]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - drivers/ata/libata-core.c
libata: fix native mode disabled port handling
[mirror_ubuntu-jammy-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
44877b4e 75static unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
a8601e5f
AM
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
d7d0dad6
JG
96int libata_noacpi = 1;
97module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
1da177e4
LT
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
0baab86b 105
1da177e4
LT
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
057ace5e 119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
e12a1be6 153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
8cbd6df1
AL
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
192 0,
193 0,
194 0,
195 0,
8cbd6df1
AL
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
9a3dccc4
TH
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 205};
1da177e4
LT
206
207/**
8cbd6df1 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
1da177e4 211 *
2e9edbf8 212 * Examine the device configuration and tf->flags to calculate
8cbd6df1 213 * the proper read/write commands and protocol to use.
1da177e4
LT
214 *
215 * LOCKING:
216 * caller.
217 */
bd056d7e 218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 219{
9a3dccc4 220 u8 cmd;
1da177e4 221
9a3dccc4 222 int index, fua, lba48, write;
2e9edbf8 223
9a3dccc4 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 227
8cbd6df1
AL
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
9a3dccc4 230 index = dev->multi_count ? 0 : 8;
bd056d7e 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
0565c26d 234 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
235 } else {
236 tf->protocol = ATA_PROT_DMA;
9a3dccc4 237 index = 16;
8cbd6df1 238 }
1da177e4 239
9a3dccc4
TH
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
1da177e4
LT
246}
247
35b649fe
TH
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
bd056d7e
TH
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
6d1245bf 318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412}
413
cb95d562
TH
414/**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432{
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436}
437
c0489e4e
TH
438/**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452{
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459}
460
cb95d562 461static const struct ata_xfer_ent {
be9a50c8 462 int shift, bits;
cb95d562
TH
463 u8 base;
464} ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469};
470
471/**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485{
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493}
494
495/**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508{
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515}
516
517/**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529static int ata_xfer_mode2shift(unsigned int xfer_mode)
530{
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537}
538
1da177e4 539/**
1da7b0d0
TH
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
542 *
543 * Determine string which represents the highest speed
1da7b0d0 544 * (highest bit in @modemask).
1da177e4
LT
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
1da7b0d0 551 * @mode_mask, or the constant C string "<n/a>".
1da177e4 552 */
1da7b0d0 553static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 554{
75f554bc
TH
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
b352e57d
AC
561 "PIO5",
562 "PIO6",
75f554bc
TH
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
b352e57d
AC
566 "MWDMA3",
567 "MWDMA4",
75f554bc
TH
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
1da7b0d0 577 int highbit;
1da177e4 578
1da7b0d0
TH
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
1da177e4 582 return "<n/a>";
1da177e4
LT
583}
584
4c360c81
TH
585static const char *sata_spd_string(unsigned int spd)
586{
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595}
596
3373efd8 597void ata_dev_disable(struct ata_device *dev)
0b8efb0a 598{
0dd4b21f 599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
0b8efb0a
TH
603 dev->class++;
604 }
605}
606
1da177e4 607/**
0d5ff566 608 * ata_devchk - PATA device presence detection
1da177e4
LT
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
0d5ff566 625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
0d5ff566
TH
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 634
0d5ff566
TH
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
1da177e4
LT
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
057ace5e 666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
b4dc7623 693 * @r_err: Value of error register on completion
1da177e4
LT
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
b4dc7623
TH
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
709 */
710
a619f981 711unsigned int
b4dc7623 712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 713{
1da177e4
LT
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
1da177e4 722 ap->ops->tf_read(ap, &tf);
0169e284 723 err = tf.feature;
b4dc7623
TH
724 if (r_err)
725 *r_err = err;
1da177e4 726
93590859
AC
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
1da177e4
LT
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
b4dc7623 736 return ATA_DEV_NONE;
1da177e4 737
b4dc7623 738 /* determine if device is ATA or ATAPI */
1da177e4 739 class = ata_dev_classify(&tf);
b4dc7623 740
1da177e4 741 if (class == ATA_DEV_UNKNOWN)
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
744 return ATA_DEV_NONE;
745 return class;
1da177e4
LT
746}
747
748/**
6a62a04d 749 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
6a62a04d
TH
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
1da177e4
LT
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
0e949ff3 782/**
6a62a04d 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
6a62a04d 789 * This function is identical to ata_id_string except that it
0e949ff3
TH
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
6a62a04d
TH
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
0e949ff3
TH
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
6a62a04d 803 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
0baab86b 810
2940740b
TH
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
10305f0f
AC
826/**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
cc261267 829 * @unknown: mode to assume if we cannot tell
10305f0f
AC
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842{
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866}
867
0baab86b
EF
868/**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
1da177e4
LT
880void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881{
882}
883
0baab86b 884
1da177e4
LT
885/**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
0baab86b
EF
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
895 *
896 * LOCKING:
897 * caller.
898 */
899
900void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901{
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
0d5ff566 909 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
910 ata_pause(ap); /* needed; also flushes, for mmio */
911}
912
913/**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934{
88574551 935 if (ata_msg_probe(ap))
44877b4e
TH
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
1da177e4
LT
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949}
950
951/**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 953 * @id: IDENTIFY DEVICE page to dump
1da177e4 954 *
0bd3300a
TH
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
1da177e4
LT
957 *
958 * LOCKING:
959 * caller.
960 */
961
0bd3300a 962static inline void ata_dump_id(const u16 *id)
1da177e4
LT
963{
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
0bd3300a
TH
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
1da177e4
LT
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
0bd3300a
TH
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
1da177e4
LT
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
0bd3300a
TH
986 id[88],
987 id[93]);
1da177e4
LT
988}
989
cb95d562
TH
990/**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005static unsigned int ata_id_xfermask(const u16 *id)
1006{
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
7a0f1c8a 1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
cb95d562
TH
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1034
b352e57d
AC
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
fb21f0d0
TH
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057}
1058
86e45b6b
TH
1059/**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
e2a7f77a 1062 * @fn: workqueue function to be scheduled
65f27f38 1063 * @data: data for @fn to use
e2a7f77a 1064 * @delay: delay time for workqueue function
86e45b6b
TH
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
65f27f38 1078void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1079 unsigned long delay)
1080{
1081 int rc;
1082
b51e9e5d 1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1084 return;
1085
65f27f38
DH
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
86e45b6b 1088
52bad64d 1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093}
1094
1095/**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105void ata_port_flush_task(struct ata_port *ap)
1106{
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
ba6a1308 1111 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1113 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1124 if (ata_msg_ctl(ap))
88574551
TH
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
86e45b6b
TH
1127 flush_workqueue(ata_wq);
1128 }
1129
ba6a1308 1130 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1132 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1133
0dd4b21f
BP
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1136}
1137
7102d230 1138static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1139{
77853bf2 1140 struct completion *waiting = qc->private_data;
a2a7a662 1141
a2a7a662 1142 complete(waiting);
a2a7a662
TH
1143}
1144
1145/**
2432697b 1146 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
d69cf37d 1149 * @cdb: CDB for packet command
a2a7a662 1150 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
a2a7a662
TH
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
551e8889
TH
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1165 */
2432697b
TH
1166unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
a2a7a662 1170{
3373efd8 1171 struct ata_port *ap = dev->ap;
a2a7a662
TH
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
2ab7db1f 1174 unsigned int tag, preempted_tag;
dedaf2b0 1175 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1176 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1177 unsigned long flags;
77853bf2 1178 unsigned int err_mask;
d95a717f 1179 int rc;
a2a7a662 1180
ba6a1308 1181 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1182
e3180499 1183 /* no internal command while frozen */
b51e9e5d 1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1185 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1186 return AC_ERR_SYSTEM;
1187 }
1188
2ab7db1f 1189 /* initialize internal qc */
a2a7a662 1190
2ab7db1f
TH
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
6cec4a39 1201 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1202 BUG();
f69499f4 1203 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
dedaf2b0
TH
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
2ab7db1f 1214 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
2ab7db1f
TH
1217
1218 /* prepare & issue qc */
a2a7a662 1219 qc->tf = *tf;
d69cf37d
TH
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
2432697b
TH
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
49c80429 1231 qc->nbytes = buflen;
a2a7a662
TH
1232 }
1233
77853bf2 1234 qc->private_data = &wait;
a2a7a662
TH
1235 qc->complete_fn = ata_qc_complete_internal;
1236
8e0e694a 1237 ata_qc_issue(qc);
a2a7a662 1238
ba6a1308 1239 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1240
a8601e5f 1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1242
1243 ata_port_flush_task(ap);
41ade50c 1244
d95a717f 1245 if (!rc) {
ba6a1308 1246 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
d95a717f
TH
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
a2a7a662 1252 */
77853bf2 1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
f15a1daf 1260
0dd4b21f
BP
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
88574551 1263 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1264 }
1265
ba6a1308 1266 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1267 }
1268
d95a717f
TH
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
18d90deb 1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
0dd4b21f 1274 if (ata_msg_warn(ap))
88574551 1275 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1276 "zero err_mask for failed "
88574551 1277 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1278 qc->err_mask |= AC_ERR_OTHER;
1279 }
1280
15869303 1281 /* finish up */
ba6a1308 1282 spin_lock_irqsave(ap->lock, flags);
15869303 1283
e61e0672 1284 *tf = qc->result_tf;
77853bf2
TH
1285 err_mask = qc->err_mask;
1286
1287 ata_qc_free(qc);
2ab7db1f 1288 ap->active_tag = preempted_tag;
dedaf2b0
TH
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
77853bf2 1291
1f7dd3e9
TH
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1296 *
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1300 *
1301 * Kill the following code as soon as those drivers are fixed.
1302 */
198e0fed 1303 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1306 }
1307
ba6a1308 1308 spin_unlock_irqrestore(ap->lock, flags);
15869303 1309
77853bf2 1310 return err_mask;
a2a7a662
TH
1311}
1312
2432697b 1313/**
33480a0e 1314 * ata_exec_internal - execute libata internal command
2432697b
TH
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1321 *
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1324 *
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1327 *
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1330 */
1331unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1334{
33480a0e
TH
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
2432697b 1337
33480a0e
TH
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1343 }
2432697b 1344
33480a0e 1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1346}
1347
977e6b9f
TH
1348/**
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1352 *
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1355 *
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1358 *
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
e58eb583 1361 */
77b08fb5 1362unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1363{
1364 struct ata_taskfile tf;
e58eb583
TH
1365
1366 ata_tf_init(dev, &tf);
1367
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1371
977e6b9f 1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1373}
1374
1bc4ccff
AC
1375/**
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1378 *
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1381 */
432729f0 1382
1bc4ccff
AC
1383unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1384{
432729f0
AC
1385 /* Controller doesn't support IORDY. Probably a pointless check
1386 as the caller should know this */
1387 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1388 return 0;
432729f0
AC
1389 /* PIO3 and higher it is mandatory */
1390 if (adev->pio_mode > XFER_PIO_2)
1391 return 1;
1392 /* We turn it on when possible */
1393 if (ata_id_has_iordy(adev->id))
1bc4ccff 1394 return 1;
432729f0
AC
1395 return 0;
1396}
2e9edbf8 1397
432729f0
AC
1398/**
1399 * ata_pio_mask_no_iordy - Return the non IORDY mask
1400 * @adev: ATA device
1401 *
1402 * Compute the highest mode possible if we are not using iordy. Return
1403 * -1 if no iordy mode is available.
1404 */
1405
1406static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1407{
1bc4ccff 1408 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1409 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1410 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1411 /* Is the speed faster than the drive allows non IORDY ? */
1412 if (pio) {
1413 /* This is cycle times not frequency - watch the logic! */
1414 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1415 return 3 << ATA_SHIFT_PIO;
1416 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1417 }
1418 }
432729f0 1419 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1420}
1421
1da177e4 1422/**
49016aca 1423 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1424 * @dev: target device
1425 * @p_class: pointer to class of the target device (may be changed)
bff04647 1426 * @flags: ATA_READID_* flags
fe635c7e 1427 * @id: buffer to read IDENTIFY data into
1da177e4 1428 *
49016aca
TH
1429 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1430 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1431 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1432 * for pre-ATA4 drives.
1da177e4
LT
1433 *
1434 * LOCKING:
49016aca
TH
1435 * Kernel thread context (may sleep)
1436 *
1437 * RETURNS:
1438 * 0 on success, -errno otherwise.
