
490 normal freed space already exists it is used instead.) Using mmap
491 segregates relatively large chunks of memory so that they can be
492 individually obtained and released from the host system. A request
493 serviced through mmap is never reused by any other request (at least
494 not directly; the system may just so happen to remap successive
495 requests to the same locations). Segregating space in this way has
496 the benefits that: Mmapped space can always be individually released
497 back to the system, which helps keep the system level memory demands
498 of a long-lived program low. Also, mapped memory doesn't become
499 `locked' between other chunks, as can happen with normally allocated
500 chunks, which means that even trimming via malloc_trim would not
501 release them. However, it has the disadvantage that the space
502 cannot be reclaimed, consolidated, and then used to service later
503 requests, as happens with normal chunks. The advantages of mmap
504 nearly always outweigh disadvantages for "large" chunks, but the
505 value of "large" may vary across systems. The default is an
506 empirically derived value that works well in most systems. You can
507 disable mmap by setting to MAX_SIZE_T.
508
509MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
510 The number of consolidated frees between checks to release
511 unused segments when freeing. When using non-contiguous segments,
512 especially with multiple mspaces, checking only for topmost space
513 doesn't always suffice to trigger trimming. To compensate for this,
514 free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
515 current number of segments, if greater) try to release unused
516 segments to the OS when freeing chunks that result in
517 consolidation. The best value for this parameter is a compromise
518 between slowing down frees with relatively costly checks that
519 rarely trigger versus holding on to unused memory. To effectively
520 disable, set to MAX_SIZE_T. This may lead to a very slight speed
521 improvement at the expense of carrying around more memory.
522*/
523
524/* Version identifier to allow people to support multiple versions */
525#ifndef DLMALLOC_VERSION
526#define DLMALLOC_VERSION 20806
527#endif /* DLMALLOC_VERSION */
528
529#ifndef DLMALLOC_EXPORT
530#define DLMALLOC_EXPORT extern
531#endif
532
533#ifndef WIN32
534#ifdef _WIN32
535#define WIN32 1
536#endif /* _WIN32 */
537#ifdef _WIN32_WCE
538#define LACKS_FCNTL_H
539#define WIN32 1
540#endif /* _WIN32_WCE */
541#endif /* WIN32 */
542#ifdef WIN32
543#define WIN32_LEAN_AND_MEAN
544#include <windows.h>
545#include <tchar.h>
546#define HAVE_MMAP 1
547#define HAVE_MORECORE 0
548#define LACKS_UNISTD_H
549#define LACKS_SYS_PARAM_H
550#define LACKS_SYS_MMAN_H
551#define LACKS_STRING_H
552#define LACKS_STRINGS_H
553#define LACKS_SYS_TYPES_H
554#define LACKS_ERRNO_H
555#define LACKS_SCHED_H
556#ifndef MALLOC_FAILURE_ACTION
557#define MALLOC_FAILURE_ACTION
558#endif /* MALLOC_FAILURE_ACTION */
559#ifndef MMAP_CLEARS
560#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
561#define MMAP_CLEARS 0
562#else
563#define MMAP_CLEARS 1
564#endif /* _WIN32_WCE */
565#endif /*MMAP_CLEARS */
566#endif /* WIN32 */
567
568#if defined(DARWIN) || defined(_DARWIN)
569/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
570#ifndef HAVE_MORECORE
571#define HAVE_MORECORE 0
572#define HAVE_MMAP 1
573/* OSX allocators provide 16 byte alignment */
574#ifndef MALLOC_ALIGNMENT
575#define MALLOC_ALIGNMENT ((size_t)16U)
576#endif
577#endif /* HAVE_MORECORE */
578#endif /* DARWIN */
579
580#ifndef LACKS_SYS_TYPES_H
581#include <sys/types.h> /* For size_t */
582#endif /* LACKS_SYS_TYPES_H */
583
584/* The maximum possible size_t value has all bits set */
585#define MAX_SIZE_T (~(size_t)0)
586
587#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
320054e8 588#if 0
dbfccac2
DG
589#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
590 (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
320054e8
DG
591#else
592/* Avoid a -Wexpansion-to-defined compiler warning. */
593#if (defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
594 (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)
595#define USE_LOCKS 1
596#else
597#define USE_LOCKS 0
598#endif
599#endif
dbfccac2
DG
600#endif /* USE_LOCKS */
601
602#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
603#if ((defined(__GNUC__) && \
604 ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
605 defined(__i386__) || defined(__x86_64__))) || \
606 (defined(_MSC_VER) && _MSC_VER>=1310))
607#ifndef USE_SPIN_LOCKS
608#define USE_SPIN_LOCKS 1
609#endif /* USE_SPIN_LOCKS */
610#elif USE_SPIN_LOCKS
611#error "USE_SPIN_LOCKS defined without implementation"
612#endif /* ... locks available... */
613#elif !defined(USE_SPIN_LOCKS)
614#define USE_SPIN_LOCKS 0
615#endif /* USE_LOCKS */
616
617#ifndef ONLY_MSPACES
618#define ONLY_MSPACES 0
619#endif /* ONLY_MSPACES */
620#ifndef MSPACES
621#if ONLY_MSPACES
622#define MSPACES 1
623#else /* ONLY_MSPACES */
624#define MSPACES 0
625#endif /* ONLY_MSPACES */
626#endif /* MSPACES */
627#ifndef MALLOC_ALIGNMENT
628#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
629#endif /* MALLOC_ALIGNMENT */
630#ifndef FOOTERS
631#define FOOTERS 0
632#endif /* FOOTERS */
633#ifndef ABORT
634#define ABORT abort()
635#endif /* ABORT */
636#ifndef ABORT_ON_ASSERT_FAILURE
637#define ABORT_ON_ASSERT_FAILURE 1
638#endif /* ABORT_ON_ASSERT_FAILURE */
639#ifndef PROCEED_ON_ERROR
640#define PROCEED_ON_ERROR 0
641#endif /* PROCEED_ON_ERROR */
642
643#ifndef INSECURE
644#define INSECURE 0
645#endif /* INSECURE */
646#ifndef MALLOC_INSPECT_ALL
647#define MALLOC_INSPECT_ALL 0
648#endif /* MALLOC_INSPECT_ALL */
649#ifndef HAVE_MMAP
650#define HAVE_MMAP 1
651#endif /* HAVE_MMAP */
652#ifndef MMAP_CLEARS
653#define MMAP_CLEARS 1
654#endif /* MMAP_CLEARS */
655#ifndef HAVE_MREMAP
656#ifdef linux
657#define HAVE_MREMAP 1
658#define _GNU_SOURCE /* Turns on mremap() definition */
659#else /* linux */
660#define HAVE_MREMAP 0
661#endif /* linux */
662#endif /* HAVE_MREMAP */
663#ifndef MALLOC_FAILURE_ACTION
664#define MALLOC_FAILURE_ACTION errno = ENOMEM;
665#endif /* MALLOC_FAILURE_ACTION */
666#ifndef HAVE_MORECORE
667#if ONLY_MSPACES
668#define HAVE_MORECORE 0
669#else /* ONLY_MSPACES */
670#define HAVE_MORECORE 1
671#endif /* ONLY_MSPACES */
672#endif /* HAVE_MORECORE */
673#if !HAVE_MORECORE
674#define MORECORE_CONTIGUOUS 0
675#else /* !HAVE_MORECORE */
676#define MORECORE_DEFAULT sbrk
677#ifndef MORECORE_CONTIGUOUS
678#define MORECORE_CONTIGUOUS 1
679#endif /* MORECORE_CONTIGUOUS */
680#endif /* HAVE_MORECORE */
681#ifndef DEFAULT_GRANULARITY
682#if (MORECORE_CONTIGUOUS || defined(WIN32))
683#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
684#else /* MORECORE_CONTIGUOUS */
685#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
686#endif /* MORECORE_CONTIGUOUS */
687#endif /* DEFAULT_GRANULARITY */
688#ifndef DEFAULT_TRIM_THRESHOLD
689#ifndef MORECORE_CANNOT_TRIM
690#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
691#else /* MORECORE_CANNOT_TRIM */
692#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
693#endif /* MORECORE_CANNOT_TRIM */
694#endif /* DEFAULT_TRIM_THRESHOLD */
695#ifndef DEFAULT_MMAP_THRESHOLD
696#if HAVE_MMAP
697#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
698#else /* HAVE_MMAP */
699#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
700#endif /* HAVE_MMAP */
701#endif /* DEFAULT_MMAP_THRESHOLD */
702#ifndef MAX_RELEASE_CHECK_RATE
703#if HAVE_MMAP
704#define MAX_RELEASE_CHECK_RATE 4095
705#else
706#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
707#endif /* HAVE_MMAP */
708#endif /* MAX_RELEASE_CHECK_RATE */
709#ifndef USE_BUILTIN_FFS
710#define USE_BUILTIN_FFS 0
711#endif /* USE_BUILTIN_FFS */
712#ifndef USE_DEV_RANDOM
713#define USE_DEV_RANDOM 0
714#endif /* USE_DEV_RANDOM */
715#ifndef NO_MALLINFO
716#define NO_MALLINFO 0
717#endif /* NO_MALLINFO */
718#ifndef MALLINFO_FIELD_TYPE
719#define MALLINFO_FIELD_TYPE size_t
720#endif /* MALLINFO_FIELD_TYPE */
721#ifndef NO_MALLOC_STATS
722#define NO_MALLOC_STATS 0
723#endif /* NO_MALLOC_STATS */
724#ifndef NO_SEGMENT_TRAVERSAL
725#define NO_SEGMENT_TRAVERSAL 0
726#endif /* NO_SEGMENT_TRAVERSAL */
727
728/*
729 mallopt tuning options. SVID/XPG defines four standard parameter
730 numbers for mallopt, normally defined in malloc.h. None of these
731 are used in this malloc, so setting them has no effect. But this
732 malloc does support the following options.
733*/
734
735#define M_TRIM_THRESHOLD (-1)
736#define M_GRANULARITY (-2)
737#define M_MMAP_THRESHOLD (-3)
738
739/* ------------------------ Mallinfo declarations ------------------------ */
740
741#if !NO_MALLINFO
742/*
743 This version of malloc supports the standard SVID/XPG mallinfo
744 routine that returns a struct containing usage properties and
745 statistics. It should work on any system that has a
746 /usr/include/malloc.h defining struct mallinfo. The main
747 declaration needed is the mallinfo struct that is returned (by-copy)
748 by mallinfo(). The malloinfo struct contains a bunch of fields that
749 are not even meaningful in this version of malloc. These fields are
750 are instead filled by mallinfo() with other numbers that might be of
751 interest.
752
753 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
754 /usr/include/malloc.h file that includes a declaration of struct
755 mallinfo. If so, it is included; else a compliant version is
756 declared below. These must be precisely the same for mallinfo() to
757 work. The original SVID version of this struct, defined on most
758 systems with mallinfo, declares all fields as ints. But some others
759 define as unsigned long. If your system defines the fields using a
760 type of different width than listed here, you MUST #include your
761 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
762*/
763
764/* #define HAVE_USR_INCLUDE_MALLOC_H */
765
766#ifdef HAVE_USR_INCLUDE_MALLOC_H
767#include "/usr/include/malloc.h"
768#else /* HAVE_USR_INCLUDE_MALLOC_H */
769#ifndef STRUCT_MALLINFO_DECLARED
770/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
771#define _STRUCT_MALLINFO
772#define STRUCT_MALLINFO_DECLARED 1
773struct mallinfo {
774 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
775 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
776 MALLINFO_FIELD_TYPE smblks; /* always 0 */
777 MALLINFO_FIELD_TYPE hblks; /* always 0 */
778 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
779 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
780 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
781 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
782 MALLINFO_FIELD_TYPE fordblks; /* total free space */
783 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
784};
785#endif /* STRUCT_MALLINFO_DECLARED */
786#endif /* HAVE_USR_INCLUDE_MALLOC_H */
787#endif /* NO_MALLINFO */
788
789/*
790 Try to persuade compilers to inline. The most critical functions for
791 inlining are defined as macros, so these aren't used for them.
792*/
793
794#ifndef FORCEINLINE
795 #if defined(__GNUC__)
796#define FORCEINLINE __inline __attribute__ ((always_inline))
797 #elif defined(_MSC_VER)
798 #define FORCEINLINE __forceinline
799 #endif
800#endif
801#ifndef NOINLINE
802 #if defined(__GNUC__)
803 #define NOINLINE __attribute__ ((noinline))
804 #elif defined(_MSC_VER)
805 #define NOINLINE __declspec(noinline)
806 #else
807 #define NOINLINE
808 #endif
809#endif
810
811#ifdef __cplusplus
812extern "C" {
813#ifndef FORCEINLINE
814 #define FORCEINLINE inline
815#endif
816#endif /* __cplusplus */
817#ifndef FORCEINLINE
818 #define FORCEINLINE
819#endif
820
821#if !ONLY_MSPACES
822
823/* ------------------- Declarations of public routines ------------------- */
824
825#ifndef USE_DL_PREFIX
826#define dlcalloc calloc
827#define dlfree free
828#define dlmalloc malloc
829#define dlmemalign memalign
830#define dlposix_memalign posix_memalign
831#define dlrealloc realloc
832#define dlrealloc_in_place realloc_in_place
833#define dlvalloc valloc
834#define dlpvalloc pvalloc
835#define dlmallinfo mallinfo
836#define dlmallopt mallopt
837#define dlmalloc_trim malloc_trim
838#define dlmalloc_stats malloc_stats
839#define dlmalloc_usable_size malloc_usable_size
840#define dlmalloc_footprint malloc_footprint
841#define dlmalloc_max_footprint malloc_max_footprint
842#define dlmalloc_footprint_limit malloc_footprint_limit
843#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
844#define dlmalloc_inspect_all malloc_inspect_all
845#define dlindependent_calloc independent_calloc
846#define dlindependent_comalloc independent_comalloc
847#define dlbulk_free bulk_free
848#endif /* USE_DL_PREFIX */
849
850/*
851 malloc(size_t n)
852 Returns a pointer to a newly allocated chunk of at least n bytes, or
853 null if no space is available, in which case errno is set to ENOMEM
854 on ANSI C systems.
855
856 If n is zero, malloc returns a minimum-sized chunk. (The minimum
857 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
858 systems.) Note that size_t is an unsigned type, so calls with
859 arguments that would be negative if signed are interpreted as
860 requests for huge amounts of space, which will often fail. The
861 maximum supported value of n differs across systems, but is in all
862 cases less than the maximum representable value of a size_t.
863*/
864DLMALLOC_EXPORT void* dlmalloc(size_t);
865
866/*
867 free(void* p)
868 Releases the chunk of memory pointed to by p, that had been previously
869 allocated using malloc or a related routine such as realloc.
870 It has no effect if p is null. If p was not malloced or already
871 freed, free(p) will by default cause the current program to abort.
872*/
873DLMALLOC_EXPORT void dlfree(void*);
874
875/*
876 calloc(size_t n_elements, size_t element_size);
877 Returns a pointer to n_elements * element_size bytes, with all locations
878 set to zero.
879*/
880DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
881
882/*
883 realloc(void* p, size_t n)
884 Returns a pointer to a chunk of size n that contains the same data
885 as does chunk p up to the minimum of (n, p's size) bytes, or null
886 if no space is available.
887
888 The returned pointer may or may not be the same as p. The algorithm
889 prefers extending p in most cases when possible, otherwise it
890 employs the equivalent of a malloc-copy-free sequence.
891
892 If p is null, realloc is equivalent to malloc.
893
894 If space is not available, realloc returns null, errno is set (if on
895 ANSI) and p is NOT freed.
896
897 if n is for fewer bytes than already held by p, the newly unused
898 space is lopped off and freed if possible. realloc with a size
899 argument of zero (re)allocates a minimum-sized chunk.
900
901 The old unix realloc convention of allowing the last-free'd chunk
902 to be used as an argument to realloc is not supported.
903*/
904DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
905
906/*
907 realloc_in_place(void* p, size_t n)
908 Resizes the space allocated for p to size n, only if this can be
909 done without moving p (i.e., only if there is adjacent space
910 available if n is greater than p's current allocated size, or n is
911 less than or equal to p's size). This may be used instead of plain
912 realloc if an alternative allocation strategy is needed upon failure
913 to expand space; for example, reallocation of a buffer that must be
914 memory-aligned or cleared. You can use realloc_in_place to trigger
915 these alternatives only when needed.
916
917 Returns p if successful; otherwise null.
918*/
919DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
920
921/*
922 memalign(size_t alignment, size_t n);
923 Returns a pointer to a newly allocated chunk of n bytes, aligned
924 in accord with the alignment argument.
925
926 The alignment argument should be a power of two. If the argument is
927 not a power of two, the nearest greater power is used.
928 8-byte alignment is guaranteed by normal malloc calls, so don't
929 bother calling memalign with an argument of 8 or less.
930
931 Overreliance on memalign is a sure way to fragment space.
932*/
933DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
934
935/*
936 int posix_memalign(void** pp, size_t alignment, size_t n);
937 Allocates a chunk of n bytes, aligned in accord with the alignment
938 argument. Differs from memalign only in that it (1) assigns the
939 allocated memory to *pp rather than returning it, (2) fails and
940 returns EINVAL if the alignment is not a power of two (3) fails and
941 returns ENOMEM if memory cannot be allocated.
942*/
943DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
944
945/*
946 valloc(size_t n);
947 Equivalent to memalign(pagesize, n), where pagesize is the page
948 size of the system. If the pagesize is unknown, 4096 is used.
949*/
950DLMALLOC_EXPORT void* dlvalloc(size_t);
951
952/*
953 mallopt(int parameter_number, int parameter_value)
954 Sets tunable parameters The format is to provide a
955 (parameter-number, parameter-value) pair. mallopt then sets the
956 corresponding parameter to the argument value if it can (i.e., so
957 long as the value is meaningful), and returns 1 if successful else
958 0. To workaround the fact that mallopt is specified to use int,
959 not size_t parameters, the value -1 is specially treated as the
960 maximum unsigned size_t value.
961
962 SVID/XPG/ANSI defines four standard param numbers for mallopt,
963 normally defined in malloc.h. None of these are use in this malloc,
964 so setting them has no effect. But this malloc also supports other
965 options in mallopt. See below for details. Briefly, supported
966 parameters are as follows (listed defaults are for "typical"
967 configurations).
968
969 Symbol param # default allowed param values
970 M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
971 M_GRANULARITY -2 page size any power of 2 >= page size
972 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
973*/
974DLMALLOC_EXPORT int dlmallopt(int, int);
975
976/*
977 malloc_footprint();
978 Returns the number of bytes obtained from the system. The total
979 number of bytes allocated by malloc, realloc etc., is less than this
980 value. Unlike mallinfo, this function returns only a precomputed
981 result, so can be called frequently to monitor memory consumption.
982 Even if locks are otherwise defined, this function does not use them,
983 so results might not be up to date.
984*/
985DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
986
987/*
988 malloc_max_footprint();
989 Returns the maximum number of bytes obtained from the system. This
990 value will be greater than current footprint if deallocated space
991 has been reclaimed by the system. The peak number of bytes allocated
992 by malloc, realloc etc., is less than this value. Unlike mallinfo,
993 this function returns only a precomputed result, so can be called
994 frequently to monitor memory consumption. Even if locks are
995 otherwise defined, this function does not use them, so results might
996 not be up to date.
997*/
998DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
999
1000/*
1001 malloc_footprint_limit();
1002 Returns the number of bytes that the heap is allowed to obtain from
1003 the system, returning the last value returned by
1004 malloc_set_footprint_limit, or the maximum size_t value if
1005 never set. The returned value reflects a permission. There is no
1006 guarantee that this number of bytes can actually be obtained from
1007 the system.
1008*/
1009DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
1010
1011/*
1012 malloc_set_footprint_limit();
1013 Sets the maximum number of bytes to obtain from the system, causing
1014 failure returns from malloc and related functions upon attempts to
1015 exceed this value. The argument value may be subject to page
1016 rounding to an enforceable limit; this actual value is returned.
1017 Using an argument of the maximum possible size_t effectively
1018 disables checks. If the argument is less than or equal to the
1019 current malloc_footprint, then all future allocations that require
1020 additional system memory will fail. However, invocation cannot
1021 retroactively deallocate existing used memory.
1022*/
1023DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
1024
1025#if MALLOC_INSPECT_ALL
1026/*
1027 malloc_inspect_all(void(*handler)(void *start,
1028 void *end,
1029 size_t used_bytes,
1030 void* callback_arg),
1031 void* arg);
1032 Traverses the heap and calls the given handler for each managed
1033 region, skipping all bytes that are (or may be) used for bookkeeping
1034 purposes. Traversal does not include include chunks that have been
1035 directly memory mapped. Each reported region begins at the start
1036 address, and continues up to but not including the end address. The
1037 first used_bytes of the region contain allocated data. If
1038 used_bytes is zero, the region is unallocated. The handler is
1039 invoked with the given callback argument. If locks are defined, they
1040 are held during the entire traversal. It is a bad idea to invoke
1041 other malloc functions from within the handler.
1042
1043 For example, to count the number of in-use chunks with size greater
1044 than 1000, you could write:
1045 static int count = 0;
1046 void count_chunks(void* start, void* end, size_t used, void* arg) {
1047 if (used >= 1000) ++count;
1048 }
1049 then:
1050 malloc_inspect_all(count_chunks, NULL);
1051
1052 malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
1053*/
1054DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
1055 void* arg);
1056
1057#endif /* MALLOC_INSPECT_ALL */
1058
1059#if !NO_MALLINFO
1060/*
1061 mallinfo()
1062 Returns (by copy) a struct containing various summary statistics:
1063
1064 arena: current total non-mmapped bytes allocated from system
1065 ordblks: the number of free chunks
1066 smblks: always zero.
1067 hblks: current number of mmapped regions
1068 hblkhd: total bytes held in mmapped regions
1069 usmblks: the maximum total allocated space. This will be greater
1070 than current total if trimming has occurred.
1071 fsmblks: always zero
1072 uordblks: current total allocated space (normal or mmapped)
1073 fordblks: total free space
1074 keepcost: the maximum number of bytes that could ideally be released
1075 back to system via malloc_trim. ("ideally" means that
1076 it ignores page restrictions etc.)
1077
1078 Because these fields are ints, but internal bookkeeping may
1079 be kept as longs, the reported values may wrap around zero and
1080 thus be inaccurate.
1081*/
1082DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
1083#endif /* NO_MALLINFO */
1084
1085/*
1086 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
1087
1088 independent_calloc is similar to calloc, but instead of returning a
1089 single cleared space, it returns an array of pointers to n_elements
1090 independent elements that can hold contents of size elem_size, each
1091 of which starts out cleared, and can be independently freed,
1092 realloc'ed etc. The elements are guaranteed to be adjacently
1093 allocated (this is not guaranteed to occur with multiple callocs or
1094 mallocs), which may also improve cache locality in some
1095 applications.
1096
1097 The "chunks" argument is optional (i.e., may be null, which is
1098 probably the most typical usage). If it is null, the returned array
1099 is itself dynamically allocated and should also be freed when it is
1100 no longer needed. Otherwise, the chunks array must be of at least
1101 n_elements in length. It is filled in with the pointers to the
1102 chunks.
1103
1104 In either case, independent_calloc returns this pointer array, or
1105 null if the allocation failed. If n_elements is zero and "chunks"
1106 is null, it returns a chunk representing an array with zero elements
1107 (which should be freed if not wanted).
1108
1109 Each element must be freed when it is no longer needed. This can be
1110 done all at once using bulk_free.
1111
1112 independent_calloc simplifies and speeds up implementations of many
1113 kinds of pools. It may also be useful when constructing large data
1114 structures that initially have a fixed number of fixed-sized nodes,
1115 but the number is not known at compile time, and some of the nodes
1116 may later need to be freed. For example:
1117
1118 struct Node { int item; struct Node* next; };
1119
1120 struct Node* build_list() {
1121 struct Node** pool;
1122 int n = read_number_of_nodes_needed();
1123 if (n <= 0) return 0;
1124 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1125 if (pool == 0) die();
1126 // organize into a linked list...
1127 struct Node* first = pool[0];
1128 for (i = 0; i < n-1; ++i)
1129 pool[i]->next = pool[i+1];
1130 free(pool); // Can now free the array (or not, if it is needed later)
1131 return first;
1132 }
1133*/
1134DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
1135
1136/*
1137 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
1138
1139 independent_comalloc allocates, all at once, a set of n_elements
1140 chunks with sizes indicated in the "sizes" array. It returns
1141 an array of pointers to these elements, each of which can be
1142 independently freed, realloc'ed etc. The elements are guaranteed to
1143 be adjacently allocated (this is not guaranteed to occur with
1144 multiple callocs or mallocs), which may also improve cache locality
1145 in some applications.
1146
1147 The "chunks" argument is optional (i.e., may be null). If it is null
1148 the returned array is itself dynamically allocated and should also
1149 be freed when it is no longer needed. Otherwise, the chunks array
1150 must be of at least n_elements in length. It is filled in with the
1151 pointers to the chunks.
