]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/ata/libata-core.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
19285f3c 28 * as Documentation/driver-api/libata.rst
af36d7f0
JG
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
848c3920 53#include <linux/time.h>
1da177e4
LT
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
378f058c 58#include <linux/scatterlist.h>
2dcb407e 59#include <linux/io.h>
79318057 60#include <linux/async.h>
e18086d6 61#include <linux/log2.h>
5a0e3ad6 62#include <linux/slab.h>
428ac5fc 63#include <linux/glob.h>
1da177e4 64#include <scsi/scsi.h>
193515d5 65#include <scsi/scsi_cmnd.h>
1da177e4
LT
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
1da177e4 68#include <asm/byteorder.h>
fe5af0cc 69#include <asm/unaligned.h>
140b5e59 70#include <linux/cdrom.h>
9990b6f3 71#include <linux/ratelimit.h>
eb25cb99 72#include <linux/leds.h>
9ee4f393 73#include <linux/pm_runtime.h>
b7db04d9 74#include <linux/platform_device.h>
1da177e4 75
255c03d1
HR
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
1da177e4 79#include "libata.h"
d9027470 80#include "libata-transport.h"
fda0efc5 81
d7bb4cc7 82/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 86
029cfd6b 87const struct ata_port_operations ata_base_port_ops = {
0aa1113d 88 .prereset = ata_std_prereset,
203c75b8 89 .postreset = ata_std_postreset,
a1efdaba 90 .error_handler = ata_std_error_handler,
e4a9c373
DW
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
029cfd6b
TH
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
57c9efdf 99 .hardreset = sata_std_hardreset,
029cfd6b
TH
100};
101
3373efd8
TH
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 107
a78f57af 108atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 109
33267325
TH
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
05944bdf 117 unsigned int lflags;
33267325
TH
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
8c27ceff 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
33267325 133
2486fa56 134static int atapi_enabled = 1;
1623c81e 135module_param(atapi_enabled, int, 0444);
ad5d8eac 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 137
c5c61bda 138static int atapi_dmadir = 0;
95de719a 139module_param(atapi_dmadir, int, 0444);
ad5d8eac 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 141
baf4fdfa
ML
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
ad5d8eac 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 145
c3c013a2
JG
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 149
2dcb407e 150static int ata_ignore_hpa;
1e999736
AC
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
b3a70601
AC
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
87fbc5a0 158static int ata_probe_timeout;
a8601e5f
AM
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
6ebe9d86 162int libata_noacpi = 0;
d7d0dad6 163module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 165
ae8d4ee7
AC
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 169
e7ecd435
TH
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
1da177e4
LT
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
0baab86b 179
9913ff8a
TH
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
1eca4365
TH
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
aadffb68 193 *
1eca4365
TH
194 * RETURNS:
195 * Pointer to the next link.
aadffb68 196 */
1eca4365
TH
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
aadffb68 199{
1eca4365
TH
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
aadffb68 203 /* NULL link indicates start of iteration */
1eca4365
TH
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
aadffb68 214
1eca4365
TH
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
b1c72916 224 return ap->slave_link;
1eca4365
TH
225 /* fall through */
226 case ATA_LITER_EDGE:
aadffb68 227 return NULL;
b1c72916 228 }
aadffb68 229
b1c72916
TH
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
1eca4365 234 /* we were over a PMP link */
aadffb68
TH
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
1eca4365
TH
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
aadffb68
TH
241 return NULL;
242}
243
1eca4365
TH
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
b1c72916
TH
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
33267325
TH
322/**
323 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 324 * @ap: ATA port of interest
33267325
TH
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
a9a79dfe 349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
350 return;
351 }
352}
353
354/**
05944bdf 355 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
356 * @link: ATA link of interest
357 *
05944bdf
TH
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
33267325
TH
366 *
367 * LOCKING:
368 * EH context.
369 */
05944bdf 370static void ata_force_link_limits(struct ata_link *link)
33267325 371{
05944bdf 372 bool did_spd = false;
b1c72916
TH
373 int linkno = link->pmp;
374 int i;
33267325
TH
375
376 if (ata_is_host_link(link))
b1c72916 377 linkno += 15;
33267325
TH
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
05944bdf
TH
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
392 fe->param.name);
393 did_spd = true;
394 }
33267325 395
05944bdf
TH
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
a9a79dfe 399 ata_link_notice(link,
05944bdf
TH
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
33267325
TH
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
b1c72916
TH
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
33267325
TH
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
a9a79dfe
JP
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
33267325
TH
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
b1c72916
TH
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
33267325
TH
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
a9a79dfe
JP
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
33267325
TH
500 }
501}
502
436d34b3
TH
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
e52dcc48
TH
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
436d34b3
TH
536 default:
537 return ATAPI_MISC;
538 }
539}
540
1da177e4
LT
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
1da177e4 544 * @pmp: Port multiplier port
9977126c
TH
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
1da177e4
LT
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
9977126c 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 555{
9977126c
TH
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
1da177e4
LT
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
86a565e6
MC
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
e12a1be6 590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
057ace5e 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
8cbd6df1
AL
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
629 0,
630 0,
631 0,
632 0,
8cbd6df1
AL
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
9a3dccc4
TH
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 642};
1da177e4
LT
643
644/**
8cbd6df1 645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
1da177e4 648 *
2e9edbf8 649 * Examine the device configuration and tf->flags to calculate
8cbd6df1 650 * the proper read/write commands and protocol to use.
1da177e4
LT
651 *
652 * LOCKING:
653 * caller.
654 */
bd056d7e 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 656{
9a3dccc4 657 u8 cmd;
1da177e4 658
9a3dccc4 659 int index, fua, lba48, write;
2e9edbf8 660
9a3dccc4 661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 664
8cbd6df1
AL
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
9a3dccc4 667 index = dev->multi_count ? 0 : 8;
9af5c9c9 668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
0565c26d 671 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
672 } else {
673 tf->protocol = ATA_PROT_DMA;
9a3dccc4 674 index = 16;
8cbd6df1 675 }
1da177e4 676
9a3dccc4
TH
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
1da177e4
LT
683}
684
35b649fe
TH
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
cffd1ee9 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
701{
702 u64 block = 0;
703
fe16d4f2 704 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
44901a96 708 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
ac8672ea 722 if (!sect) {
a9a79dfe
JP
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
cffd1ee9 725 return U64_MAX;
ac8672ea
TH
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
729 }
730
731 return block;
732}
733
bd056d7e
TH
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
8e061784 742 * @class: IO priority class
bd056d7e
TH
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
8e061784 757 unsigned int tag, int class)
bd056d7e
TH
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
6d1245bf 762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
9ca7cfa4 786 tf->device = ATA_LBA;
bd056d7e
TH
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
8e061784 789
9f56eca3 790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
8e061784
AM
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
bd056d7e
TH
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
cb95d562
TH
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
7dc951ae
TH
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
cb95d562
TH
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
c0489e4e
TH
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
c9b5560a 896 * Any NULL destination masks will be ignored.
c0489e4e 897 */
7dc951ae
TH
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
cb95d562 909static const struct ata_xfer_ent {
be9a50c8 910 int shift, bits;
cb95d562
TH
911 u8 base;
912} ata_xfer_tbl[] = {
70cd071e
TH
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
70cd071e 930 * Matching XFER_* value, 0xff if no match found.
cb95d562 931 */
7dc951ae 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
70cd071e 940 return 0xff;
cb95d562
TH
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
7dc951ae 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
cb95d562
TH
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
7dc951ae 978int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
1da177e4 988/**
1da7b0d0
TH
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
991 *
992 * Determine string which represents the highest speed
1da7b0d0 993 * (highest bit in @modemask).
1da177e4
LT
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1da7b0d0 1000 * @mode_mask, or the constant C string "<n/a>".
1da177e4 1001 */
7dc951ae 1002const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 1003{
75f554bc
TH
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
b352e57d
AC
1010 "PIO5",
1011 "PIO6",
75f554bc
TH
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
b352e57d
AC
1015 "MWDMA3",
1016 "MWDMA4",
75f554bc
TH
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1da7b0d0 1026 int highbit;
1da177e4 1027
1da7b0d0
TH
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1da177e4 1031 return "<n/a>";
1da177e4
LT
1032}
1033
d9027470 1034const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
8522ee25 1039 "6.0 Gbps",
4c360c81
TH
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1da177e4
LT
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
9162c657
HR
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1061 */
057ace5e 1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1da177e4 1084 */
633273a3 1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
633273a3 1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
633273a3
TH
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
633273a3
TH
1103 }
1104
9162c657
HR
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1da177e4
LT
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1da177e4 1114/**
6a62a04d 1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
6a62a04d
TH
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1da177e4
LT
1131{
1132 unsigned int c;
1133
963e4975
AC
1134 BUG_ON(len & 1);
1135
1da177e4
LT
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
0e949ff3 1150/**
6a62a04d 1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
6a62a04d 1157 * This function is identical to ata_id_string except that it
0e949ff3
TH
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
6a62a04d
TH
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
0e949ff3
TH
1166{
1167 unsigned char *p;
1168
6a62a04d 1169 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
0baab86b 1176
db6f8759
TH
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
968e594a 1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1182 else
968e594a 1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1184 } else {
1185 if (ata_id_current_chs_valid(id))
968e594a
RH
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
db6f8759 1188 else
968e594a
RH
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
db6f8759
TH
1191 }
1192}
1193
a5987e0a 1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
a5987e0a 1205 return sectors;
1e999736
AC
1206}
1207
a5987e0a 1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
a5987e0a 1217 return sectors;
1e999736
AC
1218}
1219
1220/**
c728a914
TH
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1e999736 1224 *
c728a914
TH
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1e999736 1227 *
c728a914
TH
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1e999736 1231 */
c728a914 1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1233{
c728a914 1234 unsigned int err_mask;
1e999736 1235 struct ata_taskfile tf;
c728a914 1236 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1237
1238 ata_tf_init(dev, &tf);
1239
c728a914 1240 /* always clear all address registers */
1e999736 1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1242
c728a914
TH
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1248
bd18bc04 1249 tf.protocol = ATA_PROT_NODATA;
c728a914
TH
1250 tf.device |= ATA_LBA;
1251
2b789108 1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1253 if (err_mask) {
a9a79dfe
JP
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
c728a914
TH
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1e999736 1261
c728a914 1262 if (lba48)
a5987e0a 1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1264 else
a5987e0a 1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1267 (*max_sectors)--;
c728a914 1268 return 0;
1e999736
AC
1269}
1270
1271/**
c728a914
TH
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
6b38d1d1 1274 * @new_sectors: new max sectors value to set for the device
1e999736 1275 *
c728a914
TH
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1e999736 1282 */
05027adc 1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1284{
c728a914 1285 unsigned int err_mask;
1e999736 1286 struct ata_taskfile tf;
c728a914 1287 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1e999736 1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1302 } else {
c728a914
TH
1303 tf.command = ATA_CMD_SET_MAX;
1304
1e582ba4
TH
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
bd18bc04 1308 tf.protocol = ATA_PROT_NODATA;
c728a914 1309 tf.device |= ATA_LBA;
1e999736
AC
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1314
2b789108 1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1316 if (err_mask) {
a9a79dfe
JP
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
c728a914
TH
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
c728a914 1326 return 0;
1e999736
AC
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
05027adc
TH
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1e999736 1339 */
05027adc 1340static int ata_hpa_resize(struct ata_device *dev)
1e999736 1341{
05027adc
TH
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
c728a914 1347 int rc;
a617c09f 1348
05027adc 1349 /* do we need to do it? */
9162c657 1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1353 return 0;
1e999736 1354
05027adc
TH
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
dda7aba1
TH
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
05027adc 1360 */
445d211b 1361 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1e999736 1369 }
37301a55 1370
05027adc
TH
1371 return rc;
1372 }
5920dadf 1373 dev->n_native_sectors = native_sectors;
05027adc
TH
1374
1375 /* nothing to do? */
445d211b 1376 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
a9a79dfe 1381 ata_dev_info(dev,
05027adc
TH
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
a9a79dfe
JP
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
05027adc
TH
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
a9a79dfe
JP
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1416 ata_dev_info(dev,
05027adc
TH
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1e999736
AC
1424}
1425
1da177e4
LT
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1428 * @id: IDENTIFY DEVICE page to dump
1da177e4 1429 *
0bd3300a
TH
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1da177e4
LT
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
0bd3300a 1437static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
0bd3300a
TH
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1da177e4
LT
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
0bd3300a
TH
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1da177e4
LT
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
0bd3300a
TH
1461 id[88],
1462 id[93]);
1da177e4
LT
1463}
1464
cb95d562
TH
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
7dc951ae 1480unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1481{
7dc951ae 1482 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
7a0f1c8a 1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1495 if (mode < 5) /* Valid PIO range */
2dcb407e 1496 pio_mask = (2 << mode) - 1;
46767aeb
AC
1497 else
1498 pio_mask = 1;
cb95d562
TH
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1509
b352e57d
AC
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
62afe5d7
SS
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
fb21f0d0
TH
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
7102d230 1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1535{
77853bf2 1536 struct completion *waiting = qc->private_data;
a2a7a662 1537
a2a7a662 1538 complete(waiting);
a2a7a662
TH
1539}
1540
1541/**
2432697b 1542 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
d69cf37d 1545 * @cdb: CDB for packet command
e227867f 1546 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1547 * @sgl: sg list for the data buffer of the command
2432697b 1548 * @n_elem: Number of sg entries
2b789108 1549 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
551e8889
TH
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1562 */
2432697b
TH
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
87260216 1565 int dma_dir, struct scatterlist *sgl,
2b789108 1566 unsigned int n_elem, unsigned long timeout)
a2a7a662 1567{
9af5c9c9
TH
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
a2a7a662 1570 u8 command = tf->command;
87fbc5a0 1571 int auto_timeout = 0;
a2a7a662 1572 struct ata_queued_cmd *qc;
2ab7db1f 1573 unsigned int tag, preempted_tag;
dedaf2b0 1574 u32 preempted_sactive, preempted_qc_active;
da917d69 1575 int preempted_nr_active_links;
60be6b9a 1576 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1577 unsigned long flags;
77853bf2 1578 unsigned int err_mask;
d95a717f 1579 int rc;
a2a7a662 1580
ba6a1308 1581 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1582
e3180499 1583 /* no internal command while frozen */
b51e9e5d 1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1585 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1586 return AC_ERR_SYSTEM;
1587 }
1588
2ab7db1f 1589 /* initialize internal qc */
a2a7a662 1590
2ab7db1f
TH
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
f69499f4 1601 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
9af5c9c9
TH
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
dedaf2b0 1611 preempted_qc_active = ap->qc_active;
da917d69 1612 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
dedaf2b0 1615 ap->qc_active = 0;
da917d69 1616 ap->nr_active_links = 0;
2ab7db1f
TH
1617
1618 /* prepare & issue qc */
a2a7a662 1619 qc->tf = *tf;
d69cf37d
TH
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
e61e0672 1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
2432697b 1631 unsigned int i, buflen = 0;
87260216 1632 struct scatterlist *sg;
2432697b 1633
87260216
JA
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
2432697b 1636
87260216 1637 ata_sg_init(qc, sgl, n_elem);
49c80429 1638 qc->nbytes = buflen;
a2a7a662
TH
1639 }
1640
77853bf2 1641 qc->private_data = &wait;
a2a7a662
TH
1642 qc->complete_fn = ata_qc_complete_internal;
1643
8e0e694a 1644 ata_qc_issue(qc);
a2a7a662 1645
ba6a1308 1646 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1647
87fbc5a0
TH
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
2b789108 1656
c0c362b6
TH
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
2b789108 1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1661
c0c362b6
TH
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
c429137a 1665 ata_sff_flush_pio_task(ap);
41ade50c 1666
d95a717f 1667 if (!rc) {
ba6a1308 1668 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
d95a717f
TH
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
a2a7a662 1674 */
77853bf2 1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
f15a1daf 1682
0dd4b21f 1683 if (ata_msg_warn(ap))
a9a79dfe
JP
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
a2a7a662
TH
1686 }
1687
ba6a1308 1688 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1689 }
1690
d95a717f
TH
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
a51d644a
TH
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
2dae9955
DLM
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
d95a717f
TH
1707 }
1708
15869303 1709 /* finish up */
ba6a1308 1710 spin_lock_irqsave(ap->lock, flags);
15869303 1711
e61e0672 1712 *tf = qc->result_tf;
77853bf2
TH
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
9af5c9c9
TH
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
dedaf2b0 1718 ap->qc_active = preempted_qc_active;
da917d69 1719 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1720
ba6a1308 1721 spin_unlock_irqrestore(ap->lock, flags);
15869303 1722
87fbc5a0
TH
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
77853bf2 1726 return err_mask;
a2a7a662
TH
1727}
1728
2432697b 1729/**
33480a0e 1730 * ata_exec_internal - execute libata internal command
2432697b
TH
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
e227867f 1734 * @dma_dir: Data transfer direction of the command
2432697b
TH
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
2b789108 1737 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
2432697b 1752{
33480a0e
TH
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
2432697b 1755
33480a0e
TH
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
2432697b 1762
2b789108
TH
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
2432697b
TH
1765}
1766
1bc4ccff
AC
1767/**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1bc4ccff
AC
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
0d9e6659
TH
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
9af5c9c9 1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1786 return 0;
5c18c4d2
DD
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
432729f0
AC
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1bc4ccff 1796 return 1;
432729f0
AC
1797 return 0;
1798}
2e9edbf8 1799
432729f0
AC
1800/**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
432729f0
AC
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1bc4ccff 1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1818 }
1819 }
432729f0 1820 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1821}
1822
963e4975
AC
1823/**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835{
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1da177e4 1840/**
49016aca 1841 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
bff04647 1844 * @flags: ATA_READID_* flags
fe635c7e 1845 * @id: buffer to read IDENTIFY data into
1da177e4 1846 *
49016aca
TH
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1da177e4 1851 *
50a99018 1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1853 * now we abort if we hit that case.
50a99018 1854 *
1da177e4 1855 * LOCKING:
49016aca
TH
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1da177e4 1860 */
a9beec95 1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1862 unsigned int flags, u16 *id)
1da177e4 1863{
9af5c9c9 1864 struct ata_port *ap = dev->link->ap;
49016aca 1865 unsigned int class = *p_class;
a0123703 1866 struct ata_taskfile tf;
49016aca
TH
1867 unsigned int err_mask = 0;
1868 const char *reason;
79b42bab 1869 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1870 int may_fallback = 1, tried_spinup = 0;
49016aca 1871 int rc;
1da177e4 1872
0dd4b21f 1873 if (ata_msg_ctl(ap))
a9a79dfe 1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1875
963e4975 1876retry:
3373efd8 1877 ata_tf_init(dev, &tf);
a0123703 1878
49016aca 1879 switch (class) {
79b42bab
TH
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1882 case ATA_DEV_ATA:
9162c657 1883 case ATA_DEV_ZAC:
a0123703 1884 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1885 break;
1886 case ATA_DEV_ATAPI:
a0123703 1887 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1da177e4
LT
1893 }
1894
a0123703 1895 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1906
963e4975
AC
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
a0123703 1912 if (err_mask) {
800b3996 1913 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1915 return -ENOENT;
1916 }
1917
79b42bab 1918 if (is_semb) {
a9a79dfe
JP
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1ffc151f
TH
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
a9a79dfe
JP
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1948 return -ENOENT;
54936f8b
TH
1949 }
1950
49016aca
TH
1951 rc = -EIO;
1952 reason = "I/O error";
1da177e4
LT
1953 goto err_out;
1954 }
1955
43c9c591 1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
43c9c591
TH
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
54936f8b
TH
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
49016aca 1969 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1970
49016aca 1971 /* sanity check */
a4f5749b 1972 rc = -EINVAL;
6070068b 1973 reason = "device reports invalid type";
a4f5749b 1974
9162c657 1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
db63a4c8
AW
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
a4f5749b
TH
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
49016aca
TH
1987 }
1988
169439c2
ML
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
218f3d30 1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1997 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
9162c657
HR
2010 if ((flags & ATA_READID_POSTRESET) &&
2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
50a99018
AC
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
50a99018
AC
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2021 * should never trigger.
49016aca
TH
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
bff04647 2034 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
fe635c7e 2040
49016aca
TH
2041 return 0;
2042
2043 err_out:
88574551 2044 if (ata_msg_warn(ap))
a9a79dfe
JP
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
49016aca
TH
2047 return rc;
2048}
2049
f01f62c2
CH
2050/**
2051 * ata_read_log_page - read a specific log page
2052 * @dev: target device
2053 * @log: log to read
2054 * @page: page to read
2055 * @buf: buffer to store read page
2056 * @sectors: number of sectors to read
2057 *
2058 * Read log page using READ_LOG_EXT command.
2059 *
2060 * LOCKING:
2061 * Kernel thread context (may sleep).
2062 *
2063 * RETURNS:
2064 * 0 on success, AC_ERR_* mask otherwise.
2065 */
2066unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 u8 page, void *buf, unsigned int sectors)
2068{
2069 unsigned long ap_flags = dev->link->ap->flags;
2070 struct ata_taskfile tf;
2071 unsigned int err_mask;
2072 bool dma = false;
2073
2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075
2076 /*
2077 * Return error without actually issuing the command on controllers
2078 * which e.g. lockup on a read log page.
2079 */
2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 return AC_ERR_DEV;
2082
2083retry:
2084 ata_tf_init(dev, &tf);
2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
7cfdfdc8 2086 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
f01f62c2
CH
2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 tf.protocol = ATA_PROT_DMA;
2089 dma = true;
2090 } else {
2091 tf.command = ATA_CMD_READ_LOG_EXT;
2092 tf.protocol = ATA_PROT_PIO;
2093 dma = false;
2094 }
2095 tf.lbal = log;
2096 tf.lbam = page;
2097 tf.nsect = sectors;
2098 tf.hob_nsect = sectors >> 8;
2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100
2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 buf, sectors * ATA_SECT_SIZE, 0);
2103
2104 if (err_mask && dma) {
7cfdfdc8
DLM
2105 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
f01f62c2
CH
2107 goto retry;
2108 }
2109
2110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 return err_mask;
2112}
2113
efe205a3
CH
2114static bool ata_log_supported(struct ata_device *dev, u8 log)
2115{
2116 struct ata_port *ap = dev->link->ap;
2117
2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 return false;
2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121}
2122
a0fd2454
CH
2123static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2124{
2125 struct ata_port *ap = dev->link->ap;
2126 unsigned int err, i;
2127
2128 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2129 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2130 return false;
2131 }
2132
2133 /*
2134 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2135 * supported.