1da177e4 1439 */
a9beec95 1440int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1441 unsigned int flags, u16 *id)
1da177e4 1442{
3373efd8 1443 struct ata_port *ap = dev->ap;
49016aca 1444 unsigned int class = *p_class;
a0123703 1445 struct ata_taskfile tf;
49016aca
TH
1446 unsigned int err_mask = 0;
1447 const char *reason;
1448 int rc;
1da177e4 1449
0dd4b21f 1450 if (ata_msg_ctl(ap))
44877b4e 1451 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1452
49016aca 1453 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1454
49016aca 1455 retry:
3373efd8 1456 ata_tf_init(dev, &tf);
a0123703 1457
49016aca
TH
1458 switch (class) {
1459 case ATA_DEV_ATA:
a0123703 1460 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1461 break;
1462 case ATA_DEV_ATAPI:
a0123703 1463 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1464 break;
1465 default:
1466 rc = -ENODEV;
1467 reason = "unsupported class";
1468 goto err_out;
1da177e4
LT
1469 }
1470
a0123703 1471 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1472
1473 /* Some devices choke if TF registers contain garbage. Make
1474 * sure those are properly initialized.
1475 */
1476 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1477
1478 /* Device presence detection is unreliable on some
1479 * controllers. Always poll IDENTIFY if available.
1480 */
1481 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1482
3373efd8 1483 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1484 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1485 if (err_mask) {
800b3996 1486 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1487 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1488 ap->print_id, dev->devno);
55a8e2c8
TH
1489 return -ENOENT;
1490 }
1491
49016aca
TH
1492 rc = -EIO;
1493 reason = "I/O error";
1da177e4
LT
1494 goto err_out;
1495 }
1496
49016aca 1497 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1498
49016aca 1499 /* sanity check */
a4f5749b
TH
1500 rc = -EINVAL;
1501 reason = "device reports illegal type";
1502
1503 if (class == ATA_DEV_ATA) {
1504 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1505 goto err_out;
1506 } else {
1507 if (ata_id_is_ata(id))
1508 goto err_out;
49016aca
TH
1509 }
1510
bff04647 1511 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1512 /*
1513 * The exact sequence expected by certain pre-ATA4 drives is:
1514 * SRST RESET
1515 * IDENTIFY
1516 * INITIALIZE DEVICE PARAMETERS
1517 * anything else..
1518 * Some drives were very specific about that exact sequence.
1519 */
1520 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1521 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1522 if (err_mask) {
1523 rc = -EIO;
1524 reason = "INIT_DEV_PARAMS failed";
1525 goto err_out;
1526 }
1527
1528 /* current CHS translation info (id[53-58]) might be
1529 * changed. reread the identify device info.
1530 */
bff04647 1531 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1532 goto retry;
1533 }
1534 }
1535
1536 *p_class = class;
fe635c7e 1537
49016aca
TH
1538 return 0;
1539
1540 err_out:
88574551 1541 if (ata_msg_warn(ap))
0dd4b21f 1542 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1543 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1544 return rc;
1545}
1546
3373efd8 1547static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1548{
3373efd8 1549 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1550}
1551
a6e6ce8e
TH
1552static void ata_dev_config_ncq(struct ata_device *dev,
1553 char *desc, size_t desc_sz)
1554{
1555 struct ata_port *ap = dev->ap;
1556 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1557
1558 if (!ata_id_has_ncq(dev->id)) {
1559 desc[0] = '\0';
1560 return;
1561 }
6919a0a6
AC
1562 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1563 snprintf(desc, desc_sz, "NCQ (not used)");
1564 return;
1565 }
a6e6ce8e 1566 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1567 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1568 dev->flags |= ATA_DFLAG_NCQ;
1569 }
1570
1571 if (hdepth >= ddepth)
1572 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1573 else
1574 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1575}
1576
49016aca 1577/**
ffeae418 1578 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1579 * @dev: Target device to configure
1580 *
1581 * Configure @dev according to @dev->id. Generic and low-level
1582 * driver specific fixups are also applied.
49016aca
TH
1583 *
1584 * LOCKING:
ffeae418
TH
1585 * Kernel thread context (may sleep)
1586 *
1587 * RETURNS:
1588 * 0 on success, -errno otherwise
49016aca 1589 */
efdaedc4 1590int ata_dev_configure(struct ata_device *dev)
49016aca 1591{
3373efd8 1592 struct ata_port *ap = dev->ap;
efdaedc4 1593 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1594 const u16 *id = dev->id;
ff8854b2 1595 unsigned int xfer_mask;
b352e57d 1596 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1597 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1598 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1599 int rc;
49016aca 1600
0dd4b21f 1601 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1602 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1603 __FUNCTION__);
ffeae418 1604 return 0;
49016aca
TH
1605 }
1606
0dd4b21f 1607 if (ata_msg_probe(ap))
44877b4e 1608 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1609
08573a86
KCA
1610 /* set _SDD */
1611 rc = ata_acpi_push_id(ap, dev->devno);
1612 if (rc) {
1613 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1614 rc);
1615 }
1616
1617 /* retrieve and execute the ATA task file of _GTF */
1618 ata_acpi_exec_tfs(ap);
1619
c39f5ebe 1620 /* print device capabilities */
0dd4b21f 1621 if (ata_msg_probe(ap))
88574551
TH
1622 ata_dev_printk(dev, KERN_DEBUG,
1623 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1624 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1625 __FUNCTION__,
f15a1daf
TH
1626 id[49], id[82], id[83], id[84],
1627 id[85], id[86], id[87], id[88]);
c39f5ebe 1628
208a9933 1629 /* initialize to-be-configured parameters */
ea1dd4e1 1630 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1631 dev->max_sectors = 0;
1632 dev->cdb_len = 0;
1633 dev->n_sectors = 0;
1634 dev->cylinders = 0;
1635 dev->heads = 0;
1636 dev->sectors = 0;
1637
1da177e4
LT
1638 /*
1639 * common ATA, ATAPI feature tests
1640 */
1641
ff8854b2 1642 /* find max transfer mode; for printk only */
1148c3a7 1643 xfer_mask = ata_id_xfermask(id);
1da177e4 1644
0dd4b21f
BP
1645 if (ata_msg_probe(ap))
1646 ata_dump_id(id);
1da177e4
LT
1647
1648 /* ATA-specific feature tests */
1649 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1650 if (ata_id_is_cfa(id)) {
1651 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1652 ata_dev_printk(dev, KERN_WARNING,
1653 "supports DRM functions and may "
1654 "not be fully accessable.\n");
b352e57d
AC
1655 snprintf(revbuf, 7, "CFA");
1656 }
1657 else
1658 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1659
1148c3a7 1660 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1661
3f64f565 1662 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1663 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1664 sizeof(fwrevbuf));
1665
591a6e8e 1666 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1667 sizeof(modelbuf));
1668
1669 if (dev->id[59] & 0x100)
1670 dev->multi_count = dev->id[59] & 0xff;
1671
1148c3a7 1672 if (ata_id_has_lba(id)) {
4c2d721a 1673 const char *lba_desc;
a6e6ce8e 1674 char ncq_desc[20];
8bf62ece 1675
4c2d721a
TH
1676 lba_desc = "LBA";
1677 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1678 if (ata_id_has_lba48(id)) {
8bf62ece 1679 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1680 lba_desc = "LBA48";
6fc49adb
TH
1681
1682 if (dev->n_sectors >= (1UL << 28) &&
1683 ata_id_has_flush_ext(id))
1684 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1685 }
8bf62ece 1686
a6e6ce8e
TH
1687 /* config NCQ */
1688 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1689
8bf62ece 1690 /* print device info to dmesg */
3f64f565
EM
1691 if (ata_msg_drv(ap) && print_info) {
1692 ata_dev_printk(dev, KERN_INFO,
1693 "%s: %s, %s, max %s\n",
1694 revbuf, modelbuf, fwrevbuf,
1695 ata_mode_string(xfer_mask));
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1698 (unsigned long long)dev->n_sectors,
3f64f565
EM
1699 dev->multi_count, lba_desc, ncq_desc);
1700 }
ffeae418 1701 } else {
8bf62ece
AL
1702 /* CHS */
1703
1704 /* Default translation */
1148c3a7
TH
1705 dev->cylinders = id[1];
1706 dev->heads = id[3];
1707 dev->sectors = id[6];
8bf62ece 1708
1148c3a7 1709 if (ata_id_current_chs_valid(id)) {
8bf62ece 1710 /* Current CHS translation is valid. */
1148c3a7
TH
1711 dev->cylinders = id[54];
1712 dev->heads = id[55];
1713 dev->sectors = id[56];
8bf62ece
AL
1714 }
1715
1716 /* print device info to dmesg */
3f64f565 1717 if (ata_msg_drv(ap) && print_info) {
88574551 1718 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1719 "%s: %s, %s, max %s\n",
1720 revbuf, modelbuf, fwrevbuf,
1721 ata_mode_string(xfer_mask));
a84471fe 1722 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1723 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1724 (unsigned long long)dev->n_sectors,
1725 dev->multi_count, dev->cylinders,
1726 dev->heads, dev->sectors);
1727 }
07f6f7d0
AL
1728 }
1729
6e7846e9 1730 dev->cdb_len = 16;
1da177e4
LT
1731 }
1732
1733 /* ATAPI-specific feature tests */
2c13b7ce 1734 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1735 char *cdb_intr_string = "";
1736
1148c3a7 1737 rc = atapi_cdb_len(id);
1da177e4 1738 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1739 if (ata_msg_warn(ap))
88574551
TH
1740 ata_dev_printk(dev, KERN_WARNING,
1741 "unsupported CDB len\n");
ffeae418 1742 rc = -EINVAL;
1da177e4
LT
1743 goto err_out_nosup;
1744 }
6e7846e9 1745 dev->cdb_len = (unsigned int) rc;
1da177e4 1746
08a556db 1747 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1748 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1749 cdb_intr_string = ", CDB intr";
1750 }
312f7da2 1751
1da177e4 1752 /* print device info to dmesg */
5afc8142 1753 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1754 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1755 ata_mode_string(xfer_mask),
1756 cdb_intr_string);
1da177e4
LT
1757 }
1758
914ed354
TH
1759 /* determine max_sectors */
1760 dev->max_sectors = ATA_MAX_SECTORS;
1761 if (dev->flags & ATA_DFLAG_LBA48)
1762 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1763
93590859
AC
1764 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1765 /* Let the user know. We don't want to disallow opens for
1766 rescue purposes, or in case the vendor is just a blithering
1767 idiot */
1768 if (print_info) {
1769 ata_dev_printk(dev, KERN_WARNING,
1770"Drive reports diagnostics failure. This may indicate a drive\n");
1771 ata_dev_printk(dev, KERN_WARNING,
1772"fault or invalid emulation. Contact drive vendor for information.\n");
1773 }
1774 }
1775
4b2f3ede 1776 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1777 if (ata_dev_knobble(dev)) {
5afc8142 1778 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1779 ata_dev_printk(dev, KERN_INFO,
1780 "applying bridge limits\n");
5a529139 1781 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1782 dev->max_sectors = ATA_MAX_SECTORS;
1783 }
1784
18d6e9d5
AL
1785 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1786 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1787
6f23a31d
AL
1788 /* limit ATAPI DMA to R/W commands only */
1789 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1790 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1791
4b2f3ede 1792 if (ap->ops->dev_config)
cd0d3bbc 1793 ap->ops->dev_config(dev);
4b2f3ede 1794
0dd4b21f
BP
1795 if (ata_msg_probe(ap))
1796 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1797 __FUNCTION__, ata_chk_status(ap));
ffeae418 1798 return 0;
1da177e4
LT
1799
1800err_out_nosup:
0dd4b21f 1801 if (ata_msg_probe(ap))
88574551
TH
1802 ata_dev_printk(dev, KERN_DEBUG,
1803 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1804 return rc;
1da177e4
LT
1805}
1806
be0d18df 1807/**
2e41e8e6 1808 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
1809 * @ap: port
1810 *
2e41e8e6 1811 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
1812 * detection.
1813 */
1814
1815int ata_cable_40wire(struct ata_port *ap)
1816{
1817 return ATA_CBL_PATA40;
1818}
1819
1820/**
2e41e8e6 1821 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
1822 * @ap: port
1823 *
2e41e8e6 1824 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
1825 * detection.
1826 */
1827
1828int ata_cable_80wire(struct ata_port *ap)
1829{
1830 return ATA_CBL_PATA80;
1831}
1832
1833/**
1834 * ata_cable_unknown - return unknown PATA cable.
1835 * @ap: port
1836 *
1837 * Helper method for drivers which have no PATA cable detection.
1838 */
1839
1840int ata_cable_unknown(struct ata_port *ap)
1841{
1842 return ATA_CBL_PATA_UNK;
1843}
1844
1845/**
1846 * ata_cable_sata - return SATA cable type
1847 * @ap: port
1848 *
1849 * Helper method for drivers which have SATA cables
1850 */
1851
1852int ata_cable_sata(struct ata_port *ap)
1853{
1854 return ATA_CBL_SATA;
1855}
1856
1da177e4
LT
1857/**
1858 * ata_bus_probe - Reset and probe ATA bus
1859 * @ap: Bus to probe
1860 *
0cba632b
JG
1861 * Master ATA bus probing function. Initiates a hardware-dependent
1862 * bus reset, then attempts to identify any devices found on
1863 * the bus.