1152
1153 In either case, independent_comalloc returns this pointer array, or
1154 null if the allocation failed. If n_elements is zero and chunks is
1155 null, it returns a chunk representing an array with zero elements
1156 (which should be freed if not wanted).
1157
1158 Each element must be freed when it is no longer needed. This can be
1159 done all at once using bulk_free.
1160
1161 independent_comallac differs from independent_calloc in that each
1162 element may have a different size, and also that it does not
1163 automatically clear elements.
1164
1165 independent_comalloc can be used to speed up allocation in cases
1166 where several structs or objects must always be allocated at the
1167 same time. For example:
1168
1169 struct Head { ... }
1170 struct Foot { ... }
1171
1172 void send_message(char* msg) {
1173 int msglen = strlen(msg);
1174 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1175 void* chunks[3];
1176 if (independent_comalloc(3, sizes, chunks) == 0)
1177 die();
1178 struct Head* head = (struct Head*)(chunks[0]);
1179 char* body = (char*)(chunks[1]);
1180 struct Foot* foot = (struct Foot*)(chunks[2]);
1181 // ...
1182 }
1183
1184 In general though, independent_comalloc is worth using only for
1185 larger values of n_elements. For small values, you probably won't
1186 detect enough difference from series of malloc calls to bother.
1187
1188 Overuse of independent_comalloc can increase overall memory usage,
1189 since it cannot reuse existing noncontiguous small chunks that
1190 might be available for some of the elements.
1191*/
1192DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
1193
1194/*
1195 bulk_free(void* array[], size_t n_elements)
1196 Frees and clears (sets to null) each non-null pointer in the given
1197 array. This is likely to be faster than freeing them one-by-one.
1198 If footers are used, pointers that have been allocated in different
1199 mspaces are not freed or cleared, and the count of all such pointers
1200 is returned. For large arrays of pointers with poor locality, it
1201 may be worthwhile to sort this array before calling bulk_free.
1202*/
1203DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
1204
1205/*
1206 pvalloc(size_t n);
1207 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1208 round up n to nearest pagesize.
1209 */
1210DLMALLOC_EXPORT void* dlpvalloc(size_t);
1211
1212/*
1213 malloc_trim(size_t pad);
1214
1215 If possible, gives memory back to the system (via negative arguments
1216 to sbrk) if there is unused memory at the `high' end of the malloc
1217 pool or in unused MMAP segments. You can call this after freeing
1218 large blocks of memory to potentially reduce the system-level memory
1219 requirements of a program. However, it cannot guarantee to reduce
1220 memory. Under some allocation patterns, some large free blocks of
1221 memory will be locked between two used chunks, so they cannot be
1222 given back to the system.
1223
1224 The `pad' argument to malloc_trim represents the amount of free
1225 trailing space to leave untrimmed. If this argument is zero, only
1226 the minimum amount of memory to maintain internal data structures
1227 will be left. Non-zero arguments can be supplied to maintain enough
1228 trailing space to service future expected allocations without having
1229 to re-obtain memory from the system.
1230
1231 Malloc_trim returns 1 if it actually released any memory, else 0.
1232*/
1233DLMALLOC_EXPORT int dlmalloc_trim(size_t);
1234
1235/*
1236 malloc_stats();
1237 Prints on stderr the amount of space obtained from the system (both
1238 via sbrk and mmap), the maximum amount (which may be more than
1239 current if malloc_trim and/or munmap got called), and the current
1240 number of bytes allocated via malloc (or realloc, etc) but not yet
1241 freed. Note that this is the number of bytes allocated, not the
1242 number requested. It will be larger than the number requested
1243 because of alignment and bookkeeping overhead. Because it includes
1244 alignment wastage as being in use, this figure may be greater than
1245 zero even when no user-level chunks are allocated.
1246
1247 The reported current and maximum system memory can be inaccurate if
1248 a program makes other calls to system memory allocation functions
1249 (normally sbrk) outside of malloc.
1250
1251 malloc_stats prints only the most commonly interesting statistics.
1252 More information can be obtained by calling mallinfo.
1253*/
1254DLMALLOC_EXPORT void dlmalloc_stats(void);
1255
1256/*
1257 malloc_usable_size(void* p);
1258
1259 Returns the number of bytes you can actually use in
1260 an allocated chunk, which may be more than you requested (although
1261 often not) due to alignment and minimum size constraints.
1262 You can use this many bytes without worrying about
1263 overwriting other allocated objects. This is not a particularly great
1264 programming practice. malloc_usable_size can be more useful in
1265 debugging and assertions, for example:
1266
1267 p = malloc(n);
1268 assert(malloc_usable_size(p) >= 256);
1269*/
1270size_t dlmalloc_usable_size(void*);
1271
1272#endif /* ONLY_MSPACES */
1273
1274#if MSPACES
1275
1276/*
1277 mspace is an opaque type representing an independent
1278 region of space that supports mspace_malloc, etc.
1279*/
1280typedef void* mspace;
1281
1282/*
1283 create_mspace creates and returns a new independent space with the
1284 given initial capacity, or, if 0, the default granularity size. It
1285 returns null if there is no system memory available to create the
1286 space. If argument locked is non-zero, the space uses a separate
1287 lock to control access. The capacity of the space will grow
1288 dynamically as needed to service mspace_malloc requests. You can
1289 control the sizes of incremental increases of this space by
1290 compiling with a different DEFAULT_GRANULARITY or dynamically
1291 setting with mallopt(M_GRANULARITY, value).
1292*/
1293DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
1294
1295/*
1296 destroy_mspace destroys the given space, and attempts to return all
1297 of its memory back to the system, returning the total number of
1298 bytes freed. After destruction, the results of access to all memory
1299 used by the space become undefined.
1300*/
1301DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
1302
1303/*
1304 create_mspace_with_base uses the memory supplied as the initial base
1305 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1306 space is used for bookkeeping, so the capacity must be at least this
1307 large. (Otherwise 0 is returned.) When this initial space is
1308 exhausted, additional memory will be obtained from the system.
1309 Destroying this space will deallocate all additionally allocated
1310 space (if possible) but not the initial base.
1311*/
1312DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1313
1314/*
1315 mspace_track_large_chunks controls whether requests for large chunks
1316 are allocated in their own untracked mmapped regions, separate from
1317 others in this mspace. By default large chunks are not tracked,
1318 which reduces fragmentation. However, such chunks are not
1319 necessarily released to the system upon destroy_mspace. Enabling
1320 tracking by setting to true may increase fragmentation, but avoids
1321 leakage when relying on destroy_mspace to release all memory
1322 allocated using this space. The function returns the previous
1323 setting.
1324*/
1325DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
1326
1327
1328/*
1329 mspace_malloc behaves as malloc, but operates within
1330 the given space.
1331*/
1332DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
1333
1334/*
1335 mspace_free behaves as free, but operates within
1336 the given space.
1337
1338 If compiled with FOOTERS==1, mspace_free is not actually needed.
1339 free may be called instead of mspace_free because freed chunks from
1340 any space are handled by their originating spaces.
1341*/
1342DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
1343
1344/*
1345 mspace_realloc behaves as realloc, but operates within
1346 the given space.
1347
1348 If compiled with FOOTERS==1, mspace_realloc is not actually
1349 needed. realloc may be called instead of mspace_realloc because
1350 realloced chunks from any space are handled by their originating
1351 spaces.
1352*/
1353DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1354
1355/*
1356 mspace_calloc behaves as calloc, but operates within
1357 the given space.
1358*/
1359DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1360
1361/*
1362 mspace_memalign behaves as memalign, but operates within
1363 the given space.
1364*/
1365DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1366
1367/*
1368 mspace_independent_calloc behaves as independent_calloc, but
1369 operates within the given space.
1370*/
1371DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
1372 size_t elem_size, void* chunks[]);
1373
1374/*
1375 mspace_independent_comalloc behaves as independent_comalloc, but
1376 operates within the given space.
1377*/
1378DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1379 size_t sizes[], void* chunks[]);
1380
1381/*
1382 mspace_footprint() returns the number of bytes obtained from the
1383 system for this space.
1384*/
1385DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
1386
1387/*
1388 mspace_max_footprint() returns the peak number of bytes obtained from the
1389 system for this space.
1390*/
1391DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
1392
1393
1394#if !NO_MALLINFO
1395/*
1396 mspace_mallinfo behaves as mallinfo, but reports properties of
1397 the given space.
1398*/
1399DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
1400#endif /* NO_MALLINFO */
1401
1402/*
1403 malloc_usable_size(void* p) behaves the same as malloc_usable_size;
1404*/
1405DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
1406
1407/*
1408 mspace_malloc_stats behaves as malloc_stats, but reports
1409 properties of the given space.
1410*/
1411DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
1412
1413/*
1414 mspace_trim behaves as malloc_trim, but
1415 operates within the given space.
1416*/
1417DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
1418
1419/*
1420 An alias for mallopt.
1421*/
1422DLMALLOC_EXPORT int mspace_mallopt(int, int);
1423
1424#endif /* MSPACES */
1425
1426#ifdef __cplusplus
1427} /* end of extern "C" */
1428#endif /* __cplusplus */
1429
1430/*
1431 ========================================================================
1432 To make a fully customizable malloc.h header file, cut everything
1433 above this line, put into file malloc.h, edit to suit, and #include it
1434 on the next line, as well as in programs that use this malloc.
1435 ========================================================================
1436*/
1437
1438/* #include "malloc.h" */
1439
1440/*------------------------------ internal #includes ---------------------- */
1441
1442#ifdef _MSC_VER
1443#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1444#endif /* _MSC_VER */
1445#if !NO_MALLOC_STATS
1446#include <stdio.h> /* for printing in malloc_stats */
1447#endif /* NO_MALLOC_STATS */
1448#ifndef LACKS_ERRNO_H
1449#include <errno.h> /* for MALLOC_FAILURE_ACTION */
1450#endif /* LACKS_ERRNO_H */
1451#ifdef DEBUG
1452#if ABORT_ON_ASSERT_FAILURE
1453#undef assert
1454#define assert(x) if(!(x)) ABORT
1455#else /* ABORT_ON_ASSERT_FAILURE */
1456#include <assert.h>
1457#endif /* ABORT_ON_ASSERT_FAILURE */
1458#else /* DEBUG */
1459#ifndef assert
1460#define assert(x)
1461#endif
1462#define DEBUG 0
1463#endif /* DEBUG */
1464#if !defined(WIN32) && !defined(LACKS_TIME_H)
1465#include <time.h> /* for magic initialization */
1466#endif /* WIN32 */
1467#ifndef LACKS_STDLIB_H
1468#include <stdlib.h> /* for abort() */
1469#endif /* LACKS_STDLIB_H */
1470#ifndef LACKS_STRING_H
1471#include <string.h> /* for memset etc */
1472#endif /* LACKS_STRING_H */
1473#if USE_BUILTIN_FFS
1474#ifndef LACKS_STRINGS_H
1475#include <strings.h> /* for ffs */
1476#endif /* LACKS_STRINGS_H */
1477#endif /* USE_BUILTIN_FFS */
1478#if HAVE_MMAP
1479#ifndef LACKS_SYS_MMAN_H
1480/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
1481#if (defined(linux) && !defined(__USE_GNU))
1482#define __USE_GNU 1
1483#include <sys/mman.h> /* for mmap */
1484#undef __USE_GNU
1485#else
1486#include <sys/mman.h> /* for mmap */
1487#endif /* linux */
1488#endif /* LACKS_SYS_MMAN_H */
1489#ifndef LACKS_FCNTL_H
1490#include <fcntl.h>
1491#endif /* LACKS_FCNTL_H */
1492#endif /* HAVE_MMAP */
1493#ifndef LACKS_UNISTD_H
1494#include <unistd.h> /* for sbrk, sysconf */
1495#else /* LACKS_UNISTD_H */
1496#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1497extern void* sbrk(ptrdiff_t);
1498#endif /* FreeBSD etc */
1499#endif /* LACKS_UNISTD_H */
1500
1501/* Declarations for locking */
1502#if USE_LOCKS
1503#ifndef WIN32
1504#if defined (__SVR4) && defined (__sun) /* solaris */
1505#include <thread.h>
1506#elif !defined(LACKS_SCHED_H)
1507#include <sched.h>
1508#endif /* solaris or LACKS_SCHED_H */
1509#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
1510#include <pthread.h>
1511#endif /* USE_RECURSIVE_LOCKS ... */
1512#elif defined(_MSC_VER)
1513#ifndef _M_AMD64
1514/* These are already defined on AMD64 builds */
1515#ifdef __cplusplus
1516extern "C" {
1517#endif /* __cplusplus */
1518LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
1519LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
1520#ifdef __cplusplus
1521}
1522#endif /* __cplusplus */
1523#endif /* _M_AMD64 */
1524#pragma intrinsic (_InterlockedCompareExchange)
1525#pragma intrinsic (_InterlockedExchange)
1526#define interlockedcompareexchange _InterlockedCompareExchange
1527#define interlockedexchange _InterlockedExchange
1528#elif defined(WIN32) && defined(__GNUC__)
1529#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
1530#define interlockedexchange __sync_lock_test_and_set
1531#endif /* Win32 */
1532#else /* USE_LOCKS */
1533#endif /* USE_LOCKS */
1534
1535#ifndef LOCK_AT_FORK
1536#define LOCK_AT_FORK 0
1537#endif
1538
1539/* Declarations for bit scanning on win32 */
1540#if defined(_MSC_VER) && _MSC_VER>=1300
1541#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
1542#ifdef __cplusplus
1543extern "C" {
1544#endif /* __cplusplus */
1545unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
1546unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
1547#ifdef __cplusplus
1548}
1549#endif /* __cplusplus */
1550
1551#define BitScanForward _BitScanForward
1552#define BitScanReverse _BitScanReverse
1553#pragma intrinsic(_BitScanForward)
1554#pragma intrinsic(_BitScanReverse)
1555#endif /* BitScanForward */
1556#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
1557
1558#ifndef WIN32
1559#ifndef malloc_getpagesize
1560# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1561# ifndef _SC_PAGE_SIZE
1562# define _SC_PAGE_SIZE _SC_PAGESIZE
1563# endif
1564# endif
1565# ifdef _SC_PAGE_SIZE
1566# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1567# else
1568# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1569 extern size_t getpagesize();
1570# define malloc_getpagesize getpagesize()
1571# else
1572# ifdef WIN32 /* use supplied emulation of getpagesize */
1573# define malloc_getpagesize getpagesize()
1574# else
1575# ifndef LACKS_SYS_PARAM_H
1576# include <sys/param.h>
1577# endif
1578# ifdef EXEC_PAGESIZE
1579# define malloc_getpagesize EXEC_PAGESIZE
1580# else
1581# ifdef NBPG
1582# ifndef CLSIZE
1583# define malloc_getpagesize NBPG
1584# else
1585# define malloc_getpagesize (NBPG * CLSIZE)
1586# endif
1587# else
1588# ifdef NBPC
1589# define malloc_getpagesize NBPC
1590# else
1591# ifdef PAGESIZE
1592# define malloc_getpagesize PAGESIZE
1593# else /* just guess */
1594# define malloc_getpagesize ((size_t)4096U)
1595# endif
1596# endif
1597# endif
1598# endif
1599# endif
1600# endif
1601# endif
1602#endif
1603#endif
1604
1605/* ------------------- size_t and alignment properties -------------------- */
1606
1607/* The byte and bit size of a size_t */
1608#define SIZE_T_SIZE (sizeof(size_t))
1609#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1610
1611/* Some constants coerced to size_t */
1612/* Annoying but necessary to avoid errors on some platforms */
1613#define SIZE_T_ZERO ((size_t)0)
1614#define SIZE_T_ONE ((size_t)1)
1615#define SIZE_T_TWO ((size_t)2)
1616#define SIZE_T_FOUR ((size_t)4)
1617#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1618#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1619#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1620#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1621
1622/* The bit mask value corresponding to MALLOC_ALIGNMENT */
1623#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1624
1625/* True if address a has acceptable alignment */
1626#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1627
1628/* the number of bytes to offset an address to align it */
1629#define align_offset(A)\
1630 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1631 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1632
1633/* -------------------------- MMAP preliminaries ------------------------- */
1634
1635/*
1636 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1637 checks to fail so compiler optimizer can delete code rather than
1638 using so many "#if"s.
1639*/
1640
1641
1642/* MORECORE and MMAP must return MFAIL on failure */
1643#define MFAIL ((void*)(MAX_SIZE_T))
1644#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1645
1646#if HAVE_MMAP
1647
1648#ifndef WIN32
1649#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
1650#define MMAP_PROT (PROT_READ|PROT_WRITE)
1651#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1652#define MAP_ANONYMOUS MAP_ANON
1653#endif /* MAP_ANON */
1654#ifdef MAP_ANONYMOUS
1655#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1656#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1657#else /* MAP_ANONYMOUS */
1658/*
1659 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1660 is unlikely to be needed, but is supplied just in case.
1661*/
1662#define MMAP_FLAGS (MAP_PRIVATE)
1663static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1664#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
1665 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1666 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1667 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1668#endif /* MAP_ANONYMOUS */
1669
1670#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
1671
1672#else /* WIN32 */
1673
1674/* Win32 MMAP via VirtualAlloc */
1675static FORCEINLINE void* win32mmap(size_t size) {
1676 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1677 return (ptr != 0)? ptr: MFAIL;
1678}
1679
1680/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1681static FORCEINLINE void* win32direct_mmap(size_t size) {
1682 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1683 PAGE_READWRITE);
1684 return (ptr != 0)? ptr: MFAIL;
1685}
1686
1687/* This function supports releasing coalesed segments */
1688static FORCEINLINE int win32munmap(void* ptr, size_t size) {
1689 MEMORY_BASIC_INFORMATION minfo;
1690 char* cptr = (char*)ptr;
1691 while (size) {
1692 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1693 return -1;
1694 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1695 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1696 return -1;
1697 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1698 return -1;
1699 cptr += minfo.RegionSize;
1700 size -= minfo.RegionSize;
1701 }
1702 return 0;
1703}
1704
1705#define MMAP_DEFAULT(s) win32mmap(s)
1706#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
1707#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
1708#endif /* WIN32 */
1709#endif /* HAVE_MMAP */
1710
1711#if HAVE_MREMAP
1712#ifndef WIN32
1713#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1714#endif /* WIN32 */
1715#endif /* HAVE_MREMAP */
1716
1717/**
1718 * Define CALL_MORECORE
1719 */
1720#if HAVE_MORECORE
1721 #ifdef MORECORE
1722 #define CALL_MORECORE(S) MORECORE(S)
1723 #else /* MORECORE */
1724 #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
1725 #endif /* MORECORE */
1726#else /* HAVE_MORECORE */
1727 #define CALL_MORECORE(S) MFAIL
1728#endif /* HAVE_MORECORE */
1729
1730/**
1731 * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
1732 */
1733#if HAVE_MMAP
1734 #define USE_MMAP_BIT (SIZE_T_ONE)
1735
1736 #ifdef MMAP
1737 #define CALL_MMAP(s) MMAP(s)
1738 #else /* MMAP */
1739 #define CALL_MMAP(s) MMAP_DEFAULT(s)
1740 #endif /* MMAP */
1741 #ifdef MUNMAP
1742 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1743 #else /* MUNMAP */
1744 #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
1745 #endif /* MUNMAP */
1746 #ifdef DIRECT_MMAP
1747 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1748 #else /* DIRECT_MMAP */
1749 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
1750 #endif /* DIRECT_MMAP */
1751#else /* HAVE_MMAP */
1752 #define USE_MMAP_BIT (SIZE_T_ZERO)
1753
1754 #define MMAP(s) MFAIL
1755 #define MUNMAP(a, s) (-1)
1756 #define DIRECT_MMAP(s) MFAIL
1757 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1758 #define CALL_MMAP(s) MMAP(s)
1759 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1760#endif /* HAVE_MMAP */
1761
1762/**
1763 * Define CALL_MREMAP
1764 */
1765#if HAVE_MMAP && HAVE_MREMAP
1766 #ifdef MREMAP
1767 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
1768 #else /* MREMAP */
1769 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
1770 #endif /* MREMAP */
1771#else /* HAVE_MMAP && HAVE_MREMAP */
1772 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1773#endif /* HAVE_MMAP && HAVE_MREMAP */
1774
1775/* mstate bit set if continguous morecore disabled or failed */
1776#define USE_NONCONTIGUOUS_BIT (4U)
1777
1778/* segment bit set in create_mspace_with_base */
1779#define EXTERN_BIT (8U)
1780
1781
1782/* --------------------------- Lock preliminaries ------------------------ */
1783
1784/*
1785 When locks are defined, there is one global lock, plus
1786 one per-mspace lock.
1787
1788 The global lock_ensures that mparams.magic and other unique
1789 mparams values are initialized only once. It also protects
1790 sequences of calls to MORECORE. In many cases sys_alloc requires
1791 two calls, that should not be interleaved with calls by other
1792 threads. This does not protect against direct calls to MORECORE
1793 by other threads not using this lock, so there is still code to
1794 cope the best we can on interference.
1795
1796 Per-mspace locks surround calls to malloc, free, etc.
1797 By default, locks are simple non-reentrant mutexes.
1798
1799 Because lock-protected regions generally have bounded times, it is
1800 OK to use the supplied simple spinlocks. Spinlocks are likely to
1801 improve performance for lightly contended applications, but worsen
1802 performance under heavy contention.
1803
1804 If USE_LOCKS is > 1, the definitions of lock routines here are
1805 bypassed, in which case you will need to define the type MLOCK_T,
1806 and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
1807 and TRY_LOCK. You must also declare a
1808 static MLOCK_T malloc_global_mutex = { initialization values };.
1809
1810*/
1811
1812#if !USE_LOCKS
1813#define USE_LOCK_BIT (0U)
1814#define INITIAL_LOCK(l) (0)
1815#define DESTROY_LOCK(l) (0)
1816#define ACQUIRE_MALLOC_GLOBAL_LOCK()
1817#define RELEASE_MALLOC_GLOBAL_LOCK()
1818
1819#else
1820#if USE_LOCKS > 1
1821/* ----------------------- User-defined locks ------------------------ */
1822/* Define your own lock implementation here */
1823/* #define INITIAL_LOCK(lk) ... */
1824/* #define DESTROY_LOCK(lk) ... */
1825/* #define ACQUIRE_LOCK(lk) ... */
1826/* #define RELEASE_LOCK(lk) ... */
1827/* #define TRY_LOCK(lk) ... */
1828/* static MLOCK_T malloc_global_mutex = ... */
1829
1830#elif USE_SPIN_LOCKS
1831
1832/* First, define CAS_LOCK and CLEAR_LOCK on ints */
1833/* Note CAS_LOCK defined to return 0 on success */
1834
1835#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
1836#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
1837#define CLEAR_LOCK(sl) __sync_lock_release(sl)
1838
1839#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
1840/* Custom spin locks for older gcc on x86 */
1841static FORCEINLINE int x86_cas_lock(int *sl) {
1842 int ret;
1843 int val = 1;
1844 int cmp = 0;
1845 __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
1846 : "=a" (ret)
1847 : "r" (val), "m" (*(sl)), "0"(cmp)
1848 : "memory", "cc");
1849 return ret;
1850}
1851
1852static FORCEINLINE void x86_clear_lock(int* sl) {
1853 assert(*sl != 0);
1854 int prev = 0;
1855 int ret;
1856 __asm__ __volatile__ ("lock; xchgl %0, %1"
1857 : "=r" (ret)
1858 : "m" (*(sl)), "0"(prev)
1859 : "memory");
1860}
1861
1862#define CAS_LOCK(sl) x86_cas_lock(sl)
1863#define CLEAR_LOCK(sl) x86_clear_lock(sl)
1864
1865#else /* Win32 MSC */
1866#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
1867#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
1868
1869#endif /* ... gcc spins locks ... */
1870
1871/* How to yield for a spin lock */
1872#define SPINS_PER_YIELD 63
1873#if defined(_MSC_VER)
1874#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
1875#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
1876#elif defined (__SVR4) && defined (__sun) /* solaris */
1877#define SPIN_LOCK_YIELD thr_yield();
1878#elif !defined(LACKS_SCHED_H)
1879#define SPIN_LOCK_YIELD sched_yield();
1880#else
1881#define SPIN_LOCK_YIELD
1882#endif /* ... yield ... */
1883
1884#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
1885/* Plain spin locks use single word (embedded in malloc_states) */
1886static int spin_acquire_lock(int *sl) {
1887 int spins = 0;
1888 while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
1889 if ((++spins & SPINS_PER_YIELD) == 0) {
1890 SPIN_LOCK_YIELD;
1891 }
1892 }
1893 return 0;
1894}
1895
1896#define MLOCK_T int
1897#define TRY_LOCK(sl) !CAS_LOCK(sl)
1898#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
1899#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
1900#define INITIAL_LOCK(sl) (*sl = 0)
1901#define DESTROY_LOCK(sl) (0)
1902static MLOCK_T malloc_global_mutex = 0;
1903
1904#else /* USE_RECURSIVE_LOCKS */
1905/* types for lock owners */
1906#ifdef WIN32
1907#define THREAD_ID_T DWORD
1908#define CURRENT_THREAD GetCurrentThreadId()
1909#define EQ_OWNER(X,Y) ((X) == (Y))
1910#else
1911/*
1912 Note: the following assume that pthread_t is a type that can be
1913 initialized to (casted) zero. If this is not the case, you will need to
1914 somehow redefine these or not use spin locks.
