]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/ata/libata-core.c
libata: move ata_altstatus() to pio data xfer functions
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
9af5c9c9 238 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0 606 if (ata_dev_enabled(dev)) {
9af5c9c9 607 if (ata_msg_drv(dev->link->ap))
09d7f9b0 608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
9af5c9c9 738 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
AC
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
9af5c9c9 1153 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
9af5c9c9
TH
1349 struct ata_link *link = dev->link;
1350 struct ata_port *ap = link->ap;
a2a7a662
TH
1351 u8 command = tf->command;
1352 struct ata_queued_cmd *qc;
2ab7db1f 1353 unsigned int tag, preempted_tag;
dedaf2b0 1354 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1355 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1356 unsigned long flags;
77853bf2 1357 unsigned int err_mask;
d95a717f 1358 int rc;
a2a7a662 1359
ba6a1308 1360 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1361
e3180499 1362 /* no internal command while frozen */
b51e9e5d 1363 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1364 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1365 return AC_ERR_SYSTEM;
1366 }
1367
2ab7db1f 1368 /* initialize internal qc */
a2a7a662 1369
2ab7db1f
TH
1370 /* XXX: Tag 0 is used for drivers with legacy EH as some
1371 * drivers choke if any other tag is given. This breaks
1372 * ata_tag_internal() test for those drivers. Don't use new
1373 * EH stuff without converting to it.
1374 */
1375 if (ap->ops->error_handler)
1376 tag = ATA_TAG_INTERNAL;
1377 else
1378 tag = 0;
1379
6cec4a39 1380 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1381 BUG();
f69499f4 1382 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1383
1384 qc->tag = tag;
1385 qc->scsicmd = NULL;
1386 qc->ap = ap;
1387 qc->dev = dev;
1388 ata_qc_reinit(qc);
1389
9af5c9c9
TH
1390 preempted_tag = link->active_tag;
1391 preempted_sactive = link->sactive;
dedaf2b0 1392 preempted_qc_active = ap->qc_active;
9af5c9c9
TH
1393 link->active_tag = ATA_TAG_POISON;
1394 link->sactive = 0;
dedaf2b0 1395 ap->qc_active = 0;
2ab7db1f
TH
1396
1397 /* prepare & issue qc */
a2a7a662 1398 qc->tf = *tf;
d69cf37d
TH
1399 if (cdb)
1400 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1401 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1402 qc->dma_dir = dma_dir;
1403 if (dma_dir != DMA_NONE) {
2432697b
TH
1404 unsigned int i, buflen = 0;
1405
1406 for (i = 0; i < n_elem; i++)
1407 buflen += sg[i].length;
1408
1409 ata_sg_init(qc, sg, n_elem);
49c80429 1410 qc->nbytes = buflen;
a2a7a662
TH
1411 }
1412
77853bf2 1413 qc->private_data = &wait;
a2a7a662
TH
1414 qc->complete_fn = ata_qc_complete_internal;
1415
8e0e694a 1416 ata_qc_issue(qc);
a2a7a662 1417
ba6a1308 1418 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1419
a8601e5f 1420 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1421
1422 ata_port_flush_task(ap);
41ade50c 1423
d95a717f 1424 if (!rc) {
ba6a1308 1425 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1426
1427 /* We're racing with irq here. If we lose, the
1428 * following test prevents us from completing the qc
d95a717f
TH
1429 * twice. If we win, the port is frozen and will be
1430 * cleaned up by ->post_internal_cmd().
a2a7a662 1431 */
77853bf2 1432 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1433 qc->err_mask |= AC_ERR_TIMEOUT;
1434
1435 if (ap->ops->error_handler)
1436 ata_port_freeze(ap);
1437 else
1438 ata_qc_complete(qc);
f15a1daf 1439
0dd4b21f
BP
1440 if (ata_msg_warn(ap))
1441 ata_dev_printk(dev, KERN_WARNING,
88574551 1442 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1443 }
1444
ba6a1308 1445 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1446 }
1447
d95a717f
TH
1448 /* do post_internal_cmd */
1449 if (ap->ops->post_internal_cmd)
1450 ap->ops->post_internal_cmd(qc);
1451
a51d644a
TH
1452 /* perform minimal error analysis */
1453 if (qc->flags & ATA_QCFLAG_FAILED) {
1454 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1455 qc->err_mask |= AC_ERR_DEV;
1456
1457 if (!qc->err_mask)
1458 qc->err_mask |= AC_ERR_OTHER;
1459
1460 if (qc->err_mask & ~AC_ERR_OTHER)
1461 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1462 }
1463
15869303 1464 /* finish up */
ba6a1308 1465 spin_lock_irqsave(ap->lock, flags);
15869303 1466
e61e0672 1467 *tf = qc->result_tf;
77853bf2
TH
1468 err_mask = qc->err_mask;
1469
1470 ata_qc_free(qc);
9af5c9c9
TH
1471 link->active_tag = preempted_tag;
1472 link->sactive = preempted_sactive;
dedaf2b0 1473 ap->qc_active = preempted_qc_active;
77853bf2 1474
1f7dd3e9
TH
1475 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1476 * Until those drivers are fixed, we detect the condition
1477 * here, fail the command with AC_ERR_SYSTEM and reenable the
1478 * port.
1479 *
1480 * Note that this doesn't change any behavior as internal
1481 * command failure results in disabling the device in the
1482 * higher layer for LLDDs without new reset/EH callbacks.
1483 *
1484 * Kill the following code as soon as those drivers are fixed.
1485 */
198e0fed 1486 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1487 err_mask |= AC_ERR_SYSTEM;
1488 ata_port_probe(ap);
1489 }
1490
ba6a1308 1491 spin_unlock_irqrestore(ap->lock, flags);
15869303 1492
77853bf2 1493 return err_mask;
a2a7a662
TH
1494}
1495
2432697b 1496/**
33480a0e 1497 * ata_exec_internal - execute libata internal command
2432697b
TH
1498 * @dev: Device to which the command is sent
1499 * @tf: Taskfile registers for the command and the result
1500 * @cdb: CDB for packet command
1501 * @dma_dir: Data tranfer direction of the command
1502 * @buf: Data buffer of the command
1503 * @buflen: Length of data buffer
1504 *
1505 * Wrapper around ata_exec_internal_sg() which takes simple
1506 * buffer instead of sg list.
1507 *
1508 * LOCKING:
1509 * None. Should be called with kernel context, might sleep.
1510 *
1511 * RETURNS:
1512 * Zero on success, AC_ERR_* mask on failure
1513 */
1514unsigned ata_exec_internal(struct ata_device *dev,
1515 struct ata_taskfile *tf, const u8 *cdb,
1516 int dma_dir, void *buf, unsigned int buflen)
1517{
33480a0e
TH
1518 struct scatterlist *psg = NULL, sg;
1519 unsigned int n_elem = 0;
2432697b 1520
33480a0e
TH
1521 if (dma_dir != DMA_NONE) {
1522 WARN_ON(!buf);
1523 sg_init_one(&sg, buf, buflen);
1524 psg = &sg;
1525 n_elem++;
1526 }
2432697b 1527
33480a0e 1528 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1529}
1530
977e6b9f
TH
1531/**
1532 * ata_do_simple_cmd - execute simple internal command
1533 * @dev: Device to which the command is sent
1534 * @cmd: Opcode to execute
1535 *
1536 * Execute a 'simple' command, that only consists of the opcode
1537 * 'cmd' itself, without filling any other registers
1538 *
1539 * LOCKING:
1540 * Kernel thread context (may sleep).
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
e58eb583 1544 */
77b08fb5 1545unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1546{
1547 struct ata_taskfile tf;
e58eb583
TH
1548
1549 ata_tf_init(dev, &tf);
1550
1551 tf.command = cmd;
1552 tf.flags |= ATA_TFLAG_DEVICE;
1553 tf.protocol = ATA_PROT_NODATA;
1554
977e6b9f 1555 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1556}
1557
1bc4ccff
AC
1558/**
1559 * ata_pio_need_iordy - check if iordy needed
1560 * @adev: ATA device
1561 *
1562 * Check if the current speed of the device requires IORDY. Used
1563 * by various controllers for chip configuration.
1564 */
a617c09f 1565
1bc4ccff
AC
1566unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567{
432729f0
AC
1568 /* Controller doesn't support IORDY. Probably a pointless check
1569 as the caller should know this */
9af5c9c9 1570 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1571 return 0;
432729f0
AC
1572 /* PIO3 and higher it is mandatory */
1573 if (adev->pio_mode > XFER_PIO_2)
1574 return 1;
1575 /* We turn it on when possible */
1576 if (ata_id_has_iordy(adev->id))
1bc4ccff 1577 return 1;
432729f0
AC
1578 return 0;
1579}
2e9edbf8 1580
432729f0
AC
1581/**
1582 * ata_pio_mask_no_iordy - Return the non IORDY mask
1583 * @adev: ATA device
1584 *
1585 * Compute the highest mode possible if we are not using iordy. Return
1586 * -1 if no iordy mode is available.
1587 */
a617c09f 1588
432729f0
AC
1589static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590{
1bc4ccff 1591 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1592 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1593 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1594 /* Is the speed faster than the drive allows non IORDY ? */
1595 if (pio) {
1596 /* This is cycle times not frequency - watch the logic! */
1597 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1598 return 3 << ATA_SHIFT_PIO;
1599 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1600 }
1601 }
432729f0 1602 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1603}
1604
1da177e4 1605/**
49016aca 1606 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1607 * @dev: target device
1608 * @p_class: pointer to class of the target device (may be changed)
bff04647 1609 * @flags: ATA_READID_* flags
fe635c7e 1610 * @id: buffer to read IDENTIFY data into
1da177e4 1611 *
49016aca
TH
1612 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1613 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1614 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1615 * for pre-ATA4 drives.
1da177e4
LT
1616 *
1617 * LOCKING:
49016aca
TH
1618 * Kernel thread context (may sleep)
1619 *
1620 * RETURNS:
1621 * 0 on success, -errno otherwise.
1da177e4 1622 */
a9beec95 1623int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1624 unsigned int flags, u16 *id)
1da177e4 1625{
9af5c9c9 1626 struct ata_port *ap = dev->link->ap;
49016aca 1627 unsigned int class = *p_class;
a0123703 1628 struct ata_taskfile tf;
49016aca
TH
1629 unsigned int err_mask = 0;
1630 const char *reason;
54936f8b 1631 int may_fallback = 1, tried_spinup = 0;
49016aca 1632 int rc;
1da177e4 1633
0dd4b21f 1634 if (ata_msg_ctl(ap))
44877b4e 1635 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1636
49016aca 1637 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1638 retry:
3373efd8 1639 ata_tf_init(dev, &tf);
a0123703 1640
49016aca
TH
1641 switch (class) {
1642 case ATA_DEV_ATA:
a0123703 1643 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1644 break;
1645 case ATA_DEV_ATAPI:
a0123703 1646 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1647 break;
1648 default:
1649 rc = -ENODEV;
1650 reason = "unsupported class";
1651 goto err_out;
1da177e4
LT
1652 }
1653
a0123703 1654 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1655
1656 /* Some devices choke if TF registers contain garbage. Make
1657 * sure those are properly initialized.
1658 */
1659 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660
1661 /* Device presence detection is unreliable on some
1662 * controllers. Always poll IDENTIFY if available.
1663 */
1664 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1665
3373efd8 1666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1667 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1668 if (err_mask) {
800b3996 1669 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1670 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1671 ap->print_id, dev->devno);
55a8e2c8
TH
1672 return -ENOENT;
1673 }
1674
54936f8b
TH
1675 /* Device or controller might have reported the wrong
1676 * device class. Give a shot at the other IDENTIFY if
1677 * the current one is aborted by the device.
1678 */
1679 if (may_fallback &&
1680 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1681 may_fallback = 0;
1682
1683 if (class == ATA_DEV_ATA)
1684 class = ATA_DEV_ATAPI;
1685 else
1686 class = ATA_DEV_ATA;
1687 goto retry;
1688 }
1689
49016aca
TH
1690 rc = -EIO;
1691 reason = "I/O error";
1da177e4
LT
1692 goto err_out;
1693 }
1694
54936f8b
TH
1695 /* Falling back doesn't make sense if ID data was read
1696 * successfully at least once.
1697 */
1698 may_fallback = 0;
1699
49016aca 1700 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1701
49016aca 1702 /* sanity check */
a4f5749b 1703 rc = -EINVAL;
6070068b 1704 reason = "device reports invalid type";
a4f5749b
TH
1705
1706 if (class == ATA_DEV_ATA) {
1707 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1708 goto err_out;
1709 } else {
1710 if (ata_id_is_ata(id))
1711 goto err_out;
49016aca
TH
1712 }
1713
169439c2
ML
1714 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1715 tried_spinup = 1;
1716 /*
1717 * Drive powered-up in standby mode, and requires a specific
1718 * SET_FEATURES spin-up subcommand before it will accept
1719 * anything other than the original IDENTIFY command.
1720 */
1721 ata_tf_init(dev, &tf);
1722 tf.command = ATA_CMD_SET_FEATURES;
1723 tf.feature = SETFEATURES_SPINUP;
1724 tf.protocol = ATA_PROT_NODATA;
1725 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1727 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1728 rc = -EIO;
1729 reason = "SPINUP failed";
1730 goto err_out;
1731 }
1732 /*
1733 * If the drive initially returned incomplete IDENTIFY info,
1734 * we now must reissue the IDENTIFY command.
1735 */
1736 if (id[2] == 0x37c8)
1737 goto retry;
1738 }
1739
bff04647 1740 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1741 /*
1742 * The exact sequence expected by certain pre-ATA4 drives is:
1743 * SRST RESET
1744 * IDENTIFY
1745 * INITIALIZE DEVICE PARAMETERS
1746 * anything else..
1747 * Some drives were very specific about that exact sequence.
1748 */
1749 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1750 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1751 if (err_mask) {
1752 rc = -EIO;
1753 reason = "INIT_DEV_PARAMS failed";
1754 goto err_out;
1755 }
1756
1757 /* current CHS translation info (id[53-58]) might be
1758 * changed. reread the identify device info.
1759 */
bff04647 1760 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1761 goto retry;
1762 }
1763 }
1764
1765 *p_class = class;
fe635c7e 1766
49016aca
TH
1767 return 0;
1768
1769 err_out:
88574551 1770 if (ata_msg_warn(ap))
0dd4b21f 1771 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1772 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1773 return rc;
1774}
1775
3373efd8 1776static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1777{
9af5c9c9
TH
1778 struct ata_port *ap = dev->link->ap;
1779 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1780}
1781
a6e6ce8e
TH
1782static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784{
9af5c9c9 1785 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
75683fe7 1792 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
a6e6ce8e 1796 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805}
1806
49016aca 1807/**
ffeae418 1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
49016aca
TH
1813 *
1814 * LOCKING:
ffeae418
TH
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
49016aca 1819 */
efdaedc4 1820int ata_dev_configure(struct ata_device *dev)
49016aca 1821{
9af5c9c9
TH
1822 struct ata_port *ap = dev->link->ap;
1823 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1824 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1825 const u16 *id = dev->id;
ff8854b2 1826 unsigned int xfer_mask;
b352e57d 1827 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1828 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1829 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1830 int rc;
49016aca 1831
0dd4b21f 1832 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1833 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1834 __FUNCTION__);
ffeae418 1835 return 0;
49016aca
TH
1836 }
1837
0dd4b21f 1838 if (ata_msg_probe(ap))
44877b4e 1839 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1840
75683fe7
TH
1841 /* set horkage */
1842 dev->horkage |= ata_dev_blacklisted(dev);
1843
6746544c
TH
1844 /* let ACPI work its magic */
1845 rc = ata_acpi_on_devcfg(dev);
1846 if (rc)
1847 return rc;
08573a86 1848
c39f5ebe 1849 /* print device capabilities */
0dd4b21f 1850 if (ata_msg_probe(ap))
88574551
TH
1851 ata_dev_printk(dev, KERN_DEBUG,
1852 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1853 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1854 __FUNCTION__,
f15a1daf
TH
1855 id[49], id[82], id[83], id[84],
1856 id[85], id[86], id[87], id[88]);
c39f5ebe 1857
208a9933 1858 /* initialize to-be-configured parameters */
ea1dd4e1 1859 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1860 dev->max_sectors = 0;
1861 dev->cdb_len = 0;
1862 dev->n_sectors = 0;
1863 dev->cylinders = 0;
1864 dev->heads = 0;
1865 dev->sectors = 0;
1866
1da177e4
LT
1867 /*
1868 * common ATA, ATAPI feature tests
1869 */
1870
ff8854b2 1871 /* find max transfer mode; for printk only */
1148c3a7 1872 xfer_mask = ata_id_xfermask(id);
1da177e4 1873
0dd4b21f
BP
1874 if (ata_msg_probe(ap))
1875 ata_dump_id(id);
1da177e4 1876
ef143d57
AL
1877 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1878 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1879 sizeof(fwrevbuf));
1880
1881 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1882 sizeof(modelbuf));
1883
1da177e4
LT
1884 /* ATA-specific feature tests */
1885 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1886 if (ata_id_is_cfa(id)) {
1887 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1888 ata_dev_printk(dev, KERN_WARNING,
1889 "supports DRM functions and may "
1890 "not be fully accessable.\n");
b352e57d
AC
1891 snprintf(revbuf, 7, "CFA");
1892 }
1893 else
1894 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1895
1148c3a7 1896 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1897
3f64f565
EM
1898 if (dev->id[59] & 0x100)
1899 dev->multi_count = dev->id[59] & 0xff;
1900
1148c3a7 1901 if (ata_id_has_lba(id)) {
4c2d721a 1902 const char *lba_desc;
a6e6ce8e 1903 char ncq_desc[20];
8bf62ece 1904
4c2d721a
TH
1905 lba_desc = "LBA";
1906 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1907 if (ata_id_has_lba48(id)) {
8bf62ece 1908 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1909 lba_desc = "LBA48";
6fc49adb
TH
1910
1911 if (dev->n_sectors >= (1UL << 28) &&
1912 ata_id_has_flush_ext(id))
1913 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1914 }
8bf62ece 1915
16c55b03
TH
1916 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1917 ata_id_hpa_enabled(dev->id))
1918 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1919
a6e6ce8e
TH
1920 /* config NCQ */
1921 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1922
8bf62ece 1923 /* print device info to dmesg */
3f64f565
EM
1924 if (ata_msg_drv(ap) && print_info) {
1925 ata_dev_printk(dev, KERN_INFO,
1926 "%s: %s, %s, max %s\n",
1927 revbuf, modelbuf, fwrevbuf,
1928 ata_mode_string(xfer_mask));
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1931 (unsigned long long)dev->n_sectors,
3f64f565
EM
1932 dev->multi_count, lba_desc, ncq_desc);
1933 }
ffeae418 1934 } else {
8bf62ece
AL
1935 /* CHS */
1936
1937 /* Default translation */
1148c3a7
TH
1938 dev->cylinders = id[1];
1939 dev->heads = id[3];
1940 dev->sectors = id[6];
8bf62ece 1941
1148c3a7 1942 if (ata_id_current_chs_valid(id)) {
8bf62ece 1943 /* Current CHS translation is valid. */
1148c3a7
TH
1944 dev->cylinders = id[54];
1945 dev->heads = id[55];
1946 dev->sectors = id[56];
8bf62ece
AL
1947 }
1948
1949 /* print device info to dmesg */
3f64f565 1950 if (ata_msg_drv(ap) && print_info) {
88574551 1951 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1952 "%s: %s, %s, max %s\n",
1953 revbuf, modelbuf, fwrevbuf,
1954 ata_mode_string(xfer_mask));
a84471fe 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1957 (unsigned long long)dev->n_sectors,
1958 dev->multi_count, dev->cylinders,
1959 dev->heads, dev->sectors);
1960 }
07f6f7d0
AL
1961 }
1962
6e7846e9 1963 dev->cdb_len = 16;
1da177e4
LT
1964 }
1965
1966 /* ATAPI-specific feature tests */
2c13b7ce 1967 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1968 char *cdb_intr_string = "";
1969
1148c3a7 1970 rc = atapi_cdb_len(id);
1da177e4 1971 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1972 if (ata_msg_warn(ap))
88574551
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "unsupported CDB len\n");
ffeae418 1975 rc = -EINVAL;
1da177e4
LT
1976 goto err_out_nosup;
1977 }
6e7846e9 1978 dev->cdb_len = (unsigned int) rc;
1da177e4 1979
08a556db 1980 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1981 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1982 cdb_intr_string = ", CDB intr";
1983 }
312f7da2 1984
1da177e4 1985 /* print device info to dmesg */
5afc8142 1986 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1987 ata_dev_printk(dev, KERN_INFO,
1988 "ATAPI: %s, %s, max %s%s\n",
1989 modelbuf, fwrevbuf,
12436c30
TH
1990 ata_mode_string(xfer_mask),
1991 cdb_intr_string);
1da177e4
LT
1992 }
1993
914ed354
TH
1994 /* determine max_sectors */
1995 dev->max_sectors = ATA_MAX_SECTORS;
1996 if (dev->flags & ATA_DFLAG_LBA48)
1997 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1998
93590859
AC
1999 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2000 /* Let the user know. We don't want to disallow opens for
2001 rescue purposes, or in case the vendor is just a blithering
2002 idiot */
2003 if (print_info) {
2004 ata_dev_printk(dev, KERN_WARNING,
2005"Drive reports diagnostics failure. This may indicate a drive\n");
2006 ata_dev_printk(dev, KERN_WARNING,
2007"fault or invalid emulation. Contact drive vendor for information.\n");
2008 }
2009 }
2010
4b2f3ede 2011 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2012 if (ata_dev_knobble(dev)) {
5afc8142 2013 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2014 ata_dev_printk(dev, KERN_INFO,
2015 "applying bridge limits\n");
5a529139 2016 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2017 dev->max_sectors = ATA_MAX_SECTORS;
2018 }
2019
75683fe7 2020 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2021 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2022 dev->max_sectors);
18d6e9d5 2023
4b2f3ede 2024 if (ap->ops->dev_config)
cd0d3bbc 2025 ap->ops->dev_config(dev);
4b2f3ede 2026
0dd4b21f
BP
2027 if (ata_msg_probe(ap))
2028 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2029 __FUNCTION__, ata_chk_status(ap));
ffeae418 2030 return 0;
1da177e4
LT
2031
2032err_out_nosup:
0dd4b21f 2033 if (ata_msg_probe(ap))
88574551
TH
2034 ata_dev_printk(dev, KERN_DEBUG,
2035 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2036 return rc;
1da177e4
LT
2037}
2038
be0d18df 2039/**
2e41e8e6 2040 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2041 * @ap: port
2042 *
2e41e8e6 2043 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2044 * detection.