2136 */
2137 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2138 1);
2139 if (err) {
2140 ata_dev_info(dev,
2141 "failed to get Device Identify Log Emask 0x%x\n",
2142 err);
2143 return false;
2144 }
2145
2146 for (i = 0; i < ap->sector_buf[8]; i++) {
2147 if (ap->sector_buf[9 + i] == page)
2148 return true;
2149 }
2150
2151 return false;
2152}
2153
9062712f
TH
2154static int ata_do_link_spd_horkage(struct ata_device *dev)
2155{
2156 struct ata_link *plink = ata_dev_phys_link(dev);
2157 u32 target, target_limit;
2158
2159 if (!sata_scr_valid(plink))
2160 return 0;
2161
2162 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2163 target = 1;
2164 else
2165 return 0;
2166
2167 target_limit = (1 << target) - 1;
2168
2169 /* if already on stricter limit, no need to push further */
2170 if (plink->sata_spd_limit <= target_limit)
2171 return 0;
2172
2173 plink->sata_spd_limit = target_limit;
2174
2175 /* Request another EH round by returning -EAGAIN if link is
2176 * going faster than the target speed. Forward progress is
2177 * guaranteed by setting sata_spd_limit to target_limit above.
2178 */
2179 if (plink->sata_spd > target) {
a9a79dfe
JP
2180 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2181 sata_spd_string(target));
9062712f
TH
2182 return -EAGAIN;
2183 }
2184 return 0;
2185}
2186
3373efd8 2187static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2188{
9af5c9c9 2189 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2190
2191 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2192 return 0;
2193
9af5c9c9 2194 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2195}
2196
5a233551
HR
2197static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2198{
2199 struct ata_port *ap = dev->link->ap;
2200 unsigned int err_mask;
2201
efe205a3
CH
2202 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2203 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
fe5af0cc
HR
2204 return;
2205 }
5a233551
HR
2206 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2207 0, ap->sector_buf, 1);
2208 if (err_mask) {
2209 ata_dev_dbg(dev,
2210 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2211 err_mask);
2212 } else {
2213 u8 *cmds = dev->ncq_send_recv_cmds;
2214
2215 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2216 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2217
2218 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2219 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2220 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2221 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2222 }
2223 }
2224}
2225
284b3b77
HR
2226static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2227{
2228 struct ata_port *ap = dev->link->ap;
2229 unsigned int err_mask;
284b3b77 2230
efe205a3 2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
284b3b77
HR
2232 ata_dev_warn(dev,
2233 "NCQ Send/Recv Log not supported\n");
2234 return;
2235 }
2236 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2237 0, ap->sector_buf, 1);
2238 if (err_mask) {
2239 ata_dev_dbg(dev,
2240 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2241 err_mask);
2242 } else {
2243 u8 *cmds = dev->ncq_non_data_cmds;
2244
2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2246 }
2247}
2248
8e061784
AM
2249static void ata_dev_config_ncq_prio(struct ata_device *dev)
2250{
2251 struct ata_port *ap = dev->link->ap;
2252 unsigned int err_mask;
2253
9f56eca3
AM
2254 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2255 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2256 return;
2257 }
2258
8e061784 2259 err_mask = ata_read_log_page(dev,
1d51d5f3 2260 ATA_LOG_IDENTIFY_DEVICE,
8e061784
AM
2261 ATA_LOG_SATA_SETTINGS,
2262 ap->sector_buf,
2263 1);
2264 if (err_mask) {
2265 ata_dev_dbg(dev,
2266 "failed to get Identify Device data, Emask 0x%x\n",
2267 err_mask);
2268 return;
2269 }
2270
9f56eca3 2271 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
8e061784 2272 dev->flags |= ATA_DFLAG_NCQ_PRIO;
9f56eca3
AM
2273 } else {
2274 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
8e061784 2275 ata_dev_dbg(dev, "SATA page does not support priority\n");
9f56eca3 2276 }
8e061784
AM
2277
2278}
2279
388539f3 2280static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2281 char *desc, size_t desc_sz)
2282{
9af5c9c9 2283 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2284 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2285 unsigned int err_mask;
2286 char *aa_desc = "";
a6e6ce8e
TH
2287
2288 if (!ata_id_has_ncq(dev->id)) {
2289 desc[0] = '\0';
388539f3 2290 return 0;
a6e6ce8e 2291 }
75683fe7 2292 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2293 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2294 return 0;
6919a0a6 2295 }
a6e6ce8e 2296 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2298 dev->flags |= ATA_DFLAG_NCQ;
2299 }
2300
388539f3
SL
2301 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2302 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2303 ata_id_has_fpdma_aa(dev->id)) {
2304 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2305 SATA_FPDMA_AA);
2306 if (err_mask) {
a9a79dfe
JP
2307 ata_dev_err(dev,
2308 "failed to enable AA (error_mask=0x%x)\n",
2309 err_mask);
388539f3
SL
2310 if (err_mask != AC_ERR_DEV) {
2311 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2312 return -EIO;
2313 }
2314 } else
2315 aa_desc = ", AA";
2316 }
2317
a6e6ce8e 2318 if (hdepth >= ddepth)
388539f3 2319 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2320 else
388539f3
SL
2321 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2322 ddepth, aa_desc);
ed36911c 2323
284b3b77
HR
2324 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2325 if (ata_id_has_ncq_send_and_recv(dev->id))
2326 ata_dev_config_ncq_send_recv(dev);
2327 if (ata_id_has_ncq_non_data(dev->id))
2328 ata_dev_config_ncq_non_data(dev);
8e061784
AM
2329 if (ata_id_has_ncq_prio(dev->id))
2330 ata_dev_config_ncq_prio(dev);
284b3b77 2331 }
f78dea06 2332
388539f3 2333 return 0;
a6e6ce8e 2334}
f78dea06 2335
e87fd28c
HR
2336static void ata_dev_config_sense_reporting(struct ata_device *dev)
2337{
2338 unsigned int err_mask;
2339
2340 if (!ata_id_has_sense_reporting(dev->id))
2341 return;
2342
2343 if (ata_id_sense_reporting_enabled(dev->id))
2344 return;
2345
2346 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2347 if (err_mask) {
2348 ata_dev_dbg(dev,
2349 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2350 err_mask);
2351 }
2352}
2353
6d1003ae
HR
2354static void ata_dev_config_zac(struct ata_device *dev)
2355{
2356 struct ata_port *ap = dev->link->ap;
2357 unsigned int err_mask;
2358 u8 *identify_buf = ap->sector_buf;
6d1003ae
HR
2359
2360 dev->zac_zones_optimal_open = U32_MAX;
2361 dev->zac_zones_optimal_nonseq = U32_MAX;
2362 dev->zac_zones_max_open = U32_MAX;
2363
2364 /*
2365 * Always set the 'ZAC' flag for Host-managed devices.
2366 */
2367 if (dev->class == ATA_DEV_ZAC)
2368 dev->flags |= ATA_DFLAG_ZAC;
2369 else if (ata_id_zoned_cap(dev->id) == 0x01)
2370 /*
2371 * Check for host-aware devices.
2372 */
2373 dev->flags |= ATA_DFLAG_ZAC;
2374
2375 if (!(dev->flags & ATA_DFLAG_ZAC))
2376 return;
2377
a0fd2454 2378 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
6d1003ae
HR
2379 ata_dev_warn(dev,
2380 "ATA Zoned Information Log not supported\n");
2381 return;
2382 }
ed36911c 2383
6d1003ae
HR
2384 /*
2385 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2386 */
1d51d5f3 2387 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
6d1003ae
HR
2388 ATA_LOG_ZONED_INFORMATION,
2389 identify_buf, 1);
2390 if (!err_mask) {
2391 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2392
2393 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2394 if ((zoned_cap >> 63))
2395 dev->zac_zoned_cap = (zoned_cap & 1);
2396 opt_open = get_unaligned_le64(&identify_buf[24]);
2397 if ((opt_open >> 63))
2398 dev->zac_zones_optimal_open = (u32)opt_open;
2399 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2400 if ((opt_nonseq >> 63))
2401 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2402 max_open = get_unaligned_le64(&identify_buf[40]);
2403 if ((max_open >> 63))
2404 dev->zac_zones_max_open = (u32)max_open;
2405 }
a6e6ce8e
TH
2406}
2407
818831c8
CH
2408static void ata_dev_config_trusted(struct ata_device *dev)
2409{
2410 struct ata_port *ap = dev->link->ap;
2411 u64 trusted_cap;
2412 unsigned int err;
2413
e8f11db9
CH
2414 if (!ata_id_has_trusted(dev->id))
2415 return;
2416
818831c8
CH
2417 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2418 ata_dev_warn(dev,
2419 "Security Log not supported\n");
2420 return;
2421 }
2422
2423 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2424 ap->sector_buf, 1);
2425 if (err) {
2426 ata_dev_dbg(dev,
2427 "failed to read Security Log, Emask 0x%x\n", err);
2428 return;
2429 }
2430
2431 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2432 if (!(trusted_cap & (1ULL << 63))) {
2433 ata_dev_dbg(dev,
2434 "Trusted Computing capability qword not valid!\n");
2435 return;
2436 }
2437
2438 if (trusted_cap & (1 << 0))
2439 dev->flags |= ATA_DFLAG_TRUSTED;
2440}
2441
49016aca 2442/**
ffeae418 2443 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2444 * @dev: Target device to configure
2445 *
2446 * Configure @dev according to @dev->id. Generic and low-level
2447 * driver specific fixups are also applied.
49016aca
TH
2448 *
2449 * LOCKING:
ffeae418
TH
2450 * Kernel thread context (may sleep)
2451 *
2452 * RETURNS:
2453 * 0 on success, -errno otherwise
49016aca 2454 */
efdaedc4 2455int ata_dev_configure(struct ata_device *dev)
49016aca 2456{
9af5c9c9
TH
2457 struct ata_port *ap = dev->link->ap;
2458 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2459 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2460 const u16 *id = dev->id;
7dc951ae 2461 unsigned long xfer_mask;
65fe1f0f 2462 unsigned int err_mask;
b352e57d 2463 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2464 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2465 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2466 int rc;
49016aca 2467
0dd4b21f 2468 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2469 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2470 return 0;
49016aca
TH
2471 }
2472
0dd4b21f 2473 if (ata_msg_probe(ap))
a9a79dfe 2474 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2475
75683fe7
TH
2476 /* set horkage */
2477 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2478 ata_force_horkage(dev);
75683fe7 2479
50af2fa1 2480 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2481 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2482 ata_dev_disable(dev);
2483 return 0;
2484 }
2485
2486fa56
TH
2486 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2487 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2488 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2489 atapi_enabled ? "not supported with this driver"
2490 : "disabled");
2486fa56
TH
2491 ata_dev_disable(dev);
2492 return 0;
2493 }
2494
9062712f
TH
2495 rc = ata_do_link_spd_horkage(dev);
2496 if (rc)
2497 return rc;
2498
ecd75ad5
TH
2499 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2500 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2501 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2502 dev->horkage |= ATA_HORKAGE_NOLPM;
2503
2504 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2505 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2506 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2507 }
2508
6746544c
TH
2509 /* let ACPI work its magic */
2510 rc = ata_acpi_on_devcfg(dev);
2511 if (rc)
2512 return rc;
08573a86 2513
05027adc
TH
2514 /* massage HPA, do it early as it might change IDENTIFY data */
2515 rc = ata_hpa_resize(dev);
2516 if (rc)
2517 return rc;
2518
c39f5ebe 2519 /* print device capabilities */
0dd4b21f 2520 if (ata_msg_probe(ap))
a9a79dfe
JP
2521 ata_dev_dbg(dev,
2522 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2523 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2524 __func__,
2525 id[49], id[82], id[83], id[84],
2526 id[85], id[86], id[87], id[88]);
c39f5ebe 2527
208a9933 2528 /* initialize to-be-configured parameters */
ea1dd4e1 2529 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2530 dev->max_sectors = 0;
2531 dev->cdb_len = 0;
2532 dev->n_sectors = 0;
2533 dev->cylinders = 0;
2534 dev->heads = 0;
2535 dev->sectors = 0;
e18086d6 2536 dev->multi_count = 0;
208a9933 2537
1da177e4
LT
2538 /*
2539 * common ATA, ATAPI feature tests
2540 */
2541
ff8854b2 2542 /* find max transfer mode; for printk only */
1148c3a7 2543 xfer_mask = ata_id_xfermask(id);
1da177e4 2544
0dd4b21f
BP
2545 if (ata_msg_probe(ap))
2546 ata_dump_id(id);
1da177e4 2547
ef143d57
AL
2548 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2549 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2550 sizeof(fwrevbuf));
2551
2552 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2553 sizeof(modelbuf));
2554
1da177e4 2555 /* ATA-specific feature tests */
9162c657 2556 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2557 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2558 /* CPRM may make this media unusable */
2559 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2560 ata_dev_warn(dev,
2561 "supports DRM functions and may not be fully accessible\n");
b352e57d 2562 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2563 } else {
2dcb407e 2564 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2565 /* Warn the user if the device has TPM extensions */
2566 if (ata_id_has_tpm(id))
a9a79dfe
JP
2567 ata_dev_warn(dev,
2568 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2569 }
b352e57d 2570
1148c3a7 2571 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2572
e18086d6
ML
2573 /* get current R/W Multiple count setting */
2574 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2575 unsigned int max = dev->id[47] & 0xff;
2576 unsigned int cnt = dev->id[59] & 0xff;
2577 /* only recognize/allow powers of two here */
2578 if (is_power_of_2(max) && is_power_of_2(cnt))
2579 if (cnt <= max)
2580 dev->multi_count = cnt;
2581 }
3f64f565 2582
1148c3a7 2583 if (ata_id_has_lba(id)) {
4c2d721a 2584 const char *lba_desc;
388539f3 2585 char ncq_desc[24];
8bf62ece 2586
4c2d721a
TH
2587 lba_desc = "LBA";
2588 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2589 if (ata_id_has_lba48(id)) {
8bf62ece 2590 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2591 lba_desc = "LBA48";
6fc49adb
TH
2592
2593 if (dev->n_sectors >= (1UL << 28) &&
2594 ata_id_has_flush_ext(id))
2595 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2596 }
8bf62ece 2597
a6e6ce8e 2598 /* config NCQ */
388539f3
SL
2599 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2600 if (rc)
2601 return rc;
a6e6ce8e 2602
8bf62ece 2603 /* print device info to dmesg */
3f64f565 2604 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2605 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2606 revbuf, modelbuf, fwrevbuf,
2607 ata_mode_string(xfer_mask));
2608 ata_dev_info(dev,
2609 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2610 (unsigned long long)dev->n_sectors,
3f64f565
EM
2611 dev->multi_count, lba_desc, ncq_desc);
2612 }
ffeae418 2613 } else {
8bf62ece
AL
2614 /* CHS */
2615
2616 /* Default translation */
1148c3a7
TH
2617 dev->cylinders = id[1];
2618 dev->heads = id[3];
2619 dev->sectors = id[6];
8bf62ece 2620
1148c3a7 2621 if (ata_id_current_chs_valid(id)) {
8bf62ece 2622 /* Current CHS translation is valid. */
1148c3a7
TH
2623 dev->cylinders = id[54];
2624 dev->heads = id[55];
2625 dev->sectors = id[56];
8bf62ece
AL
2626 }
2627
2628 /* print device info to dmesg */
3f64f565 2629 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2630 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2631 revbuf, modelbuf, fwrevbuf,
2632 ata_mode_string(xfer_mask));
2633 ata_dev_info(dev,
2634 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2635 (unsigned long long)dev->n_sectors,
2636 dev->multi_count, dev->cylinders,
2637 dev->heads, dev->sectors);
3f64f565 2638 }
07f6f7d0
AL
2639 }
2640
803739d2
SH
2641 /* Check and mark DevSlp capability. Get DevSlp timing variables
2642 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2643 */
803739d2 2644 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2645 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2646 int i, j;
2647
2648 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f 2649 err_mask = ata_read_log_page(dev,
1d51d5f3 2650 ATA_LOG_IDENTIFY_DEVICE,
65fe1f0f 2651 ATA_LOG_SATA_SETTINGS,
803739d2 2652 sata_setting,
65fe1f0f
SH
2653 1);
2654 if (err_mask)
2655 ata_dev_dbg(dev,
2656 "failed to get Identify Device Data, Emask 0x%x\n",
2657 err_mask);
803739d2
SH
2658 else
2659 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2660 j = ATA_LOG_DEVSLP_OFFSET + i;
2661 dev->devslp_timing[i] = sata_setting[j];
2662 }
65fe1f0f 2663 }
e87fd28c 2664 ata_dev_config_sense_reporting(dev);
6d1003ae 2665 ata_dev_config_zac(dev);
818831c8 2666 ata_dev_config_trusted(dev);
b1ffbf85 2667 dev->cdb_len = 32;
1da177e4
LT
2668 }
2669
2670 /* ATAPI-specific feature tests */
2c13b7ce 2671 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2672 const char *cdb_intr_string = "";
2673 const char *atapi_an_string = "";
91163006 2674 const char *dma_dir_string = "";
7d77b247 2675 u32 sntf;
08a556db 2676
1148c3a7 2677 rc = atapi_cdb_len(id);
1da177e4 2678 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2679 if (ata_msg_warn(ap))
a9a79dfe 2680 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2681 rc = -EINVAL;
1da177e4
LT
2682 goto err_out_nosup;
2683 }
6e7846e9 2684 dev->cdb_len = (unsigned int) rc;
1da177e4 2685
7d77b247
TH
2686 /* Enable ATAPI AN if both the host and device have
2687 * the support. If PMP is attached, SNTF is required
2688 * to enable ATAPI AN to discern between PHY status
2689 * changed notifications and ATAPI ANs.
9f45cbd3 2690 */
e7ecd435
TH
2691 if (atapi_an &&
2692 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2693 (!sata_pmp_attached(ap) ||
7d77b247 2694 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2695 /* issue SET feature command to turn this on */
218f3d30
JG
2696 err_mask = ata_dev_set_feature(dev,
2697 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2698 if (err_mask)
a9a79dfe
JP
2699 ata_dev_err(dev,
2700 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2701 err_mask);
854c73a2 2702 else {
9f45cbd3 2703 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2704 atapi_an_string = ", ATAPI AN";
2705 }
9f45cbd3
KCA
2706 }
2707
08a556db 2708 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2709 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2710 cdb_intr_string = ", CDB intr";
2711 }
312f7da2 2712
966fbe19 2713 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2714 dev->flags |= ATA_DFLAG_DMADIR;
2715 dma_dir_string = ", DMADIR";
2716 }
2717
afe75951 2718 if (ata_id_has_da(dev->id)) {
b1354cbb 2719 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2720 zpodd_init(dev);
2721 }
b1354cbb 2722
1da177e4 2723 /* print device info to dmesg */
5afc8142 2724 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2725 ata_dev_info(dev,
2726 "ATAPI: %s, %s, max %s%s%s%s\n",
2727 modelbuf, fwrevbuf,
2728 ata_mode_string(xfer_mask),
2729 cdb_intr_string, atapi_an_string,
2730 dma_dir_string);
1da177e4
LT
2731 }
2732
914ed354
TH
2733 /* determine max_sectors */
2734 dev->max_sectors = ATA_MAX_SECTORS;
2735 if (dev->flags & ATA_DFLAG_LBA48)
2736 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2737
c5038fc0
AC
2738 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2739 200 sectors */
3373efd8 2740 if (ata_dev_knobble(dev)) {
5afc8142 2741 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2742 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2743 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2744 dev->max_sectors = ATA_MAX_SECTORS;
2745 }
2746
f8d8e579 2747 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2748 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2749 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2750 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2751 }
f8d8e579 2752
75683fe7 2753 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2754 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2755 dev->max_sectors);
18d6e9d5 2756
af34d637
DM
2757 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2758 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2759 dev->max_sectors);
2760
a32450e1
SH
2761 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2763
4b2f3ede 2764 if (ap->ops->dev_config)
cd0d3bbc 2765 ap->ops->dev_config(dev);
4b2f3ede 2766
c5038fc0
AC
2767 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2768 /* Let the user know. We don't want to disallow opens for
2769 rescue purposes, or in case the vendor is just a blithering
2770 idiot. Do this after the dev_config call as some controllers
2771 with buggy firmware may want to avoid reporting false device
2772 bugs */
2773
2774 if (print_info) {
a9a79dfe 2775 ata_dev_warn(dev,
c5038fc0 2776"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2777 ata_dev_warn(dev,
c5038fc0
AC
2778"fault or invalid emulation. Contact drive vendor for information.\n");
2779 }
2780 }
2781
ac70a964 2782 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2783 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2784 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2785 }
2786
ffeae418 2787 return 0;
1da177e4
LT
2788
2789err_out_nosup:
0dd4b21f 2790 if (ata_msg_probe(ap))
a9a79dfe 2791 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2792 return rc;
1da177e4
LT
2793}
2794
be0d18df 2795/**
2e41e8e6 2796 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2797 * @ap: port
2798 *
2e41e8e6 2799 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2800 * detection.
2801 */
2802
2803int ata_cable_40wire(struct ata_port *ap)
2804{
2805 return ATA_CBL_PATA40;
2806}
2807
2808/**
2e41e8e6 2809 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2810 * @ap: port
2811 *
2e41e8e6 2812 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2813 * detection.
2814 */
2815
2816int ata_cable_80wire(struct ata_port *ap)
2817{
2818 return ATA_CBL_PATA80;
2819}
2820
2821/**
2822 * ata_cable_unknown - return unknown PATA cable.
2823 * @ap: port
2824 *
2825 * Helper method for drivers which have no PATA cable detection.
2826 */
2827
2828int ata_cable_unknown(struct ata_port *ap)
2829{
2830 return ATA_CBL_PATA_UNK;
2831}
2832
c88f90c3
TH
2833/**
2834 * ata_cable_ignore - return ignored PATA cable.
2835 * @ap: port
2836 *
2837 * Helper method for drivers which don't use cable type to limit
2838 * transfer mode.
2839 */
2840int ata_cable_ignore(struct ata_port *ap)
2841{
2842 return ATA_CBL_PATA_IGN;
2843}
2844
be0d18df
AC
2845/**
2846 * ata_cable_sata - return SATA cable type
2847 * @ap: port
2848 *
2849 * Helper method for drivers which have SATA cables
2850 */
2851
2852int ata_cable_sata(struct ata_port *ap)
2853{
2854 return ATA_CBL_SATA;
2855}
2856
1da177e4
LT
2857/**
2858 * ata_bus_probe - Reset and probe ATA bus
2859 * @ap: Bus to probe
2860 *
0cba632b
JG
2861 * Master ATA bus probing function. Initiates a hardware-dependent
2862 * bus reset, then attempts to identify any devices found on
2863 * the bus.
2864 *
1da177e4 2865 * LOCKING:
0cba632b 2866 * PCI/etc. bus probe sem.
1da177e4
LT
2867 *
2868 * RETURNS:
96072e69 2869 * Zero on success, negative errno otherwise.
1da177e4
LT
2870 */
2871
80289167 2872int ata_bus_probe(struct ata_port *ap)
1da177e4 2873{
28ca5c57 2874 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2875 int tries[ATA_MAX_DEVICES];
f58229f8 2876 int rc;
e82cbdb9 2877 struct ata_device *dev;
1da177e4 2878
1eca4365 2879 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2880 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2881
2882 retry:
1eca4365 2883 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2884 /* If we issue an SRST then an ATA drive (not ATAPI)
2885 * may change configuration and be in PIO0 timing. If
2886 * we do a hard reset (or are coming from power on)
2887 * this is true for ATA or ATAPI. Until we've set a
2888 * suitable controller mode we should not touch the
2889 * bus as we may be talking too fast.
