]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ata/libata-core.c
net: hns3: remove redundant variable initialization
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
19285f3c 28 * as Documentation/driver-api/libata.rst
af36d7f0
JG
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
8c27ceff 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
33267325 133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
8e061784 742 * @class: IO priority class
bd056d7e
TH
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
8e061784 757 unsigned int tag, int class)
bd056d7e
TH
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
6d1245bf 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
9ca7cfa4 786 tf->device = ATA_LBA;
bd056d7e
TH
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
8e061784 789
9f56eca3 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
8e061784
AM
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
bd056d7e
TH
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
cb95d562
TH
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
7dc951ae
TH
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
cb95d562
TH
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
c0489e4e
TH
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 896 * Any NULL destination masks will be ignored.
c0489e4e 897 */
7dc951ae
TH
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
cb95d562 909static const struct ata_xfer_ent {
be9a50c8 910 int shift, bits;
cb95d562
TH
911 u8 base;
912} ata_xfer_tbl[] = {
70cd071e
TH
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
70cd071e 930 * Matching XFER_* value, 0xff if no match found.
cb95d562 931 */
7dc951ae 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
70cd071e 940 return 0xff;
cb95d562
TH
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
7dc951ae 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
cb95d562
TH
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
7dc951ae 978int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
1da177e4 988/**
1da7b0d0
TH
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
991 *
992 * Determine string which represents the highest speed
1da7b0d0 993 * (highest bit in @modemask).
1da177e4
LT
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1da7b0d0 1000 * @mode_mask, or the constant C string "<n/a>".
1da177e4 1001 */
7dc951ae 1002const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 1003{
75f554bc
TH
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
b352e57d
AC
1010 "PIO5",
1011 "PIO6",
75f554bc
TH
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
b352e57d
AC
1015 "MWDMA3",
1016 "MWDMA4",
75f554bc
TH
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1da7b0d0 1026 int highbit;
1da177e4 1027
1da7b0d0
TH
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1da177e4 1031 return "<n/a>";
1da177e4
LT
1032}
1033
d9027470 1034const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
8522ee25 1039 "6.0 Gbps",
4c360c81
TH
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1da177e4
LT
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
9162c657
HR
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1061 */
057ace5e 1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1da177e4 1084 */
633273a3 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
633273a3 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
633273a3
TH
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
633273a3
TH
1103 }
1104
9162c657
HR
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1da177e4
LT
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1da177e4 1114/**
6a62a04d 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
6a62a04d
TH
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1da177e4
LT
1131{
1132 unsigned int c;
1133
963e4975
AC
1134 BUG_ON(len & 1);
1135
1da177e4
LT
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
0e949ff3 1150/**
6a62a04d 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
6a62a04d 1157 * This function is identical to ata_id_string except that it
0e949ff3
TH
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
6a62a04d
TH
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
0e949ff3
TH
1166{
1167 unsigned char *p;
1168
6a62a04d 1169 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
0baab86b 1176
db6f8759
TH
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
968e594a 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1182 else
968e594a 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1184 } else {
1185 if (ata_id_current_chs_valid(id))
968e594a
RH
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
db6f8759 1188 else
968e594a
RH
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
db6f8759
TH
1191 }
1192}
1193
a5987e0a 1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
a5987e0a 1205 return sectors;
1e999736
AC
1206}
1207
a5987e0a 1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
a5987e0a 1217 return sectors;
1e999736
AC
1218}
1219
1220/**
c728a914
TH
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1e999736 1224 *
c728a914
TH
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1e999736 1227 *
c728a914
TH
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1e999736 1231 */
c728a914 1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1233{
c728a914 1234 unsigned int err_mask;
1e999736 1235 struct ata_taskfile tf;
c728a914 1236 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1237
1238 ata_tf_init(dev, &tf);
1239
c728a914 1240 /* always clear all address registers */
1e999736 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1242
c728a914
TH
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1248
bd18bc04 1249 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1250 tf.device |= ATA_LBA;
1251
2b789108 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1253 if (err_mask) {
a9a79dfe
JP
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
c728a914
TH
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1e999736 1261
c728a914 1262 if (lba48)
a5987e0a 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1264 else
a5987e0a 1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1267 (*max_sectors)--;
c728a914 1268 return 0;
1e999736
AC
1269}
1270
1271/**
c728a914
TH
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
6b38d1d1 1274 * @new_sectors: new max sectors value to set for the device
1e999736 1275 *
c728a914
TH
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1e999736 1282 */
05027adc 1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1284{
c728a914 1285 unsigned int err_mask;
1e999736 1286 struct ata_taskfile tf;
c728a914 1287 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1e999736 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1302 } else {
c728a914
TH
1303 tf.command = ATA_CMD_SET_MAX;
1304
1e582ba4
TH
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
bd18bc04 1308 tf.protocol = ATA_PROT_NODATA;
c728a914 1309 tf.device |= ATA_LBA;
1e999736
AC
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1314
2b789108 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1316 if (err_mask) {
a9a79dfe
JP
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
c728a914
TH
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
c728a914 1326 return 0;
1e999736
AC
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
05027adc
TH
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1e999736 1339 */
05027adc 1340static int ata_hpa_resize(struct ata_device *dev)
1e999736 1341{
05027adc
TH
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
c728a914 1347 int rc;
a617c09f 1348
05027adc 1349 /* do we need to do it? */
9162c657 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1353 return 0;
1e999736 1354
05027adc
TH
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
dda7aba1
TH
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
05027adc 1360 */
445d211b 1361 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1e999736 1369 }
37301a55 1370
05027adc
TH
1371 return rc;
1372 }
5920dadf 1373 dev->n_native_sectors = native_sectors;
05027adc
TH
1374
1375 /* nothing to do? */
445d211b 1376 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
a9a79dfe 1381 ata_dev_info(dev,
05027adc
TH
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
a9a79dfe
JP
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
05027adc
TH
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
a9a79dfe
JP
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1416 ata_dev_info(dev,
05027adc
TH
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1e999736
AC
1424}
1425
1da177e4
LT
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1428 * @id: IDENTIFY DEVICE page to dump
1da177e4 1429 *
0bd3300a
TH
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1da177e4
LT
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
0bd3300a 1437static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
0bd3300a
TH
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1da177e4
LT
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
0bd3300a
TH
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1da177e4
LT
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
0bd3300a
TH
1461 id[88],
1462 id[93]);
1da177e4
LT
1463}
1464
cb95d562
TH
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
7dc951ae 1480unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1481{
7dc951ae 1482 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
7a0f1c8a 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1495 if (mode < 5) /* Valid PIO range */
2dcb407e 1496 pio_mask = (2 << mode) - 1;
46767aeb
AC
1497 else
1498 pio_mask = 1;
cb95d562
TH
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1509
b352e57d
AC
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
62afe5d7
SS
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
fb21f0d0
TH
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
7102d230 1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1535{
77853bf2 1536 struct completion *waiting = qc->private_data;
a2a7a662 1537
a2a7a662 1538 complete(waiting);
a2a7a662
TH
1539}
1540
1541/**
2432697b 1542 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
d69cf37d 1545 * @cdb: CDB for packet command
e227867f 1546 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1547 * @sgl: sg list for the data buffer of the command
2432697b 1548 * @n_elem: Number of sg entries
2b789108 1549 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
551e8889
TH
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1562 */
2432697b
TH
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
87260216 1565 int dma_dir, struct scatterlist *sgl,
2b789108 1566 unsigned int n_elem, unsigned long timeout)
a2a7a662 1567{
9af5c9c9
TH
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
a2a7a662 1570 u8 command = tf->command;
87fbc5a0 1571 int auto_timeout = 0;
a2a7a662 1572 struct ata_queued_cmd *qc;
2ab7db1f 1573 unsigned int tag, preempted_tag;
dedaf2b0 1574 u32 preempted_sactive, preempted_qc_active;
da917d69 1575 int preempted_nr_active_links;
60be6b9a 1576 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1577 unsigned long flags;
77853bf2 1578 unsigned int err_mask;
d95a717f 1579 int rc;
a2a7a662 1580
ba6a1308 1581 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1582
e3180499 1583 /* no internal command while frozen */
b51e9e5d 1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1585 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1586 return AC_ERR_SYSTEM;
1587 }
1588
2ab7db1f 1589 /* initialize internal qc */
a2a7a662 1590
2ab7db1f
TH
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
f69499f4 1601 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
9af5c9c9
TH
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
dedaf2b0 1611 preempted_qc_active = ap->qc_active;
da917d69 1612 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
dedaf2b0 1615 ap->qc_active = 0;
da917d69 1616 ap->nr_active_links = 0;
2ab7db1f
TH
1617
1618 /* prepare & issue qc */
a2a7a662 1619 qc->tf = *tf;
d69cf37d
TH
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
e61e0672 1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
2432697b 1631 unsigned int i, buflen = 0;
87260216 1632 struct scatterlist *sg;
2432697b 1633
87260216
JA
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
2432697b 1636
87260216 1637 ata_sg_init(qc, sgl, n_elem);
49c80429 1638 qc->nbytes = buflen;
a2a7a662
TH
1639 }
1640
77853bf2 1641 qc->private_data = &wait;
a2a7a662
TH
1642 qc->complete_fn = ata_qc_complete_internal;
1643
8e0e694a 1644 ata_qc_issue(qc);
a2a7a662 1645
ba6a1308 1646 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1647
87fbc5a0
TH
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
2b789108 1656
c0c362b6
TH
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
2b789108 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1661
c0c362b6
TH
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
c429137a 1665 ata_sff_flush_pio_task(ap);
41ade50c 1666
d95a717f 1667 if (!rc) {
ba6a1308 1668 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
d95a717f
TH
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
a2a7a662 1674 */
77853bf2 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
f15a1daf 1682
0dd4b21f 1683 if (ata_msg_warn(ap))
a9a79dfe
JP
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
a2a7a662
TH
1686 }
1687
ba6a1308 1688 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1689 }
1690
d95a717f
TH
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
a51d644a
TH
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
2dae9955
DLM
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
d95a717f
TH
1707 }
1708
15869303 1709 /* finish up */
ba6a1308 1710 spin_lock_irqsave(ap->lock, flags);
15869303 1711
e61e0672 1712 *tf = qc->result_tf;
77853bf2
TH
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
9af5c9c9
TH
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
dedaf2b0 1718 ap->qc_active = preempted_qc_active;
da917d69 1719 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1720
ba6a1308 1721 spin_unlock_irqrestore(ap->lock, flags);
15869303 1722
87fbc5a0
TH
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
77853bf2 1726 return err_mask;
a2a7a662
TH
1727}
1728
2432697b 1729/**
33480a0e 1730 * ata_exec_internal - execute libata internal command
2432697b
TH
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
e227867f 1734 * @dma_dir: Data transfer direction of the command
2432697b
TH
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
2b789108 1737 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
2432697b 1752{
33480a0e
TH
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
2432697b 1755
33480a0e
TH
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
2432697b 1762
2b789108
TH
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
2432697b
TH
1765}
1766
1bc4ccff
AC
1767/**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1bc4ccff
AC
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
0d9e6659
TH
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
9af5c9c9 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1786 return 0;
5c18c4d2
DD
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
432729f0
AC
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1bc4ccff 1796 return 1;
432729f0
AC
1797 return 0;
1798}
2e9edbf8 1799
432729f0
AC
1800/**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
432729f0
AC
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1bc4ccff 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1818 }
1819 }
432729f0 1820 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1821}
1822
963e4975
AC
1823/**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835{
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1da177e4 1840/**
49016aca 1841 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
bff04647 1844 * @flags: ATA_READID_* flags
fe635c7e 1845 * @id: buffer to read IDENTIFY data into
1da177e4 1846 *
49016aca
TH
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1da177e4 1851 *
50a99018 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1853 * now we abort if we hit that case.
50a99018 1854 *
1da177e4 1855 * LOCKING:
49016aca
TH
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1da177e4 1860 */
a9beec95 1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1862 unsigned int flags, u16 *id)
1da177e4 1863{
9af5c9c9 1864 struct ata_port *ap = dev->link->ap;
49016aca 1865 unsigned int class = *p_class;
a0123703 1866 struct ata_taskfile tf;
49016aca
TH
1867 unsigned int err_mask = 0;
1868 const char *reason;
79b42bab 1869 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1870 int may_fallback = 1, tried_spinup = 0;
49016aca 1871 int rc;
1da177e4 1872
0dd4b21f 1873 if (ata_msg_ctl(ap))
a9a79dfe 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1875
963e4975 1876retry:
3373efd8 1877 ata_tf_init(dev, &tf);
a0123703 1878
49016aca 1879 switch (class) {
79b42bab
TH
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
05b83605 1882 /* fall through */
49016aca 1883 case ATA_DEV_ATA:
9162c657 1884 case ATA_DEV_ZAC:
a0123703 1885 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1886 break;
1887 case ATA_DEV_ATAPI:
a0123703 1888 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1da177e4
LT
1894 }
1895
a0123703 1896 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1907
963e4975
AC
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
a0123703 1913 if (err_mask) {
800b3996 1914 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1916 return -ENOENT;
1917 }
1918
79b42bab 1919 if (is_semb) {
a9a79dfe
JP
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1ffc151f
TH
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
a9a79dfe
JP
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1949 return -ENOENT;
54936f8b
TH
1950 }
1951
49016aca
TH
1952 rc = -EIO;
1953 reason = "I/O error";
1da177e4
LT
1954 goto err_out;
1955 }
1956
43c9c591 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
43c9c591
TH
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
54936f8b
TH
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
49016aca 1970 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1971
49016aca 1972 /* sanity check */
a4f5749b 1973 rc = -EINVAL;
6070068b 1974 reason = "device reports invalid type";
a4f5749b 1975
9162c657 1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
db63a4c8
AW
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
a4f5749b
TH
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
49016aca
TH
1988 }
1989
169439c2
ML
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
218f3d30 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1998 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
9162c657
HR
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
50a99018
AC
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
50a99018
AC
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2022 * should never trigger.
49016aca
TH
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
bff04647 2035 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
fe635c7e 2041
49016aca
TH
2042 return 0;
2043
2044 err_out:
88574551 2045 if (ata_msg_warn(ap))
a9a79dfe
JP
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
49016aca
TH
2048 return rc;
2049}
2050
f01f62c2
CH
2051/**
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2054 * @log: log to read
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2058 *
2059 * Read log page using READ_LOG_EXT command.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep).
2063 *
2064 * RETURNS:
2065 * 0 on success, AC_ERR_* mask otherwise.
2066 */
2067unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2069{
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2073 bool dma = false;
2074
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077 /*
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2080 */
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 return AC_ERR_DEV;
2083
2084retry:
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
7cfdfdc8 2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
f01f62c2
CH
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2090 dma = true;
2091 } else {
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2094 dma = false;
2095 }
2096 tf.lbal = log;
2097 tf.lbam = page;
2098 tf.nsect = sectors;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2104
2105 if (err_mask && dma) {
7cfdfdc8
DLM
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
f01f62c2
CH
2108 goto retry;
2109 }
2110
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 return err_mask;
2113}
2114
efe205a3
CH
2115static bool ata_log_supported(struct ata_device *dev, u8 log)
2116{
2117 struct ata_port *ap = dev->link->ap;
2118
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 return false;
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122}
2123
a0fd2454
CH
2124static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125{
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2128
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 return false;
2132 }
2133
2134 /*
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 * supported.
2137 */
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 1);
2140 if (err) {
2141 ata_dev_info(dev,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2143 err);
2144 return false;
2145 }
2146
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2149 return true;
2150 }
2151
2152 return false;
2153}
2154
9062712f
TH
2155static int ata_do_link_spd_horkage(struct ata_device *dev)
2156{
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2159
2160 if (!sata_scr_valid(plink))
2161 return 0;
2162
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 target = 1;
2165 else
2166 return 0;
2167
2168 target_limit = (1 << target) - 1;
2169
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2172 return 0;
2173
2174 plink->sata_spd_limit = target_limit;
2175
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2179 */
2180 if (plink->sata_spd > target) {
a9a79dfe
JP
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
9062712f
TH
2183 return -EAGAIN;
2184 }
2185 return 0;
2186}
2187
3373efd8 2188static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2189{
9af5c9c9 2190 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2191
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 return 0;
2194
9af5c9c9 2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2196}
2197
5a233551
HR
2198static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199{
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2202
efe205a3
CH
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
fe5af0cc
HR
2205 return;
2206 }
5a233551
HR
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2209 if (err_mask) {
2210 ata_dev_dbg(dev,
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 err_mask);
2213 } else {
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 }
2224 }
2225}
2226
284b3b77
HR
2227static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228{
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
284b3b77 2231
efe205a3 2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
284b3b77
HR
2233 ata_dev_warn(dev,
2234 "NCQ Send/Recv Log not supported\n");
2235 return;
2236 }
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2239 if (err_mask) {
2240 ata_dev_dbg(dev,
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 err_mask);
2243 } else {
2244 u8 *cmds = dev->ncq_non_data_cmds;
2245
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 }
2248}
2249
8e061784
AM
2250static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251{
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2254
9f56eca3
AM
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 return;
2258 }
2259
8e061784 2260 err_mask = ata_read_log_page(dev,
1d51d5f3 2261 ATA_LOG_IDENTIFY_DEVICE,
8e061784
AM
2262 ATA_LOG_SATA_SETTINGS,
2263 ap->sector_buf,
2264 1);
2265 if (err_mask) {
2266 ata_dev_dbg(dev,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2268 err_mask);
2269 return;
2270 }
2271
9f56eca3 2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
8e061784 2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
9f56eca3
AM
2274 } else {
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
8e061784 2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
9f56eca3 2277 }
8e061784
AM
2278
2279}
2280
388539f3 2281static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2282 char *desc, size_t desc_sz)
2283{
9af5c9c9 2284 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2286 unsigned int err_mask;
2287 char *aa_desc = "";
a6e6ce8e
TH
2288
2289 if (!ata_id_has_ncq(dev->id)) {
2290 desc[0] = '\0';
388539f3 2291 return 0;
a6e6ce8e 2292 }
75683fe7 2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2294 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2295 return 0;
6919a0a6 2296 }
a6e6ce8e 2297 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2299 dev->flags |= ATA_DFLAG_NCQ;
2300 }
2301
388539f3
SL
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 SATA_FPDMA_AA);
2307 if (err_mask) {
a9a79dfe
JP
2308 ata_dev_err(dev,
2309 "failed to enable AA (error_mask=0x%x)\n",
2310 err_mask);
388539f3
SL
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 return -EIO;
2314 }
2315 } else
2316 aa_desc = ", AA";
2317 }
2318
a6e6ce8e 2319 if (hdepth >= ddepth)
388539f3 2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2321 else
388539f3
SL
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 ddepth, aa_desc);
ed36911c 2324
284b3b77
HR
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
8e061784
AM
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
284b3b77 2332 }
f78dea06 2333
388539f3 2334 return 0;
a6e6ce8e 2335}
f78dea06 2336
e87fd28c
HR
2337static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338{
2339 unsigned int err_mask;
2340
2341 if (!ata_id_has_sense_reporting(dev->id))
2342 return;
2343
2344 if (ata_id_sense_reporting_enabled(dev->id))
2345 return;
2346
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 if (err_mask) {
2349 ata_dev_dbg(dev,
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 err_mask);
2352 }
2353}
2354
6d1003ae
HR
2355static void ata_dev_config_zac(struct ata_device *dev)
2356{
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
6d1003ae
HR
2360
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2364
2365 /*
2366 * Always set the 'ZAC' flag for Host-managed devices.
2367 */
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 /*
2372 * Check for host-aware devices.