1864 *
1da177e4 1865 * LOCKING:
0cba632b 1866 * PCI/etc. bus probe sem.
1da177e4
LT
1867 *
1868 * RETURNS:
96072e69 1869 * Zero on success, negative errno otherwise.
1da177e4
LT
1870 */
1871
80289167 1872int ata_bus_probe(struct ata_port *ap)
1da177e4 1873{
28ca5c57 1874 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 1875 int tries[ATA_MAX_DEVICES];
4ae72a1e 1876 int i, rc;
e82cbdb9 1877 struct ata_device *dev;
1da177e4 1878
28ca5c57 1879 ata_port_probe(ap);
c19ba8af 1880
14d2bac1
TH
1881 for (i = 0; i < ATA_MAX_DEVICES; i++)
1882 tries[i] = ATA_PROBE_MAX_TRIES;
1883
1884 retry:
2044470c 1885 /* reset and determine device classes */
52783c5d 1886 ap->ops->phy_reset(ap);
2061a47a 1887
52783c5d
TH
1888 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1889 dev = &ap->device[i];
c19ba8af 1890
52783c5d
TH
1891 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1892 dev->class != ATA_DEV_UNKNOWN)
1893 classes[dev->devno] = dev->class;
1894 else
1895 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1896
52783c5d 1897 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1898 }
1da177e4 1899
52783c5d 1900 ata_port_probe(ap);
2044470c 1901
b6079ca4
AC
1902 /* after the reset the device state is PIO 0 and the controller
1903 state is undefined. Record the mode */
1904
1905 for (i = 0; i < ATA_MAX_DEVICES; i++)
1906 ap->device[i].pio_mode = XFER_PIO_0;
1907
f31f0cc2
JG
1908 /* read IDENTIFY page and configure devices. We have to do the identify
1909 specific sequence bass-ackwards so that PDIAG- is released by
1910 the slave device */
1911
1912 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 1913 dev = &ap->device[i];
28ca5c57 1914
ec573755
TH
1915 if (tries[i])
1916 dev->class = classes[i];
ffeae418 1917
14d2bac1 1918 if (!ata_dev_enabled(dev))
ffeae418 1919 continue;
ffeae418 1920
bff04647
TH
1921 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1922 dev->id);
14d2bac1
TH
1923 if (rc)
1924 goto fail;
f31f0cc2
JG
1925 }
1926
be0d18df
AC
1927 /* Now ask for the cable type as PDIAG- should have been released */
1928 if (ap->ops->cable_detect)
1929 ap->cbl = ap->ops->cable_detect(ap);
1930
f31f0cc2
JG
1931 /* After the identify sequence we can now set up the devices. We do
1932 this in the normal order so that the user doesn't get confused */
1933
1934 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1935 dev = &ap->device[i];
1936 if (!ata_dev_enabled(dev))
1937 continue;
14d2bac1 1938
efdaedc4
TH
1939 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1940 rc = ata_dev_configure(dev);
1941 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1942 if (rc)
1943 goto fail;
1da177e4
LT
1944 }
1945
e82cbdb9 1946 /* configure transfer mode */
3adcebb2 1947 rc = ata_set_mode(ap, &dev);
4ae72a1e 1948 if (rc)
51713d35 1949 goto fail;
1da177e4 1950
e82cbdb9
TH
1951 for (i = 0; i < ATA_MAX_DEVICES; i++)
1952 if (ata_dev_enabled(&ap->device[i]))
1953 return 0;
1da177e4 1954
e82cbdb9
TH
1955 /* no device present, disable port */
1956 ata_port_disable(ap);
1da177e4 1957 ap->ops->port_disable(ap);
96072e69 1958 return -ENODEV;
14d2bac1
TH
1959
1960 fail:
4ae72a1e
TH
1961 tries[dev->devno]--;
1962
14d2bac1
TH
1963 switch (rc) {
1964 case -EINVAL:
4ae72a1e 1965 /* eeek, something went very wrong, give up */
14d2bac1
TH
1966 tries[dev->devno] = 0;
1967 break;
4ae72a1e
TH
1968
1969 case -ENODEV:
1970 /* give it just one more chance */
1971 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 1972 case -EIO:
4ae72a1e
TH
1973 if (tries[dev->devno] == 1) {
1974 /* This is the last chance, better to slow
1975 * down than lose it.
1976 */
1977 sata_down_spd_limit(ap);
1978 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1979 }
14d2bac1
TH
1980 }
1981
4ae72a1e 1982 if (!tries[dev->devno])
3373efd8 1983 ata_dev_disable(dev);
ec573755 1984
14d2bac1 1985 goto retry;
1da177e4
LT
1986}
1987
1988/**
0cba632b
JG
1989 * ata_port_probe - Mark port as enabled
1990 * @ap: Port for which we indicate enablement
1da177e4 1991 *
0cba632b
JG
1992 * Modify @ap data structure such that the system
1993 * thinks that the entire port is enabled.
1994 *
cca3974e 1995 * LOCKING: host lock, or some other form of
0cba632b 1996 * serialization.
1da177e4
LT
1997 */
1998
1999void ata_port_probe(struct ata_port *ap)
2000{
198e0fed 2001 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2002}
2003
3be680b7
TH
2004/**
2005 * sata_print_link_status - Print SATA link status
2006 * @ap: SATA port to printk link status about
2007 *
2008 * This function prints link speed and status of a SATA link.
2009 *
2010 * LOCKING:
2011 * None.
2012 */
43727fbc 2013void sata_print_link_status(struct ata_port *ap)
3be680b7 2014{
6d5f9732 2015 u32 sstatus, scontrol, tmp;
3be680b7 2016
81952c54 2017 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2018 return;
81952c54 2019 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2020
81952c54 2021 if (ata_port_online(ap)) {
3be680b7 2022 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2023 ata_port_printk(ap, KERN_INFO,
2024 "SATA link up %s (SStatus %X SControl %X)\n",
2025 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2026 } else {
f15a1daf
TH
2027 ata_port_printk(ap, KERN_INFO,
2028 "SATA link down (SStatus %X SControl %X)\n",
2029 sstatus, scontrol);
3be680b7
TH
2030 }
2031}
2032
1da177e4 2033/**
780a87f7
JG
2034 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2035 * @ap: SATA port associated with target SATA PHY.
1da177e4 2036 *
780a87f7
JG
2037 * This function issues commands to standard SATA Sxxx
2038 * PHY registers, to wake up the phy (and device), and
2039 * clear any reset condition.
1da177e4
LT
2040 *
2041 * LOCKING:
0cba632b 2042 * PCI/etc. bus probe sem.
1da177e4
LT
2043 *
2044 */
2045void __sata_phy_reset(struct ata_port *ap)
2046{
2047 u32 sstatus;
2048 unsigned long timeout = jiffies + (HZ * 5);
2049
2050 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2051 /* issue phy wake/reset */
81952c54 2052 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2053 /* Couldn't find anything in SATA I/II specs, but
2054 * AHCI-1.1 10.4.2 says at least 1 ms. */
2055 mdelay(1);
1da177e4 2056 }
81952c54
TH
2057 /* phy wake/clear reset */
2058 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2059
2060 /* wait for phy to become ready, if necessary */
2061 do {
2062 msleep(200);
81952c54 2063 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2064 if ((sstatus & 0xf) != 1)
2065 break;
2066 } while (time_before(jiffies, timeout));
2067
3be680b7
TH
2068 /* print link status */
2069 sata_print_link_status(ap);
656563e3 2070
3be680b7 2071 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2072 if (!ata_port_offline(ap))
1da177e4 2073 ata_port_probe(ap);
3be680b7 2074 else
1da177e4 2075 ata_port_disable(ap);
1da177e4 2076
198e0fed 2077 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2078 return;
2079
2080 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2081 ata_port_disable(ap);
2082 return;
2083 }
2084
2085 ap->cbl = ATA_CBL_SATA;
2086}
2087
2088/**
780a87f7
JG
2089 * sata_phy_reset - Reset SATA bus.
2090 * @ap: SATA port associated with target SATA PHY.
1da177e4 2091 *
780a87f7
JG
2092 * This function resets the SATA bus, and then probes
2093 * the bus for devices.
1da177e4
LT
2094 *
2095 * LOCKING:
0cba632b 2096 * PCI/etc. bus probe sem.
1da177e4
LT
2097 *
2098 */
2099void sata_phy_reset(struct ata_port *ap)
2100{
2101 __sata_phy_reset(ap);
198e0fed 2102 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2103 return;
2104 ata_bus_reset(ap);
2105}
2106
ebdfca6e
AC
2107/**
2108 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2109 * @adev: device
2110 *
2111 * Obtain the other device on the same cable, or if none is
2112 * present NULL is returned
2113 */
2e9edbf8 2114
3373efd8 2115struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2116{
3373efd8 2117 struct ata_port *ap = adev->ap;
ebdfca6e 2118 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2119 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2120 return NULL;
2121 return pair;
2122}
2123
1da177e4 2124/**
780a87f7
JG
2125 * ata_port_disable - Disable port.
2126 * @ap: Port to be disabled.
1da177e4 2127 *
780a87f7
JG
2128 * Modify @ap data structure such that the system
2129 * thinks that the entire port is disabled, and should
2130 * never attempt to probe or communicate with devices
2131 * on this port.
2132 *
cca3974e 2133 * LOCKING: host lock, or some other form of
780a87f7 2134 * serialization.
1da177e4
LT
2135 */
2136
2137void ata_port_disable(struct ata_port *ap)
2138{
2139 ap->device[0].class = ATA_DEV_NONE;
2140 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2141 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2142}
2143
1c3fae4d 2144/**
3c567b7d 2145 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2146 * @ap: Port to adjust SATA spd limit for
2147 *
2148 * Adjust SATA spd limit of @ap downward. Note that this
2149 * function only adjusts the limit. The change must be applied
3c567b7d 2150 * using sata_set_spd().
1c3fae4d
TH
2151 *
2152 * LOCKING:
2153 * Inherited from caller.
2154 *
2155 * RETURNS:
2156 * 0 on success, negative errno on failure
2157 */
3c567b7d 2158int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2159{
81952c54
TH
2160 u32 sstatus, spd, mask;
2161 int rc, highbit;
1c3fae4d 2162
81952c54
TH
2163 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2164 if (rc)
2165 return rc;
1c3fae4d
TH
2166
2167 mask = ap->sata_spd_limit;
2168 if (mask <= 1)
2169 return -EINVAL;
2170 highbit = fls(mask) - 1;
2171 mask &= ~(1 << highbit);
2172
81952c54 2173 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2174 if (spd <= 1)
2175 return -EINVAL;
2176 spd--;
2177 mask &= (1 << spd) - 1;
2178 if (!mask)
2179 return -EINVAL;
2180
2181 ap->sata_spd_limit = mask;
2182
f15a1daf
TH
2183 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2184 sata_spd_string(fls(mask)));
1c3fae4d
TH
2185
2186 return 0;
2187}
2188
3c567b7d 2189static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2190{
2191 u32 spd, limit;
2192
2193 if (ap->sata_spd_limit == UINT_MAX)
2194 limit = 0;
2195 else
2196 limit = fls(ap->sata_spd_limit);
2197
2198 spd = (*scontrol >> 4) & 0xf;
2199 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2200
2201 return spd != limit;
2202}
2203
2204/**
3c567b7d 2205 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2206 * @ap: Port in question
2207 *
2208 * Test whether the spd limit in SControl matches
2209 * @ap->sata_spd_limit. This function is used to determine
2210 * whether hardreset is necessary to apply SATA spd
2211 * configuration.
2212 *
2213 * LOCKING:
2214 * Inherited from caller.
2215 *
2216 * RETURNS:
2217 * 1 if SATA spd configuration is needed, 0 otherwise.
2218 */
3c567b7d 2219int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2220{
2221 u32 scontrol;
2222
81952c54 2223 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2224 return 0;
2225
3c567b7d 2226 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2227}
2228
2229/**
3c567b7d 2230 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2231 * @ap: Port to set SATA spd for
2232 *
2233 * Set SATA spd of @ap according to sata_spd_limit.
2234 *
2235 * LOCKING:
2236 * Inherited from caller.
2237 *
2238 * RETURNS:
2239 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2240 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2241 */
3c567b7d 2242int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2243{
2244 u32 scontrol;
81952c54 2245 int rc;
1c3fae4d 2246
81952c54
TH
2247 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2248 return rc;
1c3fae4d 2249
3c567b7d 2250 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2251 return 0;
2252
81952c54
TH
2253 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2254 return rc;
2255
1c3fae4d
TH
2256 return 1;
2257}
2258
452503f9
AC
2259/*
2260 * This mode timing computation functionality is ported over from
2261 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2262 */
2263/*
b352e57d 2264 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2265 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2266 * for UDMA6, which is currently supported only by Maxtor drives.