2890 */
2891 dev->pio_mode = XFER_PIO_0;
5416912a 2892 dev->dma_mode = 0xff;
cdeab114
TH
2893
2894 /* If the controller has a pio mode setup function
2895 * then use it to set the chipset to rights. Don't
2896 * touch the DMA setup as that will be dealt with when
2897 * configuring devices.
2898 */
2899 if (ap->ops->set_piomode)
2900 ap->ops->set_piomode(ap, dev);
2901 }
2902
2044470c 2903 /* reset and determine device classes */
52783c5d 2904 ap->ops->phy_reset(ap);
2061a47a 2905
1eca4365 2906 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2907 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2908 classes[dev->devno] = dev->class;
2909 else
2910 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2911
52783c5d 2912 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2913 }
1da177e4 2914
f31f0cc2
JG
2915 /* read IDENTIFY page and configure devices. We have to do the identify
2916 specific sequence bass-ackwards so that PDIAG- is released by
2917 the slave device */
2918
1eca4365 2919 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2920 if (tries[dev->devno])
2921 dev->class = classes[dev->devno];
ffeae418 2922
14d2bac1 2923 if (!ata_dev_enabled(dev))
ffeae418 2924 continue;
ffeae418 2925
bff04647
TH
2926 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2927 dev->id);
14d2bac1
TH
2928 if (rc)
2929 goto fail;
f31f0cc2
JG
2930 }
2931
be0d18df
AC
2932 /* Now ask for the cable type as PDIAG- should have been released */
2933 if (ap->ops->cable_detect)
2934 ap->cbl = ap->ops->cable_detect(ap);
2935
1eca4365
TH
2936 /* We may have SATA bridge glue hiding here irrespective of
2937 * the reported cable types and sensed types. When SATA
2938 * drives indicate we have a bridge, we don't know which end
2939 * of the link the bridge is which is a problem.
2940 */
2941 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2942 if (ata_id_is_sata(dev->id))
2943 ap->cbl = ATA_CBL_SATA;
614fe29b 2944
f31f0cc2
JG
2945 /* After the identify sequence we can now set up the devices. We do
2946 this in the normal order so that the user doesn't get confused */
2947
1eca4365 2948 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2949 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2950 rc = ata_dev_configure(dev);
9af5c9c9 2951 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2952 if (rc)
2953 goto fail;
1da177e4
LT
2954 }
2955
e82cbdb9 2956 /* configure transfer mode */
0260731f 2957 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2958 if (rc)
51713d35 2959 goto fail;
1da177e4 2960
1eca4365
TH
2961 ata_for_each_dev(dev, &ap->link, ENABLED)
2962 return 0;
1da177e4 2963
96072e69 2964 return -ENODEV;
14d2bac1
TH
2965
2966 fail:
4ae72a1e
TH
2967 tries[dev->devno]--;
2968
14d2bac1
TH
2969 switch (rc) {
2970 case -EINVAL:
4ae72a1e 2971 /* eeek, something went very wrong, give up */
14d2bac1
TH
2972 tries[dev->devno] = 0;
2973 break;
4ae72a1e
TH
2974
2975 case -ENODEV:
2976 /* give it just one more chance */
2977 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2978 case -EIO:
4ae72a1e
TH
2979 if (tries[dev->devno] == 1) {
2980 /* This is the last chance, better to slow
2981 * down than lose it.
2982 */
a07d499b 2983 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2984 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2985 }
14d2bac1
TH
2986 }
2987
4ae72a1e 2988 if (!tries[dev->devno])
3373efd8 2989 ata_dev_disable(dev);
ec573755 2990
14d2bac1 2991 goto retry;
1da177e4
LT
2992}
2993
3be680b7
TH
2994/**
2995 * sata_print_link_status - Print SATA link status
936fd732 2996 * @link: SATA link to printk link status about
3be680b7
TH
2997 *
2998 * This function prints link speed and status of a SATA link.
2999 *
3000 * LOCKING:
3001 * None.
3002 */
6bdb4fc9 3003static void sata_print_link_status(struct ata_link *link)
3be680b7 3004{
6d5f9732 3005 u32 sstatus, scontrol, tmp;
3be680b7 3006
936fd732 3007 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 3008 return;
936fd732 3009 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 3010
b1c72916 3011 if (ata_phys_link_online(link)) {
3be680b7 3012 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
3013 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3014 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 3015 } else {
a9a79dfe
JP
3016 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3017 sstatus, scontrol);
3be680b7
TH
3018 }
3019}
3020
ebdfca6e
AC
3021/**
3022 * ata_dev_pair - return other device on cable
ebdfca6e
AC
3023 * @adev: device
3024 *
3025 * Obtain the other device on the same cable, or if none is
3026 * present NULL is returned
3027 */
2e9edbf8 3028
3373efd8 3029struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 3030{
9af5c9c9
TH
3031 struct ata_link *link = adev->link;
3032 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 3033 if (!ata_dev_enabled(pair))
ebdfca6e
AC
3034 return NULL;
3035 return pair;
3036}
3037
1c3fae4d 3038/**
3c567b7d 3039 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 3040 * @link: Link to adjust SATA spd limit for
a07d499b 3041 * @spd_limit: Additional limit
1c3fae4d 3042 *
936fd732 3043 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 3044 * function only adjusts the limit. The change must be applied
3c567b7d 3045 * using sata_set_spd().
1c3fae4d 3046 *
a07d499b
TH
3047 * If @spd_limit is non-zero, the speed is limited to equal to or
3048 * lower than @spd_limit if such speed is supported. If
3049 * @spd_limit is slower than any supported speed, only the lowest
3050 * supported speed is allowed.
3051 *
1c3fae4d
TH
3052 * LOCKING:
3053 * Inherited from caller.
3054 *
3055 * RETURNS:
3056 * 0 on success, negative errno on failure
3057 */
a07d499b 3058int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 3059{
81952c54 3060 u32 sstatus, spd, mask;
a07d499b 3061 int rc, bit;
1c3fae4d 3062
936fd732 3063 if (!sata_scr_valid(link))
008a7896
TH
3064 return -EOPNOTSUPP;
3065
3066 /* If SCR can be read, use it to determine the current SPD.
936fd732 3067 * If not, use cached value in link->sata_spd.
008a7896 3068 */
936fd732 3069 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3070 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3071 spd = (sstatus >> 4) & 0xf;
3072 else
936fd732 3073 spd = link->sata_spd;
1c3fae4d 3074
936fd732 3075 mask = link->sata_spd_limit;
1c3fae4d
TH
3076 if (mask <= 1)
3077 return -EINVAL;
008a7896
TH
3078
3079 /* unconditionally mask off the highest bit */
a07d499b
TH
3080 bit = fls(mask) - 1;
3081 mask &= ~(1 << bit);
1c3fae4d 3082
008a7896
TH
3083 /* Mask off all speeds higher than or equal to the current
3084 * one. Force 1.5Gbps if current SPD is not available.
3085 */
3086 if (spd > 1)
3087 mask &= (1 << (spd - 1)) - 1;
3088 else
3089 mask &= 1;
3090
3091 /* were we already at the bottom? */
1c3fae4d
TH
3092 if (!mask)
3093 return -EINVAL;
3094
a07d499b
TH
3095 if (spd_limit) {
3096 if (mask & ((1 << spd_limit) - 1))
3097 mask &= (1 << spd_limit) - 1;
3098 else {
3099 bit = ffs(mask) - 1;
3100 mask = 1 << bit;
3101 }
3102 }
3103
936fd732 3104 link->sata_spd_limit = mask;
1c3fae4d 3105
a9a79dfe
JP
3106 ata_link_warn(link, "limiting SATA link speed to %s\n",
3107 sata_spd_string(fls(mask)));
1c3fae4d
TH
3108
3109 return 0;
3110}
3111
936fd732 3112static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3113{
5270222f
TH
3114 struct ata_link *host_link = &link->ap->link;
3115 u32 limit, target, spd;
1c3fae4d 3116
5270222f
TH
3117 limit = link->sata_spd_limit;
3118
3119 /* Don't configure downstream link faster than upstream link.
3120 * It doesn't speed up anything and some PMPs choke on such
3121 * configuration.
3122 */
3123 if (!ata_is_host_link(link) && host_link->sata_spd)
3124 limit &= (1 << host_link->sata_spd) - 1;
3125
3126 if (limit == UINT_MAX)
3127 target = 0;
1c3fae4d 3128 else
5270222f 3129 target = fls(limit);
1c3fae4d
TH
3130
3131 spd = (*scontrol >> 4) & 0xf;
5270222f 3132 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3133
5270222f 3134 return spd != target;
1c3fae4d
TH
3135}
3136
3137/**
3c567b7d 3138 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3139 * @link: Link in question
1c3fae4d
TH
3140 *
3141 * Test whether the spd limit in SControl matches
936fd732 3142 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3143 * whether hardreset is necessary to apply SATA spd
3144 * configuration.
3145 *
3146 * LOCKING:
3147 * Inherited from caller.
3148 *
3149 * RETURNS:
3150 * 1 if SATA spd configuration is needed, 0 otherwise.
3151 */
1dc55e87 3152static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3153{
3154 u32 scontrol;
3155
936fd732 3156 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3157 return 1;
1c3fae4d 3158
936fd732 3159 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3160}
3161
3162/**
3c567b7d 3163 * sata_set_spd - set SATA spd according to spd limit
936fd732 3164 * @link: Link to set SATA spd for
1c3fae4d 3165 *
936fd732 3166 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3167 *
3168 * LOCKING:
3169 * Inherited from caller.
3170 *
3171 * RETURNS:
3172 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3173 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3174 */
936fd732 3175int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3176{
3177 u32 scontrol;
81952c54 3178 int rc;
1c3fae4d 3179
936fd732 3180 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3181 return rc;
1c3fae4d 3182
936fd732 3183 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3184 return 0;
3185
936fd732 3186 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3187 return rc;
3188
1c3fae4d
TH
3189 return 1;
3190}
3191
452503f9
AC
3192/*
3193 * This mode timing computation functionality is ported over from
3194 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3195 */
3196/*
b352e57d 3197 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3198 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3199 * for UDMA6, which is currently supported only by Maxtor drives.
3200 *
3201 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3202 */
3203
3204static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3205/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3206 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3207 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3208 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3209 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3210 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3211 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3212 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3213
3214 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3215 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3216 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3217
3218 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3219 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3220 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3221 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3222 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3223
3224/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3225 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3226 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3227 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3228 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3229 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3230 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3231 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3232
3233 { 0xFF }
3234};
3235
2dcb407e
JG
3236#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3237#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3238
3239static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3240{
3ada9c12
DD
3241 q->setup = EZ(t->setup * 1000, T);
3242 q->act8b = EZ(t->act8b * 1000, T);
3243 q->rec8b = EZ(t->rec8b * 1000, T);
3244 q->cyc8b = EZ(t->cyc8b * 1000, T);
3245 q->active = EZ(t->active * 1000, T);
3246 q->recover = EZ(t->recover * 1000, T);
3247 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3248 q->cycle = EZ(t->cycle * 1000, T);
3249 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3250}
3251
3252void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3253 struct ata_timing *m, unsigned int what)
3254{
3255 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3256 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3257 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3258 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3259 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3260 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3261 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3262 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3263 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3264}
3265
6357357c 3266const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3267{
70cd071e
TH
3268 const struct ata_timing *t = ata_timing;
3269
3270 while (xfer_mode > t->mode)
3271 t++;
452503f9 3272
70cd071e
TH
3273 if (xfer_mode == t->mode)
3274 return t;
cd705d5a
BP
3275
3276 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3277 __func__, xfer_mode);
3278
70cd071e 3279 return NULL;
452503f9
AC
3280}
3281
3282int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3283 struct ata_timing *t, int T, int UT)
3284{
9e8808a9 3285 const u16 *id = adev->id;
452503f9
AC
3286 const struct ata_timing *s;
3287 struct ata_timing p;
3288
3289 /*
2e9edbf8 3290 * Find the mode.
75b1f2f8 3291 */
452503f9
AC
3292
3293 if (!(s = ata_timing_find_mode(speed)))
3294 return -EINVAL;
3295
75b1f2f8
AL
3296 memcpy(t, s, sizeof(*s));
3297
452503f9
AC
3298 /*
3299 * If the drive is an EIDE drive, it can tell us it needs extended
3300 * PIO/MW_DMA cycle timing.
3301 */
3302
9e8808a9 3303 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3304 memset(&p, 0, sizeof(p));
9e8808a9 3305
bff00256 3306 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3307 if (speed <= XFER_PIO_2)
3308 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3309 else if ((speed <= XFER_PIO_4) ||
3310 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3311 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3312 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3313 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3314
452503f9
AC
3315 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3316 }
3317
3318 /*
3319 * Convert the timing to bus clock counts.
3320 */
3321
75b1f2f8 3322 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3323
3324 /*
c893a3ae
RD
3325 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3326 * S.M.A.R.T * and some other commands. We have to ensure that the
3327 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3328 */
3329
fd3367af 3330 if (speed > XFER_PIO_6) {
452503f9
AC
3331 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3332 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3333 }
3334
3335 /*
c893a3ae 3336 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3337 */
3338
3339 if (t->act8b + t->rec8b < t->cyc8b) {
3340 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3341 t->rec8b = t->cyc8b - t->act8b;
3342 }
3343
3344 if (t->active + t->recover < t->cycle) {
3345 t->active += (t->cycle - (t->active + t->recover)) / 2;
3346 t->recover = t->cycle - t->active;
3347 }
a617c09f 3348
4f701d1e
AC
3349 /* In a few cases quantisation may produce enough errors to
3350 leave t->cycle too low for the sum of active and recovery
3351 if so we must correct this */
3352 if (t->active + t->recover > t->cycle)
3353 t->cycle = t->active + t->recover;
452503f9
AC
3354
3355 return 0;
3356}
3357
a0f79b92
TH
3358/**
3359 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3360 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3361 * @cycle: cycle duration in ns
3362 *
3363 * Return matching xfer mode for @cycle. The returned mode is of
3364 * the transfer type specified by @xfer_shift. If @cycle is too
3365 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3366 * than the fastest known mode, the fasted mode is returned.
3367 *
3368 * LOCKING:
3369 * None.
3370 *
3371 * RETURNS:
3372 * Matching xfer_mode, 0xff if no match found.
3373 */
3374u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3375{
3376 u8 base_mode = 0xff, last_mode = 0xff;
3377 const struct ata_xfer_ent *ent;
3378 const struct ata_timing *t;
3379
3380 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3381 if (ent->shift == xfer_shift)
3382 base_mode = ent->base;
3383
3384 for (t = ata_timing_find_mode(base_mode);
3385 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3386 unsigned short this_cycle;
3387
3388 switch (xfer_shift) {
3389 case ATA_SHIFT_PIO:
3390 case ATA_SHIFT_MWDMA:
3391 this_cycle = t->cycle;
3392 break;
3393 case ATA_SHIFT_UDMA:
3394 this_cycle = t->udma;
3395 break;
3396 default:
3397 return 0xff;
3398 }
3399
3400 if (cycle > this_cycle)
3401 break;
3402
3403 last_mode = t->mode;
3404 }
3405
3406 return last_mode;
3407}
3408
cf176e1a
TH
3409/**
3410 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3411 * @dev: Device to adjust xfer masks
458337db 3412 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3413 *
3414 * Adjust xfer masks of @dev downward. Note that this function
3415 * does not apply the change. Invoking ata_set_mode() afterwards
3416 * will apply the limit.
3417 *
3418 * LOCKING:
3419 * Inherited from caller.
3420 *
3421 * RETURNS:
3422 * 0 on success, negative errno on failure
3423 */
458337db 3424int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3425{
458337db 3426 char buf[32];
7dc951ae
TH
3427 unsigned long orig_mask, xfer_mask;
3428 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3429 int quiet, highbit;
cf176e1a 3430
458337db
TH
3431 quiet = !!(sel & ATA_DNXFER_QUIET);
3432 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3433
458337db
TH
3434 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3435 dev->mwdma_mask,
3436 dev->udma_mask);
3437 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3438
458337db
TH
3439 switch (sel) {
3440 case ATA_DNXFER_PIO:
3441 highbit = fls(pio_mask) - 1;
3442 pio_mask &= ~(1 << highbit);
3443 break;
3444
3445 case ATA_DNXFER_DMA:
3446 if (udma_mask) {
3447 highbit = fls(udma_mask) - 1;
3448 udma_mask &= ~(1 << highbit);
3449 if (!udma_mask)
3450 return -ENOENT;
3451 } else if (mwdma_mask) {
3452 highbit = fls(mwdma_mask) - 1;
3453 mwdma_mask &= ~(1 << highbit);
3454 if (!mwdma_mask)
3455 return -ENOENT;
3456 }
3457 break;
3458
3459 case ATA_DNXFER_40C:
3460 udma_mask &= ATA_UDMA_MASK_40C;
3461 break;
3462
3463 case ATA_DNXFER_FORCE_PIO0:
3464 pio_mask &= 1;
3465 case ATA_DNXFER_FORCE_PIO:
3466 mwdma_mask = 0;
3467 udma_mask = 0;
3468 break;
3469
458337db
TH
3470 default:
3471 BUG();
3472 }
3473
3474 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3475
3476 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3477 return -ENOENT;
3478
3479 if (!quiet) {
3480 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3481 snprintf(buf, sizeof(buf), "%s:%s",
3482 ata_mode_string(xfer_mask),
3483 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3484 else
3485 snprintf(buf, sizeof(buf), "%s",
3486 ata_mode_string(xfer_mask));
3487
a9a79dfe 3488 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3489 }
cf176e1a
TH
3490
3491 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3492 &dev->udma_mask);
3493
cf176e1a 3494 return 0;
cf176e1a
TH
3495}
3496
3373efd8 3497static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3498{
d0cb43b3 3499 struct ata_port *ap = dev->link->ap;
9af5c9c9 3500 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3501 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3502 const char *dev_err_whine = "";
3503 int ign_dev_err = 0;
d0cb43b3 3504 unsigned int err_mask = 0;
83206a29 3505 int rc;
1da177e4 3506
e8384607 3507 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3508 if (dev->xfer_shift == ATA_SHIFT_PIO)
3509 dev->flags |= ATA_DFLAG_PIO;
3510
d0cb43b3
TH
3511 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3512 dev_err_whine = " (SET_XFERMODE skipped)";
3513 else {
3514 if (nosetxfer)
a9a79dfe
JP
3515 ata_dev_warn(dev,
3516 "NOSETXFER but PATA detected - can't "
3517 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3518 err_mask = ata_dev_set_xfermode(dev);
3519 }
2dcb407e 3520
4055dee7
TH
3521 if (err_mask & ~AC_ERR_DEV)
3522 goto fail;
3523
3524 /* revalidate */
3525 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3526 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3527 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3528 if (rc)
3529 return rc;
3530
b93fda12
AC
3531 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3532 /* Old CFA may refuse this command, which is just fine */
3533 if (ata_id_is_cfa(dev->id))
3534 ign_dev_err = 1;
3535 /* Catch several broken garbage emulations plus some pre
3536 ATA devices */
3537 if (ata_id_major_version(dev->id) == 0 &&
3538 dev->pio_mode <= XFER_PIO_2)
3539 ign_dev_err = 1;
3540 /* Some very old devices and some bad newer ones fail
3541 any kind of SET_XFERMODE request but support PIO0-2
3542 timings and no IORDY */
3543 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3544 ign_dev_err = 1;
3545 }
3acaf94b
AC
3546 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3547 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3548 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3549 dev->dma_mode == XFER_MW_DMA_0 &&
3550 (dev->id[63] >> 8) & 1)
4055dee7 3551 ign_dev_err = 1;
3acaf94b 3552
4055dee7
TH
3553 /* if the device is actually configured correctly, ignore dev err */
3554 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3555 ign_dev_err = 1;
1da177e4 3556
4055dee7
TH
3557 if (err_mask & AC_ERR_DEV) {
3558 if (!ign_dev_err)
3559 goto fail;
3560 else
3561 dev_err_whine = " (device error ignored)";
3562 }
48a8a14f 3563
23e71c3d
TH
3564 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3565 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3566
a9a79dfe
JP
3567 ata_dev_info(dev, "configured for %s%s\n",
3568 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3569 dev_err_whine);
4055dee7 3570
83206a29 3571 return 0;
4055dee7
TH
3572
3573 fail:
a9a79dfe 3574 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3575 return -EIO;
1da177e4
LT
3576}
3577
1da177e4 3578/**
04351821 3579 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3580 * @link: link on which timings will be programmed
1967b7ff 3581 * @r_failed_dev: out parameter for failed device
1da177e4 3582 *
04351821
AC
3583 * Standard implementation of the function used to tune and set
3584 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3585 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3586 * returned in @r_failed_dev.
780a87f7 3587 *
1da177e4 3588 * LOCKING:
0cba632b 3589 * PCI/etc. bus probe sem.
e82cbdb9
TH
3590 *
3591 * RETURNS:
3592 * 0 on success, negative errno otherwise
1da177e4 3593 */
04351821 3594
0260731f 3595int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3596{
0260731f 3597 struct ata_port *ap = link->ap;
e8e0619f 3598 struct ata_device *dev;
f58229f8 3599 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3600
a6d5a51c 3601 /* step 1: calculate xfer_mask */
1eca4365 3602 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3603 unsigned long pio_mask, dma_mask;
b3a70601 3604 unsigned int mode_mask;
a6d5a51c 3605
b3a70601
AC
3606 mode_mask = ATA_DMA_MASK_ATA;
3607 if (dev->class == ATA_DEV_ATAPI)
3608 mode_mask = ATA_DMA_MASK_ATAPI;
3609 else if (ata_id_is_cfa(dev->id))
3610 mode_mask = ATA_DMA_MASK_CFA;
3611
3373efd8 3612 ata_dev_xfermask(dev);
33267325 3613 ata_force_xfermask(dev);
1da177e4 3614
acf356b1 3615 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3616
3617 if (libata_dma_mask & mode_mask)
80a9c430
SS
3618 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3619 dev->udma_mask);
b3a70601
AC
3620 else
3621 dma_mask = 0;
3622
acf356b1
TH
3623 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3624 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3625
4f65977d 3626 found = 1;
b15b3eba 3627 if (ata_dma_enabled(dev))
5444a6f4 3628 used_dma = 1;
a6d5a51c 3629 }
4f65977d 3630 if (!found)
e82cbdb9 3631 goto out;
a6d5a51c
TH
3632
3633 /* step 2: always set host PIO timings */
1eca4365 3634 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3635 if (dev->pio_mode == 0xff) {
a9a79dfe 3636 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3637 rc = -EINVAL;
e82cbdb9 3638 goto out;
e8e0619f
TH
3639 }
3640
3641 dev->xfer_mode = dev->pio_mode;
3642 dev->xfer_shift = ATA_SHIFT_PIO;
3643 if (ap->ops->set_piomode)
3644 ap->ops->set_piomode(ap, dev);
3645 }
1da177e4 3646
a6d5a51c 3647 /* step 3: set host DMA timings */
1eca4365
TH
3648 ata_for_each_dev(dev, link, ENABLED) {
3649 if (!ata_dma_enabled(dev))
e8e0619f
TH
3650 continue;
3651
3652 dev->xfer_mode = dev->dma_mode;
3653 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3654 if (ap->ops->set_dmamode)
3655 ap->ops->set_dmamode(ap, dev);
3656 }
1da177e4
LT
3657
3658 /* step 4: update devices' xfer mode */
1eca4365 3659 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3660 rc = ata_dev_set_mode(dev);
5bbc53f4 3661 if (rc)
e82cbdb9 3662 goto out;
83206a29 3663 }
1da177e4 3664
e8e0619f
TH
3665 /* Record simplex status. If we selected DMA then the other
3666 * host channels are not permitted to do so.
