]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/acpi/cppc_acpi.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / drivers / acpi / cppc_acpi.c
CommitLineData
337aadff
AC
1/*
2 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3 *
4 * (C) Copyright 2014, 2015 Linaro Ltd.
5 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * CPPC describes a few methods for controlling CPU performance using
13 * information from a per CPU table called CPC. This table is described in
14 * the ACPI v5.0+ specification. The table consists of a list of
15 * registers which may be memory mapped or hardware registers and also may
16 * include some static integer values.
17 *
18 * CPU performance is on an abstract continuous scale as against a discretized
19 * P-state scale which is tied to CPU frequency only. In brief, the basic
20 * operation involves:
21 *
22 * - OS makes a CPU performance request. (Can provide min and max bounds)
23 *
24 * - Platform (such as BMC) is free to optimize request within requested bounds
25 * depending on power/thermal budgets etc.
26 *
27 * - Platform conveys its decision back to OS
28 *
29 * The communication between OS and platform occurs through another medium
30 * called (PCC) Platform Communication Channel. This is a generic mailbox like
31 * mechanism which includes doorbell semantics to indicate register updates.
32 * See drivers/mailbox/pcc.c for details on PCC.
33 *
34 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35 * above specifications.
36 */
37
38#define pr_fmt(fmt) "ACPI CPPC: " fmt
39
40#include <linux/cpufreq.h>
41#include <linux/delay.h>
ad62e1e6 42#include <linux/ktime.h>
80b8286a
PP
43#include <linux/rwsem.h>
44#include <linux/wait.h>
337aadff
AC
45
46#include <acpi/cppc_acpi.h>
80b8286a 47
8482ef8c
PP
48struct cppc_pcc_data {
49 struct mbox_chan *pcc_channel;
50 void __iomem *pcc_comm_addr;
8482ef8c
PP
51 bool pcc_channel_acquired;
52 ktime_t deadline;
53 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
80b8286a 54
8482ef8c 55 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
139aee73 56 bool platform_owns_pcc; /* Ownership of PCC subspace */
8482ef8c 57 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
80b8286a 58
8482ef8c
PP
59 /*
60 * Lock to provide controlled access to the PCC channel.
61 *
62 * For performance critical usecases(currently cppc_set_perf)
63 * We need to take read_lock and check if channel belongs to OSPM
64 * before reading or writing to PCC subspace
65 * We need to take write_lock before transferring the channel
66 * ownership to the platform via a Doorbell
67 * This allows us to batch a number of CPPC requests if they happen
68 * to originate in about the same time
69 *
70 * For non-performance critical usecases(init)
71 * Take write_lock for all purposes which gives exclusive access
72 */
73 struct rw_semaphore pcc_lock;
74
75 /* Wait queue for CPUs whose requests were batched */
76 wait_queue_head_t pcc_write_wait_q;
3d111613
GC
77 ktime_t last_cmd_cmpl_time;
78 ktime_t last_mpar_reset;
79 int mpar_count;
80 int refcount;
8482ef8c 81};
80b8286a 82
3d111613
GC
83/* Array to represent the PCC channel per subspace id */
84static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
85/* The cpu_pcc_subspace_idx containsper CPU subspace id */
86static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
337aadff
AC
87
88/*
89 * The cpc_desc structure contains the ACPI register details
90 * as described in the per CPU _CPC tables. The details
91 * include the type of register (e.g. PCC, System IO, FFH etc.)
92 * and destination addresses which lets us READ/WRITE CPU performance
93 * information using the appropriate I/O methods.
94 */
95static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
96
77e3d86f 97/* pcc mapped address + header size + offset within PCC subspace */
3d111613
GC
98#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
99 0x8 + (offs))
77e3d86f 100
ad61dd30 101/* Check if a CPC register is in PCC */
80b8286a
PP
102#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
103 (cpc)->cpc_entry.reg.space_id == \
104 ACPI_ADR_SPACE_PLATFORM_COMM)
105
158c998e
AC
106/* Evalutes to True if reg is a NULL register descriptor */
107#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
108 (reg)->address == 0 && \
109 (reg)->bit_width == 0 && \
110 (reg)->bit_offset == 0 && \
111 (reg)->access_width == 0)
112
113/* Evalutes to True if an optional cpc field is supported */
114#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
115 !!(cpc)->cpc_entry.int_value : \
116 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
337aadff
AC
117/*
118 * Arbitrary Retries in case the remote processor is slow to respond
ad62e1e6
AC
119 * to PCC commands. Keeping it high enough to cover emulators where
120 * the processors run painfully slow.
