]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/ata/libata-core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bart/ide-2.6
[mirror_ubuntu-eoan-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
1da177e4 623/**
0d5ff566 624 * ata_devchk - PATA device presence detection
1da177e4
LT
625 * @ap: ATA channel to examine
626 * @device: Device to examine (starting at zero)
627 *
628 * This technique was originally described in
629 * Hale Landis's ATADRVR (www.ata-atapi.com), and
630 * later found its way into the ATA/ATAPI spec.
631 *
632 * Write a pattern to the ATA shadow registers,
633 * and if a device is present, it will respond by
634 * correctly storing and echoing back the
635 * ATA shadow register contents.
636 *
637 * LOCKING:
638 * caller.
639 */
640
0d5ff566 641static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
642{
643 struct ata_ioports *ioaddr = &ap->ioaddr;
644 u8 nsect, lbal;
645
646 ap->ops->dev_select(ap, device);
647
0d5ff566
TH
648 iowrite8(0x55, ioaddr->nsect_addr);
649 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 650
0d5ff566
TH
651 iowrite8(0xaa, ioaddr->nsect_addr);
652 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 653
0d5ff566
TH
654 iowrite8(0x55, ioaddr->nsect_addr);
655 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 656
0d5ff566
TH
657 nsect = ioread8(ioaddr->nsect_addr);
658 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
659
660 if ((nsect == 0x55) && (lbal == 0xaa))
661 return 1; /* we found a device */
662
663 return 0; /* nothing found */
664}
665
1da177e4
LT
666/**
667 * ata_dev_classify - determine device type based on ATA-spec signature
668 * @tf: ATA taskfile register set for device to be identified
669 *
670 * Determine from taskfile register contents whether a device is
671 * ATA or ATAPI, as per "Signature and persistence" section
672 * of ATA/PI spec (volume 1, sect 5.14).
673 *
674 * LOCKING:
675 * None.
676 *
677 * RETURNS:
633273a3
TH
678 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
679 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 680 */
057ace5e 681unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
682{
683 /* Apple's open source Darwin code hints that some devices only
684 * put a proper signature into the LBA mid/high registers,
685 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
686 *
687 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
688 * signatures for ATA and ATAPI devices attached on SerialATA,
689 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
690 * spec has never mentioned about using different signatures
691 * for ATA/ATAPI devices. Then, Serial ATA II: Port
692 * Multiplier specification began to use 0x69/0x96 to identify
693 * port multpliers and 0x3c/0xc3 to identify SEMB device.
694 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
695 * 0x69/0x96 shortly and described them as reserved for
696 * SerialATA.
697 *
698 * We follow the current spec and consider that 0x69/0x96
699 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 700 */
633273a3 701 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
702 DPRINTK("found ATA device by sig\n");
703 return ATA_DEV_ATA;
704 }
705
633273a3 706 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
707 DPRINTK("found ATAPI device by sig\n");
708 return ATA_DEV_ATAPI;
709 }
710
633273a3
TH
711 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
712 DPRINTK("found PMP device by sig\n");
713 return ATA_DEV_PMP;
714 }
715
716 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 717 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
718 return ATA_DEV_SEMB_UNSUP; /* not yet */
719 }
720
1da177e4
LT
721 DPRINTK("unknown device\n");
722 return ATA_DEV_UNKNOWN;
723}
724
725/**
726 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
727 * @dev: ATA device to classify (starting at zero)
728 * @present: device seems present
b4dc7623 729 * @r_err: Value of error register on completion
1da177e4
LT
730 *
731 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
732 * an ATA/ATAPI-defined set of values is placed in the ATA
733 * shadow registers, indicating the results of device detection
734 * and diagnostics.
735 *
736 * Select the ATA device, and read the values from the ATA shadow
737 * registers. Then parse according to the Error register value,
738 * and the spec-defined values examined by ata_dev_classify().
739 *
740 * LOCKING:
741 * caller.
b4dc7623
TH
742 *
743 * RETURNS:
744 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 745 */
3f19859e
TH
746unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
747 u8 *r_err)
1da177e4 748{
3f19859e 749 struct ata_port *ap = dev->link->ap;
1da177e4
LT
750 struct ata_taskfile tf;
751 unsigned int class;
752 u8 err;
753
3f19859e 754 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
755
756 memset(&tf, 0, sizeof(tf));
757
1da177e4 758 ap->ops->tf_read(ap, &tf);
0169e284 759 err = tf.feature;
b4dc7623
TH
760 if (r_err)
761 *r_err = err;
1da177e4 762
93590859 763 /* see if device passed diags: if master then continue and warn later */
3f19859e 764 if (err == 0 && dev->devno == 0)
93590859 765 /* diagnostic fail : do nothing _YET_ */
3f19859e 766 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 767 else if (err == 1)
1da177e4 768 /* do nothing */ ;
3f19859e 769 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
770 /* do nothing */ ;
771 else
b4dc7623 772 return ATA_DEV_NONE;
1da177e4 773
b4dc7623 774 /* determine if device is ATA or ATAPI */
1da177e4 775 class = ata_dev_classify(&tf);
b4dc7623 776
d7fbee05
TH
777 if (class == ATA_DEV_UNKNOWN) {
778 /* If the device failed diagnostic, it's likely to
779 * have reported incorrect device signature too.
780 * Assume ATA device if the device seems present but
781 * device signature is invalid with diagnostic
782 * failure.
783 */
784 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
785 class = ATA_DEV_ATA;
786 else
787 class = ATA_DEV_NONE;
788 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
789 class = ATA_DEV_NONE;
790
b4dc7623 791 return class;
1da177e4
LT
792}
793
794/**
6a62a04d 795 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
796 * @id: IDENTIFY DEVICE results we will examine
797 * @s: string into which data is output
798 * @ofs: offset into identify device page
799 * @len: length of string to return. must be an even number.
800 *
801 * The strings in the IDENTIFY DEVICE page are broken up into
802 * 16-bit chunks. Run through the string, and output each
803 * 8-bit chunk linearly, regardless of platform.
804 *
805 * LOCKING:
806 * caller.
807 */
808
6a62a04d
TH
809void ata_id_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
1da177e4
LT
811{
812 unsigned int c;
813
814 while (len > 0) {
815 c = id[ofs] >> 8;
816 *s = c;
817 s++;
818
819 c = id[ofs] & 0xff;
820 *s = c;
821 s++;
822
823 ofs++;
824 len -= 2;
825 }
826}
827
0e949ff3 828/**
6a62a04d 829 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
830 * @id: IDENTIFY DEVICE results we will examine
831 * @s: string into which data is output
832 * @ofs: offset into identify device page
833 * @len: length of string to return. must be an odd number.
834 *
6a62a04d 835 * This function is identical to ata_id_string except that it
0e949ff3
TH
836 * trims trailing spaces and terminates the resulting string with
837 * null. @len must be actual maximum length (even number) + 1.
838 *
839 * LOCKING:
840 * caller.
841 */
6a62a04d
TH
842void ata_id_c_string(const u16 *id, unsigned char *s,
843 unsigned int ofs, unsigned int len)
0e949ff3
TH
844{
845 unsigned char *p;
846
847 WARN_ON(!(len & 1));
848
6a62a04d 849 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
850
851 p = s + strnlen(s, len - 1);
852 while (p > s && p[-1] == ' ')
853 p--;
854 *p = '\0';
855}
0baab86b 856
db6f8759
TH
857static u64 ata_id_n_sectors(const u16 *id)
858{
859 if (ata_id_has_lba(id)) {
860 if (ata_id_has_lba48(id))
861 return ata_id_u64(id, 100);
862 else
863 return ata_id_u32(id, 60);
864 } else {
865 if (ata_id_current_chs_valid(id))
866 return ata_id_u32(id, 57);
867 else
868 return id[1] * id[3] * id[6];
869 }
870}
871
1e999736
AC
872static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
873{
874 u64 sectors = 0;
875
876 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
877 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
878 sectors |= (tf->hob_lbal & 0xff) << 24;
879 sectors |= (tf->lbah & 0xff) << 16;
880 sectors |= (tf->lbam & 0xff) << 8;
881 sectors |= (tf->lbal & 0xff);
882
883 return ++sectors;
884}
885
886static u64 ata_tf_to_lba(struct ata_taskfile *tf)
887{
888 u64 sectors = 0;
889
890 sectors |= (tf->device & 0x0f) << 24;
891 sectors |= (tf->lbah & 0xff) << 16;
892 sectors |= (tf->lbam & 0xff) << 8;
893 sectors |= (tf->lbal & 0xff);
894
895 return ++sectors;
896}
897
898/**
c728a914
TH
899 * ata_read_native_max_address - Read native max address
900 * @dev: target device
901 * @max_sectors: out parameter for the result native max address
1e999736 902 *
c728a914
TH
903 * Perform an LBA48 or LBA28 native size query upon the device in
904 * question.
1e999736 905 *
c728a914
TH
906 * RETURNS:
907 * 0 on success, -EACCES if command is aborted by the drive.
908 * -EIO on other errors.
1e999736 909 */
c728a914 910static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 911{
c728a914 912 unsigned int err_mask;
1e999736 913 struct ata_taskfile tf;
c728a914 914 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
915
916 ata_tf_init(dev, &tf);
917
c728a914 918 /* always clear all address registers */
1e999736 919 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 920
c728a914
TH
921 if (lba48) {
922 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
923 tf.flags |= ATA_TFLAG_LBA48;
924 } else
925 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 926
1e999736 927 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
928 tf.device |= ATA_LBA;
929
2b789108 930 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
931 if (err_mask) {
932 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
933 "max address (err_mask=0x%x)\n", err_mask);
934 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
935 return -EACCES;
936 return -EIO;
937 }
1e999736 938
c728a914
TH
939 if (lba48)
940 *max_sectors = ata_tf_to_lba48(&tf);
941 else
942 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 943 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 944 (*max_sectors)--;
c728a914 945 return 0;
1e999736
AC
946}
947
948/**
c728a914
TH
949 * ata_set_max_sectors - Set max sectors
950 * @dev: target device
6b38d1d1 951 * @new_sectors: new max sectors value to set for the device
1e999736 952 *
c728a914
TH
953 * Set max sectors of @dev to @new_sectors.
954 *
955 * RETURNS:
956 * 0 on success, -EACCES if command is aborted or denied (due to
957 * previous non-volatile SET_MAX) by the drive. -EIO on other
958 * errors.
1e999736 959 */
05027adc 960static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 961{
c728a914 962 unsigned int err_mask;
1e999736 963 struct ata_taskfile tf;
c728a914 964 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
965
966 new_sectors--;
967
968 ata_tf_init(dev, &tf);
969
1e999736 970 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
971
972 if (lba48) {
973 tf.command = ATA_CMD_SET_MAX_EXT;
974 tf.flags |= ATA_TFLAG_LBA48;
975
976 tf.hob_lbal = (new_sectors >> 24) & 0xff;
977 tf.hob_lbam = (new_sectors >> 32) & 0xff;
978 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 979 } else {
c728a914
TH
980 tf.command = ATA_CMD_SET_MAX;
981
1e582ba4
TH
982 tf.device |= (new_sectors >> 24) & 0xf;
983 }
984
1e999736 985 tf.protocol |= ATA_PROT_NODATA;
c728a914 986 tf.device |= ATA_LBA;
1e999736
AC
987
988 tf.lbal = (new_sectors >> 0) & 0xff;
989 tf.lbam = (new_sectors >> 8) & 0xff;
990 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 991
2b789108 992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
993 if (err_mask) {
994 ata_dev_printk(dev, KERN_WARNING, "failed to set "
995 "max address (err_mask=0x%x)\n", err_mask);
996 if (err_mask == AC_ERR_DEV &&
997 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
998 return -EACCES;
999 return -EIO;
1000 }
1001
c728a914 1002 return 0;
1e999736
AC
1003}
1004
1005/**
1006 * ata_hpa_resize - Resize a device with an HPA set
1007 * @dev: Device to resize
1008 *
1009 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1010 * it if required to the full size of the media. The caller must check
1011 * the drive has the HPA feature set enabled.
05027adc
TH
1012 *
1013 * RETURNS:
1014 * 0 on success, -errno on failure.
1e999736 1015 */
05027adc 1016static int ata_hpa_resize(struct ata_device *dev)
1e999736 1017{
05027adc
TH
1018 struct ata_eh_context *ehc = &dev->link->eh_context;
1019 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1020 u64 sectors = ata_id_n_sectors(dev->id);
1021 u64 native_sectors;
c728a914 1022 int rc;
a617c09f 1023
05027adc
TH
1024 /* do we need to do it? */
1025 if (dev->class != ATA_DEV_ATA ||
1026 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1027 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1028 return 0;
1e999736 1029
05027adc
TH
1030 /* read native max address */
1031 rc = ata_read_native_max_address(dev, &native_sectors);
1032 if (rc) {
1033 /* If HPA isn't going to be unlocked, skip HPA
1034 * resizing from the next try.
1035 */
1036 if (!ata_ignore_hpa) {
1037 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1038 "broken, will skip HPA handling\n");
1039 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1040
1041 /* we can continue if device aborted the command */
1042 if (rc == -EACCES)
1043 rc = 0;
1e999736 1044 }
37301a55 1045
05027adc
TH
1046 return rc;
1047 }
1048
1049 /* nothing to do? */
1050 if (native_sectors <= sectors || !ata_ignore_hpa) {
1051 if (!print_info || native_sectors == sectors)
1052 return 0;
1053
1054 if (native_sectors > sectors)
1055 ata_dev_printk(dev, KERN_INFO,
1056 "HPA detected: current %llu, native %llu\n",
1057 (unsigned long long)sectors,
1058 (unsigned long long)native_sectors);
1059 else if (native_sectors < sectors)
1060 ata_dev_printk(dev, KERN_WARNING,
1061 "native sectors (%llu) is smaller than "
1062 "sectors (%llu)\n",
1063 (unsigned long long)native_sectors,
1064 (unsigned long long)sectors);
1065 return 0;
1066 }
1067
1068 /* let's unlock HPA */
1069 rc = ata_set_max_sectors(dev, native_sectors);
1070 if (rc == -EACCES) {
1071 /* if device aborted the command, skip HPA resizing */
1072 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1073 "(%llu -> %llu), skipping HPA handling\n",
1074 (unsigned long long)sectors,
1075 (unsigned long long)native_sectors);
1076 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1077 return 0;
1078 } else if (rc)
1079 return rc;
1080
1081 /* re-read IDENTIFY data */
1082 rc = ata_dev_reread_id(dev, 0);
1083 if (rc) {
1084 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1085 "data after HPA resizing\n");
1086 return rc;
1087 }
1088
1089 if (print_info) {
1090 u64 new_sectors = ata_id_n_sectors(dev->id);
1091 ata_dev_printk(dev, KERN_INFO,
1092 "HPA unlocked: %llu -> %llu, native %llu\n",
1093 (unsigned long long)sectors,
1094 (unsigned long long)new_sectors,
1095 (unsigned long long)native_sectors);
1096 }
1097
1098 return 0;
1e999736
AC
1099}
1100
10305f0f
AC
1101/**
1102 * ata_id_to_dma_mode - Identify DMA mode from id block
1103 * @dev: device to identify
cc261267 1104 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1105 *
1106 * Set up the timing values for the device based upon the identify
1107 * reported values for the DMA mode. This function is used by drivers
1108 * which rely upon firmware configured modes, but wish to report the
1109 * mode correctly when possible.
1110 *
1111 * In addition we emit similarly formatted messages to the default
1112 * ata_dev_set_mode handler, in order to provide consistency of
1113 * presentation.
1114 */
1115
1116void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1117{
1118 unsigned int mask;
1119 u8 mode;
1120
1121 /* Pack the DMA modes */
1122 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1123 if (dev->id[53] & 0x04)
1124 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1125
1126 /* Select the mode in use */
1127 mode = ata_xfer_mask2mode(mask);
1128
1129 if (mode != 0) {
1130 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1131 ata_mode_string(mask));
1132 } else {
1133 /* SWDMA perhaps ? */
1134 mode = unknown;
1135 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1136 }
1137
1138 /* Configure the device reporting */
1139 dev->xfer_mode = mode;
1140 dev->xfer_shift = ata_xfer_mode2shift(mode);
1141}
1142
0baab86b
EF
1143/**
1144 * ata_noop_dev_select - Select device 0/1 on ATA bus
1145 * @ap: ATA channel to manipulate
1146 * @device: ATA device (numbered from zero) to select
1147 *
1148 * This function performs no actual function.
1149 *
1150 * May be used as the dev_select() entry in ata_port_operations.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
2dcb407e 1155void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1156{
1157}
1158
0baab86b 1159
1da177e4
LT
1160/**
1161 * ata_std_dev_select - Select device 0/1 on ATA bus
1162 * @ap: ATA channel to manipulate
1163 * @device: ATA device (numbered from zero) to select
1164 *
1165 * Use the method defined in the ATA specification to
1166 * make either device 0, or device 1, active on the
0baab86b
EF
1167 * ATA channel. Works with both PIO and MMIO.
1168 *
1169 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
2dcb407e 1175void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1176{
1177 u8 tmp;
1178
1179 if (device == 0)
1180 tmp = ATA_DEVICE_OBS;
1181 else
1182 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1183
0d5ff566 1184 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1185 ata_pause(ap); /* needed; also flushes, for mmio */
1186}
1187
1188/**
1189 * ata_dev_select - Select device 0/1 on ATA bus
1190 * @ap: ATA channel to manipulate
1191 * @device: ATA device (numbered from zero) to select
1192 * @wait: non-zero to wait for Status register BSY bit to clear
1193 * @can_sleep: non-zero if context allows sleeping
1194 *
1195 * Use the method defined in the ATA specification to
1196 * make either device 0, or device 1, active on the
1197 * ATA channel.
1198 *
1199 * This is a high-level version of ata_std_dev_select(),
1200 * which additionally provides the services of inserting
1201 * the proper pauses and status polling, where needed.
1202 *
1203 * LOCKING:
1204 * caller.
1205 */
1206
1207void ata_dev_select(struct ata_port *ap, unsigned int device,
1208 unsigned int wait, unsigned int can_sleep)
1209{
88574551 1210 if (ata_msg_probe(ap))
44877b4e
TH
1211 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1212 "device %u, wait %u\n", device, wait);
1da177e4
LT
1213
1214 if (wait)
1215 ata_wait_idle(ap);
1216
1217 ap->ops->dev_select(ap, device);
1218
1219 if (wait) {
9af5c9c9 1220 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1221 msleep(150);
1222 ata_wait_idle(ap);
1223 }
1224}
1225
1226/**
1227 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1228 * @id: IDENTIFY DEVICE page to dump
1da177e4 1229 *
0bd3300a
TH
1230 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1231 * page.
1da177e4
LT
1232 *
1233 * LOCKING:
1234 * caller.
1235 */
1236
0bd3300a 1237static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1238{
1239 DPRINTK("49==0x%04x "
1240 "53==0x%04x "
1241 "63==0x%04x "
1242 "64==0x%04x "
1243 "75==0x%04x \n",
0bd3300a
TH
1244 id[49],
1245 id[53],
1246 id[63],
1247 id[64],
1248 id[75]);
1da177e4
LT
1249 DPRINTK("80==0x%04x "
1250 "81==0x%04x "
1251 "82==0x%04x "
1252 "83==0x%04x "
1253 "84==0x%04x \n",
0bd3300a
TH
1254 id[80],
1255 id[81],
1256 id[82],
1257 id[83],
1258 id[84]);
1da177e4
LT
1259 DPRINTK("88==0x%04x "
1260 "93==0x%04x\n",
0bd3300a
TH
1261 id[88],
1262 id[93]);
1da177e4
LT
1263}
1264
cb95d562
TH
1265/**
1266 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1267 * @id: IDENTIFY data to compute xfer mask from
1268 *
1269 * Compute the xfermask for this device. This is not as trivial
1270 * as it seems if we must consider early devices correctly.
1271 *
1272 * FIXME: pre IDE drive timing (do we care ?).
1273 *
1274 * LOCKING:
1275 * None.
1276 *
1277 * RETURNS:
1278 * Computed xfermask
1279 */
1280static unsigned int ata_id_xfermask(const u16 *id)
1281{
1282 unsigned int pio_mask, mwdma_mask, udma_mask;
1283
1284 /* Usual case. Word 53 indicates word 64 is valid */
1285 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1286 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1287 pio_mask <<= 3;
1288 pio_mask |= 0x7;
1289 } else {
1290 /* If word 64 isn't valid then Word 51 high byte holds
1291 * the PIO timing number for the maximum. Turn it into
1292 * a mask.
1293 */
7a0f1c8a 1294 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1295 if (mode < 5) /* Valid PIO range */
2dcb407e 1296 pio_mask = (2 << mode) - 1;
46767aeb
AC
1297 else
1298 pio_mask = 1;
cb95d562
TH
1299
1300 /* But wait.. there's more. Design your standards by
1301 * committee and you too can get a free iordy field to
1302 * process. However its the speeds not the modes that
1303 * are supported... Note drivers using the timing API
1304 * will get this right anyway
1305 */
1306 }
1307
1308 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1309
b352e57d
AC
1310 if (ata_id_is_cfa(id)) {
1311 /*
1312 * Process compact flash extended modes
1313 */
1314 int pio = id[163] & 0x7;
1315 int dma = (id[163] >> 3) & 7;
1316
1317 if (pio)
1318 pio_mask |= (1 << 5);
1319 if (pio > 1)
1320 pio_mask |= (1 << 6);
1321 if (dma)
1322 mwdma_mask |= (1 << 3);
1323 if (dma > 1)
1324 mwdma_mask |= (1 << 4);
1325 }
1326
fb21f0d0
TH
1327 udma_mask = 0;
1328 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1329 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1330
1331 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1332}
1333
86e45b6b
TH
1334/**
1335 * ata_port_queue_task - Queue port_task
1336 * @ap: The ata_port to queue port_task for
e2a7f77a 1337 * @fn: workqueue function to be scheduled
65f27f38 1338 * @data: data for @fn to use
e2a7f77a 1339 * @delay: delay time for workqueue function
86e45b6b
TH
1340 *
1341 * Schedule @fn(@data) for execution after @delay jiffies using
1342 * port_task. There is one port_task per port and it's the
1343 * user(low level driver)'s responsibility to make sure that only
1344 * one task is active at any given time.
1345 *
1346 * libata core layer takes care of synchronization between
1347 * port_task and EH. ata_port_queue_task() may be ignored for EH
1348 * synchronization.
1349 *
1350 * LOCKING:
1351 * Inherited from caller.
1352 */
65f27f38 1353void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1354 unsigned long delay)
1355{
65f27f38
DH
1356 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1357 ap->port_task_data = data;
86e45b6b 1358
45a66c1c
ON
1359 /* may fail if ata_port_flush_task() in progress */
1360 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1361}
1362
1363/**
1364 * ata_port_flush_task - Flush port_task
1365 * @ap: The ata_port to flush port_task for
1366 *
1367 * After this function completes, port_task is guranteed not to
1368 * be running or scheduled.
1369 *
1370 * LOCKING:
1371 * Kernel thread context (may sleep)
1372 */
1373void ata_port_flush_task(struct ata_port *ap)
1374{
86e45b6b
TH
1375 DPRINTK("ENTER\n");
1376
45a66c1c 1377 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1378
0dd4b21f
BP
1379 if (ata_msg_ctl(ap))
1380 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1381}
1382
7102d230 1383static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1384{
77853bf2 1385 struct completion *waiting = qc->private_data;
a2a7a662 1386
a2a7a662 1387 complete(waiting);
a2a7a662
TH
1388}
1389
1390/**
2432697b 1391 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1392 * @dev: Device to which the command is sent
1393 * @tf: Taskfile registers for the command and the result
d69cf37d 1394 * @cdb: CDB for packet command
a2a7a662 1395 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1396 * @sgl: sg list for the data buffer of the command
2432697b 1397 * @n_elem: Number of sg entries
2b789108 1398 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1399 *
1400 * Executes libata internal command with timeout. @tf contains
1401 * command on entry and result on return. Timeout and error
1402 * conditions are reported via return value. No recovery action
1403 * is taken after a command times out. It's caller's duty to
1404 * clean up after timeout.
1405 *
1406 * LOCKING:
1407 * None. Should be called with kernel context, might sleep.
551e8889
TH
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1411 */
2432697b
TH
1412unsigned ata_exec_internal_sg(struct ata_device *dev,
1413 struct ata_taskfile *tf, const u8 *cdb,
87260216 1414 int dma_dir, struct scatterlist *sgl,
2b789108 1415 unsigned int n_elem, unsigned long timeout)
a2a7a662 1416{
9af5c9c9
TH
1417 struct ata_link *link = dev->link;
1418 struct ata_port *ap = link->ap;
a2a7a662
TH
1419 u8 command = tf->command;
1420 struct ata_queued_cmd *qc;
2ab7db1f 1421 unsigned int tag, preempted_tag;
dedaf2b0 1422 u32 preempted_sactive, preempted_qc_active;
da917d69 1423 int preempted_nr_active_links;
60be6b9a 1424 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1425 unsigned long flags;
77853bf2 1426 unsigned int err_mask;
d95a717f 1427 int rc;
a2a7a662 1428
ba6a1308 1429 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1430
e3180499 1431 /* no internal command while frozen */
b51e9e5d 1432 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1433 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1434 return AC_ERR_SYSTEM;
1435 }
1436
2ab7db1f 1437 /* initialize internal qc */
a2a7a662 1438
2ab7db1f
TH
1439 /* XXX: Tag 0 is used for drivers with legacy EH as some
1440 * drivers choke if any other tag is given. This breaks
1441 * ata_tag_internal() test for those drivers. Don't use new
1442 * EH stuff without converting to it.