1915*/
1916#define THREAD_ID_T pthread_t
1917#define CURRENT_THREAD pthread_self()
1918#define EQ_OWNER(X,Y) pthread_equal(X, Y)
1919#endif
1920
1921struct malloc_recursive_lock {
1922 int sl;
1923 unsigned int c;
1924 THREAD_ID_T threadid;
1925};
1926
1927#define MLOCK_T struct malloc_recursive_lock
1928static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
1929
1930static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
1931 assert(lk->sl != 0);
1932 if (--lk->c == 0) {
1933 CLEAR_LOCK(&lk->sl);
1934 }
1935}
1936
1937static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
1938 THREAD_ID_T mythreadid = CURRENT_THREAD;
1939 int spins = 0;
1940 for (;;) {
1941 if (*((volatile int *)(&lk->sl)) == 0) {
1942 if (!CAS_LOCK(&lk->sl)) {
1943 lk->threadid = mythreadid;
1944 lk->c = 1;
1945 return 0;
1946 }
1947 }
1948 else if (EQ_OWNER(lk->threadid, mythreadid)) {
1949 ++lk->c;
1950 return 0;
1951 }
1952 if ((++spins & SPINS_PER_YIELD) == 0) {
1953 SPIN_LOCK_YIELD;
1954 }
1955 }
1956}
1957
1958static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
1959 THREAD_ID_T mythreadid = CURRENT_THREAD;
1960 if (*((volatile int *)(&lk->sl)) == 0) {
1961 if (!CAS_LOCK(&lk->sl)) {
1962 lk->threadid = mythreadid;
1963 lk->c = 1;
1964 return 1;
1965 }
1966 }
1967 else if (EQ_OWNER(lk->threadid, mythreadid)) {
1968 ++lk->c;
1969 return 1;
1970 }
1971 return 0;
1972}
1973
1974#define RELEASE_LOCK(lk) recursive_release_lock(lk)
1975#define TRY_LOCK(lk) recursive_try_lock(lk)
1976#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
1977#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
1978#define DESTROY_LOCK(lk) (0)
1979#endif /* USE_RECURSIVE_LOCKS */
1980
1981#elif defined(WIN32) /* Win32 critical sections */
1982#define MLOCK_T CRITICAL_SECTION
1983#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
1984#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
1985#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
1986#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
1987#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
1988#define NEED_GLOBAL_LOCK_INIT
1989
1990static MLOCK_T malloc_global_mutex;
1991static volatile LONG malloc_global_mutex_status;
1992
1993/* Use spin loop to initialize global lock */
1994static void init_malloc_global_mutex() {
1995 for (;;) {
1996 long stat = malloc_global_mutex_status;
1997 if (stat > 0)
1998 return;
1999 /* transition to < 0 while initializing, then to > 0) */
2000 if (stat == 0 &&
2001 interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
2002 InitializeCriticalSection(&malloc_global_mutex);
2003 interlockedexchange(&malloc_global_mutex_status, (LONG)1);
2004 return;
2005 }
2006 SleepEx(0, FALSE);
2007 }
2008}
2009
2010#else /* pthreads-based locks */
2011#define MLOCK_T pthread_mutex_t
2012#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
2013#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
2014#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
2015#define INITIAL_LOCK(lk) pthread_init_lock(lk)
2016#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
2017
2018#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
2019/* Cope with old-style linux recursive lock initialization by adding */
2020/* skipped internal declaration from pthread.h */
2021extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
2022 int __kind));
2023#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
2024#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
2025#endif /* USE_RECURSIVE_LOCKS ... */
2026
2027static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
2028
2029static int pthread_init_lock (MLOCK_T *lk) {
2030 pthread_mutexattr_t attr;
2031 if (pthread_mutexattr_init(&attr)) return 1;
2032#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
2033 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
2034#endif
2035 if (pthread_mutex_init(lk, &attr)) return 1;
2036 if (pthread_mutexattr_destroy(&attr)) return 1;
2037 return 0;
2038}
2039
2040#endif /* ... lock types ... */
2041
2042/* Common code for all lock types */
2043#define USE_LOCK_BIT (2U)
2044
2045#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
2046#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
2047#endif
2048
2049#ifndef RELEASE_MALLOC_GLOBAL_LOCK
2050#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
2051#endif
2052
2053#endif /* USE_LOCKS */
2054
2055/* ----------------------- Chunk representations ------------------------ */
2056
2057/*
2058 (The following includes lightly edited explanations by Colin Plumb.)
2059
2060 The malloc_chunk declaration below is misleading (but accurate and
2061 necessary). It declares a "view" into memory allowing access to
2062 necessary fields at known offsets from a given base.
2063
2064 Chunks of memory are maintained using a `boundary tag' method as
2065 originally described by Knuth. (See the paper by Paul Wilson
2066 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
2067 techniques.) Sizes of free chunks are stored both in the front of
2068 each chunk and at the end. This makes consolidating fragmented
2069 chunks into bigger chunks fast. The head fields also hold bits
2070 representing whether chunks are free or in use.
2071
2072 Here are some pictures to make it clearer. They are "exploded" to
2073 show that the state of a chunk can be thought of as extending from
2074 the high 31 bits of the head field of its header through the
2075 prev_foot and PINUSE_BIT bit of the following chunk header.
2076
2077 A chunk that's in use looks like:
2078
2079 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2080 | Size of previous chunk (if P = 0) |
2081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2082 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2083 | Size of this chunk 1| +-+
2084 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2085 | |
2086 +- -+
2087 | |
2088 +- -+
2089 | :
2090 +- size - sizeof(size_t) available payload bytes -+
2091 : |
2092 chunk-> +- -+
2093 | |
2094 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2095 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
2096 | Size of next chunk (may or may not be in use) | +-+
2097 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2098
2099 And if it's free, it looks like this:
2100
2101 chunk-> +- -+
2102 | User payload (must be in use, or we would have merged!) |
2103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2105 | Size of this chunk 0| +-+
2106 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2107 | Next pointer |
2108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2109 | Prev pointer |
2110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2111 | :
2112 +- size - sizeof(struct chunk) unused bytes -+
2113 : |
2114 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2115 | Size of this chunk |
2116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
2118 | Size of next chunk (must be in use, or we would have merged)| +-+
2119 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2120 | :
2121 +- User payload -+
2122 : |
2123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2124 |0|
2125 +-+
2126 Note that since we always merge adjacent free chunks, the chunks
2127 adjacent to a free chunk must be in use.
2128
2129 Given a pointer to a chunk (which can be derived trivially from the
2130 payload pointer) we can, in O(1) time, find out whether the adjacent
2131 chunks are free, and if so, unlink them from the lists that they
2132 are on and merge them with the current chunk.
2133
2134 Chunks always begin on even word boundaries, so the mem portion
2135 (which is returned to the user) is also on an even word boundary, and
2136 thus at least double-word aligned.
2137
2138 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
2139 chunk size (which is always a multiple of two words), is an in-use
2140 bit for the *previous* chunk. If that bit is *clear*, then the
2141 word before the current chunk size contains the previous chunk
2142 size, and can be used to find the front of the previous chunk.
2143 The very first chunk allocated always has this bit set, preventing
2144 access to non-existent (or non-owned) memory. If pinuse is set for
2145 any given chunk, then you CANNOT determine the size of the
2146 previous chunk, and might even get a memory addressing fault when
2147 trying to do so.
2148
2149 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
2150 the chunk size redundantly records whether the current chunk is
2151 inuse (unless the chunk is mmapped). This redundancy enables usage
2152 checks within free and realloc, and reduces indirection when freeing
2153 and consolidating chunks.
2154
2155 Each freshly allocated chunk must have both cinuse and pinuse set.
2156 That is, each allocated chunk borders either a previously allocated
2157 and still in-use chunk, or the base of its memory arena. This is
2158 ensured by making all allocations from the `lowest' part of any
2159 found chunk. Further, no free chunk physically borders another one,
2160 so each free chunk is known to be preceded and followed by either
2161 inuse chunks or the ends of memory.
2162
2163 Note that the `foot' of the current chunk is actually represented
2164 as the prev_foot of the NEXT chunk. This makes it easier to
2165 deal with alignments etc but can be very confusing when trying
2166 to extend or adapt this code.
2167
2168 The exceptions to all this are
2169
2170 1. The special chunk `top' is the top-most available chunk (i.e.,
2171 the one bordering the end of available memory). It is treated
2172 specially. Top is never included in any bin, is used only if
2173 no other chunk is available, and is released back to the
2174 system if it is very large (see M_TRIM_THRESHOLD). In effect,
2175 the top chunk is treated as larger (and thus less well
2176 fitting) than any other available chunk. The top chunk
2177 doesn't update its trailing size field since there is no next
2178 contiguous chunk that would have to index off it. However,
2179 space is still allocated for it (TOP_FOOT_SIZE) to enable
2180 separation or merging when space is extended.
2181
2182 3. Chunks allocated via mmap, have both cinuse and pinuse bits
2183 cleared in their head fields. Because they are allocated
2184 one-by-one, each must carry its own prev_foot field, which is
2185 also used to hold the offset this chunk has within its mmapped
2186 region, which is needed to preserve alignment. Each mmapped
2187 chunk is trailed by the first two fields of a fake next-chunk
2188 for sake of usage checks.
2189
2190*/
2191
2192struct malloc_chunk {
2193 size_t prev_foot; /* Size of previous chunk (if free). */
2194 size_t head; /* Size and inuse bits. */
2195 struct malloc_chunk* fd; /* double links -- used only if free. */
2196 struct malloc_chunk* bk;
2197};
2198
2199typedef struct malloc_chunk mchunk;
2200typedef struct malloc_chunk* mchunkptr;
2201typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
2202typedef unsigned int bindex_t; /* Described below */
2203typedef unsigned int binmap_t; /* Described below */
2204typedef unsigned int flag_t; /* The type of various bit flag sets */
2205
2206/* ------------------- Chunks sizes and alignments ----------------------- */
2207
2208#define MCHUNK_SIZE (sizeof(mchunk))
2209
2210#if FOOTERS
2211#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2212#else /* FOOTERS */
2213#define CHUNK_OVERHEAD (SIZE_T_SIZE)
2214#endif /* FOOTERS */
2215
2216/* MMapped chunks need a second word of overhead ... */
2217#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2218/* ... and additional padding for fake next-chunk at foot */
2219#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
2220
2221/* The smallest size we can malloc is an aligned minimal chunk */
2222#define MIN_CHUNK_SIZE\
2223 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2224
2225/* conversion from malloc headers to user pointers, and back */
2226#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
2227#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
2228/* chunk associated with aligned address A */
2229#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
2230
2231/* Bounds on request (not chunk) sizes. */
2232#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
2233#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
2234
2235/* pad request bytes into a usable size */
2236#define pad_request(req) \
2237 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2238
2239/* pad request, checking for minimum (but not maximum) */
2240#define request2size(req) \
2241 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
2242
2243
2244/* ------------------ Operations on head and foot fields ----------------- */
2245
2246/*
2247 The head field of a chunk is or'ed with PINUSE_BIT when previous
2248 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
2249 use, unless mmapped, in which case both bits are cleared.
2250
2251 FLAG4_BIT is not used by this malloc, but might be useful in extensions.
2252*/
2253
2254#define PINUSE_BIT (SIZE_T_ONE)
2255#define CINUSE_BIT (SIZE_T_TWO)
2256#define FLAG4_BIT (SIZE_T_FOUR)
2257#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
2258#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
2259
2260/* Head value for fenceposts */
2261#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
2262
2263/* extraction of fields from head words */
2264#define cinuse(p) ((p)->head & CINUSE_BIT)
2265#define pinuse(p) ((p)->head & PINUSE_BIT)
2266#define flag4inuse(p) ((p)->head & FLAG4_BIT)
2267#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
2268#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
2269
2270#define chunksize(p) ((p)->head & ~(FLAG_BITS))
2271
2272#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
2273#define set_flag4(p) ((p)->head |= FLAG4_BIT)
2274#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
2275
2276/* Treat space at ptr +/- offset as a chunk */
2277#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2278#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
2279
2280/* Ptr to next or previous physical malloc_chunk. */
2281#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
2282#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
2283
2284/* extract next chunk's pinuse bit */
2285#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
2286
2287/* Get/set size at footer */
2288#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
2289#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
2290
2291/* Set size, pinuse bit, and foot */
2292#define set_size_and_pinuse_of_free_chunk(p, s)\
2293 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
2294
2295/* Set size, pinuse bit, foot, and clear next pinuse */
2296#define set_free_with_pinuse(p, s, n)\
2297 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
2298
2299/* Get the internal overhead associated with chunk p */
2300#define overhead_for(p)\
2301 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
2302
2303/* Return true if malloced space is not necessarily cleared */
2304#if MMAP_CLEARS
2305#define calloc_must_clear(p) (!is_mmapped(p))
2306#else /* MMAP_CLEARS */
2307#define calloc_must_clear(p) (1)
2308#endif /* MMAP_CLEARS */
2309
2310/* ---------------------- Overlaid data structures ----------------------- */
2311
2312/*
2313 When chunks are not in use, they are treated as nodes of either
2314 lists or trees.
2315
2316 "Small" chunks are stored in circular doubly-linked lists, and look
2317 like this:
2318
2319 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2320 | Size of previous chunk |
2321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2322 `head:' | Size of chunk, in bytes |P|
2323 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2324 | Forward pointer to next chunk in list |
2325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2326 | Back pointer to previous chunk in list |
2327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2328 | Unused space (may be 0 bytes long) .
2329 . .
2330 . |
2331nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2332 `foot:' | Size of chunk, in bytes |
2333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2334
2335 Larger chunks are kept in a form of bitwise digital trees (aka
2336 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
2337 free chunks greater than 256 bytes, their size doesn't impose any
2338 constraints on user chunk sizes. Each node looks like:
2339
2340 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2341 | Size of previous chunk |
2342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2343 `head:' | Size of chunk, in bytes |P|
2344 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2345 | Forward pointer to next chunk of same size |
2346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2347 | Back pointer to previous chunk of same size |
2348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2349 | Pointer to left child (child[0]) |
2350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2351 | Pointer to right child (child[1]) |
2352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2353 | Pointer to parent |
2354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2355 | bin index of this chunk |
2356 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2357 | Unused space .
2358 . |
2359nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2360 `foot:' | Size of chunk, in bytes |
2361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2362
2363 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
2364 of the same size are arranged in a circularly-linked list, with only
2365 the oldest chunk (the next to be used, in our FIFO ordering)
2366 actually in the tree. (Tree members are distinguished by a non-null
2367 parent pointer.) If a chunk with the same size an an existing node
2368 is inserted, it is linked off the existing node using pointers that
2369 work in the same way as fd/bk pointers of small chunks.
2370
2371 Each tree contains a power of 2 sized range of chunk sizes (the
2372 smallest is 0x100 <= x < 0x180), which is is divided in half at each
2373 tree level, with the chunks in the smaller half of the range (0x100
2374 <= x < 0x140 for the top nose) in the left subtree and the larger
2375 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
2376 done by inspecting individual bits.
2377
2378 Using these rules, each node's left subtree contains all smaller
2379 sizes than its right subtree. However, the node at the root of each
2380 subtree has no particular ordering relationship to either. (The
2381 dividing line between the subtree sizes is based on trie relation.)
2382 If we remove the last chunk of a given size from the interior of the
2383 tree, we need to replace it with a leaf node. The tree ordering
2384 rules permit a node to be replaced by any leaf below it.
2385
2386 The smallest chunk in a tree (a common operation in a best-fit
2387 allocator) can be found by walking a path to the leftmost leaf in
2388 the tree. Unlike a usual binary tree, where we follow left child
2389 pointers until we reach a null, here we follow the right child
2390 pointer any time the left one is null, until we reach a leaf with
2391 both child pointers null. The smallest chunk in the tree will be
2392 somewhere along that path.
2393
2394 The worst case number of steps to add, find, or remove a node is
2395 bounded by the number of bits differentiating chunks within
2396 bins. Under current bin calculations, this ranges from 6 up to 21
2397 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
2398 is of course much better.
2399*/
2400
2401struct malloc_tree_chunk {
2402 /* The first four fields must be compatible with malloc_chunk */
2403 size_t prev_foot;
2404 size_t head;
2405 struct malloc_tree_chunk* fd;
2406 struct malloc_tree_chunk* bk;
2407
2408 struct malloc_tree_chunk* child[2];
2409 struct malloc_tree_chunk* parent;
2410 bindex_t index;
2411};
2412
2413typedef struct malloc_tree_chunk tchunk;
2414typedef struct malloc_tree_chunk* tchunkptr;
2415typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
2416
2417/* A little helper macro for trees */
2418#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
2419
2420/* ----------------------------- Segments -------------------------------- */
2421
2422/*
2423 Each malloc space may include non-contiguous segments, held in a
2424 list headed by an embedded malloc_segment record representing the
2425 top-most space. Segments also include flags holding properties of
2426 the space. Large chunks that are directly allocated by mmap are not
2427 included in this list. They are instead independently created and
2428 destroyed without otherwise keeping track of them.
2429
2430 Segment management mainly comes into play for spaces allocated by
2431 MMAP. Any call to MMAP might or might not return memory that is
2432 adjacent to an existing segment. MORECORE normally contiguously
2433 extends the current space, so this space is almost always adjacent,
2434 which is simpler and faster to deal with. (This is why MORECORE is
2435 used preferentially to MMAP when both are available -- see
2436 sys_alloc.) When allocating using MMAP, we don't use any of the
2437 hinting mechanisms (inconsistently) supported in various
2438 implementations of unix mmap, or distinguish reserving from
2439 committing memory. Instead, we just ask for space, and exploit
2440 contiguity when we get it. It is probably possible to do
2441 better than this on some systems, but no general scheme seems
2442 to be significantly better.
2443
2444 Management entails a simpler variant of the consolidation scheme
2445 used for chunks to reduce fragmentation -- new adjacent memory is
2446 normally prepended or appended to an existing segment. However,
2447 there are limitations compared to chunk consolidation that mostly
2448 reflect the fact that segment processing is relatively infrequent
2449 (occurring only when getting memory from system) and that we
2450 don't expect to have huge numbers of segments:
2451
2452 * Segments are not indexed, so traversal requires linear scans. (It
2453 would be possible to index these, but is not worth the extra
2454 overhead and complexity for most programs on most platforms.)
2455 * New segments are only appended to old ones when holding top-most
2456 memory; if they cannot be prepended to others, they are held in
2457 different segments.
2458
2459 Except for the top-most segment of an mstate, each segment record
2460 is kept at the tail of its segment. Segments are added by pushing
2461 segment records onto the list headed by &mstate.seg for the
2462 containing mstate.
2463
2464 Segment flags control allocation/merge/deallocation policies:
2465 * If EXTERN_BIT set, then we did not allocate this segment,
2466 and so should not try to deallocate or merge with others.
2467 (This currently holds only for the initial segment passed
2468 into create_mspace_with_base.)
2469 * If USE_MMAP_BIT set, the segment may be merged with
2470 other surrounding mmapped segments and trimmed/de-allocated
2471 using munmap.
2472 * If neither bit is set, then the segment was obtained using
2473 MORECORE so can be merged with surrounding MORECORE'd segments
2474 and deallocated/trimmed using MORECORE with negative arguments.
2475*/
2476
2477struct malloc_segment {
2478 char* base; /* base address */
2479 size_t size; /* allocated size */
2480 struct malloc_segment* next; /* ptr to next segment */
2481 flag_t sflags; /* mmap and extern flag */
2482};
2483
2484#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
2485#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
2486
2487typedef struct malloc_segment msegment;
2488typedef struct malloc_segment* msegmentptr;
2489
2490/* ---------------------------- malloc_state ----------------------------- */
2491
2492/*
2493 A malloc_state holds all of the bookkeeping for a space.
2494 The main fields are:
2495
2496 Top
2497 The topmost chunk of the currently active segment. Its size is
2498 cached in topsize. The actual size of topmost space is
2499 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2500 fenceposts and segment records if necessary when getting more
2501 space from the system. The size at which to autotrim top is
2502 cached from mparams in trim_check, except that it is disabled if
2503 an autotrim fails.
2504
2505 Designated victim (dv)
2506 This is the preferred chunk for servicing small requests that
2507 don't have exact fits. It is normally the chunk split off most
2508 recently to service another small request. Its size is cached in
2509 dvsize. The link fields of this chunk are not maintained since it
2510 is not kept in a bin.
2511
2512 SmallBins
2513 An array of bin headers for free chunks. These bins hold chunks
2514 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2515 chunks of all the same size, spaced 8 bytes apart. To simplify
2516 use in double-linked lists, each bin header acts as a malloc_chunk
2517 pointing to the real first node, if it exists (else pointing to
2518 itself). This avoids special-casing for headers. But to avoid
2519 waste, we allocate only the fd/bk pointers of bins, and then use
2520 repositioning tricks to treat these as the fields of a chunk.
2521
2522 TreeBins
2523 Treebins are pointers to the roots of trees holding a range of
2524 sizes. There are 2 equally spaced treebins for each power of two
2525 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2526 larger.
2527
2528 Bin maps
2529 There is one bit map for small bins ("smallmap") and one for
2530 treebins ("treemap). Each bin sets its bit when non-empty, and
2531 clears the bit when empty. Bit operations are then used to avoid
2532 bin-by-bin searching -- nearly all "search" is done without ever
2533 looking at bins that won't be selected. The bit maps
2534 conservatively use 32 bits per map word, even if on 64bit system.
2535 For a good description of some of the bit-based techniques used
2536 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2537 supplement at http://hackersdelight.org/). Many of these are
2538 intended to reduce the branchiness of paths through malloc etc, as
2539 well as to reduce the number of memory locations read or written.
2540
2541 Segments
2542 A list of segments headed by an embedded malloc_segment record
2543 representing the initial space.
2544
2545 Address check support
2546 The least_addr field is the least address ever obtained from
2547 MORECORE or MMAP. Attempted frees and reallocs of any address less
2548 than this are trapped (unless INSECURE is defined).
2549
2550 Magic tag
2551 A cross-check field that should always hold same value as mparams.magic.
2552
2553 Max allowed footprint
2554 The maximum allowed bytes to allocate from system (zero means no limit)
2555
2556 Flags
2557 Bits recording whether to use MMAP, locks, or contiguous MORECORE
2558
2559 Statistics
2560 Each space keeps track of current and maximum system memory
2561 obtained via MORECORE or MMAP.
2562
2563 Trim support
2564 Fields holding the amount of unused topmost memory that should trigger
2565 trimming, and a counter to force periodic scanning to release unused
2566 non-topmost segments.
2567
2568 Locking
2569 If USE_LOCKS is defined, the "mutex" lock is acquired and released
2570 around every public call using this mspace.
2571
2572 Extension support
2573 A void* pointer and a size_t field that can be used to help implement
2574 extensions to this malloc.
2575*/
2576
2577/* Bin types, widths and sizes */
2578#define NSMALLBINS (32U)
2579#define NTREEBINS (32U)
2580#define SMALLBIN_SHIFT (3U)
2581#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2582#define TREEBIN_SHIFT (8U)
2583#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2584#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2585#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2586
2587struct malloc_state {
2588 binmap_t smallmap;
2589 binmap_t treemap;
2590 size_t dvsize;
2591 size_t topsize;
2592 char* least_addr;
2593 mchunkptr dv;
2594 mchunkptr top;
2595 size_t trim_check;
2596 size_t release_checks;
2597 size_t magic;
2598 mchunkptr smallbins[(NSMALLBINS+1)*2];
2599 tbinptr treebins[NTREEBINS];
2600 size_t footprint;
2601 size_t max_footprint;
2602 size_t footprint_limit; /* zero means no limit */
2603 flag_t mflags;
2604#if USE_LOCKS
2605 MLOCK_T mutex; /* locate lock among fields that rarely change */
2606#endif /* USE_LOCKS */
2607 msegment seg;
2608 void* extp; /* Unused but available for extensions */
2609 size_t exts;
2610};
2611
2612typedef struct malloc_state* mstate;
2613
2614/* ------------- Global malloc_state and malloc_params ------------------- */
2615
2616/*
2617 malloc_params holds global properties, including those that can be
2618 dynamically set using mallopt. There is a single instance, mparams,
2619 initialized in init_mparams. Note that the non-zeroness of "magic"
2620 also serves as an initialization flag.