337aadff
AC
121 */
122#define NUM_RETRIES 500
123
158c998e
AC
124struct cppc_attr {
125 struct attribute attr;
126 ssize_t (*show)(struct kobject *kobj,
127 struct attribute *attr, char *buf);
128 ssize_t (*store)(struct kobject *kobj,
129 struct attribute *attr, const char *c, ssize_t count);
130};
131
132#define define_one_cppc_ro(_name) \
133static struct cppc_attr _name = \
134__ATTR(_name, 0444, show_##_name, NULL)
135
136#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
137
2c74d847
PP
138#define show_cppc_data(access_fn, struct_name, member_name) \
139 static ssize_t show_##member_name(struct kobject *kobj, \
140 struct attribute *attr, char *buf) \
141 { \
142 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
143 struct struct_name st_name = {0}; \
144 int ret; \
145 \
146 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
147 if (ret) \
148 return ret; \
149 \
150 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
151 (u64)st_name.member_name); \
152 } \
153 define_one_cppc_ro(member_name)
154
155show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
159show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
160show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
161
158c998e
AC
162static ssize_t show_feedback_ctrs(struct kobject *kobj,
163 struct attribute *attr, char *buf)
164{
165 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
166 struct cppc_perf_fb_ctrs fb_ctrs = {0};
2c74d847 167 int ret;
158c998e 168
2c74d847
PP
169 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
170 if (ret)
171 return ret;
158c998e
AC
172
173 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
174 fb_ctrs.reference, fb_ctrs.delivered);
175}
176define_one_cppc_ro(feedback_ctrs);
177
158c998e
AC
178static struct attribute *cppc_attrs[] = {
179 &feedback_ctrs.attr,
180 &reference_perf.attr,
181 &wraparound_time.attr,
2c74d847
PP
182 &highest_perf.attr,
183 &lowest_perf.attr,
184 &lowest_nonlinear_perf.attr,
185 &nominal_perf.attr,
158c998e
AC
186 NULL
187};
188
189static struct kobj_type cppc_ktype = {
190 .sysfs_ops = &kobj_sysfs_ops,
191 .default_attrs = cppc_attrs,
192};
193
3d111613 194static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
ad62e1e6 195{
139aee73 196 int ret = -EIO, status = 0;
3d111613
GC
197 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
198 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
199 pcc_ss_data->pcc_comm_addr;
200 ktime_t next_deadline = ktime_add(ktime_get(),
201 pcc_ss_data->deadline);
ad62e1e6 202
3d111613 203 if (!pcc_ss_data->platform_owns_pcc)
139aee73
PP
204 return 0;
205
ad62e1e6
AC
206 /* Retry in case the remote processor was too slow to catch up. */
207 while (!ktime_after(ktime_get(), next_deadline)) {
f387e5b9
PP
208 /*
209 * Per spec, prior to boot the PCC space wil be initialized by
210 * platform and should have set the command completion bit when
211 * PCC can be used by OSPM
212 */
139aee73
PP
213 status = readw_relaxed(&generic_comm_base->status);
214 if (status & PCC_CMD_COMPLETE_MASK) {
ad62e1e6 215 ret = 0;
139aee73
PP
216 if (chk_err_bit && (status & PCC_ERROR_MASK))
217 ret = -EIO;
ad62e1e6
AC
218 break;
219 }
220 /*
221 * Reducing the bus traffic in case this loop takes longer than
222 * a few retries.
223 */
224 udelay(3);
225 }
226
139aee73 227 if (likely(!ret))
3d111613 228 pcc_ss_data->platform_owns_pcc = false;
139aee73
PP
229 else
230 pr_err("PCC check channel failed. Status=%x\n", status);
231
ad62e1e6
AC
232 return ret;
233}
234
80b8286a
PP
235/*
236 * This function transfers the ownership of the PCC to the platform
237 * So it must be called while holding write_lock(pcc_lock)
238 */
3d111613 239static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
337aadff 240{
80b8286a 241 int ret = -EIO, i;
3d111613 242 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
337aadff 243 struct acpi_pcct_shared_memory *generic_comm_base =
3d111613 244 (struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
f387e5b9 245 unsigned int time_delta;
337aadff 246
ad62e1e6
AC
247 /*
248 * For CMD_WRITE we know for a fact the caller should have checked
249 * the channel before writing to PCC space
250 */
251 if (cmd == CMD_READ) {
80b8286a
PP
252 /*
253 * If there are pending cpc_writes, then we stole the channel
254 * before write completion, so first send a WRITE command to
255 * platform
256 */
3d111613
GC
257 if (pcc_ss_data->pending_pcc_write_cmd)
258 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
80b8286a 259
3d111613 260 ret = check_pcc_chan(pcc_ss_id, false);
ad62e1e6 261 if (ret)
80b8286a
PP
262 goto end;
263 } else /* CMD_WRITE */
3d111613 264 pcc_ss_data->pending_pcc_write_cmd = FALSE;
337aadff 265
f387e5b9
PP
266 /*
267 * Handle the Minimum Request Turnaround Time(MRTT)
268 * "The minimum amount of time that OSPM must wait after the completion
269 * of a command before issuing the next command, in microseconds"
270 */
3d111613
GC
271 if (pcc_ss_data->pcc_mrtt) {
272 time_delta = ktime_us_delta(ktime_get(),
273 pcc_ss_data->last_cmd_cmpl_time);
274 if (pcc_ss_data->pcc_mrtt > time_delta)
275 udelay(pcc_ss_data->pcc_mrtt - time_delta);
f387e5b9
PP
276 }
277
278 /*
279 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
280 * "The maximum number of periodic requests that the subspace channel can
281 * support, reported in commands per minute. 0 indicates no limitation."