1443 */
1444 if (ap->ops->error_handler)
1445 tag = ATA_TAG_INTERNAL;
1446 else
1447 tag = 0;
1448
6cec4a39 1449 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1450 BUG();
f69499f4 1451 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1452
1453 qc->tag = tag;
1454 qc->scsicmd = NULL;
1455 qc->ap = ap;
1456 qc->dev = dev;
1457 ata_qc_reinit(qc);
1458
9af5c9c9
TH
1459 preempted_tag = link->active_tag;
1460 preempted_sactive = link->sactive;
dedaf2b0 1461 preempted_qc_active = ap->qc_active;
da917d69 1462 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1463 link->active_tag = ATA_TAG_POISON;
1464 link->sactive = 0;
dedaf2b0 1465 ap->qc_active = 0;
da917d69 1466 ap->nr_active_links = 0;
2ab7db1f
TH
1467
1468 /* prepare & issue qc */
a2a7a662 1469 qc->tf = *tf;
d69cf37d
TH
1470 if (cdb)
1471 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1472 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1473 qc->dma_dir = dma_dir;
1474 if (dma_dir != DMA_NONE) {
2432697b 1475 unsigned int i, buflen = 0;
87260216 1476 struct scatterlist *sg;
2432697b 1477
87260216
JA
1478 for_each_sg(sgl, sg, n_elem, i)
1479 buflen += sg->length;
2432697b 1480
87260216 1481 ata_sg_init(qc, sgl, n_elem);
49c80429 1482 qc->nbytes = buflen;
a2a7a662
TH
1483 }
1484
77853bf2 1485 qc->private_data = &wait;
a2a7a662
TH
1486 qc->complete_fn = ata_qc_complete_internal;
1487
8e0e694a 1488 ata_qc_issue(qc);
a2a7a662 1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1491
2b789108
TH
1492 if (!timeout)
1493 timeout = ata_probe_timeout * 1000 / HZ;
1494
1495 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1496
1497 ata_port_flush_task(ap);
41ade50c 1498
d95a717f 1499 if (!rc) {
ba6a1308 1500 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1501
1502 /* We're racing with irq here. If we lose, the
1503 * following test prevents us from completing the qc
d95a717f
TH
1504 * twice. If we win, the port is frozen and will be
1505 * cleaned up by ->post_internal_cmd().
a2a7a662 1506 */
77853bf2 1507 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1508 qc->err_mask |= AC_ERR_TIMEOUT;
1509
1510 if (ap->ops->error_handler)
1511 ata_port_freeze(ap);
1512 else
1513 ata_qc_complete(qc);
f15a1daf 1514
0dd4b21f
BP
1515 if (ata_msg_warn(ap))
1516 ata_dev_printk(dev, KERN_WARNING,
88574551 1517 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1518 }
1519
ba6a1308 1520 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1521 }
1522
d95a717f
TH
1523 /* do post_internal_cmd */
1524 if (ap->ops->post_internal_cmd)
1525 ap->ops->post_internal_cmd(qc);
1526
a51d644a
TH
1527 /* perform minimal error analysis */
1528 if (qc->flags & ATA_QCFLAG_FAILED) {
1529 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1530 qc->err_mask |= AC_ERR_DEV;
1531
1532 if (!qc->err_mask)
1533 qc->err_mask |= AC_ERR_OTHER;
1534
1535 if (qc->err_mask & ~AC_ERR_OTHER)
1536 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1537 }
1538
15869303 1539 /* finish up */
ba6a1308 1540 spin_lock_irqsave(ap->lock, flags);
15869303 1541
e61e0672 1542 *tf = qc->result_tf;
77853bf2
TH
1543 err_mask = qc->err_mask;
1544
1545 ata_qc_free(qc);
9af5c9c9
TH
1546 link->active_tag = preempted_tag;
1547 link->sactive = preempted_sactive;
dedaf2b0 1548 ap->qc_active = preempted_qc_active;
da917d69 1549 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1550
1f7dd3e9
TH
1551 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1552 * Until those drivers are fixed, we detect the condition
1553 * here, fail the command with AC_ERR_SYSTEM and reenable the
1554 * port.
1555 *
1556 * Note that this doesn't change any behavior as internal
1557 * command failure results in disabling the device in the
1558 * higher layer for LLDDs without new reset/EH callbacks.
1559 *
1560 * Kill the following code as soon as those drivers are fixed.
1561 */
198e0fed 1562 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1563 err_mask |= AC_ERR_SYSTEM;
1564 ata_port_probe(ap);
1565 }
1566
ba6a1308 1567 spin_unlock_irqrestore(ap->lock, flags);
15869303 1568
77853bf2 1569 return err_mask;
a2a7a662
TH
1570}
1571
2432697b 1572/**
33480a0e 1573 * ata_exec_internal - execute libata internal command
2432697b
TH
1574 * @dev: Device to which the command is sent
1575 * @tf: Taskfile registers for the command and the result
1576 * @cdb: CDB for packet command
1577 * @dma_dir: Data tranfer direction of the command
1578 * @buf: Data buffer of the command
1579 * @buflen: Length of data buffer
2b789108 1580 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1581 *
1582 * Wrapper around ata_exec_internal_sg() which takes simple
1583 * buffer instead of sg list.
1584 *
1585 * LOCKING:
1586 * None. Should be called with kernel context, might sleep.
1587 *
1588 * RETURNS:
1589 * Zero on success, AC_ERR_* mask on failure
1590 */
1591unsigned ata_exec_internal(struct ata_device *dev,
1592 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1593 int dma_dir, void *buf, unsigned int buflen,
1594 unsigned long timeout)
2432697b 1595{
33480a0e
TH
1596 struct scatterlist *psg = NULL, sg;
1597 unsigned int n_elem = 0;
2432697b 1598
33480a0e
TH
1599 if (dma_dir != DMA_NONE) {
1600 WARN_ON(!buf);
1601 sg_init_one(&sg, buf, buflen);
1602 psg = &sg;
1603 n_elem++;
1604 }
2432697b 1605
2b789108
TH
1606 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1607 timeout);
2432697b
TH
1608}
1609
977e6b9f
TH
1610/**
1611 * ata_do_simple_cmd - execute simple internal command
1612 * @dev: Device to which the command is sent
1613 * @cmd: Opcode to execute
1614 *
1615 * Execute a 'simple' command, that only consists of the opcode
1616 * 'cmd' itself, without filling any other registers
1617 *
1618 * LOCKING:
1619 * Kernel thread context (may sleep).
1620 *
1621 * RETURNS:
1622 * Zero on success, AC_ERR_* mask on failure
e58eb583 1623 */
77b08fb5 1624unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1625{
1626 struct ata_taskfile tf;
e58eb583
TH
1627
1628 ata_tf_init(dev, &tf);
1629
1630 tf.command = cmd;
1631 tf.flags |= ATA_TFLAG_DEVICE;
1632 tf.protocol = ATA_PROT_NODATA;
1633
2b789108 1634 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1635}
1636
1bc4ccff
AC
1637/**
1638 * ata_pio_need_iordy - check if iordy needed
1639 * @adev: ATA device
1640 *
1641 * Check if the current speed of the device requires IORDY. Used
1642 * by various controllers for chip configuration.
1643 */
a617c09f 1644
1bc4ccff
AC
1645unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1646{
432729f0
AC
1647 /* Controller doesn't support IORDY. Probably a pointless check
1648 as the caller should know this */
9af5c9c9 1649 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1650 return 0;
432729f0
AC
1651 /* PIO3 and higher it is mandatory */
1652 if (adev->pio_mode > XFER_PIO_2)
1653 return 1;
1654 /* We turn it on when possible */
1655 if (ata_id_has_iordy(adev->id))
1bc4ccff 1656 return 1;
432729f0
AC
1657 return 0;
1658}
2e9edbf8 1659
432729f0
AC
1660/**
1661 * ata_pio_mask_no_iordy - Return the non IORDY mask
1662 * @adev: ATA device
1663 *
1664 * Compute the highest mode possible if we are not using iordy. Return
1665 * -1 if no iordy mode is available.
1666 */
a617c09f 1667
432729f0
AC
1668static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1669{
1bc4ccff 1670 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1671 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1672 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1673 /* Is the speed faster than the drive allows non IORDY ? */
1674 if (pio) {
1675 /* This is cycle times not frequency - watch the logic! */
1676 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1677 return 3 << ATA_SHIFT_PIO;
1678 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1679 }
1680 }
432729f0 1681 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1682}
1683
1da177e4 1684/**
49016aca 1685 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1686 * @dev: target device
1687 * @p_class: pointer to class of the target device (may be changed)
bff04647 1688 * @flags: ATA_READID_* flags
fe635c7e 1689 * @id: buffer to read IDENTIFY data into
1da177e4 1690 *
49016aca
TH
1691 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1692 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1693 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1694 * for pre-ATA4 drives.
1da177e4 1695 *
50a99018 1696 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1697 * now we abort if we hit that case.
50a99018 1698 *
1da177e4 1699 * LOCKING:
49016aca
TH
1700 * Kernel thread context (may sleep)
1701 *
1702 * RETURNS:
1703 * 0 on success, -errno otherwise.
1da177e4 1704 */
a9beec95 1705int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1706 unsigned int flags, u16 *id)
1da177e4 1707{
9af5c9c9 1708 struct ata_port *ap = dev->link->ap;
49016aca 1709 unsigned int class = *p_class;
a0123703 1710 struct ata_taskfile tf;
49016aca
TH
1711 unsigned int err_mask = 0;
1712 const char *reason;
54936f8b 1713 int may_fallback = 1, tried_spinup = 0;
49016aca 1714 int rc;
1da177e4 1715
0dd4b21f 1716 if (ata_msg_ctl(ap))
44877b4e 1717 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1718
49016aca 1719 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1720 retry:
3373efd8 1721 ata_tf_init(dev, &tf);
a0123703 1722
49016aca
TH
1723 switch (class) {
1724 case ATA_DEV_ATA:
a0123703 1725 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1726 break;
1727 case ATA_DEV_ATAPI:
a0123703 1728 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1729 break;
1730 default:
1731 rc = -ENODEV;
1732 reason = "unsupported class";
1733 goto err_out;
1da177e4
LT
1734 }
1735
a0123703 1736 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1737
1738 /* Some devices choke if TF registers contain garbage. Make
1739 * sure those are properly initialized.
1740 */
1741 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1742
1743 /* Device presence detection is unreliable on some
1744 * controllers. Always poll IDENTIFY if available.
1745 */
1746 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1747
3373efd8 1748 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1749 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1750 if (err_mask) {
800b3996 1751 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1752 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1753 ap->print_id, dev->devno);
55a8e2c8
TH
1754 return -ENOENT;
1755 }
1756
54936f8b
TH
1757 /* Device or controller might have reported the wrong
1758 * device class. Give a shot at the other IDENTIFY if
1759 * the current one is aborted by the device.
1760 */
1761 if (may_fallback &&
1762 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1763 may_fallback = 0;
1764
1765 if (class == ATA_DEV_ATA)
1766 class = ATA_DEV_ATAPI;
1767 else
1768 class = ATA_DEV_ATA;
1769 goto retry;
1770 }
1771
49016aca
TH
1772 rc = -EIO;
1773 reason = "I/O error";
1da177e4
LT
1774 goto err_out;
1775 }
1776
54936f8b
TH
1777 /* Falling back doesn't make sense if ID data was read
1778 * successfully at least once.
1779 */
1780 may_fallback = 0;
1781
49016aca 1782 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1783
49016aca 1784 /* sanity check */
a4f5749b 1785 rc = -EINVAL;
6070068b 1786 reason = "device reports invalid type";
a4f5749b
TH
1787
1788 if (class == ATA_DEV_ATA) {
1789 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1790 goto err_out;
1791 } else {
1792 if (ata_id_is_ata(id))
1793 goto err_out;
49016aca
TH
1794 }
1795
169439c2
ML
1796 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1797 tried_spinup = 1;
1798 /*
1799 * Drive powered-up in standby mode, and requires a specific
1800 * SET_FEATURES spin-up subcommand before it will accept
1801 * anything other than the original IDENTIFY command.
1802 */
218f3d30 1803 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1804 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1805 rc = -EIO;
1806 reason = "SPINUP failed";
1807 goto err_out;
1808 }
1809 /*
1810 * If the drive initially returned incomplete IDENTIFY info,
1811 * we now must reissue the IDENTIFY command.
1812 */
1813 if (id[2] == 0x37c8)
1814 goto retry;
1815 }
1816
bff04647 1817 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1818 /*
1819 * The exact sequence expected by certain pre-ATA4 drives is:
1820 * SRST RESET
50a99018
AC
1821 * IDENTIFY (optional in early ATA)
1822 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1823 * anything else..
1824 * Some drives were very specific about that exact sequence.
50a99018
AC
1825 *
1826 * Note that ATA4 says lba is mandatory so the second check
1827 * shoud never trigger.
49016aca
TH
1828 */
1829 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1830 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1831 if (err_mask) {
1832 rc = -EIO;
1833 reason = "INIT_DEV_PARAMS failed";
1834 goto err_out;
1835 }
1836
1837 /* current CHS translation info (id[53-58]) might be
1838 * changed. reread the identify device info.
1839 */
bff04647 1840 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1841 goto retry;
1842 }
1843 }
1844
1845 *p_class = class;
fe635c7e 1846
49016aca
TH
1847 return 0;
1848
1849 err_out:
88574551 1850 if (ata_msg_warn(ap))
0dd4b21f 1851 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1852 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1853 return rc;
1854}
1855
3373efd8 1856static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1857{
9af5c9c9
TH
1858 struct ata_port *ap = dev->link->ap;
1859 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1860}
1861
a6e6ce8e
TH
1862static void ata_dev_config_ncq(struct ata_device *dev,
1863 char *desc, size_t desc_sz)
1864{
9af5c9c9 1865 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1866 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1867
1868 if (!ata_id_has_ncq(dev->id)) {
1869 desc[0] = '\0';
1870 return;
1871 }
75683fe7 1872 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1873 snprintf(desc, desc_sz, "NCQ (not used)");
1874 return;
1875 }
a6e6ce8e 1876 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1877 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1878 dev->flags |= ATA_DFLAG_NCQ;
1879 }
1880
1881 if (hdepth >= ddepth)
1882 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1883 else
1884 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1885}
1886
49016aca 1887/**
ffeae418 1888 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1889 * @dev: Target device to configure
1890 *
1891 * Configure @dev according to @dev->id. Generic and low-level
1892 * driver specific fixups are also applied.
49016aca
TH
1893 *
1894 * LOCKING:
ffeae418
TH
1895 * Kernel thread context (may sleep)
1896 *
1897 * RETURNS:
1898 * 0 on success, -errno otherwise
49016aca 1899 */
efdaedc4 1900int ata_dev_configure(struct ata_device *dev)
49016aca 1901{
9af5c9c9
TH
1902 struct ata_port *ap = dev->link->ap;
1903 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1904 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1905 const u16 *id = dev->id;
ff8854b2 1906 unsigned int xfer_mask;
b352e57d 1907 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1908 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1909 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1910 int rc;
49016aca 1911
0dd4b21f 1912 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1913 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1914 __FUNCTION__);
ffeae418 1915 return 0;
49016aca
TH
1916 }
1917
0dd4b21f 1918 if (ata_msg_probe(ap))
44877b4e 1919 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1920
75683fe7
TH
1921 /* set horkage */
1922 dev->horkage |= ata_dev_blacklisted(dev);
1923
6746544c
TH
1924 /* let ACPI work its magic */
1925 rc = ata_acpi_on_devcfg(dev);
1926 if (rc)
1927 return rc;
08573a86 1928
05027adc
TH
1929 /* massage HPA, do it early as it might change IDENTIFY data */
1930 rc = ata_hpa_resize(dev);
1931 if (rc)
1932 return rc;
1933
c39f5ebe 1934 /* print device capabilities */
0dd4b21f 1935 if (ata_msg_probe(ap))
88574551
TH
1936 ata_dev_printk(dev, KERN_DEBUG,
1937 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1938 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1939 __FUNCTION__,
f15a1daf
TH
1940 id[49], id[82], id[83], id[84],
1941 id[85], id[86], id[87], id[88]);
c39f5ebe 1942
208a9933 1943 /* initialize to-be-configured parameters */
ea1dd4e1 1944 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1945 dev->max_sectors = 0;
1946 dev->cdb_len = 0;
1947 dev->n_sectors = 0;
1948 dev->cylinders = 0;
1949 dev->heads = 0;
1950 dev->sectors = 0;
1951
1da177e4
LT
1952 /*
1953 * common ATA, ATAPI feature tests
1954 */
1955
ff8854b2 1956 /* find max transfer mode; for printk only */
1148c3a7 1957 xfer_mask = ata_id_xfermask(id);
1da177e4 1958
0dd4b21f
BP
1959 if (ata_msg_probe(ap))
1960 ata_dump_id(id);
1da177e4 1961
ef143d57
AL
1962 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1963 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1964 sizeof(fwrevbuf));
1965
1966 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1967 sizeof(modelbuf));
1968
1da177e4
LT
1969 /* ATA-specific feature tests */
1970 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1971 if (ata_id_is_cfa(id)) {
1972 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "supports DRM functions and may "
1975 "not be fully accessable.\n");
b352e57d 1976 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
1977 } else
1978 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 1979
1148c3a7 1980 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1981
3f64f565
EM
1982 if (dev->id[59] & 0x100)
1983 dev->multi_count = dev->id[59] & 0xff;
1984
1148c3a7 1985 if (ata_id_has_lba(id)) {
4c2d721a 1986 const char *lba_desc;
a6e6ce8e 1987 char ncq_desc[20];
8bf62ece 1988
4c2d721a
TH
1989 lba_desc = "LBA";
1990 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1991 if (ata_id_has_lba48(id)) {
8bf62ece 1992 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1993 lba_desc = "LBA48";
6fc49adb
TH
1994
1995 if (dev->n_sectors >= (1UL << 28) &&
1996 ata_id_has_flush_ext(id))
1997 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1998 }
8bf62ece 1999
a6e6ce8e
TH
2000 /* config NCQ */
2001 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2002
8bf62ece 2003 /* print device info to dmesg */
3f64f565
EM
2004 if (ata_msg_drv(ap) && print_info) {
2005 ata_dev_printk(dev, KERN_INFO,
2006 "%s: %s, %s, max %s\n",
2007 revbuf, modelbuf, fwrevbuf,
2008 ata_mode_string(xfer_mask));
2009 ata_dev_printk(dev, KERN_INFO,
2010 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2011 (unsigned long long)dev->n_sectors,
3f64f565
EM
2012 dev->multi_count, lba_desc, ncq_desc);
2013 }
ffeae418 2014 } else {
8bf62ece
AL
2015 /* CHS */
2016
2017 /* Default translation */
1148c3a7
TH
2018 dev->cylinders = id[1];
2019 dev->heads = id[3];
2020 dev->sectors = id[6];
8bf62ece 2021
1148c3a7 2022 if (ata_id_current_chs_valid(id)) {
8bf62ece 2023 /* Current CHS translation is valid. */
1148c3a7
TH
2024 dev->cylinders = id[54];
2025 dev->heads = id[55];
2026 dev->sectors = id[56];
8bf62ece
AL
2027 }
2028
2029 /* print device info to dmesg */
3f64f565 2030 if (ata_msg_drv(ap) && print_info) {
88574551 2031 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2032 "%s: %s, %s, max %s\n",
2033 revbuf, modelbuf, fwrevbuf,
2034 ata_mode_string(xfer_mask));
a84471fe 2035 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2036 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2037 (unsigned long long)dev->n_sectors,
2038 dev->multi_count, dev->cylinders,
2039 dev->heads, dev->sectors);
2040 }
07f6f7d0
AL
2041 }
2042
6e7846e9 2043 dev->cdb_len = 16;
1da177e4
LT
2044 }
2045
2046 /* ATAPI-specific feature tests */
2c13b7ce 2047 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2048 const char *cdb_intr_string = "";
2049 const char *atapi_an_string = "";
7d77b247 2050 u32 sntf;
08a556db 2051
1148c3a7 2052 rc = atapi_cdb_len(id);
1da177e4 2053 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2054 if (ata_msg_warn(ap))
88574551
TH
2055 ata_dev_printk(dev, KERN_WARNING,
2056 "unsupported CDB len\n");
ffeae418 2057 rc = -EINVAL;
1da177e4
LT
2058 goto err_out_nosup;
2059 }
6e7846e9 2060 dev->cdb_len = (unsigned int) rc;
1da177e4 2061
7d77b247
TH
2062 /* Enable ATAPI AN if both the host and device have
2063 * the support. If PMP is attached, SNTF is required
2064 * to enable ATAPI AN to discern between PHY status
2065 * changed notifications and ATAPI ANs.
9f45cbd3 2066 */
7d77b247
TH
2067 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2068 (!ap->nr_pmp_links ||
2069 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2070 unsigned int err_mask;
2071
9f45cbd3 2072 /* issue SET feature command to turn this on */
218f3d30
JG
2073 err_mask = ata_dev_set_feature(dev,
2074 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2075 if (err_mask)
9f45cbd3 2076 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2077 "failed to enable ATAPI AN "
2078 "(err_mask=0x%x)\n", err_mask);
2079 else {
9f45cbd3 2080 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2081 atapi_an_string = ", ATAPI AN";
2082 }
9f45cbd3
KCA
2083 }
2084
08a556db 2085 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2086 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2087 cdb_intr_string = ", CDB intr";
2088 }
312f7da2 2089
1da177e4 2090 /* print device info to dmesg */
5afc8142 2091 if (ata_msg_drv(ap) && print_info)
ef143d57 2092 ata_dev_printk(dev, KERN_INFO,
854c73a2 2093 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2094 modelbuf, fwrevbuf,
12436c30 2095 ata_mode_string(xfer_mask),
854c73a2 2096 cdb_intr_string, atapi_an_string);
1da177e4
LT
2097 }
2098
914ed354
TH
2099 /* determine max_sectors */
2100 dev->max_sectors = ATA_MAX_SECTORS;
2101 if (dev->flags & ATA_DFLAG_LBA48)
2102 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2103
93590859
AC
2104 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2105 /* Let the user know. We don't want to disallow opens for
2106 rescue purposes, or in case the vendor is just a blithering
2107 idiot */
2dcb407e 2108 if (print_info) {
93590859
AC
2109 ata_dev_printk(dev, KERN_WARNING,
2110"Drive reports diagnostics failure. This may indicate a drive\n");
2111 ata_dev_printk(dev, KERN_WARNING,
2112"fault or invalid emulation. Contact drive vendor for information.\n");
2113 }
2114 }
2115
4b2f3ede 2116 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2117 if (ata_dev_knobble(dev)) {
5afc8142 2118 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2119 ata_dev_printk(dev, KERN_INFO,
2120 "applying bridge limits\n");
5a529139 2121 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2122 dev->max_sectors = ATA_MAX_SECTORS;
2123 }
2124
75683fe7 2125 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2126 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2127 dev->max_sectors);
18d6e9d5 2128
4b2f3ede 2129 if (ap->ops->dev_config)
cd0d3bbc 2130 ap->ops->dev_config(dev);
4b2f3ede 2131
0dd4b21f
BP
2132 if (ata_msg_probe(ap))
2133 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2134 __FUNCTION__, ata_chk_status(ap));
ffeae418 2135 return 0;
1da177e4
LT
2136
2137err_out_nosup:
0dd4b21f 2138 if (ata_msg_probe(ap))
88574551
TH
2139 ata_dev_printk(dev, KERN_DEBUG,
2140 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2141 return rc;
1da177e4
LT
2142}
2143
be0d18df 2144/**
2e41e8e6 2145 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2146 * @ap: port
2147 *
2e41e8e6 2148 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2149 * detection.
2150 */
2151
2152int ata_cable_40wire(struct ata_port *ap)
2153{
2154 return ATA_CBL_PATA40;
2155}
2156
2157/**
2e41e8e6 2158 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2159 * @ap: port
2160 *
2e41e8e6 2161 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2162 * detection.
2163 */
2164
2165int ata_cable_80wire(struct ata_port *ap)
2166{
2167 return ATA_CBL_PATA80;
2168}
2169
2170/**
2171 * ata_cable_unknown - return unknown PATA cable.
2172 * @ap: port
2173 *
2174 * Helper method for drivers which have no PATA cable detection.
2175 */
2176
2177int ata_cable_unknown(struct ata_port *ap)
2178{
2179 return ATA_CBL_PATA_UNK;
2180}
2181
2182/**
2183 * ata_cable_sata - return SATA cable type
2184 * @ap: port
2185 *
2186 * Helper method for drivers which have SATA cables
2187 */
2188
2189int ata_cable_sata(struct ata_port *ap)
2190{
2191 return ATA_CBL_SATA;
2192}
2193
1da177e4
LT
2194/**
2195 * ata_bus_probe - Reset and probe ATA bus
2196 * @ap: Bus to probe
2197 *
0cba632b
JG
2198 * Master ATA bus probing function. Initiates a hardware-dependent
2199 * bus reset, then attempts to identify any devices found on
2200 * the bus.
2201 *
1da177e4 2202 * LOCKING:
0cba632b 2203 * PCI/etc. bus probe sem.
1da177e4
LT
2204 *
2205 * RETURNS:
96072e69 2206 * Zero on success, negative errno otherwise.