2621*/
2622
2623struct malloc_params {
2624 size_t magic;
2625 size_t page_size;
2626 size_t granularity;
2627 size_t mmap_threshold;
2628 size_t trim_threshold;
2629 flag_t default_mflags;
2630};
2631
2632static struct malloc_params mparams;
2633
2634/* Ensure mparams initialized */
2635#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
2636
2637#if !ONLY_MSPACES
2638
2639/* The global malloc_state used for all non-"mspace" calls */
2640static struct malloc_state _gm_;
2641#define gm (&_gm_)
2642#define is_global(M) ((M) == &_gm_)
2643
2644#endif /* !ONLY_MSPACES */
2645
2646#define is_initialized(M) ((M)->top != 0)
2647
2648/* -------------------------- system alloc setup ------------------------- */
2649
2650/* Operations on mflags */
2651
2652#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2653#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2654#if USE_LOCKS
2655#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2656#else
2657#define disable_lock(M)
2658#endif
2659
2660#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2661#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2662#if HAVE_MMAP
2663#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2664#else
2665#define disable_mmap(M)
2666#endif
2667
2668#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2669#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2670
2671#define set_lock(M,L)\
2672 ((M)->mflags = (L)?\
2673 ((M)->mflags | USE_LOCK_BIT) :\
2674 ((M)->mflags & ~USE_LOCK_BIT))
2675
2676/* page-align a size */
2677#define page_align(S)\
2678 (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
2679
2680/* granularity-align a size */
2681#define granularity_align(S)\
2682 (((S) + (mparams.granularity - SIZE_T_ONE))\
2683 & ~(mparams.granularity - SIZE_T_ONE))
2684
2685
2686/* For mmap, use granularity alignment on windows, else page-align */
2687#ifdef WIN32
2688#define mmap_align(S) granularity_align(S)
2689#else
2690#define mmap_align(S) page_align(S)
2691#endif
2692
2693/* For sys_alloc, enough padding to ensure can malloc request on success */
2694#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
2695
2696#define is_page_aligned(S)\
2697 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2698#define is_granularity_aligned(S)\
2699 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2700
2701/* True if segment S holds address A */
2702#define segment_holds(S, A)\
2703 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2704
2705/* Return segment holding given address */
2706static msegmentptr segment_holding(mstate m, char* addr) {
2707 msegmentptr sp = &m->seg;
2708 for (;;) {
2709 if (addr >= sp->base && addr < sp->base + sp->size)
2710 return sp;
2711 if ((sp = sp->next) == 0)
2712 return 0;
2713 }
2714}
2715
2716/* Return true if segment contains a segment link */
2717static int has_segment_link(mstate m, msegmentptr ss) {
2718 msegmentptr sp = &m->seg;
2719 for (;;) {
2720 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2721 return 1;
2722 if ((sp = sp->next) == 0)
2723 return 0;
2724 }
2725}
2726
2727#ifndef MORECORE_CANNOT_TRIM
2728#define should_trim(M,s) ((s) > (M)->trim_check)
2729#else /* MORECORE_CANNOT_TRIM */
2730#define should_trim(M,s) (0)
2731#endif /* MORECORE_CANNOT_TRIM */
2732
2733/*
2734 TOP_FOOT_SIZE is padding at the end of a segment, including space
2735 that may be needed to place segment records and fenceposts when new
2736 noncontiguous segments are added.
2737*/
2738#define TOP_FOOT_SIZE\
2739 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2740
2741
2742/* ------------------------------- Hooks -------------------------------- */
2743
2744/*
2745 PREACTION should be defined to return 0 on success, and nonzero on
2746 failure. If you are not using locking, you can redefine these to do
2747 anything you like.
2748*/
2749
2750#if USE_LOCKS
2751#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2752#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2753#else /* USE_LOCKS */
2754
2755#ifndef PREACTION
2756#define PREACTION(M) (0)
2757#endif /* PREACTION */
2758
2759#ifndef POSTACTION
2760#define POSTACTION(M)
2761#endif /* POSTACTION */
2762
2763#endif /* USE_LOCKS */
2764
2765/*
2766 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2767 USAGE_ERROR_ACTION is triggered on detected bad frees and
2768 reallocs. The argument p is an address that might have triggered the
2769 fault. It is ignored by the two predefined actions, but might be
2770 useful in custom actions that try to help diagnose errors.
2771*/
2772
2773#if PROCEED_ON_ERROR
2774
2775/* A count of the number of corruption errors causing resets */
2776int malloc_corruption_error_count;
2777
2778/* default corruption action */
2779static void reset_on_error(mstate m);
2780
2781#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2782#define USAGE_ERROR_ACTION(m, p)
2783
2784#else /* PROCEED_ON_ERROR */
2785
2786#ifndef CORRUPTION_ERROR_ACTION
2787#define CORRUPTION_ERROR_ACTION(m) ABORT
2788#endif /* CORRUPTION_ERROR_ACTION */
2789
2790#ifndef USAGE_ERROR_ACTION
2791#define USAGE_ERROR_ACTION(m,p) ABORT
2792#endif /* USAGE_ERROR_ACTION */
2793
2794#endif /* PROCEED_ON_ERROR */
2795
2796
2797/* -------------------------- Debugging setup ---------------------------- */
2798
2799#if ! DEBUG
2800
2801#define check_free_chunk(M,P)
2802#define check_inuse_chunk(M,P)
2803#define check_malloced_chunk(M,P,N)
2804#define check_mmapped_chunk(M,P)
2805#define check_malloc_state(M)
2806#define check_top_chunk(M,P)
2807
2808#else /* DEBUG */
2809#define check_free_chunk(M,P) do_check_free_chunk(M,P)
2810#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2811#define check_top_chunk(M,P) do_check_top_chunk(M,P)
2812#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2813#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2814#define check_malloc_state(M) do_check_malloc_state(M)
2815
2816static void do_check_any_chunk(mstate m, mchunkptr p);
2817static void do_check_top_chunk(mstate m, mchunkptr p);
2818static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2819static void do_check_inuse_chunk(mstate m, mchunkptr p);
2820static void do_check_free_chunk(mstate m, mchunkptr p);
2821static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2822static void do_check_tree(mstate m, tchunkptr t);
2823static void do_check_treebin(mstate m, bindex_t i);
2824static void do_check_smallbin(mstate m, bindex_t i);
2825static void do_check_malloc_state(mstate m);
2826static int bin_find(mstate m, mchunkptr x);
2827static size_t traverse_and_check(mstate m);
2828#endif /* DEBUG */
2829
2830/* ---------------------------- Indexing Bins ---------------------------- */
2831
2832#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2833#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
2834#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2835#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2836
2837/* addressing by index. See above about smallbin repositioning */
2838#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2839#define treebin_at(M,i) (&((M)->treebins[i]))
2840
2841/* assign tree index for size S to variable I. Use x86 asm if possible */
f2a35a45 2842#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__) || defined(__wasm__))
dbfccac2
DG
2843#define compute_tree_index(S, I)\
2844{\
2845 unsigned int X = S >> TREEBIN_SHIFT;\
2846 if (X == 0)\
2847 I = 0;\
2848 else if (X > 0xFFFF)\
2849 I = NTREEBINS-1;\
2850 else {\
2851 unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
2852 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2853 }\
2854}
2855
2856#elif defined (__INTEL_COMPILER)
2857#define compute_tree_index(S, I)\
2858{\
2859 size_t X = S >> TREEBIN_SHIFT;\
2860 if (X == 0)\
2861 I = 0;\
2862 else if (X > 0xFFFF)\
2863 I = NTREEBINS-1;\
2864 else {\
2865 unsigned int K = _bit_scan_reverse (X); \
2866 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2867 }\
2868}
2869
2870#elif defined(_MSC_VER) && _MSC_VER>=1300
2871#define compute_tree_index(S, I)\
2872{\
2873 size_t X = S >> TREEBIN_SHIFT;\
2874 if (X == 0)\
2875 I = 0;\
2876 else if (X > 0xFFFF)\
2877 I = NTREEBINS-1;\
2878 else {\
2879 unsigned int K;\
2880 _BitScanReverse((DWORD *) &K, (DWORD) X);\
2881 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2882 }\
2883}
2884
2885#else /* GNUC */
2886#define compute_tree_index(S, I)\
2887{\
2888 size_t X = S >> TREEBIN_SHIFT;\
2889 if (X == 0)\
2890 I = 0;\
2891 else if (X > 0xFFFF)\
2892 I = NTREEBINS-1;\
2893 else {\
2894 unsigned int Y = (unsigned int)X;\
2895 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2896 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2897 N += K;\
2898 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2899 K = 14 - N + ((Y <<= K) >> 15);\
2900 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2901 }\
2902}
2903#endif /* GNUC */
2904
2905/* Bit representing maximum resolved size in a treebin at i */
2906#define bit_for_tree_index(i) \
2907 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2908
2909/* Shift placing maximum resolved bit in a treebin at i as sign bit */
2910#define leftshift_for_tree_index(i) \
2911 ((i == NTREEBINS-1)? 0 : \
2912 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2913
2914/* The size of the smallest chunk held in bin with index i */
2915#define minsize_for_tree_index(i) \
2916 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2917 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2918
2919
2920/* ------------------------ Operations on bin maps ----------------------- */
2921
2922/* bit corresponding to given index */
2923#define idx2bit(i) ((binmap_t)(1) << (i))
2924
2925/* Mark/Clear bits with given index */
2926#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2927#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2928#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2929
2930#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2931#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2932#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2933
2934/* isolate the least set bit of a bitmap */
2935#define least_bit(x) ((x) & -(x))
2936
2937/* mask with all bits to left of least bit of x on */
2938#define left_bits(x) ((x<<1) | -(x<<1))
2939
2940/* mask with all bits to left of or equal to least bit of x on */
2941#define same_or_left_bits(x) ((x) | -(x))
2942
2943/* index corresponding to given bit. Use x86 asm if possible */
2944
f2a35a45 2945#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__) || defined(__wasm__))
dbfccac2
DG
2946#define compute_bit2idx(X, I)\
2947{\
2948 unsigned int J;\
2949 J = __builtin_ctz(X); \
2950 I = (bindex_t)J;\
2951}
2952
2953#elif defined (__INTEL_COMPILER)
2954#define compute_bit2idx(X, I)\
2955{\
2956 unsigned int J;\
2957 J = _bit_scan_forward (X); \
2958 I = (bindex_t)J;\
2959}
2960
2961#elif defined(_MSC_VER) && _MSC_VER>=1300
2962#define compute_bit2idx(X, I)\
2963{\
2964 unsigned int J;\
2965 _BitScanForward((DWORD *) &J, X);\
2966 I = (bindex_t)J;\
2967}
2968
2969#elif USE_BUILTIN_FFS
2970#define compute_bit2idx(X, I) I = ffs(X)-1
2971
2972#else
2973#define compute_bit2idx(X, I)\
2974{\
2975 unsigned int Y = X - 1;\
2976 unsigned int K = Y >> (16-4) & 16;\
2977 unsigned int N = K; Y >>= K;\
2978 N += K = Y >> (8-3) & 8; Y >>= K;\
2979 N += K = Y >> (4-2) & 4; Y >>= K;\
2980 N += K = Y >> (2-1) & 2; Y >>= K;\
2981 N += K = Y >> (1-0) & 1; Y >>= K;\
2982 I = (bindex_t)(N + Y);\
2983}
2984#endif /* GNUC */
2985
2986
2987/* ----------------------- Runtime Check Support ------------------------- */
2988
2989/*
2990 For security, the main invariant is that malloc/free/etc never
2991 writes to a static address other than malloc_state, unless static
2992 malloc_state itself has been corrupted, which cannot occur via
2993 malloc (because of these checks). In essence this means that we
2994 believe all pointers, sizes, maps etc held in malloc_state, but
2995 check all of those linked or offsetted from other embedded data
2996 structures. These checks are interspersed with main code in a way
2997 that tends to minimize their run-time cost.
2998
2999 When FOOTERS is defined, in addition to range checking, we also
3000 verify footer fields of inuse chunks, which can be used guarantee
3001 that the mstate controlling malloc/free is intact. This is a
3002 streamlined version of the approach described by William Robertson
3003 et al in "Run-time Detection of Heap-based Overflows" LISA'03
3004 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
3005 of an inuse chunk holds the xor of its mstate and a random seed,
3006 that is checked upon calls to free() and realloc(). This is
3007 (probabalistically) unguessable from outside the program, but can be
3008 computed by any code successfully malloc'ing any chunk, so does not
3009 itself provide protection against code that has already broken
3010 security through some other means. Unlike Robertson et al, we
3011 always dynamically check addresses of all offset chunks (previous,
3012 next, etc). This turns out to be cheaper than relying on hashes.
3013*/
3014
3015#if !INSECURE
3016/* Check if address a is at least as high as any from MORECORE or MMAP */
3017#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
3018/* Check if address of next chunk n is higher than base chunk p */
3019#define ok_next(p, n) ((char*)(p) < (char*)(n))
3020/* Check if p has inuse status */
3021#define ok_inuse(p) is_inuse(p)
3022/* Check if p has its pinuse bit on */
3023#define ok_pinuse(p) pinuse(p)
3024
3025#else /* !INSECURE */
3026#define ok_address(M, a) (1)
3027#define ok_next(b, n) (1)
3028#define ok_inuse(p) (1)
3029#define ok_pinuse(p) (1)
3030#endif /* !INSECURE */
3031
3032#if (FOOTERS && !INSECURE)
3033/* Check if (alleged) mstate m has expected magic field */
3034#define ok_magic(M) ((M)->magic == mparams.magic)
3035#else /* (FOOTERS && !INSECURE) */
3036#define ok_magic(M) (1)
3037#endif /* (FOOTERS && !INSECURE) */
3038
3039/* In gcc, use __builtin_expect to minimize impact of checks */
3040#if !INSECURE
3041#if defined(__GNUC__) && __GNUC__ >= 3
3042#define RTCHECK(e) __builtin_expect(e, 1)
3043#else /* GNUC */
3044#define RTCHECK(e) (e)
3045#endif /* GNUC */
3046#else /* !INSECURE */
3047#define RTCHECK(e) (1)
3048#endif /* !INSECURE */
3049
3050/* macros to set up inuse chunks with or without footers */
3051
3052#if !FOOTERS
3053
3054#define mark_inuse_foot(M,p,s)
3055
3056/* Macros for setting head/foot of non-mmapped chunks */
3057
3058/* Set cinuse bit and pinuse bit of next chunk */
3059#define set_inuse(M,p,s)\
3060 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3061 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3062
3063/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
3064#define set_inuse_and_pinuse(M,p,s)\
3065 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3066 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
3067
3068/* Set size, cinuse and pinuse bit of this chunk */
3069#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3070 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
3071
3072#else /* FOOTERS */
3073
3074/* Set foot of inuse chunk to be xor of mstate and seed */
3075#define mark_inuse_foot(M,p,s)\
3076 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
3077
3078#define get_mstate_for(p)\
3079 ((mstate)(((mchunkptr)((char*)(p) +\
3080 (chunksize(p))))->prev_foot ^ mparams.magic))
3081
3082#define set_inuse(M,p,s)\
3083 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
3084 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
3085 mark_inuse_foot(M,p,s))
3086
3087#define set_inuse_and_pinuse(M,p,s)\
3088 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3089 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
3090 mark_inuse_foot(M,p,s))
3091
3092#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
3093 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
3094 mark_inuse_foot(M, p, s))
3095
3096#endif /* !FOOTERS */
3097
3098/* ---------------------------- setting mparams -------------------------- */
3099
3100#if LOCK_AT_FORK
3101static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
3102static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
3103static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
3104#endif /* LOCK_AT_FORK */
3105
3106/* Initialize mparams */
3107static int init_mparams(void) {
3108#ifdef NEED_GLOBAL_LOCK_INIT
3109 if (malloc_global_mutex_status <= 0)
3110 init_malloc_global_mutex();
3111#endif
3112
3113 ACQUIRE_MALLOC_GLOBAL_LOCK();
3114 if (mparams.magic == 0) {
3115 size_t magic;
3116 size_t psize;
3117 size_t gsize;
3118
3119#ifndef WIN32
3120 psize = malloc_getpagesize;
3121 gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
3122#else /* WIN32 */
3123 {
3124 SYSTEM_INFO system_info;
3125 GetSystemInfo(&system_info);
3126 psize = system_info.dwPageSize;
3127 gsize = ((DEFAULT_GRANULARITY != 0)?
3128 DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
3129 }
3130#endif /* WIN32 */
3131
3132 /* Sanity-check configuration:
3133 size_t must be unsigned and as wide as pointer type.
3134 ints must be at least 4 bytes.
3135 alignment must be at least 8.
3136 Alignment, min chunk size, and page size must all be powers of 2.
3137 */
3138 if ((sizeof(size_t) != sizeof(char*)) ||
3139 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
3140 (sizeof(int) < 4) ||
3141 (MALLOC_ALIGNMENT < (size_t)8U) ||
3142 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
3143 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
3144 ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
3145 ((psize & (psize-SIZE_T_ONE)) != 0))
3146 ABORT;
3147 mparams.granularity = gsize;
3148 mparams.page_size = psize;
3149 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
3150 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
3151#if MORECORE_CONTIGUOUS
3152 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
3153#else /* MORECORE_CONTIGUOUS */
3154 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
3155#endif /* MORECORE_CONTIGUOUS */
3156
3157#if !ONLY_MSPACES
3158 /* Set up lock for main malloc area */
3159 gm->mflags = mparams.default_mflags;
3160 (void)INITIAL_LOCK(&gm->mutex);
3161#endif
3162#if LOCK_AT_FORK
3163 pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
3164#endif
3165
3166 {
3167#if USE_DEV_RANDOM
3168 int fd;
3169 unsigned char buf[sizeof(size_t)];
3170 /* Try to use /dev/urandom, else fall back on using time */
3171 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
3172 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
3173 magic = *((size_t *) buf);
3174 close(fd);
3175 }
3176 else
3177#endif /* USE_DEV_RANDOM */
3178#ifdef WIN32
3179 magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
3180#elif defined(LACKS_TIME_H)
3181 magic = (size_t)&magic ^ (size_t)0x55555555U;
3182#else
3183 magic = (size_t)(time(0) ^ (size_t)0x55555555U);
3184#endif
3185 magic |= (size_t)8U; /* ensure nonzero */
3186 magic &= ~(size_t)7U; /* improve chances of fault for bad values */
3187 /* Until memory modes commonly available, use volatile-write */
3188 (*(volatile size_t *)(&(mparams.magic))) = magic;
3189 }
3190 }
3191
3192 RELEASE_MALLOC_GLOBAL_LOCK();
3193 return 1;
3194}
3195
3196/* support for mallopt */
3197static int change_mparam(int param_number, int value) {
3198 size_t val;
3199 ensure_initialization();
3200 val = (value == -1)? MAX_SIZE_T : (size_t)value;
3201 switch(param_number) {
3202 case M_TRIM_THRESHOLD:
3203 mparams.trim_threshold = val;
3204 return 1;
3205 case M_GRANULARITY:
3206 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
3207 mparams.granularity = val;
3208 return 1;
3209 }
3210 else
3211 return 0;
3212 case M_MMAP_THRESHOLD:
3213 mparams.mmap_threshold = val;
3214 return 1;
3215 default:
3216 return 0;
3217 }
3218}
3219
3220#if DEBUG
3221/* ------------------------- Debugging Support --------------------------- */
3222
3223/* Check properties of any chunk, whether free, inuse, mmapped etc */
3224static void do_check_any_chunk(mstate m, mchunkptr p) {
3225 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3226 assert(ok_address(m, p));
3227}
3228
3229/* Check properties of top chunk */
3230static void do_check_top_chunk(mstate m, mchunkptr p) {
3231 msegmentptr sp = segment_holding(m, (char*)p);
3232 size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
3233 assert(sp != 0);
3234 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3235 assert(ok_address(m, p));
3236 assert(sz == m->topsize);
3237 assert(sz > 0);
3238 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
3239 assert(pinuse(p));
3240 assert(!pinuse(chunk_plus_offset(p, sz)));
3241}
3242
3243/* Check properties of (inuse) mmapped chunks */
3244static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
3245 size_t sz = chunksize(p);
3246 size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
3247 assert(is_mmapped(p));
3248 assert(use_mmap(m));
3249 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3250 assert(ok_address(m, p));
3251 assert(!is_small(sz));
3252 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
3253 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
3254 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
3255}
3256
3257/* Check properties of inuse chunks */
3258static void do_check_inuse_chunk(mstate m, mchunkptr p) {
3259 do_check_any_chunk(m, p);
3260 assert(is_inuse(p));
3261 assert(next_pinuse(p));
3262 /* If not pinuse and not mmapped, previous chunk has OK offset */
3263 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
3264 if (is_mmapped(p))
3265 do_check_mmapped_chunk(m, p);
3266}
3267
3268/* Check properties of free chunks */
3269static void do_check_free_chunk(mstate m, mchunkptr p) {
3270 size_t sz = chunksize(p);
3271 mchunkptr next = chunk_plus_offset(p, sz);
3272 do_check_any_chunk(m, p);
3273 assert(!is_inuse(p));
3274 assert(!next_pinuse(p));
3275 assert (!is_mmapped(p));
3276 if (p != m->dv && p != m->top) {
3277 if (sz >= MIN_CHUNK_SIZE) {
3278 assert((sz & CHUNK_ALIGN_MASK) == 0);
3279 assert(is_aligned(chunk2mem(p)));
3280 assert(next->prev_foot == sz);
3281 assert(pinuse(p));
3282 assert (next == m->top || is_inuse(next));
3283 assert(p->fd->bk == p);
3284 assert(p->bk->fd == p);
3285 }
3286 else /* markers are always of size SIZE_T_SIZE */
3287 assert(sz == SIZE_T_SIZE);
3288 }
3289}
3290
3291/* Check properties of malloced chunks at the point they are malloced */
3292static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
3293 if (mem != 0) {
3294 mchunkptr p = mem2chunk(mem);
3295 size_t sz = p->head & ~INUSE_BITS;
3296 do_check_inuse_chunk(m, p);
3297 assert((sz & CHUNK_ALIGN_MASK) == 0);
3298 assert(sz >= MIN_CHUNK_SIZE);
3299 assert(sz >= s);
3300 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
3301 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
3302 }
3303}
3304
3305/* Check a tree and its subtrees. */
3306static void do_check_tree(mstate m, tchunkptr t) {
3307 tchunkptr head = 0;
3308 tchunkptr u = t;
3309 bindex_t tindex = t->index;
3310 size_t tsize = chunksize(t);
3311 bindex_t idx;
3312 compute_tree_index(tsize, idx);
3313 assert(tindex == idx);
3314 assert(tsize >= MIN_LARGE_SIZE);
3315 assert(tsize >= minsize_for_tree_index(idx));
3316 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
3317
3318 do { /* traverse through chain of same-sized nodes */
3319 do_check_any_chunk(m, ((mchunkptr)u));
3320 assert(u->index == tindex);
3321 assert(chunksize(u) == tsize);
3322 assert(!is_inuse(u));
3323 assert(!next_pinuse(u));
3324 assert(u->fd->bk == u);
3325 assert(u->bk->fd == u);
3326 if (u->parent == 0) {
3327 assert(u->child[0] == 0);
3328 assert(u->child[1] == 0);
3329 }
3330 else {
3331 assert(head == 0); /* only one node on chain has parent */
3332 head = u;
3333 assert(u->parent != u);
3334 assert (u->parent->child[0] == u ||
3335 u->parent->child[1] == u ||
3336 *((tbinptr*)(u->parent)) == u);
3337 if (u->child[0] != 0) {
3338 assert(u->child[0]->parent == u);
3339 assert(u->child[0] != u);
3340 do_check_tree(m, u->child[0]);
3341 }
3342 if (u->child[1] != 0) {
3343 assert(u->child[1]->parent == u);
3344 assert(u->child[1] != u);
3345 do_check_tree(m, u->child[1]);
3346 }
3347 if (u->child[0] != 0 && u->child[1] != 0) {
3348 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
3349 }
3350 }
3351 u = u->fd;
3352 } while (u != t);
3353 assert(head != 0);
3354}
3355
3356/* Check all the chunks in a treebin. */
3357static void do_check_treebin(mstate m, bindex_t i) {
3358 tbinptr* tb = treebin_at(m, i);
3359 tchunkptr t = *tb;
3360 int empty = (m->treemap & (1U << i)) == 0;
3361 if (t == 0)
3362 assert(empty);
3363 if (!empty)
3364 do_check_tree(m, t);
3365}
3366
3367/* Check all the chunks in a smallbin. */
3368static void do_check_smallbin(mstate m, bindex_t i) {
3369 sbinptr b = smallbin_at(m, i);
3370 mchunkptr p = b->bk;
3371 unsigned int empty = (m->smallmap & (1U << i)) == 0;
3372 if (p == b)
3373 assert(empty);
3374 if (!empty) {
3375 for (; p != b; p = p->bk) {
3376 size_t size = chunksize(p);
3377 mchunkptr q;
3378 /* each chunk claims to be free */
3379 do_check_free_chunk(m, p);
3380 /* chunk belongs in bin */
3381 assert(small_index(size) == i);
3382 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
3383 /* chunk is followed by an inuse chunk */
3384 q = next_chunk(p);
3385 if (q->head != FENCEPOST_HEAD)
3386 do_check_inuse_chunk(m, q);
3387 }
3388 }
3389}
3390
3391/* Find x in a bin. Used in other check functions. */
3392static int bin_find(mstate m, mchunkptr x) {
3393 size_t size = chunksize(x);
3394 if (is_small(size)) {
3395 bindex_t sidx = small_index(size);
3396 sbinptr b = smallbin_at(m, sidx);
3397 if (smallmap_is_marked(m, sidx)) {
3398 mchunkptr p = b;
3399 do {
3400 if (p == x)
3401 return 1;
3402 } while ((p = p->fd) != b);
3403 }
3404 }
3405 else {
3406 bindex_t tidx;
3407 compute_tree_index(size, tidx);
3408 if (treemap_is_marked(m, tidx)) {
3409 tchunkptr t = *treebin_at(m, tidx);
3410 size_t sizebits = size << leftshift_for_tree_index(tidx);
3411 while (t != 0 && chunksize(t) != size) {
3412 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3413 sizebits <<= 1;
3414 }
3415 if (t != 0) {
3416 tchunkptr u = t;
3417 do {
3418 if (u == (tchunkptr)x)
3419 return 1;
3420 } while ((u = u->fd) != t);
3421 }
3422 }
3423 }
3424 return 0;
3425}
3426
3427/* Traverse each chunk and check it; return total */
3428static size_t traverse_and_check(mstate m) {
3429 size_t sum = 0;
3430 if (is_initialized(m)) {
3431 msegmentptr s = &m->seg;
3432 sum += m->topsize + TOP_FOOT_SIZE;
3433 while (s != 0) {
3434 mchunkptr q = align_as_chunk(s->base);
3435 mchunkptr lastq = 0;
3436 assert(pinuse(q));
3437 while (segment_holds(s, q) &&
3438 q != m->top && q->head != FENCEPOST_HEAD) {
3439 sum += chunksize(q);
3440 if (is_inuse(q)) {
3441 assert(!bin_find(m, q));
3442 do_check_inuse_chunk(m, q);
3443 }
3444 else {
3445 assert(q == m->dv || bin_find(m, q));
3446 assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
3447 do_check_free_chunk(m, q);
3448 }
3449 lastq = q;
3450 q = next_chunk(q);
3451 }
3452 s = s->next;
3453 }
3454 }
3455 return sum;
3456}
3457
3458
3459/* Check all properties of malloc_state. */
3460static void do_check_malloc_state(mstate m) {
3461 bindex_t i;
3462 size_t total;
3463 /* check bins */
3464 for (i = 0; i < NSMALLBINS; ++i)
3465 do_check_smallbin(m, i);
3466 for (i = 0; i < NTREEBINS; ++i)
3467 do_check_treebin(m, i);
3468
3469 if (m->dvsize != 0) { /* check dv chunk */
3470 do_check_any_chunk(m, m->dv);
3471 assert(m->dvsize == chunksize(m->dv));
3472 assert(m->dvsize >= MIN_CHUNK_SIZE);
3473 assert(bin_find(m, m->dv) == 0);
3474 }
3475
3476 if (m->top != 0) { /* check top chunk */
3477 do_check_top_chunk(m, m->top);
3478 /*assert(m->topsize == chunksize(m->top)); redundant */
3479 assert(m->topsize > 0);
3480 assert(bin_find(m, m->top) == 0);
3481 }
3482
3483 total = traverse_and_check(m);
3484 assert(total <= m->footprint);
3485 assert(m->footprint <= m->max_footprint);
3486}
3487#endif /* DEBUG */
3488
3489/* ----------------------------- statistics ------------------------------ */
3490
3491#if !NO_MALLINFO
3492static struct mallinfo internal_mallinfo(mstate m) {
3493 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
3494 ensure_initialization();
3495 if (!PREACTION(m)) {
3496 check_malloc_state(m);
3497 if (is_initialized(m)) {
3498 size_t nfree = SIZE_T_ONE; /* top always free */
3499 size_t mfree = m->topsize + TOP_FOOT_SIZE;
3500 size_t sum = mfree;
3501 msegmentptr s = &m->seg;
3502 while (s != 0) {
3503 mchunkptr q = align_as_chunk(s->base);
3504 while (segment_holds(s, q) &&
3505 q != m->top && q->head != FENCEPOST_HEAD) {
3506 size_t sz = chunksize(q);
3507 sum += sz;
3508 if (!is_inuse(q)) {
3509 mfree += sz;
3510 ++nfree;
3511 }
3512 q = next_chunk(q);
3513 }
3514 s = s->next;
3515 }
3516
3517 nm.arena = sum;
3518 nm.ordblks = nfree;
3519 nm.hblkhd = m->footprint - sum;
3520 nm.usmblks = m->max_footprint;
3521 nm.uordblks = m->footprint - mfree;
3522 nm.fordblks = mfree;
3523 nm.keepcost = m->topsize;
3524 }
3525
3526 POSTACTION(m);
3527 }
3528 return nm;
3529}
3530#endif /* !NO_MALLINFO */
3531
3532#if !NO_MALLOC_STATS
3533static void internal_malloc_stats(mstate m) {
3534 ensure_initialization();
3535 if (!PREACTION(m)) {
3536 size_t maxfp = 0;
3537 size_t fp = 0;
3538 size_t used = 0;
3539 check_malloc_state(m);
3540 if (is_initialized(m)) {
3541 msegmentptr s = &m->seg;
3542 maxfp = m->max_footprint;
3543 fp = m->footprint;
3544 used = fp - (m->topsize + TOP_FOOT_SIZE);
3545
3546 while (s != 0) {
3547 mchunkptr q = align_as_chunk(s->base);
3548 while (segment_holds(s, q) &&
3549 q != m->top && q->head != FENCEPOST_HEAD) {
3550 if (!is_inuse(q))
3551 used -= chunksize(q);
3552 q = next_chunk(q);
3553 }
3554 s = s->next;
3555 }
3556 }
3557 POSTACTION(m); /* drop lock */
3558 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3559 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
3560 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
3561 }
3562}
3563#endif /* NO_MALLOC_STATS */
3564
3565/* ----------------------- Operations on smallbins ----------------------- */
3566
3567/*
3568 Various forms of linking and unlinking are defined as macros. Even
3569 the ones for trees, which are very long but have very short typical
3570 paths. This is ugly but reduces reliance on inlining support of
3571 compilers.