282 *
283 * This parameter should be ideally zero or large enough so that it can
284 * handle maximum number of requests that all the cores in the system can
285 * collectively generate. If it is not, we will follow the spec and just
286 * not send the request to the platform after hitting the MPAR limit in
287 * any 60s window
288 */
3d111613
GC
289 if (pcc_ss_data->pcc_mpar) {
290 if (pcc_ss_data->mpar_count == 0) {
291 time_delta = ktime_ms_delta(ktime_get(),
292 pcc_ss_data->last_mpar_reset);
293 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
f387e5b9 294 pr_debug("PCC cmd not sent due to MPAR limit");
80b8286a
PP
295 ret = -EIO;
296 goto end;
f387e5b9 297 }
3d111613
GC
298 pcc_ss_data->last_mpar_reset = ktime_get();
299 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
f387e5b9 300 }
3d111613 301 pcc_ss_data->mpar_count--;
f387e5b9
PP
302 }
303
337aadff 304 /* Write to the shared comm region. */
beee23ae 305 writew_relaxed(cmd, &generic_comm_base->command);
337aadff
AC
306
307 /* Flip CMD COMPLETE bit */
beee23ae 308 writew_relaxed(0, &generic_comm_base->status);
337aadff 309
3d111613 310 pcc_ss_data->platform_owns_pcc = true;
139aee73 311
337aadff 312 /* Ring doorbell */
3d111613 313 ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
ad62e1e6 314 if (ret < 0) {
337aadff 315 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
ad62e1e6 316 cmd, ret);
80b8286a 317 goto end;
337aadff
AC
318 }
319
139aee73 320 /* wait for completion and check for PCC errro bit */
3d111613 321 ret = check_pcc_chan(pcc_ss_id, true);
139aee73 322
3d111613
GC
323 if (pcc_ss_data->pcc_mrtt)
324 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
337aadff 325
3d111613
GC
326 if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
327 mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
b59c4b3d 328 else
3d111613 329 mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
80b8286a
PP
330
331end:
332 if (cmd == CMD_WRITE) {
333 if (unlikely(ret)) {
334 for_each_possible_cpu(i) {
335 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
336 if (!desc)
337 continue;
338
3d111613 339 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
80b8286a
PP
340 desc->write_cmd_status = ret;
341 }
342 }
3d111613
GC
343 pcc_ss_data->pcc_write_cnt++;
344 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
80b8286a
PP
345 }
346
ad62e1e6 347 return ret;
337aadff
AC
348}
349
350static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
351{
ad62e1e6 352 if (ret < 0)
337aadff
AC
353 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
354 *(u16 *)msg, ret);
355 else
356 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
357 *(u16 *)msg, ret);
358}
359
360struct mbox_client cppc_mbox_cl = {
361 .tx_done = cppc_chan_tx_done,
362 .knows_txdone = true,
363};
364
365static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
366{
367 int result = -EFAULT;
368 acpi_status status = AE_OK;
369 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
370 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
371 struct acpi_buffer state = {0, NULL};
372 union acpi_object *psd = NULL;
373 struct acpi_psd_package *pdomain;
374
375 status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
376 ACPI_TYPE_PACKAGE);
377 if (ACPI_FAILURE(status))
378 return -ENODEV;
379
380 psd = buffer.pointer;
381 if (!psd || psd->package.count != 1) {
382 pr_debug("Invalid _PSD data\n");
383 goto end;
384 }
385
386 pdomain = &(cpc_ptr->domain_info);
387
388 state.length = sizeof(struct acpi_psd_package);
389 state.pointer = pdomain;
390
391 status = acpi_extract_package(&(psd->package.elements[0]),
392 &format, &state);
393 if (ACPI_FAILURE(status)) {
394 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
395 goto end;
396 }
397
398 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
399 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
401 }
402
403 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
404 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
405 goto end;
406 }
407
408 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
409 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
410 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
411 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
412 goto end;
413 }
414
415 result = 0;
416end:
417 kfree(buffer.pointer);
418 return result;
419}
420
421/**
422 * acpi_get_psd_map - Map the CPUs in a common freq domain.
423 * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
424 *
425 * Return: 0 for success or negative value for err.
426 */
41dd6403 427int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
337aadff
AC
428{
429 int count_target;
430 int retval = 0;
431 unsigned int i, j;
432 cpumask_var_t covered_cpus;
41dd6403 433 struct cppc_cpudata *pr, *match_pr;
337aadff
AC
434 struct acpi_psd_package *pdomain;
435 struct acpi_psd_package *match_pdomain;
436 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
437
438 if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
439 return -ENOMEM;
440
441 /*
442 * Now that we have _PSD data from all CPUs, lets setup P-state
443 * domain info.
444 */
445 for_each_possible_cpu(i) {
446 pr = all_cpu_data[i];
447 if (!pr)
448 continue;
449
450 if (cpumask_test_cpu(i, covered_cpus))
451 continue;
452
453 cpc_ptr = per_cpu(cpc_desc_ptr, i);
8343c40d
HT
454 if (!cpc_ptr) {
455 retval = -EFAULT;
456 goto err_ret;
457 }
337aadff
AC
458
459 pdomain = &(cpc_ptr->domain_info);
460 cpumask_set_cpu(i, pr->shared_cpu_map);
461 cpumask_set_cpu(i, covered_cpus);
462 if (pdomain->num_processors <= 1)
463 continue;
464
465 /* Validate the Domain info */
466 count_target = pdomain->num_processors;
467 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
468 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
469 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
470 pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
471 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
472 pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