1da177e4
LT
2207 */
2208
80289167 2209int ata_bus_probe(struct ata_port *ap)
1da177e4 2210{
28ca5c57 2211 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2212 int tries[ATA_MAX_DEVICES];
f58229f8 2213 int rc;
e82cbdb9 2214 struct ata_device *dev;
1da177e4 2215
28ca5c57 2216 ata_port_probe(ap);
c19ba8af 2217
f58229f8
TH
2218 ata_link_for_each_dev(dev, &ap->link)
2219 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2220
2221 retry:
2044470c 2222 /* reset and determine device classes */
52783c5d 2223 ap->ops->phy_reset(ap);
2061a47a 2224
f58229f8 2225 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2226 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2227 dev->class != ATA_DEV_UNKNOWN)
2228 classes[dev->devno] = dev->class;
2229 else
2230 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2231
52783c5d 2232 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2233 }
1da177e4 2234
52783c5d 2235 ata_port_probe(ap);
2044470c 2236
b6079ca4
AC
2237 /* after the reset the device state is PIO 0 and the controller
2238 state is undefined. Record the mode */
2239
f58229f8
TH
2240 ata_link_for_each_dev(dev, &ap->link)
2241 dev->pio_mode = XFER_PIO_0;
b6079ca4 2242
f31f0cc2
JG
2243 /* read IDENTIFY page and configure devices. We have to do the identify
2244 specific sequence bass-ackwards so that PDIAG- is released by
2245 the slave device */
2246
f58229f8
TH
2247 ata_link_for_each_dev(dev, &ap->link) {
2248 if (tries[dev->devno])
2249 dev->class = classes[dev->devno];
ffeae418 2250
14d2bac1 2251 if (!ata_dev_enabled(dev))
ffeae418 2252 continue;
ffeae418 2253
bff04647
TH
2254 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2255 dev->id);
14d2bac1
TH
2256 if (rc)
2257 goto fail;
f31f0cc2
JG
2258 }
2259
be0d18df
AC
2260 /* Now ask for the cable type as PDIAG- should have been released */
2261 if (ap->ops->cable_detect)
2262 ap->cbl = ap->ops->cable_detect(ap);
2263
614fe29b
AC
2264 /* We may have SATA bridge glue hiding here irrespective of the
2265 reported cable types and sensed types */
2266 ata_link_for_each_dev(dev, &ap->link) {
2267 if (!ata_dev_enabled(dev))
2268 continue;
2269 /* SATA drives indicate we have a bridge. We don't know which
2270 end of the link the bridge is which is a problem */
2271 if (ata_id_is_sata(dev->id))
2272 ap->cbl = ATA_CBL_SATA;
2273 }
2274
f31f0cc2
JG
2275 /* After the identify sequence we can now set up the devices. We do
2276 this in the normal order so that the user doesn't get confused */
2277
f58229f8 2278 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2279 if (!ata_dev_enabled(dev))
2280 continue;
14d2bac1 2281
9af5c9c9 2282 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2283 rc = ata_dev_configure(dev);
9af5c9c9 2284 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2285 if (rc)
2286 goto fail;
1da177e4
LT
2287 }
2288
e82cbdb9 2289 /* configure transfer mode */
0260731f 2290 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2291 if (rc)
51713d35 2292 goto fail;
1da177e4 2293
f58229f8
TH
2294 ata_link_for_each_dev(dev, &ap->link)
2295 if (ata_dev_enabled(dev))
e82cbdb9 2296 return 0;
1da177e4 2297
e82cbdb9
TH
2298 /* no device present, disable port */
2299 ata_port_disable(ap);
96072e69 2300 return -ENODEV;
14d2bac1
TH
2301
2302 fail:
4ae72a1e
TH
2303 tries[dev->devno]--;
2304
14d2bac1
TH
2305 switch (rc) {
2306 case -EINVAL:
4ae72a1e 2307 /* eeek, something went very wrong, give up */
14d2bac1
TH
2308 tries[dev->devno] = 0;
2309 break;
4ae72a1e
TH
2310
2311 case -ENODEV:
2312 /* give it just one more chance */
2313 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2314 case -EIO:
4ae72a1e
TH
2315 if (tries[dev->devno] == 1) {
2316 /* This is the last chance, better to slow
2317 * down than lose it.
2318 */
936fd732 2319 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2320 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2321 }
14d2bac1
TH
2322 }
2323
4ae72a1e 2324 if (!tries[dev->devno])
3373efd8 2325 ata_dev_disable(dev);
ec573755 2326
14d2bac1 2327 goto retry;
1da177e4
LT
2328}
2329
2330/**
0cba632b
JG
2331 * ata_port_probe - Mark port as enabled
2332 * @ap: Port for which we indicate enablement
1da177e4 2333 *
0cba632b
JG
2334 * Modify @ap data structure such that the system
2335 * thinks that the entire port is enabled.
2336 *
cca3974e 2337 * LOCKING: host lock, or some other form of
0cba632b 2338 * serialization.
1da177e4
LT
2339 */
2340
2341void ata_port_probe(struct ata_port *ap)
2342{
198e0fed 2343 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2344}
2345
3be680b7
TH
2346/**
2347 * sata_print_link_status - Print SATA link status
936fd732 2348 * @link: SATA link to printk link status about
3be680b7
TH
2349 *
2350 * This function prints link speed and status of a SATA link.
2351 *
2352 * LOCKING:
2353 * None.
2354 */
936fd732 2355void sata_print_link_status(struct ata_link *link)
3be680b7 2356{
6d5f9732 2357 u32 sstatus, scontrol, tmp;
3be680b7 2358
936fd732 2359 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2360 return;
936fd732 2361 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2362
936fd732 2363 if (ata_link_online(link)) {
3be680b7 2364 tmp = (sstatus >> 4) & 0xf;
936fd732 2365 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2366 "SATA link up %s (SStatus %X SControl %X)\n",
2367 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2368 } else {
936fd732 2369 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2370 "SATA link down (SStatus %X SControl %X)\n",
2371 sstatus, scontrol);
3be680b7
TH
2372 }
2373}
2374
1da177e4 2375/**
780a87f7
JG
2376 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2377 * @ap: SATA port associated with target SATA PHY.
1da177e4 2378 *
780a87f7
JG
2379 * This function issues commands to standard SATA Sxxx
2380 * PHY registers, to wake up the phy (and device), and
2381 * clear any reset condition.
1da177e4
LT
2382 *
2383 * LOCKING:
0cba632b 2384 * PCI/etc. bus probe sem.
1da177e4
LT
2385 *
2386 */
2387void __sata_phy_reset(struct ata_port *ap)
2388{
936fd732 2389 struct ata_link *link = &ap->link;
1da177e4 2390 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2391 u32 sstatus;
1da177e4
LT
2392
2393 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2394 /* issue phy wake/reset */
936fd732 2395 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2396 /* Couldn't find anything in SATA I/II specs, but
2397 * AHCI-1.1 10.4.2 says at least 1 ms. */
2398 mdelay(1);
1da177e4 2399 }
81952c54 2400 /* phy wake/clear reset */
936fd732 2401 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2402
2403 /* wait for phy to become ready, if necessary */
2404 do {
2405 msleep(200);
936fd732 2406 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2407 if ((sstatus & 0xf) != 1)
2408 break;
2409 } while (time_before(jiffies, timeout));
2410
3be680b7 2411 /* print link status */
936fd732 2412 sata_print_link_status(link);
656563e3 2413
3be680b7 2414 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2415 if (!ata_link_offline(link))
1da177e4 2416 ata_port_probe(ap);
3be680b7 2417 else
1da177e4 2418 ata_port_disable(ap);
1da177e4 2419
198e0fed 2420 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2421 return;
2422
2423 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2424 ata_port_disable(ap);
2425 return;
2426 }
2427
2428 ap->cbl = ATA_CBL_SATA;
2429}
2430
2431/**
780a87f7
JG
2432 * sata_phy_reset - Reset SATA bus.
2433 * @ap: SATA port associated with target SATA PHY.
1da177e4 2434 *
780a87f7
JG
2435 * This function resets the SATA bus, and then probes
2436 * the bus for devices.
1da177e4
LT
2437 *
2438 * LOCKING:
0cba632b 2439 * PCI/etc. bus probe sem.
1da177e4
LT
2440 *
2441 */
2442void sata_phy_reset(struct ata_port *ap)
2443{
2444 __sata_phy_reset(ap);
198e0fed 2445 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2446 return;
2447 ata_bus_reset(ap);
2448}
2449
ebdfca6e
AC
2450/**
2451 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2452 * @adev: device
2453 *
2454 * Obtain the other device on the same cable, or if none is
2455 * present NULL is returned
2456 */
2e9edbf8 2457
3373efd8 2458struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2459{
9af5c9c9
TH
2460 struct ata_link *link = adev->link;
2461 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2462 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2463 return NULL;
2464 return pair;
2465}
2466
1da177e4 2467/**
780a87f7
JG
2468 * ata_port_disable - Disable port.
2469 * @ap: Port to be disabled.
1da177e4 2470 *
780a87f7
JG
2471 * Modify @ap data structure such that the system
2472 * thinks that the entire port is disabled, and should
2473 * never attempt to probe or communicate with devices
2474 * on this port.
2475 *
cca3974e 2476 * LOCKING: host lock, or some other form of
780a87f7 2477 * serialization.
1da177e4
LT
2478 */
2479
2480void ata_port_disable(struct ata_port *ap)
2481{
9af5c9c9
TH
2482 ap->link.device[0].class = ATA_DEV_NONE;
2483 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2484 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2485}
2486
1c3fae4d 2487/**
3c567b7d 2488 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2489 * @link: Link to adjust SATA spd limit for
1c3fae4d 2490 *
936fd732 2491 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2492 * function only adjusts the limit. The change must be applied
3c567b7d 2493 * using sata_set_spd().
1c3fae4d
TH
2494 *
2495 * LOCKING:
2496 * Inherited from caller.
2497 *
2498 * RETURNS:
2499 * 0 on success, negative errno on failure
2500 */
936fd732 2501int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2502{
81952c54
TH
2503 u32 sstatus, spd, mask;
2504 int rc, highbit;
1c3fae4d 2505
936fd732 2506 if (!sata_scr_valid(link))
008a7896
TH
2507 return -EOPNOTSUPP;
2508
2509 /* If SCR can be read, use it to determine the current SPD.
936fd732 2510 * If not, use cached value in link->sata_spd.
008a7896 2511 */
936fd732 2512 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2513 if (rc == 0)
2514 spd = (sstatus >> 4) & 0xf;
2515 else
936fd732 2516 spd = link->sata_spd;
1c3fae4d 2517
936fd732 2518 mask = link->sata_spd_limit;
1c3fae4d
TH
2519 if (mask <= 1)
2520 return -EINVAL;
008a7896
TH
2521
2522 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2523 highbit = fls(mask) - 1;
2524 mask &= ~(1 << highbit);
2525
008a7896
TH
2526 /* Mask off all speeds higher than or equal to the current
2527 * one. Force 1.5Gbps if current SPD is not available.
2528 */
2529 if (spd > 1)
2530 mask &= (1 << (spd - 1)) - 1;
2531 else
2532 mask &= 1;
2533
2534 /* were we already at the bottom? */
1c3fae4d
TH
2535 if (!mask)
2536 return -EINVAL;
2537
936fd732 2538 link->sata_spd_limit = mask;
1c3fae4d 2539
936fd732 2540 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2541 sata_spd_string(fls(mask)));
1c3fae4d
TH
2542
2543 return 0;
2544}
2545
936fd732 2546static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2547{
2548 u32 spd, limit;
2549
936fd732 2550 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2551 limit = 0;
2552 else
936fd732 2553 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2554
2555 spd = (*scontrol >> 4) & 0xf;
2556 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2557
2558 return spd != limit;
2559}
2560
2561/**
3c567b7d 2562 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2563 * @link: Link in question
1c3fae4d
TH
2564 *
2565 * Test whether the spd limit in SControl matches
936fd732 2566 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2567 * whether hardreset is necessary to apply SATA spd
2568 * configuration.
2569 *
2570 * LOCKING:
2571 * Inherited from caller.
2572 *
2573 * RETURNS:
2574 * 1 if SATA spd configuration is needed, 0 otherwise.
2575 */
936fd732 2576int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2577{
2578 u32 scontrol;
2579
936fd732 2580 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2581 return 0;
2582
936fd732 2583 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2584}
2585
2586/**
3c567b7d 2587 * sata_set_spd - set SATA spd according to spd limit
936fd732 2588 * @link: Link to set SATA spd for
1c3fae4d 2589 *
936fd732 2590 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2591 *
2592 * LOCKING:
2593 * Inherited from caller.
2594 *
2595 * RETURNS:
2596 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2597 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2598 */
936fd732 2599int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2600{
2601 u32 scontrol;
81952c54 2602 int rc;
1c3fae4d 2603
936fd732 2604 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2605 return rc;
1c3fae4d 2606
936fd732 2607 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2608 return 0;
2609
936fd732 2610 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2611 return rc;
2612
1c3fae4d
TH
2613 return 1;
2614}
2615
452503f9
AC
2616/*
2617 * This mode timing computation functionality is ported over from
2618 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2619 */
2620/*
b352e57d 2621 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2622 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2623 * for UDMA6, which is currently supported only by Maxtor drives.
2624 *
2625 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2626 */
2627
2628static const struct ata_timing ata_timing[] = {
2629
2630 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2631 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2632 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2633 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2634
b352e57d
AC
2635 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2636 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2637 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2638 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2639 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2640
2641/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2642
452503f9
AC
2643 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2644 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2645 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2646
452503f9
AC
2647 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2648 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2649 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2650
b352e57d
AC
2651 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2652 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2653 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2654 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2655
2656 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2657 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2658 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2659
2660/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2661
2662 { 0xFF }
2663};
2664
2dcb407e
JG
2665#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2666#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2667
2668static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2669{
2670 q->setup = EZ(t->setup * 1000, T);
2671 q->act8b = EZ(t->act8b * 1000, T);
2672 q->rec8b = EZ(t->rec8b * 1000, T);
2673 q->cyc8b = EZ(t->cyc8b * 1000, T);
2674 q->active = EZ(t->active * 1000, T);
2675 q->recover = EZ(t->recover * 1000, T);
2676 q->cycle = EZ(t->cycle * 1000, T);
2677 q->udma = EZ(t->udma * 1000, UT);
2678}
2679
2680void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2681 struct ata_timing *m, unsigned int what)
2682{
2683 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2684 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2685 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2686 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2687 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2688 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2689 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2690 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2691}
2692
2dcb407e 2693static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2694{
2695 const struct ata_timing *t;
2696
2697 for (t = ata_timing; t->mode != speed; t++)
91190758 2698 if (t->mode == 0xFF)
452503f9 2699 return NULL;
2e9edbf8 2700 return t;
452503f9
AC
2701}
2702
2703int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2704 struct ata_timing *t, int T, int UT)
2705{
2706 const struct ata_timing *s;
2707 struct ata_timing p;
2708
2709 /*
2e9edbf8 2710 * Find the mode.
75b1f2f8 2711 */
452503f9
AC
2712
2713 if (!(s = ata_timing_find_mode(speed)))
2714 return -EINVAL;
2715
75b1f2f8
AL
2716 memcpy(t, s, sizeof(*s));
2717
452503f9
AC
2718 /*
2719 * If the drive is an EIDE drive, it can tell us it needs extended
2720 * PIO/MW_DMA cycle timing.
2721 */
2722
2723 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2724 memset(&p, 0, sizeof(p));
2dcb407e 2725 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2726 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2727 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2728 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2729 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2730 }
2731 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2732 }
2733
2734 /*
2735 * Convert the timing to bus clock counts.
2736 */
2737
75b1f2f8 2738 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2739
2740 /*
c893a3ae
RD
2741 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2742 * S.M.A.R.T * and some other commands. We have to ensure that the
2743 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2744 */
2745
fd3367af 2746 if (speed > XFER_PIO_6) {
452503f9
AC
2747 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2748 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2749 }
2750
2751 /*
c893a3ae 2752 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2753 */
2754
2755 if (t->act8b + t->rec8b < t->cyc8b) {
2756 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2757 t->rec8b = t->cyc8b - t->act8b;
2758 }
2759
2760 if (t->active + t->recover < t->cycle) {
2761 t->active += (t->cycle - (t->active + t->recover)) / 2;
2762 t->recover = t->cycle - t->active;
2763 }
a617c09f 2764
4f701d1e
AC
2765 /* In a few cases quantisation may produce enough errors to
2766 leave t->cycle too low for the sum of active and recovery
2767 if so we must correct this */
2768 if (t->active + t->recover > t->cycle)
2769 t->cycle = t->active + t->recover;
452503f9
AC
2770
2771 return 0;
2772}
2773
cf176e1a
TH
2774/**
2775 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2776 * @dev: Device to adjust xfer masks
458337db 2777 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2778 *
2779 * Adjust xfer masks of @dev downward. Note that this function
2780 * does not apply the change. Invoking ata_set_mode() afterwards
2781 * will apply the limit.
2782 *
2783 * LOCKING:
2784 * Inherited from caller.
2785 *
2786 * RETURNS:
2787 * 0 on success, negative errno on failure
2788 */
458337db 2789int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2790{
458337db
TH
2791 char buf[32];
2792 unsigned int orig_mask, xfer_mask;
2793 unsigned int pio_mask, mwdma_mask, udma_mask;
2794 int quiet, highbit;
cf176e1a 2795
458337db
TH
2796 quiet = !!(sel & ATA_DNXFER_QUIET);
2797 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2798
458337db
TH
2799 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2800 dev->mwdma_mask,
2801 dev->udma_mask);
2802 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2803
458337db
TH
2804 switch (sel) {
2805 case ATA_DNXFER_PIO:
2806 highbit = fls(pio_mask) - 1;
2807 pio_mask &= ~(1 << highbit);
2808 break;
2809
2810 case ATA_DNXFER_DMA:
2811 if (udma_mask) {
2812 highbit = fls(udma_mask) - 1;
2813 udma_mask &= ~(1 << highbit);
2814 if (!udma_mask)
2815 return -ENOENT;
2816 } else if (mwdma_mask) {
2817 highbit = fls(mwdma_mask) - 1;
2818 mwdma_mask &= ~(1 << highbit);
2819 if (!mwdma_mask)
2820 return -ENOENT;
2821 }
2822 break;
2823
2824 case ATA_DNXFER_40C:
2825 udma_mask &= ATA_UDMA_MASK_40C;
2826 break;
2827
2828 case ATA_DNXFER_FORCE_PIO0:
2829 pio_mask &= 1;
2830 case ATA_DNXFER_FORCE_PIO:
2831 mwdma_mask = 0;
2832 udma_mask = 0;
2833 break;
2834
458337db
TH
2835 default:
2836 BUG();
2837 }
2838
2839 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2840
2841 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2842 return -ENOENT;
2843
2844 if (!quiet) {
2845 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2846 snprintf(buf, sizeof(buf), "%s:%s",
2847 ata_mode_string(xfer_mask),
2848 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2849 else
2850 snprintf(buf, sizeof(buf), "%s",
2851 ata_mode_string(xfer_mask));
2852
2853 ata_dev_printk(dev, KERN_WARNING,
2854 "limiting speed to %s\n", buf);
2855 }
cf176e1a
TH
2856
2857 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2858 &dev->udma_mask);
2859
cf176e1a 2860 return 0;
cf176e1a
TH
2861}
2862
3373efd8 2863static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2864{
9af5c9c9 2865 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2866 unsigned int err_mask;
2867 int rc;
1da177e4 2868
e8384607 2869 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2870 if (dev->xfer_shift == ATA_SHIFT_PIO)
2871 dev->flags |= ATA_DFLAG_PIO;
2872
3373efd8 2873 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 2874
11750a40
AC
2875 /* Old CFA may refuse this command, which is just fine */
2876 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
2877 err_mask &= ~AC_ERR_DEV;
2878
0bc2a79a
AC
2879 /* Some very old devices and some bad newer ones fail any kind of
2880 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2881 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2882 dev->pio_mode <= XFER_PIO_2)
2883 err_mask &= ~AC_ERR_DEV;
2dcb407e 2884
3acaf94b
AC
2885 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
2886 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
2887 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
2888 dev->dma_mode == XFER_MW_DMA_0 &&
2889 (dev->id[63] >> 8) & 1)
2890 err_mask &= ~AC_ERR_DEV;
2891
83206a29 2892 if (err_mask) {
f15a1daf
TH
2893 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2894 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2895 return -EIO;
2896 }
1da177e4 2897
baa1e78a 2898 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2899 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2900 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2901 if (rc)
83206a29 2902 return rc;
48a8a14f 2903
23e71c3d
TH
2904 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2905 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2906
f15a1daf
TH
2907 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2908 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2909 return 0;
1da177e4
LT
2910}
2911
1da177e4 2912/**
04351821 2913 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2914 * @link: link on which timings will be programmed
e82cbdb9 2915 * @r_failed_dev: out paramter for failed device
1da177e4 2916 *
04351821
AC
2917 * Standard implementation of the function used to tune and set
2918 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2919 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2920 * returned in @r_failed_dev.
780a87f7 2921 *
1da177e4 2922 * LOCKING:
0cba632b 2923 * PCI/etc. bus probe sem.
e82cbdb9
TH
2924 *
2925 * RETURNS:
2926 * 0 on success, negative errno otherwise
1da177e4 2927 */
04351821 2928
0260731f 2929int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2930{
0260731f 2931 struct ata_port *ap = link->ap;
e8e0619f 2932 struct ata_device *dev;
f58229f8 2933 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2934
a6d5a51c 2935 /* step 1: calculate xfer_mask */
f58229f8 2936 ata_link_for_each_dev(dev, link) {
acf356b1 2937 unsigned int pio_mask, dma_mask;
b3a70601 2938 unsigned int mode_mask;
a6d5a51c 2939
e1211e3f 2940 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2941 continue;
2942
b3a70601
AC
2943 mode_mask = ATA_DMA_MASK_ATA;
2944 if (dev->class == ATA_DEV_ATAPI)
2945 mode_mask = ATA_DMA_MASK_ATAPI;
2946 else if (ata_id_is_cfa(dev->id))
2947 mode_mask = ATA_DMA_MASK_CFA;
2948
3373efd8 2949 ata_dev_xfermask(dev);
1da177e4 2950
acf356b1
TH
2951 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2952 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2953
2954 if (libata_dma_mask & mode_mask)
2955 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2956 else
2957 dma_mask = 0;
2958
acf356b1
TH
2959 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2960 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2961
4f65977d 2962 found = 1;
5444a6f4
AC
2963 if (dev->dma_mode)
2964 used_dma = 1;
a6d5a51c 2965 }
4f65977d 2966 if (!found)
e82cbdb9 2967 goto out;
a6d5a51c
TH
2968
2969 /* step 2: always set host PIO timings */
f58229f8 2970 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2971 if (!ata_dev_enabled(dev))
2972 continue;
2973
2974 if (!dev->pio_mode) {
f15a1daf 2975 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2976 rc = -EINVAL;
e82cbdb9 2977 goto out;
e8e0619f
TH
2978 }
2979
2980 dev->xfer_mode = dev->pio_mode;
2981 dev->xfer_shift = ATA_SHIFT_PIO;
2982 if (ap->ops->set_piomode)
2983 ap->ops->set_piomode(ap, dev);
2984 }
1da177e4 2985
a6d5a51c 2986 /* step 3: set host DMA timings */
f58229f8 2987 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2988 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2989 continue;
2990
2991 dev->xfer_mode = dev->dma_mode;
2992 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2993 if (ap->ops->set_dmamode)
2994 ap->ops->set_dmamode(ap, dev);
2995 }
1da177e4
LT
2996
2997 /* step 4: update devices' xfer mode */
f58229f8 2998 ata_link_for_each_dev(dev, link) {
18d90deb 2999 /* don't update suspended devices' xfer mode */
9666f400 3000 if (!ata_dev_enabled(dev))
83206a29
TH
3001 continue;
3002
3373efd8 3003 rc = ata_dev_set_mode(dev);
5bbc53f4 3004 if (rc)
e82cbdb9 3005 goto out;
83206a29 3006 }
1da177e4 3007
e8e0619f
TH
3008 /* Record simplex status. If we selected DMA then the other
3009 * host channels are not permitted to do so.
5444a6f4 3010 */
cca3974e 3011 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3012 ap->host->simplex_claimed = ap;
5444a6f4 3013
e82cbdb9
TH
3014 out:
3015 if (rc)
3016 *r_failed_dev = dev;
3017 return rc;
1da177e4
LT
3018}
3019
04351821
AC
3020/**
3021 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3022 * @link: link on which timings will be programmed
04351821
AC
3023 * @r_failed_dev: out paramter for failed device
3024 *
3025 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3026 * ata_set_mode() fails, pointer to the failing device is
3027 * returned in @r_failed_dev.
3028 *
3029 * LOCKING:
3030 * PCI/etc. bus probe sem.
3031 *
3032 * RETURNS:
3033 * 0 on success, negative errno otherwise
3034 */
0260731f 3035int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3036{
0260731f
TH
3037 struct ata_port *ap = link->ap;
3038
04351821
AC
3039 /* has private set_mode? */
3040 if (ap->ops->set_mode)
0260731f
TH
3041 return ap->ops->set_mode(link, r_failed_dev);
3042 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3043}
3044
1fdffbce
JG
3045/**
3046 * ata_tf_to_host - issue ATA taskfile to host controller
3047 * @ap: port to which command is being issued
3048 * @tf: ATA taskfile register set
3049 *
3050 * Issues ATA taskfile register set to ATA host controller,
3051 * with proper synchronization with interrupt handler and
3052 * other threads.
3053 *
3054 * LOCKING:
cca3974e 3055 * spin_lock_irqsave(host lock)
1fdffbce
JG
3056 */
3057
3058static inline void ata_tf_to_host(struct ata_port *ap,
3059 const struct ata_taskfile *tf)
3060{
3061 ap->ops->tf_load(ap, tf);
3062 ap->ops->exec_command(ap, tf);
3063}
3064
1da177e4
LT
3065/**
3066 * ata_busy_sleep - sleep until BSY clears, or timeout
3067 * @ap: port containing status register to be polled
3068 * @tmout_pat: impatience timeout
3069 * @tmout: overall timeout
3070 *
780a87f7
JG
3071 * Sleep until ATA Status register bit BSY clears,
3072 * or a timeout occurs.
3073 *
d1adc1bb
TH
3074 * LOCKING:
3075 * Kernel thread context (may sleep).
3076 *
3077 * RETURNS:
3078 * 0 on success, -errno otherwise.
1da177e4 3079 */
d1adc1bb
TH
3080int ata_busy_sleep(struct ata_port *ap,
3081 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3082{
3083 unsigned long timer_start, timeout;
3084 u8 status;
3085
3086 status = ata_busy_wait(ap, ATA_BUSY, 300);
3087 timer_start = jiffies;
3088 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3089 while (status != 0xff && (status & ATA_BUSY) &&
3090 time_before(jiffies, timeout)) {
1da177e4
LT
3091 msleep(50);
3092 status = ata_busy_wait(ap, ATA_BUSY, 3);
3093 }
3094
d1adc1bb 3095 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3096 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3097 "port is slow to respond, please be patient "
3098 "(Status 0x%x)\n", status);
1da177e4
LT
3099
3100 timeout = timer_start + tmout;
d1adc1bb
TH
3101 while (status != 0xff && (status & ATA_BUSY) &&
3102 time_before(jiffies, timeout)) {
1da177e4
LT
3103 msleep(50);
3104 status = ata_chk_status(ap);
3105 }
3106
d1adc1bb
TH
3107 if (status == 0xff)
3108 return -ENODEV;
3109
1da177e4 3110 if (status & ATA_BUSY) {
f15a1daf 3111 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3112 "(%lu secs, Status 0x%x)\n",
3113 tmout / HZ, status);
d1adc1bb 3114 return -EBUSY;
1da177e4
LT
3115 }
3116
3117 return 0;
3118}
3119
d4b2bab4
TH
3120/**
3121 * ata_wait_ready - sleep until BSY clears, or timeout
3122 * @ap: port containing status register to be polled
3123 * @deadline: deadline jiffies for the operation
3124 *
3125 * Sleep until ATA Status register bit BSY clears, or timeout
3126 * occurs.
3127 *
3128 * LOCKING:
3129 * Kernel thread context (may sleep).
3130 *
3131 * RETURNS:
3132 * 0 on success, -errno otherwise.