2045 */
2046
2047int ata_cable_40wire(struct ata_port *ap)
2048{
2049 return ATA_CBL_PATA40;
2050}
2051
2052/**
2e41e8e6 2053 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2054 * @ap: port
2055 *
2e41e8e6 2056 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2057 * detection.
2058 */
2059
2060int ata_cable_80wire(struct ata_port *ap)
2061{
2062 return ATA_CBL_PATA80;
2063}
2064
2065/**
2066 * ata_cable_unknown - return unknown PATA cable.
2067 * @ap: port
2068 *
2069 * Helper method for drivers which have no PATA cable detection.
2070 */
2071
2072int ata_cable_unknown(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA_UNK;
2075}
2076
2077/**
2078 * ata_cable_sata - return SATA cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which have SATA cables
2082 */
2083
2084int ata_cable_sata(struct ata_port *ap)
2085{
2086 return ATA_CBL_SATA;
2087}
2088
1da177e4
LT
2089/**
2090 * ata_bus_probe - Reset and probe ATA bus
2091 * @ap: Bus to probe
2092 *
0cba632b
JG
2093 * Master ATA bus probing function. Initiates a hardware-dependent
2094 * bus reset, then attempts to identify any devices found on
2095 * the bus.
2096 *
1da177e4 2097 * LOCKING:
0cba632b 2098 * PCI/etc. bus probe sem.
1da177e4
LT
2099 *
2100 * RETURNS:
96072e69 2101 * Zero on success, negative errno otherwise.
1da177e4
LT
2102 */
2103
80289167 2104int ata_bus_probe(struct ata_port *ap)
1da177e4 2105{
28ca5c57 2106 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2107 int tries[ATA_MAX_DEVICES];
f58229f8 2108 int rc;
e82cbdb9 2109 struct ata_device *dev;
1da177e4 2110
28ca5c57 2111 ata_port_probe(ap);
c19ba8af 2112
f58229f8
TH
2113 ata_link_for_each_dev(dev, &ap->link)
2114 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2115
2116 retry:
2044470c 2117 /* reset and determine device classes */
52783c5d 2118 ap->ops->phy_reset(ap);
2061a47a 2119
f58229f8 2120 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2126
52783c5d 2127 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2128 }
1da177e4 2129
52783c5d 2130 ata_port_probe(ap);
2044470c 2131
b6079ca4
AC
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
f58229f8
TH
2135 ata_link_for_each_dev(dev, &ap->link)
2136 dev->pio_mode = XFER_PIO_0;
b6079ca4 2137
f31f0cc2
JG
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
f58229f8
TH
2142 ata_link_for_each_dev(dev, &ap->link) {
2143 if (tries[dev->devno])
2144 dev->class = classes[dev->devno];
ffeae418 2145
14d2bac1 2146 if (!ata_dev_enabled(dev))
ffeae418 2147 continue;
ffeae418 2148
bff04647
TH
2149 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2150 dev->id);
14d2bac1
TH
2151 if (rc)
2152 goto fail;
f31f0cc2
JG
2153 }
2154
be0d18df
AC
2155 /* Now ask for the cable type as PDIAG- should have been released */
2156 if (ap->ops->cable_detect)
2157 ap->cbl = ap->ops->cable_detect(ap);
2158
f31f0cc2
JG
2159 /* After the identify sequence we can now set up the devices. We do
2160 this in the normal order so that the user doesn't get confused */
2161
f58229f8 2162 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2163 if (!ata_dev_enabled(dev))
2164 continue;
14d2bac1 2165
9af5c9c9 2166 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2167 rc = ata_dev_configure(dev);
9af5c9c9 2168 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2169 if (rc)
2170 goto fail;
1da177e4
LT
2171 }
2172
e82cbdb9 2173 /* configure transfer mode */
0260731f 2174 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2175 if (rc)
51713d35 2176 goto fail;
1da177e4 2177
f58229f8
TH
2178 ata_link_for_each_dev(dev, &ap->link)
2179 if (ata_dev_enabled(dev))
e82cbdb9 2180 return 0;
1da177e4 2181
e82cbdb9
TH
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
1da177e4 2184 ap->ops->port_disable(ap);
96072e69 2185 return -ENODEV;
14d2bac1
TH
2186
2187 fail:
4ae72a1e
TH
2188 tries[dev->devno]--;
2189
14d2bac1
TH
2190 switch (rc) {
2191 case -EINVAL:
4ae72a1e 2192 /* eeek, something went very wrong, give up */
14d2bac1
TH
2193 tries[dev->devno] = 0;
2194 break;
4ae72a1e
TH
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2199 case -EIO:
4ae72a1e
TH
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
936fd732 2204 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
14d2bac1
TH
2207 }
2208
4ae72a1e 2209 if (!tries[dev->devno])
3373efd8 2210 ata_dev_disable(dev);
ec573755 2211
14d2bac1 2212 goto retry;
1da177e4
LT
2213}
2214
2215/**
0cba632b
JG
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
1da177e4 2218 *
0cba632b
JG
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
cca3974e 2222 * LOCKING: host lock, or some other form of
0cba632b 2223 * serialization.
1da177e4
LT
2224 */
2225
2226void ata_port_probe(struct ata_port *ap)
2227{
198e0fed 2228 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2229}
2230
3be680b7
TH
2231/**
2232 * sata_print_link_status - Print SATA link status
936fd732 2233 * @link: SATA link to printk link status about
3be680b7
TH
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
936fd732 2240void sata_print_link_status(struct ata_link *link)
3be680b7 2241{
6d5f9732 2242 u32 sstatus, scontrol, tmp;
3be680b7 2243
936fd732 2244 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2245 return;
936fd732 2246 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2247
936fd732 2248 if (ata_link_online(link)) {
3be680b7 2249 tmp = (sstatus >> 4) & 0xf;
936fd732 2250 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2253 } else {
936fd732 2254 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
3be680b7
TH
2257 }
2258}
2259
1da177e4 2260/**
780a87f7
JG
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
1da177e4 2263 *
780a87f7
JG
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
1da177e4
LT
2267 *
2268 * LOCKING:
0cba632b 2269 * PCI/etc. bus probe sem.
1da177e4
LT
2270 *
2271 */
2272void __sata_phy_reset(struct ata_port *ap)
2273{
936fd732 2274 struct ata_link *link = &ap->link;
1da177e4 2275 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2276 u32 sstatus;
1da177e4
LT
2277
2278 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2279 /* issue phy wake/reset */
936fd732 2280 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2281 /* Couldn't find anything in SATA I/II specs, but
2282 * AHCI-1.1 10.4.2 says at least 1 ms. */
2283 mdelay(1);
1da177e4 2284 }
81952c54 2285 /* phy wake/clear reset */
936fd732 2286 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2287
2288 /* wait for phy to become ready, if necessary */
2289 do {
2290 msleep(200);
936fd732 2291 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2292 if ((sstatus & 0xf) != 1)
2293 break;
2294 } while (time_before(jiffies, timeout));
2295
3be680b7 2296 /* print link status */
936fd732 2297 sata_print_link_status(link);
656563e3 2298
3be680b7 2299 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2300 if (!ata_link_offline(link))
1da177e4 2301 ata_port_probe(ap);
3be680b7 2302 else
1da177e4 2303 ata_port_disable(ap);
1da177e4 2304
198e0fed 2305 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2306 return;
2307
2308 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2309 ata_port_disable(ap);
2310 return;
2311 }
2312
2313 ap->cbl = ATA_CBL_SATA;
2314}
2315
2316/**
780a87f7
JG
2317 * sata_phy_reset - Reset SATA bus.
2318 * @ap: SATA port associated with target SATA PHY.
1da177e4 2319 *
780a87f7
JG
2320 * This function resets the SATA bus, and then probes
2321 * the bus for devices.
1da177e4
LT
2322 *
2323 * LOCKING:
0cba632b 2324 * PCI/etc. bus probe sem.
1da177e4
LT
2325 *
2326 */
2327void sata_phy_reset(struct ata_port *ap)
2328{
2329 __sata_phy_reset(ap);
198e0fed 2330 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2331 return;
2332 ata_bus_reset(ap);
2333}
2334
ebdfca6e
AC
2335/**
2336 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2337 * @adev: device
2338 *
2339 * Obtain the other device on the same cable, or if none is
2340 * present NULL is returned
2341 */
2e9edbf8 2342
3373efd8 2343struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2344{
9af5c9c9
TH
2345 struct ata_link *link = adev->link;
2346 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2347 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2348 return NULL;
2349 return pair;
2350}
2351
1da177e4 2352/**
780a87f7
JG
2353 * ata_port_disable - Disable port.
2354 * @ap: Port to be disabled.
1da177e4 2355 *
780a87f7
JG
2356 * Modify @ap data structure such that the system
2357 * thinks that the entire port is disabled, and should
2358 * never attempt to probe or communicate with devices
2359 * on this port.
2360 *
cca3974e 2361 * LOCKING: host lock, or some other form of
780a87f7 2362 * serialization.
1da177e4
LT
2363 */
2364
2365void ata_port_disable(struct ata_port *ap)
2366{
9af5c9c9
TH
2367 ap->link.device[0].class = ATA_DEV_NONE;
2368 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2369 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2370}
2371
1c3fae4d 2372/**
3c567b7d 2373 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2374 * @link: Link to adjust SATA spd limit for
1c3fae4d 2375 *
936fd732 2376 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2377 * function only adjusts the limit. The change must be applied
3c567b7d 2378 * using sata_set_spd().
1c3fae4d
TH
2379 *
2380 * LOCKING:
2381 * Inherited from caller.
2382 *
2383 * RETURNS:
2384 * 0 on success, negative errno on failure
2385 */
936fd732 2386int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2387{
81952c54
TH
2388 u32 sstatus, spd, mask;
2389 int rc, highbit;
1c3fae4d 2390
936fd732 2391 if (!sata_scr_valid(link))
008a7896
TH
2392 return -EOPNOTSUPP;
2393
2394 /* If SCR can be read, use it to determine the current SPD.
936fd732 2395 * If not, use cached value in link->sata_spd.
008a7896 2396 */
936fd732 2397 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2398 if (rc == 0)
2399 spd = (sstatus >> 4) & 0xf;
2400 else
936fd732 2401 spd = link->sata_spd;
1c3fae4d 2402
936fd732 2403 mask = link->sata_spd_limit;
1c3fae4d
TH
2404 if (mask <= 1)
2405 return -EINVAL;
008a7896
TH
2406
2407 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
008a7896
TH
2411 /* Mask off all speeds higher than or equal to the current
2412 * one. Force 1.5Gbps if current SPD is not available.
2413 */
2414 if (spd > 1)
2415 mask &= (1 << (spd - 1)) - 1;
2416 else
2417 mask &= 1;
2418
2419 /* were we already at the bottom? */
1c3fae4d
TH
2420 if (!mask)
2421 return -EINVAL;
2422
936fd732 2423 link->sata_spd_limit = mask;
1c3fae4d 2424
936fd732 2425 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2426 sata_spd_string(fls(mask)));
1c3fae4d
TH
2427
2428 return 0;
2429}
2430
936fd732 2431static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2432{
2433 u32 spd, limit;
2434
936fd732 2435 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2436 limit = 0;
2437 else
936fd732 2438 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2439
2440 spd = (*scontrol >> 4) & 0xf;
2441 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2442
2443 return spd != limit;
2444}
2445
2446/**
3c567b7d 2447 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2448 * @link: Link in question
1c3fae4d
TH
2449 *
2450 * Test whether the spd limit in SControl matches
936fd732 2451 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2452 * whether hardreset is necessary to apply SATA spd
2453 * configuration.
2454 *
2455 * LOCKING:
2456 * Inherited from caller.
2457 *
2458 * RETURNS:
2459 * 1 if SATA spd configuration is needed, 0 otherwise.
2460 */
936fd732 2461int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2462{
2463 u32 scontrol;
2464
936fd732 2465 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2466 return 0;
2467
936fd732 2468 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2469}
2470
2471/**
3c567b7d 2472 * sata_set_spd - set SATA spd according to spd limit
936fd732 2473 * @link: Link to set SATA spd for
1c3fae4d 2474 *
936fd732 2475 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2476 *
2477 * LOCKING:
2478 * Inherited from caller.
2479 *
2480 * RETURNS:
2481 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2482 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2483 */
936fd732 2484int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2485{
2486 u32 scontrol;
81952c54 2487 int rc;
1c3fae4d 2488
936fd732 2489 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2490 return rc;
1c3fae4d 2491
936fd732 2492 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2493 return 0;
2494
936fd732 2495 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2496 return rc;
2497
1c3fae4d
TH
2498 return 1;
2499}
2500
452503f9
AC
2501/*
2502 * This mode timing computation functionality is ported over from
2503 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2504 */
2505/*
b352e57d 2506 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2507 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2508 * for UDMA6, which is currently supported only by Maxtor drives.
2509 *
2510 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2511 */
2512
2513static const struct ata_timing ata_timing[] = {
2514
2515 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2516 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2517 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2518 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2519
b352e57d
AC
2520 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2521 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2522 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2523 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2524 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2525
2526/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2527
452503f9
AC
2528 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2529 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2530 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2531
452503f9
AC
2532 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2533 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2534 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2535
b352e57d
AC
2536 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2537 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2538 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2539 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2540
2541 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2542 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2543 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2544
2545/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546
2547 { 0xFF }
2548};
2549
2550#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2551#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2552
2553static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2554{
2555 q->setup = EZ(t->setup * 1000, T);
2556 q->act8b = EZ(t->act8b * 1000, T);
2557 q->rec8b = EZ(t->rec8b * 1000, T);
2558 q->cyc8b = EZ(t->cyc8b * 1000, T);
2559 q->active = EZ(t->active * 1000, T);
2560 q->recover = EZ(t->recover * 1000, T);
2561 q->cycle = EZ(t->cycle * 1000, T);
2562 q->udma = EZ(t->udma * 1000, UT);
2563}
2564
2565void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2566 struct ata_timing *m, unsigned int what)
2567{
2568 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2569 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2570 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2571 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2572 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2573 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2574 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2575 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2576}
2577
2578static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2579{
2580 const struct ata_timing *t;
2581
2582 for (t = ata_timing; t->mode != speed; t++)
91190758 2583 if (t->mode == 0xFF)
452503f9 2584 return NULL;
2e9edbf8 2585 return t;
452503f9
AC
2586}
2587
2588int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2589 struct ata_timing *t, int T, int UT)
2590{
2591 const struct ata_timing *s;
2592 struct ata_timing p;
2593
2594 /*
2e9edbf8 2595 * Find the mode.
75b1f2f8 2596 */
452503f9
AC
2597
2598 if (!(s = ata_timing_find_mode(speed)))
2599 return -EINVAL;
2600
75b1f2f8
AL
2601 memcpy(t, s, sizeof(*s));
2602
452503f9
AC
2603 /*
2604 * If the drive is an EIDE drive, it can tell us it needs extended
2605 * PIO/MW_DMA cycle timing.
2606 */
2607
2608 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2609 memset(&p, 0, sizeof(p));
2610 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2611 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2612 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2613 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2614 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2615 }
2616 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2617 }
2618
2619 /*
2620 * Convert the timing to bus clock counts.
2621 */
2622
75b1f2f8 2623 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2624
2625 /*
c893a3ae
RD
2626 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2627 * S.M.A.R.T * and some other commands. We have to ensure that the
2628 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2629 */
2630
fd3367af 2631 if (speed > XFER_PIO_6) {
452503f9
AC
2632 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2633 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2634 }
2635
2636 /*
c893a3ae 2637 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2638 */
2639
2640 if (t->act8b + t->rec8b < t->cyc8b) {
2641 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2642 t->rec8b = t->cyc8b - t->act8b;
2643 }
2644
2645 if (t->active + t->recover < t->cycle) {
2646 t->active += (t->cycle - (t->active + t->recover)) / 2;
2647 t->recover = t->cycle - t->active;
2648 }
a617c09f 2649
4f701d1e
AC
2650 /* In a few cases quantisation may produce enough errors to
2651 leave t->cycle too low for the sum of active and recovery
2652 if so we must correct this */
2653 if (t->active + t->recover > t->cycle)
2654 t->cycle = t->active + t->recover;
452503f9
AC
2655
2656 return 0;
2657}
2658
cf176e1a
TH
2659/**
2660 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2661 * @dev: Device to adjust xfer masks
458337db 2662 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2663 *
2664 * Adjust xfer masks of @dev downward. Note that this function
2665 * does not apply the change. Invoking ata_set_mode() afterwards
2666 * will apply the limit.
2667 *
2668 * LOCKING:
2669 * Inherited from caller.
2670 *
2671 * RETURNS:
2672 * 0 on success, negative errno on failure
2673 */
458337db 2674int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2675{
458337db
TH
2676 char buf[32];
2677 unsigned int orig_mask, xfer_mask;
2678 unsigned int pio_mask, mwdma_mask, udma_mask;
2679 int quiet, highbit;
cf176e1a 2680
458337db
TH
2681 quiet = !!(sel & ATA_DNXFER_QUIET);
2682 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2683
458337db
TH
2684 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2685 dev->mwdma_mask,
2686 dev->udma_mask);
2687 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2688
458337db
TH
2689 switch (sel) {
2690 case ATA_DNXFER_PIO:
2691 highbit = fls(pio_mask) - 1;
2692 pio_mask &= ~(1 << highbit);
2693 break;
2694
2695 case ATA_DNXFER_DMA:
2696 if (udma_mask) {
2697 highbit = fls(udma_mask) - 1;
2698 udma_mask &= ~(1 << highbit);
2699 if (!udma_mask)
2700 return -ENOENT;
2701 } else if (mwdma_mask) {
2702 highbit = fls(mwdma_mask) - 1;
2703 mwdma_mask &= ~(1 << highbit);
2704 if (!mwdma_mask)
2705 return -ENOENT;
2706 }
2707 break;
2708
2709 case ATA_DNXFER_40C:
2710 udma_mask &= ATA_UDMA_MASK_40C;
2711 break;
2712
2713 case ATA_DNXFER_FORCE_PIO0:
2714 pio_mask &= 1;
2715 case ATA_DNXFER_FORCE_PIO:
2716 mwdma_mask = 0;
2717 udma_mask = 0;
2718 break;
2719
458337db
TH
2720 default:
2721 BUG();
2722 }
2723
2724 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2725
2726 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2727 return -ENOENT;
2728
2729 if (!quiet) {
2730 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2731 snprintf(buf, sizeof(buf), "%s:%s",
2732 ata_mode_string(xfer_mask),
2733 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2734 else
2735 snprintf(buf, sizeof(buf), "%s",
2736 ata_mode_string(xfer_mask));
2737
2738 ata_dev_printk(dev, KERN_WARNING,
2739 "limiting speed to %s\n", buf);
2740 }
cf176e1a
TH
2741
2742 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2743 &dev->udma_mask);
2744
cf176e1a 2745 return 0;
cf176e1a
TH
2746}
2747
3373efd8 2748static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2749{
9af5c9c9 2750 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2751 unsigned int err_mask;
2752 int rc;
1da177e4 2753
e8384607 2754 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2755 if (dev->xfer_shift == ATA_SHIFT_PIO)
2756 dev->flags |= ATA_DFLAG_PIO;
2757
3373efd8 2758 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2759 /* Old CFA may refuse this command, which is just fine */
2760 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2761 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2762 /* Some very old devices and some bad newer ones fail any kind of
2763 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2764 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2765 dev->pio_mode <= XFER_PIO_2)
2766 err_mask &= ~AC_ERR_DEV;
83206a29 2767 if (err_mask) {
f15a1daf
TH
2768 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2769 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2770 return -EIO;
2771 }
1da177e4 2772
baa1e78a 2773 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2774 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2775 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2776 if (rc)
83206a29 2777 return rc;
48a8a14f 2778
23e71c3d
TH
2779 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2780 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2781
f15a1daf
TH
2782 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2783 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2784 return 0;
1da177e4
LT
2785}
2786
1da177e4 2787/**
04351821 2788 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2789 * @link: link on which timings will be programmed
e82cbdb9 2790 * @r_failed_dev: out paramter for failed device
1da177e4 2791 *
04351821
AC
2792 * Standard implementation of the function used to tune and set
2793 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2794 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2795 * returned in @r_failed_dev.