473
474 for_each_possible_cpu(j) {
475 if (i == j)
476 continue;
477
478 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
8343c40d
HT
479 if (!match_cpc_ptr) {
480 retval = -EFAULT;
481 goto err_ret;
482 }
337aadff
AC
483
484 match_pdomain = &(match_cpc_ptr->domain_info);
485 if (match_pdomain->domain != pdomain->domain)
486 continue;
487
488 /* Here i and j are in the same domain */
489 if (match_pdomain->num_processors != count_target) {
490 retval = -EFAULT;
491 goto err_ret;
492 }
493
494 if (pdomain->coord_type != match_pdomain->coord_type) {
495 retval = -EFAULT;
496 goto err_ret;
497 }
498
499 cpumask_set_cpu(j, covered_cpus);
500 cpumask_set_cpu(j, pr->shared_cpu_map);
501 }
502
503 for_each_possible_cpu(j) {
504 if (i == j)
505 continue;
506
507 match_pr = all_cpu_data[j];
508 if (!match_pr)
509 continue;
510
511 match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
8343c40d
HT
512 if (!match_cpc_ptr) {
513 retval = -EFAULT;
514 goto err_ret;
515 }
337aadff
AC
516
517 match_pdomain = &(match_cpc_ptr->domain_info);
518 if (match_pdomain->domain != pdomain->domain)
519 continue;
520
521 match_pr->shared_type = pr->shared_type;
522 cpumask_copy(match_pr->shared_cpu_map,
523 pr->shared_cpu_map);
524 }
525 }
526
527err_ret:
528 for_each_possible_cpu(i) {
529 pr = all_cpu_data[i];
530 if (!pr)
531 continue;
532
533 /* Assume no coordination on any error parsing domain info */
534 if (retval) {
535 cpumask_clear(pr->shared_cpu_map);
536 cpumask_set_cpu(i, pr->shared_cpu_map);
537 pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
538 }
539 }
540
541 free_cpumask_var(covered_cpus);
542 return retval;
543}
544EXPORT_SYMBOL_GPL(acpi_get_psd_map);
545
3d111613 546static int register_pcc_channel(int pcc_ss_idx)
337aadff 547{
d29d6735 548 struct acpi_pcct_hw_reduced *cppc_ss;
ad62e1e6 549 u64 usecs_lat;
337aadff 550
3d111613
GC
551 if (pcc_ss_idx >= 0) {
552 pcc_data[pcc_ss_idx]->pcc_channel =
553 pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
337aadff 554
3d111613 555 if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
337aadff
AC
556 pr_err("Failed to find PCC communication channel\n");
557 return -ENODEV;
558 }
559
560 /*
561 * The PCC mailbox controller driver should
562 * have parsed the PCCT (global table of all
563 * PCC channels) and stored pointers to the
564 * subspace communication region in con_priv.
565 */
3d111613 566 cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
337aadff
AC
567
568 if (!cppc_ss) {
569 pr_err("No PCC subspace found for CPPC\n");
570 return -ENODEV;
571 }
572
ad62e1e6
AC
573 /*
574 * cppc_ss->latency is just a Nominal value. In reality
575 * the remote processor could be much slower to reply.
576 * So add an arbitrary amount of wait on top of Nominal.
577 */
578 usecs_lat = NUM_RETRIES * cppc_ss->latency;
3d111613
GC
579 pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
580 pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
581 pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
582 pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
583
584 pcc_data[pcc_ss_idx]->pcc_comm_addr =
585 acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
586 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
337aadff
AC
587 pr_err("Failed to ioremap PCC comm region mem\n");
588 return -ENOMEM;
589 }
590
591 /* Set flag so that we dont come here for each CPU. */
3d111613 592 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
337aadff
AC
593 }
594
595 return 0;
596}
597
a6cbcdd5
SP
598/**
599 * cpc_ffh_supported() - check if FFH reading supported
600 *
601 * Check if the architecture has support for functional fixed hardware
602 * read/write capability.
603 *
604 * Return: true for supported, false for not supported
605 */
606bool __weak cpc_ffh_supported(void)
607{
608 return false;
609}
610
3d111613
GC
611
612/**
613 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
614 *
615 * Check and allocate the cppc_pcc_data memory.
616 * In some processor configurations it is possible that same subspace
617 * is shared between multiple CPU's. This is seen especially in CPU's
618 * with hardware multi-threading support.
619 *
620 * Return: 0 for success, errno for failure
621 */
622int pcc_data_alloc(int pcc_ss_id)
623{
624 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
625 return -EINVAL;
626
627 if (pcc_data[pcc_ss_id]) {
628 pcc_data[pcc_ss_id]->refcount++;
629 } else {
630 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
631 GFP_KERNEL);
632 if (!pcc_data[pcc_ss_id])
633 return -ENOMEM;
634 pcc_data[pcc_ss_id]->refcount++;
635 }
636
637 return 0;
638}
337aadff
AC
639/*
640 * An example CPC table looks like the following.
641 *
642 * Name(_CPC, Package()
643 * {
644 * 17,
645 * NumEntries
646 * 1,
647 * // Revision
648 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
649 * // Highest Performance
650 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
651 * // Nominal Performance
652 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
653 * // Lowest Nonlinear Performance
654 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
655 * // Lowest Performance
656 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
657 * // Guaranteed Performance Register
658 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
659 * // Desired Performance Register
660 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
661 * ..
662 * ..
663 * ..
664 *
665 * }
666 * Each Register() encodes how to access that specific register.
667 * e.g. a sample PCC entry has the following encoding:
668 *
669 * Register (
670 * PCC,
671 * AddressSpaceKeyword
672 * 8,
673 * //RegisterBitWidth
674 * 8,
675 * //RegisterBitOffset
676 * 0x30,
677 * //RegisterAddress
678 * 9
679 * //AccessSize (subspace ID)
680 * 0
681 * )
682 * }
683 */
684
685/**
686 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
687 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
688 *
689 * Return: 0 for success or negative value for err.