3133 */
3134int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3135{
3136 unsigned long start = jiffies;
3137 int warned = 0;
3138
3139 while (1) {
3140 u8 status = ata_chk_status(ap);
3141 unsigned long now = jiffies;
3142
3143 if (!(status & ATA_BUSY))
3144 return 0;
936fd732 3145 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3146 return -ENODEV;
3147 if (time_after(now, deadline))
3148 return -EBUSY;
3149
3150 if (!warned && time_after(now, start + 5 * HZ) &&
3151 (deadline - now > 3 * HZ)) {
3152 ata_port_printk(ap, KERN_WARNING,
3153 "port is slow to respond, please be patient "
3154 "(Status 0x%x)\n", status);
3155 warned = 1;
3156 }
3157
3158 msleep(50);
3159 }
3160}
3161
3162static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3163 unsigned long deadline)
1da177e4
LT
3164{
3165 struct ata_ioports *ioaddr = &ap->ioaddr;
3166 unsigned int dev0 = devmask & (1 << 0);
3167 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3168 int rc, ret = 0;
1da177e4
LT
3169
3170 /* if device 0 was found in ata_devchk, wait for its
3171 * BSY bit to clear
3172 */
d4b2bab4
TH
3173 if (dev0) {
3174 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3175 if (rc) {
3176 if (rc != -ENODEV)
3177 return rc;
3178 ret = rc;
3179 }
d4b2bab4 3180 }
1da177e4 3181
e141d999
TH
3182 /* if device 1 was found in ata_devchk, wait for register
3183 * access briefly, then wait for BSY to clear.
1da177e4 3184 */
e141d999
TH
3185 if (dev1) {
3186 int i;
1da177e4
LT
3187
3188 ap->ops->dev_select(ap, 1);
e141d999
TH
3189
3190 /* Wait for register access. Some ATAPI devices fail
3191 * to set nsect/lbal after reset, so don't waste too
3192 * much time on it. We're gonna wait for !BSY anyway.
3193 */
3194 for (i = 0; i < 2; i++) {
3195 u8 nsect, lbal;
3196
3197 nsect = ioread8(ioaddr->nsect_addr);
3198 lbal = ioread8(ioaddr->lbal_addr);
3199 if ((nsect == 1) && (lbal == 1))
3200 break;
3201 msleep(50); /* give drive a breather */
3202 }
3203
d4b2bab4 3204 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3205 if (rc) {
3206 if (rc != -ENODEV)
3207 return rc;
3208 ret = rc;
3209 }
d4b2bab4 3210 }
1da177e4
LT
3211
3212 /* is all this really necessary? */
3213 ap->ops->dev_select(ap, 0);
3214 if (dev1)
3215 ap->ops->dev_select(ap, 1);
3216 if (dev0)
3217 ap->ops->dev_select(ap, 0);
d4b2bab4 3218
9b89391c 3219 return ret;
1da177e4
LT
3220}
3221
d4b2bab4
TH
3222static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3223 unsigned long deadline)
1da177e4
LT
3224{
3225 struct ata_ioports *ioaddr = &ap->ioaddr;
681c80b5
AC
3226 struct ata_device *dev;
3227 int i = 0;
1da177e4 3228
44877b4e 3229 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3230
3231 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3232 iowrite8(ap->ctl, ioaddr->ctl_addr);
3233 udelay(20); /* FIXME: flush */
3234 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3235 udelay(20); /* FIXME: flush */
3236 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3237
681c80b5
AC
3238 /* If we issued an SRST then an ATA drive (not ATAPI)
3239 * may have changed configuration and be in PIO0 timing. If
3240 * we did a hard reset (or are coming from power on) this is
3241 * true for ATA or ATAPI. Until we've set a suitable controller
3242 * mode we should not touch the bus as we may be talking too fast.
3243 */
3244
3245 ata_link_for_each_dev(dev, &ap->link)
3246 dev->pio_mode = XFER_PIO_0;
3247
3248 /* If the controller has a pio mode setup function then use
3249 it to set the chipset to rights. Don't touch the DMA setup
3250 as that will be dealt with when revalidating */
3251 if (ap->ops->set_piomode) {
3252 ata_link_for_each_dev(dev, &ap->link)
3253 if (devmask & (1 << i++))
3254 ap->ops->set_piomode(ap, dev);
3255 }
3256
1da177e4
LT
3257 /* spec mandates ">= 2ms" before checking status.
3258 * We wait 150ms, because that was the magic delay used for
3259 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3260 * between when the ATA command register is written, and then
3261 * status is checked. Because waiting for "a while" before
3262 * checking status is fine, post SRST, we perform this magic
3263 * delay here as well.
09c7ad79
AC
3264 *
3265 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3266 */
3267 msleep(150);
3268
2e9edbf8 3269 /* Before we perform post reset processing we want to see if
298a41ca
TH
3270 * the bus shows 0xFF because the odd clown forgets the D7
3271 * pulldown resistor.
3272 */
150981b0 3273 if (ata_chk_status(ap) == 0xFF)
9b89391c 3274 return -ENODEV;
09c7ad79 3275
d4b2bab4 3276 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3277}
3278
3279/**
3280 * ata_bus_reset - reset host port and associated ATA channel
3281 * @ap: port to reset
3282 *
3283 * This is typically the first time we actually start issuing
3284 * commands to the ATA channel. We wait for BSY to clear, then
3285 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3286 * result. Determine what devices, if any, are on the channel
3287 * by looking at the device 0/1 error register. Look at the signature
3288 * stored in each device's taskfile registers, to determine if
3289 * the device is ATA or ATAPI.
3290 *
3291 * LOCKING:
0cba632b 3292 * PCI/etc. bus probe sem.
cca3974e 3293 * Obtains host lock.
1da177e4
LT
3294 *
3295 * SIDE EFFECTS:
198e0fed 3296 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3297 */
3298
3299void ata_bus_reset(struct ata_port *ap)
3300{
9af5c9c9 3301 struct ata_device *device = ap->link.device;
1da177e4
LT
3302 struct ata_ioports *ioaddr = &ap->ioaddr;
3303 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3304 u8 err;
aec5c3c1 3305 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3306 int rc;
1da177e4 3307
44877b4e 3308 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3309
3310 /* determine if device 0/1 are present */
3311 if (ap->flags & ATA_FLAG_SATA_RESET)
3312 dev0 = 1;
3313 else {
3314 dev0 = ata_devchk(ap, 0);
3315 if (slave_possible)
3316 dev1 = ata_devchk(ap, 1);
3317 }
3318
3319 if (dev0)
3320 devmask |= (1 << 0);
3321 if (dev1)
3322 devmask |= (1 << 1);
3323
3324 /* select device 0 again */
3325 ap->ops->dev_select(ap, 0);
3326
3327 /* issue bus reset */
9b89391c
TH
3328 if (ap->flags & ATA_FLAG_SRST) {
3329 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3330 if (rc && rc != -ENODEV)
aec5c3c1 3331 goto err_out;
9b89391c 3332 }
1da177e4
LT
3333
3334 /*
3335 * determine by signature whether we have ATA or ATAPI devices
3336 */
3f19859e 3337 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3338 if ((slave_possible) && (err != 0x81))
3f19859e 3339 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3340
1da177e4 3341 /* is double-select really necessary? */
9af5c9c9 3342 if (device[1].class != ATA_DEV_NONE)
1da177e4 3343 ap->ops->dev_select(ap, 1);
9af5c9c9 3344 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3345 ap->ops->dev_select(ap, 0);
3346
3347 /* if no devices were detected, disable this port */
9af5c9c9
TH
3348 if ((device[0].class == ATA_DEV_NONE) &&
3349 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3350 goto err_out;
3351
3352 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3353 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3354 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3355 }
3356
3357 DPRINTK("EXIT\n");
3358 return;
3359
3360err_out:
f15a1daf 3361 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3362 ata_port_disable(ap);
1da177e4
LT
3363
3364 DPRINTK("EXIT\n");
3365}
3366
d7bb4cc7 3367/**
936fd732
TH
3368 * sata_link_debounce - debounce SATA phy status
3369 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3370 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3371 * @deadline: deadline jiffies for the operation
d7bb4cc7 3372 *
936fd732 3373* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3374 * holding the same value where DET is not 1 for @duration polled
3375 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3376 * beginning of the stable state. Because DET gets stuck at 1 on
3377 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3378 * until timeout then returns 0 if DET is stable at 1.
3379 *
d4b2bab4
TH
3380 * @timeout is further limited by @deadline. The sooner of the
3381 * two is used.
3382 *
d7bb4cc7
TH
3383 * LOCKING:
3384 * Kernel thread context (may sleep)
3385 *
3386 * RETURNS:
3387 * 0 on success, -errno on failure.
3388 */
936fd732
TH
3389int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3390 unsigned long deadline)
7a7921e8 3391{
d7bb4cc7 3392 unsigned long interval_msec = params[0];
d4b2bab4
TH
3393 unsigned long duration = msecs_to_jiffies(params[1]);
3394 unsigned long last_jiffies, t;
d7bb4cc7
TH
3395 u32 last, cur;
3396 int rc;
3397
d4b2bab4
TH
3398 t = jiffies + msecs_to_jiffies(params[2]);
3399 if (time_before(t, deadline))
3400 deadline = t;
3401
936fd732 3402 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3403 return rc;
3404 cur &= 0xf;
3405
3406 last = cur;
3407 last_jiffies = jiffies;
3408
3409 while (1) {
3410 msleep(interval_msec);
936fd732 3411 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3412 return rc;
3413 cur &= 0xf;
3414
3415 /* DET stable? */
3416 if (cur == last) {
d4b2bab4 3417 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3418 continue;
3419 if (time_after(jiffies, last_jiffies + duration))
3420 return 0;
3421 continue;
3422 }
3423
3424 /* unstable, start over */
3425 last = cur;
3426 last_jiffies = jiffies;
3427
f1545154
TH
3428 /* Check deadline. If debouncing failed, return
3429 * -EPIPE to tell upper layer to lower link speed.
3430 */
d4b2bab4 3431 if (time_after(jiffies, deadline))
f1545154 3432 return -EPIPE;
d7bb4cc7
TH
3433 }
3434}
3435
3436/**
936fd732
TH
3437 * sata_link_resume - resume SATA link
3438 * @link: ATA link to resume SATA
d7bb4cc7 3439 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3440 * @deadline: deadline jiffies for the operation
d7bb4cc7 3441 *
936fd732 3442 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3443 *
3444 * LOCKING:
3445 * Kernel thread context (may sleep)
3446 *
3447 * RETURNS:
3448 * 0 on success, -errno on failure.
3449 */
936fd732
TH
3450int sata_link_resume(struct ata_link *link, const unsigned long *params,
3451 unsigned long deadline)
d7bb4cc7
TH
3452{
3453 u32 scontrol;
81952c54
TH
3454 int rc;
3455
936fd732 3456 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3457 return rc;
7a7921e8 3458
852ee16a 3459 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3460
936fd732 3461 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3462 return rc;
7a7921e8 3463
d7bb4cc7
TH
3464 /* Some PHYs react badly if SStatus is pounded immediately
3465 * after resuming. Delay 200ms before debouncing.
3466 */
3467 msleep(200);
7a7921e8 3468
936fd732 3469 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3470}
3471
f5914a46
TH
3472/**
3473 * ata_std_prereset - prepare for reset
cc0680a5 3474 * @link: ATA link to be reset
d4b2bab4 3475 * @deadline: deadline jiffies for the operation
f5914a46 3476 *
cc0680a5 3477 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3478 * prereset makes libata abort whole reset sequence and give up
3479 * that port, so prereset should be best-effort. It does its
3480 * best to prepare for reset sequence but if things go wrong, it
3481 * should just whine, not fail.
f5914a46
TH
3482 *
3483 * LOCKING:
3484 * Kernel thread context (may sleep)
3485 *
3486 * RETURNS:
3487 * 0 on success, -errno otherwise.
3488 */
cc0680a5 3489int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3490{
cc0680a5 3491 struct ata_port *ap = link->ap;
936fd732 3492 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3493 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3494 int rc;
3495
31daabda 3496 /* handle link resume */
28324304 3497 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3498 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3499 ehc->i.action |= ATA_EH_HARDRESET;
3500
633273a3
TH
3501 /* Some PMPs don't work with only SRST, force hardreset if PMP
3502 * is supported.
3503 */
3504 if (ap->flags & ATA_FLAG_PMP)
3505 ehc->i.action |= ATA_EH_HARDRESET;
3506
f5914a46
TH
3507 /* if we're about to do hardreset, nothing more to do */
3508 if (ehc->i.action & ATA_EH_HARDRESET)
3509 return 0;
3510
936fd732 3511 /* if SATA, resume link */
a16abc0b 3512 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3513 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3514 /* whine about phy resume failure but proceed */
3515 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3516 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3517 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3518 }
3519
3520 /* Wait for !BSY if the controller can wait for the first D2H
3521 * Reg FIS and we don't know that no device is attached.
3522 */
0c88758b 3523 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3524 rc = ata_wait_ready(ap, deadline);
6dffaf61 3525 if (rc && rc != -ENODEV) {
cc0680a5 3526 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3527 "(errno=%d), forcing hardreset\n", rc);
3528 ehc->i.action |= ATA_EH_HARDRESET;
3529 }
3530 }
f5914a46
TH
3531
3532 return 0;
3533}
3534
c2bd5804
TH
3535/**
3536 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3537 * @link: ATA link to reset
c2bd5804 3538 * @classes: resulting classes of attached devices
d4b2bab4 3539 * @deadline: deadline jiffies for the operation
c2bd5804 3540 *
52783c5d 3541 * Reset host port using ATA SRST.
c2bd5804
TH
3542 *
3543 * LOCKING:
3544 * Kernel thread context (may sleep)
3545 *
3546 * RETURNS:
3547 * 0 on success, -errno otherwise.
3548 */
cc0680a5 3549int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3550 unsigned long deadline)
c2bd5804 3551{
cc0680a5 3552 struct ata_port *ap = link->ap;
c2bd5804 3553 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3554 unsigned int devmask = 0;
3555 int rc;
c2bd5804
TH
3556 u8 err;
3557
3558 DPRINTK("ENTER\n");
3559
936fd732 3560 if (ata_link_offline(link)) {
3a39746a
TH
3561 classes[0] = ATA_DEV_NONE;
3562 goto out;
3563 }
3564
c2bd5804
TH
3565 /* determine if device 0/1 are present */
3566 if (ata_devchk(ap, 0))
3567 devmask |= (1 << 0);
3568 if (slave_possible && ata_devchk(ap, 1))
3569 devmask |= (1 << 1);
3570
c2bd5804
TH
3571 /* select device 0 again */
3572 ap->ops->dev_select(ap, 0);
3573
3574 /* issue bus reset */
3575 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3576 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3577 /* if link is occupied, -ENODEV too is an error */
936fd732 3578 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3579 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3580 return rc;
c2bd5804
TH
3581 }
3582
3583 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3584 classes[0] = ata_dev_try_classify(&link->device[0],
3585 devmask & (1 << 0), &err);
c2bd5804 3586 if (slave_possible && err != 0x81)
3f19859e
TH
3587 classes[1] = ata_dev_try_classify(&link->device[1],
3588 devmask & (1 << 1), &err);
c2bd5804 3589
3a39746a 3590 out:
c2bd5804
TH
3591 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3592 return 0;
3593}
3594
3595/**
cc0680a5
TH
3596 * sata_link_hardreset - reset link via SATA phy reset
3597 * @link: link to reset
b6103f6d 3598 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3599 * @deadline: deadline jiffies for the operation
c2bd5804 3600 *
cc0680a5 3601 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3602 *
3603 * LOCKING:
3604 * Kernel thread context (may sleep)
3605 *
3606 * RETURNS:
3607 * 0 on success, -errno otherwise.
3608 */
cc0680a5 3609int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3610 unsigned long deadline)
c2bd5804 3611{
852ee16a 3612 u32 scontrol;
81952c54 3613 int rc;
852ee16a 3614
c2bd5804
TH
3615 DPRINTK("ENTER\n");
3616
936fd732 3617 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3618 /* SATA spec says nothing about how to reconfigure
3619 * spd. To be on the safe side, turn off phy during
3620 * reconfiguration. This works for at least ICH7 AHCI
3621 * and Sil3124.
3622 */
936fd732 3623 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3624 goto out;
81952c54 3625
a34b6fc0 3626 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3627
936fd732 3628 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3629 goto out;
1c3fae4d 3630
936fd732 3631 sata_set_spd(link);
1c3fae4d
TH
3632 }
3633
3634 /* issue phy wake/reset */
936fd732 3635 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3636 goto out;
81952c54 3637
852ee16a 3638 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3639
936fd732 3640 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3641 goto out;
c2bd5804 3642
1c3fae4d 3643 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3644 * 10.4.2 says at least 1 ms.
3645 */
3646 msleep(1);
3647
936fd732
TH
3648 /* bring link back */
3649 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3650 out:
3651 DPRINTK("EXIT, rc=%d\n", rc);
3652 return rc;
3653}
3654
3655/**
3656 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3657 * @link: link to reset
b6103f6d 3658 * @class: resulting class of attached device
d4b2bab4 3659 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3660 *
3661 * SATA phy-reset host port using DET bits of SControl register,
3662 * wait for !BSY and classify the attached device.
3663 *
3664 * LOCKING:
3665 * Kernel thread context (may sleep)
3666 *
3667 * RETURNS:
3668 * 0 on success, -errno otherwise.
3669 */
cc0680a5 3670int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3671 unsigned long deadline)
b6103f6d 3672{
cc0680a5 3673 struct ata_port *ap = link->ap;
936fd732 3674 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3675 int rc;
3676
3677 DPRINTK("ENTER\n");
3678
3679 /* do hardreset */
cc0680a5 3680 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3681 if (rc) {
cc0680a5 3682 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3683 "COMRESET failed (errno=%d)\n", rc);
3684 return rc;
3685 }
c2bd5804 3686
c2bd5804 3687 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3688 if (ata_link_offline(link)) {
c2bd5804
TH
3689 *class = ATA_DEV_NONE;
3690 DPRINTK("EXIT, link offline\n");
3691 return 0;
3692 }
3693
34fee227
TH
3694 /* wait a while before checking status, see SRST for more info */
3695 msleep(150);
3696
633273a3
TH
3697 /* If PMP is supported, we have to do follow-up SRST. Note
3698 * that some PMPs don't send D2H Reg FIS after hardreset at
3699 * all if the first port is empty. Wait for it just for a
3700 * second and request follow-up SRST.
3701 */
3702 if (ap->flags & ATA_FLAG_PMP) {
3703 ata_wait_ready(ap, jiffies + HZ);
3704 return -EAGAIN;
3705 }
3706
d4b2bab4 3707 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3708 /* link occupied, -ENODEV too is an error */
3709 if (rc) {
cc0680a5 3710 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3711 "COMRESET failed (errno=%d)\n", rc);
3712 return rc;
c2bd5804
TH
3713 }
3714
3a39746a
TH
3715 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3716
3f19859e 3717 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3718
3719 DPRINTK("EXIT, class=%u\n", *class);
3720 return 0;
3721}
3722
3723/**
3724 * ata_std_postreset - standard postreset callback
cc0680a5 3725 * @link: the target ata_link
c2bd5804
TH
3726 * @classes: classes of attached devices
3727 *
3728 * This function is invoked after a successful reset. Note that
3729 * the device might have been reset more than once using
3730 * different reset methods before postreset is invoked.
c2bd5804 3731 *
c2bd5804
TH
3732 * LOCKING:
3733 * Kernel thread context (may sleep)
3734 */
cc0680a5 3735void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3736{
cc0680a5 3737 struct ata_port *ap = link->ap;
dc2b3515
TH
3738 u32 serror;
3739
c2bd5804
TH
3740 DPRINTK("ENTER\n");
3741
c2bd5804 3742 /* print link status */
936fd732 3743 sata_print_link_status(link);
c2bd5804 3744
dc2b3515 3745 /* clear SError */
936fd732
TH
3746 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3747 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3748
c2bd5804
TH
3749 /* is double-select really necessary? */
3750 if (classes[0] != ATA_DEV_NONE)
3751 ap->ops->dev_select(ap, 1);
3752 if (classes[1] != ATA_DEV_NONE)
3753 ap->ops->dev_select(ap, 0);
3754
3a39746a
TH
3755 /* bail out if no device is present */
3756 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3757 DPRINTK("EXIT, no device\n");
3758 return;
3759 }
3760
3761 /* set up device control */
0d5ff566
TH
3762 if (ap->ioaddr.ctl_addr)
3763 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3764
3765 DPRINTK("EXIT\n");
3766}
3767
623a3128
TH
3768/**
3769 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3770 * @dev: device to compare against
3771 * @new_class: class of the new device
3772 * @new_id: IDENTIFY page of the new device
3773 *
3774 * Compare @new_class and @new_id against @dev and determine
3775 * whether @dev is the device indicated by @new_class and
3776 * @new_id.
3777 *
3778 * LOCKING:
3779 * None.
3780 *
3781 * RETURNS:
3782 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3783 */
3373efd8
TH
3784static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3785 const u16 *new_id)
623a3128
TH
3786{
3787 const u16 *old_id = dev->id;
a0cf733b
TH
3788 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3789 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3790
3791 if (dev->class != new_class) {
f15a1daf
TH
3792 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3793 dev->class, new_class);
623a3128
TH
3794 return 0;
3795 }
3796
a0cf733b
TH
3797 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3798 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3799 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3800 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3801
3802 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3803 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3804 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3805 return 0;
3806 }
3807
3808 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3809 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3810 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3811 return 0;
3812 }
3813
623a3128
TH
3814 return 1;
3815}
3816
3817/**
fe30911b 3818 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3819 * @dev: target ATA device
bff04647 3820 * @readid_flags: read ID flags
623a3128
TH
3821 *
3822 * Re-read IDENTIFY page and make sure @dev is still attached to
3823 * the port.
3824 *
3825 * LOCKING:
3826 * Kernel thread context (may sleep)
3827 *
3828 * RETURNS:
3829 * 0 on success, negative errno otherwise
3830 */
fe30911b 3831int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3832{
5eb45c02 3833 unsigned int class = dev->class;
9af5c9c9 3834 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3835 int rc;
3836
fe635c7e 3837 /* read ID data */
bff04647 3838 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3839 if (rc)
fe30911b 3840 return rc;
623a3128
TH
3841
3842 /* is the device still there? */
fe30911b
TH
3843 if (!ata_dev_same_device(dev, class, id))
3844 return -ENODEV;
623a3128 3845
fe635c7e 3846 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3847 return 0;
3848}
3849
3850/**
3851 * ata_dev_revalidate - Revalidate ATA device
3852 * @dev: device to revalidate
422c9daa 3853 * @new_class: new class code
fe30911b
TH
3854 * @readid_flags: read ID flags
3855 *
3856 * Re-read IDENTIFY page, make sure @dev is still attached to the
3857 * port and reconfigure it according to the new IDENTIFY page.
3858 *
3859 * LOCKING:
3860 * Kernel thread context (may sleep)
3861 *
3862 * RETURNS:
3863 * 0 on success, negative errno otherwise
3864 */
422c9daa
TH
3865int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3866 unsigned int readid_flags)
fe30911b 3867{
6ddcd3b0 3868 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3869 int rc;
3870
3871 if (!ata_dev_enabled(dev))
3872 return -ENODEV;
3873
422c9daa
TH
3874 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3875 if (ata_class_enabled(new_class) &&
3876 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3877 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3878 dev->class, new_class);
3879 rc = -ENODEV;
3880 goto fail;
3881 }
3882
fe30911b
TH
3883 /* re-read ID */
3884 rc = ata_dev_reread_id(dev, readid_flags);
3885 if (rc)
3886 goto fail;
623a3128
TH
3887
3888 /* configure device according to the new ID */
efdaedc4 3889 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3890 if (rc)
3891 goto fail;
3892
3893 /* verify n_sectors hasn't changed */
b54eebd6
TH
3894 if (dev->class == ATA_DEV_ATA && n_sectors &&
3895 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3896 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3897 "%llu != %llu\n",
3898 (unsigned long long)n_sectors,
3899 (unsigned long long)dev->n_sectors);
8270bec4
TH
3900
3901 /* restore original n_sectors */
3902 dev->n_sectors = n_sectors;
3903
6ddcd3b0
TH
3904 rc = -ENODEV;
3905 goto fail;
3906 }
3907
3908 return 0;
623a3128
TH
3909
3910 fail:
f15a1daf 3911 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3912 return rc;
3913}
3914
6919a0a6
AC
3915struct ata_blacklist_entry {
3916 const char *model_num;
3917 const char *model_rev;
3918 unsigned long horkage;
3919};
3920
3921static const struct ata_blacklist_entry ata_device_blacklist [] = {
3922 /* Devices with DMA related problems under Linux */
3923 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3924 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3925 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3926 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3927 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3928 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3929 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3930 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3931 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3932 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3933 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3934 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3935 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3936 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3937 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3938 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3939 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3940 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3941 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3942 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3943 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3944 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3945 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3946 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3947 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3948 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3949 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3950 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 3951 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 3952 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3953 /* Odd clown on sil3726/4726 PMPs */
3954 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3955 ATA_HORKAGE_SKIP_PM },
6919a0a6 3956
18d6e9d5 3957 /* Weird ATAPI devices */
40a1d531 3958 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3959
6919a0a6
AC
3960 /* Devices we expect to fail diagnostics */
3961
3962 /* Devices where NCQ should be avoided */
3963 /* NCQ is slow */
2dcb407e 3964 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3965 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3966 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3967 /* NCQ is broken */
539cc7c7 3968 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3969 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
3970 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3971 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 3972 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 3973
36e337d0
RH
3974 /* Blacklist entries taken from Silicon Image 3124/3132
3975 Windows driver .inf file - also several Linux problem reports */
3976 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3977 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3978 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3979 /* Drives which do spurious command completion */
3980 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3981 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 3982 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 3983 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 3984 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3985 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 3986 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 3987 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 3988 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 3989 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 3990 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 3991 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
3992 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3993 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 3994 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3995
16c55b03
TH
3996 /* devices which puke on READ_NATIVE_MAX */
3997 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3998 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3999 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4000 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4001
93328e11
AC
4002 /* Devices which report 1 sector over size HPA */
4003 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4004 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4005
6919a0a6
AC
4006 /* End Marker */
4007 { }
1da177e4 4008};
2e9edbf8 4009
741b7763 4010static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4011{
4012 const char *p;
4013 int len;
4014
4015 /*
4016 * check for trailing wildcard: *\0
4017 */
4018 p = strchr(patt, wildchar);
4019 if (p && ((*(p + 1)) == 0))
4020 len = p - patt;
317b50b8 4021 else {
539cc7c7 4022 len = strlen(name);
317b50b8
AP
4023 if (!len) {
4024 if (!*patt)
4025 return 0;
4026 return -1;
4027 }
4028 }
539cc7c7
JG
4029
4030 return strncmp(patt, name, len);
4031}
4032
75683fe7 4033static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4034{
8bfa79fc
TH
4035 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4036 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4037 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4038
8bfa79fc
TH
4039 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4040 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4041
6919a0a6 4042 while (ad->model_num) {
539cc7c7 4043 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4044 if (ad->model_rev == NULL)
4045 return ad->horkage;
539cc7c7 4046 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4047 return ad->horkage;
f4b15fef 4048 }
6919a0a6 4049 ad++;
f4b15fef 4050 }
1da177e4
LT
4051 return 0;
4052}
4053
6919a0a6
AC
4054static int ata_dma_blacklisted(const struct ata_device *dev)
4055{
4056 /* We don't support polling DMA.