2373 */
2374 dev->flags |= ATA_DFLAG_ZAC;
2375
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2377 return;
2378
a0fd2454 2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
6d1003ae
HR
2380 ata_dev_warn(dev,
2381 "ATA Zoned Information Log not supported\n");
2382 return;
2383 }
ed36911c 2384
6d1003ae
HR
2385 /*
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 */
1d51d5f3 2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
6d1003ae
HR
2389 ATA_LOG_ZONED_INFORMATION,
2390 identify_buf, 1);
2391 if (!err_mask) {
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2406 }
a6e6ce8e
TH
2407}
2408
818831c8
CH
2409static void ata_dev_config_trusted(struct ata_device *dev)
2410{
2411 struct ata_port *ap = dev->link->ap;
2412 u64 trusted_cap;
2413 unsigned int err;
2414
e8f11db9
CH
2415 if (!ata_id_has_trusted(dev->id))
2416 return;
2417
818831c8
CH
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 ata_dev_warn(dev,
2420 "Security Log not supported\n");
2421 return;
2422 }
2423
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 ap->sector_buf, 1);
2426 if (err) {
2427 ata_dev_dbg(dev,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2429 return;
2430 }
2431
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2434 ata_dev_dbg(dev,
2435 "Trusted Computing capability qword not valid!\n");
2436 return;
2437 }
2438
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2441}
2442
49016aca 2443/**
ffeae418 2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2445 * @dev: Target device to configure
2446 *
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
49016aca
TH
2449 *
2450 * LOCKING:
ffeae418
TH
2451 * Kernel thread context (may sleep)
2452 *
2453 * RETURNS:
2454 * 0 on success, -errno otherwise
49016aca 2455 */
efdaedc4 2456int ata_dev_configure(struct ata_device *dev)
49016aca 2457{
9af5c9c9
TH
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2461 const u16 *id = dev->id;
7dc951ae 2462 unsigned long xfer_mask;
65fe1f0f 2463 unsigned int err_mask;
b352e57d 2464 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2467 int rc;
49016aca 2468
0dd4b21f 2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2471 return 0;
49016aca
TH
2472 }
2473
0dd4b21f 2474 if (ata_msg_probe(ap))
a9a79dfe 2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2476
75683fe7
TH
2477 /* set horkage */
2478 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2479 ata_force_horkage(dev);
75683fe7 2480
50af2fa1 2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2482 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2486fa56
TH
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2491 : "disabled");
2486fa56
TH
2492 ata_dev_disable(dev);
2493 return 0;
2494 }
2495
9062712f
TH
2496 rc = ata_do_link_spd_horkage(dev);
2497 if (rc)
2498 return rc;
2499
ecd75ad5
TH
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2504
069f8827
HG
2505 if (ap->flags & ATA_FLAG_NO_LPM)
2506 dev->horkage |= ATA_HORKAGE_NOLPM;
2507
ecd75ad5
TH
2508 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2509 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2510 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2511 }
2512
6746544c
TH
2513 /* let ACPI work its magic */
2514 rc = ata_acpi_on_devcfg(dev);
2515 if (rc)
2516 return rc;
08573a86 2517
05027adc
TH
2518 /* massage HPA, do it early as it might change IDENTIFY data */
2519 rc = ata_hpa_resize(dev);
2520 if (rc)
2521 return rc;
2522
c39f5ebe 2523 /* print device capabilities */
0dd4b21f 2524 if (ata_msg_probe(ap))
a9a79dfe
JP
2525 ata_dev_dbg(dev,
2526 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2527 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2528 __func__,
2529 id[49], id[82], id[83], id[84],
2530 id[85], id[86], id[87], id[88]);
c39f5ebe 2531
208a9933 2532 /* initialize to-be-configured parameters */
ea1dd4e1 2533 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2534 dev->max_sectors = 0;
2535 dev->cdb_len = 0;
2536 dev->n_sectors = 0;
2537 dev->cylinders = 0;
2538 dev->heads = 0;
2539 dev->sectors = 0;
e18086d6 2540 dev->multi_count = 0;
208a9933 2541
1da177e4
LT
2542 /*
2543 * common ATA, ATAPI feature tests
2544 */
2545
ff8854b2 2546 /* find max transfer mode; for printk only */
1148c3a7 2547 xfer_mask = ata_id_xfermask(id);
1da177e4 2548
0dd4b21f
BP
2549 if (ata_msg_probe(ap))
2550 ata_dump_id(id);
1da177e4 2551
ef143d57
AL
2552 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2553 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2554 sizeof(fwrevbuf));
2555
2556 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2557 sizeof(modelbuf));
2558
1da177e4 2559 /* ATA-specific feature tests */
9162c657 2560 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2561 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2562 /* CPRM may make this media unusable */
2563 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2564 ata_dev_warn(dev,
2565 "supports DRM functions and may not be fully accessible\n");
b352e57d 2566 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2567 } else {
2dcb407e 2568 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2569 /* Warn the user if the device has TPM extensions */
2570 if (ata_id_has_tpm(id))
a9a79dfe
JP
2571 ata_dev_warn(dev,
2572 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2573 }
b352e57d 2574
1148c3a7 2575 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2576
e18086d6
ML
2577 /* get current R/W Multiple count setting */
2578 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2579 unsigned int max = dev->id[47] & 0xff;
2580 unsigned int cnt = dev->id[59] & 0xff;
2581 /* only recognize/allow powers of two here */
2582 if (is_power_of_2(max) && is_power_of_2(cnt))
2583 if (cnt <= max)
2584 dev->multi_count = cnt;
2585 }
3f64f565 2586
1148c3a7 2587 if (ata_id_has_lba(id)) {
4c2d721a 2588 const char *lba_desc;
388539f3 2589 char ncq_desc[24];
8bf62ece 2590
4c2d721a
TH
2591 lba_desc = "LBA";
2592 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2593 if (ata_id_has_lba48(id)) {
8bf62ece 2594 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2595 lba_desc = "LBA48";
6fc49adb
TH
2596
2597 if (dev->n_sectors >= (1UL << 28) &&
2598 ata_id_has_flush_ext(id))
2599 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2600 }
8bf62ece 2601
a6e6ce8e 2602 /* config NCQ */
388539f3
SL
2603 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2604 if (rc)
2605 return rc;
a6e6ce8e 2606
8bf62ece 2607 /* print device info to dmesg */
3f64f565 2608 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2609 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2610 revbuf, modelbuf, fwrevbuf,
2611 ata_mode_string(xfer_mask));
2612 ata_dev_info(dev,
2613 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2614 (unsigned long long)dev->n_sectors,
3f64f565
EM
2615 dev->multi_count, lba_desc, ncq_desc);
2616 }
ffeae418 2617 } else {
8bf62ece
AL
2618 /* CHS */
2619
2620 /* Default translation */
1148c3a7
TH
2621 dev->cylinders = id[1];
2622 dev->heads = id[3];
2623 dev->sectors = id[6];
8bf62ece 2624
1148c3a7 2625 if (ata_id_current_chs_valid(id)) {
8bf62ece 2626 /* Current CHS translation is valid. */
1148c3a7
TH
2627 dev->cylinders = id[54];
2628 dev->heads = id[55];
2629 dev->sectors = id[56];
8bf62ece
AL
2630 }
2631
2632 /* print device info to dmesg */
3f64f565 2633 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2634 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2635 revbuf, modelbuf, fwrevbuf,
2636 ata_mode_string(xfer_mask));
2637 ata_dev_info(dev,
2638 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2639 (unsigned long long)dev->n_sectors,
2640 dev->multi_count, dev->cylinders,
2641 dev->heads, dev->sectors);
3f64f565 2642 }
07f6f7d0
AL
2643 }
2644
803739d2
SH
2645 /* Check and mark DevSlp capability. Get DevSlp timing variables
2646 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2647 */
803739d2 2648 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2649 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2650 int i, j;
2651
2652 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f 2653 err_mask = ata_read_log_page(dev,
1d51d5f3 2654 ATA_LOG_IDENTIFY_DEVICE,
65fe1f0f 2655 ATA_LOG_SATA_SETTINGS,
803739d2 2656 sata_setting,
65fe1f0f
SH
2657 1);
2658 if (err_mask)
2659 ata_dev_dbg(dev,
2660 "failed to get Identify Device Data, Emask 0x%x\n",
2661 err_mask);
803739d2
SH
2662 else
2663 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2664 j = ATA_LOG_DEVSLP_OFFSET + i;
2665 dev->devslp_timing[i] = sata_setting[j];
2666 }
65fe1f0f 2667 }
e87fd28c 2668 ata_dev_config_sense_reporting(dev);
6d1003ae 2669 ata_dev_config_zac(dev);
818831c8 2670 ata_dev_config_trusted(dev);
b1ffbf85 2671 dev->cdb_len = 32;
1da177e4
LT
2672 }
2673
2674 /* ATAPI-specific feature tests */
2c13b7ce 2675 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2676 const char *cdb_intr_string = "";
2677 const char *atapi_an_string = "";
91163006 2678 const char *dma_dir_string = "";
7d77b247 2679 u32 sntf;
08a556db 2680
1148c3a7 2681 rc = atapi_cdb_len(id);
1da177e4 2682 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2683 if (ata_msg_warn(ap))
a9a79dfe 2684 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2685 rc = -EINVAL;
1da177e4
LT
2686 goto err_out_nosup;
2687 }
6e7846e9 2688 dev->cdb_len = (unsigned int) rc;
1da177e4 2689
7d77b247
TH
2690 /* Enable ATAPI AN if both the host and device have
2691 * the support. If PMP is attached, SNTF is required
2692 * to enable ATAPI AN to discern between PHY status
2693 * changed notifications and ATAPI ANs.
9f45cbd3 2694 */
e7ecd435
TH
2695 if (atapi_an &&
2696 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2697 (!sata_pmp_attached(ap) ||
7d77b247 2698 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2699 /* issue SET feature command to turn this on */
218f3d30
JG
2700 err_mask = ata_dev_set_feature(dev,
2701 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2702 if (err_mask)
a9a79dfe
JP
2703 ata_dev_err(dev,
2704 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2705 err_mask);
854c73a2 2706 else {
9f45cbd3 2707 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2708 atapi_an_string = ", ATAPI AN";
2709 }
9f45cbd3
KCA
2710 }
2711
08a556db 2712 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2713 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2714 cdb_intr_string = ", CDB intr";
2715 }
312f7da2 2716
966fbe19 2717 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2718 dev->flags |= ATA_DFLAG_DMADIR;
2719 dma_dir_string = ", DMADIR";
2720 }
2721
afe75951 2722 if (ata_id_has_da(dev->id)) {
b1354cbb 2723 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2724 zpodd_init(dev);
2725 }
b1354cbb 2726
1da177e4 2727 /* print device info to dmesg */
5afc8142 2728 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2729 ata_dev_info(dev,
2730 "ATAPI: %s, %s, max %s%s%s%s\n",
2731 modelbuf, fwrevbuf,
2732 ata_mode_string(xfer_mask),
2733 cdb_intr_string, atapi_an_string,
2734 dma_dir_string);
1da177e4
LT
2735 }
2736
914ed354
TH
2737 /* determine max_sectors */
2738 dev->max_sectors = ATA_MAX_SECTORS;
2739 if (dev->flags & ATA_DFLAG_LBA48)
2740 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2741
c5038fc0
AC
2742 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2743 200 sectors */
3373efd8 2744 if (ata_dev_knobble(dev)) {
5afc8142 2745 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2746 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2747 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2748 dev->max_sectors = ATA_MAX_SECTORS;
2749 }
2750
f8d8e579 2751 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2752 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2753 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2754 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2755 }
f8d8e579 2756
75683fe7 2757 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2758 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2759 dev->max_sectors);
18d6e9d5 2760
af34d637
DM
2761 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2762 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2763 dev->max_sectors);
2764
a32450e1
SH
2765 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2766 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2767
4b2f3ede 2768 if (ap->ops->dev_config)
cd0d3bbc 2769 ap->ops->dev_config(dev);
4b2f3ede 2770
c5038fc0
AC
2771 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2772 /* Let the user know. We don't want to disallow opens for
2773 rescue purposes, or in case the vendor is just a blithering
2774 idiot. Do this after the dev_config call as some controllers
2775 with buggy firmware may want to avoid reporting false device
2776 bugs */
2777
2778 if (print_info) {
a9a79dfe 2779 ata_dev_warn(dev,
c5038fc0 2780"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2781 ata_dev_warn(dev,
c5038fc0
AC
2782"fault or invalid emulation. Contact drive vendor for information.\n");
2783 }
2784 }
2785
ac70a964 2786 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2787 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2788 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2789 }
2790
ffeae418 2791 return 0;
1da177e4
LT
2792
2793err_out_nosup:
0dd4b21f 2794 if (ata_msg_probe(ap))
a9a79dfe 2795 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2796 return rc;
1da177e4
LT
2797}
2798
be0d18df 2799/**
2e41e8e6 2800 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2801 * @ap: port
2802 *
2e41e8e6 2803 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2804 * detection.
2805 */
2806
2807int ata_cable_40wire(struct ata_port *ap)
2808{
2809 return ATA_CBL_PATA40;
2810}
2811
2812/**
2e41e8e6 2813 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2814 * @ap: port
2815 *
2e41e8e6 2816 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2817 * detection.
2818 */
2819
2820int ata_cable_80wire(struct ata_port *ap)
2821{
2822 return ATA_CBL_PATA80;
2823}
2824
2825/**
2826 * ata_cable_unknown - return unknown PATA cable.
2827 * @ap: port
2828 *
2829 * Helper method for drivers which have no PATA cable detection.
2830 */
2831
2832int ata_cable_unknown(struct ata_port *ap)
2833{
2834 return ATA_CBL_PATA_UNK;
2835}
2836
c88f90c3
TH
2837/**
2838 * ata_cable_ignore - return ignored PATA cable.
2839 * @ap: port
2840 *
2841 * Helper method for drivers which don't use cable type to limit
2842 * transfer mode.
2843 */
2844int ata_cable_ignore(struct ata_port *ap)
2845{
2846 return ATA_CBL_PATA_IGN;
2847}
2848
be0d18df
AC
2849/**
2850 * ata_cable_sata - return SATA cable type
2851 * @ap: port
2852 *
2853 * Helper method for drivers which have SATA cables
2854 */
2855
2856int ata_cable_sata(struct ata_port *ap)
2857{
2858 return ATA_CBL_SATA;
2859}
2860
1da177e4
LT
2861/**
2862 * ata_bus_probe - Reset and probe ATA bus
2863 * @ap: Bus to probe
2864 *
0cba632b
JG
2865 * Master ATA bus probing function. Initiates a hardware-dependent
2866 * bus reset, then attempts to identify any devices found on
2867 * the bus.
2868 *
1da177e4 2869 * LOCKING:
0cba632b 2870 * PCI/etc. bus probe sem.
1da177e4
LT
2871 *
2872 * RETURNS:
96072e69 2873 * Zero on success, negative errno otherwise.
1da177e4
LT
2874 */
2875
80289167 2876int ata_bus_probe(struct ata_port *ap)
1da177e4 2877{
28ca5c57 2878 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2879 int tries[ATA_MAX_DEVICES];
f58229f8 2880 int rc;
e82cbdb9 2881 struct ata_device *dev;
1da177e4 2882
1eca4365 2883 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2884 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2885
2886 retry:
1eca4365 2887 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2888 /* If we issue an SRST then an ATA drive (not ATAPI)
2889 * may change configuration and be in PIO0 timing. If
2890 * we do a hard reset (or are coming from power on)
2891 * this is true for ATA or ATAPI. Until we've set a
2892 * suitable controller mode we should not touch the
2893 * bus as we may be talking too fast.
2894 */
2895 dev->pio_mode = XFER_PIO_0;
5416912a 2896 dev->dma_mode = 0xff;
cdeab114
TH
2897
2898 /* If the controller has a pio mode setup function
2899 * then use it to set the chipset to rights. Don't
2900 * touch the DMA setup as that will be dealt with when
2901 * configuring devices.
2902 */
2903 if (ap->ops->set_piomode)
2904 ap->ops->set_piomode(ap, dev);
2905 }
2906
2044470c 2907 /* reset and determine device classes */
52783c5d 2908 ap->ops->phy_reset(ap);
2061a47a 2909
1eca4365 2910 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2911 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2912 classes[dev->devno] = dev->class;
2913 else
2914 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2915
52783c5d 2916 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2917 }
1da177e4 2918
f31f0cc2
JG
2919 /* read IDENTIFY page and configure devices. We have to do the identify
2920 specific sequence bass-ackwards so that PDIAG- is released by
2921 the slave device */
2922
1eca4365 2923 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2924 if (tries[dev->devno])
2925 dev->class = classes[dev->devno];
ffeae418 2926
14d2bac1 2927 if (!ata_dev_enabled(dev))
ffeae418 2928 continue;
ffeae418 2929
bff04647
TH
2930 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2931 dev->id);
14d2bac1
TH
2932 if (rc)
2933 goto fail;
f31f0cc2
JG
2934 }
2935
be0d18df
AC
2936 /* Now ask for the cable type as PDIAG- should have been released */
2937 if (ap->ops->cable_detect)
2938 ap->cbl = ap->ops->cable_detect(ap);
2939
1eca4365
TH
2940 /* We may have SATA bridge glue hiding here irrespective of
2941 * the reported cable types and sensed types. When SATA
2942 * drives indicate we have a bridge, we don't know which end
2943 * of the link the bridge is which is a problem.
2944 */
2945 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2946 if (ata_id_is_sata(dev->id))
2947 ap->cbl = ATA_CBL_SATA;
614fe29b 2948
f31f0cc2
JG
2949 /* After the identify sequence we can now set up the devices. We do
2950 this in the normal order so that the user doesn't get confused */
2951
1eca4365 2952 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2953 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2954 rc = ata_dev_configure(dev);
9af5c9c9 2955 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2956 if (rc)
2957 goto fail;
1da177e4
LT
2958 }
2959
e82cbdb9 2960 /* configure transfer mode */
0260731f 2961 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2962 if (rc)
51713d35 2963 goto fail;
1da177e4 2964
1eca4365
TH
2965 ata_for_each_dev(dev, &ap->link, ENABLED)
2966 return 0;
1da177e4 2967
96072e69 2968 return -ENODEV;
14d2bac1
TH
2969
2970 fail:
4ae72a1e
TH
2971 tries[dev->devno]--;
2972
14d2bac1
TH
2973 switch (rc) {
2974 case -EINVAL:
4ae72a1e 2975 /* eeek, something went very wrong, give up */
14d2bac1
TH
2976 tries[dev->devno] = 0;
2977 break;
4ae72a1e
TH
2978
2979 case -ENODEV:
2980 /* give it just one more chance */
2981 tries[dev->devno] = min(tries[dev->devno], 1);
05b83605 2982 /* fall through */
14d2bac1 2983 case -EIO:
4ae72a1e
TH
2984 if (tries[dev->devno] == 1) {
2985 /* This is the last chance, better to slow
2986 * down than lose it.
2987 */
a07d499b 2988 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2989 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2990 }
14d2bac1
TH
2991 }
2992
4ae72a1e 2993 if (!tries[dev->devno])
3373efd8 2994 ata_dev_disable(dev);
ec573755 2995
14d2bac1 2996 goto retry;
1da177e4
LT
2997}
2998
3be680b7
TH
2999/**
3000 * sata_print_link_status - Print SATA link status
936fd732 3001 * @link: SATA link to printk link status about
3be680b7
TH
3002 *
3003 * This function prints link speed and status of a SATA link.
3004 *
3005 * LOCKING:
3006 * None.
3007 */
6bdb4fc9 3008static void sata_print_link_status(struct ata_link *link)
3be680b7 3009{
6d5f9732 3010 u32 sstatus, scontrol, tmp;
3be680b7 3011
936fd732 3012 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 3013 return;
936fd732 3014 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 3015
b1c72916 3016 if (ata_phys_link_online(link)) {
3be680b7 3017 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
3018 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3019 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 3020 } else {
a9a79dfe
JP
3021 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3022 sstatus, scontrol);
3be680b7
TH
3023 }
3024}
3025
ebdfca6e
AC
3026/**
3027 * ata_dev_pair - return other device on cable
ebdfca6e
AC
3028 * @adev: device
3029 *
3030 * Obtain the other device on the same cable, or if none is
3031 * present NULL is returned
3032 */
2e9edbf8 3033
3373efd8 3034struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 3035{
9af5c9c9
TH
3036 struct ata_link *link = adev->link;
3037 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 3038 if (!ata_dev_enabled(pair))
ebdfca6e
AC
3039 return NULL;
3040 return pair;
3041}
3042
1c3fae4d 3043/**
3c567b7d 3044 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 3045 * @link: Link to adjust SATA spd limit for
a07d499b 3046 * @spd_limit: Additional limit
1c3fae4d 3047 *
936fd732 3048 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 3049 * function only adjusts the limit. The change must be applied
3c567b7d 3050 * using sata_set_spd().
1c3fae4d 3051 *
a07d499b
TH
3052 * If @spd_limit is non-zero, the speed is limited to equal to or
3053 * lower than @spd_limit if such speed is supported. If
3054 * @spd_limit is slower than any supported speed, only the lowest
3055 * supported speed is allowed.
3056 *
1c3fae4d
TH
3057 * LOCKING:
3058 * Inherited from caller.
3059 *
3060 * RETURNS:
3061 * 0 on success, negative errno on failure
3062 */
a07d499b 3063int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 3064{
81952c54 3065 u32 sstatus, spd, mask;
a07d499b 3066 int rc, bit;
1c3fae4d 3067
936fd732 3068 if (!sata_scr_valid(link))
008a7896
TH
3069 return -EOPNOTSUPP;
3070
3071 /* If SCR can be read, use it to determine the current SPD.
936fd732 3072 * If not, use cached value in link->sata_spd.
008a7896 3073 */
936fd732 3074 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3075 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3076 spd = (sstatus >> 4) & 0xf;
3077 else
936fd732 3078 spd = link->sata_spd;
1c3fae4d 3079
936fd732 3080 mask = link->sata_spd_limit;
1c3fae4d
TH
3081 if (mask <= 1)
3082 return -EINVAL;
008a7896
TH
3083
3084 /* unconditionally mask off the highest bit */
a07d499b
TH
3085 bit = fls(mask) - 1;
3086 mask &= ~(1 << bit);
1c3fae4d 3087
2dc0b46b
DM
3088 /*
3089 * Mask off all speeds higher than or equal to the current one. At
3090 * this point, if current SPD is not available and we previously
3091 * recorded the link speed from SStatus, the driver has already
3092 * masked off the highest bit so mask should already be 1 or 0.
3093 * Otherwise, we should not force 1.5Gbps on a link where we have
3094 * not previously recorded speed from SStatus. Just return in this
3095 * case.
008a7896
TH
3096 */
3097 if (spd > 1)
3098 mask &= (1 << (spd - 1)) - 1;
3099 else
2dc0b46b 3100 return -EINVAL;
008a7896
TH
3101
3102 /* were we already at the bottom? */
1c3fae4d
TH
3103 if (!mask)
3104 return -EINVAL;
3105
a07d499b
TH
3106 if (spd_limit) {
3107 if (mask & ((1 << spd_limit) - 1))
3108 mask &= (1 << spd_limit) - 1;
3109 else {
3110 bit = ffs(mask) - 1;
3111 mask = 1 << bit;
3112 }
3113 }
3114
936fd732 3115 link->sata_spd_limit = mask;
1c3fae4d 3116
a9a79dfe
JP
3117 ata_link_warn(link, "limiting SATA link speed to %s\n",
3118 sata_spd_string(fls(mask)));
1c3fae4d
TH
3119
3120 return 0;
3121}
3122
936fd732 3123static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3124{
5270222f
TH
3125 struct ata_link *host_link = &link->ap->link;
3126 u32 limit, target, spd;
1c3fae4d 3127
5270222f
TH
3128 limit = link->sata_spd_limit;
3129
3130 /* Don't configure downstream link faster than upstream link.