690 */
691int acpi_cppc_processor_probe(struct acpi_processor *pr)
692{
693 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
694 union acpi_object *out_obj, *cpc_obj;
695 struct cpc_desc *cpc_ptr;
696 struct cpc_reg *gas_t;
158c998e 697 struct device *cpu_dev;
337aadff
AC
698 acpi_handle handle = pr->handle;
699 unsigned int num_ent, i, cpc_rev;
3d111613 700 int pcc_subspace_id = -1;
337aadff
AC
701 acpi_status status;
702 int ret = -EFAULT;
703
704 /* Parse the ACPI _CPC table for this cpu. */
705 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
706 ACPI_TYPE_PACKAGE);
707 if (ACPI_FAILURE(status)) {
708 ret = -ENODEV;
709 goto out_buf_free;
710 }
711
712 out_obj = (union acpi_object *) output.pointer;
713
714 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
715 if (!cpc_ptr) {
716 ret = -ENOMEM;
717 goto out_buf_free;
718 }
719
720 /* First entry is NumEntries. */
721 cpc_obj = &out_obj->package.elements[0];
722 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
723 num_ent = cpc_obj->integer.value;
724 } else {
725 pr_debug("Unexpected entry type(%d) for NumEntries\n",
726 cpc_obj->type);
727 goto out_free;
728 }
729
730 /* Only support CPPCv2. Bail otherwise. */
731 if (num_ent != CPPC_NUM_ENT) {
732 pr_debug("Firmware exports %d entries. Expected: %d\n",
733 num_ent, CPPC_NUM_ENT);
734 goto out_free;
735 }
736
5bbb86aa
AC
737 cpc_ptr->num_entries = num_ent;
738
337aadff
AC
739 /* Second entry should be revision. */
740 cpc_obj = &out_obj->package.elements[1];
741 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
742 cpc_rev = cpc_obj->integer.value;
743 } else {
744 pr_debug("Unexpected entry type(%d) for Revision\n",
745 cpc_obj->type);
746 goto out_free;
747 }
748
749 if (cpc_rev != CPPC_REV) {
750 pr_debug("Firmware exports revision:%d. Expected:%d\n",
751 cpc_rev, CPPC_REV);
752 goto out_free;
753 }
754
755 /* Iterate through remaining entries in _CPC */
756 for (i = 2; i < num_ent; i++) {
757 cpc_obj = &out_obj->package.elements[i];
758
759 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
760 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
761 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
762 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
763 gas_t = (struct cpc_reg *)
764 cpc_obj->buffer.pointer;
765
766 /*
767 * The PCC Subspace index is encoded inside
768 * the CPC table entries. The same PCC index
769 * will be used for all the PCC entries,
770 * so extract it only once.
771 */
772 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
3d111613
GC
773 if (pcc_subspace_id < 0) {
774 pcc_subspace_id = gas_t->access_width;
775 if (pcc_data_alloc(pcc_subspace_id))
776 goto out_free;
777 } else if (pcc_subspace_id != gas_t->access_width) {
337aadff
AC
778 pr_debug("Mismatched PCC ids.\n");
779 goto out_free;
780 }
5bbb86aa
AC
781 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
782 if (gas_t->address) {
783 void __iomem *addr;
784
785 addr = ioremap(gas_t->address, gas_t->bit_width/8);
786 if (!addr)
787 goto out_free;
788 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
789 }
790 } else {
a6cbcdd5
SP
791 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
792 /* Support only PCC ,SYS MEM and FFH type regs */
793 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
794 goto out_free;
795 }
337aadff
AC
796 }
797
798 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
799 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
800 } else {
801 pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
802 goto out_free;
803 }
804 }
3d111613 805 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
337aadff
AC
806 /* Store CPU Logical ID */
807 cpc_ptr->cpu_id = pr->id;
808
337aadff
AC
809 /* Parse PSD data for this CPU */
810 ret = acpi_get_psd(cpc_ptr, handle);
811 if (ret)
812 goto out_free;
813
3d111613
GC
814 /* Register PCC channel once for all PCC subspace id. */
815 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
816 ret = register_pcc_channel(pcc_subspace_id);
337aadff
AC
817 if (ret)
818 goto out_free;
8482ef8c 819
3d111613
GC
820 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
821 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
337aadff
AC
822 }
823
824 /* Everything looks okay */
825 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
826
158c998e
AC
827 /* Add per logical CPU nodes for reading its feedback counters. */
828 cpu_dev = get_cpu_device(pr->id);
50163475
DC
829 if (!cpu_dev) {
830 ret = -EINVAL;
158c998e 831 goto out_free;
50163475 832 }
158c998e 833
28076483
RW
834 /* Plug PSD data into this CPUs CPC descriptor. */
835 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
836
158c998e
AC
837 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
838 "acpi_cppc");
28076483
RW
839 if (ret) {
840 per_cpu(cpc_desc_ptr, pr->id) = NULL;
158c998e 841 goto out_free;
28076483 842 }
158c998e 843
337aadff
AC
844 kfree(output.pointer);
845 return 0;
846
847out_free:
5bbb86aa
AC
848 /* Free all the mapped sys mem areas for this CPU */
849 for (i = 2; i < cpc_ptr->num_entries; i++) {
850 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
851
852 if (addr)
853 iounmap(addr);
854 }
337aadff
AC
855 kfree(cpc_ptr);
856
857out_buf_free:
858 kfree(output.pointer);
859 return ret;
860}
861EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
862
863/**
864 * acpi_cppc_processor_exit - Cleanup CPC structs.
865 * @pr: Ptr to acpi_processor containing this CPUs logical Id.