3572*/
3573
3574/* Link a free chunk into a smallbin */
3575#define insert_small_chunk(M, P, S) {\
3576 bindex_t I = small_index(S);\
3577 mchunkptr B = smallbin_at(M, I);\
3578 mchunkptr F = B;\
3579 assert(S >= MIN_CHUNK_SIZE);\
3580 if (!smallmap_is_marked(M, I))\
3581 mark_smallmap(M, I);\
3582 else if (RTCHECK(ok_address(M, B->fd)))\
3583 F = B->fd;\
3584 else {\
3585 CORRUPTION_ERROR_ACTION(M);\
3586 }\
3587 B->fd = P;\
3588 F->bk = P;\
3589 P->fd = F;\
3590 P->bk = B;\
3591}
3592
3593/* Unlink a chunk from a smallbin */
3594#define unlink_small_chunk(M, P, S) {\
3595 mchunkptr F = P->fd;\
3596 mchunkptr B = P->bk;\
3597 bindex_t I = small_index(S);\
3598 assert(P != B);\
3599 assert(P != F);\
3600 assert(chunksize(P) == small_index2size(I));\
3601 if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
3602 if (B == F) {\
3603 clear_smallmap(M, I);\
3604 }\
3605 else if (RTCHECK(B == smallbin_at(M,I) ||\
3606 (ok_address(M, B) && B->fd == P))) {\
3607 F->bk = B;\
3608 B->fd = F;\
3609 }\
3610 else {\
3611 CORRUPTION_ERROR_ACTION(M);\
3612 }\
3613 }\
3614 else {\
3615 CORRUPTION_ERROR_ACTION(M);\
3616 }\
3617}
3618
3619/* Unlink the first chunk from a smallbin */
3620#define unlink_first_small_chunk(M, B, P, I) {\
3621 mchunkptr F = P->fd;\
3622 assert(P != B);\
3623 assert(P != F);\
3624 assert(chunksize(P) == small_index2size(I));\
3625 if (B == F) {\
3626 clear_smallmap(M, I);\
3627 }\
3628 else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
3629 F->bk = B;\
3630 B->fd = F;\
3631 }\
3632 else {\
3633 CORRUPTION_ERROR_ACTION(M);\
3634 }\
3635}
3636
3637/* Replace dv node, binning the old one */
3638/* Used only when dvsize known to be small */
3639#define replace_dv(M, P, S) {\
3640 size_t DVS = M->dvsize;\
3641 assert(is_small(DVS));\
3642 if (DVS != 0) {\
3643 mchunkptr DV = M->dv;\
3644 insert_small_chunk(M, DV, DVS);\
3645 }\
3646 M->dvsize = S;\
3647 M->dv = P;\
3648}
3649
3650/* ------------------------- Operations on trees ------------------------- */
3651
3652/* Insert chunk into tree */
3653#define insert_large_chunk(M, X, S) {\
3654 tbinptr* H;\
3655 bindex_t I;\
3656 compute_tree_index(S, I);\
3657 H = treebin_at(M, I);\
3658 X->index = I;\
3659 X->child[0] = X->child[1] = 0;\
3660 if (!treemap_is_marked(M, I)) {\
3661 mark_treemap(M, I);\
3662 *H = X;\
3663 X->parent = (tchunkptr)H;\
3664 X->fd = X->bk = X;\
3665 }\
3666 else {\
3667 tchunkptr T = *H;\
3668 size_t K = S << leftshift_for_tree_index(I);\
3669 for (;;) {\
3670 if (chunksize(T) != S) {\
3671 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3672 K <<= 1;\
3673 if (*C != 0)\
3674 T = *C;\
3675 else if (RTCHECK(ok_address(M, C))) {\
3676 *C = X;\
3677 X->parent = T;\
3678 X->fd = X->bk = X;\
3679 break;\
3680 }\
3681 else {\
3682 CORRUPTION_ERROR_ACTION(M);\
3683 break;\
3684 }\
3685 }\
3686 else {\
3687 tchunkptr F = T->fd;\
3688 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3689 T->fd = F->bk = X;\
3690 X->fd = F;\
3691 X->bk = T;\
3692 X->parent = 0;\
3693 break;\
3694 }\
3695 else {\
3696 CORRUPTION_ERROR_ACTION(M);\
3697 break;\
3698 }\
3699 }\
3700 }\
3701 }\
3702}
3703
3704/*
3705 Unlink steps:
3706
3707 1. If x is a chained node, unlink it from its same-sized fd/bk links
3708 and choose its bk node as its replacement.
3709 2. If x was the last node of its size, but not a leaf node, it must
3710 be replaced with a leaf node (not merely one with an open left or
3711 right), to make sure that lefts and rights of descendents
3712 correspond properly to bit masks. We use the rightmost descendent
3713 of x. We could use any other leaf, but this is easy to locate and
3714 tends to counteract removal of leftmosts elsewhere, and so keeps
3715 paths shorter than minimally guaranteed. This doesn't loop much
3716 because on average a node in a tree is near the bottom.
3717 3. If x is the base of a chain (i.e., has parent links) relink
3718 x's parent and children to x's replacement (or null if none).
3719*/
3720
3721#define unlink_large_chunk(M, X) {\
3722 tchunkptr XP = X->parent;\
3723 tchunkptr R;\
3724 if (X->bk != X) {\
3725 tchunkptr F = X->fd;\
3726 R = X->bk;\
3727 if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
3728 F->bk = R;\
3729 R->fd = F;\
3730 }\
3731 else {\
3732 CORRUPTION_ERROR_ACTION(M);\
3733 }\
3734 }\
3735 else {\
3736 tchunkptr* RP;\
3737 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3738 ((R = *(RP = &(X->child[0]))) != 0)) {\
3739 tchunkptr* CP;\
3740 while ((*(CP = &(R->child[1])) != 0) ||\
3741 (*(CP = &(R->child[0])) != 0)) {\
3742 R = *(RP = CP);\
3743 }\
3744 if (RTCHECK(ok_address(M, RP)))\
3745 *RP = 0;\
3746 else {\
3747 CORRUPTION_ERROR_ACTION(M);\
3748 }\
3749 }\
3750 }\
3751 if (XP != 0) {\
3752 tbinptr* H = treebin_at(M, X->index);\
3753 if (X == *H) {\
3754 if ((*H = R) == 0) \
3755 clear_treemap(M, X->index);\
3756 }\
3757 else if (RTCHECK(ok_address(M, XP))) {\
3758 if (XP->child[0] == X) \
3759 XP->child[0] = R;\
3760 else \
3761 XP->child[1] = R;\
3762 }\
3763 else\
3764 CORRUPTION_ERROR_ACTION(M);\
3765 if (R != 0) {\
3766 if (RTCHECK(ok_address(M, R))) {\
3767 tchunkptr C0, C1;\
3768 R->parent = XP;\
3769 if ((C0 = X->child[0]) != 0) {\
3770 if (RTCHECK(ok_address(M, C0))) {\
3771 R->child[0] = C0;\
3772 C0->parent = R;\
3773 }\
3774 else\
3775 CORRUPTION_ERROR_ACTION(M);\
3776 }\
3777 if ((C1 = X->child[1]) != 0) {\
3778 if (RTCHECK(ok_address(M, C1))) {\
3779 R->child[1] = C1;\
3780 C1->parent = R;\
3781 }\
3782 else\
3783 CORRUPTION_ERROR_ACTION(M);\
3784 }\
3785 }\
3786 else\
3787 CORRUPTION_ERROR_ACTION(M);\
3788 }\
3789 }\
3790}
3791
3792/* Relays to large vs small bin operations */
3793
3794#define insert_chunk(M, P, S)\
3795 if (is_small(S)) insert_small_chunk(M, P, S)\
3796 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3797
3798#define unlink_chunk(M, P, S)\
3799 if (is_small(S)) unlink_small_chunk(M, P, S)\
3800 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3801
3802
3803/* Relays to internal calls to malloc/free from realloc, memalign etc */
3804
3805#if ONLY_MSPACES
3806#define internal_malloc(m, b) mspace_malloc(m, b)
3807#define internal_free(m, mem) mspace_free(m,mem);
3808#else /* ONLY_MSPACES */
3809#if MSPACES
3810#define internal_malloc(m, b)\
3811 ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
3812#define internal_free(m, mem)\
3813 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3814#else /* MSPACES */
3815#define internal_malloc(m, b) dlmalloc(b)
3816#define internal_free(m, mem) dlfree(mem)
3817#endif /* MSPACES */
3818#endif /* ONLY_MSPACES */
3819
3820/* ----------------------- Direct-mmapping chunks ----------------------- */
3821
3822/*
3823 Directly mmapped chunks are set up with an offset to the start of
3824 the mmapped region stored in the prev_foot field of the chunk. This
3825 allows reconstruction of the required argument to MUNMAP when freed,
3826 and also allows adjustment of the returned chunk to meet alignment
3827 requirements (especially in memalign).
3828*/
3829
3830/* Malloc using mmap */
3831static void* mmap_alloc(mstate m, size_t nb) {
3832 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3833 if (m->footprint_limit != 0) {
3834 size_t fp = m->footprint + mmsize;
3835 if (fp <= m->footprint || fp > m->footprint_limit)
3836 return 0;
3837 }
3838 if (mmsize > nb) { /* Check for wrap around 0 */
3839 char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
3840 if (mm != CMFAIL) {
3841 size_t offset = align_offset(chunk2mem(mm));
3842 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3843 mchunkptr p = (mchunkptr)(mm + offset);
3844 p->prev_foot = offset;
3845 p->head = psize;
3846 mark_inuse_foot(m, p, psize);
3847 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3848 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3849
3850 if (m->least_addr == 0 || mm < m->least_addr)
3851 m->least_addr = mm;
3852 if ((m->footprint += mmsize) > m->max_footprint)
3853 m->max_footprint = m->footprint;
3854 assert(is_aligned(chunk2mem(p)));
3855 check_mmapped_chunk(m, p);
3856 return chunk2mem(p);
3857 }
3858 }
3859 return 0;
3860}
3861
3862/* Realloc using mmap */
3863static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
3864 size_t oldsize = chunksize(oldp);
3865 (void)flags; /* placate people compiling -Wunused */
3866 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3867 return 0;
3868 /* Keep old chunk if big enough but not too big */
3869 if (oldsize >= nb + SIZE_T_SIZE &&
3870 (oldsize - nb) <= (mparams.granularity << 1))
3871 return oldp;
3872 else {
3873 size_t offset = oldp->prev_foot;
3874 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3875 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3876 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3877 oldmmsize, newmmsize, flags);
3878 if (cp != CMFAIL) {
3879 mchunkptr newp = (mchunkptr)(cp + offset);
3880 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3881 newp->head = psize;
3882 mark_inuse_foot(m, newp, psize);
3883 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3884 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3885
3886 if (cp < m->least_addr)
3887 m->least_addr = cp;
3888 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3889 m->max_footprint = m->footprint;
3890 check_mmapped_chunk(m, newp);
3891 return newp;
3892 }
3893 }
3894 return 0;
3895}
3896
3897
3898/* -------------------------- mspace management -------------------------- */
3899
3900/* Initialize top chunk and its size */
3901static void init_top(mstate m, mchunkptr p, size_t psize) {
3902 /* Ensure alignment */
3903 size_t offset = align_offset(chunk2mem(p));
3904 p = (mchunkptr)((char*)p + offset);
3905 psize -= offset;
3906
3907 m->top = p;
3908 m->topsize = psize;
3909 p->head = psize | PINUSE_BIT;
3910 /* set size of fake trailing chunk holding overhead space only once */
3911 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3912 m->trim_check = mparams.trim_threshold; /* reset on each update */
3913}
3914
3915/* Initialize bins for a new mstate that is otherwise zeroed out */
3916static void init_bins(mstate m) {
3917 /* Establish circular links for smallbins */
3918 bindex_t i;
3919 for (i = 0; i < NSMALLBINS; ++i) {
3920 sbinptr bin = smallbin_at(m,i);
3921 bin->fd = bin->bk = bin;
3922 }
3923}
3924
3925#if PROCEED_ON_ERROR
3926
3927/* default corruption action */
3928static void reset_on_error(mstate m) {
3929 int i;
3930 ++malloc_corruption_error_count;
3931 /* Reinitialize fields to forget about all memory */
3932 m->smallmap = m->treemap = 0;
3933 m->dvsize = m->topsize = 0;
3934 m->seg.base = 0;
3935 m->seg.size = 0;
3936 m->seg.next = 0;
3937 m->top = m->dv = 0;
3938 for (i = 0; i < NTREEBINS; ++i)
3939 *treebin_at(m, i) = 0;
3940 init_bins(m);
3941}
3942#endif /* PROCEED_ON_ERROR */
3943
3944/* Allocate chunk and prepend remainder with chunk in successor base. */
3945static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3946 size_t nb) {
3947 mchunkptr p = align_as_chunk(newbase);
3948 mchunkptr oldfirst = align_as_chunk(oldbase);
3949 size_t psize = (char*)oldfirst - (char*)p;
3950 mchunkptr q = chunk_plus_offset(p, nb);
3951 size_t qsize = psize - nb;
3952 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3953
3954 assert((char*)oldfirst > (char*)q);
3955 assert(pinuse(oldfirst));
3956 assert(qsize >= MIN_CHUNK_SIZE);
3957
3958 /* consolidate remainder with first chunk of old base */
3959 if (oldfirst == m->top) {
3960 size_t tsize = m->topsize += qsize;
3961 m->top = q;
3962 q->head = tsize | PINUSE_BIT;
3963 check_top_chunk(m, q);
3964 }
3965 else if (oldfirst == m->dv) {
3966 size_t dsize = m->dvsize += qsize;
3967 m->dv = q;
3968 set_size_and_pinuse_of_free_chunk(q, dsize);
3969 }
3970 else {
3971 if (!is_inuse(oldfirst)) {
3972 size_t nsize = chunksize(oldfirst);
3973 unlink_chunk(m, oldfirst, nsize);
3974 oldfirst = chunk_plus_offset(oldfirst, nsize);
3975 qsize += nsize;
3976 }
3977 set_free_with_pinuse(q, qsize, oldfirst);
3978 insert_chunk(m, q, qsize);
3979 check_free_chunk(m, q);
3980 }
3981
3982 check_malloced_chunk(m, chunk2mem(p), nb);
3983 return chunk2mem(p);
3984}
3985
3986/* Add a segment to hold a new noncontiguous region */
3987static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3988 /* Determine locations and sizes of segment, fenceposts, old top */
3989 char* old_top = (char*)m->top;
3990 msegmentptr oldsp = segment_holding(m, old_top);
3991 char* old_end = oldsp->base + oldsp->size;
3992 size_t ssize = pad_request(sizeof(struct malloc_segment));
3993 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3994 size_t offset = align_offset(chunk2mem(rawsp));
3995 char* asp = rawsp + offset;
3996 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3997 mchunkptr sp = (mchunkptr)csp;
3998 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3999 mchunkptr tnext = chunk_plus_offset(sp, ssize);
4000 mchunkptr p = tnext;
4001 int nfences = 0;
4002
4003 /* reset top to new space */
4004 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4005
4006 /* Set up segment record */
4007 assert(is_aligned(ss));
4008 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
4009 *ss = m->seg; /* Push current record */
4010 m->seg.base = tbase;
4011 m->seg.size = tsize;
4012 m->seg.sflags = mmapped;
4013 m->seg.next = ss;
4014
4015 /* Insert trailing fenceposts */
4016 for (;;) {
4017 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
4018 p->head = FENCEPOST_HEAD;
4019 ++nfences;
4020 if ((char*)(&(nextp->head)) < old_end)
4021 p = nextp;
4022 else
4023 break;
4024 }
4025 assert(nfences >= 2);
4026
4027 /* Insert the rest of old top into a bin as an ordinary free chunk */
4028 if (csp != old_top) {
4029 mchunkptr q = (mchunkptr)old_top;
4030 size_t psize = csp - old_top;
4031 mchunkptr tn = chunk_plus_offset(q, psize);
4032 set_free_with_pinuse(q, psize, tn);
4033 insert_chunk(m, q, psize);
4034 }
4035
4036 check_top_chunk(m, m->top);
4037}
4038
4039/* -------------------------- System allocation -------------------------- */
4040
4041/* Get memory from system using MORECORE or MMAP */
4042static void* sys_alloc(mstate m, size_t nb) {
4043 char* tbase = CMFAIL;
4044 size_t tsize = 0;
4045 flag_t mmap_flag = 0;
4046 size_t asize; /* allocation size */
4047
4048 ensure_initialization();
4049
4050 /* Directly map large chunks, but only if already initialized */
4051 if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
4052 void* mem = mmap_alloc(m, nb);
4053 if (mem != 0)
4054 return mem;
4055 }
4056
4057 asize = granularity_align(nb + SYS_ALLOC_PADDING);
0df6243d 4058#ifdef __wasilibc_unmodified_upstream // Bug fix: set ENOMEM on size overflow
dbfccac2
DG
4059 if (asize <= nb)
4060 return 0; /* wraparound */
0df6243d
DG
4061#else
4062 if (asize <= nb) {
4063 MALLOC_FAILURE_ACTION;
4064 return 0; /* wraparound */
4065 }
4066#endif
dbfccac2
DG
4067 if (m->footprint_limit != 0) {
4068 size_t fp = m->footprint + asize;
0df6243d 4069#ifdef __wasilibc_unmodified_upstream // Bug fix: set ENOMEM on footprint overrun
dbfccac2
DG
4070 if (fp <= m->footprint || fp > m->footprint_limit)
4071 return 0;
0df6243d
DG
4072#else
4073 if (fp <= m->footprint || fp > m->footprint_limit) {
4074 MALLOC_FAILURE_ACTION;
4075 return 0;
4076 }
4077#endif
dbfccac2
DG
4078 }
4079
4080 /*
4081 Try getting memory in any of three ways (in most-preferred to
4082 least-preferred order):
4083 1. A call to MORECORE that can normally contiguously extend memory.
4084 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
4085 or main space is mmapped or a previous contiguous call failed)
4086 2. A call to MMAP new space (disabled if not HAVE_MMAP).
4087 Note that under the default settings, if MORECORE is unable to
4088 fulfill a request, and HAVE_MMAP is true, then mmap is
4089 used as a noncontiguous system allocator. This is a useful backup
4090 strategy for systems with holes in address spaces -- in this case
4091 sbrk cannot contiguously expand the heap, but mmap may be able to
4092 find space.
4093 3. A call to MORECORE that cannot usually contiguously extend memory.
4094 (disabled if not HAVE_MORECORE)
4095
4096 In all cases, we need to request enough bytes from system to ensure
4097 we can malloc nb bytes upon success, so pad with enough space for
4098 top_foot, plus alignment-pad to make sure we don't lose bytes if
4099 not on boundary, and round this up to a granularity unit.