5444a6f4 3667 */
cca3974e 3668 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3669 ap->host->simplex_claimed = ap;
5444a6f4 3670
e82cbdb9
TH
3671 out:
3672 if (rc)
3673 *r_failed_dev = dev;
3674 return rc;
1da177e4
LT
3675}
3676
aa2731ad
TH
3677/**
3678 * ata_wait_ready - wait for link to become ready
3679 * @link: link to be waited on
3680 * @deadline: deadline jiffies for the operation
3681 * @check_ready: callback to check link readiness
3682 *
3683 * Wait for @link to become ready. @check_ready should return
3684 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3685 * link doesn't seem to be occupied, other errno for other error
3686 * conditions.
3687 *
3688 * Transient -ENODEV conditions are allowed for
3689 * ATA_TMOUT_FF_WAIT.
3690 *
3691 * LOCKING:
3692 * EH context.
3693 *
3694 * RETURNS:
c9b5560a 3695 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad
TH
3696 */
3697int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3698 int (*check_ready)(struct ata_link *link))
3699{
3700 unsigned long start = jiffies;
b48d58f5 3701 unsigned long nodev_deadline;
aa2731ad
TH
3702 int warned = 0;
3703
b48d58f5
TH
3704 /* choose which 0xff timeout to use, read comment in libata.h */
3705 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3706 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3707 else
3708 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3709
b1c72916
TH
3710 /* Slave readiness can't be tested separately from master. On
3711 * M/S emulation configuration, this function should be called
3712 * only on the master and it will handle both master and slave.
3713 */
3714 WARN_ON(link == link->ap->slave_link);
3715
aa2731ad
TH
3716 if (time_after(nodev_deadline, deadline))
3717 nodev_deadline = deadline;
3718
3719 while (1) {
3720 unsigned long now = jiffies;
3721 int ready, tmp;
3722
3723 ready = tmp = check_ready(link);
3724 if (ready > 0)
3725 return 0;
3726
b48d58f5
TH
3727 /*
3728 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3729 * is online. Also, some SATA devices take a long
b48d58f5
TH
3730 * time to clear 0xff after reset. Wait for
3731 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3732 * offline.
aa2731ad
TH
3733 *
3734 * Note that some PATA controllers (pata_ali) explode
3735 * if status register is read more than once when
3736 * there's no device attached.
3737 */
3738 if (ready == -ENODEV) {
3739 if (ata_link_online(link))
3740 ready = 0;
3741 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3742 !ata_link_offline(link) &&
3743 time_before(now, nodev_deadline))
3744 ready = 0;
3745 }
3746
3747 if (ready)
3748 return ready;
3749 if (time_after(now, deadline))
3750 return -EBUSY;
3751
3752 if (!warned && time_after(now, start + 5 * HZ) &&
3753 (deadline - now > 3 * HZ)) {
a9a79dfe 3754 ata_link_warn(link,
aa2731ad
TH
3755 "link is slow to respond, please be patient "
3756 "(ready=%d)\n", tmp);
3757 warned = 1;
3758 }
3759
97750ceb 3760 ata_msleep(link->ap, 50);
aa2731ad
TH
3761 }
3762}
3763
3764/**
3765 * ata_wait_after_reset - wait for link to become ready after reset
3766 * @link: link to be waited on
3767 * @deadline: deadline jiffies for the operation
3768 * @check_ready: callback to check link readiness
3769 *
3770 * Wait for @link to become ready after reset.
3771 *
3772 * LOCKING:
3773 * EH context.
3774 *
3775 * RETURNS:
c9b5560a 3776 * 0 if @link is ready before @deadline; otherwise, -errno.
aa2731ad 3777 */
2b4221bb 3778int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3779 int (*check_ready)(struct ata_link *link))
3780{
97750ceb 3781 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3782
3783 return ata_wait_ready(link, deadline, check_ready);
3784}
3785
d7bb4cc7 3786/**
936fd732
TH
3787 * sata_link_debounce - debounce SATA phy status
3788 * @link: ATA link to debounce SATA phy status for
c9b5560a 3789 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3790 * @deadline: deadline jiffies for the operation
d7bb4cc7 3791 *
1152b261 3792 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3793 * holding the same value where DET is not 1 for @duration polled
3794 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3795 * beginning of the stable state. Because DET gets stuck at 1 on
3796 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3797 * until timeout then returns 0 if DET is stable at 1.
3798 *
d4b2bab4
TH
3799 * @timeout is further limited by @deadline. The sooner of the
3800 * two is used.
3801 *
d7bb4cc7
TH
3802 * LOCKING:
3803 * Kernel thread context (may sleep)
3804 *
3805 * RETURNS:
3806 * 0 on success, -errno on failure.
3807 */
936fd732
TH
3808int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3809 unsigned long deadline)
7a7921e8 3810{
341c2c95
TH
3811 unsigned long interval = params[0];
3812 unsigned long duration = params[1];
d4b2bab4 3813 unsigned long last_jiffies, t;
d7bb4cc7
TH
3814 u32 last, cur;
3815 int rc;
3816
341c2c95 3817 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3818 if (time_before(t, deadline))
3819 deadline = t;
3820
936fd732 3821 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3822 return rc;
3823 cur &= 0xf;
3824
3825 last = cur;
3826 last_jiffies = jiffies;
3827
3828 while (1) {
97750ceb 3829 ata_msleep(link->ap, interval);
936fd732 3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3831 return rc;
3832 cur &= 0xf;
3833
3834 /* DET stable? */
3835 if (cur == last) {
d4b2bab4 3836 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3837 continue;
341c2c95
TH
3838 if (time_after(jiffies,
3839 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3840 return 0;
3841 continue;
3842 }
3843
3844 /* unstable, start over */
3845 last = cur;
3846 last_jiffies = jiffies;
3847
f1545154
TH
3848 /* Check deadline. If debouncing failed, return
3849 * -EPIPE to tell upper layer to lower link speed.
3850 */
d4b2bab4 3851 if (time_after(jiffies, deadline))
f1545154 3852 return -EPIPE;
d7bb4cc7
TH
3853 }
3854}
3855
3856/**
936fd732
TH
3857 * sata_link_resume - resume SATA link
3858 * @link: ATA link to resume SATA
c9b5560a 3859 * @params: timing parameters { interval, duration, timeout } in msec
d4b2bab4 3860 * @deadline: deadline jiffies for the operation
d7bb4cc7 3861 *
936fd732 3862 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3863 *
3864 * LOCKING:
3865 * Kernel thread context (may sleep)
3866 *
3867 * RETURNS:
3868 * 0 on success, -errno on failure.
3869 */
936fd732
TH
3870int sata_link_resume(struct ata_link *link, const unsigned long *params,
3871 unsigned long deadline)
d7bb4cc7 3872{
5040ab67 3873 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3874 u32 scontrol, serror;
81952c54
TH
3875 int rc;
3876
936fd732 3877 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3878 return rc;
7a7921e8 3879
5040ab67
TH
3880 /*
3881 * Writes to SControl sometimes get ignored under certain
3882 * controllers (ata_piix SIDPR). Make sure DET actually is
3883 * cleared.
3884 */
3885 do {
3886 scontrol = (scontrol & 0x0f0) | 0x300;
3887 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3888 return rc;
3889 /*
3890 * Some PHYs react badly if SStatus is pounded
3891 * immediately after resuming. Delay 200ms before
3892 * debouncing.
3893 */
e39b2bb3
DP
3894 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3895 ata_msleep(link->ap, 200);
81952c54 3896
5040ab67
TH
3897 /* is SControl restored correctly? */
3898 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3899 return rc;
3900 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3901
5040ab67 3902 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3903 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3904 scontrol);
5040ab67
TH
3905 return 0;
3906 }
3907
3908 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3909 ata_link_warn(link, "link resume succeeded after %d retries\n",
3910 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3911
ac371987
TH
3912 if ((rc = sata_link_debounce(link, params, deadline)))
3913 return rc;
3914
f046519f 3915 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3916 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3917 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3918
f046519f 3919 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3920}
3921
1152b261
TH
3922/**
3923 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3924 * @link: ATA link to manipulate SControl for
3925 * @policy: LPM policy to configure
3926 * @spm_wakeup: initiate LPM transition to active state
3927 *
3928 * Manipulate the IPM field of the SControl register of @link
3929 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3930 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3931 * the link. This function also clears PHYRDY_CHG before
3932 * returning.
3933 *
3934 * LOCKING:
3935 * EH context.
3936 *
3937 * RETURNS:
8485187b 3938 * 0 on success, -errno otherwise.
1152b261
TH
3939 */
3940int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3941 bool spm_wakeup)
3942{
3943 struct ata_eh_context *ehc = &link->eh_context;
3944 bool woken_up = false;
3945 u32 scontrol;
3946 int rc;
3947
3948 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3949 if (rc)
3950 return rc;
3951
3952 switch (policy) {
3953 case ATA_LPM_MAX_POWER:
3954 /* disable all LPM transitions */
65fe1f0f 3955 scontrol |= (0x7 << 8);
1152b261
TH
3956 /* initiate transition to active state */
3957 if (spm_wakeup) {
3958 scontrol |= (0x4 << 12);
3959 woken_up = true;
3960 }
3961 break;
3962 case ATA_LPM_MED_POWER:
3963 /* allow LPM to PARTIAL */
3964 scontrol &= ~(0x1 << 8);
65fe1f0f 3965 scontrol |= (0x6 << 8);
1152b261
TH
3966 break;
3967 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3968 if (ata_link_nr_enabled(link) > 0)
3969 /* no restrictions on LPM transitions */
65fe1f0f 3970 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3971 else {
3972 /* empty port, power off */
3973 scontrol &= ~0xf;
3974 scontrol |= (0x1 << 2);
3975 }
1152b261
TH
3976 break;
3977 default:
3978 WARN_ON(1);
3979 }
3980
3981 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3982 if (rc)
3983 return rc;
3984
3985 /* give the link time to transit out of LPM state */
3986 if (woken_up)
3987 msleep(10);
3988
3989 /* clear PHYRDY_CHG from SError */
3990 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3991 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3992}
3993
f5914a46 3994/**
0aa1113d 3995 * ata_std_prereset - prepare for reset
cc0680a5 3996 * @link: ATA link to be reset
d4b2bab4 3997 * @deadline: deadline jiffies for the operation
f5914a46 3998 *
cc0680a5 3999 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
4000 * prereset makes libata abort whole reset sequence and give up
4001 * that port, so prereset should be best-effort. It does its
4002 * best to prepare for reset sequence but if things go wrong, it
4003 * should just whine, not fail.
f5914a46
TH
4004 *
4005 * LOCKING:
4006 * Kernel thread context (may sleep)
4007 *
4008 * RETURNS:
4009 * 0 on success, -errno otherwise.
4010 */
0aa1113d 4011int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 4012{
cc0680a5 4013 struct ata_port *ap = link->ap;
936fd732 4014 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 4015 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
4016 int rc;
4017
f5914a46
TH
4018 /* if we're about to do hardreset, nothing more to do */
4019 if (ehc->i.action & ATA_EH_HARDRESET)
4020 return 0;
4021
936fd732 4022 /* if SATA, resume link */
a16abc0b 4023 if (ap->flags & ATA_FLAG_SATA) {
936fd732 4024 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
4025 /* whine about phy resume failure but proceed */
4026 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
4027 ata_link_warn(link,
4028 "failed to resume link for reset (errno=%d)\n",
4029 rc);
f5914a46
TH
4030 }
4031
45db2f6c 4032 /* no point in trying softreset on offline link */
b1c72916 4033 if (ata_phys_link_offline(link))
45db2f6c
TH
4034 ehc->i.action &= ~ATA_EH_SOFTRESET;
4035
f5914a46
TH
4036 return 0;
4037}
4038
c2bd5804 4039/**
624d5c51
TH
4040 * sata_link_hardreset - reset link via SATA phy reset
4041 * @link: link to reset
c9b5560a 4042 * @timing: timing parameters { interval, duration, timeout } in msec
d4b2bab4 4043 * @deadline: deadline jiffies for the operation
9dadd45b
TH
4044 * @online: optional out parameter indicating link onlineness
4045 * @check_ready: optional callback to check link readiness
c2bd5804 4046 *
624d5c51 4047 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
4048 * After hardreset, link readiness is waited upon using
4049 * ata_wait_ready() if @check_ready is specified. LLDs are
4050 * allowed to not specify @check_ready and wait itself after this
4051 * function returns. Device classification is LLD's
4052 * responsibility.
4053 *
4054 * *@online is set to one iff reset succeeded and @link is online
4055 * after reset.
c2bd5804
TH
4056 *
4057 * LOCKING:
4058 * Kernel thread context (may sleep)
4059 *
4060 * RETURNS:
4061 * 0 on success, -errno otherwise.
4062 */
624d5c51 4063int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
4064 unsigned long deadline,
4065 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 4066{
624d5c51 4067 u32 scontrol;
81952c54 4068 int rc;
852ee16a 4069
c2bd5804
TH
4070 DPRINTK("ENTER\n");
4071
9dadd45b
TH
4072 if (online)
4073 *online = false;
4074
936fd732 4075 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
4076 /* SATA spec says nothing about how to reconfigure
4077 * spd. To be on the safe side, turn off phy during
4078 * reconfiguration. This works for at least ICH7 AHCI
4079 * and Sil3124.
4080 */
936fd732 4081 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4082 goto out;
81952c54 4083
a34b6fc0 4084 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 4085
936fd732 4086 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 4087 goto out;
1c3fae4d 4088
936fd732 4089 sata_set_spd(link);
1c3fae4d
TH
4090 }
4091
4092 /* issue phy wake/reset */
936fd732 4093 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 4094 goto out;
81952c54 4095
852ee16a 4096 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 4097
936fd732 4098 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 4099 goto out;
c2bd5804 4100
1c3fae4d 4101 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
4102 * 10.4.2 says at least 1 ms.
4103 */
97750ceb 4104 ata_msleep(link->ap, 1);
c2bd5804 4105
936fd732
TH
4106 /* bring link back */
4107 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
4108 if (rc)
4109 goto out;
4110 /* if link is offline nothing more to do */
b1c72916 4111 if (ata_phys_link_offline(link))
9dadd45b
TH
4112 goto out;
4113
4114 /* Link is online. From this point, -ENODEV too is an error. */
4115 if (online)
4116 *online = true;
4117
071f44b1 4118 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
4119 /* If PMP is supported, we have to do follow-up SRST.
4120 * Some PMPs don't send D2H Reg FIS after hardreset if
4121 * the first port is empty. Wait only for
4122 * ATA_TMOUT_PMP_SRST_WAIT.
4123 */
4124 if (check_ready) {
4125 unsigned long pmp_deadline;
4126
341c2c95
TH
4127 pmp_deadline = ata_deadline(jiffies,
4128 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
4129 if (time_after(pmp_deadline, deadline))
4130 pmp_deadline = deadline;
4131 ata_wait_ready(link, pmp_deadline, check_ready);
4132 }
4133 rc = -EAGAIN;
4134 goto out;
4135 }
4136
4137 rc = 0;
4138 if (check_ready)
4139 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 4140 out:
0cbf0711
TH
4141 if (rc && rc != -EAGAIN) {
4142 /* online is set iff link is online && reset succeeded */
4143 if (online)
4144 *online = false;
a9a79dfe 4145 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4146 }
b6103f6d
TH
4147 DPRINTK("EXIT, rc=%d\n", rc);
4148 return rc;
4149}
4150
57c9efdf
TH
4151/**
4152 * sata_std_hardreset - COMRESET w/o waiting or classification
4153 * @link: link to reset
4154 * @class: resulting class of attached device
4155 * @deadline: deadline jiffies for the operation
4156 *
4157 * Standard SATA COMRESET w/o waiting or classification.
4158 *
4159 * LOCKING:
4160 * Kernel thread context (may sleep)
4161 *
4162 * RETURNS:
4163 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4164 */
4165int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4166 unsigned long deadline)
4167{
4168 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4169 bool online;
4170 int rc;
4171
4172 /* do hardreset */
4173 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4174 return online ? -EAGAIN : rc;
4175}
4176
c2bd5804 4177/**
203c75b8 4178 * ata_std_postreset - standard postreset callback
cc0680a5 4179 * @link: the target ata_link
c2bd5804
TH
4180 * @classes: classes of attached devices
4181 *
4182 * This function is invoked after a successful reset. Note that
4183 * the device might have been reset more than once using
4184 * different reset methods before postreset is invoked.
c2bd5804 4185 *
c2bd5804
TH
4186 * LOCKING:
4187 * Kernel thread context (may sleep)
4188 */
203c75b8 4189void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4190{
f046519f
TH
4191 u32 serror;
4192
c2bd5804
TH
4193 DPRINTK("ENTER\n");
4194
f046519f
TH
4195 /* reset complete, clear SError */
4196 if (!sata_scr_read(link, SCR_ERROR, &serror))
4197 sata_scr_write(link, SCR_ERROR, serror);
4198
c2bd5804 4199 /* print link status */
936fd732 4200 sata_print_link_status(link);
c2bd5804 4201
c2bd5804
TH
4202 DPRINTK("EXIT\n");
4203}
4204
623a3128
TH
4205/**
4206 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4207 * @dev: device to compare against
4208 * @new_class: class of the new device
4209 * @new_id: IDENTIFY page of the new device
4210 *
4211 * Compare @new_class and @new_id against @dev and determine
4212 * whether @dev is the device indicated by @new_class and
4213 * @new_id.
4214 *
4215 * LOCKING:
4216 * None.
4217 *
4218 * RETURNS:
4219 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4220 */
3373efd8
TH
4221static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4222 const u16 *new_id)
623a3128
TH
4223{
4224 const u16 *old_id = dev->id;
a0cf733b
TH
4225 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4226 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4227
4228 if (dev->class != new_class) {
a9a79dfe
JP
4229 ata_dev_info(dev, "class mismatch %d != %d\n",
4230 dev->class, new_class);
623a3128
TH
4231 return 0;
4232 }
4233
a0cf733b
TH
4234 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4235 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4236 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4237 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4238
4239 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
4240 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4241 model[0], model[1]);
623a3128
TH
4242 return 0;
4243 }
4244
4245 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
4246 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4247 serial[0], serial[1]);
623a3128
TH
4248 return 0;
4249 }
4250
623a3128
TH
4251 return 1;
4252}
4253
4254/**
fe30911b 4255 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4256 * @dev: target ATA device
bff04647 4257 * @readid_flags: read ID flags
623a3128
TH
4258 *
4259 * Re-read IDENTIFY page and make sure @dev is still attached to
4260 * the port.
4261 *
4262 * LOCKING:
4263 * Kernel thread context (may sleep)
4264 *
4265 * RETURNS:
4266 * 0 on success, negative errno otherwise
4267 */
fe30911b 4268int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4269{
5eb45c02 4270 unsigned int class = dev->class;
9af5c9c9 4271 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4272 int rc;
4273
fe635c7e 4274 /* read ID data */
bff04647 4275 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4276 if (rc)
fe30911b 4277 return rc;
623a3128
TH
4278
4279 /* is the device still there? */
fe30911b
TH
4280 if (!ata_dev_same_device(dev, class, id))
4281 return -ENODEV;
623a3128 4282
fe635c7e 4283 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4284 return 0;
4285}
4286
4287/**
4288 * ata_dev_revalidate - Revalidate ATA device
4289 * @dev: device to revalidate
422c9daa 4290 * @new_class: new class code
fe30911b
TH
4291 * @readid_flags: read ID flags
4292 *
4293 * Re-read IDENTIFY page, make sure @dev is still attached to the
4294 * port and reconfigure it according to the new IDENTIFY page.
4295 *
4296 * LOCKING:
4297 * Kernel thread context (may sleep)
4298 *
4299 * RETURNS:
4300 * 0 on success, negative errno otherwise
4301 */
422c9daa
TH
4302int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4303 unsigned int readid_flags)
fe30911b 4304{
6ddcd3b0 4305 u64 n_sectors = dev->n_sectors;
5920dadf 4306 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4307 int rc;
4308
4309 if (!ata_dev_enabled(dev))
4310 return -ENODEV;
4311
422c9daa
TH
4312 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4313 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4314 new_class != ATA_DEV_ATA &&
4315 new_class != ATA_DEV_ATAPI &&
9162c657 4316 new_class != ATA_DEV_ZAC &&
f0d0613d 4317 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4318 ata_dev_info(dev, "class mismatch %u != %u\n",
4319 dev->class, new_class);
422c9daa
TH
4320 rc = -ENODEV;
4321 goto fail;
4322 }
4323
fe30911b
TH
4324 /* re-read ID */
4325 rc = ata_dev_reread_id(dev, readid_flags);
4326 if (rc)
4327 goto fail;
623a3128
TH
4328
4329 /* configure device according to the new ID */
efdaedc4 4330 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4331 if (rc)
4332 goto fail;
4333
4334 /* verify n_sectors hasn't changed */
445d211b
TH
4335 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4336 dev->n_sectors == n_sectors)
4337 return 0;
4338
4339 /* n_sectors has changed */
a9a79dfe
JP
4340 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4341 (unsigned long long)n_sectors,
4342 (unsigned long long)dev->n_sectors);
445d211b
TH
4343
4344 /*
4345 * Something could have caused HPA to be unlocked
4346 * involuntarily. If n_native_sectors hasn't changed and the
4347 * new size matches it, keep the device.
4348 */
4349 if (dev->n_native_sectors == n_native_sectors &&
4350 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4351 ata_dev_warn(dev,
4352 "new n_sectors matches native, probably "
4353 "late HPA unlock, n_sectors updated\n");
68939ce5 4354 /* use the larger n_sectors */
445d211b 4355 return 0;
6ddcd3b0
TH
4356 }
4357
445d211b
TH
4358 /*
4359 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4360 * unlocking HPA in those cases.