3131 * It doesn't speed up anything and some PMPs choke on such
3132 * configuration.
3133 */
3134 if (!ata_is_host_link(link) && host_link->sata_spd)
3135 limit &= (1 << host_link->sata_spd) - 1;
3136
3137 if (limit == UINT_MAX)
3138 target = 0;
1c3fae4d 3139 else
5270222f 3140 target = fls(limit);
1c3fae4d
TH
3141
3142 spd = (*scontrol >> 4) & 0xf;
5270222f 3143 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3144
5270222f 3145 return spd != target;
1c3fae4d
TH
3146}
3147
3148/**
3c567b7d 3149 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3150 * @link: Link in question
1c3fae4d
TH
3151 *
3152 * Test whether the spd limit in SControl matches
936fd732 3153 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3154 * whether hardreset is necessary to apply SATA spd
3155 * configuration.
3156 *
3157 * LOCKING:
3158 * Inherited from caller.
3159 *
3160 * RETURNS:
3161 * 1 if SATA spd configuration is needed, 0 otherwise.
3162 */
1dc55e87 3163static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3164{
3165 u32 scontrol;
3166
936fd732 3167 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3168 return 1;
1c3fae4d 3169
936fd732 3170 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3171}
3172
3173/**
3c567b7d 3174 * sata_set_spd - set SATA spd according to spd limit
936fd732 3175 * @link: Link to set SATA spd for
1c3fae4d 3176 *
936fd732 3177 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3178 *
3179 * LOCKING:
3180 * Inherited from caller.
3181 *
3182 * RETURNS:
3183 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3184 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3185 */
936fd732 3186int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3187{
3188 u32 scontrol;
81952c54 3189 int rc;
1c3fae4d 3190
936fd732 3191 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3192 return rc;
1c3fae4d 3193
936fd732 3194 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3195 return 0;
3196
936fd732 3197 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3198 return rc;
3199
1c3fae4d
TH
3200 return 1;
3201}
3202
452503f9
AC
3203/*
3204 * This mode timing computation functionality is ported over from
3205 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3206 */
3207/*
b352e57d 3208 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3209 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3210 * for UDMA6, which is currently supported only by Maxtor drives.
3211 *
3212 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3213 */
3214
3215static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3216/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3217 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3218 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3219 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3220 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3221 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3222 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3223 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3224
3225 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3226 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3227 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3228
3229 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3230 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3231 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3232 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3233 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3234
3235/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3236 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3237 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3238 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3239 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3240 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3241 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3242 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3243
3244 { 0xFF }
3245};
3246
2dcb407e 3247#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
23e4c67a 3248#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
452503f9
AC
3249
3250static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3251{
23e4c67a
AB
3252 q->setup = EZ(t->setup, T);
3253 q->act8b = EZ(t->act8b, T);
3254 q->rec8b = EZ(t->rec8b, T);
3255 q->cyc8b = EZ(t->cyc8b, T);
3256 q->active = EZ(t->active, T);
3257 q->recover = EZ(t->recover, T);
3258 q->dmack_hold = EZ(t->dmack_hold, T);
3259 q->cycle = EZ(t->cycle, T);
3260 q->udma = EZ(t->udma, UT);
452503f9
AC
3261}
3262
3263void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3264 struct ata_timing *m, unsigned int what)
3265{
3266 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3267 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3268 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3269 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3270 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3271 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3272 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3273 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3274 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3275}
3276
6357357c 3277const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3278{
70cd071e
TH
3279 const struct ata_timing *t = ata_timing;
3280
3281 while (xfer_mode > t->mode)
3282 t++;
452503f9 3283
70cd071e
TH
3284 if (xfer_mode == t->mode)
3285 return t;
cd705d5a
BP
3286
3287 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3288 __func__, xfer_mode);
3289
70cd071e 3290 return NULL;
452503f9
AC
3291}
3292
3293int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3294 struct ata_timing *t, int T, int UT)
3295{
9e8808a9 3296 const u16 *id = adev->id;
452503f9
AC
3297 const struct ata_timing *s;
3298 struct ata_timing p;
3299
3300 /*
2e9edbf8 3301 * Find the mode.
75b1f2f8 3302 */
452503f9
AC
3303
3304 if (!(s = ata_timing_find_mode(speed)))
3305 return -EINVAL;
3306
75b1f2f8
AL
3307 memcpy(t, s, sizeof(*s));
3308
452503f9
AC
3309 /*
3310 * If the drive is an EIDE drive, it can tell us it needs extended
3311 * PIO/MW_DMA cycle timing.
3312 */
3313
9e8808a9 3314 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3315 memset(&p, 0, sizeof(p));
9e8808a9 3316
bff00256 3317 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3318 if (speed <= XFER_PIO_2)
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3320 else if ((speed <= XFER_PIO_4) ||
3321 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3322 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3323 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3324 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3325
452503f9
AC
3326 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3327 }
3328
3329 /*
3330 * Convert the timing to bus clock counts.
3331 */
3332
75b1f2f8 3333 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3334
3335 /*
c893a3ae
RD
3336 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3337 * S.M.A.R.T * and some other commands. We have to ensure that the
3338 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3339 */
3340
fd3367af 3341 if (speed > XFER_PIO_6) {
452503f9
AC
3342 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3343 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3344 }
3345
3346 /*
c893a3ae 3347 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3348 */
3349
3350 if (t->act8b + t->rec8b < t->cyc8b) {
3351 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3352 t->rec8b = t->cyc8b - t->act8b;
3353 }
3354
3355 if (t->active + t->recover < t->cycle) {
3356 t->active += (t->cycle - (t->active + t->recover)) / 2;
3357 t->recover = t->cycle - t->active;
3358 }
a617c09f 3359
4f701d1e
AC
3360 /* In a few cases quantisation may produce enough errors to
3361 leave t->cycle too low for the sum of active and recovery
3362 if so we must correct this */
3363 if (t->active + t->recover > t->cycle)
3364 t->cycle = t->active + t->recover;
452503f9
AC
3365
3366 return 0;
3367}
3368
a0f79b92
TH
3369/**
3370 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3371 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3372 * @cycle: cycle duration in ns
3373 *
3374 * Return matching xfer mode for @cycle. The returned mode is of
3375 * the transfer type specified by @xfer_shift. If @cycle is too
3376 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3377 * than the fastest known mode, the fasted mode is returned.
3378 *
3379 * LOCKING:
3380 * None.
3381 *
3382 * RETURNS:
3383 * Matching xfer_mode, 0xff if no match found.
3384 */
3385u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3386{
3387 u8 base_mode = 0xff, last_mode = 0xff;
3388 const struct ata_xfer_ent *ent;
3389 const struct ata_timing *t;
3390
3391 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3392 if (ent->shift == xfer_shift)
3393 base_mode = ent->base;
3394
3395 for (t = ata_timing_find_mode(base_mode);
3396 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3397 unsigned short this_cycle;
3398
3399 switch (xfer_shift) {
3400 case ATA_SHIFT_PIO:
3401 case ATA_SHIFT_MWDMA:
3402 this_cycle = t->cycle;
3403 break;
3404 case ATA_SHIFT_UDMA:
3405 this_cycle = t->udma;
3406 break;
3407 default:
3408 return 0xff;
3409 }
3410
3411 if (cycle > this_cycle)
3412 break;
3413
3414 last_mode = t->mode;
3415 }
3416
3417 return last_mode;
3418}
3419
cf176e1a
TH
3420/**
3421 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3422 * @dev: Device to adjust xfer masks
458337db 3423 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3424 *
3425 * Adjust xfer masks of @dev downward. Note that this function
3426 * does not apply the change. Invoking ata_set_mode() afterwards
3427 * will apply the limit.
3428 *
3429 * LOCKING:
3430 * Inherited from caller.
3431 *
3432 * RETURNS:
3433 * 0 on success, negative errno on failure
3434 */
458337db 3435int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3436{
458337db 3437 char buf[32];
7dc951ae
TH
3438 unsigned long orig_mask, xfer_mask;
3439 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3440 int quiet, highbit;
cf176e1a 3441
458337db
TH
3442 quiet = !!(sel & ATA_DNXFER_QUIET);
3443 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3444
458337db
TH
3445 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3446 dev->mwdma_mask,
3447 dev->udma_mask);
3448 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3449
458337db
TH
3450 switch (sel) {
3451 case ATA_DNXFER_PIO:
3452 highbit = fls(pio_mask) - 1;
3453 pio_mask &= ~(1 << highbit);
3454 break;
3455
3456 case ATA_DNXFER_DMA:
3457 if (udma_mask) {
3458 highbit = fls(udma_mask) - 1;
3459 udma_mask &= ~(1 << highbit);
3460 if (!udma_mask)
3461 return -ENOENT;
3462 } else if (mwdma_mask) {
3463 highbit = fls(mwdma_mask) - 1;
3464 mwdma_mask &= ~(1 << highbit);
3465 if (!mwdma_mask)
3466 return -ENOENT;
3467 }
3468 break;
3469
3470 case ATA_DNXFER_40C:
3471 udma_mask &= ATA_UDMA_MASK_40C;
3472 break;
3473
3474 case ATA_DNXFER_FORCE_PIO0:
3475 pio_mask &= 1;
05b83605 3476 /* fall through */
458337db
TH
3477 case ATA_DNXFER_FORCE_PIO:
3478 mwdma_mask = 0;
3479 udma_mask = 0;
3480 break;
3481
458337db
TH
3482 default:
3483 BUG();
3484 }
3485
3486 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3487
3488 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3489 return -ENOENT;
3490
3491 if (!quiet) {
3492 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3493 snprintf(buf, sizeof(buf), "%s:%s",
3494 ata_mode_string(xfer_mask),
3495 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3496 else
3497 snprintf(buf, sizeof(buf), "%s",
3498 ata_mode_string(xfer_mask));
3499
a9a79dfe 3500 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3501 }
cf176e1a
TH
3502
3503 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3504 &dev->udma_mask);
3505
cf176e1a 3506 return 0;
cf176e1a
TH
3507}
3508
3373efd8 3509static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3510{
d0cb43b3 3511 struct ata_port *ap = dev->link->ap;
9af5c9c9 3512 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3513 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3514 const char *dev_err_whine = "";
3515 int ign_dev_err = 0;
d0cb43b3 3516 unsigned int err_mask = 0;
83206a29 3517 int rc;
1da177e4 3518
e8384607 3519 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3520 if (dev->xfer_shift == ATA_SHIFT_PIO)
3521 dev->flags |= ATA_DFLAG_PIO;
3522
d0cb43b3
TH
3523 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3524 dev_err_whine = " (SET_XFERMODE skipped)";
3525 else {
3526 if (nosetxfer)
a9a79dfe
JP
3527 ata_dev_warn(dev,
3528 "NOSETXFER but PATA detected - can't "
3529 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3530 err_mask = ata_dev_set_xfermode(dev);
3531 }
2dcb407e 3532
4055dee7
TH
3533 if (err_mask & ~AC_ERR_DEV)
3534 goto fail;
3535
3536 /* revalidate */
3537 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3538 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3539 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3540 if (rc)
3541 return rc;
3542
b93fda12
AC
3543 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3544 /* Old CFA may refuse this command, which is just fine */
3545 if (ata_id_is_cfa(dev->id))
3546 ign_dev_err = 1;
3547 /* Catch several broken garbage emulations plus some pre
3548 ATA devices */
3549 if (ata_id_major_version(dev->id) == 0 &&
3550 dev->pio_mode <= XFER_PIO_2)
3551 ign_dev_err = 1;
3552 /* Some very old devices and some bad newer ones fail
3553 any kind of SET_XFERMODE request but support PIO0-2
3554 timings and no IORDY */
3555 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3556 ign_dev_err = 1;
3557 }
3acaf94b
AC
3558 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3559 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3560 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3561 dev->dma_mode == XFER_MW_DMA_0 &&
3562 (dev->id[63] >> 8) & 1)
4055dee7 3563 ign_dev_err = 1;
3acaf94b 3564
4055dee7
TH
3565 /* if the device is actually configured correctly, ignore dev err */
3566 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3567 ign_dev_err = 1;
1da177e4 3568
4055dee7
TH
3569 if (err_mask & AC_ERR_DEV) {
3570 if (!ign_dev_err)
3571 goto fail;
3572 else
3573 dev_err_whine = " (device error ignored)";
3574 }
48a8a14f 3575
23e71c3d
TH
3576 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3577 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3578
a9a79dfe
JP
3579 ata_dev_info(dev, "configured for %s%s\n",
3580 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3581 dev_err_whine);
4055dee7 3582
83206a29 3583 return 0;
4055dee7
TH
3584
3585 fail:
a9a79dfe 3586 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3587 return -EIO;
1da177e4
LT
3588}
3589
1da177e4 3590/**
04351821 3591 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3592 * @link: link on which timings will be programmed
1967b7ff 3593 * @r_failed_dev: out parameter for failed device
1da177e4 3594 *
04351821
AC
3595 * Standard implementation of the function used to tune and set
3596 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3597 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3598 * returned in @r_failed_dev.
780a87f7 3599 *
1da177e4 3600 * LOCKING:
0cba632b 3601 * PCI/etc. bus probe sem.
e82cbdb9
TH
3602 *
3603 * RETURNS:
3604 * 0 on success, negative errno otherwise
1da177e4 3605 */
04351821 3606
0260731f 3607int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3608{
0260731f 3609 struct ata_port *ap = link->ap;
e8e0619f 3610 struct ata_device *dev;
f58229f8 3611 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3612
a6d5a51c 3613 /* step 1: calculate xfer_mask */
1eca4365 3614 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3615 unsigned long pio_mask, dma_mask;
b3a70601 3616 unsigned int mode_mask;
a6d5a51c 3617
b3a70601
AC
3618 mode_mask = ATA_DMA_MASK_ATA;
3619 if (dev->class == ATA_DEV_ATAPI)
3620 mode_mask = ATA_DMA_MASK_ATAPI;
3621 else if (ata_id_is_cfa(dev->id))
3622 mode_mask = ATA_DMA_MASK_CFA;
3623
3373efd8 3624 ata_dev_xfermask(dev);
33267325 3625 ata_force_xfermask(dev);
1da177e4 3626
acf356b1 3627 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3628
3629 if (libata_dma_mask & mode_mask)
80a9c430
SS
3630 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3631 dev->udma_mask);
b3a70601
AC
3632 else
3633 dma_mask = 0;
3634
acf356b1
TH
3635 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3636 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3637
4f65977d 3638 found = 1;
b15b3eba 3639 if (ata_dma_enabled(dev))
5444a6f4 3640 used_dma = 1;
a6d5a51c 3641 }
4f65977d 3642 if (!found)
e82cbdb9 3643 goto out;
a6d5a51c
TH
3644
3645 /* step 2: always set host PIO timings */
1eca4365 3646 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3647 if (dev->pio_mode == 0xff) {
a9a79dfe 3648 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3649 rc = -EINVAL;
e82cbdb9 3650 goto out;
e8e0619f
TH
3651 }
3652
3653 dev->xfer_mode = dev->pio_mode;
3654 dev->xfer_shift = ATA_SHIFT_PIO;
3655 if (ap->ops->set_piomode)
3656 ap->ops->set_piomode(ap, dev);
3657 }
1da177e4 3658
a6d5a51c 3659 /* step 3: set host DMA timings */
1eca4365
TH
3660 ata_for_each_dev(dev, link, ENABLED) {
3661 if (!ata_dma_enabled(dev))
e8e0619f
TH
3662 continue;
3663
3664 dev->xfer_mode = dev->dma_mode;
3665 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3666 if (ap->ops->set_dmamode)
3667 ap->ops->set_dmamode(ap, dev);
3668 }
1da177e4
LT
3669
3670 /* step 4: update devices' xfer mode */
1eca4365 3671 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3672 rc = ata_dev_set_mode(dev);
5bbc53f4 3673 if (rc)
e82cbdb9 3674 goto out;
83206a29 3675 }
1da177e4 3676
e8e0619f
TH
3677 /* Record simplex status. If we selected DMA then the other
3678 * host channels are not permitted to do so.
5444a6f4 3679 */
cca3974e 3680 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3681 ap->host->simplex_claimed = ap;
5444a6f4 3682
e82cbdb9
TH
3683 out:
3684 if (rc)
3685 *r_failed_dev = dev;
3686 return rc;
1da177e4
LT
3687}
3688
aa2731ad
TH
3689/**
3690 * ata_wait_ready - wait for link to become ready
3691 * @link: link to be waited on
3692 * @deadline: deadline jiffies for the operation
3693 * @check_ready: callback to check link readiness
3694 *
3695 * Wait for @link to become ready. @check_ready should return
3696 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3697 * link doesn't seem to be occupied, other errno for other error
3698 * conditions.
3699 *
3700 * Transient -ENODEV conditions are allowed for
3701 * ATA_TMOUT_FF_WAIT.
3702 *
3703 * LOCKING:
3704 * EH context.
3705 *
3706 * RETURNS:
c9b5560a 3707 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3708 */
3709int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3710 int (*check_ready)(struct ata_link *link))
3711{
3712 unsigned long start = jiffies;
b48d58f5 3713 unsigned long nodev_deadline;
aa2731ad
TH
3714 int warned = 0;
3715
b48d58f5
TH
3716 /* choose which 0xff timeout to use, read comment in libata.h */
3717 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3718 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3719 else
3720 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3721
b1c72916
TH
3722 /* Slave readiness can't be tested separately from master. On
3723 * M/S emulation configuration, this function should be called
3724 * only on the master and it will handle both master and slave.
3725 */
3726 WARN_ON(link == link->ap->slave_link);
3727
aa2731ad
TH
3728 if (time_after(nodev_deadline, deadline))
3729 nodev_deadline = deadline;
3730
3731 while (1) {
3732 unsigned long now = jiffies;
3733 int ready, tmp;
3734
3735 ready = tmp = check_ready(link);
3736 if (ready > 0)
3737 return 0;
3738
b48d58f5
TH
3739 /*
3740 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3741 * is online. Also, some SATA devices take a long
b48d58f5
TH
3742 * time to clear 0xff after reset. Wait for
3743 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3744 * offline.
aa2731ad
TH
3745 *
3746 * Note that some PATA controllers (pata_ali) explode
3747 * if status register is read more than once when
3748 * there's no device attached.
3749 */
3750 if (ready == -ENODEV) {
3751 if (ata_link_online(link))
3752 ready = 0;
3753 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3754 !ata_link_offline(link) &&
3755 time_before(now, nodev_deadline))
3756 ready = 0;
3757 }
3758
3759 if (ready)
3760 return ready;
3761 if (time_after(now, deadline))
3762 return -EBUSY;
3763
3764 if (!warned && time_after(now, start + 5 * HZ) &&
3765 (deadline - now > 3 * HZ)) {
a9a79dfe 3766 ata_link_warn(link,
aa2731ad
TH
3767 "link is slow to respond, please be patient "
3768 "(ready=%d)\n", tmp);
3769 warned = 1;
3770 }
3771
97750ceb 3772 ata_msleep(link->ap, 50);
aa2731ad
TH
3773 }
3774}
3775
3776/**
3777 * ata_wait_after_reset - wait for link to become ready after reset
3778 * @link: link to be waited on
3779 * @deadline: deadline jiffies for the operation
3780 * @check_ready: callback to check link readiness
3781 *
3782 * Wait for @link to become ready after reset.
3783 *
3784 * LOCKING:
3785 * EH context.
3786 *
3787 * RETURNS:
c9b5560a 3788 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3789 */
2b4221bb 3790int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3791 int (*check_ready)(struct ata_link *link))
3792{
97750ceb 3793 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3794
3795 return ata_wait_ready(link, deadline, check_ready);
3796}
3797
d7bb4cc7 3798/**
936fd732
TH
3799 * sata_link_debounce - debounce SATA phy status
3800 * @link: ATA link to debounce SATA phy status for
c9b5560a 3801 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3802 * @deadline: deadline jiffies for the operation
d7bb4cc7 3803 *
1152b261 3804 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3805 * holding the same value where DET is not 1 for @duration polled
3806 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3807 * beginning of the stable state. Because DET gets stuck at 1 on
3808 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3809 * until timeout then returns 0 if DET is stable at 1.
3810 *
d4b2bab4
TH
3811 * @timeout is further limited by @deadline. The sooner of the
3812 * two is used.
3813 *
d7bb4cc7
TH
3814 * LOCKING:
3815 * Kernel thread context (may sleep)
3816 *
3817 * RETURNS:
3818 * 0 on success, -errno on failure.
3819 */
936fd732
TH
3820int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3821 unsigned long deadline)
7a7921e8 3822{
341c2c95
TH
3823 unsigned long interval = params[0];
3824 unsigned long duration = params[1];
d4b2bab4 3825 unsigned long last_jiffies, t;
d7bb4cc7
TH
3826 u32 last, cur;
3827 int rc;
3828
341c2c95 3829 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3830 if (time_before(t, deadline))
3831 deadline = t;
3832
936fd732 3833 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3834 return rc;
3835 cur &= 0xf;
3836
3837 last = cur;
3838 last_jiffies = jiffies;
3839
3840 while (1) {
97750ceb 3841 ata_msleep(link->ap, interval);
936fd732 3842 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3843 return rc;
3844 cur &= 0xf;
3845
3846 /* DET stable? */
3847 if (cur == last) {
d4b2bab4 3848 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3849 continue;
341c2c95
TH
3850 if (time_after(jiffies,
3851 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3852 return 0;
3853 continue;
3854 }
3855
3856 /* unstable, start over */
3857 last = cur;
3858 last_jiffies = jiffies;
3859
f1545154
TH
3860 /* Check deadline. If debouncing failed, return
3861 * -EPIPE to tell upper layer to lower link speed.