4100 */
4101
4102 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
4103 char* br = CMFAIL;
4104 size_t ssize = asize; /* sbrk call size */
4105 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
4106 ACQUIRE_MALLOC_GLOBAL_LOCK();
4107
4108 if (ss == 0) { /* First time through or recovery */
4109 char* base = (char*)CALL_MORECORE(0);
4110 if (base != CMFAIL) {
4111 size_t fp;
4112 /* Adjust to end on a page boundary */
4113 if (!is_page_aligned(base))
4114 ssize += (page_align((size_t)base) - (size_t)base);
4115 fp = m->footprint + ssize; /* recheck limits */
4116 if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
4117 (m->footprint_limit == 0 ||
4118 (fp > m->footprint && fp <= m->footprint_limit)) &&
4119 (br = (char*)(CALL_MORECORE(ssize))) == base) {
4120 tbase = base;
4121 tsize = ssize;
4122 }
4123 }
4124 }
4125 else {
4126 /* Subtract out existing available top space from MORECORE request. */
4127 ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
4128 /* Use mem here only if it did continuously extend old space */
4129 if (ssize < HALF_MAX_SIZE_T &&
4130 (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
4131 tbase = br;
4132 tsize = ssize;
4133 }
4134 }
4135
4136 if (tbase == CMFAIL) { /* Cope with partial failure */
4137 if (br != CMFAIL) { /* Try to use/extend the space we did get */
4138 if (ssize < HALF_MAX_SIZE_T &&
4139 ssize < nb + SYS_ALLOC_PADDING) {
4140 size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
4141 if (esize < HALF_MAX_SIZE_T) {
4142 char* end = (char*)CALL_MORECORE(esize);
4143 if (end != CMFAIL)
4144 ssize += esize;
4145 else { /* Can't use; try to release */
4146 (void) CALL_MORECORE(-ssize);
4147 br = CMFAIL;
4148 }
4149 }
4150 }
4151 }
4152 if (br != CMFAIL) { /* Use the space we did get */
4153 tbase = br;
4154 tsize = ssize;
4155 }
4156 else
4157 disable_contiguous(m); /* Don't try contiguous path in the future */
4158 }
4159
4160 RELEASE_MALLOC_GLOBAL_LOCK();
4161 }
4162
4163 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
4164 char* mp = (char*)(CALL_MMAP(asize));
4165 if (mp != CMFAIL) {
4166 tbase = mp;
4167 tsize = asize;
4168 mmap_flag = USE_MMAP_BIT;
4169 }
4170 }
4171
4172 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
4173 if (asize < HALF_MAX_SIZE_T) {
4174 char* br = CMFAIL;
4175 char* end = CMFAIL;
4176 ACQUIRE_MALLOC_GLOBAL_LOCK();
4177 br = (char*)(CALL_MORECORE(asize));
4178 end = (char*)(CALL_MORECORE(0));
4179 RELEASE_MALLOC_GLOBAL_LOCK();
4180 if (br != CMFAIL && end != CMFAIL && br < end) {
4181 size_t ssize = end - br;
4182 if (ssize > nb + TOP_FOOT_SIZE) {
4183 tbase = br;
4184 tsize = ssize;
4185 }
4186 }
4187 }
4188 }
4189
4190 if (tbase != CMFAIL) {
4191
4192 if ((m->footprint += tsize) > m->max_footprint)
4193 m->max_footprint = m->footprint;
4194
4195 if (!is_initialized(m)) { /* first-time initialization */
4196 if (m->least_addr == 0 || tbase < m->least_addr)
4197 m->least_addr = tbase;
4198 m->seg.base = tbase;
4199 m->seg.size = tsize;
4200 m->seg.sflags = mmap_flag;
4201 m->magic = mparams.magic;
4202 m->release_checks = MAX_RELEASE_CHECK_RATE;
4203 init_bins(m);
4204#if !ONLY_MSPACES
4205 if (is_global(m))
4206 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4207 else
4208#endif
4209 {
4210 /* Offset top by embedded malloc_state */
4211 mchunkptr mn = next_chunk(mem2chunk(m));
4212 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
4213 }
4214 }
4215
4216 else {
4217 /* Try to merge with an existing segment */
4218 msegmentptr sp = &m->seg;
4219 /* Only consider most recent segment if traversal suppressed */
4220 while (sp != 0 && tbase != sp->base + sp->size)
4221 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4222 if (sp != 0 &&
4223 !is_extern_segment(sp) &&
4224 (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
4225 segment_holds(sp, m->top)) { /* append */
4226 sp->size += tsize;
4227 init_top(m, m->top, m->topsize + tsize);
4228 }
4229 else {
4230 if (tbase < m->least_addr)
4231 m->least_addr = tbase;
4232 sp = &m->seg;
4233 while (sp != 0 && sp->base != tbase + tsize)
4234 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4235 if (sp != 0 &&
4236 !is_extern_segment(sp) &&
4237 (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
4238 char* oldbase = sp->base;
4239 sp->base = tbase;
4240 sp->size += tsize;
4241 return prepend_alloc(m, tbase, oldbase, nb);
4242 }
4243 else
4244 add_segment(m, tbase, tsize, mmap_flag);
4245 }
4246 }
4247
4248 if (nb < m->topsize) { /* Allocate from new or extended top space */
4249 size_t rsize = m->topsize -= nb;
4250 mchunkptr p = m->top;
4251 mchunkptr r = m->top = chunk_plus_offset(p, nb);
4252 r->head = rsize | PINUSE_BIT;
4253 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
4254 check_top_chunk(m, m->top);
4255 check_malloced_chunk(m, chunk2mem(p), nb);
4256 return chunk2mem(p);
4257 }
4258 }
4259
4260 MALLOC_FAILURE_ACTION;
4261 return 0;
4262}
4263
4264/* ----------------------- system deallocation -------------------------- */
4265
4266/* Unmap and unlink any mmapped segments that don't contain used chunks */
4267static size_t release_unused_segments(mstate m) {
4268 size_t released = 0;
4269 int nsegs = 0;
4270 msegmentptr pred = &m->seg;
4271 msegmentptr sp = pred->next;
4272 while (sp != 0) {
4273 char* base = sp->base;
4274 size_t size = sp->size;
4275 msegmentptr next = sp->next;
4276 ++nsegs;
4277 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
4278 mchunkptr p = align_as_chunk(base);
4279 size_t psize = chunksize(p);
4280 /* Can unmap if first chunk holds entire segment and not pinned */
4281 if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
4282 tchunkptr tp = (tchunkptr)p;
4283 assert(segment_holds(sp, (char*)sp));
4284 if (p == m->dv) {
4285 m->dv = 0;
4286 m->dvsize = 0;
4287 }
4288 else {
4289 unlink_large_chunk(m, tp);
4290 }
4291 if (CALL_MUNMAP(base, size) == 0) {
4292 released += size;
4293 m->footprint -= size;
4294 /* unlink obsoleted record */
4295 sp = pred;
4296 sp->next = next;
4297 }
4298 else { /* back out if cannot unmap */
4299 insert_large_chunk(m, tp, psize);
4300 }
4301 }
4302 }
4303 if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
4304 break;
4305 pred = sp;
4306 sp = next;
4307 }
4308 /* Reset check counter */
4309 m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
4310 (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
4311 return released;
4312}
4313
4314static int sys_trim(mstate m, size_t pad) {
4315 size_t released = 0;
4316 ensure_initialization();
4317 if (pad < MAX_REQUEST && is_initialized(m)) {
4318 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
4319
4320 if (m->topsize > pad) {
4321 /* Shrink top space in granularity-size units, keeping at least one */
4322 size_t unit = mparams.granularity;
4323 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
4324 SIZE_T_ONE) * unit;
4325 msegmentptr sp = segment_holding(m, (char*)m->top);
4326
4327 if (!is_extern_segment(sp)) {
4328 if (is_mmapped_segment(sp)) {
4329 if (HAVE_MMAP &&
4330 sp->size >= extra &&
4331 !has_segment_link(m, sp)) { /* can't shrink if pinned */
4332 size_t newsize = sp->size - extra;
4333 (void)newsize; /* placate people compiling -Wunused-variable */
4334 /* Prefer mremap, fall back to munmap */
4335 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
4336 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
4337 released = extra;
4338 }
4339 }
4340 }
4341 else if (HAVE_MORECORE) {
4342 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
4343 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
4344 ACQUIRE_MALLOC_GLOBAL_LOCK();
4345 {
4346 /* Make sure end of memory is where we last set it. */
4347 char* old_br = (char*)(CALL_MORECORE(0));
4348 if (old_br == sp->base + sp->size) {
4349 char* rel_br = (char*)(CALL_MORECORE(-extra));
4350 char* new_br = (char*)(CALL_MORECORE(0));
4351 if (rel_br != CMFAIL && new_br < old_br)
4352 released = old_br - new_br;
4353 }
4354 }
4355 RELEASE_MALLOC_GLOBAL_LOCK();
4356 }
4357 }
4358
4359 if (released != 0) {
4360 sp->size -= released;
4361 m->footprint -= released;
4362 init_top(m, m->top, m->topsize - released);
4363 check_top_chunk(m, m->top);
4364 }
4365 }
4366
4367 /* Unmap any unused mmapped segments */
4368 if (HAVE_MMAP)
4369 released += release_unused_segments(m);
4370
4371 /* On failure, disable autotrim to avoid repeated failed future calls */
4372 if (released == 0 && m->topsize > m->trim_check)
4373 m->trim_check = MAX_SIZE_T;
4374 }
4375
4376 return (released != 0)? 1 : 0;
4377}
4378
4379/* Consolidate and bin a chunk. Differs from exported versions
4380 of free mainly in that the chunk need not be marked as inuse.
4381*/
4382static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
4383 mchunkptr next = chunk_plus_offset(p, psize);
4384 if (!pinuse(p)) {
4385 mchunkptr prev;
4386 size_t prevsize = p->prev_foot;
4387 if (is_mmapped(p)) {
4388 psize += prevsize + MMAP_FOOT_PAD;
4389 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4390 m->footprint -= psize;
4391 return;
4392 }
4393 prev = chunk_minus_offset(p, prevsize);
4394 psize += prevsize;
4395 p = prev;
4396 if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
4397 if (p != m->dv) {
4398 unlink_chunk(m, p, prevsize);
4399 }
4400 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4401 m->dvsize = psize;
4402 set_free_with_pinuse(p, psize, next);
4403 return;
4404 }
4405 }
4406 else {
4407 CORRUPTION_ERROR_ACTION(m);
4408 return;
4409 }
4410 }
4411 if (RTCHECK(ok_address(m, next))) {
4412 if (!cinuse(next)) { /* consolidate forward */
4413 if (next == m->top) {
4414 size_t tsize = m->topsize += psize;
4415 m->top = p;
4416 p->head = tsize | PINUSE_BIT;
4417 if (p == m->dv) {
4418 m->dv = 0;
4419 m->dvsize = 0;
4420 }
4421 return;
4422 }
4423 else if (next == m->dv) {
4424 size_t dsize = m->dvsize += psize;
4425 m->dv = p;
4426 set_size_and_pinuse_of_free_chunk(p, dsize);
4427 return;
4428 }
4429 else {
4430 size_t nsize = chunksize(next);
4431 psize += nsize;
4432 unlink_chunk(m, next, nsize);
4433 set_size_and_pinuse_of_free_chunk(p, psize);
4434 if (p == m->dv) {
4435 m->dvsize = psize;
4436 return;
4437 }
4438 }
4439 }
4440 else {
4441 set_free_with_pinuse(p, psize, next);
4442 }
4443 insert_chunk(m, p, psize);
4444 }
4445 else {
4446 CORRUPTION_ERROR_ACTION(m);
4447 }
4448}
4449
4450/* ---------------------------- malloc --------------------------- */
4451
4452/* allocate a large request from the best fitting chunk in a treebin */
4453static void* tmalloc_large(mstate m, size_t nb) {
4454 tchunkptr v = 0;
4455 size_t rsize = -nb; /* Unsigned negation */
4456 tchunkptr t;
4457 bindex_t idx;
4458 compute_tree_index(nb, idx);
4459 if ((t = *treebin_at(m, idx)) != 0) {
4460 /* Traverse tree for this bin looking for node with size == nb */
4461 size_t sizebits = nb << leftshift_for_tree_index(idx);
4462 tchunkptr rst = 0; /* The deepest untaken right subtree */
4463 for (;;) {
4464 tchunkptr rt;
4465 size_t trem = chunksize(t) - nb;
4466 if (trem < rsize) {
4467 v = t;
4468 if ((rsize = trem) == 0)
4469 break;
4470 }
4471 rt = t->child[1];
4472 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
4473 if (rt != 0 && rt != t)
4474 rst = rt;
4475 if (t == 0) {
4476 t = rst; /* set t to least subtree holding sizes > nb */
4477 break;
4478 }
4479 sizebits <<= 1;
4480 }
4481 }
4482 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
4483 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
4484 if (leftbits != 0) {
4485 bindex_t i;
4486 binmap_t leastbit = least_bit(leftbits);
4487 compute_bit2idx(leastbit, i);
4488 t = *treebin_at(m, i);
4489 }
4490 }
4491
4492 while (t != 0) { /* find smallest of tree or subtree */
4493 size_t trem = chunksize(t) - nb;
4494 if (trem < rsize) {
4495 rsize = trem;
4496 v = t;
4497 }
4498 t = leftmost_child(t);
4499 }
4500
4501 /* If dv is a better fit, return 0 so malloc will use it */
4502 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
4503 if (RTCHECK(ok_address(m, v))) { /* split */
4504 mchunkptr r = chunk_plus_offset(v, nb);
4505 assert(chunksize(v) == rsize + nb);
4506 if (RTCHECK(ok_next(v, r))) {
4507 unlink_large_chunk(m, v);
4508 if (rsize < MIN_CHUNK_SIZE)
4509 set_inuse_and_pinuse(m, v, (rsize + nb));
4510 else {
4511 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4512 set_size_and_pinuse_of_free_chunk(r, rsize);
4513 insert_chunk(m, r, rsize);
4514 }
4515 return chunk2mem(v);
4516 }
4517 }
4518 CORRUPTION_ERROR_ACTION(m);
4519 }
4520 return 0;
4521}
4522
4523/* allocate a small request from the best fitting chunk in a treebin */
4524static void* tmalloc_small(mstate m, size_t nb) {
4525 tchunkptr t, v;
4526 size_t rsize;
4527 bindex_t i;
4528 binmap_t leastbit = least_bit(m->treemap);
4529 compute_bit2idx(leastbit, i);
4530 v = t = *treebin_at(m, i);
4531 rsize = chunksize(t) - nb;
4532
4533 while ((t = leftmost_child(t)) != 0) {
4534 size_t trem = chunksize(t) - nb;
4535 if (trem < rsize) {
4536 rsize = trem;
4537 v = t;
4538 }
4539 }
4540
4541 if (RTCHECK(ok_address(m, v))) {
4542 mchunkptr r = chunk_plus_offset(v, nb);
4543 assert(chunksize(v) == rsize + nb);
4544 if (RTCHECK(ok_next(v, r))) {
4545 unlink_large_chunk(m, v);
4546 if (rsize < MIN_CHUNK_SIZE)
4547 set_inuse_and_pinuse(m, v, (rsize + nb));
4548 else {
4549 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4550 set_size_and_pinuse_of_free_chunk(r, rsize);
4551 replace_dv(m, r, rsize);
4552 }
4553 return chunk2mem(v);
4554 }
4555 }
4556
4557 CORRUPTION_ERROR_ACTION(m);
4558 return 0;
4559}
4560
4561#if !ONLY_MSPACES
4562
a214f1c0 4563#if __wasilibc_unmodified_upstream // Forward declaration of try_init_allocator.
4564#else
4565static void try_init_allocator(void);
4566#endif
4567
dbfccac2
DG
4568void* dlmalloc(size_t bytes) {
4569 /*
4570 Basic algorithm:
4571 If a small request (< 256 bytes minus per-chunk overhead):
4572 1. If one exists, use a remainderless chunk in associated smallbin.
4573 (Remainderless means that there are too few excess bytes to
4574 represent as a chunk.)
4575 2. If it is big enough, use the dv chunk, which is normally the
4576 chunk adjacent to the one used for the most recent small request.
4577 3. If one exists, split the smallest available chunk in a bin,
4578 saving remainder in dv.
4579 4. If it is big enough, use the top chunk.
4580 5. If available, get memory from system and use it
4581 Otherwise, for a large request:
4582 1. Find the smallest available binned chunk that fits, and use it
4583 if it is better fitting than dv chunk, splitting if necessary.
4584 2. If better fitting than any binned chunk, use the dv chunk.
4585 3. If it is big enough, use the top chunk.
4586 4. If request size >= mmap threshold, try to directly mmap this chunk.
4587 5. If available, get memory from system and use it
4588
4589 The ugly goto's here ensure that postaction occurs along all paths.
4590 */
4591
4592#if USE_LOCKS
4593 ensure_initialization(); /* initialize in sys_alloc if not using locks */
4594#endif
4595
a214f1c0 4596#if __wasilibc_unmodified_upstream // Try to initialize the allocator.
4597#else
4598 if (!is_initialized(gm)) {
4599 try_init_allocator();
4600 }
4601#endif
4602
dbfccac2
DG
4603 if (!PREACTION(gm)) {
4604 void* mem;
4605 size_t nb;
4606 if (bytes <= MAX_SMALL_REQUEST) {
4607 bindex_t idx;
4608 binmap_t smallbits;
4609 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4610 idx = small_index(nb);
4611 smallbits = gm->smallmap >> idx;
4612
4613 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4614 mchunkptr b, p;
4615 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4616 b = smallbin_at(gm, idx);
4617 p = b->fd;
4618 assert(chunksize(p) == small_index2size(idx));
4619 unlink_first_small_chunk(gm, b, p, idx);
4620 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4621 mem = chunk2mem(p);
4622 check_malloced_chunk(gm, mem, nb);
4623 goto postaction;
4624 }
4625
4626 else if (nb > gm->dvsize) {
4627 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4628 mchunkptr b, p, r;
4629 size_t rsize;
4630 bindex_t i;
4631 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4632 binmap_t leastbit = least_bit(leftbits);
4633 compute_bit2idx(leastbit, i);
4634 b = smallbin_at(gm, i);
4635 p = b->fd;
4636 assert(chunksize(p) == small_index2size(i));
4637 unlink_first_small_chunk(gm, b, p, i);
4638 rsize = small_index2size(i) - nb;
4639 /* Fit here cannot be remainderless if 4byte sizes */
4640 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4641 set_inuse_and_pinuse(gm, p, small_index2size(i));
4642 else {
4643 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4644 r = chunk_plus_offset(p, nb);
4645 set_size_and_pinuse_of_free_chunk(r, rsize);
4646 replace_dv(gm, r, rsize);
4647 }
4648 mem = chunk2mem(p);
4649 check_malloced_chunk(gm, mem, nb);
4650 goto postaction;
4651 }
4652
4653 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4654 check_malloced_chunk(gm, mem, nb);
4655 goto postaction;
4656 }
4657 }
4658 }
4659 else if (bytes >= MAX_REQUEST)
4660 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4661 else {
4662 nb = pad_request(bytes);
4663 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4664 check_malloced_chunk(gm, mem, nb);
4665 goto postaction;
4666 }
4667 }
4668
4669 if (nb <= gm->dvsize) {
4670 size_t rsize = gm->dvsize - nb;
4671 mchunkptr p = gm->dv;
4672 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4673 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4674 gm->dvsize = rsize;
4675 set_size_and_pinuse_of_free_chunk(r, rsize);
4676 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4677 }
4678 else { /* exhaust dv */
4679 size_t dvs = gm->dvsize;
4680 gm->dvsize = 0;
4681 gm->dv = 0;
4682 set_inuse_and_pinuse(gm, p, dvs);
4683 }
4684 mem = chunk2mem(p);
4685 check_malloced_chunk(gm, mem, nb);
4686 goto postaction;
4687 }
4688
4689 else if (nb < gm->topsize) { /* Split top */
4690 size_t rsize = gm->topsize -= nb;
4691 mchunkptr p = gm->top;
4692 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4693 r->head = rsize | PINUSE_BIT;
4694 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4695 mem = chunk2mem(p);
4696 check_top_chunk(gm, gm->top);
4697 check_malloced_chunk(gm, mem, nb);
4698 goto postaction;
4699 }
4700
4701 mem = sys_alloc(gm, nb);
4702
4703 postaction:
4704 POSTACTION(gm);
4705 return mem;
4706 }
4707
4708 return 0;
4709}
4710
4711/* ---------------------------- free --------------------------- */
4712
4713void dlfree(void* mem) {
4714 /*
4715 Consolidate freed chunks with preceeding or succeeding bordering
4716 free chunks, if they exist, and then place in a bin. Intermixed
4717 with special cases for top, dv, mmapped chunks, and usage errors.
4718 */
4719
4720 if (mem != 0) {
4721 mchunkptr p = mem2chunk(mem);
4722#if FOOTERS
4723 mstate fm = get_mstate_for(p);
4724 if (!ok_magic(fm)) {
4725 USAGE_ERROR_ACTION(fm, p);
4726 return;
4727 }
4728#else /* FOOTERS */
4729#define fm gm
4730#endif /* FOOTERS */
4731 if (!PREACTION(fm)) {
4732 check_inuse_chunk(fm, p);
4733 if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
4734 size_t psize = chunksize(p);
4735 mchunkptr next = chunk_plus_offset(p, psize);
4736 if (!pinuse(p)) {
4737 size_t prevsize = p->prev_foot;
4738 if (is_mmapped(p)) {
4739 psize += prevsize + MMAP_FOOT_PAD;
4740 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4741 fm->footprint -= psize;
4742 goto postaction;
4743 }
4744 else {
4745 mchunkptr prev = chunk_minus_offset(p, prevsize);
4746 psize += prevsize;
4747 p = prev;
4748 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4749 if (p != fm->dv) {
4750 unlink_chunk(fm, p, prevsize);
4751 }
4752 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4753 fm->dvsize = psize;
4754 set_free_with_pinuse(p, psize, next);
4755 goto postaction;
4756 }
4757 }
4758 else
4759 goto erroraction;
4760 }
4761 }
4762
4763 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4764 if (!cinuse(next)) { /* consolidate forward */
4765 if (next == fm->top) {
4766 size_t tsize = fm->topsize += psize;
4767 fm->top = p;
4768 p->head = tsize | PINUSE_BIT;
4769 if (p == fm->dv) {
4770 fm->dv = 0;
4771 fm->dvsize = 0;
4772 }
4773 if (should_trim(fm, tsize))
4774 sys_trim(fm, 0);
4775 goto postaction;
4776 }
4777 else if (next == fm->dv) {
4778 size_t dsize = fm->dvsize += psize;
4779 fm->dv = p;
4780 set_size_and_pinuse_of_free_chunk(p, dsize);
4781 goto postaction;
4782 }
4783 else {
4784 size_t nsize = chunksize(next);
4785 psize += nsize;
4786 unlink_chunk(fm, next, nsize);
4787 set_size_and_pinuse_of_free_chunk(p, psize);
4788 if (p == fm->dv) {
4789 fm->dvsize = psize;
4790 goto postaction;
4791 }
4792 }
4793 }
4794 else
4795 set_free_with_pinuse(p, psize, next);
4796
4797 if (is_small(psize)) {
4798 insert_small_chunk(fm, p, psize);
4799 check_free_chunk(fm, p);
4800 }
4801 else {
4802 tchunkptr tp = (tchunkptr)p;
4803 insert_large_chunk(fm, tp, psize);
4804 check_free_chunk(fm, p);
4805 if (--fm->release_checks == 0)
4806 release_unused_segments(fm);
4807 }
4808 goto postaction;
4809 }
4810 }
4811 erroraction:
4812 USAGE_ERROR_ACTION(fm, p);
4813 postaction:
4814 POSTACTION(fm);
4815 }
4816 }
4817#if !FOOTERS
4818#undef fm
4819#endif /* FOOTERS */
4820}
4821
4822void* dlcalloc(size_t n_elements, size_t elem_size) {
4823 void* mem;
4824 size_t req = 0;
4825 if (n_elements != 0) {
4826 req = n_elements * elem_size;
4827 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4828 (req / n_elements != elem_size))
4829 req = MAX_SIZE_T; /* force downstream failure on overflow */
4830 }
4831 mem = dlmalloc(req);
4832 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4833 memset(mem, 0, req);
4834 return mem;
4835}
4836
4837#endif /* !ONLY_MSPACES */
4838
4839/* ------------ Internal support for realloc, memalign, etc -------------- */
4840
4841/* Try to realloc; only in-place unless can_move true */
4842static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
4843 int can_move) {
4844 mchunkptr newp = 0;
4845 size_t oldsize = chunksize(p);
4846 mchunkptr next = chunk_plus_offset(p, oldsize);
4847 if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
4848 ok_next(p, next) && ok_pinuse(next))) {
4849 if (is_mmapped(p)) {
4850 newp = mmap_resize(m, p, nb, can_move);
4851 }
4852 else if (oldsize >= nb) { /* already big enough */
4853 size_t rsize = oldsize - nb;
4854 if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
4855 mchunkptr r = chunk_plus_offset(p, nb);
4856 set_inuse(m, p, nb);
4857 set_inuse(m, r, rsize);
4858 dispose_chunk(m, r, rsize);
4859 }
4860 newp = p;
4861 }
4862 else if (next == m->top) { /* extend into top */
4863 if (oldsize + m->topsize > nb) {
4864 size_t newsize = oldsize + m->topsize;
4865 size_t newtopsize = newsize - nb;
4866 mchunkptr newtop = chunk_plus_offset(p, nb);
4867 set_inuse(m, p, nb);
4868 newtop->head = newtopsize |PINUSE_BIT;
4869 m->top = newtop;
4870 m->topsize = newtopsize;
4871 newp = p;
4872 }
4873 }
4874 else if (next == m->dv) { /* extend into dv */
4875 size_t dvs = m->dvsize;
4876 if (oldsize + dvs >= nb) {
4877 size_t dsize = oldsize + dvs - nb;
4878 if (dsize >= MIN_CHUNK_SIZE) {
4879 mchunkptr r = chunk_plus_offset(p, nb);
4880 mchunkptr n = chunk_plus_offset(r, dsize);
4881 set_inuse(m, p, nb);
4882 set_size_and_pinuse_of_free_chunk(r, dsize);
4883 clear_pinuse(n);
4884 m->dvsize = dsize;
4885 m->dv = r;
4886 }
4887 else { /* exhaust dv */
4888 size_t newsize = oldsize + dvs;
4889 set_inuse(m, p, newsize);
4890 m->dvsize = 0;
4891 m->dv = 0;
4892 }
4893 newp = p;
4894 }
4895 }
4896 else if (!cinuse(next)) { /* extend into next free chunk */
4897 size_t nextsize = chunksize(next);
4898 if (oldsize + nextsize >= nb) {
4899 size_t rsize = oldsize + nextsize - nb;
4900 unlink_chunk(m, next, nextsize);
4901 if (rsize < MIN_CHUNK_SIZE) {
4902 size_t newsize = oldsize + nextsize;
4903 set_inuse(m, p, newsize);
4904 }
4905 else {
4906 mchunkptr r = chunk_plus_offset(p, nb);
4907 set_inuse(m, p, nb);
4908 set_inuse(m, r, rsize);
4909 dispose_chunk(m, r, rsize);
4910 }
4911 newp = p;
4912 }
4913 }
4914 }
4915 else {
4916 USAGE_ERROR_ACTION(m, chunk2mem(p));
4917 }
4918 return newp;
4919}
4920
4921static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4922 void* mem = 0;
4923 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4924 alignment = MIN_CHUNK_SIZE;
4925 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4926 size_t a = MALLOC_ALIGNMENT << 1;
4927 while (a < alignment) a <<= 1;
4928 alignment = a;
4929 }
4930 if (bytes >= MAX_REQUEST - alignment) {
4931 if (m != 0) { /* Test isn't needed but avoids compiler warning */
4932 MALLOC_FAILURE_ACTION;
4933 }
4934 }
4935 else {
4936 size_t nb = request2size(bytes);
4937 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4938 mem = internal_malloc(m, req);
4939 if (mem != 0) {
4940 mchunkptr p = mem2chunk(mem);
4941 if (PREACTION(m))
4942 return 0;
4943 if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
4944 /*
4945 Find an aligned spot inside chunk. Since we need to give
4946 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4947 the first calculation places us at a spot with less than
4948 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4949 We've allocated enough total room so that this is always
4950 possible.