4361 *
4362 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4363 */
4364 if (dev->n_native_sectors == n_native_sectors &&
4365 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4366 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4367 ata_dev_warn(dev,
4368 "old n_sectors matches native, probably "
4369 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4370 /* try unlocking HPA */
4371 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4372 rc = -EIO;
4373 } else
4374 rc = -ENODEV;
623a3128 4375
445d211b
TH
4376 /* restore original n_[native_]sectors and fail */
4377 dev->n_native_sectors = n_native_sectors;
4378 dev->n_sectors = n_sectors;
623a3128 4379 fail:
a9a79dfe 4380 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4381 return rc;
4382}
4383
6919a0a6
AC
4384struct ata_blacklist_entry {
4385 const char *model_num;
4386 const char *model_rev;
4387 unsigned long horkage;
4388};
4389
4390static const struct ata_blacklist_entry ata_device_blacklist [] = {
4391 /* Devices with DMA related problems under Linux */
4392 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4393 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4394 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4395 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4396 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4397 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4398 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4399 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4400 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4401 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4402 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4403 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4404 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4405 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4406 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4407 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4408 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4409 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4410 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4411 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4412 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4413 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4414 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4415 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4416 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4417 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4418 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4419 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4420 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
b00622fc 4421 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4422 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4423 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4424
18d6e9d5 4425 /* Weird ATAPI devices */
40a1d531 4426 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4427 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4428 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4429 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4430
af34d637
DM
4431 /*
4432 * Causes silent data corruption with higher max sects.
4433 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4434 */
4435 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
1488a1e3
TH
4436
4437 /*
e0edc8c5 4438 * These devices time out with higher max sects.
1488a1e3
TH
4439 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4440 */
e0edc8c5 4441 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
6879f01b 4442 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
af34d637 4443
6919a0a6
AC
4444 /* Devices we expect to fail diagnostics */
4445
4446 /* Devices where NCQ should be avoided */
4447 /* NCQ is slow */
2dcb407e 4448 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4449 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4450 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4451 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4452 /* NCQ is broken */
539cc7c7 4453 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4454 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4455 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4456 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4457 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4458
ac70a964 4459 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4460 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4461 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4462
4d1f9082 4463 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4464 ATA_HORKAGE_FIRMWARE_WARN },
4465
4d1f9082 4466 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4467 ATA_HORKAGE_FIRMWARE_WARN },
4468
4d1f9082 4469 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
08c85d2a 4472 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4473 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4474 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4475 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4476
36e337d0
RH
4477 /* Blacklist entries taken from Silicon Image 3124/3132
4478 Windows driver .inf file - also several Linux problem reports */
4479 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4480 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4481 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4482
68b0ddb2
TH
4483 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4484 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4485
16c55b03
TH
4486 /* devices which puke on READ_NATIVE_MAX */
4487 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4488 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4489 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4490 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4491
7831387b
TH
4492 /* this one allows HPA unlocking but fails IOs on the area */
4493 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4494
93328e11
AC
4495 /* Devices which report 1 sector over size HPA */
4496 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4497 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4498 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4499
6bbfd53d
AC
4500 /* Devices which get the IVB wrong */
4501 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4502 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4503 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4504
9ce8e307
JA
4505 /* Devices that do not need bridging limits applied */
4506 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4507 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4508
9062712f
TH
4509 /* Devices which aren't very happy with higher link speeds */
4510 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4511 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4512
d0cb43b3
TH
4513 /*
4514 * Devices which choke on SETXFER. Applies only if both the
4515 * device and controller are SATA.
4516 */
cd691876 4517 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4518 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4519 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4520 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4521 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4522
f78dea06 4523 /* devices that don't properly handle queued TRIM commands */
243918be 4524 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4525 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4526 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4527 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4528 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4529 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4530 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4531 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4532 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4533 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4534 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4535 ATA_HORKAGE_ZERO_AFTER_TRIM, },
7a7184b0
GA
4536 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4537 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4538
cda57b1b
AF
4539 /* devices that don't properly handle TRIM commands */
4540 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4541
e61f7d1c
MP
4542 /*
4543 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4544 * (Return Zero After Trim) flags in the ATA Command Set are
4545 * unreliable in the sense that they only define what happens if
4546 * the device successfully executed the DSM TRIM command. TRIM
4547 * is only advisory, however, and the device is free to silently
4548 * ignore all or parts of the request.
4549 *
4550 * Whitelist drives that are known to reliably return zeroes
4551 * after TRIM.
4552 */
4553
4554 /*
4555 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4556 * that model before whitelisting all other intel SSDs.
4557 */
4558 { "INTEL*SSDSC2MH*", NULL, 0, },
4559
ff7f53fb
MP
4560 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4562 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4564 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4567
ecd75ad5
TH
4568 /*
4569 * Some WD SATA-I drives spin up and down erratically when the link
4570 * is put into the slumber mode. We don't have full list of the
4571 * affected devices. Disable LPM if the device matches one of the
4572 * known prefixes and is SATA-1. As a side effect LPM partial is
4573 * lost too.
4574 *
4575 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4576 */
4577 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4578 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4579 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4580 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4581 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4582 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4583 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4584
6919a0a6
AC
4585 /* End Marker */
4586 { }
1da177e4 4587};
2e9edbf8 4588
75683fe7 4589static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4590{
8bfa79fc
TH
4591 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4592 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4593 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4594
8bfa79fc
TH
4595 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4596 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4597
6919a0a6 4598 while (ad->model_num) {
1c402799 4599 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4600 if (ad->model_rev == NULL)
4601 return ad->horkage;
1c402799 4602 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4603 return ad->horkage;
f4b15fef 4604 }
6919a0a6 4605 ad++;
f4b15fef 4606 }
1da177e4
LT
4607 return 0;
4608}
4609
6919a0a6
AC
4610static int ata_dma_blacklisted(const struct ata_device *dev)
4611{
4612 /* We don't support polling DMA.
4613 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4614 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4615 */
9af5c9c9 4616 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4617 (dev->flags & ATA_DFLAG_CDB_INTR))
4618 return 1;
75683fe7 4619 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4620}
4621
6bbfd53d
AC
4622/**
4623 * ata_is_40wire - check drive side detection
4624 * @dev: device
4625 *
4626 * Perform drive side detection decoding, allowing for device vendors
4627 * who can't follow the documentation.
4628 */
4629
4630static int ata_is_40wire(struct ata_device *dev)
4631{
4632 if (dev->horkage & ATA_HORKAGE_IVB)
4633 return ata_drive_40wire_relaxed(dev->id);
4634 return ata_drive_40wire(dev->id);
4635}
4636
15a5551c
AC
4637/**
4638 * cable_is_40wire - 40/80/SATA decider
4639 * @ap: port to consider
4640 *
4641 * This function encapsulates the policy for speed management
4642 * in one place. At the moment we don't cache the result but
4643 * there is a good case for setting ap->cbl to the result when
4644 * we are called with unknown cables (and figuring out if it
4645 * impacts hotplug at all).
4646 *
4647 * Return 1 if the cable appears to be 40 wire.
4648 */
4649
4650static int cable_is_40wire(struct ata_port *ap)
4651{
4652 struct ata_link *link;
4653 struct ata_device *dev;
4654
4a9c7b33 4655 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4656 if (ap->cbl == ATA_CBL_PATA40)
4657 return 1;
4a9c7b33
TH
4658
4659 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4660 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4661 return 0;
4a9c7b33
TH
4662
4663 /* If the system is known to be 40 wire short cable (eg
4664 * laptop), then we allow 80 wire modes even if the drive
4665 * isn't sure.
4666 */
f792068e
AC
4667 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4668 return 0;
4a9c7b33
TH
4669
4670 /* If the controller doesn't know, we scan.
4671 *
4672 * Note: We look for all 40 wire detects at this point. Any
4673 * 80 wire detect is taken to be 80 wire cable because
4674 * - in many setups only the one drive (slave if present) will
4675 * give a valid detect
4676 * - if you have a non detect capable drive you don't want it
4677 * to colour the choice
4678 */
1eca4365
TH
4679 ata_for_each_link(link, ap, EDGE) {
4680 ata_for_each_dev(dev, link, ENABLED) {
4681 if (!ata_is_40wire(dev))
15a5551c
AC
4682 return 0;
4683 }
4684 }
4685 return 1;
4686}
4687
a6d5a51c
TH
4688/**
4689 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4690 * @dev: Device to compute xfermask for
4691 *
acf356b1
TH
4692 * Compute supported xfermask of @dev and store it in
4693 * dev->*_mask. This function is responsible for applying all
4694 * known limits including host controller limits, device
4695 * blacklist, etc...
a6d5a51c
TH
4696 *
4697 * LOCKING:
4698 * None.
a6d5a51c 4699 */
3373efd8 4700static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4701{
9af5c9c9
TH
4702 struct ata_link *link = dev->link;
4703 struct ata_port *ap = link->ap;
cca3974e 4704 struct ata_host *host = ap->host;
a6d5a51c 4705 unsigned long xfer_mask;
1da177e4 4706
37deecb5 4707 /* controller modes available */
565083e1
TH
4708 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4709 ap->mwdma_mask, ap->udma_mask);
4710
8343f889 4711 /* drive modes available */
37deecb5
TH
4712 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4713 dev->mwdma_mask, dev->udma_mask);
4714 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4715
b352e57d
AC
4716 /*
4717 * CFA Advanced TrueIDE timings are not allowed on a shared
4718 * cable
4719 */
4720 if (ata_dev_pair(dev)) {
4721 /* No PIO5 or PIO6 */
4722 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4723 /* No MWDMA3 or MWDMA 4 */
4724 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4725 }
4726
37deecb5
TH
4727 if (ata_dma_blacklisted(dev)) {
4728 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4729 ata_dev_warn(dev,
4730 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4731 }
a6d5a51c 4732
14d66ab7 4733 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4734 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4735 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4736 ata_dev_warn(dev,
4737 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4738 }
565083e1 4739
e424675f
JG
4740 if (ap->flags & ATA_FLAG_NO_IORDY)
4741 xfer_mask &= ata_pio_mask_no_iordy(dev);
4742
5444a6f4 4743 if (ap->ops->mode_filter)
a76b62ca 4744 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4745
8343f889
RH
4746 /* Apply cable rule here. Don't apply it early because when
4747 * we handle hot plug the cable type can itself change.
4748 * Check this last so that we know if the transfer rate was
4749 * solely limited by the cable.
4750 * Unknown or 80 wire cables reported host side are checked
4751 * drive side as well. Cases where we know a 40wire cable
4752 * is used safely for 80 are not checked here.
4753 */
4754 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4755 /* UDMA/44 or higher would be available */
15a5551c 4756 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4757 ata_dev_warn(dev,
4758 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4759 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4760 }
4761
565083e1
TH
4762 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4763 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4764}
4765
1da177e4
LT
4766/**
4767 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4768 * @dev: Device to which command will be sent
4769 *
780a87f7
JG
4770 * Issue SET FEATURES - XFER MODE command to device @dev
4771 * on port @ap.
4772 *
1da177e4 4773 * LOCKING:
0cba632b 4774 * PCI/etc. bus probe sem.
83206a29
TH
4775 *
4776 * RETURNS:
4777 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4778 */
4779
3373efd8 4780static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4781{
a0123703 4782 struct ata_taskfile tf;
83206a29 4783 unsigned int err_mask;
1da177e4
LT
4784
4785 /* set up set-features taskfile */
4786 DPRINTK("set features - xfer mode\n");
4787
464cf177
TH
4788 /* Some controllers and ATAPI devices show flaky interrupt
4789 * behavior after setting xfer mode. Use polling instead.
4790 */
3373efd8 4791 ata_tf_init(dev, &tf);
a0123703
TH
4792 tf.command = ATA_CMD_SET_FEATURES;
4793 tf.feature = SETFEATURES_XFER;
464cf177 4794 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4795 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4796 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4797 if (ata_pio_need_iordy(dev))
4798 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4799 /* If the device has IORDY and the controller does not - turn it off */
4800 else if (ata_id_has_iordy(dev->id))
11b7becc 4801 tf.nsect = 0x01;
b9f8ab2d
AC
4802 else /* In the ancient relic department - skip all of this */
4803 return 0;
1da177e4 4804
d531be2c
MP
4805 /* On some disks, this command causes spin-up, so we need longer timeout */
4806 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4807
4808 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4809 return err_mask;
4810}
1152b261 4811
9f45cbd3 4812/**
218f3d30 4813 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4814 * @dev: Device to which command will be sent
4815 * @enable: Whether to enable or disable the feature
218f3d30 4816 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4817 *
4818 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4819 * on port @ap with sector count
9f45cbd3
KCA
4820 *
4821 * LOCKING:
4822 * PCI/etc. bus probe sem.
4823 *
4824 * RETURNS:
4825 * 0 on success, AC_ERR_* mask otherwise.
4826 */
1152b261 4827unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4828{
4829 struct ata_taskfile tf;
4830 unsigned int err_mask;
974e0a45 4831 unsigned long timeout = 0;
9f45cbd3
KCA
4832
4833 /* set up set-features taskfile */
4834 DPRINTK("set features - SATA features\n");
4835
4836 ata_tf_init(dev, &tf);
4837 tf.command = ATA_CMD_SET_FEATURES;
4838 tf.feature = enable;
4839 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4840 tf.protocol = ATA_PROT_NODATA;
218f3d30 4841 tf.nsect = feature;
9f45cbd3 4842
974e0a45
DLM
4843 if (enable == SETFEATURES_SPINUP)
4844 timeout = ata_probe_timeout ?
4845 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4846 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
1da177e4 4847
83206a29
TH
4848 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4849 return err_mask;
1da177e4 4850}
633de4cc 4851EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4852
8bf62ece
AL
4853/**
4854 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4855 * @dev: Device to which command will be sent
e2a7f77a
RD
4856 * @heads: Number of heads (taskfile parameter)
4857 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4858 *
4859 * LOCKING:
6aff8f1f
TH
4860 * Kernel thread context (may sleep)
4861 *
4862 * RETURNS:
4863 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4864 */
3373efd8
TH
4865static unsigned int ata_dev_init_params(struct ata_device *dev,
4866 u16 heads, u16 sectors)
8bf62ece 4867{
a0123703 4868 struct ata_taskfile tf;
6aff8f1f 4869 unsigned int err_mask;
8bf62ece
AL
4870
4871 /* Number of sectors per track 1-255. Number of heads 1-16 */
4872 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4873 return AC_ERR_INVALID;
8bf62ece
AL
4874
4875 /* set up init dev params taskfile */
4876 DPRINTK("init dev params \n");
4877
3373efd8 4878 ata_tf_init(dev, &tf);
a0123703
TH
4879 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4880 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4881 tf.protocol = ATA_PROT_NODATA;
4882 tf.nsect = sectors;
4883 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4884
2b789108 4885 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4886 /* A clean abort indicates an original or just out of spec drive
4887 and we should continue as we issue the setup based on the
4888 drive reported working geometry */
4889 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4890 err_mask = 0;
8bf62ece 4891
6aff8f1f
TH
4892 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4893 return err_mask;
8bf62ece
AL
4894}
4895
1da177e4 4896/**
5895ef9a 4897 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4898 * @qc: Metadata associated with taskfile to check
4899 *
780a87f7
JG
4900 * Allow low-level driver to filter ATA PACKET commands, returning
4901 * a status indicating whether or not it is OK to use DMA for the
4902 * supplied PACKET command.
4903 *
1da177e4 4904 * LOCKING:
624d5c51
TH
4905 * spin_lock_irqsave(host lock)
4906 *
4907 * RETURNS: 0 when ATAPI DMA can be used
4908 * nonzero otherwise
4909 */
5895ef9a 4910int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4911{
4912 struct ata_port *ap = qc->ap;
71601958 4913
624d5c51
TH
4914 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4915 * few ATAPI devices choke on such DMA requests.
4916 */
6a87e42e
TH
4917 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4918 unlikely(qc->nbytes & 15))
624d5c51 4919 return 1;
e2cec771 4920
624d5c51
TH
4921 if (ap->ops->check_atapi_dma)
4922 return ap->ops->check_atapi_dma(qc);
e2cec771 4923
624d5c51
TH
4924 return 0;
4925}
1da177e4 4926
624d5c51
TH
4927/**
4928 * ata_std_qc_defer - Check whether a qc needs to be deferred
4929 * @qc: ATA command in question
4930 *
4931 * Non-NCQ commands cannot run with any other command, NCQ or
4932 * not. As upper layer only knows the queue depth, we are
4933 * responsible for maintaining exclusion. This function checks
4934 * whether a new command @qc can be issued.
4935 *
4936 * LOCKING:
4937 * spin_lock_irqsave(host lock)
4938 *
4939 * RETURNS:
4940 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4941 */
4942int ata_std_qc_defer(struct ata_queued_cmd *qc)
4943{
4944 struct ata_link *link = qc->dev->link;
e2cec771 4945
179b310a 4946 if (ata_is_ncq(qc->tf.protocol)) {
624d5c51
TH
4947 if (!ata_tag_valid(link->active_tag))
4948 return 0;
4949 } else {
4950 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4951 return 0;
4952 }
e2cec771 4953
624d5c51
TH
4954 return ATA_DEFER_LINK;
4955}
6912ccd5 4956
624d5c51 4957void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4958
624d5c51
TH
4959/**
4960 * ata_sg_init - Associate command with scatter-gather table.
4961 * @qc: Command to be associated
4962 * @sg: Scatter-gather table.
4963 * @n_elem: Number of elements in s/g table.
4964 *
4965 * Initialize the data-related elements of queued_cmd @qc
4966 * to point to a scatter-gather table @sg, containing @n_elem
4967 * elements.
4968 *
4969 * LOCKING:
4970 * spin_lock_irqsave(host lock)
4971 */
4972void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4973 unsigned int n_elem)
4974{
4975 qc->sg = sg;
4976 qc->n_elem = n_elem;
4977 qc->cursg = qc->sg;
4978}
bb5cb290 4979
2874d5ee
GU
4980#ifdef CONFIG_HAS_DMA
4981
4982/**
4983 * ata_sg_clean - Unmap DMA memory associated with command
4984 * @qc: Command containing DMA memory to be released
4985 *
4986 * Unmap all mapped DMA memory associated with this command.
4987 *
4988 * LOCKING:
4989 * spin_lock_irqsave(host lock)
4990 */
af27e01c 4991static void ata_sg_clean(struct ata_queued_cmd *qc)
2874d5ee
GU
4992{
4993 struct ata_port *ap = qc->ap;
4994 struct scatterlist *sg = qc->sg;
4995 int dir = qc->dma_dir;
4996
4997 WARN_ON_ONCE(sg == NULL);
4998
4999 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5000
5001 if (qc->n_elem)
5002 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5003
5004 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5005 qc->sg = NULL;
5006}
5007
624d5c51
TH
5008/**
5009 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5010 * @qc: Command with scatter-gather table to be mapped.
5011 *
5012 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5013 *
5014 * LOCKING:
5015 * spin_lock_irqsave(host lock)
5016 *
5017 * RETURNS:
5018 * Zero on success, negative on error.
5019 *
5020 */
5021static int ata_sg_setup(struct ata_queued_cmd *qc)
5022{
5023 struct ata_port *ap = qc->ap;
5024 unsigned int n_elem;
1da177e4 5025
624d5c51 5026 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 5027
624d5c51
TH
5028 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5029 if (n_elem < 1)
5030 return -1;
bb5cb290 5031
624d5c51 5032 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 5033 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
5034 qc->n_elem = n_elem;
5035 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 5036
624d5c51 5037 return 0;
1da177e4
LT
5038}
5039
2874d5ee
GU
5040#else /* !CONFIG_HAS_DMA */
5041
5042static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5043static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5044
5045#endif /* !CONFIG_HAS_DMA */
5046
624d5c51
TH
5047/**
5048 * swap_buf_le16 - swap halves of 16-bit words in place
5049 * @buf: Buffer to swap
5050 * @buf_words: Number of 16-bit words in buffer.
5051 *
5052 * Swap halves of 16-bit words if needed to convert from
5053 * little-endian byte order to native cpu byte order, or
5054 * vice-versa.
5055 *
5056 * LOCKING:
5057 * Inherited from caller.
5058 */
5059void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 5060{
624d5c51
TH
5061#ifdef __BIG_ENDIAN
5062 unsigned int i;
8061f5f0 5063
624d5c51
TH
5064 for (i = 0; i < buf_words; i++)
5065 buf[i] = le16_to_cpu(buf[i]);
5066#endif /* __BIG_ENDIAN */
8061f5f0
TH
5067}
5068
8a8bc223 5069/**
98bd4be1
SL
5070 * ata_qc_new_init - Request an available ATA command, and initialize it
5071 * @dev: Device from whom we request an available command structure
38755e89 5072 * @tag: tag
1871ee13 5073 *
8a8bc223
TH
5074 * LOCKING:
5075 * None.
5076 */
5077
98bd4be1 5078struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 5079{
98bd4be1 5080 struct ata_port *ap = dev->link->ap;
12cb5ce1 5081 struct ata_queued_cmd *qc;
8a8bc223
TH
5082
5083 /* no command while frozen */
5084 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5085 return NULL;
5086
98bd4be1 5087 /* libsas case */
5067c046 5088 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
5089 tag = ata_sas_allocate_tag(ap);
5090 if (tag < 0)
5091 return NULL;
8a4aeec8 5092 }
8a8bc223 5093
98bd4be1
SL
5094 qc = __ata_qc_from_tag(ap, tag);
5095 qc->tag = tag;
5096 qc->scsicmd = NULL;
5097 qc->ap = ap;
5098 qc->dev = dev;
1da177e4 5099
98bd4be1 5100 ata_qc_reinit(qc);
1da177e4
LT
5101
5102 return qc;
5103}
5104
8a8bc223
TH
5105/**
5106 * ata_qc_free - free unused ata_queued_cmd
5107 * @qc: Command to complete
5108 *
5109 * Designed to free unused ata_queued_cmd object
5110 * in case something prevents using it.