4057 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4058 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4059 */
9af5c9c9 4060 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4061 (dev->flags & ATA_DFLAG_CDB_INTR))
4062 return 1;
75683fe7 4063 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4064}
4065
a6d5a51c
TH
4066/**
4067 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4068 * @dev: Device to compute xfermask for
4069 *
acf356b1
TH
4070 * Compute supported xfermask of @dev and store it in
4071 * dev->*_mask. This function is responsible for applying all
4072 * known limits including host controller limits, device
4073 * blacklist, etc...
a6d5a51c
TH
4074 *
4075 * LOCKING:
4076 * None.
a6d5a51c 4077 */
3373efd8 4078static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4079{
9af5c9c9
TH
4080 struct ata_link *link = dev->link;
4081 struct ata_port *ap = link->ap;
cca3974e 4082 struct ata_host *host = ap->host;
a6d5a51c 4083 unsigned long xfer_mask;
1da177e4 4084
37deecb5 4085 /* controller modes available */
565083e1
TH
4086 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4087 ap->mwdma_mask, ap->udma_mask);
4088
8343f889 4089 /* drive modes available */
37deecb5
TH
4090 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4091 dev->mwdma_mask, dev->udma_mask);
4092 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4093
b352e57d
AC
4094 /*
4095 * CFA Advanced TrueIDE timings are not allowed on a shared
4096 * cable
4097 */
4098 if (ata_dev_pair(dev)) {
4099 /* No PIO5 or PIO6 */
4100 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4101 /* No MWDMA3 or MWDMA 4 */
4102 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4103 }
4104
37deecb5
TH
4105 if (ata_dma_blacklisted(dev)) {
4106 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4107 ata_dev_printk(dev, KERN_WARNING,
4108 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4109 }
a6d5a51c 4110
14d66ab7 4111 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4112 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4113 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4114 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4115 "other device, disabling DMA\n");
5444a6f4 4116 }
565083e1 4117
e424675f
JG
4118 if (ap->flags & ATA_FLAG_NO_IORDY)
4119 xfer_mask &= ata_pio_mask_no_iordy(dev);
4120
5444a6f4 4121 if (ap->ops->mode_filter)
a76b62ca 4122 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4123
8343f889
RH
4124 /* Apply cable rule here. Don't apply it early because when
4125 * we handle hot plug the cable type can itself change.
4126 * Check this last so that we know if the transfer rate was
4127 * solely limited by the cable.
4128 * Unknown or 80 wire cables reported host side are checked
4129 * drive side as well. Cases where we know a 40wire cable
4130 * is used safely for 80 are not checked here.
4131 */
4132 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4133 /* UDMA/44 or higher would be available */
2dcb407e
JG
4134 if ((ap->cbl == ATA_CBL_PATA40) ||
4135 (ata_drive_40wire(dev->id) &&
4136 (ap->cbl == ATA_CBL_PATA_UNK ||
4137 ap->cbl == ATA_CBL_PATA80))) {
4138 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4139 "limited to UDMA/33 due to 40-wire cable\n");
4140 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4141 }
4142
565083e1
TH
4143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4144 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4145}
4146
1da177e4
LT
4147/**
4148 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4149 * @dev: Device to which command will be sent
4150 *
780a87f7
JG
4151 * Issue SET FEATURES - XFER MODE command to device @dev
4152 * on port @ap.
4153 *
1da177e4 4154 * LOCKING:
0cba632b 4155 * PCI/etc. bus probe sem.
83206a29
TH
4156 *
4157 * RETURNS:
4158 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4159 */
4160
3373efd8 4161static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4162{
a0123703 4163 struct ata_taskfile tf;
83206a29 4164 unsigned int err_mask;
1da177e4
LT
4165
4166 /* set up set-features taskfile */
4167 DPRINTK("set features - xfer mode\n");
4168
464cf177
TH
4169 /* Some controllers and ATAPI devices show flaky interrupt
4170 * behavior after setting xfer mode. Use polling instead.
4171 */
3373efd8 4172 ata_tf_init(dev, &tf);
a0123703
TH
4173 tf.command = ATA_CMD_SET_FEATURES;
4174 tf.feature = SETFEATURES_XFER;
464cf177 4175 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4176 tf.protocol = ATA_PROT_NODATA;
4177 tf.nsect = dev->xfer_mode;
1da177e4 4178
2b789108 4179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4180
4181 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4182 return err_mask;
4183}
9f45cbd3 4184/**
218f3d30 4185 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4186 * @dev: Device to which command will be sent
4187 * @enable: Whether to enable or disable the feature
218f3d30 4188 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4189 *
4190 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4191 * on port @ap with sector count
9f45cbd3
KCA
4192 *
4193 * LOCKING:
4194 * PCI/etc. bus probe sem.
4195 *
4196 * RETURNS:
4197 * 0 on success, AC_ERR_* mask otherwise.
4198 */
218f3d30
JG
4199static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4200 u8 feature)
9f45cbd3
KCA
4201{
4202 struct ata_taskfile tf;
4203 unsigned int err_mask;
4204
4205 /* set up set-features taskfile */
4206 DPRINTK("set features - SATA features\n");
4207
4208 ata_tf_init(dev, &tf);
4209 tf.command = ATA_CMD_SET_FEATURES;
4210 tf.feature = enable;
4211 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4212 tf.protocol = ATA_PROT_NODATA;
218f3d30 4213 tf.nsect = feature;
9f45cbd3 4214
2b789108 4215 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4216
83206a29
TH
4217 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4218 return err_mask;
1da177e4
LT
4219}
4220
8bf62ece
AL
4221/**
4222 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4223 * @dev: Device to which command will be sent
e2a7f77a
RD
4224 * @heads: Number of heads (taskfile parameter)
4225 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4226 *
4227 * LOCKING:
6aff8f1f
TH
4228 * Kernel thread context (may sleep)
4229 *
4230 * RETURNS:
4231 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4232 */
3373efd8
TH
4233static unsigned int ata_dev_init_params(struct ata_device *dev,
4234 u16 heads, u16 sectors)
8bf62ece 4235{
a0123703 4236 struct ata_taskfile tf;
6aff8f1f 4237 unsigned int err_mask;
8bf62ece
AL
4238
4239 /* Number of sectors per track 1-255. Number of heads 1-16 */
4240 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4241 return AC_ERR_INVALID;
8bf62ece
AL
4242
4243 /* set up init dev params taskfile */
4244 DPRINTK("init dev params \n");
4245
3373efd8 4246 ata_tf_init(dev, &tf);
a0123703
TH
4247 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4248 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4249 tf.protocol = ATA_PROT_NODATA;
4250 tf.nsect = sectors;
4251 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4252
2b789108 4253 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4254 /* A clean abort indicates an original or just out of spec drive
4255 and we should continue as we issue the setup based on the
4256 drive reported working geometry */
4257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4258 err_mask = 0;
8bf62ece 4259
6aff8f1f
TH
4260 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4261 return err_mask;
8bf62ece
AL
4262}
4263
1da177e4 4264/**
0cba632b
JG
4265 * ata_sg_clean - Unmap DMA memory associated with command
4266 * @qc: Command containing DMA memory to be released
4267 *
4268 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4269 *
4270 * LOCKING:
cca3974e 4271 * spin_lock_irqsave(host lock)
1da177e4 4272 */
70e6ad0c 4273void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4274{
4275 struct ata_port *ap = qc->ap;
cedc9a47 4276 struct scatterlist *sg = qc->__sg;
1da177e4 4277 int dir = qc->dma_dir;
cedc9a47 4278 void *pad_buf = NULL;
1da177e4 4279
a4631474
TH
4280 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4281 WARN_ON(sg == NULL);
1da177e4
LT
4282
4283 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4284 WARN_ON(qc->n_elem > 1);
1da177e4 4285
2c13b7ce 4286 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4287
cedc9a47
JG
4288 /* if we padded the buffer out to 32-bit bound, and data
4289 * xfer direction is from-device, we must copy from the
4290 * pad buffer back into the supplied buffer
4291 */
4292 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4293 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4294
4295 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4296 if (qc->n_elem)
2f1f610b 4297 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4298 /* restore last sg */
87260216 4299 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4300 if (pad_buf) {
4301 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4302 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4303 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4304 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4305 }
4306 } else {
2e242fa9 4307 if (qc->n_elem)
2f1f610b 4308 dma_unmap_single(ap->dev,
e1410f2d
JG
4309 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4310 dir);
cedc9a47
JG
4311 /* restore sg */
4312 sg->length += qc->pad_len;
4313 if (pad_buf)
4314 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4315 pad_buf, qc->pad_len);
4316 }
1da177e4
LT
4317
4318 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4319 qc->__sg = NULL;
1da177e4
LT
4320}
4321
4322/**
4323 * ata_fill_sg - Fill PCI IDE PRD table
4324 * @qc: Metadata associated with taskfile to be transferred
4325 *
780a87f7
JG
4326 * Fill PCI IDE PRD (scatter-gather) table with segments
4327 * associated with the current disk command.
4328 *
1da177e4 4329 * LOCKING:
cca3974e 4330 * spin_lock_irqsave(host lock)
1da177e4
LT
4331 *
4332 */
4333static void ata_fill_sg(struct ata_queued_cmd *qc)
4334{
1da177e4 4335 struct ata_port *ap = qc->ap;
cedc9a47
JG
4336 struct scatterlist *sg;
4337 unsigned int idx;
1da177e4 4338
a4631474 4339 WARN_ON(qc->__sg == NULL);
f131883e 4340 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4341
4342 idx = 0;
cedc9a47 4343 ata_for_each_sg(sg, qc) {
1da177e4
LT
4344 u32 addr, offset;
4345 u32 sg_len, len;
4346
4347 /* determine if physical DMA addr spans 64K boundary.
4348 * Note h/w doesn't support 64-bit, so we unconditionally
4349 * truncate dma_addr_t to u32.
4350 */
4351 addr = (u32) sg_dma_address(sg);
4352 sg_len = sg_dma_len(sg);
4353
4354 while (sg_len) {
4355 offset = addr & 0xffff;
4356 len = sg_len;
4357 if ((offset + sg_len) > 0x10000)
4358 len = 0x10000 - offset;
4359
4360 ap->prd[idx].addr = cpu_to_le32(addr);
4361 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4362 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4363
4364 idx++;
4365 sg_len -= len;
4366 addr += len;
4367 }
4368 }
4369
4370 if (idx)
4371 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4372}
b9a4197e 4373
d26fc955
AC
4374/**
4375 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4376 * @qc: Metadata associated with taskfile to be transferred
4377 *
4378 * Fill PCI IDE PRD (scatter-gather) table with segments
4379 * associated with the current disk command. Perform the fill
4380 * so that we avoid writing any length 64K records for
4381 * controllers that don't follow the spec.
4382 *
4383 * LOCKING:
4384 * spin_lock_irqsave(host lock)
4385 *
4386 */
4387static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4388{
4389 struct ata_port *ap = qc->ap;
4390 struct scatterlist *sg;
4391 unsigned int idx;
4392
4393 WARN_ON(qc->__sg == NULL);
4394 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4395
4396 idx = 0;
4397 ata_for_each_sg(sg, qc) {
4398 u32 addr, offset;
4399 u32 sg_len, len, blen;
4400
2dcb407e 4401 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4402 * Note h/w doesn't support 64-bit, so we unconditionally
4403 * truncate dma_addr_t to u32.
4404 */
4405 addr = (u32) sg_dma_address(sg);
4406 sg_len = sg_dma_len(sg);
4407
4408 while (sg_len) {
4409 offset = addr & 0xffff;
4410 len = sg_len;
4411 if ((offset + sg_len) > 0x10000)
4412 len = 0x10000 - offset;
4413
4414 blen = len & 0xffff;
4415 ap->prd[idx].addr = cpu_to_le32(addr);
4416 if (blen == 0) {
4417 /* Some PATA chipsets like the CS5530 can't
4418 cope with 0x0000 meaning 64K as the spec says */
4419 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4420 blen = 0x8000;
4421 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4422 }
4423 ap->prd[idx].flags_len = cpu_to_le32(blen);
4424 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4425
4426 idx++;
4427 sg_len -= len;
4428 addr += len;
4429 }
4430 }
4431
4432 if (idx)
4433 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4434}
4435
1da177e4
LT
4436/**
4437 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4438 * @qc: Metadata associated with taskfile to check
4439 *
780a87f7
JG
4440 * Allow low-level driver to filter ATA PACKET commands, returning
4441 * a status indicating whether or not it is OK to use DMA for the
4442 * supplied PACKET command.
4443 *
1da177e4 4444 * LOCKING:
cca3974e 4445 * spin_lock_irqsave(host lock)
0cba632b 4446 *
1da177e4
LT
4447 * RETURNS: 0 when ATAPI DMA can be used
4448 * nonzero otherwise
4449 */
4450int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4451{
4452 struct ata_port *ap = qc->ap;
b9a4197e
TH
4453
4454 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4455 * few ATAPI devices choke on such DMA requests.
4456 */
4457 if (unlikely(qc->nbytes & 15))
4458 return 1;
6f23a31d 4459
1da177e4 4460 if (ap->ops->check_atapi_dma)
b9a4197e 4461 return ap->ops->check_atapi_dma(qc);
1da177e4 4462
b9a4197e 4463 return 0;
1da177e4 4464}
b9a4197e 4465
31cc23b3
TH
4466/**
4467 * ata_std_qc_defer - Check whether a qc needs to be deferred
4468 * @qc: ATA command in question
4469 *
4470 * Non-NCQ commands cannot run with any other command, NCQ or
4471 * not. As upper layer only knows the queue depth, we are
4472 * responsible for maintaining exclusion. This function checks
4473 * whether a new command @qc can be issued.
4474 *
4475 * LOCKING:
4476 * spin_lock_irqsave(host lock)
4477 *
4478 * RETURNS:
4479 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4480 */
4481int ata_std_qc_defer(struct ata_queued_cmd *qc)
4482{
4483 struct ata_link *link = qc->dev->link;
4484
4485 if (qc->tf.protocol == ATA_PROT_NCQ) {
4486 if (!ata_tag_valid(link->active_tag))
4487 return 0;
4488 } else {
4489 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4490 return 0;
4491 }
4492
4493 return ATA_DEFER_LINK;
4494}
4495
1da177e4
LT
4496/**
4497 * ata_qc_prep - Prepare taskfile for submission
4498 * @qc: Metadata associated with taskfile to be prepared
4499 *
780a87f7
JG
4500 * Prepare ATA taskfile for submission.
4501 *
1da177e4 4502 * LOCKING:
cca3974e 4503 * spin_lock_irqsave(host lock)
1da177e4
LT
4504 */
4505void ata_qc_prep(struct ata_queued_cmd *qc)
4506{
4507 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4508 return;
4509
4510 ata_fill_sg(qc);
4511}
4512
d26fc955
AC
4513/**
4514 * ata_dumb_qc_prep - Prepare taskfile for submission
4515 * @qc: Metadata associated with taskfile to be prepared
4516 *
4517 * Prepare ATA taskfile for submission.
4518 *
4519 * LOCKING:
4520 * spin_lock_irqsave(host lock)
4521 */
4522void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4523{
4524 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4525 return;
4526
4527 ata_fill_sg_dumb(qc);
4528}
4529
e46834cd
BK
4530void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4531
0cba632b
JG
4532/**
4533 * ata_sg_init_one - Associate command with memory buffer
4534 * @qc: Command to be associated
4535 * @buf: Memory buffer
4536 * @buflen: Length of memory buffer, in bytes.
4537 *
4538 * Initialize the data-related elements of queued_cmd @qc
4539 * to point to a single memory buffer, @buf of byte length @buflen.
4540 *
4541 * LOCKING:
cca3974e 4542 * spin_lock_irqsave(host lock)
0cba632b
JG
4543 */
4544
1da177e4
LT
4545void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4546{
1da177e4
LT
4547 qc->flags |= ATA_QCFLAG_SINGLE;
4548
cedc9a47 4549 qc->__sg = &qc->sgent;
1da177e4 4550 qc->n_elem = 1;
cedc9a47 4551 qc->orig_n_elem = 1;
1da177e4 4552 qc->buf_virt = buf;
233277ca 4553 qc->nbytes = buflen;
87260216 4554 qc->cursg = qc->__sg;
1da177e4 4555
61c0596c 4556 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4557}
4558
0cba632b
JG
4559/**
4560 * ata_sg_init - Associate command with scatter-gather table.
4561 * @qc: Command to be associated
4562 * @sg: Scatter-gather table.
4563 * @n_elem: Number of elements in s/g table.
4564 *
4565 * Initialize the data-related elements of queued_cmd @qc
4566 * to point to a scatter-gather table @sg, containing @n_elem
4567 * elements.
4568 *
4569 * LOCKING:
cca3974e 4570 * spin_lock_irqsave(host lock)
0cba632b
JG
4571 */
4572
1da177e4
LT
4573void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4574 unsigned int n_elem)
4575{
4576 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4577 qc->__sg = sg;
1da177e4 4578 qc->n_elem = n_elem;
cedc9a47 4579 qc->orig_n_elem = n_elem;
87260216 4580 qc->cursg = qc->__sg;
1da177e4
LT
4581}
4582
4583/**
0cba632b
JG
4584 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4585 * @qc: Command with memory buffer to be mapped.
4586 *
4587 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4588 *
4589 * LOCKING:
cca3974e 4590 * spin_lock_irqsave(host lock)
1da177e4
LT
4591 *
4592 * RETURNS:
0cba632b 4593 * Zero on success, negative on error.
1da177e4
LT
4594 */
4595
4596static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4597{
4598 struct ata_port *ap = qc->ap;
4599 int dir = qc->dma_dir;
cedc9a47 4600 struct scatterlist *sg = qc->__sg;
1da177e4 4601 dma_addr_t dma_address;
2e242fa9 4602 int trim_sg = 0;
1da177e4 4603
cedc9a47
JG
4604 /* we must lengthen transfers to end on a 32-bit boundary */
4605 qc->pad_len = sg->length & 3;
4606 if (qc->pad_len) {
4607 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4608 struct scatterlist *psg = &qc->pad_sgent;
4609
a4631474 4610 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4611
4612 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4613
4614 if (qc->tf.flags & ATA_TFLAG_WRITE)
4615 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4616 qc->pad_len);
4617
4618 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4619 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4620 /* trim sg */
4621 sg->length -= qc->pad_len;
2e242fa9
TH
4622 if (sg->length == 0)
4623 trim_sg = 1;
cedc9a47
JG
4624
4625 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4626 sg->length, qc->pad_len);
4627 }
4628
2e242fa9
TH
4629 if (trim_sg) {
4630 qc->n_elem--;
e1410f2d
JG
4631 goto skip_map;
4632 }
4633
2f1f610b 4634 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4635 sg->length, dir);
537a95d9
TH
4636 if (dma_mapping_error(dma_address)) {
4637 /* restore sg */
4638 sg->length += qc->pad_len;
1da177e4 4639 return -1;
537a95d9 4640 }
1da177e4
LT
4641
4642 sg_dma_address(sg) = dma_address;
32529e01 4643 sg_dma_len(sg) = sg->length;
1da177e4 4644
2e242fa9 4645skip_map:
1da177e4
LT
4646 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4647 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4648
4649 return 0;
4650}
4651
4652/**
0cba632b
JG
4653 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4654 * @qc: Command with scatter-gather table to be mapped.
4655 *
4656 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4657 *
4658 * LOCKING:
cca3974e 4659 * spin_lock_irqsave(host lock)
1da177e4
LT
4660 *
4661 * RETURNS:
0cba632b 4662 * Zero on success, negative on error.
1da177e4
LT
4663 *
4664 */
4665
4666static int ata_sg_setup(struct ata_queued_cmd *qc)
4667{
4668 struct ata_port *ap = qc->ap;
cedc9a47 4669 struct scatterlist *sg = qc->__sg;
87260216 4670 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4671 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4672
44877b4e 4673 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4674 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4675
cedc9a47
JG
4676 /* we must lengthen transfers to end on a 32-bit boundary */
4677 qc->pad_len = lsg->length & 3;
4678 if (qc->pad_len) {
4679 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4680 struct scatterlist *psg = &qc->pad_sgent;
4681 unsigned int offset;
4682
a4631474 4683 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4684
4685 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4686
4687 /*
4688 * psg->page/offset are used to copy to-be-written
4689 * data in this function or read data in ata_sg_clean.
4690 */
4691 offset = lsg->offset + lsg->length - qc->pad_len;
642f1490
JA
4692 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4693 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4694
4695 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4696 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4697 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4698 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4699 }
4700
4701 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4702 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4703 /* trim last sg */
4704 lsg->length -= qc->pad_len;
e1410f2d
JG
4705 if (lsg->length == 0)
4706 trim_sg = 1;
cedc9a47
JG
4707
4708 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4709 qc->n_elem - 1, lsg->length, qc->pad_len);
4710 }
4711
e1410f2d
JG
4712 pre_n_elem = qc->n_elem;
4713 if (trim_sg && pre_n_elem)
4714 pre_n_elem--;
4715
4716 if (!pre_n_elem) {
4717 n_elem = 0;
4718 goto skip_map;
4719 }
4720
1da177e4 4721 dir = qc->dma_dir;
2f1f610b 4722 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4723 if (n_elem < 1) {
4724 /* restore last sg */
4725 lsg->length += qc->pad_len;
1da177e4 4726 return -1;
537a95d9 4727 }
1da177e4
LT
4728
4729 DPRINTK("%d sg elements mapped\n", n_elem);
4730
e1410f2d 4731skip_map:
1da177e4
LT
4732 qc->n_elem = n_elem;
4733
4734 return 0;
4735}
4736
0baab86b 4737/**
c893a3ae 4738 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4739 * @buf: Buffer to swap
4740 * @buf_words: Number of 16-bit words in buffer.
4741 *
4742 * Swap halves of 16-bit words if needed to convert from
4743 * little-endian byte order to native cpu byte order, or
4744 * vice-versa.
4745 *
4746 * LOCKING:
6f0ef4fa 4747 * Inherited from caller.
0baab86b 4748 */
1da177e4
LT
4749void swap_buf_le16(u16 *buf, unsigned int buf_words)
4750{
4751#ifdef __BIG_ENDIAN
4752 unsigned int i;
4753
4754 for (i = 0; i < buf_words; i++)
4755 buf[i] = le16_to_cpu(buf[i]);
4756#endif /* __BIG_ENDIAN */
4757}
4758
6ae4cfb5 4759/**
0d5ff566 4760 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4761 * @adev: device to target
6ae4cfb5
AL
4762 * @buf: data buffer
4763 * @buflen: buffer length
344babaa 4764 * @write_data: read/write
6ae4cfb5
AL
4765 *
4766 * Transfer data from/to the device data register by PIO.
4767 *
4768 * LOCKING:
4769 * Inherited from caller.
6ae4cfb5 4770 */
0d5ff566
TH
4771void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4772 unsigned int buflen, int write_data)
1da177e4 4773{
9af5c9c9 4774 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4775 unsigned int words = buflen >> 1;
1da177e4 4776
6ae4cfb5 4777 /* Transfer multiple of 2 bytes */
1da177e4 4778 if (write_data)
0d5ff566 4779 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4780 else
0d5ff566 4781 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4782
4783 /* Transfer trailing 1 byte, if any. */
4784 if (unlikely(buflen & 0x01)) {
4785 u16 align_buf[1] = { 0 };
4786 unsigned char *trailing_buf = buf + buflen - 1;
4787
4788 if (write_data) {
4789 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4790 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4791 } else {
0d5ff566 4792 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4793 memcpy(trailing_buf, align_buf, 1);
4794 }
4795 }
1da177e4
LT
4796}
4797
75e99585 4798/**
0d5ff566 4799 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4800 * @adev: device to target
4801 * @buf: data buffer
4802 * @buflen: buffer length
4803 * @write_data: read/write
4804 *
88574551 4805 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4806 * transfer with interrupts disabled.
4807 *
4808 * LOCKING:
4809 * Inherited from caller.
4810 */
0d5ff566
TH
4811void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4812 unsigned int buflen, int write_data)
75e99585
AC
4813{
4814 unsigned long flags;
4815 local_irq_save(flags);
0d5ff566 4816 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4817 local_irq_restore(flags);
4818}
4819
4820
6ae4cfb5 4821/**
5a5dbd18 4822 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4823 * @qc: Command on going
4824 *
5a5dbd18 4825 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4826 *
4827 * LOCKING:
4828 * Inherited from caller.
4829 */
4830
1da177e4
LT
4831static void ata_pio_sector(struct ata_queued_cmd *qc)
4832{
4833 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
4834 struct ata_port *ap = qc->ap;
4835 struct page *page;
4836 unsigned int offset;
4837 unsigned char *buf;
4838
5a5dbd18 4839 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4840 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 4841
45711f1a 4842 page = sg_page(qc->cursg);
87260216 4843 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
4844
4845 /* get the current page and offset */
4846 page = nth_page(page, (offset >> PAGE_SHIFT));
4847 offset %= PAGE_SIZE;
4848
1da177e4
LT
4849 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4850
91b8b313
AL
4851 if (PageHighMem(page)) {
4852 unsigned long flags;
4853
a6b2c5d4 4854 /* FIXME: use a bounce buffer */
91b8b313
AL
4855 local_irq_save(flags);
4856 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4857
91b8b313 4858 /* do the actual data transfer */
5a5dbd18 4859 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4860
91b8b313
AL
4861 kunmap_atomic(buf, KM_IRQ0);
4862 local_irq_restore(flags);
4863 } else {
4864 buf = page_address(page);
5a5dbd18 4865 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4866 }
1da177e4 4867
5a5dbd18
ML
4868 qc->curbytes += qc->sect_size;
4869 qc->cursg_ofs += qc->sect_size;
1da177e4 4870
87260216
JA
4871 if (qc->cursg_ofs == qc->cursg->length) {
4872 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
4873 qc->cursg_ofs = 0;
4874 }
1da177e4 4875}
1da177e4 4876
07f6f7d0 4877/**
5a5dbd18 4878 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4879 * @qc: Command on going
4880 *
5a5dbd18 4881 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4882 * ATA device for the DRQ request.