4951 */
4952 char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
4953 SIZE_T_ONE)) &
4954 -alignment));
4955 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4956 br : br+alignment;
4957 mchunkptr newp = (mchunkptr)pos;
4958 size_t leadsize = pos - (char*)(p);
4959 size_t newsize = chunksize(p) - leadsize;
4960
4961 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4962 newp->prev_foot = p->prev_foot + leadsize;
4963 newp->head = newsize;
4964 }
4965 else { /* Otherwise, give back leader, use the rest */
4966 set_inuse(m, newp, newsize);
4967 set_inuse(m, p, leadsize);
4968 dispose_chunk(m, p, leadsize);
4969 }
4970 p = newp;
4971 }
4972
4973 /* Give back spare room at the end */
4974 if (!is_mmapped(p)) {
4975 size_t size = chunksize(p);
4976 if (size > nb + MIN_CHUNK_SIZE) {
4977 size_t remainder_size = size - nb;
4978 mchunkptr remainder = chunk_plus_offset(p, nb);
4979 set_inuse(m, p, nb);
4980 set_inuse(m, remainder, remainder_size);
4981 dispose_chunk(m, remainder, remainder_size);
4982 }
4983 }
4984
4985 mem = chunk2mem(p);
4986 assert (chunksize(p) >= nb);
4987 assert(((size_t)mem & (alignment - 1)) == 0);
4988 check_inuse_chunk(m, p);
4989 POSTACTION(m);
4990 }
4991 }
4992 return mem;
4993}
4994
4995/*
4996 Common support for independent_X routines, handling
4997 all of the combinations that can result.
4998 The opts arg has:
4999 bit 0 set if all elements are same size (using sizes[0])
5000 bit 1 set if elements should be zeroed
5001*/
5002static void** ialloc(mstate m,
5003 size_t n_elements,
5004 size_t* sizes,
5005 int opts,
5006 void* chunks[]) {
5007
5008 size_t element_size; /* chunksize of each element, if all same */
5009 size_t contents_size; /* total size of elements */
5010 size_t array_size; /* request size of pointer array */
5011 void* mem; /* malloced aggregate space */
5012 mchunkptr p; /* corresponding chunk */
5013 size_t remainder_size; /* remaining bytes while splitting */
5014 void** marray; /* either "chunks" or malloced ptr array */
5015 mchunkptr array_chunk; /* chunk for malloced ptr array */
5016 flag_t was_enabled; /* to disable mmap */
5017 size_t size;
5018 size_t i;
5019
5020 ensure_initialization();
5021 /* compute array length, if needed */
5022 if (chunks != 0) {
5023 if (n_elements == 0)
5024 return chunks; /* nothing to do */
5025 marray = chunks;
5026 array_size = 0;
5027 }
5028 else {
5029 /* if empty req, must still return chunk representing empty array */
5030 if (n_elements == 0)
5031 return (void**)internal_malloc(m, 0);
5032 marray = 0;
5033 array_size = request2size(n_elements * (sizeof(void*)));
5034 }
5035
5036 /* compute total element size */
5037 if (opts & 0x1) { /* all-same-size */
5038 element_size = request2size(*sizes);
5039 contents_size = n_elements * element_size;
5040 }
5041 else { /* add up all the sizes */
5042 element_size = 0;
5043 contents_size = 0;
5044 for (i = 0; i != n_elements; ++i)
5045 contents_size += request2size(sizes[i]);
5046 }
5047
5048 size = contents_size + array_size;
5049
5050 /*
5051 Allocate the aggregate chunk. First disable direct-mmapping so
5052 malloc won't use it, since we would not be able to later
5053 free/realloc space internal to a segregated mmap region.
5054 */
5055 was_enabled = use_mmap(m);
5056 disable_mmap(m);
5057 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
5058 if (was_enabled)
5059 enable_mmap(m);
5060 if (mem == 0)
5061 return 0;
5062
5063 if (PREACTION(m)) return 0;
5064 p = mem2chunk(mem);
5065 remainder_size = chunksize(p);
5066
5067 assert(!is_mmapped(p));
5068
5069 if (opts & 0x2) { /* optionally clear the elements */
5070 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
5071 }
5072
5073 /* If not provided, allocate the pointer array as final part of chunk */
5074 if (marray == 0) {
5075 size_t array_chunk_size;
5076 array_chunk = chunk_plus_offset(p, contents_size);
5077 array_chunk_size = remainder_size - contents_size;
5078 marray = (void**) (chunk2mem(array_chunk));
5079 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
5080 remainder_size = contents_size;
5081 }
5082
5083 /* split out elements */
5084 for (i = 0; ; ++i) {
5085 marray[i] = chunk2mem(p);
5086 if (i != n_elements-1) {
5087 if (element_size != 0)
5088 size = element_size;
5089 else
5090 size = request2size(sizes[i]);
5091 remainder_size -= size;
5092 set_size_and_pinuse_of_inuse_chunk(m, p, size);
5093 p = chunk_plus_offset(p, size);
5094 }
5095 else { /* the final element absorbs any overallocation slop */
5096 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
5097 break;
5098 }
5099 }
5100
5101#if DEBUG
5102 if (marray != chunks) {
5103 /* final element must have exactly exhausted chunk */
5104 if (element_size != 0) {
5105 assert(remainder_size == element_size);
5106 }
5107 else {
5108 assert(remainder_size == request2size(sizes[i]));
5109 }
5110 check_inuse_chunk(m, mem2chunk(marray));
5111 }
5112 for (i = 0; i != n_elements; ++i)
5113 check_inuse_chunk(m, mem2chunk(marray[i]));
5114
5115#endif /* DEBUG */
5116
5117 POSTACTION(m);
5118 return marray;
5119}
5120
5121/* Try to free all pointers in the given array.
5122 Note: this could be made faster, by delaying consolidation,
5123 at the price of disabling some user integrity checks, We
5124 still optimize some consolidations by combining adjacent
5125 chunks before freeing, which will occur often if allocated
5126 with ialloc or the array is sorted.
5127*/
5128static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
5129 size_t unfreed = 0;
5130 if (!PREACTION(m)) {
5131 void** a;
5132 void** fence = &(array[nelem]);
5133 for (a = array; a != fence; ++a) {
5134 void* mem = *a;
5135 if (mem != 0) {
5136 mchunkptr p = mem2chunk(mem);
5137 size_t psize = chunksize(p);
5138#if FOOTERS
5139 if (get_mstate_for(p) != m) {
5140 ++unfreed;
5141 continue;
5142 }
5143#endif
5144 check_inuse_chunk(m, p);
5145 *a = 0;
5146 if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
5147 void ** b = a + 1; /* try to merge with next chunk */
5148 mchunkptr next = next_chunk(p);
5149 if (b != fence && *b == chunk2mem(next)) {
5150 size_t newsize = chunksize(next) + psize;
5151 set_inuse(m, p, newsize);
5152 *b = chunk2mem(p);
5153 }
5154 else
5155 dispose_chunk(m, p, psize);
5156 }
5157 else {
5158 CORRUPTION_ERROR_ACTION(m);
5159 break;
5160 }
5161 }
5162 }
5163 if (should_trim(m, m->topsize))
5164 sys_trim(m, 0);
5165 POSTACTION(m);
5166 }
5167 return unfreed;
5168}
5169
5170/* Traversal */
5171#if MALLOC_INSPECT_ALL
5172static void internal_inspect_all(mstate m,
5173 void(*handler)(void *start,
5174 void *end,
5175 size_t used_bytes,
5176 void* callback_arg),
5177 void* arg) {
5178 if (is_initialized(m)) {
5179 mchunkptr top = m->top;
5180 msegmentptr s;
5181 for (s = &m->seg; s != 0; s = s->next) {
5182 mchunkptr q = align_as_chunk(s->base);
5183 while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
5184 mchunkptr next = next_chunk(q);
5185 size_t sz = chunksize(q);
5186 size_t used;
5187 void* start;
5188 if (is_inuse(q)) {
5189 used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
5190 start = chunk2mem(q);
5191 }
5192 else {
5193 used = 0;
5194 if (is_small(sz)) { /* offset by possible bookkeeping */
5195 start = (void*)((char*)q + sizeof(struct malloc_chunk));
5196 }
5197 else {
5198 start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
5199 }
5200 }
5201 if (start < (void*)next) /* skip if all space is bookkeeping */
5202 handler(start, next, used, arg);
5203 if (q == top)
5204 break;
5205 q = next;
5206 }
5207 }
5208 }
5209}
5210#endif /* MALLOC_INSPECT_ALL */
5211
d2482b78 5212#ifdef __wasilibc_unmodified_upstream // Define a function that initializes the initial state of dlmalloc.
a214f1c0 5213#else
5214/* ------------------ Exported try_init_allocator -------------------- */
5215
5216/* Symbol marking the end of data, bss and explicit stack, provided by wasm-ld. */
f2aac5f3 5217extern char __heap_base;
d8abbaac 5218extern char __heap_end;
a214f1c0 5219
5220/* Initialize the initial state of dlmalloc to be able to use free memory between __heap_base and initial. */
5221static void try_init_allocator(void) {
5222 /* Check that it is a first-time initialization. */
5223 assert(!is_initialized(gm));
5224
f2aac5f3
AC
5225 /* Initialize mstate. */
5226 ensure_initialization();
5227
5228 char *base = &__heap_base;
5229 // Try to use the linker pseudo-symbol `__heap_end` for the initial size of
d8abbaac 5230 // the heap.
f2aac5f3 5231 char *end = &__heap_end;
d8abbaac
YT
5232 if (end < base) {
5233 // "end" can be NULL when 1. you are using an old wasm-ld which doesn't
5234 // provide `__heap_end` (< 15.0.7) and 2. something (other libraries
5235 // or maybe your app?) includes a weak reference to `__heap_end` and
5236 // 3. the weak reference is found by the linker before this strong
5237 // reference.
5238 //
5239 // Note: This is a linker bug: https://github.com/llvm/llvm-project/issues/60829
5240 __builtin_trap();
5241 }
f2aac5f3 5242 size_t initial_heap_size = end - base;
a214f1c0 5243
5244 /* Check that initial heap is long enough to serve a minimal allocation request. */
5245 if (initial_heap_size <= MIN_CHUNK_SIZE + TOP_FOOT_SIZE + MALLOC_ALIGNMENT) {
5246 return;
5247 }
5248
a214f1c0 5249 /* Initialize the dlmalloc internal state. */
5250 gm->least_addr = base;
5251 gm->seg.base = base;
5252 gm->seg.size = initial_heap_size;
5253 gm->magic = mparams.magic;
5254 gm->release_checks = MAX_RELEASE_CHECK_RATE;
5255 init_bins(gm);
5256 init_top(gm, (mchunkptr)base, initial_heap_size - TOP_FOOT_SIZE);
5257}
5258#endif
5259
dbfccac2
DG
5260/* ------------------ Exported realloc, memalign, etc -------------------- */
5261
5262#if !ONLY_MSPACES
5263
5264void* dlrealloc(void* oldmem, size_t bytes) {
5265 void* mem = 0;
5266 if (oldmem == 0) {
5267 mem = dlmalloc(bytes);
5268 }
5269 else if (bytes >= MAX_REQUEST) {
5270 MALLOC_FAILURE_ACTION;
5271 }
5272#ifdef REALLOC_ZERO_BYTES_FREES
5273 else if (bytes == 0) {
5274 dlfree(oldmem);
5275 }
5276#endif /* REALLOC_ZERO_BYTES_FREES */
5277 else {
5278 size_t nb = request2size(bytes);
5279 mchunkptr oldp = mem2chunk(oldmem);
5280#if ! FOOTERS
5281 mstate m = gm;
5282#else /* FOOTERS */
5283 mstate m = get_mstate_for(oldp);
5284 if (!ok_magic(m)) {
5285 USAGE_ERROR_ACTION(m, oldmem);
5286 return 0;
5287 }
5288#endif /* FOOTERS */
5289 if (!PREACTION(m)) {
5290 mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5291 POSTACTION(m);
5292 if (newp != 0) {
5293 check_inuse_chunk(m, newp);
5294 mem = chunk2mem(newp);
5295 }
5296 else {
5297 mem = internal_malloc(m, bytes);
5298 if (mem != 0) {
5299 size_t oc = chunksize(oldp) - overhead_for(oldp);
5300 memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5301 internal_free(m, oldmem);
5302 }
5303 }
5304 }
5305 }
5306 return mem;
5307}
5308
5309void* dlrealloc_in_place(void* oldmem, size_t bytes) {
5310 void* mem = 0;
5311 if (oldmem != 0) {
5312 if (bytes >= MAX_REQUEST) {
5313 MALLOC_FAILURE_ACTION;
5314 }
5315 else {
5316 size_t nb = request2size(bytes);
5317 mchunkptr oldp = mem2chunk(oldmem);
5318#if ! FOOTERS
5319 mstate m = gm;
5320#else /* FOOTERS */
5321 mstate m = get_mstate_for(oldp);
5322 if (!ok_magic(m)) {
5323 USAGE_ERROR_ACTION(m, oldmem);
5324 return 0;
5325 }
5326#endif /* FOOTERS */
5327 if (!PREACTION(m)) {
5328 mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5329 POSTACTION(m);
5330 if (newp == oldp) {
5331 check_inuse_chunk(m, newp);
5332 mem = oldmem;
5333 }
5334 }
5335 }
5336 }
5337 return mem;
5338}
5339
5340void* dlmemalign(size_t alignment, size_t bytes) {
5341 if (alignment <= MALLOC_ALIGNMENT) {
5342 return dlmalloc(bytes);
5343 }
5344 return internal_memalign(gm, alignment, bytes);
5345}
5346
5347int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
5348 void* mem = 0;
5349 if (alignment == MALLOC_ALIGNMENT)
5350 mem = dlmalloc(bytes);
5351 else {
5352 size_t d = alignment / sizeof(void*);
5353 size_t r = alignment % sizeof(void*);
5354 if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
5355 return EINVAL;
5356 else if (bytes <= MAX_REQUEST - alignment) {
5357 if (alignment < MIN_CHUNK_SIZE)
5358 alignment = MIN_CHUNK_SIZE;
5359 mem = internal_memalign(gm, alignment, bytes);
5360 }
5361 }
5362 if (mem == 0)
5363 return ENOMEM;
5364 else {
5365 *pp = mem;
5366 return 0;
5367 }
5368}
5369
5370void* dlvalloc(size_t bytes) {
5371 size_t pagesz;
5372 ensure_initialization();
5373 pagesz = mparams.page_size;
5374 return dlmemalign(pagesz, bytes);
5375}
5376
5377void* dlpvalloc(size_t bytes) {
5378 size_t pagesz;
5379 ensure_initialization();
5380 pagesz = mparams.page_size;
5381 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
5382}
5383
5384void** dlindependent_calloc(size_t n_elements, size_t elem_size,
5385 void* chunks[]) {
5386 size_t sz = elem_size; /* serves as 1-element array */
5387 return ialloc(gm, n_elements, &sz, 3, chunks);
5388}
5389
5390void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
5391 void* chunks[]) {
5392 return ialloc(gm, n_elements, sizes, 0, chunks);
5393}
5394
5395size_t dlbulk_free(void* array[], size_t nelem) {
5396 return internal_bulk_free(gm, array, nelem);
5397}
5398
5399#if MALLOC_INSPECT_ALL
5400void dlmalloc_inspect_all(void(*handler)(void *start,
5401 void *end,
5402 size_t used_bytes,
5403 void* callback_arg),
5404 void* arg) {
5405 ensure_initialization();
5406 if (!PREACTION(gm)) {
5407 internal_inspect_all(gm, handler, arg);
5408 POSTACTION(gm);
5409 }
5410}
5411#endif /* MALLOC_INSPECT_ALL */
5412
5413int dlmalloc_trim(size_t pad) {
5414 int result = 0;
5415 ensure_initialization();
5416 if (!PREACTION(gm)) {
5417 result = sys_trim(gm, pad);
5418 POSTACTION(gm);
5419 }
5420 return result;
5421}
5422
5423size_t dlmalloc_footprint(void) {
5424 return gm->footprint;
5425}
5426
5427size_t dlmalloc_max_footprint(void) {
5428 return gm->max_footprint;
5429}
5430
5431size_t dlmalloc_footprint_limit(void) {
5432 size_t maf = gm->footprint_limit;
5433 return maf == 0 ? MAX_SIZE_T : maf;
5434}
5435
5436size_t dlmalloc_set_footprint_limit(size_t bytes) {
5437 size_t result; /* invert sense of 0 */
5438 if (bytes == 0)
5439 result = granularity_align(1); /* Use minimal size */
5440 if (bytes == MAX_SIZE_T)
5441 result = 0; /* disable */
5442 else
5443 result = granularity_align(bytes);
5444 return gm->footprint_limit = result;
5445}
5446
5447#if !NO_MALLINFO
5448struct mallinfo dlmallinfo(void) {
5449 return internal_mallinfo(gm);
5450}
5451#endif /* NO_MALLINFO */
5452
5453#if !NO_MALLOC_STATS
5454void dlmalloc_stats() {
5455 internal_malloc_stats(gm);
5456}
5457#endif /* NO_MALLOC_STATS */
5458
5459int dlmallopt(int param_number, int value) {
5460 return change_mparam(param_number, value);
5461}
5462
5463size_t dlmalloc_usable_size(void* mem) {
5464 if (mem != 0) {
5465 mchunkptr p = mem2chunk(mem);
5466 if (is_inuse(p))
5467 return chunksize(p) - overhead_for(p);
5468 }
5469 return 0;
5470}
5471
5472#endif /* !ONLY_MSPACES */
5473
5474/* ----------------------------- user mspaces ---------------------------- */
5475
5476#if MSPACES
5477
5478static mstate init_user_mstate(char* tbase, size_t tsize) {
5479 size_t msize = pad_request(sizeof(struct malloc_state));
5480 mchunkptr mn;
5481 mchunkptr msp = align_as_chunk(tbase);
5482 mstate m = (mstate)(chunk2mem(msp));
5483 memset(m, 0, msize);
5484 (void)INITIAL_LOCK(&m->mutex);
5485 msp->head = (msize|INUSE_BITS);
5486 m->seg.base = m->least_addr = tbase;
5487 m->seg.size = m->footprint = m->max_footprint = tsize;
5488 m->magic = mparams.magic;
5489 m->release_checks = MAX_RELEASE_CHECK_RATE;
5490 m->mflags = mparams.default_mflags;
5491 m->extp = 0;
5492 m->exts = 0;
5493 disable_contiguous(m);
5494 init_bins(m);
5495 mn = next_chunk(mem2chunk(m));
5496 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
5497 check_top_chunk(m, m->top);
5498 return m;
5499}
5500
5501mspace create_mspace(size_t capacity, int locked) {
5502 mstate m = 0;
5503 size_t msize;
5504 ensure_initialization();
5505 msize = pad_request(sizeof(struct malloc_state));
5506 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5507 size_t rs = ((capacity == 0)? mparams.granularity :
5508 (capacity + TOP_FOOT_SIZE + msize));
5509 size_t tsize = granularity_align(rs);
5510 char* tbase = (char*)(CALL_MMAP(tsize));
5511 if (tbase != CMFAIL) {
5512 m = init_user_mstate(tbase, tsize);
5513 m->seg.sflags = USE_MMAP_BIT;
5514 set_lock(m, locked);
5515 }
5516 }
5517 return (mspace)m;
5518}
5519
5520mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
5521 mstate m = 0;
5522 size_t msize;
5523 ensure_initialization();
5524 msize = pad_request(sizeof(struct malloc_state));
5525 if (capacity > msize + TOP_FOOT_SIZE &&
5526 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5527 m = init_user_mstate((char*)base, capacity);
5528 m->seg.sflags = EXTERN_BIT;
5529 set_lock(m, locked);
5530 }
5531 return (mspace)m;
5532}
5533
5534int mspace_track_large_chunks(mspace msp, int enable) {
5535 int ret = 0;
5536 mstate ms = (mstate)msp;
5537 if (!PREACTION(ms)) {
5538 if (!use_mmap(ms)) {
5539 ret = 1;
5540 }
5541 if (!enable) {
5542 enable_mmap(ms);
5543 } else {
5544 disable_mmap(ms);
5545 }
5546 POSTACTION(ms);
5547 }
5548 return ret;
5549}
5550
5551size_t destroy_mspace(mspace msp) {
5552 size_t freed = 0;
5553 mstate ms = (mstate)msp;
5554 if (ok_magic(ms)) {
5555 msegmentptr sp = &ms->seg;
5556 (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
5557 while (sp != 0) {
5558 char* base = sp->base;
5559 size_t size = sp->size;
5560 flag_t flag = sp->sflags;
5561 (void)base; /* placate people compiling -Wunused-variable */
5562 sp = sp->next;
5563 if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
5564 CALL_MUNMAP(base, size) == 0)
5565 freed += size;
5566 }
5567 }
5568 else {
5569 USAGE_ERROR_ACTION(ms,ms);
5570 }
5571 return freed;
5572}
5573
5574/*
5575 mspace versions of routines are near-clones of the global
5576 versions. This is not so nice but better than the alternatives.