780a87f7 2796 *
1da177e4 2797 * LOCKING:
0cba632b 2798 * PCI/etc. bus probe sem.
e82cbdb9
TH
2799 *
2800 * RETURNS:
2801 * 0 on success, negative errno otherwise
1da177e4 2802 */
04351821 2803
0260731f 2804int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2805{
0260731f 2806 struct ata_port *ap = link->ap;
e8e0619f 2807 struct ata_device *dev;
f58229f8 2808 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2809
a6d5a51c 2810 /* step 1: calculate xfer_mask */
f58229f8 2811 ata_link_for_each_dev(dev, link) {
acf356b1 2812 unsigned int pio_mask, dma_mask;
a6d5a51c 2813
e1211e3f 2814 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2815 continue;
2816
3373efd8 2817 ata_dev_xfermask(dev);
1da177e4 2818
acf356b1
TH
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2823
4f65977d 2824 found = 1;
5444a6f4
AC
2825 if (dev->dma_mode)
2826 used_dma = 1;
a6d5a51c 2827 }
4f65977d 2828 if (!found)
e82cbdb9 2829 goto out;
a6d5a51c
TH
2830
2831 /* step 2: always set host PIO timings */
f58229f8 2832 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2833 if (!ata_dev_enabled(dev))
2834 continue;
2835
2836 if (!dev->pio_mode) {
f15a1daf 2837 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2838 rc = -EINVAL;
e82cbdb9 2839 goto out;
e8e0619f
TH
2840 }
2841
2842 dev->xfer_mode = dev->pio_mode;
2843 dev->xfer_shift = ATA_SHIFT_PIO;
2844 if (ap->ops->set_piomode)
2845 ap->ops->set_piomode(ap, dev);
2846 }
1da177e4 2847
a6d5a51c 2848 /* step 3: set host DMA timings */
f58229f8 2849 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2850 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2851 continue;
2852
2853 dev->xfer_mode = dev->dma_mode;
2854 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2855 if (ap->ops->set_dmamode)
2856 ap->ops->set_dmamode(ap, dev);
2857 }
1da177e4
LT
2858
2859 /* step 4: update devices' xfer mode */
f58229f8 2860 ata_link_for_each_dev(dev, link) {
18d90deb 2861 /* don't update suspended devices' xfer mode */
9666f400 2862 if (!ata_dev_enabled(dev))
83206a29
TH
2863 continue;
2864
3373efd8 2865 rc = ata_dev_set_mode(dev);
5bbc53f4 2866 if (rc)
e82cbdb9 2867 goto out;
83206a29 2868 }
1da177e4 2869
e8e0619f
TH
2870 /* Record simplex status. If we selected DMA then the other
2871 * host channels are not permitted to do so.
5444a6f4 2872 */
cca3974e 2873 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2874 ap->host->simplex_claimed = ap;
5444a6f4 2875
e82cbdb9
TH
2876 out:
2877 if (rc)
2878 *r_failed_dev = dev;
2879 return rc;
1da177e4
LT
2880}
2881
04351821
AC
2882/**
2883 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2884 * @link: link on which timings will be programmed
04351821
AC
2885 * @r_failed_dev: out paramter for failed device
2886 *
2887 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2888 * ata_set_mode() fails, pointer to the failing device is
2889 * returned in @r_failed_dev.
2890 *
2891 * LOCKING:
2892 * PCI/etc. bus probe sem.
2893 *
2894 * RETURNS:
2895 * 0 on success, negative errno otherwise
2896 */
0260731f 2897int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 2898{
0260731f
TH
2899 struct ata_port *ap = link->ap;
2900
04351821
AC
2901 /* has private set_mode? */
2902 if (ap->ops->set_mode)
0260731f
TH
2903 return ap->ops->set_mode(link, r_failed_dev);
2904 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
2905}
2906
1fdffbce
JG
2907/**
2908 * ata_tf_to_host - issue ATA taskfile to host controller
2909 * @ap: port to which command is being issued
2910 * @tf: ATA taskfile register set
2911 *
2912 * Issues ATA taskfile register set to ATA host controller,
2913 * with proper synchronization with interrupt handler and
2914 * other threads.
2915 *
2916 * LOCKING:
cca3974e 2917 * spin_lock_irqsave(host lock)
1fdffbce
JG
2918 */
2919
2920static inline void ata_tf_to_host(struct ata_port *ap,
2921 const struct ata_taskfile *tf)
2922{
2923 ap->ops->tf_load(ap, tf);
2924 ap->ops->exec_command(ap, tf);
2925}
2926
1da177e4
LT
2927/**
2928 * ata_busy_sleep - sleep until BSY clears, or timeout
2929 * @ap: port containing status register to be polled
2930 * @tmout_pat: impatience timeout
2931 * @tmout: overall timeout
2932 *
780a87f7
JG
2933 * Sleep until ATA Status register bit BSY clears,
2934 * or a timeout occurs.
2935 *
d1adc1bb
TH
2936 * LOCKING:
2937 * Kernel thread context (may sleep).
2938 *
2939 * RETURNS:
2940 * 0 on success, -errno otherwise.
1da177e4 2941 */
d1adc1bb
TH
2942int ata_busy_sleep(struct ata_port *ap,
2943 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2944{
2945 unsigned long timer_start, timeout;
2946 u8 status;
2947
2948 status = ata_busy_wait(ap, ATA_BUSY, 300);
2949 timer_start = jiffies;
2950 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2951 while (status != 0xff && (status & ATA_BUSY) &&
2952 time_before(jiffies, timeout)) {
1da177e4
LT
2953 msleep(50);
2954 status = ata_busy_wait(ap, ATA_BUSY, 3);
2955 }
2956
d1adc1bb 2957 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2958 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2959 "port is slow to respond, please be patient "
2960 "(Status 0x%x)\n", status);
1da177e4
LT
2961
2962 timeout = timer_start + tmout;
d1adc1bb
TH
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
1da177e4
LT
2965 msleep(50);
2966 status = ata_chk_status(ap);
2967 }
2968
d1adc1bb
TH
2969 if (status == 0xff)
2970 return -ENODEV;
2971
1da177e4 2972 if (status & ATA_BUSY) {
f15a1daf 2973 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2974 "(%lu secs, Status 0x%x)\n",
2975 tmout / HZ, status);
d1adc1bb 2976 return -EBUSY;
1da177e4
LT
2977 }
2978
2979 return 0;
2980}
2981
d4b2bab4
TH
2982/**
2983 * ata_wait_ready - sleep until BSY clears, or timeout
2984 * @ap: port containing status register to be polled
2985 * @deadline: deadline jiffies for the operation
2986 *
2987 * Sleep until ATA Status register bit BSY clears, or timeout
2988 * occurs.
2989 *
2990 * LOCKING:
2991 * Kernel thread context (may sleep).
2992 *
2993 * RETURNS:
2994 * 0 on success, -errno otherwise.
2995 */
2996int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2997{
2998 unsigned long start = jiffies;
2999 int warned = 0;
3000
3001 while (1) {
3002 u8 status = ata_chk_status(ap);
3003 unsigned long now = jiffies;
3004
3005 if (!(status & ATA_BUSY))
3006 return 0;
936fd732 3007 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3008 return -ENODEV;
3009 if (time_after(now, deadline))
3010 return -EBUSY;
3011
3012 if (!warned && time_after(now, start + 5 * HZ) &&
3013 (deadline - now > 3 * HZ)) {
3014 ata_port_printk(ap, KERN_WARNING,
3015 "port is slow to respond, please be patient "
3016 "(Status 0x%x)\n", status);
3017 warned = 1;
3018 }
3019
3020 msleep(50);
3021 }
3022}
3023
3024static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3025 unsigned long deadline)
1da177e4
LT
3026{
3027 struct ata_ioports *ioaddr = &ap->ioaddr;
3028 unsigned int dev0 = devmask & (1 << 0);
3029 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3030 int rc, ret = 0;
1da177e4
LT
3031
3032 /* if device 0 was found in ata_devchk, wait for its
3033 * BSY bit to clear
3034 */
d4b2bab4
TH
3035 if (dev0) {
3036 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3037 if (rc) {
3038 if (rc != -ENODEV)
3039 return rc;
3040 ret = rc;
3041 }
d4b2bab4 3042 }
1da177e4 3043
e141d999
TH
3044 /* if device 1 was found in ata_devchk, wait for register
3045 * access briefly, then wait for BSY to clear.
1da177e4 3046 */
e141d999
TH
3047 if (dev1) {
3048 int i;
1da177e4
LT
3049
3050 ap->ops->dev_select(ap, 1);
e141d999
TH
3051
3052 /* Wait for register access. Some ATAPI devices fail
3053 * to set nsect/lbal after reset, so don't waste too
3054 * much time on it. We're gonna wait for !BSY anyway.
3055 */
3056 for (i = 0; i < 2; i++) {
3057 u8 nsect, lbal;
3058
3059 nsect = ioread8(ioaddr->nsect_addr);
3060 lbal = ioread8(ioaddr->lbal_addr);
3061 if ((nsect == 1) && (lbal == 1))
3062 break;
3063 msleep(50); /* give drive a breather */
3064 }
3065
d4b2bab4 3066 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3067 if (rc) {
3068 if (rc != -ENODEV)
3069 return rc;
3070 ret = rc;
3071 }
d4b2bab4 3072 }
1da177e4
LT
3073
3074 /* is all this really necessary? */
3075 ap->ops->dev_select(ap, 0);
3076 if (dev1)
3077 ap->ops->dev_select(ap, 1);
3078 if (dev0)
3079 ap->ops->dev_select(ap, 0);
d4b2bab4 3080
9b89391c 3081 return ret;
1da177e4
LT
3082}
3083
d4b2bab4
TH
3084static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3085 unsigned long deadline)
1da177e4
LT
3086{
3087 struct ata_ioports *ioaddr = &ap->ioaddr;
3088
44877b4e 3089 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3090
3091 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
3093 udelay(20); /* FIXME: flush */
3094 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3095 udelay(20); /* FIXME: flush */
3096 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3097
3098 /* spec mandates ">= 2ms" before checking status.
3099 * We wait 150ms, because that was the magic delay used for
3100 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3101 * between when the ATA command register is written, and then
3102 * status is checked. Because waiting for "a while" before
3103 * checking status is fine, post SRST, we perform this magic
3104 * delay here as well.
09c7ad79
AC
3105 *
3106 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3107 */
3108 msleep(150);
3109
2e9edbf8 3110 /* Before we perform post reset processing we want to see if
298a41ca
TH
3111 * the bus shows 0xFF because the odd clown forgets the D7
3112 * pulldown resistor.
3113 */
d1adc1bb 3114 if (ata_check_status(ap) == 0xFF)
9b89391c 3115 return -ENODEV;
09c7ad79 3116
d4b2bab4 3117 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3118}
3119
3120/**
3121 * ata_bus_reset - reset host port and associated ATA channel
3122 * @ap: port to reset
3123 *
3124 * This is typically the first time we actually start issuing
3125 * commands to the ATA channel. We wait for BSY to clear, then
3126 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3127 * result. Determine what devices, if any, are on the channel
3128 * by looking at the device 0/1 error register. Look at the signature
3129 * stored in each device's taskfile registers, to determine if
3130 * the device is ATA or ATAPI.
3131 *
3132 * LOCKING:
0cba632b 3133 * PCI/etc. bus probe sem.
cca3974e 3134 * Obtains host lock.
1da177e4
LT
3135 *
3136 * SIDE EFFECTS:
198e0fed 3137 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3138 */
3139
3140void ata_bus_reset(struct ata_port *ap)
3141{
9af5c9c9 3142 struct ata_device *device = ap->link.device;
1da177e4
LT
3143 struct ata_ioports *ioaddr = &ap->ioaddr;
3144 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3145 u8 err;
aec5c3c1 3146 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3147 int rc;
1da177e4 3148
44877b4e 3149 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3150
3151 /* determine if device 0/1 are present */
3152 if (ap->flags & ATA_FLAG_SATA_RESET)
3153 dev0 = 1;
3154 else {
3155 dev0 = ata_devchk(ap, 0);
3156 if (slave_possible)
3157 dev1 = ata_devchk(ap, 1);
3158 }
3159
3160 if (dev0)
3161 devmask |= (1 << 0);
3162 if (dev1)
3163 devmask |= (1 << 1);
3164
3165 /* select device 0 again */
3166 ap->ops->dev_select(ap, 0);
3167
3168 /* issue bus reset */
9b89391c
TH
3169 if (ap->flags & ATA_FLAG_SRST) {
3170 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3171 if (rc && rc != -ENODEV)
aec5c3c1 3172 goto err_out;
9b89391c 3173 }
1da177e4
LT
3174
3175 /*
3176 * determine by signature whether we have ATA or ATAPI devices
3177 */
9af5c9c9 3178 device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3179 if ((slave_possible) && (err != 0x81))
9af5c9c9 3180 device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3181
1da177e4 3182 /* is double-select really necessary? */
9af5c9c9 3183 if (device[1].class != ATA_DEV_NONE)
1da177e4 3184 ap->ops->dev_select(ap, 1);
9af5c9c9 3185 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3186 ap->ops->dev_select(ap, 0);
3187
3188 /* if no devices were detected, disable this port */
9af5c9c9
TH
3189 if ((device[0].class == ATA_DEV_NONE) &&
3190 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3191 goto err_out;
3192
3193 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3194 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3195 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3196 }
3197
3198 DPRINTK("EXIT\n");
3199 return;
3200
3201err_out:
f15a1daf 3202 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3203 ap->ops->port_disable(ap);
3204
3205 DPRINTK("EXIT\n");
3206}
3207
d7bb4cc7 3208/**
936fd732
TH
3209 * sata_link_debounce - debounce SATA phy status
3210 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3211 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3212 * @deadline: deadline jiffies for the operation
d7bb4cc7 3213 *
936fd732 3214* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3215 * holding the same value where DET is not 1 for @duration polled
3216 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3217 * beginning of the stable state. Because DET gets stuck at 1 on
3218 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3219 * until timeout then returns 0 if DET is stable at 1.
3220 *
d4b2bab4
TH
3221 * @timeout is further limited by @deadline. The sooner of the
3222 * two is used.
3223 *
d7bb4cc7
TH
3224 * LOCKING:
3225 * Kernel thread context (may sleep)
3226 *
3227 * RETURNS:
3228 * 0 on success, -errno on failure.
3229 */
936fd732
TH
3230int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3231 unsigned long deadline)
7a7921e8 3232{
d7bb4cc7 3233 unsigned long interval_msec = params[0];
d4b2bab4
TH
3234 unsigned long duration = msecs_to_jiffies(params[1]);
3235 unsigned long last_jiffies, t;
d7bb4cc7
TH
3236 u32 last, cur;
3237 int rc;
3238
d4b2bab4
TH
3239 t = jiffies + msecs_to_jiffies(params[2]);
3240 if (time_before(t, deadline))
3241 deadline = t;
3242
936fd732 3243 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3244 return rc;
3245 cur &= 0xf;
3246
3247 last = cur;
3248 last_jiffies = jiffies;
3249
3250 while (1) {
3251 msleep(interval_msec);
936fd732 3252 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3253 return rc;
3254 cur &= 0xf;
3255
3256 /* DET stable? */
3257 if (cur == last) {
d4b2bab4 3258 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3259 continue;
3260 if (time_after(jiffies, last_jiffies + duration))
3261 return 0;
3262 continue;
3263 }
3264
3265 /* unstable, start over */
3266 last = cur;
3267 last_jiffies = jiffies;
3268
f1545154
TH
3269 /* Check deadline. If debouncing failed, return
3270 * -EPIPE to tell upper layer to lower link speed.
3271 */
d4b2bab4 3272 if (time_after(jiffies, deadline))
f1545154 3273 return -EPIPE;
d7bb4cc7
TH
3274 }
3275}
3276
3277/**
936fd732
TH
3278 * sata_link_resume - resume SATA link
3279 * @link: ATA link to resume SATA
d7bb4cc7 3280 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3281 * @deadline: deadline jiffies for the operation
d7bb4cc7 3282 *
936fd732 3283 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3284 *
3285 * LOCKING:
3286 * Kernel thread context (may sleep)
3287 *
3288 * RETURNS:
3289 * 0 on success, -errno on failure.
3290 */
936fd732
TH
3291int sata_link_resume(struct ata_link *link, const unsigned long *params,
3292 unsigned long deadline)
d7bb4cc7
TH
3293{
3294 u32 scontrol;
81952c54
TH
3295 int rc;
3296
936fd732 3297 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3298 return rc;
7a7921e8 3299
852ee16a 3300 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3301
936fd732 3302 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3303 return rc;
7a7921e8 3304
d7bb4cc7
TH
3305 /* Some PHYs react badly if SStatus is pounded immediately
3306 * after resuming. Delay 200ms before debouncing.
3307 */
3308 msleep(200);
7a7921e8 3309
936fd732 3310 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3311}
3312
f5914a46
TH
3313/**
3314 * ata_std_prereset - prepare for reset
cc0680a5 3315 * @link: ATA link to be reset
d4b2bab4 3316 * @deadline: deadline jiffies for the operation
f5914a46 3317 *
cc0680a5 3318 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3319 * prereset makes libata abort whole reset sequence and give up
3320 * that port, so prereset should be best-effort. It does its
3321 * best to prepare for reset sequence but if things go wrong, it
3322 * should just whine, not fail.
f5914a46
TH
3323 *
3324 * LOCKING:
3325 * Kernel thread context (may sleep)
3326 *
3327 * RETURNS:
3328 * 0 on success, -errno otherwise.
3329 */
cc0680a5 3330int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3331{
cc0680a5 3332 struct ata_port *ap = link->ap;
936fd732 3333 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3334 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3335 int rc;
3336
31daabda 3337 /* handle link resume */
28324304 3338 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3339 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3340 ehc->i.action |= ATA_EH_HARDRESET;
3341
f5914a46
TH
3342 /* if we're about to do hardreset, nothing more to do */
3343 if (ehc->i.action & ATA_EH_HARDRESET)
3344 return 0;
3345
936fd732 3346 /* if SATA, resume link */
a16abc0b 3347 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3348 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3349 /* whine about phy resume failure but proceed */
3350 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3351 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3352 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3353 }
3354
3355 /* Wait for !BSY if the controller can wait for the first D2H
3356 * Reg FIS and we don't know that no device is attached.
3357 */
0c88758b 3358 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3359 rc = ata_wait_ready(ap, deadline);
6dffaf61 3360 if (rc && rc != -ENODEV) {
cc0680a5 3361 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3362 "(errno=%d), forcing hardreset\n", rc);
3363 ehc->i.action |= ATA_EH_HARDRESET;
3364 }
3365 }
f5914a46
TH
3366
3367 return 0;
3368}
3369
c2bd5804
TH
3370/**
3371 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3372 * @link: ATA link to reset
c2bd5804 3373 * @classes: resulting classes of attached devices
d4b2bab4 3374 * @deadline: deadline jiffies for the operation
c2bd5804 3375 *
52783c5d 3376 * Reset host port using ATA SRST.
c2bd5804
TH
3377 *
3378 * LOCKING:
3379 * Kernel thread context (may sleep)
3380 *
3381 * RETURNS:
3382 * 0 on success, -errno otherwise.
3383 */
cc0680a5 3384int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3385 unsigned long deadline)
c2bd5804 3386{
cc0680a5 3387 struct ata_port *ap = link->ap;
c2bd5804 3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3389 unsigned int devmask = 0;
3390 int rc;
c2bd5804
TH
3391 u8 err;
3392
3393 DPRINTK("ENTER\n");
3394
936fd732 3395 if (ata_link_offline(link)) {
3a39746a
TH
3396 classes[0] = ATA_DEV_NONE;
3397 goto out;
3398 }
3399
c2bd5804
TH
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3405
c2bd5804
TH
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3408
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3411 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3412 /* if link is occupied, -ENODEV too is an error */
936fd732 3413 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3414 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3415 return rc;
c2bd5804
TH
3416 }
3417
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3422
3a39746a 3423 out:
c2bd5804
TH
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 return 0;
3426}
3427
3428/**
cc0680a5
TH
3429 * sata_link_hardreset - reset link via SATA phy reset
3430 * @link: link to reset
b6103f6d 3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3432 * @deadline: deadline jiffies for the operation
c2bd5804 3433 *
cc0680a5 3434 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3435 *
3436 * LOCKING:
3437 * Kernel thread context (may sleep)
3438 *
3439 * RETURNS:
3440 * 0 on success, -errno otherwise.
3441 */
cc0680a5 3442int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3443 unsigned long deadline)
c2bd5804 3444{
852ee16a 3445 u32 scontrol;
81952c54 3446 int rc;
852ee16a 3447
c2bd5804
TH
3448 DPRINTK("ENTER\n");
3449
936fd732 3450 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3454 * and Sil3124.
3455 */
936fd732 3456 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3457 goto out;
81952c54 3458
a34b6fc0 3459 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3460
936fd732 3461 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3462 goto out;
1c3fae4d 3463
936fd732 3464 sata_set_spd(link);
1c3fae4d
TH
3465 }
3466
3467 /* issue phy wake/reset */
936fd732 3468 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3469 goto out;
81952c54 3470
852ee16a 3471 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3472
936fd732 3473 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3474 goto out;
c2bd5804 3475
1c3fae4d 3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3477 * 10.4.2 says at least 1 ms.
3478 */
3479 msleep(1);
3480
936fd732
TH
3481 /* bring link back */
3482 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3483 out:
3484 DPRINTK("EXIT, rc=%d\n", rc);
3485 return rc;
3486}
3487
3488/**
3489 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3490 * @link: link to reset
b6103f6d 3491 * @class: resulting class of attached device
d4b2bab4 3492 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3493 *
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3496 *
3497 * LOCKING:
3498 * Kernel thread context (may sleep)
3499 *
3500 * RETURNS:
3501 * 0 on success, -errno otherwise.