4883 *
4884 * LOCKING:
4885 * Inherited from caller.
4886 */
1da177e4 4887
07f6f7d0
AL
4888static void ata_pio_sectors(struct ata_queued_cmd *qc)
4889{
4890 if (is_multi_taskfile(&qc->tf)) {
4891 /* READ/WRITE MULTIPLE */
4892 unsigned int nsect;
4893
587005de 4894 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4895
5a5dbd18 4896 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4897 qc->dev->multi_count);
07f6f7d0
AL
4898 while (nsect--)
4899 ata_pio_sector(qc);
4900 } else
4901 ata_pio_sector(qc);
4cc980b3
AL
4902
4903 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4904}
4905
c71c1857
AL
4906/**
4907 * atapi_send_cdb - Write CDB bytes to hardware
4908 * @ap: Port to which ATAPI device is attached.
4909 * @qc: Taskfile currently active
4910 *
4911 * When device has indicated its readiness to accept
4912 * a CDB, this function is called. Send the CDB.
4913 *
4914 * LOCKING:
4915 * caller.
4916 */
4917
4918static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4919{
4920 /* send SCSI cdb */
4921 DPRINTK("send cdb\n");
db024d53 4922 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4923
a6b2c5d4 4924 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4925 ata_altstatus(ap); /* flush */
4926
4927 switch (qc->tf.protocol) {
4928 case ATA_PROT_ATAPI:
4929 ap->hsm_task_state = HSM_ST;
4930 break;
4931 case ATA_PROT_ATAPI_NODATA:
4932 ap->hsm_task_state = HSM_ST_LAST;
4933 break;
4934 case ATA_PROT_ATAPI_DMA:
4935 ap->hsm_task_state = HSM_ST_LAST;
4936 /* initiate bmdma */
4937 ap->ops->bmdma_start(qc);
4938 break;
4939 }
1da177e4
LT
4940}
4941
6ae4cfb5
AL
4942/**
4943 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4944 * @qc: Command on going
4945 * @bytes: number of bytes
4946 *
4947 * Transfer Transfer data from/to the ATAPI device.
4948 *
4949 * LOCKING:
4950 * Inherited from caller.
4951 *
4952 */
4953
1da177e4
LT
4954static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4955{
4956 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4957 struct scatterlist *sg = qc->__sg;
0874ee76 4958 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
4959 struct ata_port *ap = qc->ap;
4960 struct page *page;
4961 unsigned char *buf;
4962 unsigned int offset, count;
0874ee76 4963 int no_more_sg = 0;
1da177e4 4964
563a6e1f 4965 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4966 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4967
4968next_sg:
0874ee76 4969 if (unlikely(no_more_sg)) {
7fb6ec28 4970 /*
563a6e1f
AL
4971 * The end of qc->sg is reached and the device expects
4972 * more data to transfer. In order not to overrun qc->sg
4973 * and fulfill length specified in the byte count register,
4974 * - for read case, discard trailing data from the device
4975 * - for write case, padding zero data to the device
4976 */
4977 u16 pad_buf[1] = { 0 };
4978 unsigned int words = bytes >> 1;
4979 unsigned int i;
4980
4981 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4982 ata_dev_printk(qc->dev, KERN_WARNING,
4983 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4984
4985 for (i = 0; i < words; i++)
2dcb407e 4986 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 4987
14be71f4 4988 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4989 return;
4990 }
4991
87260216 4992 sg = qc->cursg;
1da177e4 4993
45711f1a 4994 page = sg_page(sg);
1da177e4
LT
4995 offset = sg->offset + qc->cursg_ofs;
4996
4997 /* get the current page and offset */
4998 page = nth_page(page, (offset >> PAGE_SHIFT));
4999 offset %= PAGE_SIZE;
5000
6952df03 5001 /* don't overrun current sg */
32529e01 5002 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5003
5004 /* don't cross page boundaries */
5005 count = min(count, (unsigned int)PAGE_SIZE - offset);
5006
7282aa4b
AL
5007 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5008
91b8b313
AL
5009 if (PageHighMem(page)) {
5010 unsigned long flags;
5011
a6b2c5d4 5012 /* FIXME: use bounce buffer */
91b8b313
AL
5013 local_irq_save(flags);
5014 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5015
91b8b313 5016 /* do the actual data transfer */
a6b2c5d4 5017 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5018
91b8b313
AL
5019 kunmap_atomic(buf, KM_IRQ0);
5020 local_irq_restore(flags);
5021 } else {
5022 buf = page_address(page);
a6b2c5d4 5023 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5024 }
1da177e4
LT
5025
5026 bytes -= count;
5027 qc->curbytes += count;
5028 qc->cursg_ofs += count;
5029
32529e01 5030 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5031 if (qc->cursg == lsg)
5032 no_more_sg = 1;
5033
87260216 5034 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5035 qc->cursg_ofs = 0;
5036 }
5037
563a6e1f 5038 if (bytes)
1da177e4 5039 goto next_sg;
1da177e4
LT
5040}
5041
6ae4cfb5
AL
5042/**
5043 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5044 * @qc: Command on going
5045 *
5046 * Transfer Transfer data from/to the ATAPI device.
5047 *
5048 * LOCKING:
5049 * Inherited from caller.
6ae4cfb5
AL
5050 */
5051
1da177e4
LT
5052static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5053{
5054 struct ata_port *ap = qc->ap;
5055 struct ata_device *dev = qc->dev;
5056 unsigned int ireason, bc_lo, bc_hi, bytes;
5057 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5058
eec4c3f3
AL
5059 /* Abuse qc->result_tf for temp storage of intermediate TF
5060 * here to save some kernel stack usage.
5061 * For normal completion, qc->result_tf is not relevant. For
5062 * error, qc->result_tf is later overwritten by ata_qc_complete().
5063 * So, the correctness of qc->result_tf is not affected.
5064 */
5065 ap->ops->tf_read(ap, &qc->result_tf);
5066 ireason = qc->result_tf.nsect;
5067 bc_lo = qc->result_tf.lbam;
5068 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5069 bytes = (bc_hi << 8) | bc_lo;
5070
5071 /* shall be cleared to zero, indicating xfer of data */
5072 if (ireason & (1 << 0))
5073 goto err_out;
5074
5075 /* make sure transfer direction matches expected */
5076 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5077 if (do_write != i_write)
5078 goto err_out;
5079
44877b4e 5080 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5081
1da177e4 5082 __atapi_pio_bytes(qc, bytes);
4cc980b3 5083 ata_altstatus(ap); /* flush */
1da177e4
LT
5084
5085 return;
5086
5087err_out:
f15a1daf 5088 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5089 qc->err_mask |= AC_ERR_HSM;
14be71f4 5090 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5091}
5092
5093/**
c234fb00
AL
5094 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5095 * @ap: the target ata_port
5096 * @qc: qc on going
1da177e4 5097 *
c234fb00
AL
5098 * RETURNS:
5099 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5100 */
c234fb00
AL
5101
5102static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5103{
c234fb00
AL
5104 if (qc->tf.flags & ATA_TFLAG_POLLING)
5105 return 1;
1da177e4 5106
c234fb00
AL
5107 if (ap->hsm_task_state == HSM_ST_FIRST) {
5108 if (qc->tf.protocol == ATA_PROT_PIO &&
5109 (qc->tf.flags & ATA_TFLAG_WRITE))
5110 return 1;
1da177e4 5111
c234fb00
AL
5112 if (is_atapi_taskfile(&qc->tf) &&
5113 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5114 return 1;
fe79e683
AL
5115 }
5116
c234fb00
AL
5117 return 0;
5118}
1da177e4 5119
c17ea20d
TH
5120/**
5121 * ata_hsm_qc_complete - finish a qc running on standard HSM
5122 * @qc: Command to complete
5123 * @in_wq: 1 if called from workqueue, 0 otherwise
5124 *
5125 * Finish @qc which is running on standard HSM.
5126 *
5127 * LOCKING:
cca3974e 5128 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5129 * Otherwise, none on entry and grabs host lock.
5130 */
5131static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5132{
5133 struct ata_port *ap = qc->ap;
5134 unsigned long flags;
5135
5136 if (ap->ops->error_handler) {
5137 if (in_wq) {
ba6a1308 5138 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5139
cca3974e
JG
5140 /* EH might have kicked in while host lock is
5141 * released.
c17ea20d
TH
5142 */
5143 qc = ata_qc_from_tag(ap, qc->tag);
5144 if (qc) {
5145 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5146 ap->ops->irq_on(ap);
c17ea20d
TH
5147 ata_qc_complete(qc);
5148 } else
5149 ata_port_freeze(ap);
5150 }
5151
ba6a1308 5152 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5153 } else {
5154 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5155 ata_qc_complete(qc);
5156 else
5157 ata_port_freeze(ap);
5158 }
5159 } else {
5160 if (in_wq) {
ba6a1308 5161 spin_lock_irqsave(ap->lock, flags);
83625006 5162 ap->ops->irq_on(ap);
c17ea20d 5163 ata_qc_complete(qc);
ba6a1308 5164 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5165 } else
5166 ata_qc_complete(qc);
5167 }
5168}
5169
bb5cb290
AL
5170/**
5171 * ata_hsm_move - move the HSM to the next state.
5172 * @ap: the target ata_port
5173 * @qc: qc on going
5174 * @status: current device status
5175 * @in_wq: 1 if called from workqueue, 0 otherwise
5176 *
5177 * RETURNS:
5178 * 1 when poll next status needed, 0 otherwise.
5179 */
9a1004d0
TH
5180int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5181 u8 status, int in_wq)
e2cec771 5182{
bb5cb290
AL
5183 unsigned long flags = 0;
5184 int poll_next;
5185
6912ccd5
AL
5186 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5187
bb5cb290
AL
5188 /* Make sure ata_qc_issue_prot() does not throw things
5189 * like DMA polling into the workqueue. Notice that
5190 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5191 */
c234fb00 5192 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5193
e2cec771 5194fsm_start:
999bb6f4 5195 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5196 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5197
e2cec771
AL
5198 switch (ap->hsm_task_state) {
5199 case HSM_ST_FIRST:
bb5cb290
AL
5200 /* Send first data block or PACKET CDB */
5201
5202 /* If polling, we will stay in the work queue after
5203 * sending the data. Otherwise, interrupt handler
5204 * takes over after sending the data.
5205 */
5206 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5207
e2cec771 5208 /* check device status */
3655d1d3
AL
5209 if (unlikely((status & ATA_DRQ) == 0)) {
5210 /* handle BSY=0, DRQ=0 as error */
5211 if (likely(status & (ATA_ERR | ATA_DF)))
5212 /* device stops HSM for abort/error */
5213 qc->err_mask |= AC_ERR_DEV;
5214 else
5215 /* HSM violation. Let EH handle this */
5216 qc->err_mask |= AC_ERR_HSM;
5217
14be71f4 5218 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5219 goto fsm_start;
1da177e4
LT
5220 }
5221
71601958
AL
5222 /* Device should not ask for data transfer (DRQ=1)
5223 * when it finds something wrong.
eee6c32f
AL
5224 * We ignore DRQ here and stop the HSM by
5225 * changing hsm_task_state to HSM_ST_ERR and
5226 * let the EH abort the command or reset the device.
71601958
AL
5227 */
5228 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5229 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5230 "error, dev_stat 0x%X\n", status);
3655d1d3 5231 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5232 ap->hsm_task_state = HSM_ST_ERR;
5233 goto fsm_start;
71601958 5234 }
1da177e4 5235
bb5cb290
AL
5236 /* Send the CDB (atapi) or the first data block (ata pio out).
5237 * During the state transition, interrupt handler shouldn't
5238 * be invoked before the data transfer is complete and
5239 * hsm_task_state is changed. Hence, the following locking.
5240 */
5241 if (in_wq)
ba6a1308 5242 spin_lock_irqsave(ap->lock, flags);
1da177e4 5243
bb5cb290
AL
5244 if (qc->tf.protocol == ATA_PROT_PIO) {
5245 /* PIO data out protocol.
5246 * send first data block.
5247 */
0565c26d 5248
bb5cb290
AL
5249 /* ata_pio_sectors() might change the state
5250 * to HSM_ST_LAST. so, the state is changed here
5251 * before ata_pio_sectors().
5252 */
5253 ap->hsm_task_state = HSM_ST;
5254 ata_pio_sectors(qc);
bb5cb290
AL
5255 } else
5256 /* send CDB */
5257 atapi_send_cdb(ap, qc);
5258
5259 if (in_wq)
ba6a1308 5260 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5261
5262 /* if polling, ata_pio_task() handles the rest.
5263 * otherwise, interrupt handler takes over from here.
5264 */
e2cec771 5265 break;
1c848984 5266
e2cec771
AL
5267 case HSM_ST:
5268 /* complete command or read/write the data register */
5269 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5270 /* ATAPI PIO protocol */
5271 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5272 /* No more data to transfer or device error.
5273 * Device error will be tagged in HSM_ST_LAST.
5274 */
e2cec771
AL
5275 ap->hsm_task_state = HSM_ST_LAST;
5276 goto fsm_start;
5277 }
1da177e4 5278
71601958
AL
5279 /* Device should not ask for data transfer (DRQ=1)
5280 * when it finds something wrong.
eee6c32f
AL
5281 * We ignore DRQ here and stop the HSM by
5282 * changing hsm_task_state to HSM_ST_ERR and
5283 * let the EH abort the command or reset the device.
71601958
AL
5284 */
5285 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5286 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5287 "device error, dev_stat 0x%X\n",
5288 status);
3655d1d3 5289 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5290 ap->hsm_task_state = HSM_ST_ERR;
5291 goto fsm_start;
71601958 5292 }
1da177e4 5293
e2cec771 5294 atapi_pio_bytes(qc);
7fb6ec28 5295
e2cec771
AL
5296 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5297 /* bad ireason reported by device */
5298 goto fsm_start;
1da177e4 5299
e2cec771
AL
5300 } else {
5301 /* ATA PIO protocol */
5302 if (unlikely((status & ATA_DRQ) == 0)) {
5303 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5304 if (likely(status & (ATA_ERR | ATA_DF)))
5305 /* device stops HSM for abort/error */
5306 qc->err_mask |= AC_ERR_DEV;
5307 else
55a8e2c8
TH
5308 /* HSM violation. Let EH handle this.
5309 * Phantom devices also trigger this
5310 * condition. Mark hint.
5311 */
5312 qc->err_mask |= AC_ERR_HSM |
5313 AC_ERR_NODEV_HINT;
3655d1d3 5314
e2cec771
AL
5315 ap->hsm_task_state = HSM_ST_ERR;
5316 goto fsm_start;
5317 }
1da177e4 5318
eee6c32f
AL
5319 /* For PIO reads, some devices may ask for
5320 * data transfer (DRQ=1) alone with ERR=1.
5321 * We respect DRQ here and transfer one
5322 * block of junk data before changing the
5323 * hsm_task_state to HSM_ST_ERR.
5324 *
5325 * For PIO writes, ERR=1 DRQ=1 doesn't make
5326 * sense since the data block has been
5327 * transferred to the device.
71601958
AL
5328 */
5329 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5330 /* data might be corrputed */
5331 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5332
5333 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5334 ata_pio_sectors(qc);
eee6c32f
AL
5335 status = ata_wait_idle(ap);
5336 }
5337
3655d1d3
AL
5338 if (status & (ATA_BUSY | ATA_DRQ))
5339 qc->err_mask |= AC_ERR_HSM;
5340
eee6c32f
AL
5341 /* ata_pio_sectors() might change the
5342 * state to HSM_ST_LAST. so, the state
5343 * is changed after ata_pio_sectors().
5344 */
5345 ap->hsm_task_state = HSM_ST_ERR;
5346 goto fsm_start;
71601958
AL
5347 }
5348
e2cec771
AL
5349 ata_pio_sectors(qc);
5350
5351 if (ap->hsm_task_state == HSM_ST_LAST &&
5352 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5353 /* all data read */
52a32205 5354 status = ata_wait_idle(ap);
e2cec771
AL
5355 goto fsm_start;
5356 }
5357 }
5358
bb5cb290 5359 poll_next = 1;
1da177e4
LT
5360 break;
5361
14be71f4 5362 case HSM_ST_LAST:
6912ccd5
AL
5363 if (unlikely(!ata_ok(status))) {
5364 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5365 ap->hsm_task_state = HSM_ST_ERR;
5366 goto fsm_start;
5367 }
5368
5369 /* no more data to transfer */
4332a771 5370 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5371 ap->print_id, qc->dev->devno, status);
e2cec771 5372
6912ccd5
AL
5373 WARN_ON(qc->err_mask);
5374
e2cec771 5375 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5376
e2cec771 5377 /* complete taskfile transaction */
c17ea20d 5378 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5379
5380 poll_next = 0;
1da177e4
LT
5381 break;
5382
14be71f4 5383 case HSM_ST_ERR:
e2cec771
AL
5384 /* make sure qc->err_mask is available to
5385 * know what's wrong and recover
5386 */
5387 WARN_ON(qc->err_mask == 0);
5388
5389 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5390
999bb6f4 5391 /* complete taskfile transaction */
c17ea20d 5392 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5393
5394 poll_next = 0;
e2cec771
AL
5395 break;
5396 default:
bb5cb290 5397 poll_next = 0;
6912ccd5 5398 BUG();
1da177e4
LT
5399 }
5400
bb5cb290 5401 return poll_next;
1da177e4
LT
5402}
5403
65f27f38 5404static void ata_pio_task(struct work_struct *work)
8061f5f0 5405{
65f27f38
DH
5406 struct ata_port *ap =
5407 container_of(work, struct ata_port, port_task.work);
5408 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5409 u8 status;
a1af3734 5410 int poll_next;
8061f5f0 5411
7fb6ec28 5412fsm_start:
a1af3734 5413 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5414
a1af3734
AL
5415 /*
5416 * This is purely heuristic. This is a fast path.
5417 * Sometimes when we enter, BSY will be cleared in
5418 * a chk-status or two. If not, the drive is probably seeking
5419 * or something. Snooze for a couple msecs, then
5420 * chk-status again. If still busy, queue delayed work.
5421 */
5422 status = ata_busy_wait(ap, ATA_BUSY, 5);
5423 if (status & ATA_BUSY) {
5424 msleep(2);
5425 status = ata_busy_wait(ap, ATA_BUSY, 10);
5426 if (status & ATA_BUSY) {
31ce6dae 5427 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5428 return;
5429 }
8061f5f0
TH
5430 }
5431
a1af3734
AL
5432 /* move the HSM */
5433 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5434
a1af3734
AL
5435 /* another command or interrupt handler
5436 * may be running at this point.
5437 */
5438 if (poll_next)
7fb6ec28 5439 goto fsm_start;
8061f5f0
TH
5440}
5441
1da177e4
LT
5442/**
5443 * ata_qc_new - Request an available ATA command, for queueing
5444 * @ap: Port associated with device @dev
5445 * @dev: Device from whom we request an available command structure
5446 *
5447 * LOCKING:
0cba632b 5448 * None.
1da177e4
LT
5449 */
5450
5451static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5452{
5453 struct ata_queued_cmd *qc = NULL;
5454 unsigned int i;
5455
e3180499 5456 /* no command while frozen */
b51e9e5d 5457 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5458 return NULL;
5459
2ab7db1f
TH
5460 /* the last tag is reserved for internal command. */
5461 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5462 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5463 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5464 break;
5465 }
5466
5467 if (qc)
5468 qc->tag = i;
5469
5470 return qc;
5471}
5472
5473/**
5474 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5475 * @dev: Device from whom we request an available command structure
5476 *
5477 * LOCKING:
0cba632b 5478 * None.
1da177e4
LT
5479 */
5480
3373efd8 5481struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5482{
9af5c9c9 5483 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5484 struct ata_queued_cmd *qc;
5485
5486 qc = ata_qc_new(ap);
5487 if (qc) {
1da177e4
LT
5488 qc->scsicmd = NULL;
5489 qc->ap = ap;
5490 qc->dev = dev;
1da177e4 5491
2c13b7ce 5492 ata_qc_reinit(qc);
1da177e4
LT
5493 }
5494
5495 return qc;
5496}
5497
1da177e4
LT
5498/**
5499 * ata_qc_free - free unused ata_queued_cmd
5500 * @qc: Command to complete
5501 *
5502 * Designed to free unused ata_queued_cmd object
5503 * in case something prevents using it.
5504 *
5505 * LOCKING:
cca3974e 5506 * spin_lock_irqsave(host lock)
1da177e4
LT
5507 */
5508void ata_qc_free(struct ata_queued_cmd *qc)
5509{
4ba946e9
TH
5510 struct ata_port *ap = qc->ap;
5511 unsigned int tag;
5512
a4631474 5513 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5514
4ba946e9
TH
5515 qc->flags = 0;
5516 tag = qc->tag;
5517 if (likely(ata_tag_valid(tag))) {
4ba946e9 5518 qc->tag = ATA_TAG_POISON;
6cec4a39 5519 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5520 }
1da177e4
LT
5521}
5522
76014427 5523void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5524{
dedaf2b0 5525 struct ata_port *ap = qc->ap;
9af5c9c9 5526 struct ata_link *link = qc->dev->link;
dedaf2b0 5527
a4631474
TH
5528 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5529 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5530
5531 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5532 ata_sg_clean(qc);
5533
7401abf2 5534 /* command should be marked inactive atomically with qc completion */
da917d69 5535 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5536 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5537 if (!link->sactive)
5538 ap->nr_active_links--;
5539 } else {
9af5c9c9 5540 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5541 ap->nr_active_links--;
5542 }
5543
5544 /* clear exclusive status */
5545 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5546 ap->excl_link == link))
5547 ap->excl_link = NULL;
7401abf2 5548
3f3791d3
AL
5549 /* atapi: mark qc as inactive to prevent the interrupt handler
5550 * from completing the command twice later, before the error handler
5551 * is called. (when rc != 0 and atapi request sense is needed)
5552 */
5553 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5554 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5555
1da177e4 5556 /* call completion callback */
77853bf2 5557 qc->complete_fn(qc);
1da177e4
LT
5558}
5559
39599a53
TH
5560static void fill_result_tf(struct ata_queued_cmd *qc)
5561{
5562 struct ata_port *ap = qc->ap;
5563
39599a53 5564 qc->result_tf.flags = qc->tf.flags;
4742d54f 5565 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5566}
5567
f686bcb8
TH
5568/**
5569 * ata_qc_complete - Complete an active ATA command
5570 * @qc: Command to complete
5571 * @err_mask: ATA Status register contents
5572 *
5573 * Indicate to the mid and upper layers that an ATA
5574 * command has completed, with either an ok or not-ok status.
5575 *
5576 * LOCKING:
cca3974e 5577 * spin_lock_irqsave(host lock)
f686bcb8
TH
5578 */
5579void ata_qc_complete(struct ata_queued_cmd *qc)
5580{
5581 struct ata_port *ap = qc->ap;
5582
5583 /* XXX: New EH and old EH use different mechanisms to
5584 * synchronize EH with regular execution path.
5585 *
5586 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5587 * Normal execution path is responsible for not accessing a
5588 * failed qc. libata core enforces the rule by returning NULL
5589 * from ata_qc_from_tag() for failed qcs.
5590 *
5591 * Old EH depends on ata_qc_complete() nullifying completion
5592 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5593 * not synchronize with interrupt handler. Only PIO task is
5594 * taken care of.
5595 */
5596 if (ap->ops->error_handler) {
b51e9e5d 5597 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5598
5599 if (unlikely(qc->err_mask))
5600 qc->flags |= ATA_QCFLAG_FAILED;
5601
5602 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5603 if (!ata_tag_internal(qc->tag)) {
5604 /* always fill result TF for failed qc */
39599a53 5605 fill_result_tf(qc);
f686bcb8
TH
5606 ata_qc_schedule_eh(qc);
5607 return;
5608 }
5609 }
5610
5611 /* read result TF if requested */
5612 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5613 fill_result_tf(qc);
f686bcb8
TH
5614
5615 __ata_qc_complete(qc);
5616 } else {
5617 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5618 return;
5619
5620 /* read result TF if failed or requested */
5621 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5622 fill_result_tf(qc);
f686bcb8
TH
5623
5624 __ata_qc_complete(qc);
5625 }
5626}
5627
dedaf2b0
TH
5628/**
5629 * ata_qc_complete_multiple - Complete multiple qcs successfully
5630 * @ap: port in question
5631 * @qc_active: new qc_active mask
5632 * @finish_qc: LLDD callback invoked before completing a qc
5633 *
5634 * Complete in-flight commands. This functions is meant to be
5635 * called from low-level driver's interrupt routine to complete
5636 * requests normally. ap->qc_active and @qc_active is compared
5637 * and commands are completed accordingly.
5638 *
5639 * LOCKING:
cca3974e 5640 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5641 *
5642 * RETURNS:
5643 * Number of completed commands on success, -errno otherwise.
5644 */
5645int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5646 void (*finish_qc)(struct ata_queued_cmd *))
5647{
5648 int nr_done = 0;
5649 u32 done_mask;
5650 int i;
5651
5652 done_mask = ap->qc_active ^ qc_active;
5653
5654 if (unlikely(done_mask & qc_active)) {
5655 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5656 "(%08x->%08x)\n", ap->qc_active, qc_active);
5657 return -EINVAL;
5658 }
5659
5660 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5661 struct ata_queued_cmd *qc;
5662
5663 if (!(done_mask & (1 << i)))
5664 continue;
5665
5666 if ((qc = ata_qc_from_tag(ap, i))) {
5667 if (finish_qc)
5668 finish_qc(qc);
5669 ata_qc_complete(qc);
5670 nr_done++;
5671 }
5672 }
5673
5674 return nr_done;
5675}
5676
1da177e4
LT
5677static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5678{
5679 struct ata_port *ap = qc->ap;
5680
5681 switch (qc->tf.protocol) {
3dc1d881 5682 case ATA_PROT_NCQ:
1da177e4
LT
5683 case ATA_PROT_DMA:
5684 case ATA_PROT_ATAPI_DMA:
5685 return 1;
5686
5687 case ATA_PROT_ATAPI:
5688 case ATA_PROT_PIO:
1da177e4
LT
5689 if (ap->flags & ATA_FLAG_PIO_DMA)
5690 return 1;
5691
5692 /* fall through */
5693
5694 default:
5695 return 0;
5696 }
5697
5698 /* never reached */
5699}
5700
5701/**
5702 * ata_qc_issue - issue taskfile to device
5703 * @qc: command to issue to device
5704 *
5705 * Prepare an ATA command to submission to device.