5111 *
5112 * LOCKING:
5113 * spin_lock_irqsave(host lock)
5114 */
5115void ata_qc_free(struct ata_queued_cmd *qc)
5116{
a1104016 5117 struct ata_port *ap;
8a8bc223
TH
5118 unsigned int tag;
5119
efcb3cf7 5120 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 5121 ap = qc->ap;
8a8bc223
TH
5122
5123 qc->flags = 0;
5124 tag = qc->tag;
5125 if (likely(ata_tag_valid(tag))) {
5126 qc->tag = ATA_TAG_POISON;
5067c046 5127 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 5128 ata_sas_free_tag(tag, ap);
8a8bc223
TH
5129 }
5130}
5131
76014427 5132void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5133{
a1104016
JL
5134 struct ata_port *ap;
5135 struct ata_link *link;
dedaf2b0 5136
efcb3cf7
TH
5137 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5138 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
5139 ap = qc->ap;
5140 link = qc->dev->link;
1da177e4
LT
5141
5142 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5143 ata_sg_clean(qc);
5144
7401abf2 5145 /* command should be marked inactive atomically with qc completion */
179b310a 5146 if (ata_is_ncq(qc->tf.protocol)) {
9af5c9c9 5147 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5148 if (!link->sactive)
5149 ap->nr_active_links--;
5150 } else {
9af5c9c9 5151 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5152 ap->nr_active_links--;
5153 }
5154
5155 /* clear exclusive status */
5156 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5157 ap->excl_link == link))
5158 ap->excl_link = NULL;
7401abf2 5159
3f3791d3
AL
5160 /* atapi: mark qc as inactive to prevent the interrupt handler
5161 * from completing the command twice later, before the error handler
5162 * is called. (when rc != 0 and atapi request sense is needed)
5163 */
5164 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5165 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5166
1da177e4 5167 /* call completion callback */
77853bf2 5168 qc->complete_fn(qc);
1da177e4
LT
5169}
5170
39599a53
TH
5171static void fill_result_tf(struct ata_queued_cmd *qc)
5172{
5173 struct ata_port *ap = qc->ap;
5174
39599a53 5175 qc->result_tf.flags = qc->tf.flags;
22183bf5 5176 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5177}
5178
00115e0f
TH
5179static void ata_verify_xfer(struct ata_queued_cmd *qc)
5180{
5181 struct ata_device *dev = qc->dev;
5182
eb0effdf 5183 if (!ata_is_data(qc->tf.protocol))
00115e0f
TH
5184 return;
5185
5186 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5187 return;
5188
5189 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5190}
5191
f686bcb8
TH
5192/**
5193 * ata_qc_complete - Complete an active ATA command
5194 * @qc: Command to complete
f686bcb8 5195 *
1aadf5c3
TH
5196 * Indicate to the mid and upper layers that an ATA command has
5197 * completed, with either an ok or not-ok status.
5198 *
5199 * Refrain from calling this function multiple times when
5200 * successfully completing multiple NCQ commands.
5201 * ata_qc_complete_multiple() should be used instead, which will
5202 * properly update IRQ expect state.
f686bcb8
TH
5203 *
5204 * LOCKING:
cca3974e 5205 * spin_lock_irqsave(host lock)
f686bcb8
TH
5206 */
5207void ata_qc_complete(struct ata_queued_cmd *qc)
5208{
5209 struct ata_port *ap = qc->ap;
5210
eb25cb99
SL
5211 /* Trigger the LED (if available) */
5212 ledtrig_disk_activity();
5213
f686bcb8
TH
5214 /* XXX: New EH and old EH use different mechanisms to
5215 * synchronize EH with regular execution path.
5216 *
5217 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5218 * Normal execution path is responsible for not accessing a
5219 * failed qc. libata core enforces the rule by returning NULL
5220 * from ata_qc_from_tag() for failed qcs.
5221 *
5222 * Old EH depends on ata_qc_complete() nullifying completion
5223 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5224 * not synchronize with interrupt handler. Only PIO task is
5225 * taken care of.
5226 */
5227 if (ap->ops->error_handler) {
4dbfa39b
TH
5228 struct ata_device *dev = qc->dev;
5229 struct ata_eh_info *ehi = &dev->link->eh_info;
5230
f686bcb8
TH
5231 if (unlikely(qc->err_mask))
5232 qc->flags |= ATA_QCFLAG_FAILED;
5233
f08dc1ac
TH
5234 /*
5235 * Finish internal commands without any further processing
5236 * and always with the result TF filled.
5237 */
5238 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 5239 fill_result_tf(qc);
255c03d1 5240 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
5241 __ata_qc_complete(qc);
5242 return;
5243 }
f4b31db9 5244
f08dc1ac
TH
5245 /*
5246 * Non-internal qc has failed. Fill the result TF and
5247 * summon EH.
5248 */
5249 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5250 fill_result_tf(qc);
255c03d1 5251 trace_ata_qc_complete_failed(qc);
f08dc1ac 5252 ata_qc_schedule_eh(qc);
f4b31db9 5253 return;
f686bcb8
TH
5254 }
5255
4dc738ed
TH
5256 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5257
f686bcb8
TH
5258 /* read result TF if requested */
5259 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5260 fill_result_tf(qc);
f686bcb8 5261
255c03d1 5262 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
5263 /* Some commands need post-processing after successful
5264 * completion.
5265 */
5266 switch (qc->tf.command) {
5267 case ATA_CMD_SET_FEATURES:
5268 if (qc->tf.feature != SETFEATURES_WC_ON &&
0c12735e
TY
5269 qc->tf.feature != SETFEATURES_WC_OFF &&
5270 qc->tf.feature != SETFEATURES_RA_ON &&
5271 qc->tf.feature != SETFEATURES_RA_OFF)
4dbfa39b
TH
5272 break;
5273 /* fall through */
5274 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5275 case ATA_CMD_SET_MULTI: /* multi_count changed */
5276 /* revalidate device */
5277 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5278 ata_port_schedule_eh(ap);
5279 break;
054a5fba
TH
5280
5281 case ATA_CMD_SLEEP:
5282 dev->flags |= ATA_DFLAG_SLEEPING;
5283 break;
4dbfa39b
TH
5284 }
5285
00115e0f
TH
5286 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5287 ata_verify_xfer(qc);
5288
f686bcb8
TH
5289 __ata_qc_complete(qc);
5290 } else {
5291 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5292 return;
5293
5294 /* read result TF if failed or requested */
5295 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5296 fill_result_tf(qc);
f686bcb8
TH
5297
5298 __ata_qc_complete(qc);
5299 }
5300}
5301
dedaf2b0
TH
5302/**
5303 * ata_qc_complete_multiple - Complete multiple qcs successfully
5304 * @ap: port in question
5305 * @qc_active: new qc_active mask
dedaf2b0
TH
5306 *
5307 * Complete in-flight commands. This functions is meant to be
5308 * called from low-level driver's interrupt routine to complete
5309 * requests normally. ap->qc_active and @qc_active is compared
5310 * and commands are completed accordingly.
5311 *
1aadf5c3
TH
5312 * Always use this function when completing multiple NCQ commands
5313 * from IRQ handlers instead of calling ata_qc_complete()
5314 * multiple times to keep IRQ expect status properly in sync.
5315 *
dedaf2b0 5316 * LOCKING:
cca3974e 5317 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5318 *
5319 * RETURNS:
5320 * Number of completed commands on success, -errno otherwise.
5321 */
79f97dad 5322int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5323{
5324 int nr_done = 0;
5325 u32 done_mask;
dedaf2b0
TH
5326
5327 done_mask = ap->qc_active ^ qc_active;
5328
5329 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5330 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5331 ap->qc_active, qc_active);
dedaf2b0
TH
5332 return -EINVAL;
5333 }
5334
43768180 5335 while (done_mask) {
dedaf2b0 5336 struct ata_queued_cmd *qc;
43768180 5337 unsigned int tag = __ffs(done_mask);
dedaf2b0 5338
43768180
JA
5339 qc = ata_qc_from_tag(ap, tag);
5340 if (qc) {
dedaf2b0
TH
5341 ata_qc_complete(qc);
5342 nr_done++;
5343 }
43768180 5344 done_mask &= ~(1 << tag);
dedaf2b0
TH
5345 }
5346
5347 return nr_done;
5348}
5349
1da177e4
LT
5350/**
5351 * ata_qc_issue - issue taskfile to device
5352 * @qc: command to issue to device
5353 *
5354 * Prepare an ATA command to submission to device.
5355 * This includes mapping the data into a DMA-able
5356 * area, filling in the S/G table, and finally
5357 * writing the taskfile to hardware, starting the command.
5358 *
5359 * LOCKING:
cca3974e 5360 * spin_lock_irqsave(host lock)
1da177e4 5361 */
8e0e694a 5362void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5363{
5364 struct ata_port *ap = qc->ap;
9af5c9c9 5365 struct ata_link *link = qc->dev->link;
405e66b3 5366 u8 prot = qc->tf.protocol;
1da177e4 5367
dedaf2b0
TH
5368 /* Make sure only one non-NCQ command is outstanding. The
5369 * check is skipped for old EH because it reuses active qc to
5370 * request ATAPI sense.
5371 */
efcb3cf7 5372 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5373
1973a023 5374 if (ata_is_ncq(prot)) {
efcb3cf7 5375 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5376
5377 if (!link->sactive)
5378 ap->nr_active_links++;
9af5c9c9 5379 link->sactive |= 1 << qc->tag;
dedaf2b0 5380 } else {
efcb3cf7 5381 WARN_ON_ONCE(link->sactive);
da917d69
TH
5382
5383 ap->nr_active_links++;
9af5c9c9 5384 link->active_tag = qc->tag;
dedaf2b0
TH
5385 }
5386
e4a70e76 5387 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5388 ap->qc_active |= 1 << qc->tag;
e4a70e76 5389
60f5d6ef
TH
5390 /*
5391 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5392 * non-zero sg if the command is a data command.
5393 */
60f5d6ef
TH
5394 if (WARN_ON_ONCE(ata_is_data(prot) &&
5395 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5396 goto sys_err;
f92a2636 5397
405e66b3 5398 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5399 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5400 if (ata_sg_setup(qc))
60f5d6ef 5401 goto sys_err;
1da177e4 5402
cf480626 5403 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5404 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5405 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5406 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5407 ata_link_abort(link);
5408 return;
5409 }
5410
1da177e4 5411 ap->ops->qc_prep(qc);
255c03d1 5412 trace_ata_qc_issue(qc);
8e0e694a
TH
5413 qc->err_mask |= ap->ops->qc_issue(qc);
5414 if (unlikely(qc->err_mask))
5415 goto err;
5416 return;
1da177e4 5417
60f5d6ef 5418sys_err:
8e0e694a
TH
5419 qc->err_mask |= AC_ERR_SYSTEM;
5420err:
5421 ata_qc_complete(qc);
1da177e4
LT
5422}
5423
34bf2170
TH
5424/**
5425 * sata_scr_valid - test whether SCRs are accessible
936fd732 5426 * @link: ATA link to test SCR accessibility for
34bf2170 5427 *
936fd732 5428 * Test whether SCRs are accessible for @link.
34bf2170
TH
5429 *
5430 * LOCKING:
5431 * None.
5432 *
5433 * RETURNS:
5434 * 1 if SCRs are accessible, 0 otherwise.
5435 */
936fd732 5436int sata_scr_valid(struct ata_link *link)
34bf2170 5437{
936fd732
TH
5438 struct ata_port *ap = link->ap;
5439
a16abc0b 5440 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5441}
5442
5443/**
5444 * sata_scr_read - read SCR register of the specified port
936fd732 5445 * @link: ATA link to read SCR for
34bf2170
TH
5446 * @reg: SCR to read
5447 * @val: Place to store read value
5448 *
936fd732 5449 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5450 * guaranteed to succeed if @link is ap->link, the cable type of
5451 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5452 *
5453 * LOCKING:
633273a3 5454 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5455 *
5456 * RETURNS:
5457 * 0 on success, negative errno on failure.
5458 */
936fd732 5459int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5460{
633273a3 5461 if (ata_is_host_link(link)) {
633273a3 5462 if (sata_scr_valid(link))
82ef04fb 5463 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5464 return -EOPNOTSUPP;
5465 }
5466
5467 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5468}
5469
5470/**
5471 * sata_scr_write - write SCR register of the specified port
936fd732 5472 * @link: ATA link to write SCR for
34bf2170
TH
5473 * @reg: SCR to write
5474 * @val: value to write
5475 *
936fd732 5476 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5477 * guaranteed to succeed if @link is ap->link, the cable type of
5478 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5479 *
5480 * LOCKING:
633273a3 5481 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5482 *
5483 * RETURNS:
5484 * 0 on success, negative errno on failure.
5485 */
936fd732 5486int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5487{
633273a3 5488 if (ata_is_host_link(link)) {
633273a3 5489 if (sata_scr_valid(link))
82ef04fb 5490 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5491 return -EOPNOTSUPP;
5492 }
936fd732 5493
633273a3 5494 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5495}
5496
5497/**
5498 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5499 * @link: ATA link to write SCR for
34bf2170
TH
5500 * @reg: SCR to write
5501 * @val: value to write
5502 *
5503 * This function is identical to sata_scr_write() except that this
5504 * function performs flush after writing to the register.
5505 *
5506 * LOCKING:
633273a3 5507 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5508 *
5509 * RETURNS:
5510 * 0 on success, negative errno on failure.
5511 */
936fd732 5512int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5513{
633273a3 5514 if (ata_is_host_link(link)) {
633273a3 5515 int rc;
da3dbb17 5516
633273a3 5517 if (sata_scr_valid(link)) {
82ef04fb 5518 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5519 if (rc == 0)
82ef04fb 5520 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5521 return rc;
5522 }
5523 return -EOPNOTSUPP;
34bf2170 5524 }
633273a3
TH
5525
5526 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5527}
5528
5529/**
b1c72916 5530 * ata_phys_link_online - test whether the given link is online
936fd732 5531 * @link: ATA link to test
34bf2170 5532 *
936fd732
TH
5533 * Test whether @link is online. Note that this function returns
5534 * 0 if online status of @link cannot be obtained, so
5535 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5536 *
5537 * LOCKING:
5538 * None.
5539 *
5540 * RETURNS:
b5b3fa38 5541 * True if the port online status is available and online.
34bf2170 5542 */
b1c72916 5543bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5544{
5545 u32 sstatus;
5546
936fd732 5547 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5548 ata_sstatus_online(sstatus))
b5b3fa38
TH
5549 return true;
5550 return false;
34bf2170
TH
5551}
5552
5553/**
b1c72916 5554 * ata_phys_link_offline - test whether the given link is offline
936fd732 5555 * @link: ATA link to test
34bf2170 5556 *
936fd732
TH
5557 * Test whether @link is offline. Note that this function
5558 * returns 0 if offline status of @link cannot be obtained, so
5559 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5560 *
5561 * LOCKING:
5562 * None.
5563 *
5564 * RETURNS:
b5b3fa38 5565 * True if the port offline status is available and offline.
34bf2170 5566 */
b1c72916 5567bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5568{
5569 u32 sstatus;
5570
936fd732 5571 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5572 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5573 return true;
5574 return false;
34bf2170 5575}
0baab86b 5576
b1c72916
TH
5577/**
5578 * ata_link_online - test whether the given link is online
5579 * @link: ATA link to test
5580 *
5581 * Test whether @link is online. This is identical to
5582 * ata_phys_link_online() when there's no slave link. When
5583 * there's a slave link, this function should only be called on
5584 * the master link and will return true if any of M/S links is
5585 * online.
5586 *
5587 * LOCKING:
5588 * None.
5589 *
5590 * RETURNS:
5591 * True if the port online status is available and online.
5592 */
5593bool ata_link_online(struct ata_link *link)
5594{
5595 struct ata_link *slave = link->ap->slave_link;
5596
5597 WARN_ON(link == slave); /* shouldn't be called on slave link */
5598
5599 return ata_phys_link_online(link) ||
5600 (slave && ata_phys_link_online(slave));
5601}
5602
5603/**
5604 * ata_link_offline - test whether the given link is offline
5605 * @link: ATA link to test
5606 *
5607 * Test whether @link is offline. This is identical to
5608 * ata_phys_link_offline() when there's no slave link. When
5609 * there's a slave link, this function should only be called on
5610 * the master link and will return true if both M/S links are
5611 * offline.
5612 *
5613 * LOCKING:
5614 * None.
5615 *
5616 * RETURNS:
5617 * True if the port offline status is available and offline.
5618 */
5619bool ata_link_offline(struct ata_link *link)
5620{
5621 struct ata_link *slave = link->ap->slave_link;
5622
5623 WARN_ON(link == slave); /* shouldn't be called on slave link */
5624
5625 return ata_phys_link_offline(link) &&
5626 (!slave || ata_phys_link_offline(slave));
5627}
5628
6ffa01d8 5629#ifdef CONFIG_PM
bc6e7c4b
DW
5630static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5631 unsigned int action, unsigned int ehi_flags,
5632 bool async)
500530f6 5633{
5ef41082 5634 struct ata_link *link;
500530f6 5635 unsigned long flags;
500530f6 5636
5ef41082
LM
5637 /* Previous resume operation might still be in
5638 * progress. Wait for PM_PENDING to clear.
5639 */
5640 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5641 ata_port_wait_eh(ap);
5642 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5643 }
500530f6 5644
5ef41082
LM
5645 /* request PM ops to EH */
5646 spin_lock_irqsave(ap->lock, flags);
500530f6 5647
5ef41082 5648 ap->pm_mesg = mesg;
5ef41082
LM
5649 ap->pflags |= ATA_PFLAG_PM_PENDING;
5650 ata_for_each_link(link, ap, HOST_FIRST) {
5651 link->eh_info.action |= action;
5652 link->eh_info.flags |= ehi_flags;
5653 }
500530f6 5654
5ef41082 5655 ata_port_schedule_eh(ap);
500530f6 5656
5ef41082 5657 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5658
2fcbdcb4 5659 if (!async) {
5ef41082
LM
5660 ata_port_wait_eh(ap);
5661 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5662 }
500530f6
TH
5663}
5664
bc6e7c4b
DW
5665/*
5666 * On some hardware, device fails to respond after spun down for suspend. As
5667 * the device won't be used before being resumed, we don't need to touch the
5668 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5669 *
5670 * http://thread.gmane.org/gmane.linux.ide/46764
5671 */
5672static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5673 | ATA_EHI_NO_AUTOPSY
5674 | ATA_EHI_NO_RECOVERY;
5675
5676static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5677{
bc6e7c4b 5678 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5679}
5680
bc6e7c4b 5681static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5682{
bc6e7c4b 5683 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5684}
5685
bc6e7c4b 5686static int ata_port_pm_suspend(struct device *dev)
5ef41082 5687{
bc6e7c4b
DW
5688 struct ata_port *ap = to_ata_port(dev);
5689
5ef41082
LM
5690 if (pm_runtime_suspended(dev))
5691 return 0;
5692
bc6e7c4b
DW
5693 ata_port_suspend(ap, PMSG_SUSPEND);
5694 return 0;
33574d68
LM
5695}
5696
bc6e7c4b 5697static int ata_port_pm_freeze(struct device *dev)
33574d68 5698{
bc6e7c4b
DW
5699 struct ata_port *ap = to_ata_port(dev);
5700
33574d68 5701 if (pm_runtime_suspended(dev))
f5e6d0d0 5702 return 0;
33574d68 5703
bc6e7c4b
DW
5704 ata_port_suspend(ap, PMSG_FREEZE);
5705 return 0;
33574d68
LM
5706}
5707
bc6e7c4b 5708static int ata_port_pm_poweroff(struct device *dev)
33574d68 5709{
bc6e7c4b
DW
5710 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5711 return 0;
5ef41082
LM
5712}
5713
bc6e7c4b
DW
5714static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5715 | ATA_EHI_QUIET;
5ef41082 5716
bc6e7c4b
DW
5717static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5718{
5719 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5720}
5721
bc6e7c4b 5722static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5723{
bc6e7c4b 5724 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5725}
5726
bc6e7c4b 5727static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5728{
200421a8 5729 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5730 pm_runtime_disable(dev);
5731 pm_runtime_set_active(dev);
5732 pm_runtime_enable(dev);
5733 return 0;
e90b1e5a
LM
5734}
5735
7e15e9be
AL
5736/*
5737 * For ODDs, the upper layer will poll for media change every few seconds,
5738 * which will make it enter and leave suspend state every few seconds. And
5739 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5740 * is very little and the ODD may malfunction after constantly being reset.
5741 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5742 * ODD is attached to the port.
5743 */
9ee4f393
LM
5744static int ata_port_runtime_idle(struct device *dev)
5745{
7e15e9be
AL
5746 struct ata_port *ap = to_ata_port(dev);
5747 struct ata_link *link;
5748 struct ata_device *adev;
5749
5750 ata_for_each_link(link, ap, HOST_FIRST) {
5751 ata_for_each_dev(adev, link, ENABLED)
5752 if (adev->class == ATA_DEV_ATAPI &&
5753 !zpodd_dev_enabled(adev))
5754 return -EBUSY;
5755 }
5756
45f0a85c 5757 return 0;
9ee4f393
LM
5758}
5759
a7ff60db
AL
5760static int ata_port_runtime_suspend(struct device *dev)
5761{
bc6e7c4b
DW
5762 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5763 return 0;
a7ff60db
AL
5764}
5765
5766static int ata_port_runtime_resume(struct device *dev)
5767{
bc6e7c4b
DW
5768 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5769 return 0;
a7ff60db
AL
5770}
5771
5ef41082 5772static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5773 .suspend = ata_port_pm_suspend,
5774 .resume = ata_port_pm_resume,
5775 .freeze = ata_port_pm_freeze,
5776 .thaw = ata_port_pm_resume,
5777 .poweroff = ata_port_pm_poweroff,
5778 .restore = ata_port_pm_resume,
9ee4f393 5779
a7ff60db
AL
5780 .runtime_suspend = ata_port_runtime_suspend,
5781 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5782 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5783};
5784
2fcbdcb4
DW
5785/* sas ports don't participate in pm runtime management of ata_ports,
5786 * and need to resume ata devices at the domain level, not the per-port
5787 * level. sas suspend/resume is async to allow parallel port recovery
5788 * since sas has multiple ata_port instances per Scsi_Host.
5789 */
bc6e7c4b 5790void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5791{
bc6e7c4b 5792 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5793}
bc6e7c4b 5794EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5795
bc6e7c4b 5796void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5797{
bc6e7c4b 5798 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5799}
bc6e7c4b 5800EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5801
500530f6 5802/**
cca3974e
JG
5803 * ata_host_suspend - suspend host
5804 * @host: host to suspend
500530f6
TH
5805 * @mesg: PM message
5806 *
5ef41082 5807 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5808 */
cca3974e 5809int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5810{
5ef41082
LM
5811 host->dev->power.power_state = mesg;
5812 return 0;
500530f6
TH
5813}
5814
5815/**
cca3974e
JG
5816 * ata_host_resume - resume host
5817 * @host: host to resume
500530f6 5818 *
5ef41082 5819 * Resume @host. Actual operation is performed by port resume.
500530f6 5820 */
cca3974e 5821void ata_host_resume(struct ata_host *host)
500530f6 5822{
72ad6ec4 5823 host->dev->power.power_state = PMSG_ON;
500530f6 5824}
6ffa01d8 5825#endif
500530f6 5826
5ef41082
LM
5827struct device_type ata_port_type = {
5828 .name = "ata_port",
5829#ifdef CONFIG_PM
5830 .pm = &ata_port_pm_ops,
5831#endif
5832};
5833
3ef3b43d
TH
5834/**
5835 * ata_dev_init - Initialize an ata_device structure
5836 * @dev: Device structure to initialize
5837 *
5838 * Initialize @dev in preparation for probing.
5839 *
5840 * LOCKING:
5841 * Inherited from caller.
5842 */
5843void ata_dev_init(struct ata_device *dev)
5844{
b1c72916 5845 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5846 struct ata_port *ap = link->ap;
72fa4b74
TH
5847 unsigned long flags;
5848
b1c72916 5849 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5850 link->sata_spd_limit = link->hw_sata_spd_limit;
5851 link->sata_spd = 0;
5a04bf4b 5852
72fa4b74
TH
5853 /* High bits of dev->flags are used to record warm plug
5854 * requests which occur asynchronously. Synchronize using
cca3974e 5855 * host lock.