3862 */
d4b2bab4 3863 if (time_after(jiffies, deadline))
f1545154 3864 return -EPIPE;
d7bb4cc7
TH
3865 }
3866}
3867
3868/**
936fd732
TH
3869 * sata_link_resume - resume SATA link
3870 * @link: ATA link to resume SATA
c9b5560a 3871 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3872 * @deadline: deadline jiffies for the operation
d7bb4cc7 3873 *
936fd732 3874 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3875 *
3876 * LOCKING:
3877 * Kernel thread context (may sleep)
3878 *
3879 * RETURNS:
3880 * 0 on success, -errno on failure.
3881 */
936fd732
TH
3882int sata_link_resume(struct ata_link *link, const unsigned long *params,
3883 unsigned long deadline)
d7bb4cc7 3884{
5040ab67 3885 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3886 u32 scontrol, serror;
81952c54
TH
3887 int rc;
3888
936fd732 3889 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3890 return rc;
7a7921e8 3891
5040ab67
TH
3892 /*
3893 * Writes to SControl sometimes get ignored under certain
3894 * controllers (ata_piix SIDPR). Make sure DET actually is
3895 * cleared.
3896 */
3897 do {
3898 scontrol = (scontrol & 0x0f0) | 0x300;
3899 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3900 return rc;
3901 /*
3902 * Some PHYs react badly if SStatus is pounded
3903 * immediately after resuming. Delay 200ms before
3904 * debouncing.
3905 */
e39b2bb3
DP
3906 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3907 ata_msleep(link->ap, 200);
81952c54 3908
5040ab67
TH
3909 /* is SControl restored correctly? */
3910 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3911 return rc;
3912 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3913
5040ab67 3914 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3915 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3916 scontrol);
5040ab67
TH
3917 return 0;
3918 }
3919
3920 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3921 ata_link_warn(link, "link resume succeeded after %d retries\n",
3922 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3923
ac371987
TH
3924 if ((rc = sata_link_debounce(link, params, deadline)))
3925 return rc;
3926
f046519f 3927 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3928 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3929 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3930
f046519f 3931 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3932}
3933
1152b261
TH
3934/**
3935 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3936 * @link: ATA link to manipulate SControl for
3937 * @policy: LPM policy to configure
3938 * @spm_wakeup: initiate LPM transition to active state
3939 *
3940 * Manipulate the IPM field of the SControl register of @link
3941 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3942 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3943 * the link. This function also clears PHYRDY_CHG before
3944 * returning.
3945 *
3946 * LOCKING:
3947 * EH context.
3948 *
3949 * RETURNS:
8485187b 3950 * 0 on success, -errno otherwise.
1152b261
TH
3951 */
3952int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3953 bool spm_wakeup)
3954{
3955 struct ata_eh_context *ehc = &link->eh_context;
3956 bool woken_up = false;
3957 u32 scontrol;
3958 int rc;
3959
3960 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3961 if (rc)
3962 return rc;
3963
3964 switch (policy) {
3965 case ATA_LPM_MAX_POWER:
3966 /* disable all LPM transitions */
65fe1f0f 3967 scontrol |= (0x7 << 8);
1152b261
TH
3968 /* initiate transition to active state */
3969 if (spm_wakeup) {
3970 scontrol |= (0x4 << 12);
3971 woken_up = true;
3972 }
3973 break;
3974 case ATA_LPM_MED_POWER:
3975 /* allow LPM to PARTIAL */
3976 scontrol &= ~(0x1 << 8);
65fe1f0f 3977 scontrol |= (0x6 << 8);
1152b261 3978 break;
f4ac6476 3979 case ATA_LPM_MED_POWER_WITH_DIPM:
82544793 3980 case ATA_LPM_MIN_POWER_WITH_PARTIAL:
1152b261 3981 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3982 if (ata_link_nr_enabled(link) > 0)
3983 /* no restrictions on LPM transitions */
65fe1f0f 3984 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3985 else {
3986 /* empty port, power off */
3987 scontrol &= ~0xf;
3988 scontrol |= (0x1 << 2);
3989 }
1152b261
TH
3990 break;
3991 default:
3992 WARN_ON(1);
3993 }
3994
3995 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3996 if (rc)
3997 return rc;
3998
3999 /* give the link time to transit out of LPM state */
4000 if (woken_up)
4001 msleep(10);
4002
4003 /* clear PHYRDY_CHG from SError */
4004 ehc->i.serror &= ~SERR_PHYRDY_CHG;
4005 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4006}
4007
f5914a46 4008/**
0aa1113d 4009 * ata_std_prereset - prepare for reset
cc0680a5 4010 * @link: ATA link to be reset
d4b2bab4 4011 * @deadline: deadline jiffies for the operation
f5914a46 4012 *
cc0680a5 4013 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
4014 * prereset makes libata abort whole reset sequence and give up
4015 * that port, so prereset should be best-effort. It does its
4016 * best to prepare for reset sequence but if things go wrong, it
4017 * should just whine, not fail.
f5914a46
TH
4018 *
4019 * LOCKING:
4020 * Kernel thread context (may sleep)
4021 *
4022 * RETURNS:
4023 * 0 on success, -errno otherwise.
4024 */
0aa1113d 4025int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 4026{
cc0680a5 4027 struct ata_port *ap = link->ap;
936fd732 4028 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 4029 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
4030 int rc;
4031
f5914a46
TH
4032 /* if we're about to do hardreset, nothing more to do */
4033 if (ehc->i.action & ATA_EH_HARDRESET)
4034 return 0;
4035
936fd732 4036 /* if SATA, resume link */
a16abc0b 4037 if (ap->flags & ATA_FLAG_SATA) {
936fd732 4038 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
4039 /* whine about phy resume failure but proceed */
4040 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
4041 ata_link_warn(link,
4042 "failed to resume link for reset (errno=%d)\n",
4043 rc);
f5914a46
TH
4044 }
4045
45db2f6c 4046 /* no point in trying softreset on offline link */
b1c72916 4047 if (ata_phys_link_offline(link))
45db2f6c
TH
4048 ehc->i.action &= ~ATA_EH_SOFTRESET;
4049
f5914a46
TH
4050 return 0;
4051}
4052
c2bd5804 4053/**
624d5c51
TH
4054 * sata_link_hardreset - reset link via SATA phy reset
4055 * @link: link to reset
c9b5560a 4056 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 4057 * @deadline: deadline jiffies for the operation
9dadd45b
TH
4058 * @online: optional out parameter indicating link onlineness
4059 * @check_ready: optional callback to check link readiness
c2bd5804 4060 *
624d5c51 4061 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
4062 * After hardreset, link readiness is waited upon using
4063 * ata_wait_ready() if @check_ready is specified. LLDs are
4064 * allowed to not specify @check_ready and wait itself after this
4065 * function returns. Device classification is LLD's
4066 * responsibility.
4067 *
4068 * *@online is set to one iff reset succeeded and @link is online
4069 * after reset.
c2bd5804
TH
4070 *
4071 * LOCKING:
4072 * Kernel thread context (may sleep)
4073 *
4074 * RETURNS:
4075 * 0 on success, -errno otherwise.
4076 */
624d5c51 4077int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
4078 unsigned long deadline,
4079 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 4080{
624d5c51 4081 u32 scontrol;
81952c54 4082 int rc;
852ee16a 4083
c2bd5804
TH
4084 DPRINTK("ENTER\n");
4085
9dadd45b
TH
4086 if (online)
4087 *online = false;
4088
936fd732 4089 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4090 /* SATA spec says nothing about how to reconfigure
4091 * spd. To be on the safe side, turn off phy during
4092 * reconfiguration. This works for at least ICH7 AHCI
4093 * and Sil3124.
4094 */
936fd732 4095 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4096 goto out;
81952c54 4097
a34b6fc0 4098 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4099
936fd732 4100 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4101 goto out;
1c3fae4d 4102
936fd732 4103 sata_set_spd(link);
1c3fae4d
TH
4104 }
4105
4106 /* issue phy wake/reset */
936fd732 4107 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4108 goto out;
81952c54 4109
852ee16a 4110 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4111
936fd732 4112 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4113 goto out;
c2bd5804 4114
1c3fae4d 4115 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4116 * 10.4.2 says at least 1 ms.
4117 */
97750ceb 4118 ata_msleep(link->ap, 1);
c2bd5804 4119
936fd732
TH
4120 /* bring link back */
4121 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
4122 if (rc)
4123 goto out;
4124 /* if link is offline nothing more to do */
b1c72916 4125 if (ata_phys_link_offline(link))
9dadd45b
TH
4126 goto out;
4127
4128 /* Link is online. From this point, -ENODEV too is an error. */
4129 if (online)
4130 *online = true;
4131
071f44b1 4132 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4133 /* If PMP is supported, we have to do follow-up SRST.
4134 * Some PMPs don't send D2H Reg FIS after hardreset if
4135 * the first port is empty. Wait only for
4136 * ATA_TMOUT_PMP_SRST_WAIT.
4137 */
4138 if (check_ready) {
4139 unsigned long pmp_deadline;
4140
341c2c95
TH
4141 pmp_deadline = ata_deadline(jiffies,
4142 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4143 if (time_after(pmp_deadline, deadline))
4144 pmp_deadline = deadline;
4145 ata_wait_ready(link, pmp_deadline, check_ready);
4146 }
4147 rc = -EAGAIN;
4148 goto out;
4149 }
4150
4151 rc = 0;
4152 if (check_ready)
4153 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4154 out:
0cbf0711
TH
4155 if (rc && rc != -EAGAIN) {
4156 /* online is set iff link is online && reset succeeded */
4157 if (online)
4158 *online = false;
a9a79dfe 4159 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4160 }
b6103f6d
TH
4161 DPRINTK("EXIT, rc=%d\n", rc);
4162 return rc;
4163}
4164
57c9efdf
TH
4165/**
4166 * sata_std_hardreset - COMRESET w/o waiting or classification
4167 * @link: link to reset
4168 * @class: resulting class of attached device
4169 * @deadline: deadline jiffies for the operation
4170 *
4171 * Standard SATA COMRESET w/o waiting or classification.
4172 *
4173 * LOCKING:
4174 * Kernel thread context (may sleep)
4175 *
4176 * RETURNS:
4177 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4178 */
4179int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4180 unsigned long deadline)
4181{
4182 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4183 bool online;
4184 int rc;
4185
4186 /* do hardreset */
4187 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4188 return online ? -EAGAIN : rc;
4189}
4190
c2bd5804 4191/**
203c75b8 4192 * ata_std_postreset - standard postreset callback
cc0680a5 4193 * @link: the target ata_link
c2bd5804
TH
4194 * @classes: classes of attached devices
4195 *
4196 * This function is invoked after a successful reset. Note that
4197 * the device might have been reset more than once using
4198 * different reset methods before postreset is invoked.
c2bd5804 4199 *
c2bd5804
TH
4200 * LOCKING:
4201 * Kernel thread context (may sleep)
4202 */
203c75b8 4203void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4204{
f046519f
TH
4205 u32 serror;
4206
c2bd5804
TH
4207 DPRINTK("ENTER\n");
4208
f046519f
TH
4209 /* reset complete, clear SError */
4210 if (!sata_scr_read(link, SCR_ERROR, &serror))
4211 sata_scr_write(link, SCR_ERROR, serror);
4212
c2bd5804 4213 /* print link status */
936fd732 4214 sata_print_link_status(link);
c2bd5804 4215
c2bd5804
TH
4216 DPRINTK("EXIT\n");
4217}
4218
623a3128
TH
4219/**
4220 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4221 * @dev: device to compare against
4222 * @new_class: class of the new device
4223 * @new_id: IDENTIFY page of the new device
4224 *
4225 * Compare @new_class and @new_id against @dev and determine
4226 * whether @dev is the device indicated by @new_class and
4227 * @new_id.
4228 *
4229 * LOCKING:
4230 * None.
4231 *
4232 * RETURNS:
4233 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4234 */
3373efd8
TH
4235static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4236 const u16 *new_id)
623a3128
TH
4237{
4238 const u16 *old_id = dev->id;
a0cf733b
TH
4239 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4240 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4241
4242 if (dev->class != new_class) {
a9a79dfe
JP
4243 ata_dev_info(dev, "class mismatch %d != %d\n",
4244 dev->class, new_class);
623a3128
TH
4245 return 0;
4246 }
4247
a0cf733b
TH
4248 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4249 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4250 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4251 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4252
4253 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4254 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4255 model[0], model[1]);
623a3128
TH
4256 return 0;
4257 }
4258
4259 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4260 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4261 serial[0], serial[1]);
623a3128
TH
4262 return 0;
4263 }
4264
623a3128
TH
4265 return 1;
4266}
4267
4268/**
fe30911b 4269 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4270 * @dev: target ATA device
bff04647 4271 * @readid_flags: read ID flags
623a3128
TH
4272 *
4273 * Re-read IDENTIFY page and make sure @dev is still attached to
4274 * the port.
4275 *
4276 * LOCKING:
4277 * Kernel thread context (may sleep)
4278 *
4279 * RETURNS:
4280 * 0 on success, negative errno otherwise
4281 */
fe30911b 4282int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4283{
5eb45c02 4284 unsigned int class = dev->class;
9af5c9c9 4285 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4286 int rc;
4287
fe635c7e 4288 /* read ID data */
bff04647 4289 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4290 if (rc)
fe30911b 4291 return rc;
623a3128
TH
4292
4293 /* is the device still there? */
fe30911b
TH
4294 if (!ata_dev_same_device(dev, class, id))
4295 return -ENODEV;
623a3128 4296
fe635c7e 4297 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4298 return 0;
4299}
4300
4301/**
4302 * ata_dev_revalidate - Revalidate ATA device
4303 * @dev: device to revalidate
422c9daa 4304 * @new_class: new class code
fe30911b
TH
4305 * @readid_flags: read ID flags
4306 *
4307 * Re-read IDENTIFY page, make sure @dev is still attached to the
4308 * port and reconfigure it according to the new IDENTIFY page.
4309 *
4310 * LOCKING:
4311 * Kernel thread context (may sleep)
4312 *
4313 * RETURNS:
4314 * 0 on success, negative errno otherwise
4315 */
422c9daa
TH
4316int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4317 unsigned int readid_flags)
fe30911b 4318{
6ddcd3b0 4319 u64 n_sectors = dev->n_sectors;
5920dadf 4320 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4321 int rc;
4322
4323 if (!ata_dev_enabled(dev))
4324 return -ENODEV;
4325
422c9daa
TH
4326 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4327 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4328 new_class != ATA_DEV_ATA &&
4329 new_class != ATA_DEV_ATAPI &&
9162c657 4330 new_class != ATA_DEV_ZAC &&
f0d0613d 4331 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4332 ata_dev_info(dev, "class mismatch %u != %u\n",
4333 dev->class, new_class);
422c9daa
TH
4334 rc = -ENODEV;
4335 goto fail;
4336 }
4337
fe30911b
TH
4338 /* re-read ID */
4339 rc = ata_dev_reread_id(dev, readid_flags);
4340 if (rc)
4341 goto fail;
623a3128
TH
4342
4343 /* configure device according to the new ID */
efdaedc4 4344 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4345 if (rc)
4346 goto fail;
4347
4348 /* verify n_sectors hasn't changed */
445d211b
TH
4349 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4350 dev->n_sectors == n_sectors)
4351 return 0;
4352
4353 /* n_sectors has changed */
a9a79dfe
JP
4354 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4355 (unsigned long long)n_sectors,
4356 (unsigned long long)dev->n_sectors);
445d211b
TH
4357
4358 /*
4359 * Something could have caused HPA to be unlocked
4360 * involuntarily. If n_native_sectors hasn't changed and the
4361 * new size matches it, keep the device.
4362 */
4363 if (dev->n_native_sectors == n_native_sectors &&
4364 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4365 ata_dev_warn(dev,
4366 "new n_sectors matches native, probably "
4367 "late HPA unlock, n_sectors updated\n");
68939ce5 4368 /* use the larger n_sectors */
445d211b 4369 return 0;
6ddcd3b0
TH
4370 }
4371
445d211b
TH
4372 /*
4373 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4374 * unlocking HPA in those cases.
4375 *
4376 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4377 */
4378 if (dev->n_native_sectors == n_native_sectors &&
4379 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4380 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4381 ata_dev_warn(dev,
4382 "old n_sectors matches native, probably "
4383 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4384 /* try unlocking HPA */
4385 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4386 rc = -EIO;
4387 } else
4388 rc = -ENODEV;
623a3128 4389
445d211b
TH
4390 /* restore original n_[native_]sectors and fail */
4391 dev->n_native_sectors = n_native_sectors;
4392 dev->n_sectors = n_sectors;
623a3128 4393 fail:
a9a79dfe 4394 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4395 return rc;
4396}
4397
6919a0a6
AC
4398struct ata_blacklist_entry {
4399 const char *model_num;
4400 const char *model_rev;
4401 unsigned long horkage;
4402};
4403
4404static const struct ata_blacklist_entry ata_device_blacklist [] = {
4405 /* Devices with DMA related problems under Linux */
4406 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4407 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4408 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4409 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4410 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4411 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4412 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4413 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4414 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4415 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4416 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4417 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4418 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4419 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4420 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4421 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4422 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4423 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4424 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4425 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4426 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4427 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4428 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4429 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4430 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4431 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4432 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4433 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4434 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4435 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4436 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4437 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4438
18d6e9d5 4439 /* Weird ATAPI devices */
40a1d531 4440 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4441 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4442 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4443 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4444
af34d637
DM
4445 /*
4446 * Causes silent data corruption with higher max sects.
4447 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4448 */
4449 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4450
4451 /*
e0edc8c5 4452 * These devices time out with higher max sects.
1488a1e3
TH
4453 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4454 */
e0edc8c5 4455 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
db5ff909 4456 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4457
6919a0a6
AC
4458 /* Devices we expect to fail diagnostics */
4459
4460 /* Devices where NCQ should be avoided */
4461 /* NCQ is slow */
2dcb407e 4462 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4463 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4464 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4465 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4466 /* NCQ is broken */
539cc7c7 4467 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4468 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4469 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4470 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4471 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4472
ac70a964 4473 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4474 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4475 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4476
4d1f9082 4477 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4478 ATA_HORKAGE_FIRMWARE_WARN },
4479
4d1f9082 4480 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4481 ATA_HORKAGE_FIRMWARE_WARN },
4482
4d1f9082 4483 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4484 ATA_HORKAGE_FIRMWARE_WARN },
4485
08c85d2a 4486 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4487 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4488 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4489 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4490
36e337d0
RH
4491 /* Blacklist entries taken from Silicon Image 3124/3132
4492 Windows driver .inf file - also several Linux problem reports */
4493 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4494 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4495 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4496
68b0ddb2
TH
4497 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4498 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4499
c813e757
TH
4500 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4501 SD7SN6S256G and SD8SN8U256G */
4502 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4503
16c55b03
TH
4504 /* devices which puke on READ_NATIVE_MAX */
4505 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4506 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4507 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4508 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4509
7831387b
TH
4510 /* this one allows HPA unlocking but fails IOs on the area */
4511 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4512
93328e11
AC
4513 /* Devices which report 1 sector over size HPA */
4514 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4515 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4516 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4517
6bbfd53d
AC
4518 /* Devices which get the IVB wrong */
4519 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4520 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4521 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4522
9ce8e307
JA
4523 /* Devices that do not need bridging limits applied */
4524 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4525 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4526
9062712f
TH
4527 /* Devices which aren't very happy with higher link speeds */
4528 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4529 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4530
d0cb43b3
TH
4531 /*
4532 * Devices which choke on SETXFER. Applies only if both the
4533 * device and controller are SATA.
4534 */
cd691876 4535 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4536 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4537 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4538 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4539 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4540
23882787 4541 /* Crucial BX100 SSD 500GB has broken LPM support */
1780575a 4542 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
23882787 4543
5fe65d95
HG
4544 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4545 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
275c64b7
HG
4546 ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 ATA_HORKAGE_NOLPM, },
5fe65d95
HG
4548 /* 512GB MX100 with newer firmware has only LPM issues */
4549 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4550 ATA_HORKAGE_NOLPM, },
275c64b7 4551
8f6abd91
HG
4552 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4553 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM |
4555 ATA_HORKAGE_NOLPM, },
4556 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4557 ATA_HORKAGE_ZERO_AFTER_TRIM |
4558 ATA_HORKAGE_NOLPM, },
4559
f78dea06 4560 /* devices that don't properly handle queued TRIM commands */
61fe54fd
SM
4561 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
243918be 4563 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4564 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4566 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4567 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4568 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4569 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4570 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4572 ATA_HORKAGE_ZERO_AFTER_TRIM, },
d50beba2
JHP
4573 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4574 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4575 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4576 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4577 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4578 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4579
cda57b1b
AF
4580 /* devices that don't properly handle TRIM commands */
4581 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4582
e61f7d1c
MP
4583 /*
4584 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4585 * (Return Zero After Trim) flags in the ATA Command Set are
4586 * unreliable in the sense that they only define what happens if
4587 * the device successfully executed the DSM TRIM command. TRIM
4588 * is only advisory, however, and the device is free to silently
4589 * ignore all or parts of the request.
4590 *
4591 * Whitelist drives that are known to reliably return zeroes
4592 * after TRIM.
4593 */
4594
4595 /*
4596 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4597 * that model before whitelisting all other intel SSDs.