5706 * This includes mapping the data into a DMA-able
5707 * area, filling in the S/G table, and finally
5708 * writing the taskfile to hardware, starting the command.
5709 *
5710 * LOCKING:
cca3974e 5711 * spin_lock_irqsave(host lock)
1da177e4 5712 */
8e0e694a 5713void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5714{
5715 struct ata_port *ap = qc->ap;
9af5c9c9 5716 struct ata_link *link = qc->dev->link;
1da177e4 5717
dedaf2b0
TH
5718 /* Make sure only one non-NCQ command is outstanding. The
5719 * check is skipped for old EH because it reuses active qc to
5720 * request ATAPI sense.
5721 */
9af5c9c9 5722 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5723
5724 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5725 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5726
5727 if (!link->sactive)
5728 ap->nr_active_links++;
9af5c9c9 5729 link->sactive |= 1 << qc->tag;
dedaf2b0 5730 } else {
9af5c9c9 5731 WARN_ON(link->sactive);
da917d69
TH
5732
5733 ap->nr_active_links++;
9af5c9c9 5734 link->active_tag = qc->tag;
dedaf2b0
TH
5735 }
5736
e4a70e76 5737 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5738 ap->qc_active |= 1 << qc->tag;
e4a70e76 5739
1da177e4
LT
5740 if (ata_should_dma_map(qc)) {
5741 if (qc->flags & ATA_QCFLAG_SG) {
5742 if (ata_sg_setup(qc))
8e436af9 5743 goto sg_err;
1da177e4
LT
5744 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5745 if (ata_sg_setup_one(qc))
8e436af9 5746 goto sg_err;
1da177e4
LT
5747 }
5748 } else {
5749 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5750 }
5751
5752 ap->ops->qc_prep(qc);
5753
8e0e694a
TH
5754 qc->err_mask |= ap->ops->qc_issue(qc);
5755 if (unlikely(qc->err_mask))
5756 goto err;
5757 return;
1da177e4 5758
8e436af9
TH
5759sg_err:
5760 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5761 qc->err_mask |= AC_ERR_SYSTEM;
5762err:
5763 ata_qc_complete(qc);
1da177e4
LT
5764}
5765
5766/**
5767 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5768 * @qc: command to issue to device
5769 *
5770 * Using various libata functions and hooks, this function
5771 * starts an ATA command. ATA commands are grouped into
5772 * classes called "protocols", and issuing each type of protocol
5773 * is slightly different.
5774 *
0baab86b
EF
5775 * May be used as the qc_issue() entry in ata_port_operations.
5776 *
1da177e4 5777 * LOCKING:
cca3974e 5778 * spin_lock_irqsave(host lock)
1da177e4
LT
5779 *
5780 * RETURNS:
9a3d9eb0 5781 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5782 */
5783
9a3d9eb0 5784unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5785{
5786 struct ata_port *ap = qc->ap;
5787
e50362ec
AL
5788 /* Use polling pio if the LLD doesn't handle
5789 * interrupt driven pio and atapi CDB interrupt.
5790 */
5791 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5792 switch (qc->tf.protocol) {
5793 case ATA_PROT_PIO:
e3472cbe 5794 case ATA_PROT_NODATA:
e50362ec
AL
5795 case ATA_PROT_ATAPI:
5796 case ATA_PROT_ATAPI_NODATA:
5797 qc->tf.flags |= ATA_TFLAG_POLLING;
5798 break;
5799 case ATA_PROT_ATAPI_DMA:
5800 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5801 /* see ata_dma_blacklisted() */
e50362ec
AL
5802 BUG();
5803 break;
5804 default:
5805 break;
5806 }
5807 }
5808
312f7da2 5809 /* select the device */
1da177e4
LT
5810 ata_dev_select(ap, qc->dev->devno, 1, 0);
5811
312f7da2 5812 /* start the command */
1da177e4
LT
5813 switch (qc->tf.protocol) {
5814 case ATA_PROT_NODATA:
312f7da2
AL
5815 if (qc->tf.flags & ATA_TFLAG_POLLING)
5816 ata_qc_set_polling(qc);
5817
e5338254 5818 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5819 ap->hsm_task_state = HSM_ST_LAST;
5820
5821 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5822 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5823
1da177e4
LT
5824 break;
5825
5826 case ATA_PROT_DMA:
587005de 5827 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5828
1da177e4
LT
5829 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5830 ap->ops->bmdma_setup(qc); /* set up bmdma */
5831 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5832 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5833 break;
5834
312f7da2
AL
5835 case ATA_PROT_PIO:
5836 if (qc->tf.flags & ATA_TFLAG_POLLING)
5837 ata_qc_set_polling(qc);
1da177e4 5838
e5338254 5839 ata_tf_to_host(ap, &qc->tf);
312f7da2 5840
54f00389
AL
5841 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5842 /* PIO data out protocol */
5843 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5844 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5845
5846 /* always send first data block using
e27486db 5847 * the ata_pio_task() codepath.
54f00389 5848 */
312f7da2 5849 } else {
54f00389
AL
5850 /* PIO data in protocol */
5851 ap->hsm_task_state = HSM_ST;
5852
5853 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5854 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5855
5856 /* if polling, ata_pio_task() handles the rest.
5857 * otherwise, interrupt handler takes over from here.
5858 */
312f7da2
AL
5859 }
5860
1da177e4
LT
5861 break;
5862
1da177e4 5863 case ATA_PROT_ATAPI:
1da177e4 5864 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5865 if (qc->tf.flags & ATA_TFLAG_POLLING)
5866 ata_qc_set_polling(qc);
5867
e5338254 5868 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5869
312f7da2
AL
5870 ap->hsm_task_state = HSM_ST_FIRST;
5871
5872 /* send cdb by polling if no cdb interrupt */
5873 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5874 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5875 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5876 break;
5877
5878 case ATA_PROT_ATAPI_DMA:
587005de 5879 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5880
1da177e4
LT
5881 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5882 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5883 ap->hsm_task_state = HSM_ST_FIRST;
5884
5885 /* send cdb by polling if no cdb interrupt */
5886 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5887 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5888 break;
5889
5890 default:
5891 WARN_ON(1);
9a3d9eb0 5892 return AC_ERR_SYSTEM;
1da177e4
LT
5893 }
5894
5895 return 0;
5896}
5897
1da177e4
LT
5898/**
5899 * ata_host_intr - Handle host interrupt for given (port, task)
5900 * @ap: Port on which interrupt arrived (possibly...)
5901 * @qc: Taskfile currently active in engine
5902 *
5903 * Handle host interrupt for given queued command. Currently,
5904 * only DMA interrupts are handled. All other commands are
5905 * handled via polling with interrupts disabled (nIEN bit).
5906 *
5907 * LOCKING:
cca3974e 5908 * spin_lock_irqsave(host lock)
1da177e4
LT
5909 *
5910 * RETURNS:
5911 * One if interrupt was handled, zero if not (shared irq).
5912 */
5913
2dcb407e
JG
5914inline unsigned int ata_host_intr(struct ata_port *ap,
5915 struct ata_queued_cmd *qc)
1da177e4 5916{
9af5c9c9 5917 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5918 u8 status, host_stat = 0;
1da177e4 5919
312f7da2 5920 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5921 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5922
312f7da2
AL
5923 /* Check whether we are expecting interrupt in this state */
5924 switch (ap->hsm_task_state) {
5925 case HSM_ST_FIRST:
6912ccd5
AL
5926 /* Some pre-ATAPI-4 devices assert INTRQ
5927 * at this state when ready to receive CDB.
5928 */
1da177e4 5929
312f7da2
AL
5930 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5931 * The flag was turned on only for atapi devices.
5932 * No need to check is_atapi_taskfile(&qc->tf) again.
5933 */
5934 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5935 goto idle_irq;
1da177e4 5936 break;
312f7da2
AL
5937 case HSM_ST_LAST:
5938 if (qc->tf.protocol == ATA_PROT_DMA ||
5939 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5940 /* check status of DMA engine */
5941 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5942 VPRINTK("ata%u: host_stat 0x%X\n",
5943 ap->print_id, host_stat);
312f7da2
AL
5944
5945 /* if it's not our irq... */
5946 if (!(host_stat & ATA_DMA_INTR))
5947 goto idle_irq;
5948
5949 /* before we do anything else, clear DMA-Start bit */
5950 ap->ops->bmdma_stop(qc);
a4f16610
AL
5951
5952 if (unlikely(host_stat & ATA_DMA_ERR)) {
5953 /* error when transfering data to/from memory */
5954 qc->err_mask |= AC_ERR_HOST_BUS;
5955 ap->hsm_task_state = HSM_ST_ERR;
5956 }
312f7da2
AL
5957 }
5958 break;
5959 case HSM_ST:
5960 break;
1da177e4
LT
5961 default:
5962 goto idle_irq;
5963 }
5964
312f7da2
AL
5965 /* check altstatus */
5966 status = ata_altstatus(ap);
5967 if (status & ATA_BUSY)
5968 goto idle_irq;
1da177e4 5969
312f7da2
AL
5970 /* check main status, clearing INTRQ */
5971 status = ata_chk_status(ap);
5972 if (unlikely(status & ATA_BUSY))
5973 goto idle_irq;
1da177e4 5974
312f7da2
AL
5975 /* ack bmdma irq events */
5976 ap->ops->irq_clear(ap);
1da177e4 5977
bb5cb290 5978 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5979
5980 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5981 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5982 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5983
1da177e4
LT
5984 return 1; /* irq handled */
5985
5986idle_irq:
5987 ap->stats.idle_irq++;
5988
5989#ifdef ATA_IRQ_TRAP
5990 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5991 ata_chk_status(ap);
5992 ap->ops->irq_clear(ap);
f15a1daf 5993 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5994 return 1;
1da177e4
LT
5995 }
5996#endif
5997 return 0; /* irq not handled */
5998}
5999
6000/**
6001 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6002 * @irq: irq line (unused)
cca3974e 6003 * @dev_instance: pointer to our ata_host information structure
1da177e4 6004 *
0cba632b
JG
6005 * Default interrupt handler for PCI IDE devices. Calls
6006 * ata_host_intr() for each port that is not disabled.
6007 *
1da177e4 6008 * LOCKING:
cca3974e 6009 * Obtains host lock during operation.
1da177e4
LT
6010 *
6011 * RETURNS:
0cba632b 6012 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6013 */
6014
2dcb407e 6015irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6016{
cca3974e 6017 struct ata_host *host = dev_instance;
1da177e4
LT
6018 unsigned int i;
6019 unsigned int handled = 0;
6020 unsigned long flags;
6021
6022 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6023 spin_lock_irqsave(&host->lock, flags);
1da177e4 6024
cca3974e 6025 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6026 struct ata_port *ap;
6027
cca3974e 6028 ap = host->ports[i];
c1389503 6029 if (ap &&
029f5468 6030 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6031 struct ata_queued_cmd *qc;
6032
9af5c9c9 6033 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6034 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6035 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6036 handled |= ata_host_intr(ap, qc);
6037 }
6038 }
6039
cca3974e 6040 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6041
6042 return IRQ_RETVAL(handled);
6043}
6044
34bf2170
TH
6045/**
6046 * sata_scr_valid - test whether SCRs are accessible
936fd732 6047 * @link: ATA link to test SCR accessibility for
34bf2170 6048 *
936fd732 6049 * Test whether SCRs are accessible for @link.
34bf2170
TH
6050 *
6051 * LOCKING:
6052 * None.
6053 *
6054 * RETURNS:
6055 * 1 if SCRs are accessible, 0 otherwise.
6056 */
936fd732 6057int sata_scr_valid(struct ata_link *link)
34bf2170 6058{
936fd732
TH
6059 struct ata_port *ap = link->ap;
6060
a16abc0b 6061 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6062}
6063
6064/**
6065 * sata_scr_read - read SCR register of the specified port
936fd732 6066 * @link: ATA link to read SCR for
34bf2170
TH
6067 * @reg: SCR to read
6068 * @val: Place to store read value
6069 *
936fd732 6070 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6071 * guaranteed to succeed if @link is ap->link, the cable type of
6072 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6073 *
6074 * LOCKING:
633273a3 6075 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6076 *
6077 * RETURNS:
6078 * 0 on success, negative errno on failure.
6079 */
936fd732 6080int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6081{
633273a3
TH
6082 if (ata_is_host_link(link)) {
6083 struct ata_port *ap = link->ap;
936fd732 6084
633273a3
TH
6085 if (sata_scr_valid(link))
6086 return ap->ops->scr_read(ap, reg, val);
6087 return -EOPNOTSUPP;
6088 }
6089
6090 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6091}
6092
6093/**
6094 * sata_scr_write - write SCR register of the specified port
936fd732 6095 * @link: ATA link to write SCR for
34bf2170
TH
6096 * @reg: SCR to write
6097 * @val: value to write
6098 *
936fd732 6099 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6100 * guaranteed to succeed if @link is ap->link, the cable type of
6101 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6102 *
6103 * LOCKING:
633273a3 6104 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6105 *
6106 * RETURNS:
6107 * 0 on success, negative errno on failure.
6108 */
936fd732 6109int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6110{
633273a3
TH
6111 if (ata_is_host_link(link)) {
6112 struct ata_port *ap = link->ap;
6113
6114 if (sata_scr_valid(link))
6115 return ap->ops->scr_write(ap, reg, val);
6116 return -EOPNOTSUPP;
6117 }
936fd732 6118
633273a3 6119 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6120}
6121
6122/**
6123 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6124 * @link: ATA link to write SCR for
34bf2170
TH
6125 * @reg: SCR to write
6126 * @val: value to write
6127 *
6128 * This function is identical to sata_scr_write() except that this
6129 * function performs flush after writing to the register.
6130 *
6131 * LOCKING:
633273a3 6132 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6133 *
6134 * RETURNS:
6135 * 0 on success, negative errno on failure.
6136 */
936fd732 6137int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6138{
633273a3
TH
6139 if (ata_is_host_link(link)) {
6140 struct ata_port *ap = link->ap;
6141 int rc;
da3dbb17 6142
633273a3
TH
6143 if (sata_scr_valid(link)) {
6144 rc = ap->ops->scr_write(ap, reg, val);
6145 if (rc == 0)
6146 rc = ap->ops->scr_read(ap, reg, &val);
6147 return rc;
6148 }
6149 return -EOPNOTSUPP;
34bf2170 6150 }
633273a3
TH
6151
6152 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6153}
6154
6155/**
936fd732
TH
6156 * ata_link_online - test whether the given link is online
6157 * @link: ATA link to test
34bf2170 6158 *
936fd732
TH
6159 * Test whether @link is online. Note that this function returns
6160 * 0 if online status of @link cannot be obtained, so
6161 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6162 *
6163 * LOCKING:
6164 * None.
6165 *
6166 * RETURNS:
6167 * 1 if the port online status is available and online.
6168 */
936fd732 6169int ata_link_online(struct ata_link *link)
34bf2170
TH
6170{
6171 u32 sstatus;
6172
936fd732
TH
6173 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6174 (sstatus & 0xf) == 0x3)
34bf2170
TH
6175 return 1;
6176 return 0;
6177}
6178
6179/**
936fd732
TH
6180 * ata_link_offline - test whether the given link is offline
6181 * @link: ATA link to test
34bf2170 6182 *
936fd732
TH
6183 * Test whether @link is offline. Note that this function
6184 * returns 0 if offline status of @link cannot be obtained, so
6185 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6186 *
6187 * LOCKING:
6188 * None.
6189 *
6190 * RETURNS:
6191 * 1 if the port offline status is available and offline.
6192 */
936fd732 6193int ata_link_offline(struct ata_link *link)
34bf2170
TH
6194{
6195 u32 sstatus;
6196
936fd732
TH
6197 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6198 (sstatus & 0xf) != 0x3)
34bf2170
TH
6199 return 1;
6200 return 0;
6201}
0baab86b 6202
77b08fb5 6203int ata_flush_cache(struct ata_device *dev)
9b847548 6204{
977e6b9f 6205 unsigned int err_mask;
9b847548
JA
6206 u8 cmd;
6207
6208 if (!ata_try_flush_cache(dev))
6209 return 0;
6210
6fc49adb 6211 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6212 cmd = ATA_CMD_FLUSH_EXT;
6213 else
6214 cmd = ATA_CMD_FLUSH;
6215
4f34337b
AC
6216 /* This is wrong. On a failed flush we get back the LBA of the lost
6217 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6218 a further flush command to continue the writeback until it
4f34337b 6219 does not error */
977e6b9f
TH
6220 err_mask = ata_do_simple_cmd(dev, cmd);
6221 if (err_mask) {
6222 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6223 return -EIO;
6224 }
6225
6226 return 0;
9b847548
JA
6227}
6228
6ffa01d8 6229#ifdef CONFIG_PM
cca3974e
JG
6230static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6231 unsigned int action, unsigned int ehi_flags,
6232 int wait)
500530f6
TH
6233{
6234 unsigned long flags;
6235 int i, rc;
6236
cca3974e
JG
6237 for (i = 0; i < host->n_ports; i++) {
6238 struct ata_port *ap = host->ports[i];
e3667ebf 6239 struct ata_link *link;
500530f6
TH
6240
6241 /* Previous resume operation might still be in
6242 * progress. Wait for PM_PENDING to clear.
6243 */
6244 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6245 ata_port_wait_eh(ap);
6246 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6247 }
6248
6249 /* request PM ops to EH */
6250 spin_lock_irqsave(ap->lock, flags);
6251
6252 ap->pm_mesg = mesg;
6253 if (wait) {
6254 rc = 0;
6255 ap->pm_result = &rc;
6256 }
6257
6258 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6259 __ata_port_for_each_link(link, ap) {
6260 link->eh_info.action |= action;
6261 link->eh_info.flags |= ehi_flags;
6262 }
500530f6
TH
6263
6264 ata_port_schedule_eh(ap);
6265
6266 spin_unlock_irqrestore(ap->lock, flags);
6267
6268 /* wait and check result */
6269 if (wait) {
6270 ata_port_wait_eh(ap);
6271 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6272 if (rc)
6273 return rc;
6274 }
6275 }
6276
6277 return 0;
6278}
6279
6280/**
cca3974e
JG
6281 * ata_host_suspend - suspend host
6282 * @host: host to suspend
500530f6
TH
6283 * @mesg: PM message
6284 *
cca3974e 6285 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6286 * function requests EH to perform PM operations and waits for EH
6287 * to finish.
6288 *
6289 * LOCKING:
6290 * Kernel thread context (may sleep).
6291 *
6292 * RETURNS:
6293 * 0 on success, -errno on failure.
6294 */
cca3974e 6295int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6296{
9666f400 6297 int rc;
500530f6 6298
cca3974e 6299 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6300 if (rc == 0)
6301 host->dev->power.power_state = mesg;
500530f6
TH
6302 return rc;
6303}
6304
6305/**
cca3974e
JG
6306 * ata_host_resume - resume host
6307 * @host: host to resume
500530f6 6308 *
cca3974e 6309 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6310 * function requests EH to perform PM operations and returns.
6311 * Note that all resume operations are performed parallely.
6312 *
6313 * LOCKING:
6314 * Kernel thread context (may sleep).
6315 */
cca3974e 6316void ata_host_resume(struct ata_host *host)
500530f6 6317{
cca3974e
JG
6318 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6319 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6320 host->dev->power.power_state = PMSG_ON;
500530f6 6321}
6ffa01d8 6322#endif
500530f6 6323
c893a3ae
RD
6324/**
6325 * ata_port_start - Set port up for dma.
6326 * @ap: Port to initialize
6327 *
6328 * Called just after data structures for each port are
6329 * initialized. Allocates space for PRD table.
6330 *
6331 * May be used as the port_start() entry in ata_port_operations.
6332 *
6333 * LOCKING:
6334 * Inherited from caller.
6335 */
f0d36efd 6336int ata_port_start(struct ata_port *ap)
1da177e4 6337{
2f1f610b 6338 struct device *dev = ap->dev;
6037d6bb 6339 int rc;
1da177e4 6340
f0d36efd
TH
6341 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6342 GFP_KERNEL);
1da177e4
LT
6343 if (!ap->prd)
6344 return -ENOMEM;
6345
6037d6bb 6346 rc = ata_pad_alloc(ap, dev);
f0d36efd 6347 if (rc)
6037d6bb 6348 return rc;
1da177e4 6349
f0d36efd
TH
6350 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6351 (unsigned long long)ap->prd_dma);
1da177e4
LT
6352 return 0;
6353}
6354
3ef3b43d
TH
6355/**
6356 * ata_dev_init - Initialize an ata_device structure
6357 * @dev: Device structure to initialize
6358 *
6359 * Initialize @dev in preparation for probing.
6360 *
6361 * LOCKING:
6362 * Inherited from caller.
6363 */
6364void ata_dev_init(struct ata_device *dev)
6365{
9af5c9c9
TH
6366 struct ata_link *link = dev->link;
6367 struct ata_port *ap = link->ap;
72fa4b74
TH
6368 unsigned long flags;
6369
5a04bf4b 6370 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6371 link->sata_spd_limit = link->hw_sata_spd_limit;
6372 link->sata_spd = 0;
5a04bf4b 6373
72fa4b74
TH
6374 /* High bits of dev->flags are used to record warm plug
6375 * requests which occur asynchronously. Synchronize using
cca3974e 6376 * host lock.
72fa4b74 6377 */
ba6a1308 6378 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6379 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6380 dev->horkage = 0;
ba6a1308 6381 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6382
72fa4b74
TH
6383 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6384 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6385 dev->pio_mask = UINT_MAX;
6386 dev->mwdma_mask = UINT_MAX;
6387 dev->udma_mask = UINT_MAX;
6388}
6389
4fb37a25
TH
6390/**
6391 * ata_link_init - Initialize an ata_link structure
6392 * @ap: ATA port link is attached to
6393 * @link: Link structure to initialize
8989805d 6394 * @pmp: Port multiplier port number
4fb37a25
TH
6395 *
6396 * Initialize @link.
6397 *
6398 * LOCKING:
6399 * Kernel thread context (may sleep)
6400 */
fb7fd614 6401void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6402{
6403 int i;
6404
6405 /* clear everything except for devices */
6406 memset(link, 0, offsetof(struct ata_link, device[0]));
6407
6408 link->ap = ap;
8989805d 6409 link->pmp = pmp;
4fb37a25
TH
6410 link->active_tag = ATA_TAG_POISON;
6411 link->hw_sata_spd_limit = UINT_MAX;
6412
6413 /* can't use iterator, ap isn't initialized yet */
6414 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6415 struct ata_device *dev = &link->device[i];
6416
6417 dev->link = link;
6418 dev->devno = dev - link->device;
6419 ata_dev_init(dev);
6420 }
6421}
6422
6423/**
6424 * sata_link_init_spd - Initialize link->sata_spd_limit
6425 * @link: Link to configure sata_spd_limit for
6426 *
6427 * Initialize @link->[hw_]sata_spd_limit to the currently
6428 * configured value.
6429 *
6430 * LOCKING:
6431 * Kernel thread context (may sleep).
6432 *
6433 * RETURNS:
6434 * 0 on success, -errno on failure.
6435 */
fb7fd614 6436int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6437{
6438 u32 scontrol, spd;
6439 int rc;
6440
6441 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6442 if (rc)
6443 return rc;
6444
6445 spd = (scontrol >> 4) & 0xf;
6446 if (spd)
6447 link->hw_sata_spd_limit &= (1 << spd) - 1;
6448
6449 link->sata_spd_limit = link->hw_sata_spd_limit;
6450
6451 return 0;
6452}
6453
1da177e4 6454/**
f3187195
TH
6455 * ata_port_alloc - allocate and initialize basic ATA port resources
6456 * @host: ATA host this allocated port belongs to
1da177e4 6457 *
f3187195
TH
6458 * Allocate and initialize basic ATA port resources.
6459 *
6460 * RETURNS:
6461 * Allocate ATA port on success, NULL on failure.
0cba632b 6462 *
1da177e4 6463 * LOCKING:
f3187195 6464 * Inherited from calling layer (may sleep).
1da177e4 6465 */
f3187195 6466struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6467{
f3187195 6468 struct ata_port *ap;
1da177e4 6469
f3187195
TH
6470 DPRINTK("ENTER\n");
6471
6472 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6473 if (!ap)
6474 return NULL;
6475
f4d6d004 6476 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6477 ap->lock = &host->lock;
198e0fed 6478 ap->flags = ATA_FLAG_DISABLED;
f3187195 6479 ap->print_id = -1;
1da177e4 6480 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6481 ap->host = host;
f3187195 6482 ap->dev = host->dev;
1da177e4 6483 ap->last_ctl = 0xFF;
bd5d825c
BP
6484
6485#if defined(ATA_VERBOSE_DEBUG)
6486 /* turn on all debugging levels */
6487 ap->msg_enable = 0x00FF;
6488#elif defined(ATA_DEBUG)
6489 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6490#else
0dd4b21f 6491 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6492#endif
1da177e4 6493
65f27f38
DH
6494 INIT_DELAYED_WORK(&ap->port_task, NULL);
6495 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6496 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6497 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6498 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6499 init_timer_deferrable(&ap->fastdrain_timer);
6500 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6501 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6502
838df628 6503 ap->cbl = ATA_CBL_NONE;
838df628 6504
8989805d 6505 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6506
6507#ifdef ATA_IRQ_TRAP
6508 ap->stats.unhandled_irq = 1;
6509 ap->stats.idle_irq = 1;
6510#endif
1da177e4 6511 return ap;
1da177e4
LT
6512}
6513
f0d36efd
TH
6514static void ata_host_release(struct device *gendev, void *res)
6515{
6516 struct ata_host *host = dev_get_drvdata(gendev);
6517 int i;
6518
6519 for (i = 0; i < host->n_ports; i++) {
6520 struct ata_port *ap = host->ports[i];
6521
ecef7253
TH
6522 if (!ap)
6523 continue;
6524
6525 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6526 ap->ops->port_stop(ap);
f0d36efd
TH
6527 }
6528
ecef7253 6529 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6530 host->ops->host_stop(host);
1aa56cca 6531
1aa506e4
TH
6532 for (i = 0; i < host->n_ports; i++) {
6533 struct ata_port *ap = host->ports[i];
6534
4911487a
TH
6535 if (!ap)
6536 continue;
6537
6538 if (ap->scsi_host)
1aa506e4
TH
6539 scsi_host_put(ap->scsi_host);
6540
633273a3 6541 kfree(ap->pmp_link);
4911487a 6542 kfree(ap);
1aa506e4
TH
6543 host->ports[i] = NULL;
6544 }
6545
1aa56cca 6546 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6547}
6548
f3187195
TH
6549/**
6550 * ata_host_alloc - allocate and init basic ATA host resources
6551 * @dev: generic device this host is associated with
6552 * @max_ports: maximum number of ATA ports associated with this host
6553 *
6554 * Allocate and initialize basic ATA host resources. LLD calls
6555 * this function to allocate a host, initializes it fully and
6556 * attaches it using ata_host_register().