72fa4b74 5856 */
ba6a1308 5857 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5858 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5859 dev->horkage = 0;
ba6a1308 5860 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5861
99cf610a
TH
5862 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5863 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5864 dev->pio_mask = UINT_MAX;
5865 dev->mwdma_mask = UINT_MAX;
5866 dev->udma_mask = UINT_MAX;
5867}
5868
4fb37a25
TH
5869/**
5870 * ata_link_init - Initialize an ata_link structure
5871 * @ap: ATA port link is attached to
5872 * @link: Link structure to initialize
8989805d 5873 * @pmp: Port multiplier port number
4fb37a25
TH
5874 *
5875 * Initialize @link.
5876 *
5877 * LOCKING:
5878 * Kernel thread context (may sleep)
5879 */
fb7fd614 5880void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5881{
5882 int i;
5883
5884 /* clear everything except for devices */
d9027470
GG
5885 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5886 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5887
5888 link->ap = ap;
8989805d 5889 link->pmp = pmp;
4fb37a25
TH
5890 link->active_tag = ATA_TAG_POISON;
5891 link->hw_sata_spd_limit = UINT_MAX;
5892
5893 /* can't use iterator, ap isn't initialized yet */
5894 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5895 struct ata_device *dev = &link->device[i];
5896
5897 dev->link = link;
5898 dev->devno = dev - link->device;
110f66d2
TH
5899#ifdef CONFIG_ATA_ACPI
5900 dev->gtf_filter = ata_acpi_gtf_filter;
5901#endif
4fb37a25
TH
5902 ata_dev_init(dev);
5903 }
5904}
5905
5906/**
5907 * sata_link_init_spd - Initialize link->sata_spd_limit
5908 * @link: Link to configure sata_spd_limit for
5909 *
5910 * Initialize @link->[hw_]sata_spd_limit to the currently
5911 * configured value.
5912 *
5913 * LOCKING:
5914 * Kernel thread context (may sleep).
5915 *
5916 * RETURNS:
5917 * 0 on success, -errno on failure.
5918 */
fb7fd614 5919int sata_link_init_spd(struct ata_link *link)
4fb37a25 5920{
33267325 5921 u8 spd;
4fb37a25
TH
5922 int rc;
5923
d127ea7b 5924 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5925 if (rc)
5926 return rc;
5927
d127ea7b 5928 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5929 if (spd)
5930 link->hw_sata_spd_limit &= (1 << spd) - 1;
5931
05944bdf 5932 ata_force_link_limits(link);
33267325 5933
4fb37a25
TH
5934 link->sata_spd_limit = link->hw_sata_spd_limit;
5935
5936 return 0;
5937}
5938
1da177e4 5939/**
f3187195
TH
5940 * ata_port_alloc - allocate and initialize basic ATA port resources
5941 * @host: ATA host this allocated port belongs to
1da177e4 5942 *
f3187195
TH
5943 * Allocate and initialize basic ATA port resources.
5944 *
5945 * RETURNS:
5946 * Allocate ATA port on success, NULL on failure.
0cba632b 5947 *
1da177e4 5948 * LOCKING:
f3187195 5949 * Inherited from calling layer (may sleep).
1da177e4 5950 */
f3187195 5951struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5952{
f3187195 5953 struct ata_port *ap;
1da177e4 5954
f3187195
TH
5955 DPRINTK("ENTER\n");
5956
5957 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5958 if (!ap)
5959 return NULL;
4fca377f 5960
7b3a24c5 5961 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5962 ap->lock = &host->lock;
f3187195 5963 ap->print_id = -1;
e628dc99 5964 ap->local_port_no = -1;
cca3974e 5965 ap->host = host;
f3187195 5966 ap->dev = host->dev;
bd5d825c
BP
5967
5968#if defined(ATA_VERBOSE_DEBUG)
5969 /* turn on all debugging levels */
5970 ap->msg_enable = 0x00FF;
5971#elif defined(ATA_DEBUG)
5972 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5973#else
0dd4b21f 5974 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5975#endif
1da177e4 5976
ad72cf98 5977 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5978 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5979 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5980 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5981 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5982 init_completion(&ap->park_req_pending);
7c92357c
GT
5983 setup_deferrable_timer(&ap->fastdrain_timer,
5984 ata_eh_fastdrain_timerfn,
5985 (unsigned long)ap);
1da177e4 5986
838df628 5987 ap->cbl = ATA_CBL_NONE;
838df628 5988
8989805d 5989 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5990
5991#ifdef ATA_IRQ_TRAP
5992 ap->stats.unhandled_irq = 1;
5993 ap->stats.idle_irq = 1;
5994#endif
270390e1
TH
5995 ata_sff_port_init(ap);
5996
1da177e4 5997 return ap;
1da177e4
LT
5998}
5999
f0d36efd
TH
6000static void ata_host_release(struct device *gendev, void *res)
6001{
6002 struct ata_host *host = dev_get_drvdata(gendev);
6003 int i;
6004
1aa506e4
TH
6005 for (i = 0; i < host->n_ports; i++) {
6006 struct ata_port *ap = host->ports[i];
6007
4911487a
TH
6008 if (!ap)
6009 continue;
6010
6011 if (ap->scsi_host)
1aa506e4
TH
6012 scsi_host_put(ap->scsi_host);
6013
633273a3 6014 kfree(ap->pmp_link);
b1c72916 6015 kfree(ap->slave_link);
4911487a 6016 kfree(ap);
1aa506e4
TH
6017 host->ports[i] = NULL;
6018 }
6019
1aa56cca 6020 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6021}
6022
f3187195
TH
6023/**
6024 * ata_host_alloc - allocate and init basic ATA host resources
6025 * @dev: generic device this host is associated with
6026 * @max_ports: maximum number of ATA ports associated with this host
6027 *
6028 * Allocate and initialize basic ATA host resources. LLD calls
6029 * this function to allocate a host, initializes it fully and
6030 * attaches it using ata_host_register().
6031 *
6032 * @max_ports ports are allocated and host->n_ports is
6033 * initialized to @max_ports. The caller is allowed to decrease
6034 * host->n_ports before calling ata_host_register(). The unused
6035 * ports will be automatically freed on registration.
6036 *
6037 * RETURNS:
6038 * Allocate ATA host on success, NULL on failure.
6039 *
6040 * LOCKING:
6041 * Inherited from calling layer (may sleep).
6042 */
6043struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6044{
6045 struct ata_host *host;
6046 size_t sz;
6047 int i;
6048
6049 DPRINTK("ENTER\n");
6050
6051 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6052 return NULL;
6053
6054 /* alloc a container for our list of ATA ports (buses) */
6055 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6056 /* alloc a container for our list of ATA ports (buses) */
6057 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6058 if (!host)
6059 goto err_out;
6060
6061 devres_add(dev, host);
6062 dev_set_drvdata(dev, host);
6063
6064 spin_lock_init(&host->lock);
c0c362b6 6065 mutex_init(&host->eh_mutex);
f3187195
TH
6066 host->dev = dev;
6067 host->n_ports = max_ports;
6068
6069 /* allocate ports bound to this host */
6070 for (i = 0; i < max_ports; i++) {
6071 struct ata_port *ap;
6072
6073 ap = ata_port_alloc(host);
6074 if (!ap)
6075 goto err_out;
6076
6077 ap->port_no = i;
6078 host->ports[i] = ap;
6079 }
6080
6081 devres_remove_group(dev, NULL);
6082 return host;
6083
6084 err_out:
6085 devres_release_group(dev, NULL);
6086 return NULL;
6087}
6088
f5cda257
TH
6089/**
6090 * ata_host_alloc_pinfo - alloc host and init with port_info array
6091 * @dev: generic device this host is associated with
6092 * @ppi: array of ATA port_info to initialize host with
6093 * @n_ports: number of ATA ports attached to this host
6094 *
6095 * Allocate ATA host and initialize with info from @ppi. If NULL
6096 * terminated, @ppi may contain fewer entries than @n_ports. The
6097 * last entry will be used for the remaining ports.
6098 *
6099 * RETURNS:
6100 * Allocate ATA host on success, NULL on failure.
6101 *
6102 * LOCKING:
6103 * Inherited from calling layer (may sleep).
6104 */
6105struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6106 const struct ata_port_info * const * ppi,
6107 int n_ports)
6108{
6109 const struct ata_port_info *pi;
6110 struct ata_host *host;
6111 int i, j;
6112
6113 host = ata_host_alloc(dev, n_ports);
6114 if (!host)
6115 return NULL;
6116
6117 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6118 struct ata_port *ap = host->ports[i];
6119
6120 if (ppi[j])
6121 pi = ppi[j++];
6122
6123 ap->pio_mask = pi->pio_mask;
6124 ap->mwdma_mask = pi->mwdma_mask;
6125 ap->udma_mask = pi->udma_mask;
6126 ap->flags |= pi->flags;
0c88758b 6127 ap->link.flags |= pi->link_flags;
f5cda257
TH
6128 ap->ops = pi->port_ops;
6129
6130 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6131 host->ops = pi->port_ops;
f5cda257
TH
6132 }
6133
6134 return host;
6135}
6136
b1c72916
TH
6137/**
6138 * ata_slave_link_init - initialize slave link
6139 * @ap: port to initialize slave link for
6140 *
6141 * Create and initialize slave link for @ap. This enables slave
6142 * link handling on the port.
6143 *
6144 * In libata, a port contains links and a link contains devices.
6145 * There is single host link but if a PMP is attached to it,
6146 * there can be multiple fan-out links. On SATA, there's usually
6147 * a single device connected to a link but PATA and SATA
6148 * controllers emulating TF based interface can have two - master
6149 * and slave.
6150 *
6151 * However, there are a few controllers which don't fit into this
6152 * abstraction too well - SATA controllers which emulate TF
6153 * interface with both master and slave devices but also have
6154 * separate SCR register sets for each device. These controllers
6155 * need separate links for physical link handling
6156 * (e.g. onlineness, link speed) but should be treated like a
6157 * traditional M/S controller for everything else (e.g. command
6158 * issue, softreset).
6159 *
6160 * slave_link is libata's way of handling this class of
6161 * controllers without impacting core layer too much. For
6162 * anything other than physical link handling, the default host
6163 * link is used for both master and slave. For physical link
6164 * handling, separate @ap->slave_link is used. All dirty details
6165 * are implemented inside libata core layer. From LLD's POV, the
6166 * only difference is that prereset, hardreset and postreset are
6167 * called once more for the slave link, so the reset sequence
6168 * looks like the following.
6169 *
6170 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6171 * softreset(M) -> postreset(M) -> postreset(S)
6172 *
6173 * Note that softreset is called only for the master. Softreset
6174 * resets both M/S by definition, so SRST on master should handle
6175 * both (the standard method will work just fine).
6176 *
6177 * LOCKING:
6178 * Should be called before host is registered.
6179 *
6180 * RETURNS:
6181 * 0 on success, -errno on failure.
6182 */
6183int ata_slave_link_init(struct ata_port *ap)
6184{
6185 struct ata_link *link;
6186
6187 WARN_ON(ap->slave_link);
6188 WARN_ON(ap->flags & ATA_FLAG_PMP);
6189
6190 link = kzalloc(sizeof(*link), GFP_KERNEL);
6191 if (!link)
6192 return -ENOMEM;
6193
6194 ata_link_init(ap, link, 1);
6195 ap->slave_link = link;
6196 return 0;
6197}
6198
32ebbc0c
TH
6199static void ata_host_stop(struct device *gendev, void *res)
6200{
6201 struct ata_host *host = dev_get_drvdata(gendev);
6202 int i;
6203
6204 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6205
6206 for (i = 0; i < host->n_ports; i++) {
6207 struct ata_port *ap = host->ports[i];
6208
6209 if (ap->ops->port_stop)
6210 ap->ops->port_stop(ap);
6211 }
6212
6213 if (host->ops->host_stop)
6214 host->ops->host_stop(host);
6215}
6216
029cfd6b
TH
6217/**
6218 * ata_finalize_port_ops - finalize ata_port_operations
6219 * @ops: ata_port_operations to finalize
6220 *
6221 * An ata_port_operations can inherit from another ops and that
6222 * ops can again inherit from another. This can go on as many
6223 * times as necessary as long as there is no loop in the
6224 * inheritance chain.
6225 *
6226 * Ops tables are finalized when the host is started. NULL or
6227 * unspecified entries are inherited from the closet ancestor
6228 * which has the method and the entry is populated with it.
6229 * After finalization, the ops table directly points to all the
6230 * methods and ->inherits is no longer necessary and cleared.
6231 *
6232 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6233 *
6234 * LOCKING:
6235 * None.
6236 */
6237static void ata_finalize_port_ops(struct ata_port_operations *ops)
6238{
2da67659 6239 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
6240 const struct ata_port_operations *cur;
6241 void **begin = (void **)ops;
6242 void **end = (void **)&ops->inherits;
6243 void **pp;
6244
6245 if (!ops || !ops->inherits)
6246 return;
6247
6248 spin_lock(&lock);
6249
6250 for (cur = ops->inherits; cur; cur = cur->inherits) {
6251 void **inherit = (void **)cur;
6252
6253 for (pp = begin; pp < end; pp++, inherit++)
6254 if (!*pp)
6255 *pp = *inherit;
6256 }
6257
6258 for (pp = begin; pp < end; pp++)
6259 if (IS_ERR(*pp))
6260 *pp = NULL;
6261
6262 ops->inherits = NULL;
6263
6264 spin_unlock(&lock);
6265}
6266
ecef7253
TH
6267/**
6268 * ata_host_start - start and freeze ports of an ATA host
6269 * @host: ATA host to start ports for
6270 *
6271 * Start and then freeze ports of @host. Started status is
6272 * recorded in host->flags, so this function can be called
6273 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6274 * once. If host->ops isn't initialized yet, its set to the
6275 * first non-dummy port ops.
ecef7253
TH
6276 *
6277 * LOCKING:
6278 * Inherited from calling layer (may sleep).
6279 *
6280 * RETURNS:
6281 * 0 if all ports are started successfully, -errno otherwise.
6282 */
6283int ata_host_start(struct ata_host *host)
6284{
32ebbc0c
TH
6285 int have_stop = 0;
6286 void *start_dr = NULL;
ecef7253
TH
6287 int i, rc;
6288
6289 if (host->flags & ATA_HOST_STARTED)
6290 return 0;
6291
029cfd6b
TH
6292 ata_finalize_port_ops(host->ops);
6293
ecef7253
TH
6294 for (i = 0; i < host->n_ports; i++) {
6295 struct ata_port *ap = host->ports[i];
6296
029cfd6b
TH
6297 ata_finalize_port_ops(ap->ops);
6298
f3187195
TH
6299 if (!host->ops && !ata_port_is_dummy(ap))
6300 host->ops = ap->ops;
6301
32ebbc0c
TH
6302 if (ap->ops->port_stop)
6303 have_stop = 1;
6304 }
6305
6306 if (host->ops->host_stop)
6307 have_stop = 1;
6308
6309 if (have_stop) {
6310 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6311 if (!start_dr)
6312 return -ENOMEM;
6313 }
6314
6315 for (i = 0; i < host->n_ports; i++) {
6316 struct ata_port *ap = host->ports[i];
6317
ecef7253
TH
6318 if (ap->ops->port_start) {
6319 rc = ap->ops->port_start(ap);
6320 if (rc) {
0f9fe9b7 6321 if (rc != -ENODEV)
a44fec1f
JP
6322 dev_err(host->dev,
6323 "failed to start port %d (errno=%d)\n",
6324 i, rc);
ecef7253
TH
6325 goto err_out;
6326 }
6327 }
ecef7253
TH
6328 ata_eh_freeze_port(ap);
6329 }
6330
32ebbc0c
TH
6331 if (start_dr)
6332 devres_add(host->dev, start_dr);
ecef7253
TH
6333 host->flags |= ATA_HOST_STARTED;
6334 return 0;
6335
6336 err_out:
6337 while (--i >= 0) {
6338 struct ata_port *ap = host->ports[i];
6339
6340 if (ap->ops->port_stop)
6341 ap->ops->port_stop(ap);
6342 }
32ebbc0c 6343 devres_free(start_dr);
ecef7253
TH
6344 return rc;
6345}
6346
b03732f0 6347/**
8d8e7d13 6348 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6349 * @host: host to initialize
6350 * @dev: device host is attached to
cca3974e 6351 * @ops: port_ops
b03732f0 6352 *
b03732f0 6353 */
cca3974e 6354void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6355 struct ata_port_operations *ops)
b03732f0 6356{
cca3974e 6357 spin_lock_init(&host->lock);
c0c362b6 6358 mutex_init(&host->eh_mutex);
1a112d10 6359 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6360 host->dev = dev;
cca3974e 6361 host->ops = ops;
b03732f0
BK
6362}
6363
9508a66f 6364void __ata_port_probe(struct ata_port *ap)
79318057 6365{
9508a66f
DW
6366 struct ata_eh_info *ehi = &ap->link.eh_info;
6367 unsigned long flags;
886ad09f 6368
9508a66f
DW
6369 /* kick EH for boot probing */
6370 spin_lock_irqsave(ap->lock, flags);
79318057 6371
9508a66f
DW
6372 ehi->probe_mask |= ATA_ALL_DEVICES;
6373 ehi->action |= ATA_EH_RESET;
6374 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6375
9508a66f
DW
6376 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6377 ap->pflags |= ATA_PFLAG_LOADING;
6378 ata_port_schedule_eh(ap);
79318057 6379
9508a66f
DW
6380 spin_unlock_irqrestore(ap->lock, flags);
6381}
79318057 6382
9508a66f
DW
6383int ata_port_probe(struct ata_port *ap)
6384{
6385 int rc = 0;
79318057 6386
9508a66f
DW
6387 if (ap->ops->error_handler) {
6388 __ata_port_probe(ap);
79318057
AV
6389 ata_port_wait_eh(ap);
6390 } else {
6391 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6392 rc = ata_bus_probe(ap);
6393 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6394 }
238c9cf9
JB
6395 return rc;
6396}
6397
6398
6399static void async_port_probe(void *data, async_cookie_t cookie)
6400{
6401 struct ata_port *ap = data;
4fca377f 6402
238c9cf9
JB
6403 /*
6404 * If we're not allowed to scan this host in parallel,
6405 * we need to wait until all previous scans have completed
6406 * before going further.
6407 * Jeff Garzik says this is only within a controller, so we
6408 * don't need to wait for port 0, only for later ports.
6409 */
6410 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6411 async_synchronize_cookie(cookie);
6412
6413 (void)ata_port_probe(ap);
f29d3b23
AV
6414
6415 /* in order to keep device order, we need to synchronize at this point */
6416 async_synchronize_cookie(cookie);
6417
6418 ata_scsi_scan_host(ap, 1);
79318057 6419}
238c9cf9 6420
f3187195
TH
6421/**
6422 * ata_host_register - register initialized ATA host
6423 * @host: ATA host to register
6424 * @sht: template for SCSI host
6425 *
6426 * Register initialized ATA host. @host is allocated using
6427 * ata_host_alloc() and fully initialized by LLD. This function
6428 * starts ports, registers @host with ATA and SCSI layers and
6429 * probe registered devices.
6430 *
6431 * LOCKING:
6432 * Inherited from calling layer (may sleep).
6433 *
6434 * RETURNS:
6435 * 0 on success, -errno otherwise.
6436 */
6437int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6438{
6439 int i, rc;
6440
1a112d10 6441 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6442
f3187195
TH
6443 /* host must have been started */
6444 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6445 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6446 WARN_ON(1);
6447 return -EINVAL;
6448 }
6449
6450 /* Blow away unused ports. This happens when LLD can't
6451 * determine the exact number of ports to allocate at
6452 * allocation time.
6453 */
6454 for (i = host->n_ports; host->ports[i]; i++)
6455 kfree(host->ports[i]);
6456
6457 /* give ports names and add SCSI hosts */
e628dc99 6458 for (i = 0; i < host->n_ports; i++) {
85d6725b 6459 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6460 host->ports[i]->local_port_no = i + 1;
6461 }
4fca377f 6462
d9027470
GG
6463 /* Create associated sysfs transport objects */
6464 for (i = 0; i < host->n_ports; i++) {
6465 rc = ata_tport_add(host->dev,host->ports[i]);
6466 if (rc) {
6467 goto err_tadd;
6468 }
6469 }
6470
f3187195
TH
6471 rc = ata_scsi_add_hosts(host, sht);
6472 if (rc)
d9027470 6473 goto err_tadd;
f3187195
TH
6474
6475 /* set cable, sata_spd_limit and report */
6476 for (i = 0; i < host->n_ports; i++) {
6477 struct ata_port *ap = host->ports[i];
f3187195
TH
6478 unsigned long xfer_mask;
6479
6480 /* set SATA cable type if still unset */
6481 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6482 ap->cbl = ATA_CBL_SATA;
6483
6484 /* init sata_spd_limit to the current value */
4fb37a25 6485 sata_link_init_spd(&ap->link);
b1c72916
TH
6486 if (ap->slave_link)
6487 sata_link_init_spd(ap->slave_link);
f3187195 6488
cbcdd875 6489 /* print per-port info to dmesg */
f3187195
TH
6490 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6491 ap->udma_mask);
6492
abf6e8ed 6493 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6494 ata_port_info(ap, "%cATA max %s %s\n",
6495 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6496 ata_mode_string(xfer_mask),
6497 ap->link.eh_info.desc);
abf6e8ed
TH
6498 ata_ehi_clear_desc(&ap->link.eh_info);
6499 } else
a9a79dfe 6500 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6501 }
6502
f6005354 6503 /* perform each probe asynchronously */
f3187195
TH
6504 for (i = 0; i < host->n_ports; i++) {
6505 struct ata_port *ap = host->ports[i];
79318057 6506 async_schedule(async_port_probe, ap);
f3187195 6507 }
f3187195
TH
6508
6509 return 0;
d9027470
GG
6510
6511 err_tadd:
6512 while (--i >= 0) {
6513 ata_tport_delete(host->ports[i]);
6514 }
6515 return rc;
6516
f3187195
TH
6517}
6518
f5cda257
TH
6519/**
6520 * ata_host_activate - start host, request IRQ and register it
6521 * @host: target ATA host
6522 * @irq: IRQ to request
6523 * @irq_handler: irq_handler used when requesting IRQ
6524 * @irq_flags: irq_flags used when requesting IRQ
6525 * @sht: scsi_host_template to use when registering the host
6526 *
6527 * After allocating an ATA host and initializing it, most libata
6528 * LLDs perform three steps to activate the host - start host,
c9b5560a 6529 * request IRQ and register it. This helper takes necessary
f5cda257
TH
6530 * arguments and performs the three steps in one go.
6531 *
3d46b2e2
PM
6532 * An invalid IRQ skips the IRQ registration and expects the host to
6533 * have set polling mode on the port. In this case, @irq_handler
6534 * should be NULL.