2267 *
2268 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2269 */
2270
2271static const struct ata_timing ata_timing[] = {
2272
2273 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2274 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2275 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2276 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2277
b352e57d
AC
2278 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2279 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2280 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2281 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2282 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2283
2284/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2285
452503f9
AC
2286 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2287 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2288 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2289
452503f9
AC
2290 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2291 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2292 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2293
b352e57d
AC
2294 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2295 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2296 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2297 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2298
2299 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2300 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2301 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2302
2303/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2304
2305 { 0xFF }
2306};
2307
2308#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2309#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2310
2311static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2312{
2313 q->setup = EZ(t->setup * 1000, T);
2314 q->act8b = EZ(t->act8b * 1000, T);
2315 q->rec8b = EZ(t->rec8b * 1000, T);
2316 q->cyc8b = EZ(t->cyc8b * 1000, T);
2317 q->active = EZ(t->active * 1000, T);
2318 q->recover = EZ(t->recover * 1000, T);
2319 q->cycle = EZ(t->cycle * 1000, T);
2320 q->udma = EZ(t->udma * 1000, UT);
2321}
2322
2323void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2324 struct ata_timing *m, unsigned int what)
2325{
2326 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2327 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2328 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2329 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2330 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2331 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2332 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2333 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2334}
2335
2336static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2337{
2338 const struct ata_timing *t;
2339
2340 for (t = ata_timing; t->mode != speed; t++)
91190758 2341 if (t->mode == 0xFF)
452503f9 2342 return NULL;
2e9edbf8 2343 return t;
452503f9
AC
2344}
2345
2346int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2347 struct ata_timing *t, int T, int UT)
2348{
2349 const struct ata_timing *s;
2350 struct ata_timing p;
2351
2352 /*
2e9edbf8 2353 * Find the mode.
75b1f2f8 2354 */
452503f9
AC
2355
2356 if (!(s = ata_timing_find_mode(speed)))
2357 return -EINVAL;
2358
75b1f2f8
AL
2359 memcpy(t, s, sizeof(*s));
2360
452503f9
AC
2361 /*
2362 * If the drive is an EIDE drive, it can tell us it needs extended
2363 * PIO/MW_DMA cycle timing.
2364 */
2365
2366 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2367 memset(&p, 0, sizeof(p));
2368 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2369 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2370 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2371 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2372 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2373 }
2374 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2375 }
2376
2377 /*
2378 * Convert the timing to bus clock counts.
2379 */
2380
75b1f2f8 2381 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2382
2383 /*
c893a3ae
RD
2384 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2385 * S.M.A.R.T * and some other commands. We have to ensure that the
2386 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2387 */
2388
fd3367af 2389 if (speed > XFER_PIO_6) {
452503f9
AC
2390 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2391 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2392 }
2393
2394 /*
c893a3ae 2395 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2396 */
2397
2398 if (t->act8b + t->rec8b < t->cyc8b) {
2399 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2400 t->rec8b = t->cyc8b - t->act8b;
2401 }
2402
2403 if (t->active + t->recover < t->cycle) {
2404 t->active += (t->cycle - (t->active + t->recover)) / 2;
2405 t->recover = t->cycle - t->active;
2406 }
2407
2408 return 0;
2409}
2410
cf176e1a
TH
2411/**
2412 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2413 * @dev: Device to adjust xfer masks
458337db 2414 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2415 *
2416 * Adjust xfer masks of @dev downward. Note that this function
2417 * does not apply the change. Invoking ata_set_mode() afterwards
2418 * will apply the limit.
2419 *
2420 * LOCKING:
2421 * Inherited from caller.
2422 *
2423 * RETURNS:
2424 * 0 on success, negative errno on failure
2425 */
458337db 2426int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2427{
458337db
TH
2428 char buf[32];
2429 unsigned int orig_mask, xfer_mask;
2430 unsigned int pio_mask, mwdma_mask, udma_mask;
2431 int quiet, highbit;
cf176e1a 2432
458337db
TH
2433 quiet = !!(sel & ATA_DNXFER_QUIET);
2434 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2435
458337db
TH
2436 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2437 dev->mwdma_mask,
2438 dev->udma_mask);
2439 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2440
458337db
TH
2441 switch (sel) {
2442 case ATA_DNXFER_PIO:
2443 highbit = fls(pio_mask) - 1;
2444 pio_mask &= ~(1 << highbit);
2445 break;
2446
2447 case ATA_DNXFER_DMA:
2448 if (udma_mask) {
2449 highbit = fls(udma_mask) - 1;
2450 udma_mask &= ~(1 << highbit);
2451 if (!udma_mask)
2452 return -ENOENT;
2453 } else if (mwdma_mask) {
2454 highbit = fls(mwdma_mask) - 1;
2455 mwdma_mask &= ~(1 << highbit);
2456 if (!mwdma_mask)
2457 return -ENOENT;
2458 }
2459 break;
2460
2461 case ATA_DNXFER_40C:
2462 udma_mask &= ATA_UDMA_MASK_40C;
2463 break;
2464
2465 case ATA_DNXFER_FORCE_PIO0:
2466 pio_mask &= 1;
2467 case ATA_DNXFER_FORCE_PIO:
2468 mwdma_mask = 0;
2469 udma_mask = 0;
2470 break;
2471
458337db
TH
2472 default:
2473 BUG();
2474 }
2475
2476 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2477
2478 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2479 return -ENOENT;
2480
2481 if (!quiet) {
2482 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2483 snprintf(buf, sizeof(buf), "%s:%s",
2484 ata_mode_string(xfer_mask),
2485 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2486 else
2487 snprintf(buf, sizeof(buf), "%s",
2488 ata_mode_string(xfer_mask));
2489
2490 ata_dev_printk(dev, KERN_WARNING,
2491 "limiting speed to %s\n", buf);
2492 }
cf176e1a
TH
2493
2494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2495 &dev->udma_mask);
2496
cf176e1a 2497 return 0;
cf176e1a
TH
2498}
2499
3373efd8 2500static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2501{
baa1e78a 2502 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2503 unsigned int err_mask;
2504 int rc;
1da177e4 2505
e8384607 2506 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2507 if (dev->xfer_shift == ATA_SHIFT_PIO)
2508 dev->flags |= ATA_DFLAG_PIO;
2509
3373efd8 2510 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2511 /* Old CFA may refuse this command, which is just fine */
2512 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2513 err_mask &= ~AC_ERR_DEV;
2514
83206a29 2515 if (err_mask) {
f15a1daf
TH
2516 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2517 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2518 return -EIO;
2519 }
1da177e4 2520
baa1e78a 2521 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2522 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2523 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2524 if (rc)
83206a29 2525 return rc;
48a8a14f 2526
23e71c3d
TH
2527 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2528 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2529
f15a1daf
TH
2530 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2531 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2532 return 0;
1da177e4
LT
2533}
2534
1da177e4 2535/**
04351821 2536 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2537 * @ap: port on which timings will be programmed
e82cbdb9 2538 * @r_failed_dev: out paramter for failed device
1da177e4 2539 *
04351821
AC
2540 * Standard implementation of the function used to tune and set
2541 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2542 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2543 * returned in @r_failed_dev.
780a87f7 2544 *
1da177e4 2545 * LOCKING:
0cba632b 2546 * PCI/etc. bus probe sem.
e82cbdb9
TH
2547 *
2548 * RETURNS:
2549 * 0 on success, negative errno otherwise
1da177e4 2550 */
04351821
AC
2551
2552int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2553{
e8e0619f 2554 struct ata_device *dev;
e82cbdb9 2555 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2556
3adcebb2 2557
a6d5a51c
TH
2558 /* step 1: calculate xfer_mask */
2559 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2560 unsigned int pio_mask, dma_mask;
a6d5a51c 2561
e8e0619f
TH
2562 dev = &ap->device[i];
2563
e1211e3f 2564 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2565 continue;
2566
3373efd8 2567 ata_dev_xfermask(dev);
1da177e4 2568
acf356b1
TH
2569 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2570 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2571 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2572 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2573
4f65977d 2574 found = 1;
5444a6f4
AC
2575 if (dev->dma_mode)
2576 used_dma = 1;
a6d5a51c 2577 }
4f65977d 2578 if (!found)
e82cbdb9 2579 goto out;
a6d5a51c
TH
2580
2581 /* step 2: always set host PIO timings */
e8e0619f
TH
2582 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2583 dev = &ap->device[i];
2584 if (!ata_dev_enabled(dev))
2585 continue;
2586
2587 if (!dev->pio_mode) {
f15a1daf 2588 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2589 rc = -EINVAL;
e82cbdb9 2590 goto out;
e8e0619f
TH
2591 }
2592
2593 dev->xfer_mode = dev->pio_mode;
2594 dev->xfer_shift = ATA_SHIFT_PIO;
2595 if (ap->ops->set_piomode)
2596 ap->ops->set_piomode(ap, dev);
2597 }
1da177e4 2598
a6d5a51c 2599 /* step 3: set host DMA timings */
e8e0619f
TH
2600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2601 dev = &ap->device[i];
2602
2603 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2604 continue;
2605
2606 dev->xfer_mode = dev->dma_mode;
2607 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2608 if (ap->ops->set_dmamode)
2609 ap->ops->set_dmamode(ap, dev);
2610 }
1da177e4
LT
2611
2612 /* step 4: update devices' xfer mode */
83206a29 2613 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2614 dev = &ap->device[i];
1da177e4 2615
18d90deb 2616 /* don't update suspended devices' xfer mode */
02670bf3 2617 if (!ata_dev_ready(dev))
83206a29
TH
2618 continue;
2619
3373efd8 2620 rc = ata_dev_set_mode(dev);
5bbc53f4 2621 if (rc)
e82cbdb9 2622 goto out;
83206a29 2623 }
1da177e4 2624
e8e0619f
TH
2625 /* Record simplex status. If we selected DMA then the other
2626 * host channels are not permitted to do so.
5444a6f4 2627 */
cca3974e 2628 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2629 ap->host->simplex_claimed = ap;
5444a6f4 2630
e8e0619f 2631 /* step5: chip specific finalisation */
1da177e4
LT
2632 if (ap->ops->post_set_mode)
2633 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2634 out:
2635 if (rc)
2636 *r_failed_dev = dev;
2637 return rc;
1da177e4
LT
2638}
2639
04351821
AC
2640/**
2641 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2642 * @ap: port on which timings will be programmed
2643 * @r_failed_dev: out paramter for failed device
2644 *
2645 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2646 * ata_set_mode() fails, pointer to the failing device is
2647 * returned in @r_failed_dev.
2648 *
2649 * LOCKING:
2650 * PCI/etc. bus probe sem.
2651 *
2652 * RETURNS:
2653 * 0 on success, negative errno otherwise
2654 */
2655int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2656{
2657 /* has private set_mode? */
2658 if (ap->ops->set_mode)
2659 return ap->ops->set_mode(ap, r_failed_dev);
2660 return ata_do_set_mode(ap, r_failed_dev);
2661}
2662
1fdffbce
JG
2663/**
2664 * ata_tf_to_host - issue ATA taskfile to host controller
2665 * @ap: port to which command is being issued
2666 * @tf: ATA taskfile register set
2667 *
2668 * Issues ATA taskfile register set to ATA host controller,
2669 * with proper synchronization with interrupt handler and
2670 * other threads.
2671 *
2672 * LOCKING:
cca3974e 2673 * spin_lock_irqsave(host lock)
1fdffbce
JG
2674 */
2675
2676static inline void ata_tf_to_host(struct ata_port *ap,
2677 const struct ata_taskfile *tf)
2678{
2679 ap->ops->tf_load(ap, tf);
2680 ap->ops->exec_command(ap, tf);
2681}
2682
1da177e4
LT
2683/**
2684 * ata_busy_sleep - sleep until BSY clears, or timeout
2685 * @ap: port containing status register to be polled
2686 * @tmout_pat: impatience timeout
2687 * @tmout: overall timeout
2688 *
780a87f7
JG
2689 * Sleep until ATA Status register bit BSY clears,
2690 * or a timeout occurs.
2691 *
d1adc1bb
TH
2692 * LOCKING:
2693 * Kernel thread context (may sleep).
2694 *
2695 * RETURNS:
2696 * 0 on success, -errno otherwise.