6557 *
6558 * @max_ports ports are allocated and host->n_ports is
6559 * initialized to @max_ports. The caller is allowed to decrease
6560 * host->n_ports before calling ata_host_register(). The unused
6561 * ports will be automatically freed on registration.
6562 *
6563 * RETURNS:
6564 * Allocate ATA host on success, NULL on failure.
6565 *
6566 * LOCKING:
6567 * Inherited from calling layer (may sleep).
6568 */
6569struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6570{
6571 struct ata_host *host;
6572 size_t sz;
6573 int i;
6574
6575 DPRINTK("ENTER\n");
6576
6577 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6578 return NULL;
6579
6580 /* alloc a container for our list of ATA ports (buses) */
6581 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6582 /* alloc a container for our list of ATA ports (buses) */
6583 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6584 if (!host)
6585 goto err_out;
6586
6587 devres_add(dev, host);
6588 dev_set_drvdata(dev, host);
6589
6590 spin_lock_init(&host->lock);
6591 host->dev = dev;
6592 host->n_ports = max_ports;
6593
6594 /* allocate ports bound to this host */
6595 for (i = 0; i < max_ports; i++) {
6596 struct ata_port *ap;
6597
6598 ap = ata_port_alloc(host);
6599 if (!ap)
6600 goto err_out;
6601
6602 ap->port_no = i;
6603 host->ports[i] = ap;
6604 }
6605
6606 devres_remove_group(dev, NULL);
6607 return host;
6608
6609 err_out:
6610 devres_release_group(dev, NULL);
6611 return NULL;
6612}
6613
f5cda257
TH
6614/**
6615 * ata_host_alloc_pinfo - alloc host and init with port_info array
6616 * @dev: generic device this host is associated with
6617 * @ppi: array of ATA port_info to initialize host with
6618 * @n_ports: number of ATA ports attached to this host
6619 *
6620 * Allocate ATA host and initialize with info from @ppi. If NULL
6621 * terminated, @ppi may contain fewer entries than @n_ports. The
6622 * last entry will be used for the remaining ports.
6623 *
6624 * RETURNS:
6625 * Allocate ATA host on success, NULL on failure.
6626 *
6627 * LOCKING:
6628 * Inherited from calling layer (may sleep).
6629 */
6630struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6631 const struct ata_port_info * const * ppi,
6632 int n_ports)
6633{
6634 const struct ata_port_info *pi;
6635 struct ata_host *host;
6636 int i, j;
6637
6638 host = ata_host_alloc(dev, n_ports);
6639 if (!host)
6640 return NULL;
6641
6642 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6643 struct ata_port *ap = host->ports[i];
6644
6645 if (ppi[j])
6646 pi = ppi[j++];
6647
6648 ap->pio_mask = pi->pio_mask;
6649 ap->mwdma_mask = pi->mwdma_mask;
6650 ap->udma_mask = pi->udma_mask;
6651 ap->flags |= pi->flags;
0c88758b 6652 ap->link.flags |= pi->link_flags;
f5cda257
TH
6653 ap->ops = pi->port_ops;
6654
6655 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6656 host->ops = pi->port_ops;
6657 if (!host->private_data && pi->private_data)
6658 host->private_data = pi->private_data;
6659 }
6660
6661 return host;
6662}
6663
ecef7253
TH
6664/**
6665 * ata_host_start - start and freeze ports of an ATA host
6666 * @host: ATA host to start ports for
6667 *
6668 * Start and then freeze ports of @host. Started status is
6669 * recorded in host->flags, so this function can be called
6670 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6671 * once. If host->ops isn't initialized yet, its set to the
6672 * first non-dummy port ops.
ecef7253
TH
6673 *
6674 * LOCKING:
6675 * Inherited from calling layer (may sleep).
6676 *
6677 * RETURNS:
6678 * 0 if all ports are started successfully, -errno otherwise.
6679 */
6680int ata_host_start(struct ata_host *host)
6681{
6682 int i, rc;
6683
6684 if (host->flags & ATA_HOST_STARTED)
6685 return 0;
6686
6687 for (i = 0; i < host->n_ports; i++) {
6688 struct ata_port *ap = host->ports[i];
6689
f3187195
TH
6690 if (!host->ops && !ata_port_is_dummy(ap))
6691 host->ops = ap->ops;
6692
ecef7253
TH
6693 if (ap->ops->port_start) {
6694 rc = ap->ops->port_start(ap);
6695 if (rc) {
6696 ata_port_printk(ap, KERN_ERR, "failed to "
6697 "start port (errno=%d)\n", rc);
6698 goto err_out;
6699 }
6700 }
6701
6702 ata_eh_freeze_port(ap);
6703 }
6704
6705 host->flags |= ATA_HOST_STARTED;
6706 return 0;
6707
6708 err_out:
6709 while (--i >= 0) {
6710 struct ata_port *ap = host->ports[i];
6711
6712 if (ap->ops->port_stop)
6713 ap->ops->port_stop(ap);
6714 }
6715 return rc;
6716}
6717
b03732f0 6718/**
cca3974e
JG
6719 * ata_sas_host_init - Initialize a host struct
6720 * @host: host to initialize
6721 * @dev: device host is attached to
6722 * @flags: host flags
6723 * @ops: port_ops
b03732f0
BK
6724 *
6725 * LOCKING:
6726 * PCI/etc. bus probe sem.
6727 *
6728 */
f3187195 6729/* KILLME - the only user left is ipr */
cca3974e
JG
6730void ata_host_init(struct ata_host *host, struct device *dev,
6731 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6732{
cca3974e
JG
6733 spin_lock_init(&host->lock);
6734 host->dev = dev;
6735 host->flags = flags;
6736 host->ops = ops;
b03732f0
BK
6737}
6738
f3187195
TH
6739/**
6740 * ata_host_register - register initialized ATA host
6741 * @host: ATA host to register
6742 * @sht: template for SCSI host
6743 *
6744 * Register initialized ATA host. @host is allocated using
6745 * ata_host_alloc() and fully initialized by LLD. This function
6746 * starts ports, registers @host with ATA and SCSI layers and
6747 * probe registered devices.
6748 *
6749 * LOCKING:
6750 * Inherited from calling layer (may sleep).
6751 *
6752 * RETURNS:
6753 * 0 on success, -errno otherwise.
6754 */
6755int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6756{
6757 int i, rc;
6758
6759 /* host must have been started */
6760 if (!(host->flags & ATA_HOST_STARTED)) {
6761 dev_printk(KERN_ERR, host->dev,
6762 "BUG: trying to register unstarted host\n");
6763 WARN_ON(1);
6764 return -EINVAL;
6765 }
6766
6767 /* Blow away unused ports. This happens when LLD can't
6768 * determine the exact number of ports to allocate at
6769 * allocation time.
6770 */
6771 for (i = host->n_ports; host->ports[i]; i++)
6772 kfree(host->ports[i]);
6773
6774 /* give ports names and add SCSI hosts */
6775 for (i = 0; i < host->n_ports; i++)
6776 host->ports[i]->print_id = ata_print_id++;
6777
6778 rc = ata_scsi_add_hosts(host, sht);
6779 if (rc)
6780 return rc;
6781
fafbae87
TH
6782 /* associate with ACPI nodes */
6783 ata_acpi_associate(host);
6784
f3187195
TH
6785 /* set cable, sata_spd_limit and report */
6786 for (i = 0; i < host->n_ports; i++) {
6787 struct ata_port *ap = host->ports[i];
f3187195
TH
6788 unsigned long xfer_mask;
6789
6790 /* set SATA cable type if still unset */
6791 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6792 ap->cbl = ATA_CBL_SATA;
6793
6794 /* init sata_spd_limit to the current value */
4fb37a25 6795 sata_link_init_spd(&ap->link);
f3187195 6796
cbcdd875 6797 /* print per-port info to dmesg */
f3187195
TH
6798 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6799 ap->udma_mask);
6800
abf6e8ed 6801 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6802 ata_port_printk(ap, KERN_INFO,
6803 "%cATA max %s %s\n",
a16abc0b 6804 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6805 ata_mode_string(xfer_mask),
cbcdd875 6806 ap->link.eh_info.desc);
abf6e8ed
TH
6807 ata_ehi_clear_desc(&ap->link.eh_info);
6808 } else
f3187195
TH
6809 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6810 }
6811
6812 /* perform each probe synchronously */
6813 DPRINTK("probe begin\n");
6814 for (i = 0; i < host->n_ports; i++) {
6815 struct ata_port *ap = host->ports[i];
6816 int rc;
6817
6818 /* probe */
6819 if (ap->ops->error_handler) {
9af5c9c9 6820 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6821 unsigned long flags;
6822
6823 ata_port_probe(ap);
6824
6825 /* kick EH for boot probing */
6826 spin_lock_irqsave(ap->lock, flags);
6827
f58229f8
TH
6828 ehi->probe_mask =
6829 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6830 ehi->action |= ATA_EH_SOFTRESET;
6831 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6832
f4d6d004 6833 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6834 ap->pflags |= ATA_PFLAG_LOADING;
6835 ata_port_schedule_eh(ap);
6836
6837 spin_unlock_irqrestore(ap->lock, flags);
6838
6839 /* wait for EH to finish */
6840 ata_port_wait_eh(ap);
6841 } else {
6842 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6843 rc = ata_bus_probe(ap);
6844 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6845
6846 if (rc) {
6847 /* FIXME: do something useful here?
6848 * Current libata behavior will
6849 * tear down everything when
6850 * the module is removed
6851 * or the h/w is unplugged.
6852 */
6853 }
6854 }
6855 }
6856
6857 /* probes are done, now scan each port's disk(s) */
6858 DPRINTK("host probe begin\n");
6859 for (i = 0; i < host->n_ports; i++) {
6860 struct ata_port *ap = host->ports[i];
6861
1ae46317 6862 ata_scsi_scan_host(ap, 1);
f3187195
TH
6863 }
6864
6865 return 0;
6866}
6867
f5cda257
TH
6868/**
6869 * ata_host_activate - start host, request IRQ and register it
6870 * @host: target ATA host
6871 * @irq: IRQ to request
6872 * @irq_handler: irq_handler used when requesting IRQ
6873 * @irq_flags: irq_flags used when requesting IRQ
6874 * @sht: scsi_host_template to use when registering the host
6875 *
6876 * After allocating an ATA host and initializing it, most libata
6877 * LLDs perform three steps to activate the host - start host,
6878 * request IRQ and register it. This helper takes necessasry
6879 * arguments and performs the three steps in one go.
6880 *
6881 * LOCKING:
6882 * Inherited from calling layer (may sleep).
6883 *
6884 * RETURNS:
6885 * 0 on success, -errno otherwise.
6886 */
6887int ata_host_activate(struct ata_host *host, int irq,
6888 irq_handler_t irq_handler, unsigned long irq_flags,
6889 struct scsi_host_template *sht)
6890{
cbcdd875 6891 int i, rc;
f5cda257
TH
6892
6893 rc = ata_host_start(host);
6894 if (rc)
6895 return rc;
6896
6897 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6898 dev_driver_string(host->dev), host);
6899 if (rc)
6900 return rc;
6901
cbcdd875
TH
6902 for (i = 0; i < host->n_ports; i++)
6903 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6904
f5cda257
TH
6905 rc = ata_host_register(host, sht);
6906 /* if failed, just free the IRQ and leave ports alone */
6907 if (rc)
6908 devm_free_irq(host->dev, irq, host);
6909
6910 return rc;
6911}
6912
720ba126
TH
6913/**
6914 * ata_port_detach - Detach ATA port in prepration of device removal
6915 * @ap: ATA port to be detached
6916 *
6917 * Detach all ATA devices and the associated SCSI devices of @ap;
6918 * then, remove the associated SCSI host. @ap is guaranteed to
6919 * be quiescent on return from this function.
6920 *
6921 * LOCKING:
6922 * Kernel thread context (may sleep).
6923 */
741b7763 6924static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6925{
6926 unsigned long flags;
41bda9c9 6927 struct ata_link *link;
f58229f8 6928 struct ata_device *dev;
720ba126
TH
6929
6930 if (!ap->ops->error_handler)
c3cf30a9 6931 goto skip_eh;
720ba126
TH
6932
6933 /* tell EH we're leaving & flush EH */
ba6a1308 6934 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6935 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6936 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6937
6938 ata_port_wait_eh(ap);
6939
6940 /* EH is now guaranteed to see UNLOADING, so no new device
6941 * will be attached. Disable all existing devices.
6942 */
ba6a1308 6943 spin_lock_irqsave(ap->lock, flags);
720ba126 6944
41bda9c9
TH
6945 ata_port_for_each_link(link, ap) {
6946 ata_link_for_each_dev(dev, link)
6947 ata_dev_disable(dev);
6948 }
720ba126 6949
ba6a1308 6950 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6951
6952 /* Final freeze & EH. All in-flight commands are aborted. EH
6953 * will be skipped and retrials will be terminated with bad
6954 * target.
6955 */
ba6a1308 6956 spin_lock_irqsave(ap->lock, flags);
720ba126 6957 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6958 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6959
6960 ata_port_wait_eh(ap);
45a66c1c 6961 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6962
c3cf30a9 6963 skip_eh:
720ba126 6964 /* remove the associated SCSI host */
cca3974e 6965 scsi_remove_host(ap->scsi_host);
720ba126
TH
6966}
6967
0529c159
TH
6968/**
6969 * ata_host_detach - Detach all ports of an ATA host
6970 * @host: Host to detach
6971 *
6972 * Detach all ports of @host.
6973 *
6974 * LOCKING:
6975 * Kernel thread context (may sleep).
6976 */
6977void ata_host_detach(struct ata_host *host)
6978{
6979 int i;
6980
6981 for (i = 0; i < host->n_ports; i++)
6982 ata_port_detach(host->ports[i]);
6983}
6984
1da177e4
LT
6985/**
6986 * ata_std_ports - initialize ioaddr with standard port offsets.
6987 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6988 *
6989 * Utility function which initializes data_addr, error_addr,
6990 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6991 * device_addr, status_addr, and command_addr to standard offsets
6992 * relative to cmd_addr.
6993 *
6994 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6995 */
0baab86b 6996
1da177e4
LT
6997void ata_std_ports(struct ata_ioports *ioaddr)
6998{
6999 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7000 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7001 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7002 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7003 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7004 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7005 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7006 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7007 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7008 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7009}
7010
0baab86b 7011
374b1873
JG
7012#ifdef CONFIG_PCI
7013
1da177e4
LT
7014/**
7015 * ata_pci_remove_one - PCI layer callback for device removal
7016 * @pdev: PCI device that was removed
7017 *
b878ca5d
TH
7018 * PCI layer indicates to libata via this hook that hot-unplug or
7019 * module unload event has occurred. Detach all ports. Resource
7020 * release is handled via devres.
1da177e4
LT
7021 *
7022 * LOCKING:
7023 * Inherited from PCI layer (may sleep).
7024 */
f0d36efd 7025void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7026{
2855568b 7027 struct device *dev = &pdev->dev;
cca3974e 7028 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7029
b878ca5d 7030 ata_host_detach(host);
1da177e4
LT
7031}
7032
7033/* move to PCI subsystem */
057ace5e 7034int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7035{
7036 unsigned long tmp = 0;
7037
7038 switch (bits->width) {
7039 case 1: {
7040 u8 tmp8 = 0;
7041 pci_read_config_byte(pdev, bits->reg, &tmp8);
7042 tmp = tmp8;
7043 break;
7044 }
7045 case 2: {
7046 u16 tmp16 = 0;
7047 pci_read_config_word(pdev, bits->reg, &tmp16);
7048 tmp = tmp16;
7049 break;
7050 }
7051 case 4: {
7052 u32 tmp32 = 0;
7053 pci_read_config_dword(pdev, bits->reg, &tmp32);
7054 tmp = tmp32;
7055 break;
7056 }
7057
7058 default:
7059 return -EINVAL;
7060 }
7061
7062 tmp &= bits->mask;
7063
7064 return (tmp == bits->val) ? 1 : 0;
7065}
9b847548 7066
6ffa01d8 7067#ifdef CONFIG_PM
3c5100c1 7068void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7069{
7070 pci_save_state(pdev);
4c90d971 7071 pci_disable_device(pdev);
500530f6 7072
4c90d971 7073 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7074 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7075}
7076
553c4aa6 7077int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7078{
553c4aa6
TH
7079 int rc;
7080
9b847548
JA
7081 pci_set_power_state(pdev, PCI_D0);
7082 pci_restore_state(pdev);
553c4aa6 7083
b878ca5d 7084 rc = pcim_enable_device(pdev);
553c4aa6
TH
7085 if (rc) {
7086 dev_printk(KERN_ERR, &pdev->dev,
7087 "failed to enable device after resume (%d)\n", rc);
7088 return rc;
7089 }
7090
9b847548 7091 pci_set_master(pdev);
553c4aa6 7092 return 0;
500530f6
TH
7093}
7094
3c5100c1 7095int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7096{
cca3974e 7097 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7098 int rc = 0;
7099
cca3974e 7100 rc = ata_host_suspend(host, mesg);
500530f6
TH
7101 if (rc)
7102 return rc;
7103
3c5100c1 7104 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7105
7106 return 0;
7107}
7108
7109int ata_pci_device_resume(struct pci_dev *pdev)
7110{
cca3974e 7111 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7112 int rc;
500530f6 7113
553c4aa6
TH
7114 rc = ata_pci_device_do_resume(pdev);
7115 if (rc == 0)
7116 ata_host_resume(host);
7117 return rc;
9b847548 7118}
6ffa01d8
TH
7119#endif /* CONFIG_PM */
7120
1da177e4
LT
7121#endif /* CONFIG_PCI */
7122
7123
1da177e4
LT
7124static int __init ata_init(void)
7125{
a8601e5f 7126 ata_probe_timeout *= HZ;
1da177e4
LT
7127 ata_wq = create_workqueue("ata");
7128 if (!ata_wq)
7129 return -ENOMEM;
7130
453b07ac
TH
7131 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7132 if (!ata_aux_wq) {
7133 destroy_workqueue(ata_wq);
7134 return -ENOMEM;
7135 }
7136
1da177e4
LT
7137 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7138 return 0;
7139}
7140
7141static void __exit ata_exit(void)
7142{
7143 destroy_workqueue(ata_wq);
453b07ac 7144 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7145}
7146
a4625085 7147subsys_initcall(ata_init);
1da177e4
LT
7148module_exit(ata_exit);
7149
67846b30 7150static unsigned long ratelimit_time;
34af946a 7151static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7152
7153int ata_ratelimit(void)
7154{
7155 int rc;
7156 unsigned long flags;
7157
7158 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7159
7160 if (time_after(jiffies, ratelimit_time)) {
7161 rc = 1;
7162 ratelimit_time = jiffies + (HZ/5);
7163 } else
7164 rc = 0;
7165
7166 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7167
7168 return rc;
7169}
7170
c22daff4
TH
7171/**
7172 * ata_wait_register - wait until register value changes
7173 * @reg: IO-mapped register
7174 * @mask: Mask to apply to read register value
7175 * @val: Wait condition
7176 * @interval_msec: polling interval in milliseconds
7177 * @timeout_msec: timeout in milliseconds
7178 *
7179 * Waiting for some bits of register to change is a common
7180 * operation for ATA controllers. This function reads 32bit LE
7181 * IO-mapped register @reg and tests for the following condition.
7182 *
7183 * (*@reg & mask) != val
7184 *
7185 * If the condition is met, it returns; otherwise, the process is
7186 * repeated after @interval_msec until timeout.
7187 *
7188 * LOCKING:
7189 * Kernel thread context (may sleep)
7190 *
7191 * RETURNS:
7192 * The final register value.
7193 */
7194u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7195 unsigned long interval_msec,
7196 unsigned long timeout_msec)
7197{
7198 unsigned long timeout;
7199 u32 tmp;
7200
7201 tmp = ioread32(reg);
7202
7203 /* Calculate timeout _after_ the first read to make sure
7204 * preceding writes reach the controller before starting to
7205 * eat away the timeout.
7206 */
7207 timeout = jiffies + (timeout_msec * HZ) / 1000;
7208
7209 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7210 msleep(interval_msec);
7211 tmp = ioread32(reg);
7212 }
7213
7214 return tmp;
7215}
7216
dd5b06c4
TH
7217/*
7218 * Dummy port_ops
7219 */
7220static void ata_dummy_noret(struct ata_port *ap) { }
7221static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7222static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7223
7224static u8 ata_dummy_check_status(struct ata_port *ap)
7225{
7226 return ATA_DRDY;
7227}
7228
7229static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7230{
7231 return AC_ERR_SYSTEM;
7232}
7233
7234const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7235 .check_status = ata_dummy_check_status,
7236 .check_altstatus = ata_dummy_check_status,
7237 .dev_select = ata_noop_dev_select,
7238 .qc_prep = ata_noop_qc_prep,
7239 .qc_issue = ata_dummy_qc_issue,
7240 .freeze = ata_dummy_noret,
7241 .thaw = ata_dummy_noret,
7242 .error_handler = ata_dummy_noret,
7243 .post_internal_cmd = ata_dummy_qc_noret,
7244 .irq_clear = ata_dummy_noret,
7245 .port_start = ata_dummy_ret0,
7246 .port_stop = ata_dummy_noret,
7247};
7248
21b0ad4f
TH
7249const struct ata_port_info ata_dummy_port_info = {
7250 .port_ops = &ata_dummy_port_ops,
7251};
7252
1da177e4
LT
7253/*
7254 * libata is essentially a library of internal helper functions for
7255 * low-level ATA host controller drivers. As such, the API/ABI is
7256 * likely to change as new drivers are added and updated.
7257 * Do not depend on ABI/API stability.
7258 */
7259
e9c83914
TH
7260EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7261EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7262EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7263EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7264EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7265EXPORT_SYMBOL_GPL(ata_std_bios_param);
7266EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7267EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7268EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7269EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7270EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7271EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7272EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7273EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7274EXPORT_SYMBOL_GPL(ata_sg_init);
7275EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7276EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7277EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7278EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7279EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7280EXPORT_SYMBOL_GPL(ata_tf_load);
7281EXPORT_SYMBOL_GPL(ata_tf_read);
7282EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7283EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7284EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7285EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7286EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7287EXPORT_SYMBOL_GPL(ata_check_status);
7288EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7289EXPORT_SYMBOL_GPL(ata_exec_command);
7290EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7291EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7292EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7293EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7294EXPORT_SYMBOL_GPL(ata_data_xfer);
7295EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7296EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7297EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7298EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7299EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7300EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7301EXPORT_SYMBOL_GPL(ata_bmdma_start);
7302EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7303EXPORT_SYMBOL_GPL(ata_bmdma_status);
7304EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7305EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7306EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7307EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7308EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7309EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7310EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7311EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7312EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7313EXPORT_SYMBOL_GPL(sata_link_debounce);
7314EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7315EXPORT_SYMBOL_GPL(sata_phy_reset);
7316EXPORT_SYMBOL_GPL(__sata_phy_reset);
7317EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7318EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7319EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7320EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7321EXPORT_SYMBOL_GPL(sata_std_hardreset);
7322EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7323EXPORT_SYMBOL_GPL(ata_dev_classify);
7324EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7325EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7326EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7327EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7328EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7329EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7330EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7331EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7332EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7333EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7334EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7335EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7336EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7337EXPORT_SYMBOL_GPL(sata_scr_valid);
7338EXPORT_SYMBOL_GPL(sata_scr_read);
7339EXPORT_SYMBOL_GPL(sata_scr_write);
7340EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7341EXPORT_SYMBOL_GPL(ata_link_online);
7342EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7343#ifdef CONFIG_PM
cca3974e
JG
7344EXPORT_SYMBOL_GPL(ata_host_suspend);
7345EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7346#endif /* CONFIG_PM */
6a62a04d
TH
7347EXPORT_SYMBOL_GPL(ata_id_string);
7348EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7349EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7350EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7351
1bc4ccff 7352EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7353EXPORT_SYMBOL_GPL(ata_timing_compute);
7354EXPORT_SYMBOL_GPL(ata_timing_merge);
7355
1da177e4
LT
7356#ifdef CONFIG_PCI
7357EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7358EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7359EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7360EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7361EXPORT_SYMBOL_GPL(ata_pci_init_one);
7362EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7363#ifdef CONFIG_PM
500530f6
TH
7364EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7365EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7366EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7367EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7368#endif /* CONFIG_PM */
67951ade
AC
7369EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7370EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7371#endif /* CONFIG_PCI */
9b847548 7372
31f88384 7373EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7374EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7375EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7376EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7377EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7378
b64bbc39
TH
7379EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7380EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7381EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7382EXPORT_SYMBOL_GPL(ata_port_desc);
7383#ifdef CONFIG_PCI
7384EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7385#endif /* CONFIG_PCI */
ece1d636 7386EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7387EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7388EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7389EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7390EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7391EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7392EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7393EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7394EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7395EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7396EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7397EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7398EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7399
7400EXPORT_SYMBOL_GPL(ata_cable_40wire);
7401EXPORT_SYMBOL_GPL(ata_cable_80wire);
7402EXPORT_SYMBOL_GPL(ata_cable_unknown);
7403EXPORT_SYMBOL_GPL(ata_cable_sata);