3502 */
cc0680a5 3503int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3504 unsigned long deadline)
b6103f6d 3505{
cc0680a5 3506 struct ata_port *ap = link->ap;
936fd732 3507 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3508 int rc;
3509
3510 DPRINTK("ENTER\n");
3511
3512 /* do hardreset */
cc0680a5 3513 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3514 if (rc) {
cc0680a5 3515 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3516 "COMRESET failed (errno=%d)\n", rc);
3517 return rc;
3518 }
c2bd5804 3519
c2bd5804 3520 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3521 if (ata_link_offline(link)) {
c2bd5804
TH
3522 *class = ATA_DEV_NONE;
3523 DPRINTK("EXIT, link offline\n");
3524 return 0;
3525 }
3526
34fee227
TH
3527 /* wait a while before checking status, see SRST for more info */
3528 msleep(150);
3529
d4b2bab4 3530 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3531 /* link occupied, -ENODEV too is an error */
3532 if (rc) {
cc0680a5 3533 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3534 "COMRESET failed (errno=%d)\n", rc);
3535 return rc;
c2bd5804
TH
3536 }
3537
3a39746a
TH
3538 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3539
c2bd5804
TH
3540 *class = ata_dev_try_classify(ap, 0, NULL);
3541
3542 DPRINTK("EXIT, class=%u\n", *class);
3543 return 0;
3544}
3545
3546/**
3547 * ata_std_postreset - standard postreset callback
cc0680a5 3548 * @link: the target ata_link
c2bd5804
TH
3549 * @classes: classes of attached devices
3550 *
3551 * This function is invoked after a successful reset. Note that
3552 * the device might have been reset more than once using
3553 * different reset methods before postreset is invoked.
c2bd5804 3554 *
c2bd5804
TH
3555 * LOCKING:
3556 * Kernel thread context (may sleep)
3557 */
cc0680a5 3558void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3559{
cc0680a5 3560 struct ata_port *ap = link->ap;
dc2b3515
TH
3561 u32 serror;
3562
c2bd5804
TH
3563 DPRINTK("ENTER\n");
3564
c2bd5804 3565 /* print link status */
936fd732 3566 sata_print_link_status(link);
c2bd5804 3567
dc2b3515 3568 /* clear SError */
936fd732
TH
3569 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3570 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3571
c2bd5804
TH
3572 /* is double-select really necessary? */
3573 if (classes[0] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 1);
3575 if (classes[1] != ATA_DEV_NONE)
3576 ap->ops->dev_select(ap, 0);
3577
3a39746a
TH
3578 /* bail out if no device is present */
3579 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3580 DPRINTK("EXIT, no device\n");
3581 return;
3582 }
3583
3584 /* set up device control */
0d5ff566
TH
3585 if (ap->ioaddr.ctl_addr)
3586 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3587
3588 DPRINTK("EXIT\n");
3589}
3590
623a3128
TH
3591/**
3592 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3593 * @dev: device to compare against
3594 * @new_class: class of the new device
3595 * @new_id: IDENTIFY page of the new device
3596 *
3597 * Compare @new_class and @new_id against @dev and determine
3598 * whether @dev is the device indicated by @new_class and
3599 * @new_id.
3600 *
3601 * LOCKING:
3602 * None.
3603 *
3604 * RETURNS:
3605 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3606 */
3373efd8
TH
3607static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3608 const u16 *new_id)
623a3128
TH
3609{
3610 const u16 *old_id = dev->id;
a0cf733b
TH
3611 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3612 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3613
3614 if (dev->class != new_class) {
f15a1daf
TH
3615 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3616 dev->class, new_class);
623a3128
TH
3617 return 0;
3618 }
3619
a0cf733b
TH
3620 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3621 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3622 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3623 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3624
3625 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3626 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3627 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3628 return 0;
3629 }
3630
3631 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3632 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3633 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3634 return 0;
3635 }
3636
623a3128
TH
3637 return 1;
3638}
3639
3640/**
fe30911b 3641 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3642 * @dev: target ATA device
bff04647 3643 * @readid_flags: read ID flags
623a3128
TH
3644 *
3645 * Re-read IDENTIFY page and make sure @dev is still attached to
3646 * the port.
3647 *
3648 * LOCKING:
3649 * Kernel thread context (may sleep)
3650 *
3651 * RETURNS:
3652 * 0 on success, negative errno otherwise
3653 */
fe30911b 3654int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3655{
5eb45c02 3656 unsigned int class = dev->class;
9af5c9c9 3657 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3658 int rc;
3659
fe635c7e 3660 /* read ID data */
bff04647 3661 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3662 if (rc)
fe30911b 3663 return rc;
623a3128
TH
3664
3665 /* is the device still there? */
fe30911b
TH
3666 if (!ata_dev_same_device(dev, class, id))
3667 return -ENODEV;
623a3128 3668
fe635c7e 3669 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3670 return 0;
3671}
3672
3673/**
3674 * ata_dev_revalidate - Revalidate ATA device
3675 * @dev: device to revalidate
3676 * @readid_flags: read ID flags
3677 *
3678 * Re-read IDENTIFY page, make sure @dev is still attached to the
3679 * port and reconfigure it according to the new IDENTIFY page.
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 *
3684 * RETURNS:
3685 * 0 on success, negative errno otherwise
3686 */
3687int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3688{
6ddcd3b0 3689 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3690 int rc;
3691
3692 if (!ata_dev_enabled(dev))
3693 return -ENODEV;
3694
3695 /* re-read ID */
3696 rc = ata_dev_reread_id(dev, readid_flags);
3697 if (rc)
3698 goto fail;
623a3128
TH
3699
3700 /* configure device according to the new ID */
efdaedc4 3701 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3702 if (rc)
3703 goto fail;
3704
3705 /* verify n_sectors hasn't changed */
b54eebd6
TH
3706 if (dev->class == ATA_DEV_ATA && n_sectors &&
3707 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3708 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3709 "%llu != %llu\n",
3710 (unsigned long long)n_sectors,
3711 (unsigned long long)dev->n_sectors);
8270bec4
TH
3712
3713 /* restore original n_sectors */
3714 dev->n_sectors = n_sectors;
3715
6ddcd3b0
TH
3716 rc = -ENODEV;
3717 goto fail;
3718 }
3719
3720 return 0;
623a3128
TH
3721
3722 fail:
f15a1daf 3723 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3724 return rc;
3725}
3726
6919a0a6
AC
3727struct ata_blacklist_entry {
3728 const char *model_num;
3729 const char *model_rev;
3730 unsigned long horkage;
3731};
3732
3733static const struct ata_blacklist_entry ata_device_blacklist [] = {
3734 /* Devices with DMA related problems under Linux */
3735 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3739 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3740 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3741 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3742 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3745 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3746 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3747 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3748 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3749 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3751 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3752 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3753 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3754 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3755 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3756 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3757 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3758 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3759 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3760 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3761 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3762 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3763 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3764 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3765 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3766 { "IOMEGA ZIP 250 ATAPI Floppy",
3767 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3768
18d6e9d5 3769 /* Weird ATAPI devices */
40a1d531 3770 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3771
6919a0a6
AC
3772 /* Devices we expect to fail diagnostics */
3773
3774 /* Devices where NCQ should be avoided */
3775 /* NCQ is slow */
3776 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3777 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3778 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3779 /* NCQ is broken */
3780 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3781 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3782 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
0e3dbc01
AC
3783 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3784 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3785 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3786 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3787 ATA_HORKAGE_NONCQ },
96442925
JA
3788 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3789 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3790 /* Blacklist entries taken from Silicon Image 3124/3132
3791 Windows driver .inf file - also several Linux problem reports */
3792 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3794 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3795 /* Drives which do spurious command completion */
3796 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3797 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3798 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3799 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3800 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3801 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3802 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3803 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3804
16c55b03
TH
3805 /* devices which puke on READ_NATIVE_MAX */
3806 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3807 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3808 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3809 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3810
3811 /* End Marker */
3812 { }
1da177e4 3813};
2e9edbf8 3814
75683fe7 3815static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3816{
8bfa79fc
TH
3817 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3818 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3819 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3820
8bfa79fc
TH
3821 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3822 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3823
6919a0a6 3824 while (ad->model_num) {
8bfa79fc 3825 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3826 if (ad->model_rev == NULL)
3827 return ad->horkage;
8bfa79fc 3828 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3829 return ad->horkage;
f4b15fef 3830 }
6919a0a6 3831 ad++;
f4b15fef 3832 }
1da177e4
LT
3833 return 0;
3834}
3835
6919a0a6
AC
3836static int ata_dma_blacklisted(const struct ata_device *dev)
3837{
3838 /* We don't support polling DMA.
3839 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3840 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3841 */
9af5c9c9 3842 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3843 (dev->flags & ATA_DFLAG_CDB_INTR))
3844 return 1;
75683fe7 3845 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3846}
3847
a6d5a51c
TH
3848/**
3849 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3850 * @dev: Device to compute xfermask for
3851 *
acf356b1
TH
3852 * Compute supported xfermask of @dev and store it in
3853 * dev->*_mask. This function is responsible for applying all
3854 * known limits including host controller limits, device
3855 * blacklist, etc...
a6d5a51c
TH
3856 *
3857 * LOCKING:
3858 * None.
a6d5a51c 3859 */
3373efd8 3860static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3861{
9af5c9c9
TH
3862 struct ata_link *link = dev->link;
3863 struct ata_port *ap = link->ap;
cca3974e 3864 struct ata_host *host = ap->host;
a6d5a51c 3865 unsigned long xfer_mask;
1da177e4 3866
37deecb5 3867 /* controller modes available */
565083e1
TH
3868 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3869 ap->mwdma_mask, ap->udma_mask);
3870
8343f889 3871 /* drive modes available */
37deecb5
TH
3872 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3873 dev->mwdma_mask, dev->udma_mask);
3874 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3875
b352e57d
AC
3876 /*
3877 * CFA Advanced TrueIDE timings are not allowed on a shared
3878 * cable
3879 */
3880 if (ata_dev_pair(dev)) {
3881 /* No PIO5 or PIO6 */
3882 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3883 /* No MWDMA3 or MWDMA 4 */
3884 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3885 }
3886
37deecb5
TH
3887 if (ata_dma_blacklisted(dev)) {
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3889 ata_dev_printk(dev, KERN_WARNING,
3890 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3891 }
a6d5a51c 3892
14d66ab7
PV
3893 if ((host->flags & ATA_HOST_SIMPLEX) &&
3894 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3895 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3896 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3897 "other device, disabling DMA\n");
5444a6f4 3898 }
565083e1 3899
e424675f
JG
3900 if (ap->flags & ATA_FLAG_NO_IORDY)
3901 xfer_mask &= ata_pio_mask_no_iordy(dev);
3902
5444a6f4 3903 if (ap->ops->mode_filter)
a76b62ca 3904 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3905
8343f889
RH
3906 /* Apply cable rule here. Don't apply it early because when
3907 * we handle hot plug the cable type can itself change.
3908 * Check this last so that we know if the transfer rate was
3909 * solely limited by the cable.
3910 * Unknown or 80 wire cables reported host side are checked
3911 * drive side as well. Cases where we know a 40wire cable
3912 * is used safely for 80 are not checked here.
3913 */
3914 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3915 /* UDMA/44 or higher would be available */
3916 if((ap->cbl == ATA_CBL_PATA40) ||
3917 (ata_drive_40wire(dev->id) &&
3918 (ap->cbl == ATA_CBL_PATA_UNK ||
3919 ap->cbl == ATA_CBL_PATA80))) {
3920 ata_dev_printk(dev, KERN_WARNING,
3921 "limited to UDMA/33 due to 40-wire cable\n");
3922 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3923 }
3924
565083e1
TH
3925 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3926 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3927}
3928
1da177e4
LT
3929/**
3930 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3931 * @dev: Device to which command will be sent
3932 *
780a87f7
JG
3933 * Issue SET FEATURES - XFER MODE command to device @dev
3934 * on port @ap.
3935 *
1da177e4 3936 * LOCKING:
0cba632b 3937 * PCI/etc. bus probe sem.
83206a29
TH
3938 *
3939 * RETURNS:
3940 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3941 */
3942
3373efd8 3943static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3944{
a0123703 3945 struct ata_taskfile tf;
83206a29 3946 unsigned int err_mask;
1da177e4
LT
3947
3948 /* set up set-features taskfile */
3949 DPRINTK("set features - xfer mode\n");
3950
464cf177
TH
3951 /* Some controllers and ATAPI devices show flaky interrupt
3952 * behavior after setting xfer mode. Use polling instead.
3953 */
3373efd8 3954 ata_tf_init(dev, &tf);
a0123703
TH
3955 tf.command = ATA_CMD_SET_FEATURES;
3956 tf.feature = SETFEATURES_XFER;
464cf177 3957 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3958 tf.protocol = ATA_PROT_NODATA;
3959 tf.nsect = dev->xfer_mode;
1da177e4 3960
3373efd8 3961 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3962
83206a29
TH
3963 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3964 return err_mask;
1da177e4
LT
3965}
3966
8bf62ece
AL
3967/**
3968 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3969 * @dev: Device to which command will be sent
e2a7f77a
RD
3970 * @heads: Number of heads (taskfile parameter)
3971 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3972 *
3973 * LOCKING:
6aff8f1f
TH
3974 * Kernel thread context (may sleep)
3975 *
3976 * RETURNS:
3977 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3978 */
3373efd8
TH
3979static unsigned int ata_dev_init_params(struct ata_device *dev,
3980 u16 heads, u16 sectors)
8bf62ece 3981{
a0123703 3982 struct ata_taskfile tf;
6aff8f1f 3983 unsigned int err_mask;
8bf62ece
AL
3984
3985 /* Number of sectors per track 1-255. Number of heads 1-16 */
3986 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3987 return AC_ERR_INVALID;
8bf62ece
AL
3988
3989 /* set up init dev params taskfile */
3990 DPRINTK("init dev params \n");
3991
3373efd8 3992 ata_tf_init(dev, &tf);
a0123703
TH
3993 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3994 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3995 tf.protocol = ATA_PROT_NODATA;
3996 tf.nsect = sectors;
3997 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3998
3373efd8 3999 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
4000 /* A clean abort indicates an original or just out of spec drive
4001 and we should continue as we issue the setup based on the
4002 drive reported working geometry */
4003 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4004 err_mask = 0;
8bf62ece 4005
6aff8f1f
TH
4006 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4007 return err_mask;
8bf62ece
AL
4008}
4009
1da177e4 4010/**
0cba632b
JG
4011 * ata_sg_clean - Unmap DMA memory associated with command
4012 * @qc: Command containing DMA memory to be released
4013 *
4014 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4015 *
4016 * LOCKING:
cca3974e 4017 * spin_lock_irqsave(host lock)
1da177e4 4018 */
70e6ad0c 4019void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4020{
4021 struct ata_port *ap = qc->ap;
cedc9a47 4022 struct scatterlist *sg = qc->__sg;
1da177e4 4023 int dir = qc->dma_dir;
cedc9a47 4024 void *pad_buf = NULL;
1da177e4 4025
a4631474
TH
4026 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4027 WARN_ON(sg == NULL);
1da177e4
LT
4028
4029 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4030 WARN_ON(qc->n_elem > 1);
1da177e4 4031
2c13b7ce 4032 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4033
cedc9a47
JG
4034 /* if we padded the buffer out to 32-bit bound, and data
4035 * xfer direction is from-device, we must copy from the
4036 * pad buffer back into the supplied buffer
4037 */
4038 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4039 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4040
4041 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4042 if (qc->n_elem)
2f1f610b 4043 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4044 /* restore last sg */
4045 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4046 if (pad_buf) {
4047 struct scatterlist *psg = &qc->pad_sgent;
4048 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4049 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4050 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4051 }
4052 } else {
2e242fa9 4053 if (qc->n_elem)
2f1f610b 4054 dma_unmap_single(ap->dev,
e1410f2d
JG
4055 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4056 dir);
cedc9a47
JG
4057 /* restore sg */
4058 sg->length += qc->pad_len;
4059 if (pad_buf)
4060 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4061 pad_buf, qc->pad_len);
4062 }
1da177e4
LT
4063
4064 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4065 qc->__sg = NULL;
1da177e4
LT
4066}
4067
4068/**
4069 * ata_fill_sg - Fill PCI IDE PRD table
4070 * @qc: Metadata associated with taskfile to be transferred
4071 *
780a87f7
JG
4072 * Fill PCI IDE PRD (scatter-gather) table with segments
4073 * associated with the current disk command.
4074 *
1da177e4 4075 * LOCKING:
cca3974e 4076 * spin_lock_irqsave(host lock)
1da177e4
LT
4077 *
4078 */
4079static void ata_fill_sg(struct ata_queued_cmd *qc)
4080{
1da177e4 4081 struct ata_port *ap = qc->ap;
cedc9a47
JG
4082 struct scatterlist *sg;
4083 unsigned int idx;
1da177e4 4084
a4631474 4085 WARN_ON(qc->__sg == NULL);
f131883e 4086 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4087
4088 idx = 0;
cedc9a47 4089 ata_for_each_sg(sg, qc) {
1da177e4
LT
4090 u32 addr, offset;
4091 u32 sg_len, len;
4092
4093 /* determine if physical DMA addr spans 64K boundary.
4094 * Note h/w doesn't support 64-bit, so we unconditionally
4095 * truncate dma_addr_t to u32.
4096 */
4097 addr = (u32) sg_dma_address(sg);
4098 sg_len = sg_dma_len(sg);
4099
4100 while (sg_len) {
4101 offset = addr & 0xffff;
4102 len = sg_len;
4103 if ((offset + sg_len) > 0x10000)
4104 len = 0x10000 - offset;
4105
4106 ap->prd[idx].addr = cpu_to_le32(addr);
4107 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4108 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4109
4110 idx++;
4111 sg_len -= len;
4112 addr += len;
4113 }
4114 }
4115
4116 if (idx)
4117 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4118}
b9a4197e 4119
d26fc955
AC
4120/**
4121 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4122 * @qc: Metadata associated with taskfile to be transferred
4123 *
4124 * Fill PCI IDE PRD (scatter-gather) table with segments
4125 * associated with the current disk command. Perform the fill
4126 * so that we avoid writing any length 64K records for
4127 * controllers that don't follow the spec.
4128 *
4129 * LOCKING:
4130 * spin_lock_irqsave(host lock)
4131 *
4132 */
4133static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4134{
4135 struct ata_port *ap = qc->ap;
4136 struct scatterlist *sg;
4137 unsigned int idx;
4138
4139 WARN_ON(qc->__sg == NULL);
4140 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4141
4142 idx = 0;
4143 ata_for_each_sg(sg, qc) {
4144 u32 addr, offset;
4145 u32 sg_len, len, blen;
4146
4147 /* determine if physical DMA addr spans 64K boundary.
4148 * Note h/w doesn't support 64-bit, so we unconditionally
4149 * truncate dma_addr_t to u32.
4150 */
4151 addr = (u32) sg_dma_address(sg);
4152 sg_len = sg_dma_len(sg);
4153
4154 while (sg_len) {
4155 offset = addr & 0xffff;
4156 len = sg_len;
4157 if ((offset + sg_len) > 0x10000)
4158 len = 0x10000 - offset;
4159
4160 blen = len & 0xffff;
4161 ap->prd[idx].addr = cpu_to_le32(addr);
4162 if (blen == 0) {
4163 /* Some PATA chipsets like the CS5530 can't
4164 cope with 0x0000 meaning 64K as the spec says */
4165 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4166 blen = 0x8000;
4167 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4168 }
4169 ap->prd[idx].flags_len = cpu_to_le32(blen);
4170 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4171
4172 idx++;
4173 sg_len -= len;
4174 addr += len;
4175 }
4176 }
4177
4178 if (idx)
4179 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4180}
4181
1da177e4
LT
4182/**
4183 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4184 * @qc: Metadata associated with taskfile to check
4185 *
780a87f7
JG
4186 * Allow low-level driver to filter ATA PACKET commands, returning
4187 * a status indicating whether or not it is OK to use DMA for the
4188 * supplied PACKET command.
4189 *
1da177e4 4190 * LOCKING:
cca3974e 4191 * spin_lock_irqsave(host lock)
0cba632b 4192 *
1da177e4
LT
4193 * RETURNS: 0 when ATAPI DMA can be used
4194 * nonzero otherwise
4195 */
4196int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4197{
4198 struct ata_port *ap = qc->ap;
b9a4197e
TH
4199
4200 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4201 * few ATAPI devices choke on such DMA requests.
4202 */
4203 if (unlikely(qc->nbytes & 15))
4204 return 1;
6f23a31d 4205
1da177e4 4206 if (ap->ops->check_atapi_dma)
b9a4197e 4207 return ap->ops->check_atapi_dma(qc);
1da177e4 4208
b9a4197e 4209 return 0;
1da177e4 4210}
b9a4197e 4211
1da177e4
LT
4212/**
4213 * ata_qc_prep - Prepare taskfile for submission
4214 * @qc: Metadata associated with taskfile to be prepared
4215 *
780a87f7
JG
4216 * Prepare ATA taskfile for submission.
4217 *
1da177e4 4218 * LOCKING:
cca3974e 4219 * spin_lock_irqsave(host lock)
1da177e4
LT
4220 */
4221void ata_qc_prep(struct ata_queued_cmd *qc)
4222{
4223 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4224 return;
4225
4226 ata_fill_sg(qc);
4227}
4228
d26fc955
AC
4229/**
4230 * ata_dumb_qc_prep - Prepare taskfile for submission
4231 * @qc: Metadata associated with taskfile to be prepared
4232 *
4233 * Prepare ATA taskfile for submission.
4234 *
4235 * LOCKING:
4236 * spin_lock_irqsave(host lock)
4237 */
4238void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4239{
4240 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4241 return;
4242
4243 ata_fill_sg_dumb(qc);
4244}
4245
e46834cd
BK
4246void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4247
0cba632b
JG
4248/**
4249 * ata_sg_init_one - Associate command with memory buffer
4250 * @qc: Command to be associated
4251 * @buf: Memory buffer
4252 * @buflen: Length of memory buffer, in bytes.
4253 *
4254 * Initialize the data-related elements of queued_cmd @qc
4255 * to point to a single memory buffer, @buf of byte length @buflen.
4256 *
4257 * LOCKING:
cca3974e 4258 * spin_lock_irqsave(host lock)
0cba632b
JG
4259 */
4260
1da177e4
LT
4261void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4262{
1da177e4
LT
4263 qc->flags |= ATA_QCFLAG_SINGLE;
4264
cedc9a47 4265 qc->__sg = &qc->sgent;
1da177e4 4266 qc->n_elem = 1;
cedc9a47 4267 qc->orig_n_elem = 1;
1da177e4 4268 qc->buf_virt = buf;
233277ca 4269 qc->nbytes = buflen;
1da177e4 4270
61c0596c 4271 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4272}
4273
0cba632b
JG
4274/**
4275 * ata_sg_init - Associate command with scatter-gather table.