1da177e4 2697 */
d1adc1bb
TH
2698int ata_busy_sleep(struct ata_port *ap,
2699 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2700{
2701 unsigned long timer_start, timeout;
2702 u8 status;
2703
2704 status = ata_busy_wait(ap, ATA_BUSY, 300);
2705 timer_start = jiffies;
2706 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2707 while (status != 0xff && (status & ATA_BUSY) &&
2708 time_before(jiffies, timeout)) {
1da177e4
LT
2709 msleep(50);
2710 status = ata_busy_wait(ap, ATA_BUSY, 3);
2711 }
2712
d1adc1bb 2713 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2714 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2715 "port is slow to respond, please be patient "
2716 "(Status 0x%x)\n", status);
1da177e4
LT
2717
2718 timeout = timer_start + tmout;
d1adc1bb
TH
2719 while (status != 0xff && (status & ATA_BUSY) &&
2720 time_before(jiffies, timeout)) {
1da177e4
LT
2721 msleep(50);
2722 status = ata_chk_status(ap);
2723 }
2724
d1adc1bb
TH
2725 if (status == 0xff)
2726 return -ENODEV;
2727
1da177e4 2728 if (status & ATA_BUSY) {
f15a1daf 2729 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2730 "(%lu secs, Status 0x%x)\n",
2731 tmout / HZ, status);
d1adc1bb 2732 return -EBUSY;
1da177e4
LT
2733 }
2734
2735 return 0;
2736}
2737
2738static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2739{
2740 struct ata_ioports *ioaddr = &ap->ioaddr;
2741 unsigned int dev0 = devmask & (1 << 0);
2742 unsigned int dev1 = devmask & (1 << 1);
2743 unsigned long timeout;
2744
2745 /* if device 0 was found in ata_devchk, wait for its
2746 * BSY bit to clear
2747 */
2748 if (dev0)
2749 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2750
2751 /* if device 1 was found in ata_devchk, wait for
2752 * register access, then wait for BSY to clear
2753 */
2754 timeout = jiffies + ATA_TMOUT_BOOT;
2755 while (dev1) {
2756 u8 nsect, lbal;
2757
2758 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2759 nsect = ioread8(ioaddr->nsect_addr);
2760 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2761 if ((nsect == 1) && (lbal == 1))
2762 break;
2763 if (time_after(jiffies, timeout)) {
2764 dev1 = 0;
2765 break;
2766 }
2767 msleep(50); /* give drive a breather */
2768 }
2769 if (dev1)
2770 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2771
2772 /* is all this really necessary? */
2773 ap->ops->dev_select(ap, 0);
2774 if (dev1)
2775 ap->ops->dev_select(ap, 1);
2776 if (dev0)
2777 ap->ops->dev_select(ap, 0);
2778}
2779
1da177e4
LT
2780static unsigned int ata_bus_softreset(struct ata_port *ap,
2781 unsigned int devmask)
2782{
2783 struct ata_ioports *ioaddr = &ap->ioaddr;
2784
44877b4e 2785 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
2786
2787 /* software reset. causes dev0 to be selected */
0d5ff566
TH
2788 iowrite8(ap->ctl, ioaddr->ctl_addr);
2789 udelay(20); /* FIXME: flush */
2790 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2791 udelay(20); /* FIXME: flush */
2792 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2793
2794 /* spec mandates ">= 2ms" before checking status.
2795 * We wait 150ms, because that was the magic delay used for
2796 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2797 * between when the ATA command register is written, and then
2798 * status is checked. Because waiting for "a while" before
2799 * checking status is fine, post SRST, we perform this magic
2800 * delay here as well.
09c7ad79
AC
2801 *
2802 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2803 */
2804 msleep(150);
2805
2e9edbf8 2806 /* Before we perform post reset processing we want to see if
298a41ca
TH
2807 * the bus shows 0xFF because the odd clown forgets the D7
2808 * pulldown resistor.
2809 */
d1adc1bb
TH
2810 if (ata_check_status(ap) == 0xFF)
2811 return 0;
09c7ad79 2812
1da177e4
LT
2813 ata_bus_post_reset(ap, devmask);
2814
2815 return 0;
2816}
2817
2818/**
2819 * ata_bus_reset - reset host port and associated ATA channel
2820 * @ap: port to reset
2821 *
2822 * This is typically the first time we actually start issuing
2823 * commands to the ATA channel. We wait for BSY to clear, then
2824 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2825 * result. Determine what devices, if any, are on the channel
2826 * by looking at the device 0/1 error register. Look at the signature
2827 * stored in each device's taskfile registers, to determine if
2828 * the device is ATA or ATAPI.
2829 *
2830 * LOCKING:
0cba632b 2831 * PCI/etc. bus probe sem.
cca3974e 2832 * Obtains host lock.
1da177e4
LT
2833 *
2834 * SIDE EFFECTS:
198e0fed 2835 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2836 */
2837
2838void ata_bus_reset(struct ata_port *ap)
2839{
2840 struct ata_ioports *ioaddr = &ap->ioaddr;
2841 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2842 u8 err;
aec5c3c1 2843 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4 2844
44877b4e 2845 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
2846
2847 /* determine if device 0/1 are present */
2848 if (ap->flags & ATA_FLAG_SATA_RESET)
2849 dev0 = 1;
2850 else {
2851 dev0 = ata_devchk(ap, 0);
2852 if (slave_possible)
2853 dev1 = ata_devchk(ap, 1);
2854 }
2855
2856 if (dev0)
2857 devmask |= (1 << 0);
2858 if (dev1)
2859 devmask |= (1 << 1);
2860
2861 /* select device 0 again */
2862 ap->ops->dev_select(ap, 0);
2863
2864 /* issue bus reset */
2865 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2866 if (ata_bus_softreset(ap, devmask))
2867 goto err_out;
1da177e4
LT
2868
2869 /*
2870 * determine by signature whether we have ATA or ATAPI devices
2871 */
b4dc7623 2872 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2873 if ((slave_possible) && (err != 0x81))
b4dc7623 2874 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2875
2876 /* re-enable interrupts */
83625006 2877 ap->ops->irq_on(ap);
1da177e4
LT
2878
2879 /* is double-select really necessary? */
2880 if (ap->device[1].class != ATA_DEV_NONE)
2881 ap->ops->dev_select(ap, 1);
2882 if (ap->device[0].class != ATA_DEV_NONE)
2883 ap->ops->dev_select(ap, 0);
2884
2885 /* if no devices were detected, disable this port */
2886 if ((ap->device[0].class == ATA_DEV_NONE) &&
2887 (ap->device[1].class == ATA_DEV_NONE))
2888 goto err_out;
2889
2890 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2891 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 2892 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2893 }
2894
2895 DPRINTK("EXIT\n");
2896 return;
2897
2898err_out:
f15a1daf 2899 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2900 ap->ops->port_disable(ap);
2901
2902 DPRINTK("EXIT\n");
2903}
2904
d7bb4cc7
TH
2905/**
2906 * sata_phy_debounce - debounce SATA phy status
2907 * @ap: ATA port to debounce SATA phy status for
2908 * @params: timing parameters { interval, duratinon, timeout } in msec
2909 *
2910 * Make sure SStatus of @ap reaches stable state, determined by
2911 * holding the same value where DET is not 1 for @duration polled
2912 * every @interval, before @timeout. Timeout constraints the
2913 * beginning of the stable state. Because, after hot unplugging,
2914 * DET gets stuck at 1 on some controllers, this functions waits
2915 * until timeout then returns 0 if DET is stable at 1.
2916 *
2917 * LOCKING:
2918 * Kernel thread context (may sleep)
2919 *
2920 * RETURNS:
2921 * 0 on success, -errno on failure.
2922 */
2923int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2924{
d7bb4cc7
TH
2925 unsigned long interval_msec = params[0];
2926 unsigned long duration = params[1] * HZ / 1000;
2927 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2928 unsigned long last_jiffies;
2929 u32 last, cur;
2930 int rc;
2931
2932 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2933 return rc;
2934 cur &= 0xf;
2935
2936 last = cur;
2937 last_jiffies = jiffies;
2938
2939 while (1) {
2940 msleep(interval_msec);
2941 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2942 return rc;
2943 cur &= 0xf;
2944
2945 /* DET stable? */
2946 if (cur == last) {
2947 if (cur == 1 && time_before(jiffies, timeout))
2948 continue;
2949 if (time_after(jiffies, last_jiffies + duration))
2950 return 0;
2951 continue;
2952 }
2953
2954 /* unstable, start over */
2955 last = cur;
2956 last_jiffies = jiffies;
2957
2958 /* check timeout */
2959 if (time_after(jiffies, timeout))
2960 return -EBUSY;
2961 }
2962}
2963
2964/**
2965 * sata_phy_resume - resume SATA phy
2966 * @ap: ATA port to resume SATA phy for
2967 * @params: timing parameters { interval, duratinon, timeout } in msec
2968 *
2969 * Resume SATA phy of @ap and debounce it.
2970 *
2971 * LOCKING:
2972 * Kernel thread context (may sleep)
2973 *
2974 * RETURNS:
2975 * 0 on success, -errno on failure.
2976 */
2977int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2978{
2979 u32 scontrol;
81952c54
TH
2980 int rc;
2981
2982 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2983 return rc;
7a7921e8 2984
852ee16a 2985 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2986
2987 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2988 return rc;
7a7921e8 2989
d7bb4cc7
TH
2990 /* Some PHYs react badly if SStatus is pounded immediately
2991 * after resuming. Delay 200ms before debouncing.
2992 */
2993 msleep(200);
7a7921e8 2994
d7bb4cc7 2995 return sata_phy_debounce(ap, params);
7a7921e8
TH
2996}
2997
f5914a46
TH
2998static void ata_wait_spinup(struct ata_port *ap)
2999{
3000 struct ata_eh_context *ehc = &ap->eh_context;
3001 unsigned long end, secs;
3002 int rc;
3003
3004 /* first, debounce phy if SATA */
3005 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 3006 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
3007
3008 /* if debounced successfully and offline, no need to wait */
3009 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3010 return;
3011 }
3012
3013 /* okay, let's give the drive time to spin up */
3014 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3015 secs = ((end - jiffies) + HZ - 1) / HZ;
3016
3017 if (time_after(jiffies, end))
3018 return;
3019
3020 if (secs > 5)
3021 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3022 "(%lu secs)\n", secs);
3023
3024 schedule_timeout_uninterruptible(end - jiffies);
3025}
3026
3027/**
3028 * ata_std_prereset - prepare for reset
3029 * @ap: ATA port to be reset
3030 *
3031 * @ap is about to be reset. Initialize it.
3032 *
3033 * LOCKING:
3034 * Kernel thread context (may sleep)
3035 *
3036 * RETURNS:
3037 * 0 on success, -errno otherwise.
3038 */
3039int ata_std_prereset(struct ata_port *ap)
3040{
3041 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3042 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3043 int rc;
3044
28324304
TH
3045 /* handle link resume & hotplug spinup */
3046 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3047 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3048 ehc->i.action |= ATA_EH_HARDRESET;
3049
3050 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3051 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3052 ata_wait_spinup(ap);
f5914a46
TH
3053
3054 /* if we're about to do hardreset, nothing more to do */
3055 if (ehc->i.action & ATA_EH_HARDRESET)
3056 return 0;
3057
3058 /* if SATA, resume phy */
3059 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
3060 rc = sata_phy_resume(ap, timing);
3061 if (rc && rc != -EOPNOTSUPP) {
3062 /* phy resume failed */
3063 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3064 "link for reset (errno=%d)\n", rc);
3065 return rc;
3066 }
3067 }
3068
3069 /* Wait for !BSY if the controller can wait for the first D2H
3070 * Reg FIS and we don't know that no device is attached.
3071 */
3072 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3073 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3074
3075 return 0;
3076}
3077
c2bd5804
TH
3078/**
3079 * ata_std_softreset - reset host port via ATA SRST
3080 * @ap: port to reset
c2bd5804
TH
3081 * @classes: resulting classes of attached devices
3082 *
52783c5d 3083 * Reset host port using ATA SRST.
c2bd5804
TH
3084 *
3085 * LOCKING:
3086 * Kernel thread context (may sleep)
3087 *
3088 * RETURNS:
3089 * 0 on success, -errno otherwise.
3090 */
2bf2cb26 3091int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
3092{
3093 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3094 unsigned int devmask = 0, err_mask;
3095 u8 err;
3096
3097 DPRINTK("ENTER\n");
3098
81952c54 3099 if (ata_port_offline(ap)) {
3a39746a
TH
3100 classes[0] = ATA_DEV_NONE;
3101 goto out;
3102 }
3103
c2bd5804
TH
3104 /* determine if device 0/1 are present */
3105 if (ata_devchk(ap, 0))
3106 devmask |= (1 << 0);
3107 if (slave_possible && ata_devchk(ap, 1))
3108 devmask |= (1 << 1);
3109
c2bd5804
TH
3110 /* select device 0 again */
3111 ap->ops->dev_select(ap, 0);
3112
3113 /* issue bus reset */
3114 DPRINTK("about to softreset, devmask=%x\n", devmask);
3115 err_mask = ata_bus_softreset(ap, devmask);
3116 if (err_mask) {
f15a1daf
TH
3117 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3118 err_mask);
c2bd5804
TH
3119 return -EIO;
3120 }
3121
3122 /* determine by signature whether we have ATA or ATAPI devices */
3123 classes[0] = ata_dev_try_classify(ap, 0, &err);
3124 if (slave_possible && err != 0x81)
3125 classes[1] = ata_dev_try_classify(ap, 1, &err);
3126
3a39746a 3127 out:
c2bd5804
TH
3128 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3129 return 0;
3130}
3131
3132/**
b6103f6d 3133 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3134 * @ap: port to reset
b6103f6d 3135 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3136 *
3137 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3138 *
3139 * LOCKING:
3140 * Kernel thread context (may sleep)
3141 *
3142 * RETURNS:
3143 * 0 on success, -errno otherwise.