866 *
867 * Return: Void
868 */
869void acpi_cppc_processor_exit(struct acpi_processor *pr)
870{
871 struct cpc_desc *cpc_ptr;
5bbb86aa
AC
872 unsigned int i;
873 void __iomem *addr;
3d111613
GC
874 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
875
876 if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
877 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
878 pcc_data[pcc_ss_id]->refcount--;
879 if (!pcc_data[pcc_ss_id]->refcount) {
880 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
881 pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
882 kfree(pcc_data[pcc_ss_id]);
883 }
884 }
885 }
158c998e 886
337aadff 887 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
9e9d68da
SAS
888 if (!cpc_ptr)
889 return;
5bbb86aa
AC
890
891 /* Free all the mapped sys mem areas for this CPU */
892 for (i = 2; i < cpc_ptr->num_entries; i++) {
893 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
894 if (addr)
895 iounmap(addr);
896 }
897
158c998e 898 kobject_put(&cpc_ptr->kobj);
337aadff
AC
899 kfree(cpc_ptr);
900}
901EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
902
a6cbcdd5
SP
903/**
904 * cpc_read_ffh() - Read FFH register
905 * @cpunum: cpu number to read
906 * @reg: cppc register information
907 * @val: place holder for return value
908 *
909 * Read bit_width bits from a specified address and bit_offset
910 *
911 * Return: 0 for success and error code
912 */
913int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
914{
915 return -ENOTSUPP;
916}
917
918/**
919 * cpc_write_ffh() - Write FFH register
920 * @cpunum: cpu number to write
921 * @reg: cppc register information
922 * @val: value to write
923 *
924 * Write value of bit_width bits to a specified address and bit_offset
925 *
926 * Return: 0 for success and error code
927 */
928int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
929{
930 return -ENOTSUPP;
931}
932
77e3d86f
PP
933/*
934 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
935 * as fast as possible. We have already mapped the PCC subspace during init, so
936 * we can directly write to it.
937 */
337aadff 938
a6cbcdd5 939static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
337aadff 940{
77e3d86f 941 int ret_val = 0;
5bbb86aa 942 void __iomem *vaddr = 0;
3d111613 943 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
5bbb86aa
AC
944 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
945
946 if (reg_res->type == ACPI_TYPE_INTEGER) {
947 *val = reg_res->cpc_entry.int_value;
948 return ret_val;
949 }
77e3d86f
PP
950
951 *val = 0;
7b47c105 952 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
3d111613 953 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
5bbb86aa
AC
954 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
955 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
956 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
957 return cpc_read_ffh(cpu, reg, val);
5bbb86aa
AC
958 else
959 return acpi_os_read_memory((acpi_physical_address)reg->address,
960 val, reg->bit_width);
337aadff 961
5bbb86aa 962 switch (reg->bit_width) {
77e3d86f 963 case 8:
beee23ae 964 *val = readb_relaxed(vaddr);
77e3d86f
PP
965 break;
966 case 16:
beee23ae 967 *val = readw_relaxed(vaddr);
77e3d86f
PP
968 break;
969 case 32:
beee23ae 970 *val = readl_relaxed(vaddr);
77e3d86f
PP
971 break;
972 case 64:
beee23ae 973 *val = readq_relaxed(vaddr);
77e3d86f
PP
974 break;
975 default:
976 pr_debug("Error: Cannot read %u bit width from PCC\n",
5bbb86aa 977 reg->bit_width);
77e3d86f 978 ret_val = -EFAULT;
5bbb86aa
AC
979 }
980
77e3d86f 981 return ret_val;
337aadff
AC
982}
983
a6cbcdd5 984static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
337aadff 985{
77e3d86f 986 int ret_val = 0;
5bbb86aa 987 void __iomem *vaddr = 0;
3d111613 988 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
5bbb86aa 989 struct cpc_reg *reg = &reg_res->cpc_entry.reg;
77e3d86f 990
7b47c105 991 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
3d111613 992 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
5bbb86aa
AC
993 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
994 vaddr = reg_res->sys_mem_vaddr;
a6cbcdd5
SP
995 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
996 return cpc_write_ffh(cpu, reg, val);
5bbb86aa
AC
997 else
998 return acpi_os_write_memory((acpi_physical_address)reg->address,
999 val, reg->bit_width);
337aadff 1000
5bbb86aa 1001 switch (reg->bit_width) {
77e3d86f 1002 case 8:
beee23ae 1003 writeb_relaxed(val, vaddr);
77e3d86f
PP
1004 break;
1005 case 16:
beee23ae 1006 writew_relaxed(val, vaddr);
77e3d86f
PP
1007 break;
1008 case 32:
beee23ae 1009 writel_relaxed(val, vaddr);
77e3d86f
PP
1010 break;
1011 case 64:
beee23ae 1012 writeq_relaxed(val, vaddr);
77e3d86f
PP
1013 break;
1014 default:
1015 pr_debug("Error: Cannot write %u bit width to PCC\n",
5bbb86aa 1016 reg->bit_width);
77e3d86f
PP
1017 ret_val = -EFAULT;
1018 break;
5bbb86aa
AC
1019 }
1020
77e3d86f 1021 return ret_val;
337aadff
AC
1022}
1023
1024/**
1025 * cppc_get_perf_caps - Get a CPUs performance capabilities.
1026 * @cpunum: CPU from which to get capabilities info.
1027 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1028 *
1029 * Return: 0 for success with perf_caps populated else -ERRNO.