4598 */
4599 { "INTEL*SSDSC2MH*", NULL, 0, },
4600
ff7f53fb
MP
4601 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4602 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4603 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4604 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4608
ecd75ad5
TH
4609 /*
4610 * Some WD SATA-I drives spin up and down erratically when the link
4611 * is put into the slumber mode. We don't have full list of the
4612 * affected devices. Disable LPM if the device matches one of the
4613 * known prefixes and is SATA-1. As a side effect LPM partial is
4614 * lost too.
4615 *
4616 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4617 */
4618 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4619 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4620 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4621 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4623 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4624 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4625
6919a0a6
AC
4626 /* End Marker */
4627 { }
1da177e4 4628};
2e9edbf8 4629
75683fe7 4630static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4631{
8bfa79fc
TH
4632 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4633 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4634 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4635
8bfa79fc
TH
4636 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4637 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4638
6919a0a6 4639 while (ad->model_num) {
1c402799 4640 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4641 if (ad->model_rev == NULL)
4642 return ad->horkage;
1c402799 4643 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4644 return ad->horkage;
f4b15fef 4645 }
6919a0a6 4646 ad++;
f4b15fef 4647 }
1da177e4
LT
4648 return 0;
4649}
4650
6919a0a6
AC
4651static int ata_dma_blacklisted(const struct ata_device *dev)
4652{
4653 /* We don't support polling DMA.
4654 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4655 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4656 */
9af5c9c9 4657 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4658 (dev->flags & ATA_DFLAG_CDB_INTR))
4659 return 1;
75683fe7 4660 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4661}
4662
6bbfd53d
AC
4663/**
4664 * ata_is_40wire - check drive side detection
4665 * @dev: device
4666 *
4667 * Perform drive side detection decoding, allowing for device vendors
4668 * who can't follow the documentation.
4669 */
4670
4671static int ata_is_40wire(struct ata_device *dev)
4672{
4673 if (dev->horkage & ATA_HORKAGE_IVB)
4674 return ata_drive_40wire_relaxed(dev->id);
4675 return ata_drive_40wire(dev->id);
4676}
4677
15a5551c
AC
4678/**
4679 * cable_is_40wire - 40/80/SATA decider
4680 * @ap: port to consider
4681 *
4682 * This function encapsulates the policy for speed management
4683 * in one place. At the moment we don't cache the result but
4684 * there is a good case for setting ap->cbl to the result when
4685 * we are called with unknown cables (and figuring out if it
4686 * impacts hotplug at all).
4687 *
4688 * Return 1 if the cable appears to be 40 wire.
4689 */
4690
4691static int cable_is_40wire(struct ata_port *ap)
4692{
4693 struct ata_link *link;
4694 struct ata_device *dev;
4695
4a9c7b33 4696 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4697 if (ap->cbl == ATA_CBL_PATA40)
4698 return 1;
4a9c7b33
TH
4699
4700 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4701 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4702 return 0;
4a9c7b33
TH
4703
4704 /* If the system is known to be 40 wire short cable (eg
4705 * laptop), then we allow 80 wire modes even if the drive
4706 * isn't sure.
4707 */
f792068e
AC
4708 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4709 return 0;
4a9c7b33
TH
4710
4711 /* If the controller doesn't know, we scan.
4712 *
4713 * Note: We look for all 40 wire detects at this point. Any
4714 * 80 wire detect is taken to be 80 wire cable because
4715 * - in many setups only the one drive (slave if present) will
4716 * give a valid detect
4717 * - if you have a non detect capable drive you don't want it
4718 * to colour the choice
4719 */
1eca4365
TH
4720 ata_for_each_link(link, ap, EDGE) {
4721 ata_for_each_dev(dev, link, ENABLED) {
4722 if (!ata_is_40wire(dev))
15a5551c
AC
4723 return 0;
4724 }
4725 }
4726 return 1;
4727}
4728
a6d5a51c
TH
4729/**
4730 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4731 * @dev: Device to compute xfermask for
4732 *
acf356b1
TH
4733 * Compute supported xfermask of @dev and store it in
4734 * dev->*_mask. This function is responsible for applying all
4735 * known limits including host controller limits, device
4736 * blacklist, etc...
a6d5a51c
TH
4737 *
4738 * LOCKING:
4739 * None.
a6d5a51c 4740 */
3373efd8 4741static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4742{
9af5c9c9
TH
4743 struct ata_link *link = dev->link;
4744 struct ata_port *ap = link->ap;
cca3974e 4745 struct ata_host *host = ap->host;
a6d5a51c 4746 unsigned long xfer_mask;
1da177e4 4747
37deecb5 4748 /* controller modes available */
565083e1
TH
4749 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4750 ap->mwdma_mask, ap->udma_mask);
4751
8343f889 4752 /* drive modes available */
37deecb5
TH
4753 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4754 dev->mwdma_mask, dev->udma_mask);
4755 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4756
b352e57d
AC
4757 /*
4758 * CFA Advanced TrueIDE timings are not allowed on a shared
4759 * cable
4760 */
4761 if (ata_dev_pair(dev)) {
4762 /* No PIO5 or PIO6 */
4763 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4764 /* No MWDMA3 or MWDMA 4 */
4765 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4766 }
4767
37deecb5
TH
4768 if (ata_dma_blacklisted(dev)) {
4769 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4770 ata_dev_warn(dev,
4771 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4772 }
a6d5a51c 4773
14d66ab7 4774 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4775 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4776 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4777 ata_dev_warn(dev,
4778 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4779 }
565083e1 4780
e424675f
JG
4781 if (ap->flags & ATA_FLAG_NO_IORDY)
4782 xfer_mask &= ata_pio_mask_no_iordy(dev);
4783
5444a6f4 4784 if (ap->ops->mode_filter)
a76b62ca 4785 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4786
8343f889
RH
4787 /* Apply cable rule here. Don't apply it early because when
4788 * we handle hot plug the cable type can itself change.
4789 * Check this last so that we know if the transfer rate was
4790 * solely limited by the cable.
4791 * Unknown or 80 wire cables reported host side are checked
4792 * drive side as well. Cases where we know a 40wire cable
4793 * is used safely for 80 are not checked here.
4794 */
4795 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4796 /* UDMA/44 or higher would be available */
15a5551c 4797 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4798 ata_dev_warn(dev,
4799 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4800 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4801 }
4802
565083e1
TH
4803 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4804 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4805}
4806
1da177e4
LT
4807/**
4808 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4809 * @dev: Device to which command will be sent
4810 *
780a87f7
JG
4811 * Issue SET FEATURES - XFER MODE command to device @dev
4812 * on port @ap.
4813 *
1da177e4 4814 * LOCKING:
0cba632b 4815 * PCI/etc. bus probe sem.
83206a29
TH
4816 *
4817 * RETURNS:
4818 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4819 */
4820
3373efd8 4821static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4822{
a0123703 4823 struct ata_taskfile tf;
83206a29 4824 unsigned int err_mask;
1da177e4
LT
4825
4826 /* set up set-features taskfile */
4827 DPRINTK("set features - xfer mode\n");
4828
464cf177
TH
4829 /* Some controllers and ATAPI devices show flaky interrupt
4830 * behavior after setting xfer mode. Use polling instead.
4831 */
3373efd8 4832 ata_tf_init(dev, &tf);
a0123703
TH
4833 tf.command = ATA_CMD_SET_FEATURES;
4834 tf.feature = SETFEATURES_XFER;
464cf177 4835 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4836 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4837 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4838 if (ata_pio_need_iordy(dev))
4839 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4840 /* If the device has IORDY and the controller does not - turn it off */
4841 else if (ata_id_has_iordy(dev->id))
11b7becc 4842 tf.nsect = 0x01;
b9f8ab2d
AC
4843 else /* In the ancient relic department - skip all of this */
4844 return 0;
1da177e4 4845
d531be2c
MP
4846 /* On some disks, this command causes spin-up, so we need longer timeout */
4847 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4848
4849 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4850 return err_mask;
4851}
1152b261 4852
9f45cbd3 4853/**
218f3d30 4854 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4855 * @dev: Device to which command will be sent
4856 * @enable: Whether to enable or disable the feature
218f3d30 4857 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4858 *
4859 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4860 * on port @ap with sector count
9f45cbd3
KCA
4861 *
4862 * LOCKING:
4863 * PCI/etc. bus probe sem.
4864 *
4865 * RETURNS:
4866 * 0 on success, AC_ERR_* mask otherwise.
4867 */
1152b261 4868unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4869{
4870 struct ata_taskfile tf;
4871 unsigned int err_mask;
974e0a45 4872 unsigned long timeout = 0;
9f45cbd3
KCA
4873
4874 /* set up set-features taskfile */
4875 DPRINTK("set features - SATA features\n");
4876
4877 ata_tf_init(dev, &tf);
4878 tf.command = ATA_CMD_SET_FEATURES;
4879 tf.feature = enable;
4880 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4881 tf.protocol = ATA_PROT_NODATA;
218f3d30 4882 tf.nsect = feature;
9f45cbd3 4883
974e0a45
DLM
4884 if (enable == SETFEATURES_SPINUP)
4885 timeout = ata_probe_timeout ?
4886 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4887 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4888
83206a29
TH
4889 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4890 return err_mask;
1da177e4 4891}
633de4cc 4892EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4893
8bf62ece
AL
4894/**
4895 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4896 * @dev: Device to which command will be sent
e2a7f77a
RD
4897 * @heads: Number of heads (taskfile parameter)
4898 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4899 *
4900 * LOCKING:
6aff8f1f
TH
4901 * Kernel thread context (may sleep)
4902 *
4903 * RETURNS:
4904 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4905 */
3373efd8
TH
4906static unsigned int ata_dev_init_params(struct ata_device *dev,
4907 u16 heads, u16 sectors)
8bf62ece 4908{
a0123703 4909 struct ata_taskfile tf;
6aff8f1f 4910 unsigned int err_mask;
8bf62ece
AL
4911
4912 /* Number of sectors per track 1-255. Number of heads 1-16 */
4913 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4914 return AC_ERR_INVALID;
8bf62ece
AL
4915
4916 /* set up init dev params taskfile */
4917 DPRINTK("init dev params \n");
4918
3373efd8 4919 ata_tf_init(dev, &tf);
a0123703
TH
4920 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4921 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4922 tf.protocol = ATA_PROT_NODATA;
4923 tf.nsect = sectors;
4924 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4925
2b789108 4926 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4927 /* A clean abort indicates an original or just out of spec drive
4928 and we should continue as we issue the setup based on the
4929 drive reported working geometry */
4930 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4931 err_mask = 0;
8bf62ece 4932
6aff8f1f
TH
4933 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4934 return err_mask;
8bf62ece
AL
4935}
4936
1da177e4 4937/**
5895ef9a 4938 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4939 * @qc: Metadata associated with taskfile to check
4940 *
780a87f7
JG
4941 * Allow low-level driver to filter ATA PACKET commands, returning
4942 * a status indicating whether or not it is OK to use DMA for the
4943 * supplied PACKET command.
4944 *
1da177e4 4945 * LOCKING:
624d5c51
TH
4946 * spin_lock_irqsave(host lock)
4947 *
4948 * RETURNS: 0 when ATAPI DMA can be used
4949 * nonzero otherwise
4950 */
5895ef9a 4951int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4952{
4953 struct ata_port *ap = qc->ap;
71601958 4954
624d5c51
TH
4955 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4956 * few ATAPI devices choke on such DMA requests.
4957 */
6a87e42e
TH
4958 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4959 unlikely(qc->nbytes & 15))
624d5c51 4960 return 1;
e2cec771 4961
624d5c51
TH
4962 if (ap->ops->check_atapi_dma)
4963 return ap->ops->check_atapi_dma(qc);
e2cec771 4964
624d5c51
TH
4965 return 0;
4966}
1da177e4 4967
624d5c51
TH
4968/**
4969 * ata_std_qc_defer - Check whether a qc needs to be deferred
4970 * @qc: ATA command in question
4971 *
4972 * Non-NCQ commands cannot run with any other command, NCQ or
4973 * not. As upper layer only knows the queue depth, we are
4974 * responsible for maintaining exclusion. This function checks
4975 * whether a new command @qc can be issued.
4976 *
4977 * LOCKING:
4978 * spin_lock_irqsave(host lock)
4979 *
4980 * RETURNS:
4981 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4982 */
4983int ata_std_qc_defer(struct ata_queued_cmd *qc)
4984{
4985 struct ata_link *link = qc->dev->link;
e2cec771 4986
179b310a 4987 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4988 if (!ata_tag_valid(link->active_tag))
4989 return 0;
4990 } else {
4991 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4992 return 0;
4993 }
e2cec771 4994
624d5c51
TH
4995 return ATA_DEFER_LINK;
4996}
6912ccd5 4997
624d5c51 4998void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4999
624d5c51
TH
5000/**
5001 * ata_sg_init - Associate command with scatter-gather table.
5002 * @qc: Command to be associated
5003 * @sg: Scatter-gather table.
5004 * @n_elem: Number of elements in s/g table.
5005 *
5006 * Initialize the data-related elements of queued_cmd @qc
5007 * to point to a scatter-gather table @sg, containing @n_elem
5008 * elements.
5009 *
5010 * LOCKING:
5011 * spin_lock_irqsave(host lock)
5012 */
5013void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5014 unsigned int n_elem)
5015{
5016 qc->sg = sg;
5017 qc->n_elem = n_elem;
5018 qc->cursg = qc->sg;
5019}
bb5cb290 5020
2874d5ee
GU
5021#ifdef CONFIG_HAS_DMA
5022
5023/**
5024 * ata_sg_clean - Unmap DMA memory associated with command
5025 * @qc: Command containing DMA memory to be released
5026 *
5027 * Unmap all mapped DMA memory associated with this command.
5028 *
5029 * LOCKING:
5030 * spin_lock_irqsave(host lock)
5031 */
af27e01c 5032static void ata_sg_clean(struct ata_queued_cmd *qc)
2874d5ee
GU
5033{
5034 struct ata_port *ap = qc->ap;
5035 struct scatterlist *sg = qc->sg;
5036 int dir = qc->dma_dir;
5037
5038 WARN_ON_ONCE(sg == NULL);
5039
5040 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5041
5042 if (qc->n_elem)
5043 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5044
5045 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5046 qc->sg = NULL;
5047}
5048
624d5c51
TH
5049/**
5050 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5051 * @qc: Command with scatter-gather table to be mapped.
5052 *
5053 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5054 *
5055 * LOCKING:
5056 * spin_lock_irqsave(host lock)
5057 *
5058 * RETURNS:
5059 * Zero on success, negative on error.
5060 *
5061 */
5062static int ata_sg_setup(struct ata_queued_cmd *qc)
5063{
5064 struct ata_port *ap = qc->ap;
5065 unsigned int n_elem;
1da177e4 5066
624d5c51 5067 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 5068
624d5c51
TH
5069 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5070 if (n_elem < 1)
5071 return -1;
bb5cb290 5072
624d5c51 5073 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 5074 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
5075 qc->n_elem = n_elem;
5076 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 5077
624d5c51 5078 return 0;
1da177e4
LT
5079}
5080
2874d5ee
GU
5081#else /* !CONFIG_HAS_DMA */
5082
5083static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5084static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5085
5086#endif /* !CONFIG_HAS_DMA */
5087
624d5c51
TH
5088/**
5089 * swap_buf_le16 - swap halves of 16-bit words in place
5090 * @buf: Buffer to swap
5091 * @buf_words: Number of 16-bit words in buffer.
5092 *
5093 * Swap halves of 16-bit words if needed to convert from
5094 * little-endian byte order to native cpu byte order, or
5095 * vice-versa.
5096 *
5097 * LOCKING:
5098 * Inherited from caller.
5099 */
5100void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 5101{
624d5c51
TH
5102#ifdef __BIG_ENDIAN
5103 unsigned int i;
8061f5f0 5104
624d5c51
TH
5105 for (i = 0; i < buf_words; i++)
5106 buf[i] = le16_to_cpu(buf[i]);
5107#endif /* __BIG_ENDIAN */
8061f5f0
TH
5108}
5109
8a8bc223 5110/**
98bd4be1
SL
5111 * ata_qc_new_init - Request an available ATA command, and initialize it
5112 * @dev: Device from whom we request an available command structure
38755e89 5113 * @tag: tag
1871ee13 5114 *
8a8bc223
TH
5115 * LOCKING:
5116 * None.
5117 */
5118
98bd4be1 5119struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 5120{
98bd4be1 5121 struct ata_port *ap = dev->link->ap;
12cb5ce1 5122 struct ata_queued_cmd *qc;
8a8bc223
TH
5123
5124 /* no command while frozen */
5125 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5126 return NULL;
5127
98bd4be1 5128 /* libsas case */
5067c046 5129 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
5130 tag = ata_sas_allocate_tag(ap);
5131 if (tag < 0)
5132 return NULL;
8a4aeec8 5133 }
8a8bc223 5134
98bd4be1
SL
5135 qc = __ata_qc_from_tag(ap, tag);
5136 qc->tag = tag;
5137 qc->scsicmd = NULL;
5138 qc->ap = ap;
5139 qc->dev = dev;
1da177e4 5140
98bd4be1 5141 ata_qc_reinit(qc);
1da177e4
LT
5142
5143 return qc;
5144}
5145
8a8bc223
TH
5146/**
5147 * ata_qc_free - free unused ata_queued_cmd
5148 * @qc: Command to complete
5149 *
5150 * Designed to free unused ata_queued_cmd object
5151 * in case something prevents using it.
5152 *
5153 * LOCKING:
5154 * spin_lock_irqsave(host lock)
5155 */
5156void ata_qc_free(struct ata_queued_cmd *qc)
5157{
a1104016 5158 struct ata_port *ap;
8a8bc223
TH
5159 unsigned int tag;
5160
efcb3cf7 5161 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 5162 ap = qc->ap;
8a8bc223
TH
5163
5164 qc->flags = 0;
5165 tag = qc->tag;
5166 if (likely(ata_tag_valid(tag))) {
5167 qc->tag = ATA_TAG_POISON;
5067c046 5168 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 5169 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5170 }
5171}
5172
76014427 5173void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5174{
a1104016
JL
5175 struct ata_port *ap;
5176 struct ata_link *link;
dedaf2b0 5177
efcb3cf7
TH
5178 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5179 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5180 ap = qc->ap;
5181 link = qc->dev->link;
1da177e4
LT
5182
5183 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5184 ata_sg_clean(qc);
5185
7401abf2 5186 /* command should be marked inactive atomically with qc completion */
179b310a 5187 if (ata_is_ncq(qc->tf.protocol)) {
9af5c9c9 5188 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5189 if (!link->sactive)
5190 ap->nr_active_links--;
5191 } else {
9af5c9c9 5192 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5193 ap->nr_active_links--;
5194 }
5195
5196 /* clear exclusive status */
5197 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5198 ap->excl_link == link))
5199 ap->excl_link = NULL;
7401abf2 5200
3f3791d3
AL
5201 /* atapi: mark qc as inactive to prevent the interrupt handler
5202 * from completing the command twice later, before the error handler
5203 * is called. (when rc != 0 and atapi request sense is needed)
5204 */
5205 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5206 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5207
1da177e4 5208 /* call completion callback */
77853bf2 5209 qc->complete_fn(qc);
1da177e4
LT
5210}
5211
39599a53
TH
5212static void fill_result_tf(struct ata_queued_cmd *qc)
5213{
5214 struct ata_port *ap = qc->ap;
5215
39599a53 5216 qc->result_tf.flags = qc->tf.flags;
22183bf5 5217 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5218}
5219
00115e0f
TH
5220static void ata_verify_xfer(struct ata_queued_cmd *qc)
5221{
5222 struct ata_device *dev = qc->dev;
5223
eb0effdf 5224 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5225 return;
5226
5227 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5228 return;
5229
5230 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5231}
5232
f686bcb8
TH
5233/**
5234 * ata_qc_complete - Complete an active ATA command
5235 * @qc: Command to complete
f686bcb8 5236 *
1aadf5c3
TH
5237 * Indicate to the mid and upper layers that an ATA command has
5238 * completed, with either an ok or not-ok status.
5239 *
5240 * Refrain from calling this function multiple times when
5241 * successfully completing multiple NCQ commands.
5242 * ata_qc_complete_multiple() should be used instead, which will
5243 * properly update IRQ expect state.
f686bcb8
TH
5244 *
5245 * LOCKING:
cca3974e 5246 * spin_lock_irqsave(host lock)
f686bcb8
TH
5247 */
5248void ata_qc_complete(struct ata_queued_cmd *qc)
5249{
5250 struct ata_port *ap = qc->ap;
5251
eb25cb99
SL
5252 /* Trigger the LED (if available) */
5253 ledtrig_disk_activity();
5254
f686bcb8
TH
5255 /* XXX: New EH and old EH use different mechanisms to
5256 * synchronize EH with regular execution path.
5257 *
5258 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5259 * Normal execution path is responsible for not accessing a
5260 * failed qc. libata core enforces the rule by returning NULL
5261 * from ata_qc_from_tag() for failed qcs.
5262 *
5263 * Old EH depends on ata_qc_complete() nullifying completion
5264 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5265 * not synchronize with interrupt handler. Only PIO task is
5266 * taken care of.
5267 */
5268 if (ap->ops->error_handler) {
4dbfa39b
TH
5269 struct ata_device *dev = qc->dev;
5270 struct ata_eh_info *ehi = &dev->link->eh_info;
5271
f686bcb8
TH
5272 if (unlikely(qc->err_mask))
5273 qc->flags |= ATA_QCFLAG_FAILED;
5274
f08dc1ac
TH
5275 /*
5276 * Finish internal commands without any further processing
5277 * and always with the result TF filled.
5278 */
5279 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5280 fill_result_tf(qc);
255c03d1 5281 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5282 __ata_qc_complete(qc);
5283 return;
5284 }
f4b31db9 5285
f08dc1ac
TH
5286 /*
5287 * Non-internal qc has failed. Fill the result TF and
5288 * summon EH.