3144 */
b6103f6d 3145int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3146{
852ee16a 3147 u32 scontrol;
81952c54 3148 int rc;
852ee16a 3149
c2bd5804
TH
3150 DPRINTK("ENTER\n");
3151
3c567b7d 3152 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3153 /* SATA spec says nothing about how to reconfigure
3154 * spd. To be on the safe side, turn off phy during
3155 * reconfiguration. This works for at least ICH7 AHCI
3156 * and Sil3124.
3157 */
81952c54 3158 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3159 goto out;
81952c54 3160
a34b6fc0 3161 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3162
3163 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3164 goto out;
1c3fae4d 3165
3c567b7d 3166 sata_set_spd(ap);
1c3fae4d
TH
3167 }
3168
3169 /* issue phy wake/reset */
81952c54 3170 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3171 goto out;
81952c54 3172
852ee16a 3173 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3174
3175 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3176 goto out;
c2bd5804 3177
1c3fae4d 3178 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3179 * 10.4.2 says at least 1 ms.
3180 */
3181 msleep(1);
3182
1c3fae4d 3183 /* bring phy back */
b6103f6d
TH
3184 rc = sata_phy_resume(ap, timing);
3185 out:
3186 DPRINTK("EXIT, rc=%d\n", rc);
3187 return rc;
3188}
3189
3190/**
3191 * sata_std_hardreset - reset host port via SATA phy reset
3192 * @ap: port to reset
3193 * @class: resulting class of attached device
3194 *
3195 * SATA phy-reset host port using DET bits of SControl register,
3196 * wait for !BSY and classify the attached device.
3197 *
3198 * LOCKING:
3199 * Kernel thread context (may sleep)
3200 *
3201 * RETURNS:
3202 * 0 on success, -errno otherwise.
3203 */
3204int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3205{
3206 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3207 int rc;
3208
3209 DPRINTK("ENTER\n");
3210
3211 /* do hardreset */
3212 rc = sata_port_hardreset(ap, timing);
3213 if (rc) {
3214 ata_port_printk(ap, KERN_ERR,
3215 "COMRESET failed (errno=%d)\n", rc);
3216 return rc;
3217 }
c2bd5804 3218
c2bd5804 3219 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3220 if (ata_port_offline(ap)) {
c2bd5804
TH
3221 *class = ATA_DEV_NONE;
3222 DPRINTK("EXIT, link offline\n");
3223 return 0;
3224 }
3225
34fee227
TH
3226 /* wait a while before checking status, see SRST for more info */
3227 msleep(150);
3228
c2bd5804 3229 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3230 ata_port_printk(ap, KERN_ERR,
3231 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3232 return -EIO;
3233 }
3234
3a39746a
TH
3235 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3236
c2bd5804
TH
3237 *class = ata_dev_try_classify(ap, 0, NULL);
3238
3239 DPRINTK("EXIT, class=%u\n", *class);
3240 return 0;
3241}
3242
3243/**
3244 * ata_std_postreset - standard postreset callback
3245 * @ap: the target ata_port
3246 * @classes: classes of attached devices
3247 *
3248 * This function is invoked after a successful reset. Note that
3249 * the device might have been reset more than once using
3250 * different reset methods before postreset is invoked.
c2bd5804 3251 *
c2bd5804
TH
3252 * LOCKING:
3253 * Kernel thread context (may sleep)
3254 */
3255void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3256{
dc2b3515
TH
3257 u32 serror;
3258
c2bd5804
TH
3259 DPRINTK("ENTER\n");
3260
c2bd5804 3261 /* print link status */
81952c54 3262 sata_print_link_status(ap);
c2bd5804 3263
dc2b3515
TH
3264 /* clear SError */
3265 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3266 sata_scr_write(ap, SCR_ERROR, serror);
3267
3a39746a 3268 /* re-enable interrupts */
83625006
AI
3269 if (!ap->ops->error_handler)
3270 ap->ops->irq_on(ap);
c2bd5804
TH
3271
3272 /* is double-select really necessary? */
3273 if (classes[0] != ATA_DEV_NONE)
3274 ap->ops->dev_select(ap, 1);
3275 if (classes[1] != ATA_DEV_NONE)
3276 ap->ops->dev_select(ap, 0);
3277
3a39746a
TH
3278 /* bail out if no device is present */
3279 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3280 DPRINTK("EXIT, no device\n");
3281 return;
3282 }
3283
3284 /* set up device control */
0d5ff566
TH
3285 if (ap->ioaddr.ctl_addr)
3286 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3287
3288 DPRINTK("EXIT\n");
3289}
3290
623a3128
TH
3291/**
3292 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3293 * @dev: device to compare against
3294 * @new_class: class of the new device
3295 * @new_id: IDENTIFY page of the new device
3296 *
3297 * Compare @new_class and @new_id against @dev and determine
3298 * whether @dev is the device indicated by @new_class and
3299 * @new_id.
3300 *
3301 * LOCKING:
3302 * None.
3303 *
3304 * RETURNS:
3305 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3306 */
3373efd8
TH
3307static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3308 const u16 *new_id)
623a3128
TH
3309{
3310 const u16 *old_id = dev->id;
a0cf733b
TH
3311 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3312 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3313 u64 new_n_sectors;
3314
3315 if (dev->class != new_class) {
f15a1daf
TH
3316 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3317 dev->class, new_class);
623a3128
TH
3318 return 0;
3319 }
3320
a0cf733b
TH
3321 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3322 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3323 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3324 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3325 new_n_sectors = ata_id_n_sectors(new_id);
3326
3327 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3328 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3329 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3330 return 0;
3331 }
3332
3333 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3334 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3335 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3336 return 0;
3337 }
3338
3339 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3340 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3341 "%llu != %llu\n",
3342 (unsigned long long)dev->n_sectors,
3343 (unsigned long long)new_n_sectors);
623a3128
TH
3344 return 0;
3345 }
3346
3347 return 1;
3348}
3349
3350/**
3351 * ata_dev_revalidate - Revalidate ATA device
623a3128 3352 * @dev: device to revalidate
bff04647 3353 * @readid_flags: read ID flags
623a3128
TH
3354 *
3355 * Re-read IDENTIFY page and make sure @dev is still attached to
3356 * the port.
3357 *
3358 * LOCKING:
3359 * Kernel thread context (may sleep)
3360 *
3361 * RETURNS:
3362 * 0 on success, negative errno otherwise
3363 */
bff04647 3364int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3365{
5eb45c02 3366 unsigned int class = dev->class;
f15a1daf 3367 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3368 int rc;
3369
5eb45c02
TH
3370 if (!ata_dev_enabled(dev)) {
3371 rc = -ENODEV;
3372 goto fail;
3373 }
623a3128 3374
fe635c7e 3375 /* read ID data */
bff04647 3376 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3377 if (rc)
3378 goto fail;
3379
3380 /* is the device still there? */
3373efd8 3381 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3382 rc = -ENODEV;
3383 goto fail;
3384 }
3385
fe635c7e 3386 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3387
3388 /* configure device according to the new ID */
efdaedc4 3389 rc = ata_dev_configure(dev);
5eb45c02
TH
3390 if (rc == 0)
3391 return 0;
623a3128
TH
3392
3393 fail:
f15a1daf 3394 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3395 return rc;
3396}
3397
6919a0a6
AC
3398struct ata_blacklist_entry {
3399 const char *model_num;
3400 const char *model_rev;
3401 unsigned long horkage;
3402};
3403
3404static const struct ata_blacklist_entry ata_device_blacklist [] = {
3405 /* Devices with DMA related problems under Linux */
3406 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3407 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3408 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3409 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3410 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3411 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3412 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3413 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3414 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3415 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3416 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3417 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3418 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3419 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3420 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3421 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3422 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3423 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3424 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3425 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3426 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3427 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3428 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3429 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3430 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3431 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3432 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3433 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3434 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3435
18d6e9d5 3436 /* Weird ATAPI devices */
6f23a31d
AL
3437 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3438 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3439
6919a0a6
AC
3440 /* Devices we expect to fail diagnostics */
3441
3442 /* Devices where NCQ should be avoided */
3443 /* NCQ is slow */
3444 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3445 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3446 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3447 /* NCQ is broken */
3448 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3449 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3450 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3451 /* Blacklist entries taken from Silicon Image 3124/3132
3452 Windows driver .inf file - also several Linux problem reports */
3453 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3454 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3455 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3456
3457 /* Devices with NCQ limits */
3458
3459 /* End Marker */
3460 { }
1da177e4 3461};
2e9edbf8 3462
6919a0a6 3463unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3464{
8bfa79fc
TH
3465 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3466 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3467 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3468
8bfa79fc
TH
3469 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3470 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3471
6919a0a6 3472 while (ad->model_num) {
8bfa79fc 3473 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3474 if (ad->model_rev == NULL)
3475 return ad->horkage;
8bfa79fc 3476 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3477 return ad->horkage;
f4b15fef 3478 }
6919a0a6 3479 ad++;
f4b15fef 3480 }
1da177e4
LT
3481 return 0;
3482}
3483
6919a0a6
AC
3484static int ata_dma_blacklisted(const struct ata_device *dev)
3485{
3486 /* We don't support polling DMA.
3487 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3488 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3489 */
3490 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3491 (dev->flags & ATA_DFLAG_CDB_INTR))
3492 return 1;
3493 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3494}
3495
a6d5a51c
TH
3496/**
3497 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3498 * @dev: Device to compute xfermask for
3499 *
acf356b1
TH
3500 * Compute supported xfermask of @dev and store it in
3501 * dev->*_mask. This function is responsible for applying all
3502 * known limits including host controller limits, device
3503 * blacklist, etc...
a6d5a51c
TH
3504 *
3505 * LOCKING:
3506 * None.
a6d5a51c 3507 */
3373efd8 3508static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3509{
3373efd8 3510 struct ata_port *ap = dev->ap;
cca3974e 3511 struct ata_host *host = ap->host;
a6d5a51c 3512 unsigned long xfer_mask;
1da177e4 3513
37deecb5 3514 /* controller modes available */
565083e1
TH
3515 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3516 ap->mwdma_mask, ap->udma_mask);
3517
8343f889 3518 /* drive modes available */
37deecb5
TH
3519 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3520 dev->mwdma_mask, dev->udma_mask);
3521 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3522
b352e57d
AC
3523 /*
3524 * CFA Advanced TrueIDE timings are not allowed on a shared
3525 * cable
3526 */
3527 if (ata_dev_pair(dev)) {
3528 /* No PIO5 or PIO6 */
3529 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3530 /* No MWDMA3 or MWDMA 4 */
3531 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3532 }
3533
37deecb5
TH
3534 if (ata_dma_blacklisted(dev)) {
3535 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3536 ata_dev_printk(dev, KERN_WARNING,
3537 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3538 }
a6d5a51c 3539
14d66ab7
PV
3540 if ((host->flags & ATA_HOST_SIMPLEX) &&
3541 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3542 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3543 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3544 "other device, disabling DMA\n");
5444a6f4 3545 }
565083e1 3546
e424675f
JG
3547 if (ap->flags & ATA_FLAG_NO_IORDY)
3548 xfer_mask &= ata_pio_mask_no_iordy(dev);
3549
5444a6f4 3550 if (ap->ops->mode_filter)
a76b62ca 3551 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3552
8343f889
RH
3553 /* Apply cable rule here. Don't apply it early because when
3554 * we handle hot plug the cable type can itself change.
3555 * Check this last so that we know if the transfer rate was
3556 * solely limited by the cable.
3557 * Unknown or 80 wire cables reported host side are checked
3558 * drive side as well. Cases where we know a 40wire cable
3559 * is used safely for 80 are not checked here.
3560 */
3561 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3562 /* UDMA/44 or higher would be available */
3563 if((ap->cbl == ATA_CBL_PATA40) ||
3564 (ata_drive_40wire(dev->id) &&
3565 (ap->cbl == ATA_CBL_PATA_UNK ||
3566 ap->cbl == ATA_CBL_PATA80))) {
3567 ata_dev_printk(dev, KERN_WARNING,
3568 "limited to UDMA/33 due to 40-wire cable\n");
3569 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3570 }
3571
565083e1
TH
3572 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3573 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3574}
3575
1da177e4
LT
3576/**
3577 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3578 * @dev: Device to which command will be sent
3579 *
780a87f7
JG
3580 * Issue SET FEATURES - XFER MODE command to device @dev
3581 * on port @ap.
3582 *
1da177e4 3583 * LOCKING:
0cba632b 3584 * PCI/etc. bus probe sem.