1030 */
1031int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1032{
1033 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
368520a6
PP
1034 struct cpc_register_resource *highest_reg, *lowest_reg,
1035 *lowest_non_linear_reg, *nominal_reg;
1036 u64 high, low, nom, min_nonlinear;
3d111613 1037 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
7b47c105 1038 struct cppc_pcc_data *pcc_ss_data;
850d64a4 1039 int ret = 0, regs_in_pcc = 0;
337aadff 1040
7b47c105 1041 if (!cpc_desc || pcc_ss_id < 0) {
337aadff
AC
1042 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1043 return -ENODEV;
1044 }
1045
7b47c105 1046 pcc_ss_data = pcc_data[pcc_ss_id];
337aadff
AC
1047 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1048 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
368520a6
PP
1049 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1050 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
337aadff 1051
337aadff 1052 /* Are any of the regs PCC ?*/
80b8286a 1053 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
368520a6 1054 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
850d64a4 1055 regs_in_pcc = 1;
3d111613 1056 down_write(&pcc_ss_data->pcc_lock);
337aadff 1057 /* Ring doorbell once to update PCC subspace */
3d111613 1058 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
337aadff
AC
1059 ret = -EIO;
1060 goto out_err;
1061 }
1062 }
1063
a6cbcdd5 1064 cpc_read(cpunum, highest_reg, &high);
337aadff
AC
1065 perf_caps->highest_perf = high;
1066
a6cbcdd5 1067 cpc_read(cpunum, lowest_reg, &low);
337aadff
AC
1068 perf_caps->lowest_perf = low;
1069
368520a6 1070 cpc_read(cpunum, nominal_reg, &nom);
337aadff
AC
1071 perf_caps->nominal_perf = nom;
1072
368520a6
PP
1073 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1074 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1075
1076 if (!high || !low || !nom || !min_nonlinear)
337aadff
AC
1077 ret = -EFAULT;
1078
1079out_err:
850d64a4 1080 if (regs_in_pcc)
3d111613 1081 up_write(&pcc_ss_data->pcc_lock);
337aadff
AC
1082 return ret;
1083}
1084EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1085
1086/**
1087 * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1088 * @cpunum: CPU from which to read counters.
1089 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1090 *
1091 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1092 */
1093int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1094{
1095 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
158c998e
AC
1096 struct cpc_register_resource *delivered_reg, *reference_reg,
1097 *ref_perf_reg, *ctr_wrap_reg;
3d111613 1098 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
7b47c105 1099 struct cppc_pcc_data *pcc_ss_data;
158c998e 1100 u64 delivered, reference, ref_perf, ctr_wrap_time;
850d64a4 1101 int ret = 0, regs_in_pcc = 0;
337aadff 1102
7b47c105 1103 if (!cpc_desc || pcc_ss_id < 0) {
337aadff
AC
1104 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1105 return -ENODEV;
1106 }
1107
7b47c105 1108 pcc_ss_data = pcc_data[pcc_ss_id];
337aadff
AC
1109 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1110 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
158c998e
AC
1111 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1112 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1113
1114 /*
1115 * If refernce perf register is not supported then we should
1116 * use the nominal perf value
1117 */
1118 if (!CPC_SUPPORTED(ref_perf_reg))
1119 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
337aadff 1120
337aadff 1121 /* Are any of the regs PCC ?*/
158c998e
AC
1122 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1123 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
3d111613 1124 down_write(&pcc_ss_data->pcc_lock);
850d64a4 1125 regs_in_pcc = 1;
337aadff 1126 /* Ring doorbell once to update PCC subspace */
3d111613 1127 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
337aadff
AC
1128 ret = -EIO;
1129 goto out_err;
1130 }
1131 }
1132
a6cbcdd5
SP
1133 cpc_read(cpunum, delivered_reg, &delivered);
1134 cpc_read(cpunum, reference_reg, &reference);
1135 cpc_read(cpunum, ref_perf_reg, &ref_perf);
158c998e
AC
1136
1137 /*
1138 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1139 * performance counters are assumed to never wrap during the lifetime of
1140 * platform
1141 */
1142 ctr_wrap_time = (u64)(~((u64)0));
1143 if (CPC_SUPPORTED(ctr_wrap_reg))
a6cbcdd5 1144 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
337aadff 1145
158c998e 1146 if (!delivered || !reference || !ref_perf) {
337aadff
AC
1147 ret = -EFAULT;
1148 goto out_err;
1149 }
1150
1151 perf_fb_ctrs->delivered = delivered;
1152 perf_fb_ctrs->reference = reference;
158c998e 1153 perf_fb_ctrs->reference_perf = ref_perf;
2c74d847 1154 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
337aadff 1155out_err:
850d64a4 1156 if (regs_in_pcc)
3d111613 1157 up_write(&pcc_ss_data->pcc_lock);
337aadff
AC
1158 return ret;
1159}
1160EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1161
1162/**
1163 * cppc_set_perf - Set a CPUs performance controls.
1164 * @cpu: CPU for which to set performance controls.
1165 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1166 *
1167 * Return: 0 for success, -ERRNO otherwise.
1168 */
1169int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1170{
1171 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1172 struct cpc_register_resource *desired_reg;
3d111613 1173 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
a5762456 1174 struct cppc_pcc_data *pcc_ss_data;
337aadff
AC
1175 int ret = 0;
1176
7b47c105 1177 if (!cpc_desc || pcc_ss_id < 0) {
337aadff
AC
1178 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1179 return -ENODEV;
1180 }
1181
7b47c105 1182 pcc_ss_data = pcc_data[pcc_ss_id];
337aadff
AC
1183 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1184
80b8286a
PP
1185 /*
1186 * This is Phase-I where we want to write to CPC registers
1187 * -> We want all CPUs to be able to execute this phase in parallel
1188 *
1189 * Since read_lock can be acquired by multiple CPUs simultaneously we
1190 * achieve that goal here
1191 */
1192 if (CPC_IN_PCC(desired_reg)) {
3d111613
GC
1193 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1194 if (pcc_ss_data->platform_owns_pcc) {
1195 ret = check_pcc_chan(pcc_ss_id, false);
80b8286a 1196 if (ret) {
3d111613 1197 up_read(&pcc_ss_data->pcc_lock);
80b8286a
PP
1198 return ret;
1199 }
80b8286a 1200 }
139aee73
PP
1201 /*
1202 * Update the pending_write to make sure a PCC CMD_READ will not
1203 * arrive and steal the channel during the switch to write lock
1204 */
3d111613
GC
1205 pcc_ss_data->pending_pcc_write_cmd = true;
1206 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
80b8286a 1207 cpc_desc->write_cmd_status = 0;
ad62e1e6
AC
1208 }
1209
337aadff
AC
1210 /*
1211 * Skip writing MIN/MAX until Linux knows how to come up with
1212 * useful values.