4276 * @qc: Command to be associated
4277 * @sg: Scatter-gather table.
4278 * @n_elem: Number of elements in s/g table.
4279 *
4280 * Initialize the data-related elements of queued_cmd @qc
4281 * to point to a scatter-gather table @sg, containing @n_elem
4282 * elements.
4283 *
4284 * LOCKING:
cca3974e 4285 * spin_lock_irqsave(host lock)
0cba632b
JG
4286 */
4287
1da177e4
LT
4288void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4289 unsigned int n_elem)
4290{
4291 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4292 qc->__sg = sg;
1da177e4 4293 qc->n_elem = n_elem;
cedc9a47 4294 qc->orig_n_elem = n_elem;
1da177e4
LT
4295}
4296
4297/**
0cba632b
JG
4298 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4299 * @qc: Command with memory buffer to be mapped.
4300 *
4301 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4302 *
4303 * LOCKING:
cca3974e 4304 * spin_lock_irqsave(host lock)
1da177e4
LT
4305 *
4306 * RETURNS:
0cba632b 4307 * Zero on success, negative on error.
1da177e4
LT
4308 */
4309
4310static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4311{
4312 struct ata_port *ap = qc->ap;
4313 int dir = qc->dma_dir;
cedc9a47 4314 struct scatterlist *sg = qc->__sg;
1da177e4 4315 dma_addr_t dma_address;
2e242fa9 4316 int trim_sg = 0;
1da177e4 4317
cedc9a47
JG
4318 /* we must lengthen transfers to end on a 32-bit boundary */
4319 qc->pad_len = sg->length & 3;
4320 if (qc->pad_len) {
4321 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4322 struct scatterlist *psg = &qc->pad_sgent;
4323
a4631474 4324 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4325
4326 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4327
4328 if (qc->tf.flags & ATA_TFLAG_WRITE)
4329 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4330 qc->pad_len);
4331
4332 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4333 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4334 /* trim sg */
4335 sg->length -= qc->pad_len;
2e242fa9
TH
4336 if (sg->length == 0)
4337 trim_sg = 1;
cedc9a47
JG
4338
4339 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4340 sg->length, qc->pad_len);
4341 }
4342
2e242fa9
TH
4343 if (trim_sg) {
4344 qc->n_elem--;
e1410f2d
JG
4345 goto skip_map;
4346 }
4347
2f1f610b 4348 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4349 sg->length, dir);
537a95d9
TH
4350 if (dma_mapping_error(dma_address)) {
4351 /* restore sg */
4352 sg->length += qc->pad_len;
1da177e4 4353 return -1;
537a95d9 4354 }
1da177e4
LT
4355
4356 sg_dma_address(sg) = dma_address;
32529e01 4357 sg_dma_len(sg) = sg->length;
1da177e4 4358
2e242fa9 4359skip_map:
1da177e4
LT
4360 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4361 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4362
4363 return 0;
4364}
4365
4366/**
0cba632b
JG
4367 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4368 * @qc: Command with scatter-gather table to be mapped.
4369 *
4370 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4371 *
4372 * LOCKING:
cca3974e 4373 * spin_lock_irqsave(host lock)
1da177e4
LT
4374 *
4375 * RETURNS:
0cba632b 4376 * Zero on success, negative on error.
1da177e4
LT
4377 *
4378 */
4379
4380static int ata_sg_setup(struct ata_queued_cmd *qc)
4381{
4382 struct ata_port *ap = qc->ap;
cedc9a47
JG
4383 struct scatterlist *sg = qc->__sg;
4384 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4385 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4386
44877b4e 4387 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4388 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4389
cedc9a47
JG
4390 /* we must lengthen transfers to end on a 32-bit boundary */
4391 qc->pad_len = lsg->length & 3;
4392 if (qc->pad_len) {
4393 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4394 struct scatterlist *psg = &qc->pad_sgent;
4395 unsigned int offset;
4396
a4631474 4397 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4398
4399 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4400
4401 /*
4402 * psg->page/offset are used to copy to-be-written
4403 * data in this function or read data in ata_sg_clean.
4404 */
4405 offset = lsg->offset + lsg->length - qc->pad_len;
4406 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4407 psg->offset = offset_in_page(offset);
4408
4409 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4410 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4411 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4412 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4413 }
4414
4415 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4416 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4417 /* trim last sg */
4418 lsg->length -= qc->pad_len;
e1410f2d
JG
4419 if (lsg->length == 0)
4420 trim_sg = 1;
cedc9a47
JG
4421
4422 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4423 qc->n_elem - 1, lsg->length, qc->pad_len);
4424 }
4425
e1410f2d
JG
4426 pre_n_elem = qc->n_elem;
4427 if (trim_sg && pre_n_elem)
4428 pre_n_elem--;
4429
4430 if (!pre_n_elem) {
4431 n_elem = 0;
4432 goto skip_map;
4433 }
4434
1da177e4 4435 dir = qc->dma_dir;
2f1f610b 4436 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4437 if (n_elem < 1) {
4438 /* restore last sg */
4439 lsg->length += qc->pad_len;
1da177e4 4440 return -1;
537a95d9 4441 }
1da177e4
LT
4442
4443 DPRINTK("%d sg elements mapped\n", n_elem);
4444
e1410f2d 4445skip_map:
1da177e4
LT
4446 qc->n_elem = n_elem;
4447
4448 return 0;
4449}
4450
0baab86b 4451/**
c893a3ae 4452 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4453 * @buf: Buffer to swap
4454 * @buf_words: Number of 16-bit words in buffer.
4455 *
4456 * Swap halves of 16-bit words if needed to convert from
4457 * little-endian byte order to native cpu byte order, or
4458 * vice-versa.
4459 *
4460 * LOCKING:
6f0ef4fa 4461 * Inherited from caller.
0baab86b 4462 */
1da177e4
LT
4463void swap_buf_le16(u16 *buf, unsigned int buf_words)
4464{
4465#ifdef __BIG_ENDIAN
4466 unsigned int i;
4467
4468 for (i = 0; i < buf_words; i++)
4469 buf[i] = le16_to_cpu(buf[i]);
4470#endif /* __BIG_ENDIAN */
4471}
4472
6ae4cfb5 4473/**
0d5ff566 4474 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4475 * @adev: device to target
6ae4cfb5
AL
4476 * @buf: data buffer
4477 * @buflen: buffer length
344babaa 4478 * @write_data: read/write
6ae4cfb5
AL
4479 *
4480 * Transfer data from/to the device data register by PIO.
4481 *
4482 * LOCKING:
4483 * Inherited from caller.
6ae4cfb5 4484 */
0d5ff566
TH
4485void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4486 unsigned int buflen, int write_data)
1da177e4 4487{
9af5c9c9 4488 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4489 unsigned int words = buflen >> 1;
1da177e4 4490
6ae4cfb5 4491 /* Transfer multiple of 2 bytes */
1da177e4 4492 if (write_data)
0d5ff566 4493 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4494 else
0d5ff566 4495 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4496
4497 /* Transfer trailing 1 byte, if any. */
4498 if (unlikely(buflen & 0x01)) {
4499 u16 align_buf[1] = { 0 };
4500 unsigned char *trailing_buf = buf + buflen - 1;
4501
4502 if (write_data) {
4503 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4504 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4505 } else {
0d5ff566 4506 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4507 memcpy(trailing_buf, align_buf, 1);
4508 }
4509 }
1da177e4
LT
4510}
4511
75e99585 4512/**
0d5ff566 4513 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4514 * @adev: device to target
4515 * @buf: data buffer
4516 * @buflen: buffer length
4517 * @write_data: read/write
4518 *
88574551 4519 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4520 * transfer with interrupts disabled.
4521 *
4522 * LOCKING:
4523 * Inherited from caller.
4524 */
0d5ff566
TH
4525void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4526 unsigned int buflen, int write_data)
75e99585
AC
4527{
4528 unsigned long flags;
4529 local_irq_save(flags);
0d5ff566 4530 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4531 local_irq_restore(flags);
4532}
4533
4534
6ae4cfb5 4535/**
5a5dbd18 4536 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4537 * @qc: Command on going
4538 *
5a5dbd18 4539 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4540 *
4541 * LOCKING:
4542 * Inherited from caller.
4543 */
4544
1da177e4
LT
4545static void ata_pio_sector(struct ata_queued_cmd *qc)
4546{
4547 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4548 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4549 struct ata_port *ap = qc->ap;
4550 struct page *page;
4551 unsigned int offset;
4552 unsigned char *buf;
4553
5a5dbd18 4554 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4555 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4556
4557 page = sg[qc->cursg].page;
726f0785 4558 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4559
4560 /* get the current page and offset */
4561 page = nth_page(page, (offset >> PAGE_SHIFT));
4562 offset %= PAGE_SIZE;
4563
1da177e4
LT
4564 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4565
91b8b313
AL
4566 if (PageHighMem(page)) {
4567 unsigned long flags;
4568
a6b2c5d4 4569 /* FIXME: use a bounce buffer */
91b8b313
AL
4570 local_irq_save(flags);
4571 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4572
91b8b313 4573 /* do the actual data transfer */
5a5dbd18 4574 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4575
91b8b313
AL
4576 kunmap_atomic(buf, KM_IRQ0);
4577 local_irq_restore(flags);
4578 } else {
4579 buf = page_address(page);
5a5dbd18 4580 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4581 }
1da177e4 4582
5a5dbd18
ML
4583 qc->curbytes += qc->sect_size;
4584 qc->cursg_ofs += qc->sect_size;
1da177e4 4585
726f0785 4586 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4587 qc->cursg++;
4588 qc->cursg_ofs = 0;
4589 }
1da177e4 4590}
1da177e4 4591
07f6f7d0 4592/**
5a5dbd18 4593 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4594 * @qc: Command on going
4595 *
5a5dbd18 4596 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4597 * ATA device for the DRQ request.
4598 *
4599 * LOCKING:
4600 * Inherited from caller.
4601 */
1da177e4 4602
07f6f7d0
AL
4603static void ata_pio_sectors(struct ata_queued_cmd *qc)
4604{
4605 if (is_multi_taskfile(&qc->tf)) {
4606 /* READ/WRITE MULTIPLE */
4607 unsigned int nsect;
4608
587005de 4609 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4610
5a5dbd18 4611 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4612 qc->dev->multi_count);
07f6f7d0
AL
4613 while (nsect--)
4614 ata_pio_sector(qc);
4615 } else
4616 ata_pio_sector(qc);
4cc980b3
AL
4617
4618 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4619}
4620
c71c1857
AL
4621/**
4622 * atapi_send_cdb - Write CDB bytes to hardware
4623 * @ap: Port to which ATAPI device is attached.
4624 * @qc: Taskfile currently active
4625 *
4626 * When device has indicated its readiness to accept
4627 * a CDB, this function is called. Send the CDB.
4628 *
4629 * LOCKING:
4630 * caller.
4631 */
4632
4633static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4634{
4635 /* send SCSI cdb */
4636 DPRINTK("send cdb\n");
db024d53 4637 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4638
a6b2c5d4 4639 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4640 ata_altstatus(ap); /* flush */
4641
4642 switch (qc->tf.protocol) {
4643 case ATA_PROT_ATAPI:
4644 ap->hsm_task_state = HSM_ST;
4645 break;
4646 case ATA_PROT_ATAPI_NODATA:
4647 ap->hsm_task_state = HSM_ST_LAST;
4648 break;
4649 case ATA_PROT_ATAPI_DMA:
4650 ap->hsm_task_state = HSM_ST_LAST;
4651 /* initiate bmdma */
4652 ap->ops->bmdma_start(qc);
4653 break;
4654 }
1da177e4
LT
4655}
4656
6ae4cfb5
AL
4657/**
4658 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4659 * @qc: Command on going
4660 * @bytes: number of bytes
4661 *
4662 * Transfer Transfer data from/to the ATAPI device.
4663 *
4664 * LOCKING:
4665 * Inherited from caller.
4666 *
4667 */
4668
1da177e4
LT
4669static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4670{
4671 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4672 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4673 struct ata_port *ap = qc->ap;
4674 struct page *page;
4675 unsigned char *buf;
4676 unsigned int offset, count;
4677
563a6e1f 4678 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4679 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4680
4681next_sg:
563a6e1f 4682 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4683 /*
563a6e1f
AL
4684 * The end of qc->sg is reached and the device expects
4685 * more data to transfer. In order not to overrun qc->sg
4686 * and fulfill length specified in the byte count register,
4687 * - for read case, discard trailing data from the device
4688 * - for write case, padding zero data to the device
4689 */
4690 u16 pad_buf[1] = { 0 };
4691 unsigned int words = bytes >> 1;
4692 unsigned int i;
4693
4694 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4695 ata_dev_printk(qc->dev, KERN_WARNING,
4696 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4697
4698 for (i = 0; i < words; i++)
a6b2c5d4 4699 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4700
14be71f4 4701 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4702 return;
4703 }
4704
cedc9a47 4705 sg = &qc->__sg[qc->cursg];
1da177e4 4706
1da177e4
LT
4707 page = sg->page;
4708 offset = sg->offset + qc->cursg_ofs;
4709
4710 /* get the current page and offset */
4711 page = nth_page(page, (offset >> PAGE_SHIFT));
4712 offset %= PAGE_SIZE;
4713
6952df03 4714 /* don't overrun current sg */
32529e01 4715 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4716
4717 /* don't cross page boundaries */
4718 count = min(count, (unsigned int)PAGE_SIZE - offset);
4719
7282aa4b
AL
4720 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4721
91b8b313
AL
4722 if (PageHighMem(page)) {
4723 unsigned long flags;
4724
a6b2c5d4 4725 /* FIXME: use bounce buffer */
91b8b313
AL
4726 local_irq_save(flags);
4727 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4728
91b8b313 4729 /* do the actual data transfer */
a6b2c5d4 4730 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4731
91b8b313
AL
4732 kunmap_atomic(buf, KM_IRQ0);
4733 local_irq_restore(flags);
4734 } else {
4735 buf = page_address(page);
a6b2c5d4 4736 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4737 }
1da177e4
LT
4738
4739 bytes -= count;
4740 qc->curbytes += count;
4741 qc->cursg_ofs += count;
4742
32529e01 4743 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4744 qc->cursg++;
4745 qc->cursg_ofs = 0;
4746 }
4747
563a6e1f 4748 if (bytes)
1da177e4 4749 goto next_sg;
1da177e4
LT
4750}
4751
6ae4cfb5
AL
4752/**
4753 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4754 * @qc: Command on going
4755 *
4756 * Transfer Transfer data from/to the ATAPI device.
4757 *
4758 * LOCKING:
4759 * Inherited from caller.
6ae4cfb5
AL
4760 */
4761
1da177e4
LT
4762static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4763{
4764 struct ata_port *ap = qc->ap;
4765 struct ata_device *dev = qc->dev;
4766 unsigned int ireason, bc_lo, bc_hi, bytes;
4767 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4768
eec4c3f3
AL
4769 /* Abuse qc->result_tf for temp storage of intermediate TF
4770 * here to save some kernel stack usage.
4771 * For normal completion, qc->result_tf is not relevant. For
4772 * error, qc->result_tf is later overwritten by ata_qc_complete().
4773 * So, the correctness of qc->result_tf is not affected.
4774 */
4775 ap->ops->tf_read(ap, &qc->result_tf);
4776 ireason = qc->result_tf.nsect;
4777 bc_lo = qc->result_tf.lbam;
4778 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4779 bytes = (bc_hi << 8) | bc_lo;
4780
4781 /* shall be cleared to zero, indicating xfer of data */
4782 if (ireason & (1 << 0))
4783 goto err_out;
4784
4785 /* make sure transfer direction matches expected */
4786 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4787 if (do_write != i_write)
4788 goto err_out;
4789
44877b4e 4790 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4791
1da177e4 4792 __atapi_pio_bytes(qc, bytes);
4cc980b3 4793 ata_altstatus(ap); /* flush */
1da177e4
LT
4794
4795 return;
4796
4797err_out:
f15a1daf 4798 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4799 qc->err_mask |= AC_ERR_HSM;
14be71f4 4800 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4801}
4802
4803/**
c234fb00
AL
4804 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4805 * @ap: the target ata_port
4806 * @qc: qc on going
1da177e4 4807 *
c234fb00
AL
4808 * RETURNS:
4809 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4810 */
c234fb00
AL
4811
4812static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4813{
c234fb00
AL
4814 if (qc->tf.flags & ATA_TFLAG_POLLING)
4815 return 1;
1da177e4 4816
c234fb00
AL
4817 if (ap->hsm_task_state == HSM_ST_FIRST) {
4818 if (qc->tf.protocol == ATA_PROT_PIO &&
4819 (qc->tf.flags & ATA_TFLAG_WRITE))
4820 return 1;
1da177e4 4821
c234fb00
AL
4822 if (is_atapi_taskfile(&qc->tf) &&
4823 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4824 return 1;
fe79e683
AL
4825 }
4826
c234fb00
AL
4827 return 0;
4828}
1da177e4 4829
c17ea20d
TH
4830/**
4831 * ata_hsm_qc_complete - finish a qc running on standard HSM
4832 * @qc: Command to complete
4833 * @in_wq: 1 if called from workqueue, 0 otherwise
4834 *
4835 * Finish @qc which is running on standard HSM.
4836 *
4837 * LOCKING:
cca3974e 4838 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4839 * Otherwise, none on entry and grabs host lock.
4840 */
4841static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4842{
4843 struct ata_port *ap = qc->ap;
4844 unsigned long flags;
4845
4846 if (ap->ops->error_handler) {
4847 if (in_wq) {
ba6a1308 4848 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4849
cca3974e
JG
4850 /* EH might have kicked in while host lock is
4851 * released.
c17ea20d
TH
4852 */
4853 qc = ata_qc_from_tag(ap, qc->tag);
4854 if (qc) {
4855 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4856 ap->ops->irq_on(ap);
c17ea20d
TH
4857 ata_qc_complete(qc);
4858 } else
4859 ata_port_freeze(ap);
4860 }
4861
ba6a1308 4862 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4863 } else {
4864 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4865 ata_qc_complete(qc);
4866 else
4867 ata_port_freeze(ap);
4868 }
4869 } else {
4870 if (in_wq) {
ba6a1308 4871 spin_lock_irqsave(ap->lock, flags);
83625006 4872 ap->ops->irq_on(ap);
c17ea20d 4873 ata_qc_complete(qc);
ba6a1308 4874 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4875 } else
4876 ata_qc_complete(qc);
4877 }
4878}
4879
bb5cb290
AL
4880/**
4881 * ata_hsm_move - move the HSM to the next state.
4882 * @ap: the target ata_port
4883 * @qc: qc on going
4884 * @status: current device status
4885 * @in_wq: 1 if called from workqueue, 0 otherwise
4886 *
4887 * RETURNS:
4888 * 1 when poll next status needed, 0 otherwise.
4889 */
9a1004d0
TH
4890int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4891 u8 status, int in_wq)
e2cec771 4892{
bb5cb290
AL
4893 unsigned long flags = 0;
4894 int poll_next;
4895
6912ccd5
AL
4896 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4897
bb5cb290
AL
4898 /* Make sure ata_qc_issue_prot() does not throw things
4899 * like DMA polling into the workqueue. Notice that
4900 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4901 */
c234fb00 4902 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4903
e2cec771 4904fsm_start:
999bb6f4 4905 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4906 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4907
e2cec771
AL
4908 switch (ap->hsm_task_state) {
4909 case HSM_ST_FIRST:
bb5cb290
AL
4910 /* Send first data block or PACKET CDB */
4911
4912 /* If polling, we will stay in the work queue after
4913 * sending the data. Otherwise, interrupt handler
4914 * takes over after sending the data.
4915 */
4916 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4917
e2cec771 4918 /* check device status */
3655d1d3
AL
4919 if (unlikely((status & ATA_DRQ) == 0)) {
4920 /* handle BSY=0, DRQ=0 as error */
4921 if (likely(status & (ATA_ERR | ATA_DF)))
4922 /* device stops HSM for abort/error */
4923 qc->err_mask |= AC_ERR_DEV;
4924 else
4925 /* HSM violation. Let EH handle this */
4926 qc->err_mask |= AC_ERR_HSM;
4927
14be71f4 4928 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4929 goto fsm_start;
1da177e4
LT
4930 }
4931
71601958
AL
4932 /* Device should not ask for data transfer (DRQ=1)
4933 * when it finds something wrong.
eee6c32f
AL
4934 * We ignore DRQ here and stop the HSM by
4935 * changing hsm_task_state to HSM_ST_ERR and
4936 * let the EH abort the command or reset the device.
71601958
AL
4937 */
4938 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4939 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4940 "error, dev_stat 0x%X\n", status);
3655d1d3 4941 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4942 ap->hsm_task_state = HSM_ST_ERR;
4943 goto fsm_start;
71601958 4944 }
1da177e4 4945
bb5cb290
AL
4946 /* Send the CDB (atapi) or the first data block (ata pio out).
4947 * During the state transition, interrupt handler shouldn't
4948 * be invoked before the data transfer is complete and
4949 * hsm_task_state is changed. Hence, the following locking.
4950 */
4951 if (in_wq)
ba6a1308 4952 spin_lock_irqsave(ap->lock, flags);
1da177e4 4953
bb5cb290
AL
4954 if (qc->tf.protocol == ATA_PROT_PIO) {
4955 /* PIO data out protocol.
4956 * send first data block.
4957 */
0565c26d 4958
bb5cb290
AL
4959 /* ata_pio_sectors() might change the state
4960 * to HSM_ST_LAST. so, the state is changed here
4961 * before ata_pio_sectors().
4962 */
4963 ap->hsm_task_state = HSM_ST;
4964 ata_pio_sectors(qc);
bb5cb290
AL
4965 } else
4966 /* send CDB */
4967 atapi_send_cdb(ap, qc);
4968
4969 if (in_wq)
ba6a1308 4970 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4971
4972 /* if polling, ata_pio_task() handles the rest.