5289 */
5290 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5291 fill_result_tf(qc);
255c03d1 5292 trace_ata_qc_complete_failed(qc);
f08dc1ac 5293 ata_qc_schedule_eh(qc);
f4b31db9 5294 return;
f686bcb8
TH
5295 }
5296
4dc738ed
TH
5297 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5298
f686bcb8
TH
5299 /* read result TF if requested */
5300 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5301 fill_result_tf(qc);
f686bcb8 5302
255c03d1 5303 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5304 /* Some commands need post-processing after successful
5305 * completion.
5306 */
5307 switch (qc->tf.command) {
5308 case ATA_CMD_SET_FEATURES:
5309 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5310 qc->tf.feature != SETFEATURES_WC_OFF &&
5311 qc->tf.feature != SETFEATURES_RA_ON &&
5312 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5313 break;
5314 /* fall through */
5315 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5316 case ATA_CMD_SET_MULTI: /* multi_count changed */
5317 /* revalidate device */
5318 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5319 ata_port_schedule_eh(ap);
5320 break;
054a5fba
TH
5321
5322 case ATA_CMD_SLEEP:
5323 dev->flags |= ATA_DFLAG_SLEEPING;
5324 break;
4dbfa39b
TH
5325 }
5326
00115e0f
TH
5327 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5328 ata_verify_xfer(qc);
5329
f686bcb8
TH
5330 __ata_qc_complete(qc);
5331 } else {
5332 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5333 return;
5334
5335 /* read result TF if failed or requested */
5336 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5337 fill_result_tf(qc);
f686bcb8
TH
5338
5339 __ata_qc_complete(qc);
5340 }
5341}
5342
dedaf2b0
TH
5343/**
5344 * ata_qc_complete_multiple - Complete multiple qcs successfully
5345 * @ap: port in question
5346 * @qc_active: new qc_active mask
dedaf2b0
TH
5347 *
5348 * Complete in-flight commands. This functions is meant to be
5349 * called from low-level driver's interrupt routine to complete
5350 * requests normally. ap->qc_active and @qc_active is compared
5351 * and commands are completed accordingly.
5352 *
1aadf5c3
TH
5353 * Always use this function when completing multiple NCQ commands
5354 * from IRQ handlers instead of calling ata_qc_complete()
5355 * multiple times to keep IRQ expect status properly in sync.
5356 *
dedaf2b0 5357 * LOCKING:
cca3974e 5358 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5359 *
5360 * RETURNS:
5361 * Number of completed commands on success, -errno otherwise.
5362 */
79f97dad 5363int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5364{
5365 int nr_done = 0;
5366 u32 done_mask;
dedaf2b0
TH
5367
5368 done_mask = ap->qc_active ^ qc_active;
5369
5370 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5371 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5372 ap->qc_active, qc_active);
dedaf2b0
TH
5373 return -EINVAL;
5374 }
5375
43768180 5376 while (done_mask) {
dedaf2b0 5377 struct ata_queued_cmd *qc;
43768180 5378 unsigned int tag = __ffs(done_mask);
dedaf2b0 5379
43768180
JA
5380 qc = ata_qc_from_tag(ap, tag);
5381 if (qc) {
dedaf2b0
TH
5382 ata_qc_complete(qc);
5383 nr_done++;
5384 }
43768180 5385 done_mask &= ~(1 << tag);
dedaf2b0
TH
5386 }
5387
5388 return nr_done;
5389}
5390
1da177e4
LT
5391/**
5392 * ata_qc_issue - issue taskfile to device
5393 * @qc: command to issue to device
5394 *
5395 * Prepare an ATA command to submission to device.
5396 * This includes mapping the data into a DMA-able
5397 * area, filling in the S/G table, and finally
5398 * writing the taskfile to hardware, starting the command.
5399 *
5400 * LOCKING:
cca3974e 5401 * spin_lock_irqsave(host lock)
1da177e4 5402 */
8e0e694a 5403void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5404{
5405 struct ata_port *ap = qc->ap;
9af5c9c9 5406 struct ata_link *link = qc->dev->link;
405e66b3 5407 u8 prot = qc->tf.protocol;
1da177e4 5408
dedaf2b0
TH
5409 /* Make sure only one non-NCQ command is outstanding. The
5410 * check is skipped for old EH because it reuses active qc to
5411 * request ATAPI sense.
5412 */
efcb3cf7 5413 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5414
1973a023 5415 if (ata_is_ncq(prot)) {
efcb3cf7 5416 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5417
5418 if (!link->sactive)
5419 ap->nr_active_links++;
9af5c9c9 5420 link->sactive |= 1 << qc->tag;
dedaf2b0 5421 } else {
efcb3cf7 5422 WARN_ON_ONCE(link->sactive);
da917d69
TH
5423
5424 ap->nr_active_links++;
9af5c9c9 5425 link->active_tag = qc->tag;
dedaf2b0
TH
5426 }
5427
e4a70e76 5428 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5429 ap->qc_active |= 1 << qc->tag;
e4a70e76 5430
60f5d6ef
TH
5431 /*
5432 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5433 * non-zero sg if the command is a data command.
5434 */
1feb7e2a 5435 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
60f5d6ef 5436 goto sys_err;
f92a2636 5437
405e66b3 5438 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5439 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5440 if (ata_sg_setup(qc))
60f5d6ef 5441 goto sys_err;
1da177e4 5442
cf480626 5443 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5444 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5445 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5446 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5447 ata_link_abort(link);
5448 return;
5449 }
5450
1da177e4 5451 ap->ops->qc_prep(qc);
255c03d1 5452 trace_ata_qc_issue(qc);
8e0e694a
TH
5453 qc->err_mask |= ap->ops->qc_issue(qc);
5454 if (unlikely(qc->err_mask))
5455 goto err;
5456 return;
1da177e4 5457
60f5d6ef 5458sys_err:
8e0e694a
TH
5459 qc->err_mask |= AC_ERR_SYSTEM;
5460err:
5461 ata_qc_complete(qc);
1da177e4
LT
5462}
5463
34bf2170
TH
5464/**
5465 * sata_scr_valid - test whether SCRs are accessible
936fd732 5466 * @link: ATA link to test SCR accessibility for
34bf2170 5467 *
936fd732 5468 * Test whether SCRs are accessible for @link.
34bf2170
TH
5469 *
5470 * LOCKING:
5471 * None.
5472 *
5473 * RETURNS:
5474 * 1 if SCRs are accessible, 0 otherwise.
5475 */
936fd732 5476int sata_scr_valid(struct ata_link *link)
34bf2170 5477{
936fd732
TH
5478 struct ata_port *ap = link->ap;
5479
a16abc0b 5480 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5481}
5482
5483/**
5484 * sata_scr_read - read SCR register of the specified port
936fd732 5485 * @link: ATA link to read SCR for
34bf2170
TH
5486 * @reg: SCR to read
5487 * @val: Place to store read value
5488 *
936fd732 5489 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5490 * guaranteed to succeed if @link is ap->link, the cable type of
5491 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5492 *
5493 * LOCKING:
633273a3 5494 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5495 *
5496 * RETURNS:
5497 * 0 on success, negative errno on failure.
5498 */
936fd732 5499int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5500{
633273a3 5501 if (ata_is_host_link(link)) {
633273a3 5502 if (sata_scr_valid(link))
82ef04fb 5503 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5504 return -EOPNOTSUPP;
5505 }
5506
5507 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5508}
5509
5510/**
5511 * sata_scr_write - write SCR register of the specified port
936fd732 5512 * @link: ATA link to write SCR for
34bf2170
TH
5513 * @reg: SCR to write
5514 * @val: value to write
5515 *
936fd732 5516 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5517 * guaranteed to succeed if @link is ap->link, the cable type of
5518 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5519 *
5520 * LOCKING:
633273a3 5521 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5522 *
5523 * RETURNS:
5524 * 0 on success, negative errno on failure.
5525 */
936fd732 5526int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5527{
633273a3 5528 if (ata_is_host_link(link)) {
633273a3 5529 if (sata_scr_valid(link))
82ef04fb 5530 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5531 return -EOPNOTSUPP;
5532 }
936fd732 5533
633273a3 5534 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5535}
5536
5537/**
5538 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5539 * @link: ATA link to write SCR for
34bf2170
TH
5540 * @reg: SCR to write
5541 * @val: value to write
5542 *
5543 * This function is identical to sata_scr_write() except that this
5544 * function performs flush after writing to the register.
5545 *
5546 * LOCKING:
633273a3 5547 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5548 *
5549 * RETURNS:
5550 * 0 on success, negative errno on failure.
5551 */
936fd732 5552int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5553{
633273a3 5554 if (ata_is_host_link(link)) {
633273a3 5555 int rc;
da3dbb17 5556
633273a3 5557 if (sata_scr_valid(link)) {
82ef04fb 5558 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5559 if (rc == 0)
82ef04fb 5560 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5561 return rc;
5562 }
5563 return -EOPNOTSUPP;
34bf2170 5564 }
633273a3
TH
5565
5566 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5567}
5568
5569/**
b1c72916 5570 * ata_phys_link_online - test whether the given link is online
936fd732 5571 * @link: ATA link to test
34bf2170 5572 *
936fd732
TH
5573 * Test whether @link is online. Note that this function returns
5574 * 0 if online status of @link cannot be obtained, so
5575 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5576 *
5577 * LOCKING:
5578 * None.
5579 *
5580 * RETURNS:
b5b3fa38 5581 * True if the port online status is available and online.
34bf2170 5582 */
b1c72916 5583bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5584{
5585 u32 sstatus;
5586
936fd732 5587 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5588 ata_sstatus_online(sstatus))
b5b3fa38
TH
5589 return true;
5590 return false;
34bf2170
TH
5591}
5592
5593/**
b1c72916 5594 * ata_phys_link_offline - test whether the given link is offline
936fd732 5595 * @link: ATA link to test
34bf2170 5596 *
936fd732
TH
5597 * Test whether @link is offline. Note that this function
5598 * returns 0 if offline status of @link cannot be obtained, so
5599 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5600 *
5601 * LOCKING:
5602 * None.
5603 *
5604 * RETURNS:
b5b3fa38 5605 * True if the port offline status is available and offline.
34bf2170 5606 */
b1c72916 5607bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5608{
5609 u32 sstatus;
5610
936fd732 5611 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5612 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5613 return true;
5614 return false;
34bf2170 5615}
0baab86b 5616
b1c72916
TH
5617/**
5618 * ata_link_online - test whether the given link is online
5619 * @link: ATA link to test
5620 *
5621 * Test whether @link is online. This is identical to
5622 * ata_phys_link_online() when there's no slave link. When
5623 * there's a slave link, this function should only be called on
5624 * the master link and will return true if any of M/S links is
5625 * online.
5626 *
5627 * LOCKING:
5628 * None.
5629 *
5630 * RETURNS:
5631 * True if the port online status is available and online.
5632 */
5633bool ata_link_online(struct ata_link *link)
5634{
5635 struct ata_link *slave = link->ap->slave_link;
5636
5637 WARN_ON(link == slave); /* shouldn't be called on slave link */
5638
5639 return ata_phys_link_online(link) ||
5640 (slave && ata_phys_link_online(slave));
5641}
5642
5643/**
5644 * ata_link_offline - test whether the given link is offline
5645 * @link: ATA link to test
5646 *
5647 * Test whether @link is offline. This is identical to
5648 * ata_phys_link_offline() when there's no slave link. When
5649 * there's a slave link, this function should only be called on
5650 * the master link and will return true if both M/S links are
5651 * offline.
5652 *
5653 * LOCKING:
5654 * None.
5655 *
5656 * RETURNS:
5657 * True if the port offline status is available and offline.
5658 */
5659bool ata_link_offline(struct ata_link *link)
5660{
5661 struct ata_link *slave = link->ap->slave_link;
5662
5663 WARN_ON(link == slave); /* shouldn't be called on slave link */
5664
5665 return ata_phys_link_offline(link) &&
5666 (!slave || ata_phys_link_offline(slave));
5667}
5668
6ffa01d8 5669#ifdef CONFIG_PM
bc6e7c4b
DW
5670static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5671 unsigned int action, unsigned int ehi_flags,
5672 bool async)
500530f6 5673{
5ef41082 5674 struct ata_link *link;
500530f6 5675 unsigned long flags;
500530f6 5676
5ef41082
LM
5677 /* Previous resume operation might still be in
5678 * progress. Wait for PM_PENDING to clear.
5679 */
5680 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5681 ata_port_wait_eh(ap);
5682 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5683 }
500530f6 5684
5ef41082
LM
5685 /* request PM ops to EH */
5686 spin_lock_irqsave(ap->lock, flags);
500530f6 5687
5ef41082 5688 ap->pm_mesg = mesg;
5ef41082
LM
5689 ap->pflags |= ATA_PFLAG_PM_PENDING;
5690 ata_for_each_link(link, ap, HOST_FIRST) {
5691 link->eh_info.action |= action;
5692 link->eh_info.flags |= ehi_flags;
5693 }
500530f6 5694
5ef41082 5695 ata_port_schedule_eh(ap);
500530f6 5696
5ef41082 5697 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5698
2fcbdcb4 5699 if (!async) {
5ef41082
LM
5700 ata_port_wait_eh(ap);
5701 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5702 }
500530f6
TH
5703}
5704
bc6e7c4b
DW
5705/*
5706 * On some hardware, device fails to respond after spun down for suspend. As
5707 * the device won't be used before being resumed, we don't need to touch the
5708 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5709 *
5710 * http://thread.gmane.org/gmane.linux.ide/46764
5711 */
5712static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5713 | ATA_EHI_NO_AUTOPSY
5714 | ATA_EHI_NO_RECOVERY;
5715
5716static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5717{
bc6e7c4b 5718 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5719}
5720
bc6e7c4b 5721static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5722{
bc6e7c4b 5723 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5724}
5725
bc6e7c4b 5726static int ata_port_pm_suspend(struct device *dev)
5ef41082 5727{
bc6e7c4b
DW
5728 struct ata_port *ap = to_ata_port(dev);
5729
5ef41082
LM
5730 if (pm_runtime_suspended(dev))
5731 return 0;
5732
bc6e7c4b
DW
5733 ata_port_suspend(ap, PMSG_SUSPEND);
5734 return 0;
33574d68
LM
5735}
5736
bc6e7c4b 5737static int ata_port_pm_freeze(struct device *dev)
33574d68 5738{
bc6e7c4b
DW
5739 struct ata_port *ap = to_ata_port(dev);
5740
33574d68 5741 if (pm_runtime_suspended(dev))
f5e6d0d0 5742 return 0;
33574d68 5743
bc6e7c4b
DW
5744 ata_port_suspend(ap, PMSG_FREEZE);
5745 return 0;
33574d68
LM
5746}
5747
bc6e7c4b 5748static int ata_port_pm_poweroff(struct device *dev)
33574d68 5749{
bc6e7c4b
DW
5750 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5751 return 0;
5ef41082
LM
5752}
5753
bc6e7c4b
DW
5754static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5755 | ATA_EHI_QUIET;
5ef41082 5756
bc6e7c4b
DW
5757static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5758{
5759 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5760}
5761
bc6e7c4b 5762static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5763{
bc6e7c4b 5764 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5765}
5766
bc6e7c4b 5767static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5768{
200421a8 5769 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5770 pm_runtime_disable(dev);
5771 pm_runtime_set_active(dev);
5772 pm_runtime_enable(dev);
5773 return 0;
e90b1e5a
LM
5774}
5775
7e15e9be
AL
5776/*
5777 * For ODDs, the upper layer will poll for media change every few seconds,
5778 * which will make it enter and leave suspend state every few seconds. And
5779 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5780 * is very little and the ODD may malfunction after constantly being reset.
5781 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5782 * ODD is attached to the port.
5783 */
9ee4f393
LM
5784static int ata_port_runtime_idle(struct device *dev)
5785{
7e15e9be
AL
5786 struct ata_port *ap = to_ata_port(dev);
5787 struct ata_link *link;
5788 struct ata_device *adev;
5789
5790 ata_for_each_link(link, ap, HOST_FIRST) {
5791 ata_for_each_dev(adev, link, ENABLED)
5792 if (adev->class == ATA_DEV_ATAPI &&
5793 !zpodd_dev_enabled(adev))
5794 return -EBUSY;
5795 }
5796
45f0a85c 5797 return 0;
9ee4f393
LM
5798}
5799
a7ff60db
AL
5800static int ata_port_runtime_suspend(struct device *dev)
5801{
bc6e7c4b
DW
5802 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5803 return 0;
a7ff60db
AL
5804}
5805
5806static int ata_port_runtime_resume(struct device *dev)
5807{
bc6e7c4b
DW
5808 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5809 return 0;
a7ff60db
AL
5810}
5811
5ef41082 5812static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5813 .suspend = ata_port_pm_suspend,
5814 .resume = ata_port_pm_resume,
5815 .freeze = ata_port_pm_freeze,
5816 .thaw = ata_port_pm_resume,
5817 .poweroff = ata_port_pm_poweroff,
5818 .restore = ata_port_pm_resume,
9ee4f393 5819
a7ff60db
AL
5820 .runtime_suspend = ata_port_runtime_suspend,
5821 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5822 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5823};
5824
2fcbdcb4
DW
5825/* sas ports don't participate in pm runtime management of ata_ports,
5826 * and need to resume ata devices at the domain level, not the per-port
5827 * level. sas suspend/resume is async to allow parallel port recovery
5828 * since sas has multiple ata_port instances per Scsi_Host.
5829 */
bc6e7c4b 5830void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5831{
bc6e7c4b 5832 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5833}
bc6e7c4b 5834EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5835
bc6e7c4b 5836void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5837{
bc6e7c4b 5838 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5839}
bc6e7c4b 5840EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5841
500530f6 5842/**
cca3974e
JG
5843 * ata_host_suspend - suspend host
5844 * @host: host to suspend
500530f6
TH
5845 * @mesg: PM message
5846 *
5ef41082 5847 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5848 */
cca3974e 5849int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5850{
5ef41082
LM
5851 host->dev->power.power_state = mesg;
5852 return 0;
500530f6
TH
5853}
5854
5855/**
cca3974e
JG
5856 * ata_host_resume - resume host
5857 * @host: host to resume
500530f6 5858 *
5ef41082 5859 * Resume @host. Actual operation is performed by port resume.
500530f6 5860 */
cca3974e 5861void ata_host_resume(struct ata_host *host)
500530f6 5862{
72ad6ec4 5863 host->dev->power.power_state = PMSG_ON;
500530f6 5864}
6ffa01d8 5865#endif
500530f6 5866
8df82c13 5867const struct device_type ata_port_type = {
5ef41082
LM
5868 .name = "ata_port",
5869#ifdef CONFIG_PM
5870 .pm = &ata_port_pm_ops,
5871#endif
5872};
5873
3ef3b43d
TH
5874/**
5875 * ata_dev_init - Initialize an ata_device structure
5876 * @dev: Device structure to initialize
5877 *
5878 * Initialize @dev in preparation for probing.
5879 *
5880 * LOCKING:
5881 * Inherited from caller.
5882 */
5883void ata_dev_init(struct ata_device *dev)
5884{
b1c72916 5885 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5886 struct ata_port *ap = link->ap;
72fa4b74
TH
5887 unsigned long flags;
5888
b1c72916 5889 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5890 link->sata_spd_limit = link->hw_sata_spd_limit;
5891 link->sata_spd = 0;
5a04bf4b 5892
72fa4b74
TH
5893 /* High bits of dev->flags are used to record warm plug
5894 * requests which occur asynchronously. Synchronize using
cca3974e 5895 * host lock.
72fa4b74 5896 */
ba6a1308 5897 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5898 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5899 dev->horkage = 0;
ba6a1308 5900 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5901
99cf610a
TH
5902 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5903 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5904 dev->pio_mask = UINT_MAX;
5905 dev->mwdma_mask = UINT_MAX;
5906 dev->udma_mask = UINT_MAX;
5907}
5908
4fb37a25
TH
5909/**
5910 * ata_link_init - Initialize an ata_link structure
5911 * @ap: ATA port link is attached to
5912 * @link: Link structure to initialize
8989805d 5913 * @pmp: Port multiplier port number
4fb37a25
TH
5914 *
5915 * Initialize @link.
5916 *
5917 * LOCKING:
5918 * Kernel thread context (may sleep)
5919 */
fb7fd614 5920void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5921{
5922 int i;
5923
5924 /* clear everything except for devices */
d9027470
GG
5925 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5926 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5927
5928 link->ap = ap;
8989805d 5929 link->pmp = pmp;
4fb37a25
TH
5930 link->active_tag = ATA_TAG_POISON;
5931 link->hw_sata_spd_limit = UINT_MAX;
5932
5933 /* can't use iterator, ap isn't initialized yet */
5934 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5935 struct ata_device *dev = &link->device[i];
5936
5937 dev->link = link;
5938 dev->devno = dev - link->device;
110f66d2
TH
5939#ifdef CONFIG_ATA_ACPI
5940 dev->gtf_filter = ata_acpi_gtf_filter;
5941#endif
4fb37a25
TH
5942 ata_dev_init(dev);
5943 }
5944}
5945
5946/**
5947 * sata_link_init_spd - Initialize link->sata_spd_limit
5948 * @link: Link to configure sata_spd_limit for
5949 *
5950 * Initialize @link->[hw_]sata_spd_limit to the currently
5951 * configured value.
5952 *
5953 * LOCKING:
5954 * Kernel thread context (may sleep).
5955 *
5956 * RETURNS:
5957 * 0 on success, -errno on failure.