1213 */
a6cbcdd5 1214 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
337aadff 1215
80b8286a 1216 if (CPC_IN_PCC(desired_reg))
3d111613 1217 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
80b8286a
PP
1218 /*
1219 * This is Phase-II where we transfer the ownership of PCC to Platform
1220 *
1221 * Short Summary: Basically if we think of a group of cppc_set_perf
1222 * requests that happened in short overlapping interval. The last CPU to
1223 * come out of Phase-I will enter Phase-II and ring the doorbell.
1224 *
1225 * We have the following requirements for Phase-II:
1226 * 1. We want to execute Phase-II only when there are no CPUs
1227 * currently executing in Phase-I
1228 * 2. Once we start Phase-II we want to avoid all other CPUs from
1229 * entering Phase-I.
1230 * 3. We want only one CPU among all those who went through Phase-I
1231 * to run phase-II
1232 *
1233 * If write_trylock fails to get the lock and doesn't transfer the
1234 * PCC ownership to the platform, then one of the following will be TRUE
1235 * 1. There is at-least one CPU in Phase-I which will later execute
1236 * write_trylock, so the CPUs in Phase-I will be responsible for
1237 * executing the Phase-II.
1238 * 2. Some other CPU has beaten this CPU to successfully execute the
1239 * write_trylock and has already acquired the write_lock. We know for a
1240 * fact it(other CPU acquiring the write_lock) couldn't have happened
1241 * before this CPU's Phase-I as we held the read_lock.
1242 * 3. Some other CPU executing pcc CMD_READ has stolen the
1243 * down_write, in which case, send_pcc_cmd will check for pending
1244 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1245 * So this CPU can be certain that its request will be delivered
1246 * So in all cases, this CPU knows that its request will be delivered
1247 * by another CPU and can return
1248 *
1249 * After getting the down_write we still need to check for
1250 * pending_pcc_write_cmd to take care of the following scenario
1251 * The thread running this code could be scheduled out between
1252 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1253 * could have delivered the request to Platform by triggering the
1254 * doorbell and transferred the ownership of PCC to platform. So this
1255 * avoids triggering an unnecessary doorbell and more importantly before
1256 * triggering the doorbell it makes sure that the PCC channel ownership
1257 * is still with OSPM.
1258 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1259 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1260 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1261 * case during a CMD_READ and if there are pending writes it delivers
1262 * the write command before servicing the read command
1263 */
1264 if (CPC_IN_PCC(desired_reg)) {
3d111613 1265 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
80b8286a 1266 /* Update only if there are pending write commands */
3d111613
GC
1267 if (pcc_ss_data->pending_pcc_write_cmd)
1268 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1269 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
80b8286a
PP
1270 } else
1271 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
3d111613
GC
1272 wait_event(pcc_ss_data->pcc_write_wait_q,
1273 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
80b8286a
PP
1274
1275 /* send_pcc_cmd updates the status in case of failure */
1276 ret = cpc_desc->write_cmd_status;
337aadff 1277 }
337aadff
AC
1278 return ret;
1279}
1280EXPORT_SYMBOL_GPL(cppc_set_perf);
be8b88d7
PP
1281
1282/**
1283 * cppc_get_transition_latency - returns frequency transition latency in ns
1284 *
1285 * ACPI CPPC does not explicitly specifiy how a platform can specify the
1286 * transition latency for perfromance change requests. The closest we have
1287 * is the timing information from the PCCT tables which provides the info
1288 * on the number and frequency of PCC commands the platform can handle.
1289 */
1290unsigned int cppc_get_transition_latency(int cpu_num)
1291{
1292 /*
1293 * Expected transition latency is based on the PCCT timing values
1294 * Below are definition from ACPI spec:
1295 * pcc_nominal- Expected latency to process a command, in microseconds
1296 * pcc_mpar - The maximum number of periodic requests that the subspace
1297 * channel can support, reported in commands per minute. 0
1298 * indicates no limitation.
1299 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1300 * completion of a command before issuing the next command,
1301 * in microseconds.
1302 */
1303 unsigned int latency_ns = 0;
1304 struct cpc_desc *cpc_desc;
1305 struct cpc_register_resource *desired_reg;
3d111613 1306 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
7b47c105 1307 struct cppc_pcc_data *pcc_ss_data;
be8b88d7
PP
1308
1309 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1310 if (!cpc_desc)
1311 return CPUFREQ_ETERNAL;
1312
1313 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1314 if (!CPC_IN_PCC(desired_reg))
1315 return CPUFREQ_ETERNAL;
1316
7b47c105
GC
1317 if (pcc_ss_id < 0)
1318 return CPUFREQ_ETERNAL;
1319
1320 pcc_ss_data = pcc_data[pcc_ss_id];
3d111613
GC
1321 if (pcc_ss_data->pcc_mpar)
1322 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
be8b88d7 1323
3d111613
GC
1324 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1325 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
be8b88d7
PP
1326
1327 return latency_ns;
1328}
1329EXPORT_SYMBOL_GPL(cppc_get_transition_latency);