4973 * otherwise, interrupt handler takes over from here.
4974 */
e2cec771 4975 break;
1c848984 4976
e2cec771
AL
4977 case HSM_ST:
4978 /* complete command or read/write the data register */
4979 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4980 /* ATAPI PIO protocol */
4981 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4982 /* No more data to transfer or device error.
4983 * Device error will be tagged in HSM_ST_LAST.
4984 */
e2cec771
AL
4985 ap->hsm_task_state = HSM_ST_LAST;
4986 goto fsm_start;
4987 }
1da177e4 4988
71601958
AL
4989 /* Device should not ask for data transfer (DRQ=1)
4990 * when it finds something wrong.
eee6c32f
AL
4991 * We ignore DRQ here and stop the HSM by
4992 * changing hsm_task_state to HSM_ST_ERR and
4993 * let the EH abort the command or reset the device.
71601958
AL
4994 */
4995 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4996 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4997 "device error, dev_stat 0x%X\n",
4998 status);
3655d1d3 4999 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5000 ap->hsm_task_state = HSM_ST_ERR;
5001 goto fsm_start;
71601958 5002 }
1da177e4 5003
e2cec771 5004 atapi_pio_bytes(qc);
7fb6ec28 5005
e2cec771
AL
5006 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5007 /* bad ireason reported by device */
5008 goto fsm_start;
1da177e4 5009
e2cec771
AL
5010 } else {
5011 /* ATA PIO protocol */
5012 if (unlikely((status & ATA_DRQ) == 0)) {
5013 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5014 if (likely(status & (ATA_ERR | ATA_DF)))
5015 /* device stops HSM for abort/error */
5016 qc->err_mask |= AC_ERR_DEV;
5017 else
55a8e2c8
TH
5018 /* HSM violation. Let EH handle this.
5019 * Phantom devices also trigger this
5020 * condition. Mark hint.
5021 */
5022 qc->err_mask |= AC_ERR_HSM |
5023 AC_ERR_NODEV_HINT;
3655d1d3 5024
e2cec771
AL
5025 ap->hsm_task_state = HSM_ST_ERR;
5026 goto fsm_start;
5027 }
1da177e4 5028
eee6c32f
AL
5029 /* For PIO reads, some devices may ask for
5030 * data transfer (DRQ=1) alone with ERR=1.
5031 * We respect DRQ here and transfer one
5032 * block of junk data before changing the
5033 * hsm_task_state to HSM_ST_ERR.
5034 *
5035 * For PIO writes, ERR=1 DRQ=1 doesn't make
5036 * sense since the data block has been
5037 * transferred to the device.
71601958
AL
5038 */
5039 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5040 /* data might be corrputed */
5041 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5042
5043 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5044 ata_pio_sectors(qc);
eee6c32f
AL
5045 status = ata_wait_idle(ap);
5046 }
5047
3655d1d3
AL
5048 if (status & (ATA_BUSY | ATA_DRQ))
5049 qc->err_mask |= AC_ERR_HSM;
5050
eee6c32f
AL
5051 /* ata_pio_sectors() might change the
5052 * state to HSM_ST_LAST. so, the state
5053 * is changed after ata_pio_sectors().
5054 */
5055 ap->hsm_task_state = HSM_ST_ERR;
5056 goto fsm_start;
71601958
AL
5057 }
5058
e2cec771
AL
5059 ata_pio_sectors(qc);
5060
5061 if (ap->hsm_task_state == HSM_ST_LAST &&
5062 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5063 /* all data read */
52a32205 5064 status = ata_wait_idle(ap);
e2cec771
AL
5065 goto fsm_start;
5066 }
5067 }
5068
bb5cb290 5069 poll_next = 1;
1da177e4
LT
5070 break;
5071
14be71f4 5072 case HSM_ST_LAST:
6912ccd5
AL
5073 if (unlikely(!ata_ok(status))) {
5074 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5075 ap->hsm_task_state = HSM_ST_ERR;
5076 goto fsm_start;
5077 }
5078
5079 /* no more data to transfer */
4332a771 5080 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5081 ap->print_id, qc->dev->devno, status);
e2cec771 5082
6912ccd5
AL
5083 WARN_ON(qc->err_mask);
5084
e2cec771 5085 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5086
e2cec771 5087 /* complete taskfile transaction */
c17ea20d 5088 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5089
5090 poll_next = 0;
1da177e4
LT
5091 break;
5092
14be71f4 5093 case HSM_ST_ERR:
e2cec771
AL
5094 /* make sure qc->err_mask is available to
5095 * know what's wrong and recover
5096 */
5097 WARN_ON(qc->err_mask == 0);
5098
5099 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5100
999bb6f4 5101 /* complete taskfile transaction */
c17ea20d 5102 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5103
5104 poll_next = 0;
e2cec771
AL
5105 break;
5106 default:
bb5cb290 5107 poll_next = 0;
6912ccd5 5108 BUG();
1da177e4
LT
5109 }
5110
bb5cb290 5111 return poll_next;
1da177e4
LT
5112}
5113
65f27f38 5114static void ata_pio_task(struct work_struct *work)
8061f5f0 5115{
65f27f38
DH
5116 struct ata_port *ap =
5117 container_of(work, struct ata_port, port_task.work);
5118 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5119 u8 status;
a1af3734 5120 int poll_next;
8061f5f0 5121
7fb6ec28 5122fsm_start:
a1af3734 5123 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5124
a1af3734
AL
5125 /*
5126 * This is purely heuristic. This is a fast path.
5127 * Sometimes when we enter, BSY will be cleared in
5128 * a chk-status or two. If not, the drive is probably seeking
5129 * or something. Snooze for a couple msecs, then
5130 * chk-status again. If still busy, queue delayed work.
5131 */
5132 status = ata_busy_wait(ap, ATA_BUSY, 5);
5133 if (status & ATA_BUSY) {
5134 msleep(2);
5135 status = ata_busy_wait(ap, ATA_BUSY, 10);
5136 if (status & ATA_BUSY) {
31ce6dae 5137 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5138 return;
5139 }
8061f5f0
TH
5140 }
5141
a1af3734
AL
5142 /* move the HSM */
5143 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5144
a1af3734
AL
5145 /* another command or interrupt handler
5146 * may be running at this point.
5147 */
5148 if (poll_next)
7fb6ec28 5149 goto fsm_start;
8061f5f0
TH
5150}
5151
1da177e4
LT
5152/**
5153 * ata_qc_new - Request an available ATA command, for queueing
5154 * @ap: Port associated with device @dev
5155 * @dev: Device from whom we request an available command structure
5156 *
5157 * LOCKING:
0cba632b 5158 * None.
1da177e4
LT
5159 */
5160
5161static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5162{
5163 struct ata_queued_cmd *qc = NULL;
5164 unsigned int i;
5165
e3180499 5166 /* no command while frozen */
b51e9e5d 5167 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5168 return NULL;
5169
2ab7db1f
TH
5170 /* the last tag is reserved for internal command. */
5171 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5172 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5173 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5174 break;
5175 }
5176
5177 if (qc)
5178 qc->tag = i;
5179
5180 return qc;
5181}
5182
5183/**
5184 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5185 * @dev: Device from whom we request an available command structure
5186 *
5187 * LOCKING:
0cba632b 5188 * None.
1da177e4
LT
5189 */
5190
3373efd8 5191struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5192{
9af5c9c9 5193 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5194 struct ata_queued_cmd *qc;
5195
5196 qc = ata_qc_new(ap);
5197 if (qc) {
1da177e4
LT
5198 qc->scsicmd = NULL;
5199 qc->ap = ap;
5200 qc->dev = dev;
1da177e4 5201
2c13b7ce 5202 ata_qc_reinit(qc);
1da177e4
LT
5203 }
5204
5205 return qc;
5206}
5207
1da177e4
LT
5208/**
5209 * ata_qc_free - free unused ata_queued_cmd
5210 * @qc: Command to complete
5211 *
5212 * Designed to free unused ata_queued_cmd object
5213 * in case something prevents using it.
5214 *
5215 * LOCKING:
cca3974e 5216 * spin_lock_irqsave(host lock)
1da177e4
LT
5217 */
5218void ata_qc_free(struct ata_queued_cmd *qc)
5219{
4ba946e9
TH
5220 struct ata_port *ap = qc->ap;
5221 unsigned int tag;
5222
a4631474 5223 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5224
4ba946e9
TH
5225 qc->flags = 0;
5226 tag = qc->tag;
5227 if (likely(ata_tag_valid(tag))) {
4ba946e9 5228 qc->tag = ATA_TAG_POISON;
6cec4a39 5229 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5230 }
1da177e4
LT
5231}
5232
76014427 5233void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5234{
dedaf2b0 5235 struct ata_port *ap = qc->ap;
9af5c9c9 5236 struct ata_link *link = qc->dev->link;
dedaf2b0 5237
a4631474
TH
5238 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5239 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5240
5241 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5242 ata_sg_clean(qc);
5243
7401abf2 5244 /* command should be marked inactive atomically with qc completion */
dedaf2b0 5245 if (qc->tf.protocol == ATA_PROT_NCQ)
9af5c9c9 5246 link->sactive &= ~(1 << qc->tag);
dedaf2b0 5247 else
9af5c9c9 5248 link->active_tag = ATA_TAG_POISON;
7401abf2 5249
3f3791d3
AL
5250 /* atapi: mark qc as inactive to prevent the interrupt handler
5251 * from completing the command twice later, before the error handler
5252 * is called. (when rc != 0 and atapi request sense is needed)
5253 */
5254 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5255 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5256
1da177e4 5257 /* call completion callback */
77853bf2 5258 qc->complete_fn(qc);
1da177e4
LT
5259}
5260
39599a53
TH
5261static void fill_result_tf(struct ata_queued_cmd *qc)
5262{
5263 struct ata_port *ap = qc->ap;
5264
39599a53 5265 qc->result_tf.flags = qc->tf.flags;
4742d54f 5266 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5267}
5268
f686bcb8
TH
5269/**
5270 * ata_qc_complete - Complete an active ATA command
5271 * @qc: Command to complete
5272 * @err_mask: ATA Status register contents
5273 *
5274 * Indicate to the mid and upper layers that an ATA
5275 * command has completed, with either an ok or not-ok status.
5276 *
5277 * LOCKING:
cca3974e 5278 * spin_lock_irqsave(host lock)
f686bcb8
TH
5279 */
5280void ata_qc_complete(struct ata_queued_cmd *qc)
5281{
5282 struct ata_port *ap = qc->ap;
5283
5284 /* XXX: New EH and old EH use different mechanisms to
5285 * synchronize EH with regular execution path.
5286 *
5287 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5288 * Normal execution path is responsible for not accessing a
5289 * failed qc. libata core enforces the rule by returning NULL
5290 * from ata_qc_from_tag() for failed qcs.
5291 *
5292 * Old EH depends on ata_qc_complete() nullifying completion
5293 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5294 * not synchronize with interrupt handler. Only PIO task is
5295 * taken care of.
5296 */
5297 if (ap->ops->error_handler) {
b51e9e5d 5298 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5299
5300 if (unlikely(qc->err_mask))
5301 qc->flags |= ATA_QCFLAG_FAILED;
5302
5303 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5304 if (!ata_tag_internal(qc->tag)) {
5305 /* always fill result TF for failed qc */
39599a53 5306 fill_result_tf(qc);
f686bcb8
TH
5307 ata_qc_schedule_eh(qc);
5308 return;
5309 }
5310 }
5311
5312 /* read result TF if requested */
5313 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5314 fill_result_tf(qc);
f686bcb8
TH
5315
5316 __ata_qc_complete(qc);
5317 } else {
5318 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5319 return;
5320
5321 /* read result TF if failed or requested */
5322 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5323 fill_result_tf(qc);
f686bcb8
TH
5324
5325 __ata_qc_complete(qc);
5326 }
5327}
5328
dedaf2b0
TH
5329/**
5330 * ata_qc_complete_multiple - Complete multiple qcs successfully
5331 * @ap: port in question
5332 * @qc_active: new qc_active mask
5333 * @finish_qc: LLDD callback invoked before completing a qc
5334 *
5335 * Complete in-flight commands. This functions is meant to be
5336 * called from low-level driver's interrupt routine to complete
5337 * requests normally. ap->qc_active and @qc_active is compared
5338 * and commands are completed accordingly.
5339 *
5340 * LOCKING:
cca3974e 5341 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5342 *
5343 * RETURNS:
5344 * Number of completed commands on success, -errno otherwise.
5345 */
5346int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5347 void (*finish_qc)(struct ata_queued_cmd *))
5348{
5349 int nr_done = 0;
5350 u32 done_mask;
5351 int i;
5352
5353 done_mask = ap->qc_active ^ qc_active;
5354
5355 if (unlikely(done_mask & qc_active)) {
5356 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5357 "(%08x->%08x)\n", ap->qc_active, qc_active);
5358 return -EINVAL;
5359 }
5360
5361 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5362 struct ata_queued_cmd *qc;
5363
5364 if (!(done_mask & (1 << i)))
5365 continue;
5366
5367 if ((qc = ata_qc_from_tag(ap, i))) {
5368 if (finish_qc)
5369 finish_qc(qc);
5370 ata_qc_complete(qc);
5371 nr_done++;
5372 }
5373 }
5374
5375 return nr_done;
5376}
5377
1da177e4
LT
5378static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5379{
5380 struct ata_port *ap = qc->ap;
5381
5382 switch (qc->tf.protocol) {
3dc1d881 5383 case ATA_PROT_NCQ:
1da177e4
LT
5384 case ATA_PROT_DMA:
5385 case ATA_PROT_ATAPI_DMA:
5386 return 1;
5387
5388 case ATA_PROT_ATAPI:
5389 case ATA_PROT_PIO:
1da177e4
LT
5390 if (ap->flags & ATA_FLAG_PIO_DMA)
5391 return 1;
5392
5393 /* fall through */
5394
5395 default:
5396 return 0;
5397 }
5398
5399 /* never reached */
5400}
5401
5402/**
5403 * ata_qc_issue - issue taskfile to device
5404 * @qc: command to issue to device
5405 *
5406 * Prepare an ATA command to submission to device.
5407 * This includes mapping the data into a DMA-able
5408 * area, filling in the S/G table, and finally
5409 * writing the taskfile to hardware, starting the command.
5410 *
5411 * LOCKING:
cca3974e 5412 * spin_lock_irqsave(host lock)
1da177e4 5413 */
8e0e694a 5414void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5415{
5416 struct ata_port *ap = qc->ap;
9af5c9c9 5417 struct ata_link *link = qc->dev->link;
1da177e4 5418
dedaf2b0
TH
5419 /* Make sure only one non-NCQ command is outstanding. The
5420 * check is skipped for old EH because it reuses active qc to
5421 * request ATAPI sense.
5422 */
9af5c9c9 5423 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5424
5425 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9
TH
5426 WARN_ON(link->sactive & (1 << qc->tag));
5427 link->sactive |= 1 << qc->tag;
dedaf2b0 5428 } else {
9af5c9c9
TH
5429 WARN_ON(link->sactive);
5430 link->active_tag = qc->tag;
dedaf2b0
TH
5431 }
5432
e4a70e76 5433 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5434 ap->qc_active |= 1 << qc->tag;
e4a70e76 5435
1da177e4
LT
5436 if (ata_should_dma_map(qc)) {
5437 if (qc->flags & ATA_QCFLAG_SG) {
5438 if (ata_sg_setup(qc))
8e436af9 5439 goto sg_err;
1da177e4
LT
5440 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5441 if (ata_sg_setup_one(qc))
8e436af9 5442 goto sg_err;
1da177e4
LT
5443 }
5444 } else {
5445 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5446 }
5447
5448 ap->ops->qc_prep(qc);
5449
8e0e694a
TH
5450 qc->err_mask |= ap->ops->qc_issue(qc);
5451 if (unlikely(qc->err_mask))
5452 goto err;
5453 return;
1da177e4 5454
8e436af9
TH
5455sg_err:
5456 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5457 qc->err_mask |= AC_ERR_SYSTEM;
5458err:
5459 ata_qc_complete(qc);
1da177e4
LT
5460}
5461
5462/**
5463 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5464 * @qc: command to issue to device
5465 *
5466 * Using various libata functions and hooks, this function
5467 * starts an ATA command. ATA commands are grouped into
5468 * classes called "protocols", and issuing each type of protocol
5469 * is slightly different.
5470 *
0baab86b
EF
5471 * May be used as the qc_issue() entry in ata_port_operations.
5472 *
1da177e4 5473 * LOCKING:
cca3974e 5474 * spin_lock_irqsave(host lock)
1da177e4
LT
5475 *
5476 * RETURNS:
9a3d9eb0 5477 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5478 */
5479
9a3d9eb0 5480unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5481{
5482 struct ata_port *ap = qc->ap;
5483
e50362ec
AL
5484 /* Use polling pio if the LLD doesn't handle
5485 * interrupt driven pio and atapi CDB interrupt.
5486 */
5487 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5488 switch (qc->tf.protocol) {
5489 case ATA_PROT_PIO:
e3472cbe 5490 case ATA_PROT_NODATA:
e50362ec
AL
5491 case ATA_PROT_ATAPI:
5492 case ATA_PROT_ATAPI_NODATA:
5493 qc->tf.flags |= ATA_TFLAG_POLLING;
5494 break;
5495 case ATA_PROT_ATAPI_DMA:
5496 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5497 /* see ata_dma_blacklisted() */
e50362ec
AL
5498 BUG();
5499 break;
5500 default:
5501 break;
5502 }
5503 }
5504
312f7da2 5505 /* select the device */
1da177e4
LT
5506 ata_dev_select(ap, qc->dev->devno, 1, 0);
5507
312f7da2 5508 /* start the command */
1da177e4
LT
5509 switch (qc->tf.protocol) {
5510 case ATA_PROT_NODATA:
312f7da2
AL
5511 if (qc->tf.flags & ATA_TFLAG_POLLING)
5512 ata_qc_set_polling(qc);
5513
e5338254 5514 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5515 ap->hsm_task_state = HSM_ST_LAST;
5516
5517 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5518 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5519
1da177e4
LT
5520 break;
5521
5522 case ATA_PROT_DMA:
587005de 5523 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5524
1da177e4
LT
5525 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5526 ap->ops->bmdma_setup(qc); /* set up bmdma */
5527 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5528 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5529 break;
5530
312f7da2
AL
5531 case ATA_PROT_PIO:
5532 if (qc->tf.flags & ATA_TFLAG_POLLING)
5533 ata_qc_set_polling(qc);
1da177e4 5534
e5338254 5535 ata_tf_to_host(ap, &qc->tf);
312f7da2 5536
54f00389
AL
5537 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5538 /* PIO data out protocol */
5539 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5540 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5541
5542 /* always send first data block using
e27486db 5543 * the ata_pio_task() codepath.
54f00389 5544 */
312f7da2 5545 } else {
54f00389
AL
5546 /* PIO data in protocol */
5547 ap->hsm_task_state = HSM_ST;
5548
5549 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5550 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5551
5552 /* if polling, ata_pio_task() handles the rest.
5553 * otherwise, interrupt handler takes over from here.
5554 */
312f7da2
AL
5555 }
5556
1da177e4
LT
5557 break;
5558
1da177e4 5559 case ATA_PROT_ATAPI:
1da177e4 5560 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5561 if (qc->tf.flags & ATA_TFLAG_POLLING)
5562 ata_qc_set_polling(qc);
5563
e5338254 5564 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5565
312f7da2
AL
5566 ap->hsm_task_state = HSM_ST_FIRST;
5567
5568 /* send cdb by polling if no cdb interrupt */
5569 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5570 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5571 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5572 break;
5573
5574 case ATA_PROT_ATAPI_DMA:
587005de 5575 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5576
1da177e4
LT
5577 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5578 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5579 ap->hsm_task_state = HSM_ST_FIRST;
5580
5581 /* send cdb by polling if no cdb interrupt */
5582 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5583 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5584 break;
5585
5586 default:
5587 WARN_ON(1);
9a3d9eb0 5588 return AC_ERR_SYSTEM;
1da177e4
LT
5589 }
5590
5591 return 0;
5592}
5593
1da177e4
LT
5594/**
5595 * ata_host_intr - Handle host interrupt for given (port, task)
5596 * @ap: Port on which interrupt arrived (possibly...)
5597 * @qc: Taskfile currently active in engine
5598 *
5599 * Handle host interrupt for given queued command. Currently,
5600 * only DMA interrupts are handled. All other commands are
5601 * handled via polling with interrupts disabled (nIEN bit).
5602 *
5603 * LOCKING:
cca3974e 5604 * spin_lock_irqsave(host lock)
1da177e4
LT
5605 *
5606 * RETURNS:
5607 * One if interrupt was handled, zero if not (shared irq).
5608 */
5609
5610inline unsigned int ata_host_intr (struct ata_port *ap,
5611 struct ata_queued_cmd *qc)
5612{
9af5c9c9 5613 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5614 u8 status, host_stat = 0;
1da177e4 5615
312f7da2 5616 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5617 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5618
312f7da2
AL
5619 /* Check whether we are expecting interrupt in this state */
5620 switch (ap->hsm_task_state) {
5621 case HSM_ST_FIRST:
6912ccd5
AL
5622 /* Some pre-ATAPI-4 devices assert INTRQ
5623 * at this state when ready to receive CDB.
5624 */
1da177e4 5625
312f7da2
AL
5626 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5627 * The flag was turned on only for atapi devices.
5628 * No need to check is_atapi_taskfile(&qc->tf) again.