5958 */
fb7fd614 5959int sata_link_init_spd(struct ata_link *link)
4fb37a25 5960{
33267325 5961 u8 spd;
4fb37a25
TH
5962 int rc;
5963
d127ea7b 5964 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5965 if (rc)
5966 return rc;
5967
d127ea7b 5968 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5969 if (spd)
5970 link->hw_sata_spd_limit &= (1 << spd) - 1;
5971
05944bdf 5972 ata_force_link_limits(link);
33267325 5973
4fb37a25
TH
5974 link->sata_spd_limit = link->hw_sata_spd_limit;
5975
5976 return 0;
5977}
5978
1da177e4 5979/**
f3187195
TH
5980 * ata_port_alloc - allocate and initialize basic ATA port resources
5981 * @host: ATA host this allocated port belongs to
1da177e4 5982 *
f3187195
TH
5983 * Allocate and initialize basic ATA port resources.
5984 *
5985 * RETURNS:
5986 * Allocate ATA port on success, NULL on failure.
0cba632b 5987 *
1da177e4 5988 * LOCKING:
f3187195 5989 * Inherited from calling layer (may sleep).
1da177e4 5990 */
f3187195 5991struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5992{
f3187195 5993 struct ata_port *ap;
1da177e4 5994
f3187195
TH
5995 DPRINTK("ENTER\n");
5996
5997 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5998 if (!ap)
5999 return NULL;
4fca377f 6000
7b3a24c5 6001 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 6002 ap->lock = &host->lock;
f3187195 6003 ap->print_id = -1;
e628dc99 6004 ap->local_port_no = -1;
cca3974e 6005 ap->host = host;
f3187195 6006 ap->dev = host->dev;
bd5d825c
BP
6007
6008#if defined(ATA_VERBOSE_DEBUG)
6009 /* turn on all debugging levels */
6010 ap->msg_enable = 0x00FF;
6011#elif defined(ATA_DEBUG)
6012 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6013#else
0dd4b21f 6014 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6015#endif
1da177e4 6016
ad72cf98 6017 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
6018 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6019 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6020 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6021 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 6022 init_completion(&ap->park_req_pending);
b93ab338
KC
6023 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6024 TIMER_DEFERRABLE);
1da177e4 6025
838df628 6026 ap->cbl = ATA_CBL_NONE;
838df628 6027
8989805d 6028 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6029
6030#ifdef ATA_IRQ_TRAP
6031 ap->stats.unhandled_irq = 1;
6032 ap->stats.idle_irq = 1;
6033#endif
270390e1
TH
6034 ata_sff_port_init(ap);
6035
1da177e4 6036 return ap;
1da177e4
LT
6037}
6038
f0d36efd
TH
6039static void ata_host_release(struct device *gendev, void *res)
6040{
6041 struct ata_host *host = dev_get_drvdata(gendev);
6042 int i;
6043
1aa506e4
TH
6044 for (i = 0; i < host->n_ports; i++) {
6045 struct ata_port *ap = host->ports[i];
6046
4911487a
TH
6047 if (!ap)
6048 continue;
6049
6050 if (ap->scsi_host)
1aa506e4
TH
6051 scsi_host_put(ap->scsi_host);
6052
633273a3 6053 kfree(ap->pmp_link);
b1c72916 6054 kfree(ap->slave_link);
4911487a 6055 kfree(ap);
1aa506e4
TH
6056 host->ports[i] = NULL;
6057 }
6058
1aa56cca 6059 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6060}
6061
f3187195
TH
6062/**
6063 * ata_host_alloc - allocate and init basic ATA host resources
6064 * @dev: generic device this host is associated with
6065 * @max_ports: maximum number of ATA ports associated with this host
6066 *
6067 * Allocate and initialize basic ATA host resources. LLD calls
6068 * this function to allocate a host, initializes it fully and
6069 * attaches it using ata_host_register().
6070 *
6071 * @max_ports ports are allocated and host->n_ports is
6072 * initialized to @max_ports. The caller is allowed to decrease
6073 * host->n_ports before calling ata_host_register(). The unused
6074 * ports will be automatically freed on registration.
6075 *
6076 * RETURNS:
6077 * Allocate ATA host on success, NULL on failure.
6078 *
6079 * LOCKING:
6080 * Inherited from calling layer (may sleep).
6081 */
6082struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6083{
6084 struct ata_host *host;
6085 size_t sz;
6086 int i;
6087
6088 DPRINTK("ENTER\n");
6089
6090 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6091 return NULL;
6092
6093 /* alloc a container for our list of ATA ports (buses) */
6094 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6095 /* alloc a container for our list of ATA ports (buses) */
6096 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6097 if (!host)
6098 goto err_out;
6099
6100 devres_add(dev, host);
6101 dev_set_drvdata(dev, host);
6102
6103 spin_lock_init(&host->lock);
c0c362b6 6104 mutex_init(&host->eh_mutex);
f3187195
TH
6105 host->dev = dev;
6106 host->n_ports = max_ports;
6107
6108 /* allocate ports bound to this host */
6109 for (i = 0; i < max_ports; i++) {
6110 struct ata_port *ap;
6111
6112 ap = ata_port_alloc(host);
6113 if (!ap)
6114 goto err_out;
6115
6116 ap->port_no = i;
6117 host->ports[i] = ap;
6118 }
6119
6120 devres_remove_group(dev, NULL);
6121 return host;
6122
6123 err_out:
6124 devres_release_group(dev, NULL);
6125 return NULL;
6126}
6127
f5cda257
TH
6128/**
6129 * ata_host_alloc_pinfo - alloc host and init with port_info array
6130 * @dev: generic device this host is associated with
6131 * @ppi: array of ATA port_info to initialize host with
6132 * @n_ports: number of ATA ports attached to this host
6133 *
6134 * Allocate ATA host and initialize with info from @ppi. If NULL
6135 * terminated, @ppi may contain fewer entries than @n_ports. The
6136 * last entry will be used for the remaining ports.
6137 *
6138 * RETURNS:
6139 * Allocate ATA host on success, NULL on failure.
6140 *
6141 * LOCKING:
6142 * Inherited from calling layer (may sleep).
6143 */
6144struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6145 const struct ata_port_info * const * ppi,
6146 int n_ports)
6147{
6148 const struct ata_port_info *pi;
6149 struct ata_host *host;
6150 int i, j;
6151
6152 host = ata_host_alloc(dev, n_ports);
6153 if (!host)
6154 return NULL;
6155
6156 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6157 struct ata_port *ap = host->ports[i];
6158
6159 if (ppi[j])
6160 pi = ppi[j++];
6161
6162 ap->pio_mask = pi->pio_mask;
6163 ap->mwdma_mask = pi->mwdma_mask;
6164 ap->udma_mask = pi->udma_mask;
6165 ap->flags |= pi->flags;
0c88758b 6166 ap->link.flags |= pi->link_flags;
f5cda257
TH
6167 ap->ops = pi->port_ops;
6168
6169 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6170 host->ops = pi->port_ops;
f5cda257
TH
6171 }
6172
6173 return host;
6174}
6175
b1c72916
TH
6176/**
6177 * ata_slave_link_init - initialize slave link
6178 * @ap: port to initialize slave link for
6179 *
6180 * Create and initialize slave link for @ap. This enables slave
6181 * link handling on the port.
6182 *
6183 * In libata, a port contains links and a link contains devices.
6184 * There is single host link but if a PMP is attached to it,
6185 * there can be multiple fan-out links. On SATA, there's usually
6186 * a single device connected to a link but PATA and SATA
6187 * controllers emulating TF based interface can have two - master
6188 * and slave.
6189 *
6190 * However, there are a few controllers which don't fit into this
6191 * abstraction too well - SATA controllers which emulate TF
6192 * interface with both master and slave devices but also have
6193 * separate SCR register sets for each device. These controllers
6194 * need separate links for physical link handling
6195 * (e.g. onlineness, link speed) but should be treated like a
6196 * traditional M/S controller for everything else (e.g. command
6197 * issue, softreset).
6198 *
6199 * slave_link is libata's way of handling this class of
6200 * controllers without impacting core layer too much. For
6201 * anything other than physical link handling, the default host
6202 * link is used for both master and slave. For physical link
6203 * handling, separate @ap->slave_link is used. All dirty details
6204 * are implemented inside libata core layer. From LLD's POV, the
6205 * only difference is that prereset, hardreset and postreset are
6206 * called once more for the slave link, so the reset sequence
6207 * looks like the following.
6208 *
6209 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6210 * softreset(M) -> postreset(M) -> postreset(S)
6211 *
6212 * Note that softreset is called only for the master. Softreset
6213 * resets both M/S by definition, so SRST on master should handle
6214 * both (the standard method will work just fine).
6215 *
6216 * LOCKING:
6217 * Should be called before host is registered.
6218 *
6219 * RETURNS:
6220 * 0 on success, -errno on failure.
6221 */
6222int ata_slave_link_init(struct ata_port *ap)
6223{
6224 struct ata_link *link;
6225
6226 WARN_ON(ap->slave_link);
6227 WARN_ON(ap->flags & ATA_FLAG_PMP);
6228
6229 link = kzalloc(sizeof(*link), GFP_KERNEL);
6230 if (!link)
6231 return -ENOMEM;
6232
6233 ata_link_init(ap, link, 1);
6234 ap->slave_link = link;
6235 return 0;
6236}
6237
32ebbc0c
TH
6238static void ata_host_stop(struct device *gendev, void *res)
6239{
6240 struct ata_host *host = dev_get_drvdata(gendev);
6241 int i;
6242
6243 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6244
6245 for (i = 0; i < host->n_ports; i++) {
6246 struct ata_port *ap = host->ports[i];
6247
6248 if (ap->ops->port_stop)
6249 ap->ops->port_stop(ap);
6250 }
6251
6252 if (host->ops->host_stop)
6253 host->ops->host_stop(host);
6254}
6255
029cfd6b
TH
6256/**
6257 * ata_finalize_port_ops - finalize ata_port_operations
6258 * @ops: ata_port_operations to finalize
6259 *
6260 * An ata_port_operations can inherit from another ops and that
6261 * ops can again inherit from another. This can go on as many
6262 * times as necessary as long as there is no loop in the
6263 * inheritance chain.
6264 *
6265 * Ops tables are finalized when the host is started. NULL or
6266 * unspecified entries are inherited from the closet ancestor
6267 * which has the method and the entry is populated with it.
6268 * After finalization, the ops table directly points to all the
6269 * methods and ->inherits is no longer necessary and cleared.
6270 *
6271 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6272 *
6273 * LOCKING:
6274 * None.
6275 */
6276static void ata_finalize_port_ops(struct ata_port_operations *ops)
6277{
2da67659 6278 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6279 const struct ata_port_operations *cur;
6280 void **begin = (void **)ops;
6281 void **end = (void **)&ops->inherits;
6282 void **pp;
6283
6284 if (!ops || !ops->inherits)
6285 return;
6286
6287 spin_lock(&lock);
6288
6289 for (cur = ops->inherits; cur; cur = cur->inherits) {
6290 void **inherit = (void **)cur;
6291
6292 for (pp = begin; pp < end; pp++, inherit++)
6293 if (!*pp)
6294 *pp = *inherit;
6295 }
6296
6297 for (pp = begin; pp < end; pp++)
6298 if (IS_ERR(*pp))
6299 *pp = NULL;
6300
6301 ops->inherits = NULL;
6302
6303 spin_unlock(&lock);
6304}
6305
ecef7253
TH
6306/**
6307 * ata_host_start - start and freeze ports of an ATA host
6308 * @host: ATA host to start ports for
6309 *
6310 * Start and then freeze ports of @host. Started status is
6311 * recorded in host->flags, so this function can be called
6312 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6313 * once. If host->ops isn't initialized yet, its set to the
6314 * first non-dummy port ops.
ecef7253
TH
6315 *
6316 * LOCKING:
6317 * Inherited from calling layer (may sleep).
6318 *
6319 * RETURNS:
6320 * 0 if all ports are started successfully, -errno otherwise.
6321 */
6322int ata_host_start(struct ata_host *host)
6323{
32ebbc0c
TH
6324 int have_stop = 0;
6325 void *start_dr = NULL;
ecef7253
TH
6326 int i, rc;
6327
6328 if (host->flags & ATA_HOST_STARTED)
6329 return 0;
6330
029cfd6b
TH
6331 ata_finalize_port_ops(host->ops);
6332
ecef7253
TH
6333 for (i = 0; i < host->n_ports; i++) {
6334 struct ata_port *ap = host->ports[i];
6335
029cfd6b
TH
6336 ata_finalize_port_ops(ap->ops);
6337
f3187195
TH
6338 if (!host->ops && !ata_port_is_dummy(ap))
6339 host->ops = ap->ops;
6340
32ebbc0c
TH
6341 if (ap->ops->port_stop)
6342 have_stop = 1;
6343 }
6344
6345 if (host->ops->host_stop)
6346 have_stop = 1;
6347
6348 if (have_stop) {
6349 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6350 if (!start_dr)
6351 return -ENOMEM;
6352 }
6353
6354 for (i = 0; i < host->n_ports; i++) {
6355 struct ata_port *ap = host->ports[i];
6356
ecef7253
TH
6357 if (ap->ops->port_start) {
6358 rc = ap->ops->port_start(ap);
6359 if (rc) {
0f9fe9b7 6360 if (rc != -ENODEV)
a44fec1f
JP
6361 dev_err(host->dev,
6362 "failed to start port %d (errno=%d)\n",
6363 i, rc);
ecef7253
TH
6364 goto err_out;
6365 }
6366 }
ecef7253
TH
6367 ata_eh_freeze_port(ap);
6368 }
6369
32ebbc0c
TH
6370 if (start_dr)
6371 devres_add(host->dev, start_dr);
ecef7253
TH
6372 host->flags |= ATA_HOST_STARTED;
6373 return 0;
6374
6375 err_out:
6376 while (--i >= 0) {
6377 struct ata_port *ap = host->ports[i];
6378
6379 if (ap->ops->port_stop)
6380 ap->ops->port_stop(ap);
6381 }
32ebbc0c 6382 devres_free(start_dr);
ecef7253
TH
6383 return rc;
6384}
6385
b03732f0 6386/**
8d8e7d13 6387 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6388 * @host: host to initialize
6389 * @dev: device host is attached to
cca3974e 6390 * @ops: port_ops
b03732f0 6391 *
b03732f0 6392 */
cca3974e 6393void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6394 struct ata_port_operations *ops)
b03732f0 6395{
cca3974e 6396 spin_lock_init(&host->lock);
c0c362b6 6397 mutex_init(&host->eh_mutex);
1a112d10 6398 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6399 host->dev = dev;
cca3974e 6400 host->ops = ops;
b03732f0
BK
6401}
6402
9508a66f 6403void __ata_port_probe(struct ata_port *ap)
79318057 6404{
9508a66f
DW
6405 struct ata_eh_info *ehi = &ap->link.eh_info;
6406 unsigned long flags;
886ad09f 6407
9508a66f
DW
6408 /* kick EH for boot probing */
6409 spin_lock_irqsave(ap->lock, flags);
79318057 6410
9508a66f
DW
6411 ehi->probe_mask |= ATA_ALL_DEVICES;
6412 ehi->action |= ATA_EH_RESET;
6413 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6414
9508a66f
DW
6415 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6416 ap->pflags |= ATA_PFLAG_LOADING;
6417 ata_port_schedule_eh(ap);
79318057 6418
9508a66f
DW
6419 spin_unlock_irqrestore(ap->lock, flags);
6420}
79318057 6421
9508a66f
DW
6422int ata_port_probe(struct ata_port *ap)
6423{
6424 int rc = 0;
79318057 6425
9508a66f
DW
6426 if (ap->ops->error_handler) {
6427 __ata_port_probe(ap);
79318057
AV
6428 ata_port_wait_eh(ap);
6429 } else {
6430 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6431 rc = ata_bus_probe(ap);
6432 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6433 }
238c9cf9
JB
6434 return rc;
6435}
6436
6437
6438static void async_port_probe(void *data, async_cookie_t cookie)
6439{
6440 struct ata_port *ap = data;
4fca377f 6441
238c9cf9
JB
6442 /*
6443 * If we're not allowed to scan this host in parallel,
6444 * we need to wait until all previous scans have completed
6445 * before going further.
6446 * Jeff Garzik says this is only within a controller, so we
6447 * don't need to wait for port 0, only for later ports.
6448 */
6449 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6450 async_synchronize_cookie(cookie);
6451
6452 (void)ata_port_probe(ap);
f29d3b23
AV
6453
6454 /* in order to keep device order, we need to synchronize at this point */
6455 async_synchronize_cookie(cookie);
6456
6457 ata_scsi_scan_host(ap, 1);
79318057 6458}
238c9cf9 6459
f3187195
TH
6460/**
6461 * ata_host_register - register initialized ATA host
6462 * @host: ATA host to register
6463 * @sht: template for SCSI host
6464 *
6465 * Register initialized ATA host. @host is allocated using
6466 * ata_host_alloc() and fully initialized by LLD. This function
6467 * starts ports, registers @host with ATA and SCSI layers and
6468 * probe registered devices.
6469 *
6470 * LOCKING:
6471 * Inherited from calling layer (may sleep).
6472 *
6473 * RETURNS:
6474 * 0 on success, -errno otherwise.
6475 */
6476int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6477{
6478 int i, rc;
6479
1a112d10 6480 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6481
f3187195
TH
6482 /* host must have been started */
6483 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6484 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6485 WARN_ON(1);
6486 return -EINVAL;
6487 }
6488
6489 /* Blow away unused ports. This happens when LLD can't
6490 * determine the exact number of ports to allocate at
6491 * allocation time.
6492 */
6493 for (i = host->n_ports; host->ports[i]; i++)
6494 kfree(host->ports[i]);
6495
6496 /* give ports names and add SCSI hosts */
e628dc99 6497 for (i = 0; i < host->n_ports; i++) {
85d6725b 6498 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6499 host->ports[i]->local_port_no = i + 1;
6500 }
4fca377f 6501
d9027470
GG
6502 /* Create associated sysfs transport objects */
6503 for (i = 0; i < host->n_ports; i++) {
6504 rc = ata_tport_add(host->dev,host->ports[i]);
6505 if (rc) {
6506 goto err_tadd;
6507 }
6508 }
6509
f3187195
TH
6510 rc = ata_scsi_add_hosts(host, sht);
6511 if (rc)
d9027470 6512 goto err_tadd;
f3187195
TH
6513
6514 /* set cable, sata_spd_limit and report */
6515 for (i = 0; i < host->n_ports; i++) {
6516 struct ata_port *ap = host->ports[i];
f3187195
TH
6517 unsigned long xfer_mask;
6518
6519 /* set SATA cable type if still unset */
6520 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6521 ap->cbl = ATA_CBL_SATA;
6522
6523 /* init sata_spd_limit to the current value */
4fb37a25 6524 sata_link_init_spd(&ap->link);
b1c72916
TH
6525 if (ap->slave_link)
6526 sata_link_init_spd(ap->slave_link);
f3187195 6527
cbcdd875 6528 /* print per-port info to dmesg */
f3187195
TH
6529 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6530 ap->udma_mask);
6531
abf6e8ed 6532 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6533 ata_port_info(ap, "%cATA max %s %s\n",
6534 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6535 ata_mode_string(xfer_mask),
6536 ap->link.eh_info.desc);
abf6e8ed
TH
6537 ata_ehi_clear_desc(&ap->link.eh_info);
6538 } else
a9a79dfe 6539 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6540 }
6541
f6005354 6542 /* perform each probe asynchronously */
f3187195
TH
6543 for (i = 0; i < host->n_ports; i++) {
6544 struct ata_port *ap = host->ports[i];
79318057 6545 async_schedule(async_port_probe, ap);
f3187195 6546 }
f3187195
TH
6547
6548 return 0;
d9027470
GG
6549
6550 err_tadd:
6551 while (--i >= 0) {
6552 ata_tport_delete(host->ports[i]);
6553 }
6554 return rc;
6555
f3187195
TH
6556}
6557
f5cda257
TH
6558/**
6559 * ata_host_activate - start host, request IRQ and register it
6560 * @host: target ATA host
6561 * @irq: IRQ to request
6562 * @irq_handler: irq_handler used when requesting IRQ
6563 * @irq_flags: irq_flags used when requesting IRQ
6564 * @sht: scsi_host_template to use when registering the host
6565 *
6566 * After allocating an ATA host and initializing it, most libata
6567 * LLDs perform three steps to activate the host - start host,
c9b5560a 6568 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6569 * arguments and performs the three steps in one go.
6570 *
3d46b2e2
PM
6571 * An invalid IRQ skips the IRQ registration and expects the host to
6572 * have set polling mode on the port. In this case, @irq_handler
6573 * should be NULL.
6574 *
f5cda257
TH
6575 * LOCKING:
6576 * Inherited from calling layer (may sleep).
6577 *
6578 * RETURNS:
6579 * 0 on success, -errno otherwise.
6580 */
6581int ata_host_activate(struct ata_host *host, int irq,
6582 irq_handler_t irq_handler, unsigned long irq_flags,
6583 struct scsi_host_template *sht)
6584{
cbcdd875 6585 int i, rc;
7e22c002 6586 char *irq_desc;
f5cda257
TH
6587
6588 rc = ata_host_start(host);
6589 if (rc)
6590 return rc;
6591
3d46b2e2
PM
6592 /* Special case for polling mode */
6593 if (!irq) {
6594 WARN_ON(irq_handler);
6595 return ata_host_register(host, sht);
6596 }
6597
7e22c002
HK
6598 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6599 dev_driver_string(host->dev),
6600 dev_name(host->dev));
6601 if (!irq_desc)
6602 return -ENOMEM;
6603
f5cda257 6604 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6605 irq_desc, host);
f5cda257
TH
6606 if (rc)
6607 return rc;
6608
cbcdd875
TH
6609 for (i = 0; i < host->n_ports; i++)
6610 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6611
f5cda257
TH
6612 rc = ata_host_register(host, sht);
6613 /* if failed, just free the IRQ and leave ports alone */
6614 if (rc)
6615 devm_free_irq(host->dev, irq, host);
6616
6617 return rc;
6618}
6619
720ba126 6620/**
c9b5560a 6621 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6622 * @ap: ATA port to be detached
6623 *
6624 * Detach all ATA devices and the associated SCSI devices of @ap;
6625 * then, remove the associated SCSI host. @ap is guaranteed to
6626 * be quiescent on return from this function.