5577*/
5578
5579void* mspace_malloc(mspace msp, size_t bytes) {
5580 mstate ms = (mstate)msp;
5581 if (!ok_magic(ms)) {
5582 USAGE_ERROR_ACTION(ms,ms);
5583 return 0;
5584 }
5585 if (!PREACTION(ms)) {
5586 void* mem;
5587 size_t nb;
5588 if (bytes <= MAX_SMALL_REQUEST) {
5589 bindex_t idx;
5590 binmap_t smallbits;
5591 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
5592 idx = small_index(nb);
5593 smallbits = ms->smallmap >> idx;
5594
5595 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
5596 mchunkptr b, p;
5597 idx += ~smallbits & 1; /* Uses next bin if idx empty */
5598 b = smallbin_at(ms, idx);
5599 p = b->fd;
5600 assert(chunksize(p) == small_index2size(idx));
5601 unlink_first_small_chunk(ms, b, p, idx);
5602 set_inuse_and_pinuse(ms, p, small_index2size(idx));
5603 mem = chunk2mem(p);
5604 check_malloced_chunk(ms, mem, nb);
5605 goto postaction;
5606 }
5607
5608 else if (nb > ms->dvsize) {
5609 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
5610 mchunkptr b, p, r;
5611 size_t rsize;
5612 bindex_t i;
5613 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
5614 binmap_t leastbit = least_bit(leftbits);
5615 compute_bit2idx(leastbit, i);
5616 b = smallbin_at(ms, i);
5617 p = b->fd;
5618 assert(chunksize(p) == small_index2size(i));
5619 unlink_first_small_chunk(ms, b, p, i);
5620 rsize = small_index2size(i) - nb;
5621 /* Fit here cannot be remainderless if 4byte sizes */
5622 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
5623 set_inuse_and_pinuse(ms, p, small_index2size(i));
5624 else {
5625 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5626 r = chunk_plus_offset(p, nb);
5627 set_size_and_pinuse_of_free_chunk(r, rsize);
5628 replace_dv(ms, r, rsize);
5629 }
5630 mem = chunk2mem(p);
5631 check_malloced_chunk(ms, mem, nb);
5632 goto postaction;
5633 }
5634
5635 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
5636 check_malloced_chunk(ms, mem, nb);
5637 goto postaction;
5638 }
5639 }
5640 }
5641 else if (bytes >= MAX_REQUEST)
5642 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
5643 else {
5644 nb = pad_request(bytes);
5645 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
5646 check_malloced_chunk(ms, mem, nb);
5647 goto postaction;
5648 }
5649 }
5650
5651 if (nb <= ms->dvsize) {
5652 size_t rsize = ms->dvsize - nb;
5653 mchunkptr p = ms->dv;
5654 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
5655 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
5656 ms->dvsize = rsize;
5657 set_size_and_pinuse_of_free_chunk(r, rsize);
5658 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5659 }
5660 else { /* exhaust dv */
5661 size_t dvs = ms->dvsize;
5662 ms->dvsize = 0;
5663 ms->dv = 0;
5664 set_inuse_and_pinuse(ms, p, dvs);
5665 }
5666 mem = chunk2mem(p);
5667 check_malloced_chunk(ms, mem, nb);
5668 goto postaction;
5669 }
5670
5671 else if (nb < ms->topsize) { /* Split top */
5672 size_t rsize = ms->topsize -= nb;
5673 mchunkptr p = ms->top;
5674 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
5675 r->head = rsize | PINUSE_BIT;
5676 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5677 mem = chunk2mem(p);
5678 check_top_chunk(ms, ms->top);
5679 check_malloced_chunk(ms, mem, nb);
5680 goto postaction;
5681 }
5682
5683 mem = sys_alloc(ms, nb);
5684
5685 postaction:
5686 POSTACTION(ms);
5687 return mem;
5688 }
5689
5690 return 0;
5691}
5692
5693void mspace_free(mspace msp, void* mem) {
5694 if (mem != 0) {
5695 mchunkptr p = mem2chunk(mem);
5696#if FOOTERS
5697 mstate fm = get_mstate_for(p);
5698 (void)msp; /* placate people compiling -Wunused */
5699#else /* FOOTERS */
5700 mstate fm = (mstate)msp;
5701#endif /* FOOTERS */
5702 if (!ok_magic(fm)) {
5703 USAGE_ERROR_ACTION(fm, p);
5704 return;
5705 }
5706 if (!PREACTION(fm)) {
5707 check_inuse_chunk(fm, p);
5708 if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
5709 size_t psize = chunksize(p);
5710 mchunkptr next = chunk_plus_offset(p, psize);
5711 if (!pinuse(p)) {
5712 size_t prevsize = p->prev_foot;
5713 if (is_mmapped(p)) {
5714 psize += prevsize + MMAP_FOOT_PAD;
5715 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
5716 fm->footprint -= psize;
5717 goto postaction;
5718 }
5719 else {
5720 mchunkptr prev = chunk_minus_offset(p, prevsize);
5721 psize += prevsize;
5722 p = prev;
5723 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
5724 if (p != fm->dv) {
5725 unlink_chunk(fm, p, prevsize);
5726 }
5727 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
5728 fm->dvsize = psize;
5729 set_free_with_pinuse(p, psize, next);
5730 goto postaction;
5731 }
5732 }
5733 else
5734 goto erroraction;
5735 }
5736 }
5737
5738 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
5739 if (!cinuse(next)) { /* consolidate forward */
5740 if (next == fm->top) {
5741 size_t tsize = fm->topsize += psize;
5742 fm->top = p;
5743 p->head = tsize | PINUSE_BIT;
5744 if (p == fm->dv) {
5745 fm->dv = 0;
5746 fm->dvsize = 0;
5747 }
5748 if (should_trim(fm, tsize))
5749 sys_trim(fm, 0);
5750 goto postaction;
5751 }
5752 else if (next == fm->dv) {
5753 size_t dsize = fm->dvsize += psize;
5754 fm->dv = p;
5755 set_size_and_pinuse_of_free_chunk(p, dsize);
5756 goto postaction;
5757 }
5758 else {
5759 size_t nsize = chunksize(next);
5760 psize += nsize;
5761 unlink_chunk(fm, next, nsize);
5762 set_size_and_pinuse_of_free_chunk(p, psize);
5763 if (p == fm->dv) {
5764 fm->dvsize = psize;
5765 goto postaction;
5766 }
5767 }
5768 }
5769 else
5770 set_free_with_pinuse(p, psize, next);
5771
5772 if (is_small(psize)) {
5773 insert_small_chunk(fm, p, psize);
5774 check_free_chunk(fm, p);
5775 }
5776 else {
5777 tchunkptr tp = (tchunkptr)p;
5778 insert_large_chunk(fm, tp, psize);
5779 check_free_chunk(fm, p);
5780 if (--fm->release_checks == 0)
5781 release_unused_segments(fm);
5782 }
5783 goto postaction;
5784 }
5785 }
5786 erroraction:
5787 USAGE_ERROR_ACTION(fm, p);
5788 postaction:
5789 POSTACTION(fm);
5790 }
5791 }
5792}
5793
5794void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
5795 void* mem;
5796 size_t req = 0;
5797 mstate ms = (mstate)msp;
5798 if (!ok_magic(ms)) {
5799 USAGE_ERROR_ACTION(ms,ms);
5800 return 0;
5801 }
5802 if (n_elements != 0) {
5803 req = n_elements * elem_size;
5804 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
5805 (req / n_elements != elem_size))
5806 req = MAX_SIZE_T; /* force downstream failure on overflow */
5807 }
5808 mem = internal_malloc(ms, req);
5809 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
5810 memset(mem, 0, req);
5811 return mem;
5812}
5813
5814void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
5815 void* mem = 0;
5816 if (oldmem == 0) {
5817 mem = mspace_malloc(msp, bytes);
5818 }
5819 else if (bytes >= MAX_REQUEST) {
5820 MALLOC_FAILURE_ACTION;
5821 }
5822#ifdef REALLOC_ZERO_BYTES_FREES
5823 else if (bytes == 0) {
5824 mspace_free(msp, oldmem);
5825 }
5826#endif /* REALLOC_ZERO_BYTES_FREES */
5827 else {
5828 size_t nb = request2size(bytes);
5829 mchunkptr oldp = mem2chunk(oldmem);
5830#if ! FOOTERS
5831 mstate m = (mstate)msp;
5832#else /* FOOTERS */
5833 mstate m = get_mstate_for(oldp);
5834 if (!ok_magic(m)) {
5835 USAGE_ERROR_ACTION(m, oldmem);
5836 return 0;
5837 }
5838#endif /* FOOTERS */
5839 if (!PREACTION(m)) {
5840 mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
5841 POSTACTION(m);
5842 if (newp != 0) {
5843 check_inuse_chunk(m, newp);
5844 mem = chunk2mem(newp);
5845 }
5846 else {
5847 mem = mspace_malloc(m, bytes);
5848 if (mem != 0) {
5849 size_t oc = chunksize(oldp) - overhead_for(oldp);
5850 memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
5851 mspace_free(m, oldmem);
5852 }
5853 }
5854 }
5855 }
5856 return mem;
5857}
5858
5859void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
5860 void* mem = 0;
5861 if (oldmem != 0) {
5862 if (bytes >= MAX_REQUEST) {
5863 MALLOC_FAILURE_ACTION;
5864 }
5865 else {
5866 size_t nb = request2size(bytes);
5867 mchunkptr oldp = mem2chunk(oldmem);
5868#if ! FOOTERS
5869 mstate m = (mstate)msp;
5870#else /* FOOTERS */
5871 mstate m = get_mstate_for(oldp);
5872 (void)msp; /* placate people compiling -Wunused */
5873 if (!ok_magic(m)) {
5874 USAGE_ERROR_ACTION(m, oldmem);
5875 return 0;
5876 }
5877#endif /* FOOTERS */
5878 if (!PREACTION(m)) {
5879 mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
5880 POSTACTION(m);
5881 if (newp == oldp) {
5882 check_inuse_chunk(m, newp);
5883 mem = oldmem;
5884 }
5885 }
5886 }
5887 }
5888 return mem;
5889}
5890
5891void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5892 mstate ms = (mstate)msp;
5893 if (!ok_magic(ms)) {
5894 USAGE_ERROR_ACTION(ms,ms);
5895 return 0;
5896 }
5897 if (alignment <= MALLOC_ALIGNMENT)
5898 return mspace_malloc(msp, bytes);
5899 return internal_memalign(ms, alignment, bytes);
5900}
5901
5902void** mspace_independent_calloc(mspace msp, size_t n_elements,
5903 size_t elem_size, void* chunks[]) {
5904 size_t sz = elem_size; /* serves as 1-element array */
5905 mstate ms = (mstate)msp;
5906 if (!ok_magic(ms)) {
5907 USAGE_ERROR_ACTION(ms,ms);
5908 return 0;
5909 }
5910 return ialloc(ms, n_elements, &sz, 3, chunks);
5911}
5912
5913void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5914 size_t sizes[], void* chunks[]) {
5915 mstate ms = (mstate)msp;
5916 if (!ok_magic(ms)) {
5917 USAGE_ERROR_ACTION(ms,ms);
5918 return 0;
5919 }
5920 return ialloc(ms, n_elements, sizes, 0, chunks);
5921}
5922
5923size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
5924 return internal_bulk_free((mstate)msp, array, nelem);
5925}
5926
5927#if MALLOC_INSPECT_ALL
5928void mspace_inspect_all(mspace msp,
5929 void(*handler)(void *start,
5930 void *end,
5931 size_t used_bytes,
5932 void* callback_arg),
5933 void* arg) {
5934 mstate ms = (mstate)msp;
5935 if (ok_magic(ms)) {
5936 if (!PREACTION(ms)) {
5937 internal_inspect_all(ms, handler, arg);
5938 POSTACTION(ms);
5939 }
5940 }
5941 else {
5942 USAGE_ERROR_ACTION(ms,ms);
5943 }
5944}
5945#endif /* MALLOC_INSPECT_ALL */
5946
5947int mspace_trim(mspace msp, size_t pad) {
5948 int result = 0;
5949 mstate ms = (mstate)msp;
5950 if (ok_magic(ms)) {
5951 if (!PREACTION(ms)) {
5952 result = sys_trim(ms, pad);
5953 POSTACTION(ms);
5954 }
5955 }
5956 else {
5957 USAGE_ERROR_ACTION(ms,ms);
5958 }
5959 return result;
5960}
5961
5962#if !NO_MALLOC_STATS
5963void mspace_malloc_stats(mspace msp) {
5964 mstate ms = (mstate)msp;
5965 if (ok_magic(ms)) {
5966 internal_malloc_stats(ms);
5967 }
5968 else {
5969 USAGE_ERROR_ACTION(ms,ms);
5970 }
5971}
5972#endif /* NO_MALLOC_STATS */
5973
5974size_t mspace_footprint(mspace msp) {
5975 size_t result = 0;
5976 mstate ms = (mstate)msp;
5977 if (ok_magic(ms)) {
5978 result = ms->footprint;
5979 }
5980 else {
5981 USAGE_ERROR_ACTION(ms,ms);
5982 }
5983 return result;
5984}
5985
5986size_t mspace_max_footprint(mspace msp) {
5987 size_t result = 0;
5988 mstate ms = (mstate)msp;
5989 if (ok_magic(ms)) {
5990 result = ms->max_footprint;
5991 }
5992 else {
5993 USAGE_ERROR_ACTION(ms,ms);
5994 }
5995 return result;
5996}
5997
5998size_t mspace_footprint_limit(mspace msp) {
5999 size_t result = 0;
6000 mstate ms = (mstate)msp;
6001 if (ok_magic(ms)) {
6002 size_t maf = ms->footprint_limit;
6003 result = (maf == 0) ? MAX_SIZE_T : maf;
6004 }
6005 else {
6006 USAGE_ERROR_ACTION(ms,ms);
6007 }
6008 return result;
6009}
6010
6011size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
6012 size_t result = 0;
6013 mstate ms = (mstate)msp;
6014 if (ok_magic(ms)) {
6015 if (bytes == 0)
6016 result = granularity_align(1); /* Use minimal size */
6017 if (bytes == MAX_SIZE_T)
6018 result = 0; /* disable */
6019 else
6020 result = granularity_align(bytes);
6021 ms->footprint_limit = result;
6022 }
6023 else {
6024 USAGE_ERROR_ACTION(ms,ms);
6025 }
6026 return result;
6027}
6028
6029#if !NO_MALLINFO
6030struct mallinfo mspace_mallinfo(mspace msp) {
6031 mstate ms = (mstate)msp;
6032 if (!ok_magic(ms)) {
6033 USAGE_ERROR_ACTION(ms,ms);
6034 }
6035 return internal_mallinfo(ms);
6036}
6037#endif /* NO_MALLINFO */
6038
6039size_t mspace_usable_size(const void* mem) {
6040 if (mem != 0) {
6041 mchunkptr p = mem2chunk(mem);
6042 if (is_inuse(p))
6043 return chunksize(p) - overhead_for(p);
6044 }
6045 return 0;
6046}
6047
6048int mspace_mallopt(int param_number, int value) {
6049 return change_mparam(param_number, value);
6050}
6051
6052#endif /* MSPACES */
6053
6054
6055/* -------------------- Alternative MORECORE functions ------------------- */
6056
6057/*
6058 Guidelines for creating a custom version of MORECORE:
6059
6060 * For best performance, MORECORE should allocate in multiples of pagesize.
6061 * MORECORE may allocate more memory than requested. (Or even less,
6062 but this will usually result in a malloc failure.)
6063 * MORECORE must not allocate memory when given argument zero, but
6064 instead return one past the end address of memory from previous
6065 nonzero call.
6066 * For best performance, consecutive calls to MORECORE with positive
6067 arguments should return increasing addresses, indicating that
6068 space has been contiguously extended.
6069 * Even though consecutive calls to MORECORE need not return contiguous
6070 addresses, it must be OK for malloc'ed chunks to span multiple
6071 regions in those cases where they do happen to be contiguous.
6072 * MORECORE need not handle negative arguments -- it may instead
6073 just return MFAIL when given negative arguments.
6074 Negative arguments are always multiples of pagesize. MORECORE
6075 must not misinterpret negative args as large positive unsigned
6076 args. You can suppress all such calls from even occurring by defining
6077 MORECORE_CANNOT_TRIM,
6078
6079 As an example alternative MORECORE, here is a custom allocator
6080 kindly contributed for pre-OSX macOS. It uses virtually but not
6081 necessarily physically contiguous non-paged memory (locked in,
6082 present and won't get swapped out). You can use it by uncommenting
6083 this section, adding some #includes, and setting up the appropriate
6084 defines above:
6085
6086 #define MORECORE osMoreCore
6087
6088 There is also a shutdown routine that should somehow be called for
6089 cleanup upon program exit.
6090
6091 #define MAX_POOL_ENTRIES 100
6092 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
6093 static int next_os_pool;
6094 void *our_os_pools[MAX_POOL_ENTRIES];
6095
6096 void *osMoreCore(int size)
6097 {
6098 void *ptr = 0;
6099 static void *sbrk_top = 0;
6100
6101 if (size > 0)
6102 {
6103 if (size < MINIMUM_MORECORE_SIZE)
6104 size = MINIMUM_MORECORE_SIZE;
6105 if (CurrentExecutionLevel() == kTaskLevel)
6106 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6107 if (ptr == 0)
6108 {
6109 return (void *) MFAIL;
6110 }
6111 // save ptrs so they can be freed during cleanup
6112 our_os_pools[next_os_pool] = ptr;
6113 next_os_pool++;
6114 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6115 sbrk_top = (char *) ptr + size;
6116 return ptr;
6117 }
6118 else if (size < 0)
6119 {
6120 // we don't currently support shrink behavior
6121 return (void *) MFAIL;
6122 }
6123 else
6124 {
6125 return sbrk_top;
6126 }
6127 }
6128
6129 // cleanup any allocated memory pools
6130 // called as last thing before shutting down driver
6131
6132 void osCleanupMem(void)
6133 {
6134 void **ptr;
6135
6136 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6137 if (*ptr)
6138 {
6139 PoolDeallocate(*ptr);
6140 *ptr = 0;
6141 }
6142 }
6143
6144*/
6145
6146
6147/* -----------------------------------------------------------------------
6148History:
6149 v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
6150 * fix bad comparison in dlposix_memalign
6151 * don't reuse adjusted asize in sys_alloc
6152 * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
6153 * reduce compiler warnings -- thanks to all who reported/suggested these
6154
6155 v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
6156 * Always perform unlink checks unless INSECURE
6157 * Add posix_memalign.
6158 * Improve realloc to expand in more cases; expose realloc_in_place.
6159 Thanks to Peter Buhr for the suggestion.
6160 * Add footprint_limit, inspect_all, bulk_free. Thanks
6161 to Barry Hayes and others for the suggestions.
6162 * Internal refactorings to avoid calls while holding locks
6163 * Use non-reentrant locks by default. Thanks to Roland McGrath
6164 for the suggestion.
6165 * Small fixes to mspace_destroy, reset_on_error.
6166 * Various configuration extensions/changes. Thanks
6167 to all who contributed these.
6168
6169 V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
6170 * Update Creative Commons URL
6171
6172 V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
6173 * Use zeros instead of prev foot for is_mmapped
6174 * Add mspace_track_large_chunks; thanks to Jean Brouwers
6175 * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
6176 * Fix insufficient sys_alloc padding when using 16byte alignment
6177 * Fix bad error check in mspace_footprint
6178 * Adaptations for ptmalloc; thanks to Wolfram Gloger.
6179 * Reentrant spin locks; thanks to Earl Chew and others
6180 * Win32 improvements; thanks to Niall Douglas and Earl Chew
6181 * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
6182 * Extension hook in malloc_state
6183 * Various small adjustments to reduce warnings on some compilers
6184 * Various configuration extensions/changes for more platforms. Thanks
6185 to all who contributed these.
6186
6187 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
6188 * Add max_footprint functions
6189 * Ensure all appropriate literals are size_t
6190 * Fix conditional compilation problem for some #define settings
6191 * Avoid concatenating segments with the one provided
6192 in create_mspace_with_base
6193 * Rename some variables to avoid compiler shadowing warnings
6194 * Use explicit lock initialization.
6195 * Better handling of sbrk interference.
6196 * Simplify and fix segment insertion, trimming and mspace_destroy
6197 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
6198 * Thanks especially to Dennis Flanagan for help on these.
6199
6200 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
6201 * Fix memalign brace error.
6202
6203 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
6204 * Fix improper #endif nesting in C++
6205 * Add explicit casts needed for C++
6206
6207 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
6208 * Use trees for large bins
6209 * Support mspaces
6210 * Use segments to unify sbrk-based and mmap-based system allocation,
6211 removing need for emulation on most platforms without sbrk.
6212 * Default safety checks
6213 * Optional footer checks. Thanks to William Robertson for the idea.
6214 * Internal code refactoring
6215 * Incorporate suggestions and platform-specific changes.
6216 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
6217 Aaron Bachmann, Emery Berger, and others.
6218 * Speed up non-fastbin processing enough to remove fastbins.
6219 * Remove useless cfree() to avoid conflicts with other apps.
6220 * Remove internal memcpy, memset. Compilers handle builtins better.
6221 * Remove some options that no one ever used and rename others.
6222
6223 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
6224 * Fix malloc_state bitmap array misdeclaration
6225
6226 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
6227 * Allow tuning of FIRST_SORTED_BIN_SIZE
6228 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
6229 * Better detection and support for non-contiguousness of MORECORE.
6230 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
6231 * Bypass most of malloc if no frees. Thanks To Emery Berger.
6232 * Fix freeing of old top non-contiguous chunk im sysmalloc.
6233 * Raised default trim and map thresholds to 256K.
6234 * Fix mmap-related #defines. Thanks to Lubos Lunak.
6235 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
6236 * Branch-free bin calculation
6237 * Default trim and mmap thresholds now 256K.
6238
6239 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
6240 * Introduce independent_comalloc and independent_calloc.
6241 Thanks to Michael Pachos for motivation and help.
6242 * Make optional .h file available
6243 * Allow > 2GB requests on 32bit systems.
6244 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
6245 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
6246 and Anonymous.
6247 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
6248 helping test this.)
6249 * memalign: check alignment arg
6250 * realloc: don't try to shift chunks backwards, since this
6251 leads to more fragmentation in some programs and doesn't
6252 seem to help in any others.
6253 * Collect all cases in malloc requiring system memory into sysmalloc
6254 * Use mmap as backup to sbrk
6255 * Place all internal state in malloc_state
6256 * Introduce fastbins (although similar to 2.5.1)
6257 * Many minor tunings and cosmetic improvements
6258 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
6259 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
6260 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
6261 * Include errno.h to support default failure action.
6262
6263 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
6264 * return null for negative arguments
6265 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
6266 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
6267 (e.g. WIN32 platforms)
6268 * Cleanup header file inclusion for WIN32 platforms
6269 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
6270 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
6271 memory allocation routines
6272 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
6273 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
6274 usage of 'assert' in non-WIN32 code
6275 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
6276 avoid infinite loop
6277 * Always call 'fREe()' rather than 'free()'
6278
6279 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
6280 * Fixed ordering problem with boundary-stamping
6281
6282 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
6283 * Added pvalloc, as recommended by H.J. Liu
6284 * Added 64bit pointer support mainly from Wolfram Gloger
6285 * Added anonymously donated WIN32 sbrk emulation
6286 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
6287 * malloc_extend_top: fix mask error that caused wastage after
6288 foreign sbrks
6289 * Add linux mremap support code from HJ Liu
6290
6291 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
6292 * Integrated most documentation with the code.
6293 * Add support for mmap, with help from
6294 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6295 * Use last_remainder in more cases.
6296 * Pack bins using idea from colin@nyx10.cs.du.edu
6297 * Use ordered bins instead of best-fit threshhold
6298 * Eliminate block-local decls to simplify tracing and debugging.
6299 * Support another case of realloc via move into top
6300 * Fix error occuring when initial sbrk_base not word-aligned.
6301 * Rely on page size for units instead of SBRK_UNIT to
6302 avoid surprises about sbrk alignment conventions.
6303 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
6304 (raymond@es.ele.tue.nl) for the suggestion.
6305 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
6306 * More precautions for cases where other routines call sbrk,
6307 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
6308 * Added macros etc., allowing use in linux libc from
6309 H.J. Lu (hjl@gnu.ai.mit.edu)
6310 * Inverted this history list
6311
6312 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
6313 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
6314 * Removed all preallocation code since under current scheme
6315 the work required to undo bad preallocations exceeds
6316 the work saved in good cases for most test programs.
6317 * No longer use return list or unconsolidated bins since
6318 no scheme using them consistently outperforms those that don't
6319 given above changes.
6320 * Use best fit for very large chunks to prevent some worst-cases.
6321 * Added some support for debugging
6322
6323 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
6324 * Removed footers when chunks are in use. Thanks to
6325 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
6326
6327 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
6328 * Added malloc_trim, with help from Wolfram Gloger
6329 (wmglo@Dent.MED.Uni-Muenchen.DE).
6330
6331 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
6332
6333 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
6334 * realloc: try to expand in both directions
6335 * malloc: swap order of clean-bin strategy;
6336 * realloc: only conditionally expand backwards
6337 * Try not to scavenge used bins
6338 * Use bin counts as a guide to preallocation
6339 * Occasionally bin return list chunks in first scan
6340 * Add a few optimizations from colin@nyx10.cs.du.edu
6341
6342 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
6343 * faster bin computation & slightly different binning
6344 * merged all consolidations to one part of malloc proper
6345 (eliminating old malloc_find_space & malloc_clean_bin)
6346 * Scan 2 returns chunks (not just 1)
6347 * Propagate failure in realloc if malloc returns 0
6348 * Add stuff to allow compilation on non-ANSI compilers
6349 from kpv@research.att.com
6350
6351 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
6352 * removed potential for odd address access in prev_chunk
6353 * removed dependency on getpagesize.h
6354 * misc cosmetics and a bit more internal documentation
6355 * anticosmetics: mangled names in macros to evade debugger strangeness
6356 * tested on sparc, hp-700, dec-mips, rs6000
6357 with gcc & native cc (hp, dec only) allowing
6358 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
6359
6360 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
6361 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
6362 structure of old version, but most details differ.)
6363
6364*/