5629 */
5630 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5631 goto idle_irq;
1da177e4 5632 break;
312f7da2
AL
5633 case HSM_ST_LAST:
5634 if (qc->tf.protocol == ATA_PROT_DMA ||
5635 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5636 /* check status of DMA engine */
5637 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5638 VPRINTK("ata%u: host_stat 0x%X\n",
5639 ap->print_id, host_stat);
312f7da2
AL
5640
5641 /* if it's not our irq... */
5642 if (!(host_stat & ATA_DMA_INTR))
5643 goto idle_irq;
5644
5645 /* before we do anything else, clear DMA-Start bit */
5646 ap->ops->bmdma_stop(qc);
a4f16610
AL
5647
5648 if (unlikely(host_stat & ATA_DMA_ERR)) {
5649 /* error when transfering data to/from memory */
5650 qc->err_mask |= AC_ERR_HOST_BUS;
5651 ap->hsm_task_state = HSM_ST_ERR;
5652 }
312f7da2
AL
5653 }
5654 break;
5655 case HSM_ST:
5656 break;
1da177e4
LT
5657 default:
5658 goto idle_irq;
5659 }
5660
312f7da2
AL
5661 /* check altstatus */
5662 status = ata_altstatus(ap);
5663 if (status & ATA_BUSY)
5664 goto idle_irq;
1da177e4 5665
312f7da2
AL
5666 /* check main status, clearing INTRQ */
5667 status = ata_chk_status(ap);
5668 if (unlikely(status & ATA_BUSY))
5669 goto idle_irq;
1da177e4 5670
312f7da2
AL
5671 /* ack bmdma irq events */
5672 ap->ops->irq_clear(ap);
1da177e4 5673
bb5cb290 5674 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5675
5676 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5677 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5678 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5679
1da177e4
LT
5680 return 1; /* irq handled */
5681
5682idle_irq:
5683 ap->stats.idle_irq++;
5684
5685#ifdef ATA_IRQ_TRAP
5686 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5687 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5688 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5689 return 1;
1da177e4
LT
5690 }
5691#endif
5692 return 0; /* irq not handled */
5693}
5694
5695/**
5696 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5697 * @irq: irq line (unused)
cca3974e 5698 * @dev_instance: pointer to our ata_host information structure
1da177e4 5699 *
0cba632b
JG
5700 * Default interrupt handler for PCI IDE devices. Calls
5701 * ata_host_intr() for each port that is not disabled.
5702 *
1da177e4 5703 * LOCKING:
cca3974e 5704 * Obtains host lock during operation.
1da177e4
LT
5705 *
5706 * RETURNS:
0cba632b 5707 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5708 */
5709
7d12e780 5710irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5711{
cca3974e 5712 struct ata_host *host = dev_instance;
1da177e4
LT
5713 unsigned int i;
5714 unsigned int handled = 0;
5715 unsigned long flags;
5716
5717 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5718 spin_lock_irqsave(&host->lock, flags);
1da177e4 5719
cca3974e 5720 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5721 struct ata_port *ap;
5722
cca3974e 5723 ap = host->ports[i];
c1389503 5724 if (ap &&
029f5468 5725 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5726 struct ata_queued_cmd *qc;
5727
9af5c9c9 5728 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5729 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5730 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5731 handled |= ata_host_intr(ap, qc);
5732 }
5733 }
5734
cca3974e 5735 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5736
5737 return IRQ_RETVAL(handled);
5738}
5739
34bf2170
TH
5740/**
5741 * sata_scr_valid - test whether SCRs are accessible
936fd732 5742 * @link: ATA link to test SCR accessibility for
34bf2170 5743 *
936fd732 5744 * Test whether SCRs are accessible for @link.
34bf2170
TH
5745 *
5746 * LOCKING:
5747 * None.
5748 *
5749 * RETURNS:
5750 * 1 if SCRs are accessible, 0 otherwise.
5751 */
936fd732 5752int sata_scr_valid(struct ata_link *link)
34bf2170 5753{
936fd732
TH
5754 struct ata_port *ap = link->ap;
5755
a16abc0b 5756 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5757}
5758
5759/**
5760 * sata_scr_read - read SCR register of the specified port
936fd732 5761 * @link: ATA link to read SCR for
34bf2170
TH
5762 * @reg: SCR to read
5763 * @val: Place to store read value
5764 *
936fd732 5765 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5766 * guaranteed to succeed if the cable type of the port is SATA
5767 * and the port implements ->scr_read.
5768 *
5769 * LOCKING:
5770 * None.
5771 *
5772 * RETURNS:
5773 * 0 on success, negative errno on failure.
5774 */
936fd732 5775int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5776{
936fd732
TH
5777 struct ata_port *ap = link->ap;
5778
5779 if (sata_scr_valid(link))
da3dbb17 5780 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5781 return -EOPNOTSUPP;
5782}
5783
5784/**
5785 * sata_scr_write - write SCR register of the specified port
936fd732 5786 * @link: ATA link to write SCR for
34bf2170
TH
5787 * @reg: SCR to write
5788 * @val: value to write
5789 *
936fd732 5790 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5791 * guaranteed to succeed if the cable type of the port is SATA
5792 * and the port implements ->scr_read.
5793 *
5794 * LOCKING:
5795 * None.
5796 *
5797 * RETURNS:
5798 * 0 on success, negative errno on failure.
5799 */
936fd732 5800int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5801{
936fd732
TH
5802 struct ata_port *ap = link->ap;
5803
5804 if (sata_scr_valid(link))
da3dbb17 5805 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5806 return -EOPNOTSUPP;
5807}
5808
5809/**
5810 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5811 * @link: ATA link to write SCR for
34bf2170
TH
5812 * @reg: SCR to write
5813 * @val: value to write
5814 *
5815 * This function is identical to sata_scr_write() except that this
5816 * function performs flush after writing to the register.
5817 *
5818 * LOCKING:
5819 * None.
5820 *
5821 * RETURNS:
5822 * 0 on success, negative errno on failure.
5823 */
936fd732 5824int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5825{
936fd732 5826 struct ata_port *ap = link->ap;
da3dbb17
TH
5827 int rc;
5828
936fd732 5829 if (sata_scr_valid(link)) {
da3dbb17
TH
5830 rc = ap->ops->scr_write(ap, reg, val);
5831 if (rc == 0)
5832 rc = ap->ops->scr_read(ap, reg, &val);
5833 return rc;
34bf2170
TH
5834 }
5835 return -EOPNOTSUPP;
5836}
5837
5838/**
936fd732
TH
5839 * ata_link_online - test whether the given link is online
5840 * @link: ATA link to test
34bf2170 5841 *
936fd732
TH
5842 * Test whether @link is online. Note that this function returns
5843 * 0 if online status of @link cannot be obtained, so
5844 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5845 *
5846 * LOCKING:
5847 * None.
5848 *
5849 * RETURNS:
5850 * 1 if the port online status is available and online.
5851 */
936fd732 5852int ata_link_online(struct ata_link *link)
34bf2170
TH
5853{
5854 u32 sstatus;
5855
936fd732
TH
5856 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5857 (sstatus & 0xf) == 0x3)
34bf2170
TH
5858 return 1;
5859 return 0;
5860}
5861
5862/**
936fd732
TH
5863 * ata_link_offline - test whether the given link is offline
5864 * @link: ATA link to test
34bf2170 5865 *
936fd732
TH
5866 * Test whether @link is offline. Note that this function
5867 * returns 0 if offline status of @link cannot be obtained, so
5868 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5869 *
5870 * LOCKING:
5871 * None.
5872 *
5873 * RETURNS:
5874 * 1 if the port offline status is available and offline.
5875 */
936fd732 5876int ata_link_offline(struct ata_link *link)
34bf2170
TH
5877{
5878 u32 sstatus;
5879
936fd732
TH
5880 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5881 (sstatus & 0xf) != 0x3)
34bf2170
TH
5882 return 1;
5883 return 0;
5884}
0baab86b 5885
77b08fb5 5886int ata_flush_cache(struct ata_device *dev)
9b847548 5887{
977e6b9f 5888 unsigned int err_mask;
9b847548
JA
5889 u8 cmd;
5890
5891 if (!ata_try_flush_cache(dev))
5892 return 0;
5893
6fc49adb 5894 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5895 cmd = ATA_CMD_FLUSH_EXT;
5896 else
5897 cmd = ATA_CMD_FLUSH;
5898
977e6b9f
TH
5899 err_mask = ata_do_simple_cmd(dev, cmd);
5900 if (err_mask) {
5901 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5902 return -EIO;
5903 }
5904
5905 return 0;
9b847548
JA
5906}
5907
6ffa01d8 5908#ifdef CONFIG_PM
cca3974e
JG
5909static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5910 unsigned int action, unsigned int ehi_flags,
5911 int wait)
500530f6
TH
5912{
5913 unsigned long flags;
5914 int i, rc;
5915
cca3974e
JG
5916 for (i = 0; i < host->n_ports; i++) {
5917 struct ata_port *ap = host->ports[i];
e3667ebf 5918 struct ata_link *link;
500530f6
TH
5919
5920 /* Previous resume operation might still be in
5921 * progress. Wait for PM_PENDING to clear.
5922 */
5923 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5924 ata_port_wait_eh(ap);
5925 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5926 }
5927
5928 /* request PM ops to EH */
5929 spin_lock_irqsave(ap->lock, flags);
5930
5931 ap->pm_mesg = mesg;
5932 if (wait) {
5933 rc = 0;
5934 ap->pm_result = &rc;
5935 }
5936
5937 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
5938 __ata_port_for_each_link(link, ap) {
5939 link->eh_info.action |= action;
5940 link->eh_info.flags |= ehi_flags;
5941 }
500530f6
TH
5942
5943 ata_port_schedule_eh(ap);
5944
5945 spin_unlock_irqrestore(ap->lock, flags);
5946
5947 /* wait and check result */
5948 if (wait) {
5949 ata_port_wait_eh(ap);
5950 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5951 if (rc)
5952 return rc;
5953 }
5954 }
5955
5956 return 0;
5957}
5958
5959/**
cca3974e
JG
5960 * ata_host_suspend - suspend host
5961 * @host: host to suspend
500530f6
TH
5962 * @mesg: PM message
5963 *
cca3974e 5964 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5965 * function requests EH to perform PM operations and waits for EH
5966 * to finish.
5967 *
5968 * LOCKING:
5969 * Kernel thread context (may sleep).
5970 *
5971 * RETURNS:
5972 * 0 on success, -errno on failure.
5973 */
cca3974e 5974int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5975{
9666f400 5976 int rc;
500530f6 5977
cca3974e 5978 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5979 if (rc == 0)
5980 host->dev->power.power_state = mesg;
500530f6
TH
5981 return rc;
5982}
5983
5984/**
cca3974e
JG
5985 * ata_host_resume - resume host
5986 * @host: host to resume
500530f6 5987 *
cca3974e 5988 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5989 * function requests EH to perform PM operations and returns.
5990 * Note that all resume operations are performed parallely.
5991 *
5992 * LOCKING:
5993 * Kernel thread context (may sleep).
5994 */
cca3974e 5995void ata_host_resume(struct ata_host *host)
500530f6 5996{
cca3974e
JG
5997 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5998 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5999 host->dev->power.power_state = PMSG_ON;
500530f6 6000}
6ffa01d8 6001#endif
500530f6 6002
c893a3ae
RD
6003/**
6004 * ata_port_start - Set port up for dma.
6005 * @ap: Port to initialize
6006 *
6007 * Called just after data structures for each port are
6008 * initialized. Allocates space for PRD table.
6009 *
6010 * May be used as the port_start() entry in ata_port_operations.
6011 *
6012 * LOCKING:
6013 * Inherited from caller.
6014 */
f0d36efd 6015int ata_port_start(struct ata_port *ap)
1da177e4 6016{
2f1f610b 6017 struct device *dev = ap->dev;
6037d6bb 6018 int rc;
1da177e4 6019
f0d36efd
TH
6020 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6021 GFP_KERNEL);
1da177e4
LT
6022 if (!ap->prd)
6023 return -ENOMEM;
6024
6037d6bb 6025 rc = ata_pad_alloc(ap, dev);
f0d36efd 6026 if (rc)
6037d6bb 6027 return rc;
1da177e4 6028
f0d36efd
TH
6029 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6030 (unsigned long long)ap->prd_dma);
1da177e4
LT
6031 return 0;
6032}
6033
3ef3b43d
TH
6034/**
6035 * ata_dev_init - Initialize an ata_device structure
6036 * @dev: Device structure to initialize
6037 *
6038 * Initialize @dev in preparation for probing.
6039 *
6040 * LOCKING:
6041 * Inherited from caller.
6042 */
6043void ata_dev_init(struct ata_device *dev)
6044{
9af5c9c9
TH
6045 struct ata_link *link = dev->link;
6046 struct ata_port *ap = link->ap;
72fa4b74
TH
6047 unsigned long flags;
6048
5a04bf4b 6049 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6050 link->sata_spd_limit = link->hw_sata_spd_limit;
6051 link->sata_spd = 0;
5a04bf4b 6052
72fa4b74
TH
6053 /* High bits of dev->flags are used to record warm plug
6054 * requests which occur asynchronously. Synchronize using
cca3974e 6055 * host lock.
72fa4b74 6056 */
ba6a1308 6057 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6058 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6059 dev->horkage = 0;
ba6a1308 6060 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6061
72fa4b74
TH
6062 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6063 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6064 dev->pio_mask = UINT_MAX;
6065 dev->mwdma_mask = UINT_MAX;
6066 dev->udma_mask = UINT_MAX;
6067}
6068
4fb37a25
TH
6069/**
6070 * ata_link_init - Initialize an ata_link structure
6071 * @ap: ATA port link is attached to
6072 * @link: Link structure to initialize
8989805d 6073 * @pmp: Port multiplier port number
4fb37a25
TH
6074 *
6075 * Initialize @link.
6076 *
6077 * LOCKING:
6078 * Kernel thread context (may sleep)
6079 */
8989805d 6080static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6081{
6082 int i;
6083
6084 /* clear everything except for devices */
6085 memset(link, 0, offsetof(struct ata_link, device[0]));
6086
6087 link->ap = ap;
8989805d 6088 link->pmp = pmp;
4fb37a25
TH
6089 link->active_tag = ATA_TAG_POISON;
6090 link->hw_sata_spd_limit = UINT_MAX;
6091
6092 /* can't use iterator, ap isn't initialized yet */
6093 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6094 struct ata_device *dev = &link->device[i];
6095
6096 dev->link = link;
6097 dev->devno = dev - link->device;
6098 ata_dev_init(dev);
6099 }
6100}
6101
6102/**
6103 * sata_link_init_spd - Initialize link->sata_spd_limit
6104 * @link: Link to configure sata_spd_limit for
6105 *
6106 * Initialize @link->[hw_]sata_spd_limit to the currently
6107 * configured value.
6108 *
6109 * LOCKING:
6110 * Kernel thread context (may sleep).
6111 *
6112 * RETURNS:
6113 * 0 on success, -errno on failure.
6114 */
6115static int sata_link_init_spd(struct ata_link *link)
6116{
6117 u32 scontrol, spd;
6118 int rc;
6119
6120 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6121 if (rc)
6122 return rc;
6123
6124 spd = (scontrol >> 4) & 0xf;
6125 if (spd)
6126 link->hw_sata_spd_limit &= (1 << spd) - 1;
6127
6128 link->sata_spd_limit = link->hw_sata_spd_limit;
6129
6130 return 0;
6131}
6132
1da177e4 6133/**
f3187195
TH
6134 * ata_port_alloc - allocate and initialize basic ATA port resources
6135 * @host: ATA host this allocated port belongs to
1da177e4 6136 *
f3187195
TH
6137 * Allocate and initialize basic ATA port resources.
6138 *
6139 * RETURNS:
6140 * Allocate ATA port on success, NULL on failure.
0cba632b 6141 *
1da177e4 6142 * LOCKING:
f3187195 6143 * Inherited from calling layer (may sleep).
1da177e4 6144 */
f3187195 6145struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6146{
f3187195 6147 struct ata_port *ap;
1da177e4 6148
f3187195
TH
6149 DPRINTK("ENTER\n");
6150
6151 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6152 if (!ap)
6153 return NULL;
6154
f4d6d004 6155 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6156 ap->lock = &host->lock;
198e0fed 6157 ap->flags = ATA_FLAG_DISABLED;
f3187195 6158 ap->print_id = -1;
1da177e4 6159 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6160 ap->host = host;
f3187195 6161 ap->dev = host->dev;
1da177e4 6162 ap->last_ctl = 0xFF;
bd5d825c
BP
6163
6164#if defined(ATA_VERBOSE_DEBUG)
6165 /* turn on all debugging levels */
6166 ap->msg_enable = 0x00FF;
6167#elif defined(ATA_DEBUG)
6168 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6169#else
0dd4b21f 6170 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6171#endif
1da177e4 6172
65f27f38
DH
6173 INIT_DELAYED_WORK(&ap->port_task, NULL);
6174 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6175 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6176 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6177 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6178 init_timer_deferrable(&ap->fastdrain_timer);
6179 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6180 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6181
838df628 6182 ap->cbl = ATA_CBL_NONE;
838df628 6183
8989805d 6184 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6185
6186#ifdef ATA_IRQ_TRAP
6187 ap->stats.unhandled_irq = 1;
6188 ap->stats.idle_irq = 1;
6189#endif
1da177e4 6190 return ap;
1da177e4
LT
6191}
6192
f0d36efd
TH
6193static void ata_host_release(struct device *gendev, void *res)
6194{
6195 struct ata_host *host = dev_get_drvdata(gendev);
6196 int i;
6197
6198 for (i = 0; i < host->n_ports; i++) {
6199 struct ata_port *ap = host->ports[i];
6200
ecef7253
TH
6201 if (!ap)
6202 continue;
6203
6204 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6205 ap->ops->port_stop(ap);
f0d36efd
TH
6206 }
6207
ecef7253 6208 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6209 host->ops->host_stop(host);
1aa56cca 6210
1aa506e4
TH
6211 for (i = 0; i < host->n_ports; i++) {
6212 struct ata_port *ap = host->ports[i];
6213
4911487a
TH
6214 if (!ap)
6215 continue;
6216
6217 if (ap->scsi_host)
1aa506e4
TH
6218 scsi_host_put(ap->scsi_host);
6219
4911487a 6220 kfree(ap);
1aa506e4
TH
6221 host->ports[i] = NULL;
6222 }
6223
1aa56cca 6224 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6225}
6226
f3187195
TH
6227/**
6228 * ata_host_alloc - allocate and init basic ATA host resources
6229 * @dev: generic device this host is associated with
6230 * @max_ports: maximum number of ATA ports associated with this host
6231 *
6232 * Allocate and initialize basic ATA host resources. LLD calls
6233 * this function to allocate a host, initializes it fully and
6234 * attaches it using ata_host_register().
6235 *
6236 * @max_ports ports are allocated and host->n_ports is
6237 * initialized to @max_ports. The caller is allowed to decrease
6238 * host->n_ports before calling ata_host_register(). The unused
6239 * ports will be automatically freed on registration.
6240 *
6241 * RETURNS:
6242 * Allocate ATA host on success, NULL on failure.
6243 *
6244 * LOCKING:
6245 * Inherited from calling layer (may sleep).
6246 */
6247struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6248{
6249 struct ata_host *host;
6250 size_t sz;
6251 int i;
6252
6253 DPRINTK("ENTER\n");
6254
6255 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6256 return NULL;
6257
6258 /* alloc a container for our list of ATA ports (buses) */
6259 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6260 /* alloc a container for our list of ATA ports (buses) */
6261 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6262 if (!host)
6263 goto err_out;
6264
6265 devres_add(dev, host);
6266 dev_set_drvdata(dev, host);
6267
6268 spin_lock_init(&host->lock);
6269 host->dev = dev;
6270 host->n_ports = max_ports;
6271
6272 /* allocate ports bound to this host */
6273 for (i = 0; i < max_ports; i++) {
6274 struct ata_port *ap;
6275
6276 ap = ata_port_alloc(host);
6277 if (!ap)
6278 goto err_out;
6279
6280 ap->port_no = i;
6281 host->ports[i] = ap;
6282 }
6283
6284 devres_remove_group(dev, NULL);
6285 return host;
6286
6287 err_out:
6288 devres_release_group(dev, NULL);
6289 return NULL;
6290}
6291
f5cda257
TH
6292/**
6293 * ata_host_alloc_pinfo - alloc host and init with port_info array
6294 * @dev: generic device this host is associated with
6295 * @ppi: array of ATA port_info to initialize host with
6296 * @n_ports: number of ATA ports attached to this host
6297 *
6298 * Allocate ATA host and initialize with info from @ppi. If NULL
6299 * terminated, @ppi may contain fewer entries than @n_ports. The
6300 * last entry will be used for the remaining ports.
6301 *
6302 * RETURNS:
6303 * Allocate ATA host on success, NULL on failure.
6304 *
6305 * LOCKING:
6306 * Inherited from calling layer (may sleep).
6307 */
6308struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6309 const struct ata_port_info * const * ppi,
6310 int n_ports)
6311{
6312 const struct ata_port_info *pi;
6313 struct ata_host *host;
6314 int i, j;
6315
6316 host = ata_host_alloc(dev, n_ports);
6317 if (!host)
6318 return NULL;
6319
6320 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6321 struct ata_port *ap = host->ports[i];
6322
6323 if (ppi[j])
6324 pi = ppi[j++];
6325
6326 ap->pio_mask = pi->pio_mask;
6327 ap->mwdma_mask = pi->mwdma_mask;
6328 ap->udma_mask = pi->udma_mask;
6329 ap->flags |= pi->flags;
0c88758b 6330 ap->link.flags |= pi->link_flags;
f5cda257
TH
6331 ap->ops = pi->port_ops;
6332
6333 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6334 host->ops = pi->port_ops;
6335 if (!host->private_data && pi->private_data)
6336 host->private_data = pi->private_data;
6337 }
6338
6339 return host;
6340}
6341
ecef7253
TH
6342/**
6343 * ata_host_start - start and freeze ports of an ATA host
6344 * @host: ATA host to start ports for
6345 *
6346 * Start and then freeze ports of @host. Started status is
6347 * recorded in host->flags, so this function can be called
6348 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6349 * once. If host->ops isn't initialized yet, its set to the
6350 * first non-dummy port ops.
ecef7253
TH
6351 *
6352 * LOCKING:
6353 * Inherited from calling layer (may sleep).