6627 *
6628 * LOCKING:
6629 * Kernel thread context (may sleep).
6630 */
741b7763 6631static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6632{
6633 unsigned long flags;
a6f9bf4d
LK
6634 struct ata_link *link;
6635 struct ata_device *dev;
720ba126
TH
6636
6637 if (!ap->ops->error_handler)
c3cf30a9 6638 goto skip_eh;
720ba126
TH
6639
6640 /* tell EH we're leaving & flush EH */
ba6a1308 6641 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6642 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6643 ata_port_schedule_eh(ap);
ba6a1308 6644 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6645
ece180d1 6646 /* wait till EH commits suicide */
720ba126
TH
6647 ata_port_wait_eh(ap);
6648
ece180d1
TH
6649 /* it better be dead now */
6650 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6651
afe2c511 6652 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6653
c3cf30a9 6654 skip_eh:
a6f9bf4d
LK
6655 /* clean up zpodd on port removal */
6656 ata_for_each_link(link, ap, HOST_FIRST) {
6657 ata_for_each_dev(dev, link, ALL) {
6658 if (zpodd_dev_enabled(dev))
6659 zpodd_exit(dev);
6660 }
6661 }
d9027470
GG
6662 if (ap->pmp_link) {
6663 int i;
6664 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6665 ata_tlink_delete(&ap->pmp_link[i]);
6666 }
720ba126 6667 /* remove the associated SCSI host */
cca3974e 6668 scsi_remove_host(ap->scsi_host);
c5700766 6669 ata_tport_delete(ap);
720ba126
TH
6670}
6671
0529c159
TH
6672/**
6673 * ata_host_detach - Detach all ports of an ATA host
6674 * @host: Host to detach
6675 *
6676 * Detach all ports of @host.
6677 *
6678 * LOCKING:
6679 * Kernel thread context (may sleep).
6680 */
6681void ata_host_detach(struct ata_host *host)
6682{
6683 int i;
6684
6685 for (i = 0; i < host->n_ports; i++)
6686 ata_port_detach(host->ports[i]);
562f0c2d
TH
6687
6688 /* the host is dead now, dissociate ACPI */
6689 ata_acpi_dissociate(host);
0529c159
TH
6690}
6691
374b1873
JG
6692#ifdef CONFIG_PCI
6693
1da177e4
LT
6694/**
6695 * ata_pci_remove_one - PCI layer callback for device removal
6696 * @pdev: PCI device that was removed
6697 *
b878ca5d
TH
6698 * PCI layer indicates to libata via this hook that hot-unplug or
6699 * module unload event has occurred. Detach all ports. Resource
6700 * release is handled via devres.
1da177e4
LT
6701 *
6702 * LOCKING:
6703 * Inherited from PCI layer (may sleep).
6704 */
f0d36efd 6705void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6706{
04a3f5b7 6707 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6708
b878ca5d 6709 ata_host_detach(host);
1da177e4
LT
6710}
6711
6712/* move to PCI subsystem */
057ace5e 6713int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6714{
6715 unsigned long tmp = 0;
6716
6717 switch (bits->width) {
6718 case 1: {
6719 u8 tmp8 = 0;
6720 pci_read_config_byte(pdev, bits->reg, &tmp8);
6721 tmp = tmp8;
6722 break;
6723 }
6724 case 2: {
6725 u16 tmp16 = 0;
6726 pci_read_config_word(pdev, bits->reg, &tmp16);
6727 tmp = tmp16;
6728 break;
6729 }
6730 case 4: {
6731 u32 tmp32 = 0;
6732 pci_read_config_dword(pdev, bits->reg, &tmp32);
6733 tmp = tmp32;
6734 break;
6735 }
6736
6737 default:
6738 return -EINVAL;
6739 }
6740
6741 tmp &= bits->mask;
6742
6743 return (tmp == bits->val) ? 1 : 0;
6744}
9b847548 6745
6ffa01d8 6746#ifdef CONFIG_PM
3c5100c1 6747void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6748{
6749 pci_save_state(pdev);
4c90d971 6750 pci_disable_device(pdev);
500530f6 6751
3a2d5b70 6752 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6753 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6754}
6755
553c4aa6 6756int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6757{
553c4aa6
TH
6758 int rc;
6759
9b847548
JA
6760 pci_set_power_state(pdev, PCI_D0);
6761 pci_restore_state(pdev);
553c4aa6 6762
b878ca5d 6763 rc = pcim_enable_device(pdev);
553c4aa6 6764 if (rc) {
a44fec1f
JP
6765 dev_err(&pdev->dev,
6766 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6767 return rc;
6768 }
6769
9b847548 6770 pci_set_master(pdev);
553c4aa6 6771 return 0;
500530f6
TH
6772}
6773
3c5100c1 6774int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6775{
04a3f5b7 6776 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6777 int rc = 0;
6778
cca3974e 6779 rc = ata_host_suspend(host, mesg);
500530f6
TH
6780 if (rc)
6781 return rc;
6782
3c5100c1 6783 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6784
6785 return 0;
6786}
6787
6788int ata_pci_device_resume(struct pci_dev *pdev)
6789{
04a3f5b7 6790 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6791 int rc;
500530f6 6792
553c4aa6
TH
6793 rc = ata_pci_device_do_resume(pdev);
6794 if (rc == 0)
6795 ata_host_resume(host);
6796 return rc;
9b847548 6797}
6ffa01d8
TH
6798#endif /* CONFIG_PM */
6799
1da177e4
LT
6800#endif /* CONFIG_PCI */
6801
b7db04d9
BN
6802/**
6803 * ata_platform_remove_one - Platform layer callback for device removal
6804 * @pdev: Platform device that was removed
6805 *
6806 * Platform layer indicates to libata via this hook that hot-unplug or
6807 * module unload event has occurred. Detach all ports. Resource
6808 * release is handled via devres.
6809 *
6810 * LOCKING:
6811 * Inherited from platform layer (may sleep).
6812 */
6813int ata_platform_remove_one(struct platform_device *pdev)
6814{
6815 struct ata_host *host = platform_get_drvdata(pdev);
6816
6817 ata_host_detach(host);
6818
6819 return 0;
6820}
6821
33267325
TH
6822static int __init ata_parse_force_one(char **cur,
6823 struct ata_force_ent *force_ent,
6824 const char **reason)
6825{
0f5f264b 6826 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6827 { "40c", .cbl = ATA_CBL_PATA40 },
6828 { "80c", .cbl = ATA_CBL_PATA80 },
6829 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6830 { "unk", .cbl = ATA_CBL_PATA_UNK },
6831 { "ign", .cbl = ATA_CBL_PATA_IGN },
6832 { "sata", .cbl = ATA_CBL_SATA },
6833 { "1.5Gbps", .spd_limit = 1 },
6834 { "3.0Gbps", .spd_limit = 2 },
6835 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6836 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6837 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6838 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6839 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6840 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6841 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6842 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6843 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6844 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6845 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6846 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6847 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6848 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6849 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6850 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6851 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6852 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6853 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6854 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6855 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6856 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6857 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6858 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6859 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6860 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6861 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6862 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6863 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6864 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6865 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6866 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6867 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6868 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6869 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6870 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6871 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6872 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6873 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6874 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6875 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6876 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6877 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6878 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6879 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6880 };
6881 char *start = *cur, *p = *cur;
6882 char *id, *val, *endp;
6883 const struct ata_force_param *match_fp = NULL;
6884 int nr_matches = 0, i;
6885
6886 /* find where this param ends and update *cur */
6887 while (*p != '\0' && *p != ',')
6888 p++;
6889
6890 if (*p == '\0')
6891 *cur = p;
6892 else
6893 *cur = p + 1;
6894
6895 *p = '\0';
6896
6897 /* parse */
6898 p = strchr(start, ':');
6899 if (!p) {
6900 val = strstrip(start);
6901 goto parse_val;
6902 }
6903 *p = '\0';
6904
6905 id = strstrip(start);
6906 val = strstrip(p + 1);
6907
6908 /* parse id */
6909 p = strchr(id, '.');
6910 if (p) {
6911 *p++ = '\0';
6912 force_ent->device = simple_strtoul(p, &endp, 10);
6913 if (p == endp || *endp != '\0') {
6914 *reason = "invalid device";
6915 return -EINVAL;
6916 }
6917 }
6918
6919 force_ent->port = simple_strtoul(id, &endp, 10);
f7cf69ae 6920 if (id == endp || *endp != '\0') {
33267325
TH
6921 *reason = "invalid port/link";
6922 return -EINVAL;
6923 }
6924
6925 parse_val:
6926 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6927 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6928 const struct ata_force_param *fp = &force_tbl[i];
6929
6930 if (strncasecmp(val, fp->name, strlen(val)))
6931 continue;
6932
6933 nr_matches++;
6934 match_fp = fp;
6935
6936 if (strcasecmp(val, fp->name) == 0) {
6937 nr_matches = 1;
6938 break;
6939 }
6940 }
6941
6942 if (!nr_matches) {
6943 *reason = "unknown value";
6944 return -EINVAL;
6945 }
6946 if (nr_matches > 1) {
9de55351 6947 *reason = "ambiguous value";
33267325
TH
6948 return -EINVAL;
6949 }
6950
6951 force_ent->param = *match_fp;
6952
6953 return 0;
6954}
6955
6956static void __init ata_parse_force_param(void)
6957{
6958 int idx = 0, size = 1;
6959 int last_port = -1, last_device = -1;
6960 char *p, *cur, *next;
6961
6962 /* calculate maximum number of params and allocate force_tbl */
6963 for (p = ata_force_param_buf; *p; p++)
6964 if (*p == ',')
6965 size++;
6966
6967 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6968 if (!ata_force_tbl) {
6969 printk(KERN_WARNING "ata: failed to extend force table, "
6970 "libata.force ignored\n");
6971 return;
6972 }
6973
6974 /* parse and populate the table */
6975 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6976 const char *reason = "";
6977 struct ata_force_ent te = { .port = -1, .device = -1 };
6978
6979 next = cur;
6980 if (ata_parse_force_one(&next, &te, &reason)) {
6981 printk(KERN_WARNING "ata: failed to parse force "
6982 "parameter \"%s\" (%s)\n",
6983 cur, reason);
6984 continue;
6985 }
6986
6987 if (te.port == -1) {
6988 te.port = last_port;
6989 te.device = last_device;
6990 }
6991
6992 ata_force_tbl[idx++] = te;
6993
6994 last_port = te.port;
6995 last_device = te.device;
6996 }
6997
6998 ata_force_tbl_size = idx;
6999}
1da177e4 7000
1da177e4
LT
7001static int __init ata_init(void)
7002{
d9027470 7003 int rc;
270390e1 7004
33267325
TH
7005 ata_parse_force_param();
7006
270390e1 7007 rc = ata_sff_init();
ad72cf98
TH
7008 if (rc) {
7009 kfree(ata_force_tbl);
7010 return rc;
7011 }
453b07ac 7012
d9027470
GG
7013 libata_transport_init();
7014 ata_scsi_transport_template = ata_attach_transport();
7015 if (!ata_scsi_transport_template) {
7016 ata_sff_exit();
7017 rc = -ENOMEM;
7018 goto err_out;
4fca377f 7019 }
d9027470 7020
1da177e4
LT
7021 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7022 return 0;
d9027470
GG
7023
7024err_out:
7025 return rc;
1da177e4
LT
7026}
7027
7028static void __exit ata_exit(void)
7029{
d9027470
GG
7030 ata_release_transport(ata_scsi_transport_template);
7031 libata_transport_exit();
270390e1 7032 ata_sff_exit();
33267325 7033 kfree(ata_force_tbl);
1da177e4
LT
7034}
7035
a4625085 7036subsys_initcall(ata_init);
1da177e4
LT
7037module_exit(ata_exit);
7038
9990b6f3 7039static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
7040
7041int ata_ratelimit(void)
7042{
9990b6f3 7043 return __ratelimit(&ratelimit);
67846b30
JG
7044}
7045
c0c362b6
TH
7046/**
7047 * ata_msleep - ATA EH owner aware msleep
7048 * @ap: ATA port to attribute the sleep to
7049 * @msecs: duration to sleep in milliseconds
7050 *
7051 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7052 * ownership is released before going to sleep and reacquired
7053 * after the sleep is complete. IOW, other ports sharing the
7054 * @ap->host will be allowed to own the EH while this task is
7055 * sleeping.
7056 *
7057 * LOCKING:
7058 * Might sleep.
7059 */
97750ceb
TH
7060void ata_msleep(struct ata_port *ap, unsigned int msecs)
7061{
c0c362b6
TH
7062 bool owns_eh = ap && ap->host->eh_owner == current;
7063
7064 if (owns_eh)
7065 ata_eh_release(ap);
7066
848c3920
AVM
7067 if (msecs < 20) {
7068 unsigned long usecs = msecs * USEC_PER_MSEC;
7069 usleep_range(usecs, usecs + 50);
7070 } else {
7071 msleep(msecs);
7072 }
c0c362b6
TH
7073
7074 if (owns_eh)
7075 ata_eh_acquire(ap);
97750ceb
TH
7076}
7077
c22daff4
TH
7078/**
7079 * ata_wait_register - wait until register value changes
97750ceb 7080 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
7081 * @reg: IO-mapped register
7082 * @mask: Mask to apply to read register value
7083 * @val: Wait condition
341c2c95
TH
7084 * @interval: polling interval in milliseconds
7085 * @timeout: timeout in milliseconds
c22daff4
TH
7086 *
7087 * Waiting for some bits of register to change is a common
7088 * operation for ATA controllers. This function reads 32bit LE
7089 * IO-mapped register @reg and tests for the following condition.
7090 *
7091 * (*@reg & mask) != val
7092 *
7093 * If the condition is met, it returns; otherwise, the process is
7094 * repeated after @interval_msec until timeout.
7095 *
7096 * LOCKING:
7097 * Kernel thread context (may sleep)
7098 *
7099 * RETURNS:
7100 * The final register value.
7101 */
97750ceb 7102u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 7103 unsigned long interval, unsigned long timeout)
c22daff4 7104{
341c2c95 7105 unsigned long deadline;
c22daff4
TH
7106 u32 tmp;
7107
7108 tmp = ioread32(reg);
7109
7110 /* Calculate timeout _after_ the first read to make sure
7111 * preceding writes reach the controller before starting to
7112 * eat away the timeout.
7113 */
341c2c95 7114 deadline = ata_deadline(jiffies, timeout);
c22daff4 7115
341c2c95 7116 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 7117 ata_msleep(ap, interval);
c22daff4
TH
7118 tmp = ioread32(reg);
7119 }
7120
7121 return tmp;
7122}
7123
8393b811
GM
7124/**
7125 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7126 * @link: Link receiving the event
7127 *
7128 * Test whether the received PHY event has to be ignored or not.
7129 *
7130 * LOCKING:
7131 * None:
7132 *
7133 * RETURNS:
7134 * True if the event has to be ignored.
7135 */
7136bool sata_lpm_ignore_phy_events(struct ata_link *link)
7137{
09c5b480
GM
7138 unsigned long lpm_timeout = link->last_lpm_change +
7139 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7140
8393b811 7141 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
7142 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7143 return true;
7144
7145 /* ignore the first PHY event after the LPM policy changed
7146 * as it is might be spurious
7147 */
7148 if ((link->flags & ATA_LFLAG_CHANGED) &&
7149 time_before(jiffies, lpm_timeout))
7150 return true;
7151
7152 return false;
8393b811
GM
7153}
7154EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7155
dd5b06c4
TH
7156/*
7157 * Dummy port_ops
7158 */
182d7bba 7159static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 7160{
182d7bba 7161 return AC_ERR_SYSTEM;
dd5b06c4
TH
7162}
7163
182d7bba 7164static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 7165{
182d7bba 7166 /* truly dummy */
dd5b06c4
TH
7167}
7168
029cfd6b 7169struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7170 .qc_prep = ata_noop_qc_prep,
7171 .qc_issue = ata_dummy_qc_issue,
182d7bba 7172 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7173 .sched_eh = ata_std_sched_eh,
7174 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7175};
7176
21b0ad4f
TH
7177const struct ata_port_info ata_dummy_port_info = {
7178 .port_ops = &ata_dummy_port_ops,
7179};
7180
a9a79dfe
JP
7181/*
7182 * Utility print functions
7183 */
d7bead1b
JP
7184void ata_port_printk(const struct ata_port *ap, const char *level,
7185 const char *fmt, ...)
a9a79dfe
JP
7186{
7187 struct va_format vaf;
7188 va_list args;
a9a79dfe
JP
7189
7190 va_start(args, fmt);
7191
7192 vaf.fmt = fmt;
7193 vaf.va = &args;
7194
d7bead1b 7195 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7196
7197 va_end(args);
a9a79dfe
JP
7198}
7199EXPORT_SYMBOL(ata_port_printk);
7200
d7bead1b
JP
7201void ata_link_printk(const struct ata_link *link, const char *level,
7202 const char *fmt, ...)
a9a79dfe
JP
7203{
7204 struct va_format vaf;
7205 va_list args;
a9a79dfe
JP
7206
7207 va_start(args, fmt);
7208
7209 vaf.fmt = fmt;
7210 vaf.va = &args;
7211
7212 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7213 printk("%sata%u.%02u: %pV",
7214 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7215 else
d7bead1b
JP
7216 printk("%sata%u: %pV",
7217 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7218
7219 va_end(args);
a9a79dfe
JP
7220}
7221EXPORT_SYMBOL(ata_link_printk);
7222
d7bead1b 7223void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7224 const char *fmt, ...)
7225{
7226 struct va_format vaf;
7227 va_list args;
a9a79dfe
JP
7228
7229 va_start(args, fmt);
7230
7231 vaf.fmt = fmt;
7232 vaf.va = &args;
7233
d7bead1b
JP
7234 printk("%sata%u.%02u: %pV",
7235 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7236 &vaf);
a9a79dfe
JP
7237
7238 va_end(args);
a9a79dfe
JP
7239}
7240EXPORT_SYMBOL(ata_dev_printk);
7241
06296a1e
JP
7242void ata_print_version(const struct device *dev, const char *version)
7243{
7244 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7245}
7246EXPORT_SYMBOL(ata_print_version);
7247
1da177e4
LT
7248/*
7249 * libata is essentially a library of internal helper functions for
7250 * low-level ATA host controller drivers. As such, the API/ABI is
7251 * likely to change as new drivers are added and updated.
7252 * Do not depend on ABI/API stability.
7253 */
e9c83914
TH
7254EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7255EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7256EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7257EXPORT_SYMBOL_GPL(ata_base_port_ops);
7258EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7259EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7260EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7261EXPORT_SYMBOL_GPL(ata_link_next);
7262EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7263EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7264EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7265EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7266EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7267EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7268EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7269EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7270EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7271EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7272EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7273EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7274EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7275EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7276EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7277EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7278EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7279EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7280EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7281EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7282EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7283EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7284EXPORT_SYMBOL_GPL(ata_mode_string);
7285EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7286EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7287EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7288EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7289EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7290EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7291EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7292EXPORT_SYMBOL_GPL(sata_link_debounce);
7293EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7294EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7295EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7296EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7297EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7298EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7299EXPORT_SYMBOL_GPL(ata_dev_classify);
7300EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7301EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7302EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7303EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7304EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7305EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7306EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7307EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7308EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7309EXPORT_SYMBOL_GPL(sata_scr_valid);
7310EXPORT_SYMBOL_GPL(sata_scr_read);
7311EXPORT_SYMBOL_GPL(sata_scr_write);
7312EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7313EXPORT_SYMBOL_GPL(ata_link_online);
7314EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7315#ifdef CONFIG_PM
cca3974e
JG
7316EXPORT_SYMBOL_GPL(ata_host_suspend);
7317EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7318#endif /* CONFIG_PM */
6a62a04d
TH
7319EXPORT_SYMBOL_GPL(ata_id_string);
7320EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7321EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7322EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7323
1bc4ccff 7324EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7325EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7326EXPORT_SYMBOL_GPL(ata_timing_compute);
7327EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7328EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7329
1da177e4
LT
7330#ifdef CONFIG_PCI
7331EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7332EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7333#ifdef CONFIG_PM
500530f6
TH
7334EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7335EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7336EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7337EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7338#endif /* CONFIG_PM */
1da177e4 7339#endif /* CONFIG_PCI */
9b847548 7340
b7db04d9
BN
7341EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7342
b64bbc39
TH
7343EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7344EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7345EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7346EXPORT_SYMBOL_GPL(ata_port_desc);
7347#ifdef CONFIG_PCI
7348EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7349#endif /* CONFIG_PCI */
7b70fc03 7350EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7351EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7352EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7353EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7354EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7355EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7356EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7357EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7358EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7359EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7360EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7361EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7362
7363EXPORT_SYMBOL_GPL(ata_cable_40wire);
7364EXPORT_SYMBOL_GPL(ata_cable_80wire);
7365EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7366EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7367EXPORT_SYMBOL_GPL(ata_cable_sata);