6535 *
f5cda257
TH
6536 * LOCKING:
6537 * Inherited from calling layer (may sleep).
6538 *
6539 * RETURNS:
6540 * 0 on success, -errno otherwise.
6541 */
6542int ata_host_activate(struct ata_host *host, int irq,
6543 irq_handler_t irq_handler, unsigned long irq_flags,
6544 struct scsi_host_template *sht)
6545{
cbcdd875 6546 int i, rc;
7e22c002 6547 char *irq_desc;
f5cda257
TH
6548
6549 rc = ata_host_start(host);
6550 if (rc)
6551 return rc;
6552
3d46b2e2
PM
6553 /* Special case for polling mode */
6554 if (!irq) {
6555 WARN_ON(irq_handler);
6556 return ata_host_register(host, sht);
6557 }
6558
7e22c002
HK
6559 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6560 dev_driver_string(host->dev),
6561 dev_name(host->dev));
6562 if (!irq_desc)
6563 return -ENOMEM;
6564
f5cda257 6565 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7e22c002 6566 irq_desc, host);
f5cda257
TH
6567 if (rc)
6568 return rc;
6569
cbcdd875
TH
6570 for (i = 0; i < host->n_ports; i++)
6571 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6572
f5cda257
TH
6573 rc = ata_host_register(host, sht);
6574 /* if failed, just free the IRQ and leave ports alone */
6575 if (rc)
6576 devm_free_irq(host->dev, irq, host);
6577
6578 return rc;
6579}
6580
720ba126 6581/**
c9b5560a 6582 * ata_port_detach - Detach ATA port in preparation of device removal
720ba126
TH
6583 * @ap: ATA port to be detached
6584 *
6585 * Detach all ATA devices and the associated SCSI devices of @ap;
6586 * then, remove the associated SCSI host. @ap is guaranteed to
6587 * be quiescent on return from this function.
6588 *
6589 * LOCKING:
6590 * Kernel thread context (may sleep).
6591 */
741b7763 6592static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6593{
6594 unsigned long flags;
a6f9bf4d
LK
6595 struct ata_link *link;
6596 struct ata_device *dev;
720ba126
TH
6597
6598 if (!ap->ops->error_handler)
c3cf30a9 6599 goto skip_eh;
720ba126
TH
6600
6601 /* tell EH we're leaving & flush EH */
ba6a1308 6602 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6603 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6604 ata_port_schedule_eh(ap);
ba6a1308 6605 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6606
ece180d1 6607 /* wait till EH commits suicide */
720ba126
TH
6608 ata_port_wait_eh(ap);
6609
ece180d1
TH
6610 /* it better be dead now */
6611 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6612
afe2c511 6613 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6614
c3cf30a9 6615 skip_eh:
a6f9bf4d
LK
6616 /* clean up zpodd on port removal */
6617 ata_for_each_link(link, ap, HOST_FIRST) {
6618 ata_for_each_dev(dev, link, ALL) {
6619 if (zpodd_dev_enabled(dev))
6620 zpodd_exit(dev);
6621 }
6622 }
d9027470
GG
6623 if (ap->pmp_link) {
6624 int i;
6625 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6626 ata_tlink_delete(&ap->pmp_link[i]);
6627 }
720ba126 6628 /* remove the associated SCSI host */
cca3974e 6629 scsi_remove_host(ap->scsi_host);
c5700766 6630 ata_tport_delete(ap);
720ba126
TH
6631}
6632
0529c159
TH
6633/**
6634 * ata_host_detach - Detach all ports of an ATA host
6635 * @host: Host to detach
6636 *
6637 * Detach all ports of @host.
6638 *
6639 * LOCKING:
6640 * Kernel thread context (may sleep).
6641 */
6642void ata_host_detach(struct ata_host *host)
6643{
6644 int i;
6645
6646 for (i = 0; i < host->n_ports; i++)
6647 ata_port_detach(host->ports[i]);
562f0c2d
TH
6648
6649 /* the host is dead now, dissociate ACPI */
6650 ata_acpi_dissociate(host);
0529c159
TH
6651}
6652
374b1873
JG
6653#ifdef CONFIG_PCI
6654
1da177e4
LT
6655/**
6656 * ata_pci_remove_one - PCI layer callback for device removal
6657 * @pdev: PCI device that was removed
6658 *
b878ca5d
TH
6659 * PCI layer indicates to libata via this hook that hot-unplug or
6660 * module unload event has occurred. Detach all ports. Resource
6661 * release is handled via devres.
1da177e4
LT
6662 *
6663 * LOCKING:
6664 * Inherited from PCI layer (may sleep).
6665 */
f0d36efd 6666void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6667{
04a3f5b7 6668 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6669
b878ca5d 6670 ata_host_detach(host);
1da177e4
LT
6671}
6672
6673/* move to PCI subsystem */
057ace5e 6674int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6675{
6676 unsigned long tmp = 0;
6677
6678 switch (bits->width) {
6679 case 1: {
6680 u8 tmp8 = 0;
6681 pci_read_config_byte(pdev, bits->reg, &tmp8);
6682 tmp = tmp8;
6683 break;
6684 }
6685 case 2: {
6686 u16 tmp16 = 0;
6687 pci_read_config_word(pdev, bits->reg, &tmp16);
6688 tmp = tmp16;
6689 break;
6690 }
6691 case 4: {
6692 u32 tmp32 = 0;
6693 pci_read_config_dword(pdev, bits->reg, &tmp32);
6694 tmp = tmp32;
6695 break;
6696 }
6697
6698 default:
6699 return -EINVAL;
6700 }
6701
6702 tmp &= bits->mask;
6703
6704 return (tmp == bits->val) ? 1 : 0;
6705}
9b847548 6706
6ffa01d8 6707#ifdef CONFIG_PM
3c5100c1 6708void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6709{
6710 pci_save_state(pdev);
4c90d971 6711 pci_disable_device(pdev);
500530f6 6712
3a2d5b70 6713 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6714 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6715}
6716
553c4aa6 6717int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6718{
553c4aa6
TH
6719 int rc;
6720
9b847548
JA
6721 pci_set_power_state(pdev, PCI_D0);
6722 pci_restore_state(pdev);
553c4aa6 6723
b878ca5d 6724 rc = pcim_enable_device(pdev);
553c4aa6 6725 if (rc) {
a44fec1f
JP
6726 dev_err(&pdev->dev,
6727 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6728 return rc;
6729 }
6730
9b847548 6731 pci_set_master(pdev);
553c4aa6 6732 return 0;
500530f6
TH
6733}
6734
3c5100c1 6735int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6736{
04a3f5b7 6737 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6738 int rc = 0;
6739
cca3974e 6740 rc = ata_host_suspend(host, mesg);
500530f6
TH
6741 if (rc)
6742 return rc;
6743
3c5100c1 6744 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6745
6746 return 0;
6747}
6748
6749int ata_pci_device_resume(struct pci_dev *pdev)
6750{
04a3f5b7 6751 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6752 int rc;
500530f6 6753
553c4aa6
TH
6754 rc = ata_pci_device_do_resume(pdev);
6755 if (rc == 0)
6756 ata_host_resume(host);
6757 return rc;
9b847548 6758}
6ffa01d8
TH
6759#endif /* CONFIG_PM */
6760
1da177e4
LT
6761#endif /* CONFIG_PCI */
6762
b7db04d9
BN
6763/**
6764 * ata_platform_remove_one - Platform layer callback for device removal
6765 * @pdev: Platform device that was removed
6766 *
6767 * Platform layer indicates to libata via this hook that hot-unplug or
6768 * module unload event has occurred. Detach all ports. Resource
6769 * release is handled via devres.
6770 *
6771 * LOCKING:
6772 * Inherited from platform layer (may sleep).
6773 */
6774int ata_platform_remove_one(struct platform_device *pdev)
6775{
6776 struct ata_host *host = platform_get_drvdata(pdev);
6777
6778 ata_host_detach(host);
6779
6780 return 0;
6781}
6782
33267325
TH
6783static int __init ata_parse_force_one(char **cur,
6784 struct ata_force_ent *force_ent,
6785 const char **reason)
6786{
0f5f264b 6787 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6788 { "40c", .cbl = ATA_CBL_PATA40 },
6789 { "80c", .cbl = ATA_CBL_PATA80 },
6790 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6791 { "unk", .cbl = ATA_CBL_PATA_UNK },
6792 { "ign", .cbl = ATA_CBL_PATA_IGN },
6793 { "sata", .cbl = ATA_CBL_SATA },
6794 { "1.5Gbps", .spd_limit = 1 },
6795 { "3.0Gbps", .spd_limit = 2 },
6796 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6797 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6798 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6799 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6800 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6801 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6802 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6803 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6804 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6805 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6806 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6807 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6808 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6809 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6810 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6811 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6812 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6813 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6814 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6815 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6816 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6817 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6818 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6819 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6820 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6821 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6822 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6823 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6824 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6825 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6826 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6827 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6828 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6829 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6830 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6831 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6832 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6833 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6834 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6835 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6836 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6837 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6838 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6839 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6840 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6841 };
6842 char *start = *cur, *p = *cur;
6843 char *id, *val, *endp;
6844 const struct ata_force_param *match_fp = NULL;
6845 int nr_matches = 0, i;
6846
6847 /* find where this param ends and update *cur */
6848 while (*p != '\0' && *p != ',')
6849 p++;
6850
6851 if (*p == '\0')
6852 *cur = p;
6853 else
6854 *cur = p + 1;
6855
6856 *p = '\0';
6857
6858 /* parse */
6859 p = strchr(start, ':');
6860 if (!p) {
6861 val = strstrip(start);
6862 goto parse_val;
6863 }
6864 *p = '\0';
6865
6866 id = strstrip(start);
6867 val = strstrip(p + 1);
6868
6869 /* parse id */
6870 p = strchr(id, '.');
6871 if (p) {
6872 *p++ = '\0';
6873 force_ent->device = simple_strtoul(p, &endp, 10);
6874 if (p == endp || *endp != '\0') {
6875 *reason = "invalid device";
6876 return -EINVAL;
6877 }
6878 }
6879
6880 force_ent->port = simple_strtoul(id, &endp, 10);
f7cf69ae 6881 if (id == endp || *endp != '\0') {
33267325
TH
6882 *reason = "invalid port/link";
6883 return -EINVAL;
6884 }
6885
6886 parse_val:
6887 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6888 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6889 const struct ata_force_param *fp = &force_tbl[i];
6890
6891 if (strncasecmp(val, fp->name, strlen(val)))
6892 continue;
6893
6894 nr_matches++;
6895 match_fp = fp;
6896
6897 if (strcasecmp(val, fp->name) == 0) {
6898 nr_matches = 1;
6899 break;
6900 }
6901 }
6902
6903 if (!nr_matches) {
6904 *reason = "unknown value";
6905 return -EINVAL;
6906 }
6907 if (nr_matches > 1) {
6908 *reason = "ambigious value";
6909 return -EINVAL;
6910 }
6911
6912 force_ent->param = *match_fp;
6913
6914 return 0;
6915}
6916
6917static void __init ata_parse_force_param(void)
6918{
6919 int idx = 0, size = 1;
6920 int last_port = -1, last_device = -1;
6921 char *p, *cur, *next;
6922
6923 /* calculate maximum number of params and allocate force_tbl */
6924 for (p = ata_force_param_buf; *p; p++)
6925 if (*p == ',')
6926 size++;
6927
6928 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6929 if (!ata_force_tbl) {
6930 printk(KERN_WARNING "ata: failed to extend force table, "
6931 "libata.force ignored\n");
6932 return;
6933 }
6934
6935 /* parse and populate the table */
6936 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6937 const char *reason = "";
6938 struct ata_force_ent te = { .port = -1, .device = -1 };
6939
6940 next = cur;
6941 if (ata_parse_force_one(&next, &te, &reason)) {
6942 printk(KERN_WARNING "ata: failed to parse force "
6943 "parameter \"%s\" (%s)\n",
6944 cur, reason);
6945 continue;
6946 }
6947
6948 if (te.port == -1) {
6949 te.port = last_port;
6950 te.device = last_device;
6951 }
6952
6953 ata_force_tbl[idx++] = te;
6954
6955 last_port = te.port;
6956 last_device = te.device;
6957 }
6958
6959 ata_force_tbl_size = idx;
6960}
1da177e4 6961
1da177e4
LT
6962static int __init ata_init(void)
6963{
d9027470 6964 int rc;
270390e1 6965
33267325
TH
6966 ata_parse_force_param();
6967
270390e1 6968 rc = ata_sff_init();
ad72cf98
TH
6969 if (rc) {
6970 kfree(ata_force_tbl);
6971 return rc;
6972 }
453b07ac 6973
d9027470
GG
6974 libata_transport_init();
6975 ata_scsi_transport_template = ata_attach_transport();
6976 if (!ata_scsi_transport_template) {
6977 ata_sff_exit();
6978 rc = -ENOMEM;
6979 goto err_out;
4fca377f 6980 }
d9027470 6981
1da177e4
LT
6982 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6983 return 0;
d9027470
GG
6984
6985err_out:
6986 return rc;
1da177e4
LT
6987}
6988
6989static void __exit ata_exit(void)
6990{
d9027470
GG
6991 ata_release_transport(ata_scsi_transport_template);
6992 libata_transport_exit();
270390e1 6993 ata_sff_exit();
33267325 6994 kfree(ata_force_tbl);
1da177e4
LT
6995}
6996
a4625085 6997subsys_initcall(ata_init);
1da177e4
LT
6998module_exit(ata_exit);
6999
9990b6f3 7000static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
7001
7002int ata_ratelimit(void)
7003{
9990b6f3 7004 return __ratelimit(&ratelimit);
67846b30
JG
7005}
7006
c0c362b6
TH
7007/**
7008 * ata_msleep - ATA EH owner aware msleep
7009 * @ap: ATA port to attribute the sleep to
7010 * @msecs: duration to sleep in milliseconds
7011 *
7012 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7013 * ownership is released before going to sleep and reacquired
7014 * after the sleep is complete. IOW, other ports sharing the
7015 * @ap->host will be allowed to own the EH while this task is
7016 * sleeping.
7017 *
7018 * LOCKING:
7019 * Might sleep.
7020 */
97750ceb
TH
7021void ata_msleep(struct ata_port *ap, unsigned int msecs)
7022{
c0c362b6
TH
7023 bool owns_eh = ap && ap->host->eh_owner == current;
7024
7025 if (owns_eh)
7026 ata_eh_release(ap);
7027
848c3920
AVM
7028 if (msecs < 20) {
7029 unsigned long usecs = msecs * USEC_PER_MSEC;
7030 usleep_range(usecs, usecs + 50);
7031 } else {
7032 msleep(msecs);
7033 }
c0c362b6
TH
7034
7035 if (owns_eh)
7036 ata_eh_acquire(ap);
97750ceb
TH
7037}
7038
c22daff4
TH
7039/**
7040 * ata_wait_register - wait until register value changes
97750ceb 7041 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
7042 * @reg: IO-mapped register
7043 * @mask: Mask to apply to read register value
7044 * @val: Wait condition
341c2c95
TH
7045 * @interval: polling interval in milliseconds
7046 * @timeout: timeout in milliseconds
c22daff4
TH
7047 *
7048 * Waiting for some bits of register to change is a common
7049 * operation for ATA controllers. This function reads 32bit LE
7050 * IO-mapped register @reg and tests for the following condition.
7051 *
7052 * (*@reg & mask) != val
7053 *
7054 * If the condition is met, it returns; otherwise, the process is
7055 * repeated after @interval_msec until timeout.
7056 *
7057 * LOCKING:
7058 * Kernel thread context (may sleep)
7059 *
7060 * RETURNS:
7061 * The final register value.
7062 */
97750ceb 7063u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 7064 unsigned long interval, unsigned long timeout)
c22daff4 7065{
341c2c95 7066 unsigned long deadline;
c22daff4
TH
7067 u32 tmp;
7068
7069 tmp = ioread32(reg);
7070
7071 /* Calculate timeout _after_ the first read to make sure
7072 * preceding writes reach the controller before starting to
7073 * eat away the timeout.
7074 */
341c2c95 7075 deadline = ata_deadline(jiffies, timeout);
c22daff4 7076
341c2c95 7077 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 7078 ata_msleep(ap, interval);
c22daff4
TH
7079 tmp = ioread32(reg);
7080 }
7081
7082 return tmp;
7083}
7084
8393b811
GM
7085/**
7086 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7087 * @link: Link receiving the event
7088 *
7089 * Test whether the received PHY event has to be ignored or not.
7090 *
7091 * LOCKING:
7092 * None:
7093 *
7094 * RETURNS:
7095 * True if the event has to be ignored.
7096 */
7097bool sata_lpm_ignore_phy_events(struct ata_link *link)
7098{
09c5b480
GM
7099 unsigned long lpm_timeout = link->last_lpm_change +
7100 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7101
8393b811 7102 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
7103 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7104 return true;
7105
7106 /* ignore the first PHY event after the LPM policy changed
7107 * as it is might be spurious
7108 */
7109 if ((link->flags & ATA_LFLAG_CHANGED) &&
7110 time_before(jiffies, lpm_timeout))
7111 return true;
7112
7113 return false;
8393b811
GM
7114}
7115EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7116
dd5b06c4
TH
7117/*
7118 * Dummy port_ops
7119 */
182d7bba 7120static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 7121{
182d7bba 7122 return AC_ERR_SYSTEM;
dd5b06c4
TH
7123}
7124
182d7bba 7125static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 7126{
182d7bba 7127 /* truly dummy */
dd5b06c4
TH
7128}
7129
029cfd6b 7130struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7131 .qc_prep = ata_noop_qc_prep,
7132 .qc_issue = ata_dummy_qc_issue,
182d7bba 7133 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
7134 .sched_eh = ata_std_sched_eh,
7135 .end_eh = ata_std_end_eh,
dd5b06c4
TH
7136};
7137
21b0ad4f
TH
7138const struct ata_port_info ata_dummy_port_info = {
7139 .port_ops = &ata_dummy_port_ops,
7140};
7141
a9a79dfe
JP
7142/*
7143 * Utility print functions
7144 */
d7bead1b
JP
7145void ata_port_printk(const struct ata_port *ap, const char *level,
7146 const char *fmt, ...)
a9a79dfe
JP
7147{
7148 struct va_format vaf;
7149 va_list args;
a9a79dfe
JP
7150
7151 va_start(args, fmt);
7152
7153 vaf.fmt = fmt;
7154 vaf.va = &args;
7155
d7bead1b 7156 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
7157
7158 va_end(args);
a9a79dfe
JP
7159}
7160EXPORT_SYMBOL(ata_port_printk);
7161
d7bead1b
JP
7162void ata_link_printk(const struct ata_link *link, const char *level,
7163 const char *fmt, ...)
a9a79dfe
JP
7164{
7165 struct va_format vaf;
7166 va_list args;
a9a79dfe
JP
7167
7168 va_start(args, fmt);
7169
7170 vaf.fmt = fmt;
7171 vaf.va = &args;
7172
7173 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
7174 printk("%sata%u.%02u: %pV",
7175 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 7176 else
d7bead1b
JP
7177 printk("%sata%u: %pV",
7178 level, link->ap->print_id, &vaf);
a9a79dfe
JP
7179
7180 va_end(args);
a9a79dfe
JP
7181}
7182EXPORT_SYMBOL(ata_link_printk);
7183
d7bead1b 7184void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
7185 const char *fmt, ...)
7186{
7187 struct va_format vaf;
7188 va_list args;
a9a79dfe
JP
7189
7190 va_start(args, fmt);
7191
7192 vaf.fmt = fmt;
7193 vaf.va = &args;
7194
d7bead1b
JP
7195 printk("%sata%u.%02u: %pV",
7196 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7197 &vaf);
a9a79dfe
JP
7198
7199 va_end(args);
a9a79dfe
JP
7200}
7201EXPORT_SYMBOL(ata_dev_printk);
7202
06296a1e
JP
7203void ata_print_version(const struct device *dev, const char *version)
7204{
7205 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7206}
7207EXPORT_SYMBOL(ata_print_version);
7208
1da177e4
LT
7209/*
7210 * libata is essentially a library of internal helper functions for
7211 * low-level ATA host controller drivers. As such, the API/ABI is
7212 * likely to change as new drivers are added and updated.
7213 * Do not depend on ABI/API stability.
7214 */
e9c83914
TH
7215EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7216EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7217EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
7218EXPORT_SYMBOL_GPL(ata_base_port_ops);
7219EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 7220EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7221EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
7222EXPORT_SYMBOL_GPL(ata_link_next);
7223EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 7224EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 7225EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 7226EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7227EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7228EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 7229EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 7230EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7231EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7232EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7233EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 7234EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 7235EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7236EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 7237EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
7238EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7239EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7240EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7241EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7242EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7243EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7244EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7245EXPORT_SYMBOL_GPL(ata_mode_string);
7246EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 7247EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 7248EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 7249EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 7250EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7251EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 7252EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
7253EXPORT_SYMBOL_GPL(sata_link_debounce);
7254EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 7255EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 7256EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 7257EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 7258EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 7259EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7260EXPORT_SYMBOL_GPL(ata_dev_classify);
7261EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 7262EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 7263EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 7264EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 7265EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7266EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7267EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7268EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 7269EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
7270EXPORT_SYMBOL_GPL(sata_scr_valid);
7271EXPORT_SYMBOL_GPL(sata_scr_read);
7272EXPORT_SYMBOL_GPL(sata_scr_write);
7273EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7274EXPORT_SYMBOL_GPL(ata_link_online);
7275EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7276#ifdef CONFIG_PM
cca3974e
JG
7277EXPORT_SYMBOL_GPL(ata_host_suspend);
7278EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7279#endif /* CONFIG_PM */
6a62a04d
TH
7280EXPORT_SYMBOL_GPL(ata_id_string);
7281EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 7282EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
7283EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7284
1bc4ccff 7285EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7286EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7287EXPORT_SYMBOL_GPL(ata_timing_compute);
7288EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 7289EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 7290
1da177e4
LT
7291#ifdef CONFIG_PCI
7292EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 7293EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7294#ifdef CONFIG_PM
500530f6
TH
7295EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7296EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7297EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7298EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7299#endif /* CONFIG_PM */
1da177e4 7300#endif /* CONFIG_PCI */
9b847548 7301
b7db04d9
BN
7302EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7303
b64bbc39
TH
7304EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7305EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7306EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7307EXPORT_SYMBOL_GPL(ata_port_desc);
7308#ifdef CONFIG_PCI
7309EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7310#endif /* CONFIG_PCI */
7b70fc03 7311EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7312EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7313EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7314EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7315EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7316EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7317EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7318EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7319EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 7320EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 7321EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 7322EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
7323
7324EXPORT_SYMBOL_GPL(ata_cable_40wire);
7325EXPORT_SYMBOL_GPL(ata_cable_80wire);
7326EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 7327EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 7328EXPORT_SYMBOL_GPL(ata_cable_sata);