6354 *
6355 * RETURNS:
6356 * 0 if all ports are started successfully, -errno otherwise.
6357 */
6358int ata_host_start(struct ata_host *host)
6359{
6360 int i, rc;
6361
6362 if (host->flags & ATA_HOST_STARTED)
6363 return 0;
6364
6365 for (i = 0; i < host->n_ports; i++) {
6366 struct ata_port *ap = host->ports[i];
6367
f3187195
TH
6368 if (!host->ops && !ata_port_is_dummy(ap))
6369 host->ops = ap->ops;
6370
ecef7253
TH
6371 if (ap->ops->port_start) {
6372 rc = ap->ops->port_start(ap);
6373 if (rc) {
6374 ata_port_printk(ap, KERN_ERR, "failed to "
6375 "start port (errno=%d)\n", rc);
6376 goto err_out;
6377 }
6378 }
6379
6380 ata_eh_freeze_port(ap);
6381 }
6382
6383 host->flags |= ATA_HOST_STARTED;
6384 return 0;
6385
6386 err_out:
6387 while (--i >= 0) {
6388 struct ata_port *ap = host->ports[i];
6389
6390 if (ap->ops->port_stop)
6391 ap->ops->port_stop(ap);
6392 }
6393 return rc;
6394}
6395
b03732f0 6396/**
cca3974e
JG
6397 * ata_sas_host_init - Initialize a host struct
6398 * @host: host to initialize
6399 * @dev: device host is attached to
6400 * @flags: host flags
6401 * @ops: port_ops
b03732f0
BK
6402 *
6403 * LOCKING:
6404 * PCI/etc. bus probe sem.
6405 *
6406 */
f3187195 6407/* KILLME - the only user left is ipr */
cca3974e
JG
6408void ata_host_init(struct ata_host *host, struct device *dev,
6409 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6410{
cca3974e
JG
6411 spin_lock_init(&host->lock);
6412 host->dev = dev;
6413 host->flags = flags;
6414 host->ops = ops;
b03732f0
BK
6415}
6416
f3187195
TH
6417/**
6418 * ata_host_register - register initialized ATA host
6419 * @host: ATA host to register
6420 * @sht: template for SCSI host
6421 *
6422 * Register initialized ATA host. @host is allocated using
6423 * ata_host_alloc() and fully initialized by LLD. This function
6424 * starts ports, registers @host with ATA and SCSI layers and
6425 * probe registered devices.
6426 *
6427 * LOCKING:
6428 * Inherited from calling layer (may sleep).
6429 *
6430 * RETURNS:
6431 * 0 on success, -errno otherwise.
6432 */
6433int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6434{
6435 int i, rc;
6436
6437 /* host must have been started */
6438 if (!(host->flags & ATA_HOST_STARTED)) {
6439 dev_printk(KERN_ERR, host->dev,
6440 "BUG: trying to register unstarted host\n");
6441 WARN_ON(1);
6442 return -EINVAL;
6443 }
6444
6445 /* Blow away unused ports. This happens when LLD can't
6446 * determine the exact number of ports to allocate at
6447 * allocation time.
6448 */
6449 for (i = host->n_ports; host->ports[i]; i++)
6450 kfree(host->ports[i]);
6451
6452 /* give ports names and add SCSI hosts */
6453 for (i = 0; i < host->n_ports; i++)
6454 host->ports[i]->print_id = ata_print_id++;
6455
6456 rc = ata_scsi_add_hosts(host, sht);
6457 if (rc)
6458 return rc;
6459
fafbae87
TH
6460 /* associate with ACPI nodes */
6461 ata_acpi_associate(host);
6462
f3187195
TH
6463 /* set cable, sata_spd_limit and report */
6464 for (i = 0; i < host->n_ports; i++) {
6465 struct ata_port *ap = host->ports[i];
6466 int irq_line;
f3187195
TH
6467 unsigned long xfer_mask;
6468
6469 /* set SATA cable type if still unset */
6470 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6471 ap->cbl = ATA_CBL_SATA;
6472
6473 /* init sata_spd_limit to the current value */
4fb37a25 6474 sata_link_init_spd(&ap->link);
f3187195
TH
6475
6476 /* report the secondary IRQ for second channel legacy */
6477 irq_line = host->irq;
6478 if (i == 1 && host->irq2)
6479 irq_line = host->irq2;
6480
6481 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6482 ap->udma_mask);
6483
6484 /* print per-port info to dmesg */
6485 if (!ata_port_is_dummy(ap))
6486 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6487 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6488 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6489 ata_mode_string(xfer_mask),
6490 ap->ioaddr.cmd_addr,
6491 ap->ioaddr.ctl_addr,
6492 ap->ioaddr.bmdma_addr,
6493 irq_line);
6494 else
6495 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6496 }
6497
6498 /* perform each probe synchronously */
6499 DPRINTK("probe begin\n");
6500 for (i = 0; i < host->n_ports; i++) {
6501 struct ata_port *ap = host->ports[i];
6502 int rc;
6503
6504 /* probe */
6505 if (ap->ops->error_handler) {
9af5c9c9 6506 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6507 unsigned long flags;
6508
6509 ata_port_probe(ap);
6510
6511 /* kick EH for boot probing */
6512 spin_lock_irqsave(ap->lock, flags);
6513
f58229f8
TH
6514 ehi->probe_mask =
6515 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6516 ehi->action |= ATA_EH_SOFTRESET;
6517 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6518
f4d6d004 6519 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6520 ap->pflags |= ATA_PFLAG_LOADING;
6521 ata_port_schedule_eh(ap);
6522
6523 spin_unlock_irqrestore(ap->lock, flags);
6524
6525 /* wait for EH to finish */
6526 ata_port_wait_eh(ap);
6527 } else {
6528 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6529 rc = ata_bus_probe(ap);
6530 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6531
6532 if (rc) {
6533 /* FIXME: do something useful here?
6534 * Current libata behavior will
6535 * tear down everything when
6536 * the module is removed
6537 * or the h/w is unplugged.
6538 */
6539 }
6540 }
6541 }
6542
6543 /* probes are done, now scan each port's disk(s) */
6544 DPRINTK("host probe begin\n");
6545 for (i = 0; i < host->n_ports; i++) {
6546 struct ata_port *ap = host->ports[i];
6547
1ae46317 6548 ata_scsi_scan_host(ap, 1);
f3187195
TH
6549 }
6550
6551 return 0;
6552}
6553
f5cda257
TH
6554/**
6555 * ata_host_activate - start host, request IRQ and register it
6556 * @host: target ATA host
6557 * @irq: IRQ to request
6558 * @irq_handler: irq_handler used when requesting IRQ
6559 * @irq_flags: irq_flags used when requesting IRQ
6560 * @sht: scsi_host_template to use when registering the host
6561 *
6562 * After allocating an ATA host and initializing it, most libata
6563 * LLDs perform three steps to activate the host - start host,
6564 * request IRQ and register it. This helper takes necessasry
6565 * arguments and performs the three steps in one go.
6566 *
6567 * LOCKING:
6568 * Inherited from calling layer (may sleep).
6569 *
6570 * RETURNS:
6571 * 0 on success, -errno otherwise.
6572 */
6573int ata_host_activate(struct ata_host *host, int irq,
6574 irq_handler_t irq_handler, unsigned long irq_flags,
6575 struct scsi_host_template *sht)
6576{
6577 int rc;
6578
6579 rc = ata_host_start(host);
6580 if (rc)
6581 return rc;
6582
6583 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6584 dev_driver_string(host->dev), host);
6585 if (rc)
6586 return rc;
6587
4031826b
TH
6588 /* Used to print device info at probe */
6589 host->irq = irq;
6590
f5cda257
TH
6591 rc = ata_host_register(host, sht);
6592 /* if failed, just free the IRQ and leave ports alone */
6593 if (rc)
6594 devm_free_irq(host->dev, irq, host);
6595
6596 return rc;
6597}
6598
720ba126
TH
6599/**
6600 * ata_port_detach - Detach ATA port in prepration of device removal
6601 * @ap: ATA port to be detached
6602 *
6603 * Detach all ATA devices and the associated SCSI devices of @ap;
6604 * then, remove the associated SCSI host. @ap is guaranteed to
6605 * be quiescent on return from this function.
6606 *
6607 * LOCKING:
6608 * Kernel thread context (may sleep).
6609 */
6610void ata_port_detach(struct ata_port *ap)
6611{
6612 unsigned long flags;
41bda9c9 6613 struct ata_link *link;
f58229f8 6614 struct ata_device *dev;
720ba126
TH
6615
6616 if (!ap->ops->error_handler)
c3cf30a9 6617 goto skip_eh;
720ba126
TH
6618
6619 /* tell EH we're leaving & flush EH */
ba6a1308 6620 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6621 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6622 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6623
6624 ata_port_wait_eh(ap);
6625
6626 /* EH is now guaranteed to see UNLOADING, so no new device
6627 * will be attached. Disable all existing devices.
6628 */
ba6a1308 6629 spin_lock_irqsave(ap->lock, flags);
720ba126 6630
41bda9c9
TH
6631 ata_port_for_each_link(link, ap) {
6632 ata_link_for_each_dev(dev, link)
6633 ata_dev_disable(dev);
6634 }
720ba126 6635
ba6a1308 6636 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6637
6638 /* Final freeze & EH. All in-flight commands are aborted. EH
6639 * will be skipped and retrials will be terminated with bad
6640 * target.
6641 */
ba6a1308 6642 spin_lock_irqsave(ap->lock, flags);
720ba126 6643 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6644 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6645
6646 ata_port_wait_eh(ap);
45a66c1c 6647 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6648
c3cf30a9 6649 skip_eh:
720ba126 6650 /* remove the associated SCSI host */
cca3974e 6651 scsi_remove_host(ap->scsi_host);
720ba126
TH
6652}
6653
0529c159
TH
6654/**
6655 * ata_host_detach - Detach all ports of an ATA host
6656 * @host: Host to detach
6657 *
6658 * Detach all ports of @host.
6659 *
6660 * LOCKING:
6661 * Kernel thread context (may sleep).
6662 */
6663void ata_host_detach(struct ata_host *host)
6664{
6665 int i;
6666
6667 for (i = 0; i < host->n_ports; i++)
6668 ata_port_detach(host->ports[i]);
6669}
6670
1da177e4
LT
6671/**
6672 * ata_std_ports - initialize ioaddr with standard port offsets.
6673 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6674 *
6675 * Utility function which initializes data_addr, error_addr,
6676 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6677 * device_addr, status_addr, and command_addr to standard offsets
6678 * relative to cmd_addr.
6679 *
6680 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6681 */
0baab86b 6682
1da177e4
LT
6683void ata_std_ports(struct ata_ioports *ioaddr)
6684{
6685 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6686 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6687 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6688 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6689 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6690 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6691 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6692 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6693 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6694 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6695}
6696
0baab86b 6697
374b1873
JG
6698#ifdef CONFIG_PCI
6699
1da177e4
LT
6700/**
6701 * ata_pci_remove_one - PCI layer callback for device removal
6702 * @pdev: PCI device that was removed
6703 *
b878ca5d
TH
6704 * PCI layer indicates to libata via this hook that hot-unplug or
6705 * module unload event has occurred. Detach all ports. Resource
6706 * release is handled via devres.
1da177e4
LT
6707 *
6708 * LOCKING:
6709 * Inherited from PCI layer (may sleep).
6710 */
f0d36efd 6711void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6712{
6713 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6714 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6715
b878ca5d 6716 ata_host_detach(host);
1da177e4
LT
6717}
6718
6719/* move to PCI subsystem */
057ace5e 6720int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6721{
6722 unsigned long tmp = 0;
6723
6724 switch (bits->width) {
6725 case 1: {
6726 u8 tmp8 = 0;
6727 pci_read_config_byte(pdev, bits->reg, &tmp8);
6728 tmp = tmp8;
6729 break;
6730 }
6731 case 2: {
6732 u16 tmp16 = 0;
6733 pci_read_config_word(pdev, bits->reg, &tmp16);
6734 tmp = tmp16;
6735 break;
6736 }
6737 case 4: {
6738 u32 tmp32 = 0;
6739 pci_read_config_dword(pdev, bits->reg, &tmp32);
6740 tmp = tmp32;
6741 break;
6742 }
6743
6744 default:
6745 return -EINVAL;
6746 }
6747
6748 tmp &= bits->mask;
6749
6750 return (tmp == bits->val) ? 1 : 0;
6751}
9b847548 6752
6ffa01d8 6753#ifdef CONFIG_PM
3c5100c1 6754void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6755{
6756 pci_save_state(pdev);
4c90d971 6757 pci_disable_device(pdev);
500530f6 6758
4c90d971 6759 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6760 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6761}
6762
553c4aa6 6763int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6764{
553c4aa6
TH
6765 int rc;
6766
9b847548
JA
6767 pci_set_power_state(pdev, PCI_D0);
6768 pci_restore_state(pdev);
553c4aa6 6769
b878ca5d 6770 rc = pcim_enable_device(pdev);
553c4aa6
TH
6771 if (rc) {
6772 dev_printk(KERN_ERR, &pdev->dev,
6773 "failed to enable device after resume (%d)\n", rc);
6774 return rc;
6775 }
6776
9b847548 6777 pci_set_master(pdev);
553c4aa6 6778 return 0;
500530f6
TH
6779}
6780
3c5100c1 6781int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6782{
cca3974e 6783 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6784 int rc = 0;
6785
cca3974e 6786 rc = ata_host_suspend(host, mesg);
500530f6
TH
6787 if (rc)
6788 return rc;
6789
3c5100c1 6790 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6791
6792 return 0;
6793}
6794
6795int ata_pci_device_resume(struct pci_dev *pdev)
6796{
cca3974e 6797 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6798 int rc;
500530f6 6799
553c4aa6
TH
6800 rc = ata_pci_device_do_resume(pdev);
6801 if (rc == 0)
6802 ata_host_resume(host);
6803 return rc;
9b847548 6804}
6ffa01d8
TH
6805#endif /* CONFIG_PM */
6806
1da177e4
LT
6807#endif /* CONFIG_PCI */
6808
6809
1da177e4
LT
6810static int __init ata_init(void)
6811{
a8601e5f 6812 ata_probe_timeout *= HZ;
1da177e4
LT
6813 ata_wq = create_workqueue("ata");
6814 if (!ata_wq)
6815 return -ENOMEM;
6816
453b07ac
TH
6817 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6818 if (!ata_aux_wq) {
6819 destroy_workqueue(ata_wq);
6820 return -ENOMEM;
6821 }
6822
1da177e4
LT
6823 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6824 return 0;
6825}
6826
6827static void __exit ata_exit(void)
6828{
6829 destroy_workqueue(ata_wq);
453b07ac 6830 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6831}
6832
a4625085 6833subsys_initcall(ata_init);
1da177e4
LT
6834module_exit(ata_exit);
6835
67846b30 6836static unsigned long ratelimit_time;
34af946a 6837static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6838
6839int ata_ratelimit(void)
6840{
6841 int rc;
6842 unsigned long flags;
6843
6844 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6845
6846 if (time_after(jiffies, ratelimit_time)) {
6847 rc = 1;
6848 ratelimit_time = jiffies + (HZ/5);
6849 } else
6850 rc = 0;
6851
6852 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6853
6854 return rc;
6855}
6856
c22daff4
TH
6857/**
6858 * ata_wait_register - wait until register value changes
6859 * @reg: IO-mapped register
6860 * @mask: Mask to apply to read register value
6861 * @val: Wait condition
6862 * @interval_msec: polling interval in milliseconds
6863 * @timeout_msec: timeout in milliseconds
6864 *
6865 * Waiting for some bits of register to change is a common
6866 * operation for ATA controllers. This function reads 32bit LE
6867 * IO-mapped register @reg and tests for the following condition.
6868 *
6869 * (*@reg & mask) != val
6870 *
6871 * If the condition is met, it returns; otherwise, the process is
6872 * repeated after @interval_msec until timeout.
6873 *
6874 * LOCKING:
6875 * Kernel thread context (may sleep)
6876 *
6877 * RETURNS:
6878 * The final register value.
6879 */
6880u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6881 unsigned long interval_msec,
6882 unsigned long timeout_msec)
6883{
6884 unsigned long timeout;
6885 u32 tmp;
6886
6887 tmp = ioread32(reg);
6888
6889 /* Calculate timeout _after_ the first read to make sure
6890 * preceding writes reach the controller before starting to
6891 * eat away the timeout.
6892 */
6893 timeout = jiffies + (timeout_msec * HZ) / 1000;
6894
6895 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6896 msleep(interval_msec);
6897 tmp = ioread32(reg);
6898 }
6899
6900 return tmp;
6901}
6902
dd5b06c4
TH
6903/*
6904 * Dummy port_ops
6905 */
6906static void ata_dummy_noret(struct ata_port *ap) { }
6907static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6908static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6909
6910static u8 ata_dummy_check_status(struct ata_port *ap)
6911{
6912 return ATA_DRDY;
6913}
6914
6915static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6916{
6917 return AC_ERR_SYSTEM;
6918}
6919
6920const struct ata_port_operations ata_dummy_port_ops = {
6921 .port_disable = ata_port_disable,
6922 .check_status = ata_dummy_check_status,
6923 .check_altstatus = ata_dummy_check_status,
6924 .dev_select = ata_noop_dev_select,
6925 .qc_prep = ata_noop_qc_prep,
6926 .qc_issue = ata_dummy_qc_issue,
6927 .freeze = ata_dummy_noret,
6928 .thaw = ata_dummy_noret,
6929 .error_handler = ata_dummy_noret,
6930 .post_internal_cmd = ata_dummy_qc_noret,
6931 .irq_clear = ata_dummy_noret,
6932 .port_start = ata_dummy_ret0,
6933 .port_stop = ata_dummy_noret,
6934};
6935
21b0ad4f
TH
6936const struct ata_port_info ata_dummy_port_info = {
6937 .port_ops = &ata_dummy_port_ops,
6938};
6939
1da177e4
LT
6940/*
6941 * libata is essentially a library of internal helper functions for
6942 * low-level ATA host controller drivers. As such, the API/ABI is
6943 * likely to change as new drivers are added and updated.
6944 * Do not depend on ABI/API stability.
6945 */
6946
e9c83914
TH
6947EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6948EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6949EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6950EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6951EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6952EXPORT_SYMBOL_GPL(ata_std_bios_param);
6953EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6954EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6955EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6956EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6957EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6958EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6959EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6960EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6961EXPORT_SYMBOL_GPL(ata_sg_init);
6962EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6963EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6964EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6965EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6966EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6967EXPORT_SYMBOL_GPL(ata_tf_load);
6968EXPORT_SYMBOL_GPL(ata_tf_read);
6969EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6970EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6971EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6972EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6973EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6974EXPORT_SYMBOL_GPL(ata_check_status);
6975EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6976EXPORT_SYMBOL_GPL(ata_exec_command);
6977EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6978EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6979EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6980EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6981EXPORT_SYMBOL_GPL(ata_data_xfer);
6982EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6983EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6984EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6985EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6986EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6987EXPORT_SYMBOL_GPL(ata_bmdma_start);
6988EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6989EXPORT_SYMBOL_GPL(ata_bmdma_status);
6990EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6991EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6992EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6993EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6994EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6995EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6996EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6997EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6998EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
6999EXPORT_SYMBOL_GPL(sata_link_debounce);
7000EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7001EXPORT_SYMBOL_GPL(sata_phy_reset);
7002EXPORT_SYMBOL_GPL(__sata_phy_reset);
7003EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7004EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7005EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7006EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7007EXPORT_SYMBOL_GPL(sata_std_hardreset);
7008EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7009EXPORT_SYMBOL_GPL(ata_dev_classify);
7010EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7011EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7012EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7013EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7014EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7015EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7016EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7017EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7018EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7019EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7020EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7021EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7022EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7023EXPORT_SYMBOL_GPL(sata_scr_valid);
7024EXPORT_SYMBOL_GPL(sata_scr_read);
7025EXPORT_SYMBOL_GPL(sata_scr_write);
7026EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7027EXPORT_SYMBOL_GPL(ata_link_online);
7028EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7029#ifdef CONFIG_PM
cca3974e
JG
7030EXPORT_SYMBOL_GPL(ata_host_suspend);
7031EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7032#endif /* CONFIG_PM */
6a62a04d
TH
7033EXPORT_SYMBOL_GPL(ata_id_string);
7034EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7035EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7036EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7037
1bc4ccff 7038EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7039EXPORT_SYMBOL_GPL(ata_timing_compute);
7040EXPORT_SYMBOL_GPL(ata_timing_merge);
7041
1da177e4
LT
7042#ifdef CONFIG_PCI
7043EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7044EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7045EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7046EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7047EXPORT_SYMBOL_GPL(ata_pci_init_one);
7048EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7049#ifdef CONFIG_PM
500530f6
TH
7050EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7051EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7052EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7053EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7054#endif /* CONFIG_PM */
67951ade
AC
7055EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7056EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7057#endif /* CONFIG_PCI */
9b847548 7058
b64bbc39
TH
7059EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7060EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7061EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 7062EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7063EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7064EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7065EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
7066EXPORT_SYMBOL_GPL(ata_port_freeze);
7067EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7068EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7069EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7070EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7071EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
7072EXPORT_SYMBOL_GPL(ata_irq_on);
7073EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7074EXPORT_SYMBOL_GPL(ata_irq_ack);
7075EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 7076EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7077
7078EXPORT_SYMBOL_GPL(ata_cable_40wire);
7079EXPORT_SYMBOL_GPL(ata_cable_80wire);
7080EXPORT_SYMBOL_GPL(ata_cable_unknown);
7081EXPORT_SYMBOL_GPL(ata_cable_sata);