83206a29
TH
3585 *
3586 * RETURNS:
3587 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3588 */
3589
3373efd8 3590static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3591{
a0123703 3592 struct ata_taskfile tf;
83206a29 3593 unsigned int err_mask;
1da177e4
LT
3594
3595 /* set up set-features taskfile */
3596 DPRINTK("set features - xfer mode\n");
3597
3373efd8 3598 ata_tf_init(dev, &tf);
a0123703
TH
3599 tf.command = ATA_CMD_SET_FEATURES;
3600 tf.feature = SETFEATURES_XFER;
3601 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3602 tf.protocol = ATA_PROT_NODATA;
3603 tf.nsect = dev->xfer_mode;
1da177e4 3604
3373efd8 3605 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3606
83206a29
TH
3607 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3608 return err_mask;
1da177e4
LT
3609}
3610
8bf62ece
AL
3611/**
3612 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3613 * @dev: Device to which command will be sent
e2a7f77a
RD
3614 * @heads: Number of heads (taskfile parameter)
3615 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3616 *
3617 * LOCKING:
6aff8f1f
TH
3618 * Kernel thread context (may sleep)
3619 *
3620 * RETURNS:
3621 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3622 */
3373efd8
TH
3623static unsigned int ata_dev_init_params(struct ata_device *dev,
3624 u16 heads, u16 sectors)
8bf62ece 3625{
a0123703 3626 struct ata_taskfile tf;
6aff8f1f 3627 unsigned int err_mask;
8bf62ece
AL
3628
3629 /* Number of sectors per track 1-255. Number of heads 1-16 */
3630 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3631 return AC_ERR_INVALID;
8bf62ece
AL
3632
3633 /* set up init dev params taskfile */
3634 DPRINTK("init dev params \n");
3635
3373efd8 3636 ata_tf_init(dev, &tf);
a0123703
TH
3637 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3638 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3639 tf.protocol = ATA_PROT_NODATA;
3640 tf.nsect = sectors;
3641 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3642
3373efd8 3643 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3644
6aff8f1f
TH
3645 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3646 return err_mask;
8bf62ece
AL
3647}
3648
1da177e4 3649/**
0cba632b
JG
3650 * ata_sg_clean - Unmap DMA memory associated with command
3651 * @qc: Command containing DMA memory to be released
3652 *
3653 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3654 *
3655 * LOCKING:
cca3974e 3656 * spin_lock_irqsave(host lock)
1da177e4 3657 */
70e6ad0c 3658void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3659{
3660 struct ata_port *ap = qc->ap;
cedc9a47 3661 struct scatterlist *sg = qc->__sg;
1da177e4 3662 int dir = qc->dma_dir;
cedc9a47 3663 void *pad_buf = NULL;
1da177e4 3664
a4631474
TH
3665 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3666 WARN_ON(sg == NULL);
1da177e4
LT
3667
3668 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3669 WARN_ON(qc->n_elem > 1);
1da177e4 3670
2c13b7ce 3671 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3672
cedc9a47
JG
3673 /* if we padded the buffer out to 32-bit bound, and data
3674 * xfer direction is from-device, we must copy from the
3675 * pad buffer back into the supplied buffer
3676 */
3677 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3678 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3679
3680 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3681 if (qc->n_elem)
2f1f610b 3682 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3683 /* restore last sg */
3684 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3685 if (pad_buf) {
3686 struct scatterlist *psg = &qc->pad_sgent;
3687 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3688 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3689 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3690 }
3691 } else {
2e242fa9 3692 if (qc->n_elem)
2f1f610b 3693 dma_unmap_single(ap->dev,
e1410f2d
JG
3694 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3695 dir);
cedc9a47
JG
3696 /* restore sg */
3697 sg->length += qc->pad_len;
3698 if (pad_buf)
3699 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3700 pad_buf, qc->pad_len);
3701 }
1da177e4
LT
3702
3703 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3704 qc->__sg = NULL;
1da177e4
LT
3705}
3706
3707/**
3708 * ata_fill_sg - Fill PCI IDE PRD table
3709 * @qc: Metadata associated with taskfile to be transferred
3710 *
780a87f7
JG
3711 * Fill PCI IDE PRD (scatter-gather) table with segments
3712 * associated with the current disk command.
3713 *
1da177e4 3714 * LOCKING:
cca3974e 3715 * spin_lock_irqsave(host lock)
1da177e4
LT
3716 *
3717 */
3718static void ata_fill_sg(struct ata_queued_cmd *qc)
3719{
1da177e4 3720 struct ata_port *ap = qc->ap;
cedc9a47
JG
3721 struct scatterlist *sg;
3722 unsigned int idx;
1da177e4 3723
a4631474 3724 WARN_ON(qc->__sg == NULL);
f131883e 3725 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3726
3727 idx = 0;
cedc9a47 3728 ata_for_each_sg(sg, qc) {
1da177e4
LT
3729 u32 addr, offset;
3730 u32 sg_len, len;
3731
3732 /* determine if physical DMA addr spans 64K boundary.
3733 * Note h/w doesn't support 64-bit, so we unconditionally
3734 * truncate dma_addr_t to u32.
3735 */
3736 addr = (u32) sg_dma_address(sg);
3737 sg_len = sg_dma_len(sg);
3738
3739 while (sg_len) {
3740 offset = addr & 0xffff;
3741 len = sg_len;
3742 if ((offset + sg_len) > 0x10000)
3743 len = 0x10000 - offset;
3744
3745 ap->prd[idx].addr = cpu_to_le32(addr);
3746 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3747 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3748
3749 idx++;
3750 sg_len -= len;
3751 addr += len;
3752 }
3753 }
3754
3755 if (idx)
3756 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3757}
3758/**
3759 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3760 * @qc: Metadata associated with taskfile to check
3761 *
780a87f7
JG
3762 * Allow low-level driver to filter ATA PACKET commands, returning
3763 * a status indicating whether or not it is OK to use DMA for the
3764 * supplied PACKET command.
3765 *
1da177e4 3766 * LOCKING:
cca3974e 3767 * spin_lock_irqsave(host lock)
0cba632b 3768 *
1da177e4
LT
3769 * RETURNS: 0 when ATAPI DMA can be used
3770 * nonzero otherwise
3771 */
3772int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3773{
3774 struct ata_port *ap = qc->ap;
3775 int rc = 0; /* Assume ATAPI DMA is OK by default */
3776
6f23a31d
AL
3777 /* some drives can only do ATAPI DMA on read/write */
3778 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3779 struct scsi_cmnd *cmd = qc->scsicmd;
3780 u8 *scsicmd = cmd->cmnd;
3781
3782 switch (scsicmd[0]) {
3783 case READ_10:
3784 case WRITE_10:
3785 case READ_12:
3786 case WRITE_12:
3787 case READ_6:
3788 case WRITE_6:
3789 /* atapi dma maybe ok */
3790 break;
3791 default:
3792 /* turn off atapi dma */
3793 return 1;
3794 }
3795 }
3796
1da177e4
LT
3797 if (ap->ops->check_atapi_dma)
3798 rc = ap->ops->check_atapi_dma(qc);
3799
3800 return rc;
3801}
3802/**
3803 * ata_qc_prep - Prepare taskfile for submission
3804 * @qc: Metadata associated with taskfile to be prepared
3805 *
780a87f7
JG
3806 * Prepare ATA taskfile for submission.
3807 *
1da177e4 3808 * LOCKING:
cca3974e 3809 * spin_lock_irqsave(host lock)
1da177e4
LT
3810 */
3811void ata_qc_prep(struct ata_queued_cmd *qc)
3812{
3813 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3814 return;
3815
3816 ata_fill_sg(qc);
3817}
3818
e46834cd
BK
3819void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3820
0cba632b
JG
3821/**
3822 * ata_sg_init_one - Associate command with memory buffer
3823 * @qc: Command to be associated
3824 * @buf: Memory buffer
3825 * @buflen: Length of memory buffer, in bytes.
3826 *
3827 * Initialize the data-related elements of queued_cmd @qc
3828 * to point to a single memory buffer, @buf of byte length @buflen.
3829 *
3830 * LOCKING:
cca3974e 3831 * spin_lock_irqsave(host lock)
0cba632b
JG
3832 */
3833
1da177e4
LT
3834void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3835{
1da177e4
LT
3836 qc->flags |= ATA_QCFLAG_SINGLE;
3837
cedc9a47 3838 qc->__sg = &qc->sgent;
1da177e4 3839 qc->n_elem = 1;
cedc9a47 3840 qc->orig_n_elem = 1;
1da177e4 3841 qc->buf_virt = buf;
233277ca 3842 qc->nbytes = buflen;
1da177e4 3843
61c0596c 3844 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3845}
3846
0cba632b
JG
3847/**
3848 * ata_sg_init - Associate command with scatter-gather table.
3849 * @qc: Command to be associated
3850 * @sg: Scatter-gather table.
3851 * @n_elem: Number of elements in s/g table.
3852 *
3853 * Initialize the data-related elements of queued_cmd @qc
3854 * to point to a scatter-gather table @sg, containing @n_elem
3855 * elements.
3856 *
3857 * LOCKING:
cca3974e 3858 * spin_lock_irqsave(host lock)
0cba632b
JG
3859 */
3860
1da177e4
LT
3861void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3862 unsigned int n_elem)
3863{
3864 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3865 qc->__sg = sg;
1da177e4 3866 qc->n_elem = n_elem;
cedc9a47 3867 qc->orig_n_elem = n_elem;
1da177e4
LT
3868}
3869
3870/**
0cba632b
JG
3871 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3872 * @qc: Command with memory buffer to be mapped.
3873 *
3874 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3875 *
3876 * LOCKING:
cca3974e 3877 * spin_lock_irqsave(host lock)
1da177e4
LT
3878 *
3879 * RETURNS:
0cba632b 3880 * Zero on success, negative on error.
1da177e4
LT
3881 */
3882
3883static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3884{
3885 struct ata_port *ap = qc->ap;
3886 int dir = qc->dma_dir;
cedc9a47 3887 struct scatterlist *sg = qc->__sg;
1da177e4 3888 dma_addr_t dma_address;
2e242fa9 3889 int trim_sg = 0;
1da177e4 3890
cedc9a47
JG
3891 /* we must lengthen transfers to end on a 32-bit boundary */
3892 qc->pad_len = sg->length & 3;
3893 if (qc->pad_len) {
3894 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3895 struct scatterlist *psg = &qc->pad_sgent;
3896
a4631474 3897 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3898
3899 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3900
3901 if (qc->tf.flags & ATA_TFLAG_WRITE)
3902 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3903 qc->pad_len);
3904
3905 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3906 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3907 /* trim sg */
3908 sg->length -= qc->pad_len;
2e242fa9
TH
3909 if (sg->length == 0)
3910 trim_sg = 1;
cedc9a47
JG
3911
3912 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3913 sg->length, qc->pad_len);
3914 }
3915
2e242fa9
TH
3916 if (trim_sg) {
3917 qc->n_elem--;
e1410f2d
JG
3918 goto skip_map;
3919 }
3920
2f1f610b 3921 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3922 sg->length, dir);
537a95d9
TH
3923 if (dma_mapping_error(dma_address)) {
3924 /* restore sg */
3925 sg->length += qc->pad_len;
1da177e4 3926 return -1;
537a95d9 3927 }
1da177e4
LT
3928
3929 sg_dma_address(sg) = dma_address;
32529e01 3930 sg_dma_len(sg) = sg->length;
1da177e4 3931
2e242fa9 3932skip_map:
1da177e4
LT
3933 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3934 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3935
3936 return 0;
3937}
3938
3939/**
0cba632b
JG
3940 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3941 * @qc: Command with scatter-gather table to be mapped.
3942 *
3943 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3944 *
3945 * LOCKING:
cca3974e 3946 * spin_lock_irqsave(host lock)
1da177e4
LT
3947 *
3948 * RETURNS:
0cba632b 3949 * Zero on success, negative on error.
1da177e4
LT
3950 *
3951 */
3952
3953static int ata_sg_setup(struct ata_queued_cmd *qc)
3954{
3955 struct ata_port *ap = qc->ap;
cedc9a47
JG
3956 struct scatterlist *sg = qc->__sg;
3957 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3958 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 3959
44877b4e 3960 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 3961 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3962
cedc9a47
JG
3963 /* we must lengthen transfers to end on a 32-bit boundary */
3964 qc->pad_len = lsg->length & 3;
3965 if (qc->pad_len) {
3966 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3967 struct scatterlist *psg = &qc->pad_sgent;
3968 unsigned int offset;
3969
a4631474 3970 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3971
3972 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3973
3974 /*
3975 * psg->page/offset are used to copy to-be-written
3976 * data in this function or read data in ata_sg_clean.
3977 */
3978 offset = lsg->offset + lsg->length - qc->pad_len;
3979 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3980 psg->offset = offset_in_page(offset);
3981
3982 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3983 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3984 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3985 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3986 }
3987
3988 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3989 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3990 /* trim last sg */
3991 lsg->length -= qc->pad_len;
e1410f2d
JG
3992 if (lsg->length == 0)
3993 trim_sg = 1;
cedc9a47
JG
3994
3995 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3996 qc->n_elem - 1, lsg->length, qc->pad_len);
3997 }
3998
e1410f2d
JG
3999 pre_n_elem = qc->n_elem;
4000 if (trim_sg && pre_n_elem)
4001 pre_n_elem--;
4002
4003 if (!pre_n_elem) {
4004 n_elem = 0;
4005 goto skip_map;
4006 }
4007
1da177e4 4008 dir = qc->dma_dir;
2f1f610b 4009 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4010 if (n_elem < 1) {
4011 /* restore last sg */
4012 lsg->length += qc->pad_len;
1da177e4 4013 return -1;
537a95d9 4014 }
1da177e4
LT
4015
4016 DPRINTK("%d sg elements mapped\n", n_elem);
4017
e1410f2d 4018skip_map:
1da177e4
LT
4019 qc->n_elem = n_elem;
4020
4021 return 0;
4022}
4023
0baab86b 4024/**
c893a3ae 4025 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4026 * @buf: Buffer to swap
4027 * @buf_words: Number of 16-bit words in buffer.
4028 *
4029 * Swap halves of 16-bit words if needed to convert from
4030 * little-endian byte order to native cpu byte order, or
4031 * vice-versa.
4032 *
4033 * LOCKING:
6f0ef4fa 4034 * Inherited from caller.
0baab86b 4035 */
1da177e4
LT
4036void swap_buf_le16(u16 *buf, unsigned int buf_words)
4037{
4038#ifdef __BIG_ENDIAN
4039 unsigned int i;
4040
4041 for (i = 0; i < buf_words; i++)
4042 buf[i] = le16_to_cpu(buf[i]);
4043#endif /* __BIG_ENDIAN */
4044}
4045
6ae4cfb5 4046/**
0d5ff566 4047 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4048 * @adev: device to target
6ae4cfb5
AL
4049 * @buf: data buffer
4050 * @buflen: buffer length
344babaa 4051 * @write_data: read/write
6ae4cfb5
AL
4052 *
4053 * Transfer data from/to the device data register by PIO.
4054 *
4055 * LOCKING:
4056 * Inherited from caller.
6ae4cfb5 4057 */
0d5ff566
TH
4058void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4059 unsigned int buflen, int write_data)
1da177e4 4060{
a6b2c5d4 4061 struct ata_port *ap = adev->ap;
6ae4cfb5 4062 unsigned int words = buflen >> 1;
1da177e4 4063
6ae4cfb5 4064 /* Transfer multiple of 2 bytes */
1da177e4 4065 if (write_data)
0d5ff566 4066 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4067 else
0d5ff566 4068 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4069
4070 /* Transfer trailing 1 byte, if any. */
4071 if (unlikely(buflen & 0x01)) {
4072 u16 align_buf[1] = { 0 };
4073 unsigned char *trailing_buf = buf + buflen - 1;
4074
4075 if (write_data) {
4076 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4077 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4078 } else {
0d5ff566 4079 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4080 memcpy(trailing_buf, align_buf, 1);
4081 }
4082 }
1da177e4
LT
4083}
4084
75e99585 4085/**
0d5ff566 4086 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4087 * @adev: device to target
4088 * @buf: data buffer
4089 * @buflen: buffer length
4090 * @write_data: read/write
4091 *
88574551 4092 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4093 * transfer with interrupts disabled.
4094 *
4095 * LOCKING:
4096 * Inherited from caller.
4097 */
0d5ff566
TH
4098void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4099 unsigned int buflen, int write_data)
75e99585
AC
4100{
4101 unsigned long flags;
4102 local_irq_save(flags);
0d5ff566 4103 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4104 local_irq_restore(flags);
4105}
4106
4107
6ae4cfb5 4108/**
5a5dbd18 4109 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4110 * @qc: Command on going
4111 *
5a5dbd18 4112 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4113 *
4114 * LOCKING:
4115 * Inherited from caller.
4116 */
4117
1da177e4
LT
4118static void ata_pio_sector(struct ata_queued_cmd *qc)
4119{
4120 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4121 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4122 struct ata_port *ap = qc->ap;
4123 struct page *page;
4124 unsigned int offset;
4125 unsigned char *buf;
4126
5a5dbd18 4127 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4128 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4129
4130 page = sg[qc->cursg].page;
726f0785 4131 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4132
4133 /* get the current page and offset */
4134 page = nth_page(page, (offset >> PAGE_SHIFT));
4135 offset %= PAGE_SIZE;
4136
1da177e4
LT
4137 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4138
91b8b313
AL
4139 if (PageHighMem(page)) {
4140 unsigned long flags;
4141
a6b2c5d4 4142 /* FIXME: use a bounce buffer */
91b8b313
AL
4143 local_irq_save(flags);
4144 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4145
91b8b313 4146 /* do the actual data transfer */
5a5dbd18 4147 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4148
91b8b313
AL
4149 kunmap_atomic(buf, KM_IRQ0);
4150 local_irq_restore(flags);
4151 } else {
4152 buf = page_address(page);
5a5dbd18 4153 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4154 }
1da177e4 4155
5a5dbd18
ML
4156 qc->curbytes += qc->sect_size;
4157 qc->cursg_ofs += qc->sect_size;
1da177e4 4158
726f0785 4159 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4160 qc->cursg++;
4161 qc->cursg_ofs = 0;
4162 }
1da177e4 4163}
1da177e4 4164
07f6f7d0 4165/**
5a5dbd18 4166 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4167 * @qc: Command on going
4168 *
5a5dbd18 4169 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4170 * ATA device for the DRQ request.
4171 *
4172 * LOCKING:
4173 * Inherited from caller.
4174 */
1da177e4 4175
07f6f7d0
AL
4176static void ata_pio_sectors(struct ata_queued_cmd *qc)
4177{
4178 if (is_multi_taskfile(&qc->tf)) {
4179 /* READ/WRITE MULTIPLE */
4180 unsigned int nsect;
4181
587005de 4182 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4183
5a5dbd18 4184 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4185 qc->dev->multi_count);
07f6f7d0
AL
4186 while (nsect--)
4187 ata_pio_sector(qc);
4188 } else
4189 ata_pio_sector(qc);
4190}
4191
c71c1857
AL
4192/**
4193 * atapi_send_cdb - Write CDB bytes to hardware
4194 * @ap: Port to which ATAPI device is attached.
4195 * @qc: Taskfile currently active
4196 *
4197 * When device has indicated its readiness to accept
4198 * a CDB, this function is called. Send the CDB.
4199 *
4200 * LOCKING:
4201 * caller.
4202 */
4203
4204static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4205{
4206 /* send SCSI cdb */
4207 DPRINTK("send cdb\n");
db024d53 4208 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4209
a6b2c5d4 4210 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4211 ata_altstatus(ap); /* flush */
4212
4213 switch (qc->tf.protocol) {
4214 case ATA_PROT_ATAPI:
4215 ap->hsm_task_state = HSM_ST;
4216 break;
4217 case ATA_PROT_ATAPI_NODATA:
4218 ap->hsm_task_state = HSM_ST_LAST;
4219 break;
4220 case ATA_PROT_ATAPI_DMA:
4221 ap->hsm_task_state = HSM_ST_LAST;
4222 /* initiate bmdma */
4223 ap->ops->bmdma_start(qc);
4224 break;
4225 }
1da177e4
LT
4226}
4227
6ae4cfb5
AL
4228/**
4229 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4230 * @qc: Command on going
4231 * @bytes: number of bytes
4232 *
4233 * Transfer Transfer data from/to the ATAPI device.
4234 *
4235 * LOCKING:
4236 * Inherited from caller.
4237 *
4238 */
4239
1da177e4
LT
4240static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4241{
4242 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4243 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4244 struct ata_port *ap = qc->ap;
4245 struct page *page;
4246 unsigned char *buf;
4247 unsigned int offset, count;
4248
563a6e1f 4249 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4250 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4251
4252next_sg:
563a6e1f 4253 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4254 /*
563a6e1f
AL
4255 * The end of qc->sg is reached and the device expects
4256 * more data to transfer. In order not to overrun qc->sg
4257 * and fulfill length specified in the byte count register,
4258 * - for read case, discard trailing data from the device
4259 * - for write case, padding zero data to the device
4260 */
4261 u16 pad_buf[1] = { 0 };
4262 unsigned int words = bytes >> 1;
4263 unsigned int i;
4264
4265 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4266 ata_dev_printk(qc->dev, KERN_WARNING,
4267 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4268
4269 for (i = 0; i < words; i++)
a6b2c5d4 4270 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4271
14be71f4 4272 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4273 return;
4274 }
4275
cedc9a47 4276 sg = &qc->__sg[qc->cursg];
1da177e4 4277
1da177e4
LT
4278 page = sg->page;
4279 offset = sg->offset + qc->cursg_ofs;
4280
4281 /* get the current page and offset */
4282 page = nth_page(page, (offset >> PAGE_SHIFT));
4283 offset %= PAGE_SIZE;
4284
6952df03 4285 /* don't overrun current sg */
32529e01 4286 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4287
4288 /* don't cross page boundaries */
4289 count = min(count, (unsigned int)PAGE_SIZE - offset);
4290
7282aa4b
AL
4291 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4292
91b8b313
AL
4293 if (PageHighMem(page)) {
4294 unsigned long flags;
4295
a6b2c5d4 4296 /* FIXME: use bounce buffer */
91b8b313
AL
4297 local_irq_save(flags);
4298 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4299
91b8b313 4300 /* do the actual data transfer */
a6b2c5d4 4301 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4302
91b8b313
AL
4303 kunmap_atomic(buf, KM_IRQ0);
4304 local_irq_restore(flags);
4305 } else {
4306 buf = page_address(page);
a6b2c5d4 4307 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4308 }
1da177e4
LT
4309
4310 bytes -= count;
4311 qc->curbytes += count;
4312 qc->cursg_ofs += count;
4313
32529e01 4314 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4315 qc->cursg++;
4316 qc->cursg_ofs = 0;
4317 }
4318
563a6e1f 4319 if (bytes)
1da177e4 4320 goto next_sg;
1da177e4
LT
4321}
4322
6ae4cfb5
AL
4323/**
4324 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4325 * @qc: Command on going
4326 *
4327 * Transfer Transfer data from/to the ATAPI device.
4328 *
4329 * LOCKING:
4330 * Inherited from caller.
6ae4cfb5
AL
4331 */
4332
1da177e4
LT
4333static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4334{
4335 struct ata_port *ap = qc->ap;
4336 struct ata_device *dev = qc->dev;
4337 unsigned int ireason, bc_lo, bc_hi, bytes;
4338 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4339
eec4c3f3
AL
4340 /* Abuse qc->result_tf for temp storage of intermediate TF
4341 * here to save some kernel stack usage.
4342 * For normal completion, qc->result_tf is not relevant. For
4343 * error, qc->result_tf is later overwritten by ata_qc_complete().
4344 * So, the correctness of qc->result_tf is not affected.
4345 */
4346 ap->ops->tf_read(ap, &qc->result_tf);
4347 ireason = qc->result_tf.nsect;
4348 bc_lo = qc->result_tf.lbam;
4349 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4350 bytes = (bc_hi << 8) | bc_lo;
4351
4352 /* shall be cleared to zero, indicating xfer of data */
4353 if (ireason & (1 << 0))
4354 goto err_out;
4355
4356 /* make sure transfer direction matches expected */
4357 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4358 if (do_write != i_write)
4359 goto err_out;
4360
44877b4e 4361 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4362
1da177e4
LT
4363 __atapi_pio_bytes(qc, bytes);
4364
4365 return;
4366
4367err_out:
f15a1daf 4368 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4369 qc->err_mask |= AC_ERR_HSM;
14be71f4 4370 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4371}
4372
4373/**
c234fb00
AL
4374 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4375 * @ap: the target ata_port
4376 * @qc: qc on going
1da177e4 4377 *
c234fb00
AL
4378 * RETURNS:
4379 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4380 */
c234fb00
AL
4381
4382static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4383{
c234fb00
AL
4384 if (qc->tf.flags & ATA_TFLAG_POLLING)
4385 return 1;
1da177e4 4386
c234fb00
AL
4387 if (ap->hsm_task_state == HSM_ST_FIRST) {
4388 if (qc->tf.protocol == ATA_PROT_PIO &&
4389 (qc->tf.flags & ATA_TFLAG_WRITE))
4390 return 1;
1da177e4 4391
c234fb00
AL
4392 if (is_atapi_taskfile(&qc->tf) &&
4393 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4394 return 1;
fe79e683
AL
4395 }
4396
c234fb00
AL
4397 return 0;
4398}
1da177e4 4399
c17ea20d
TH
4400/**
4401 * ata_hsm_qc_complete - finish a qc running on standard HSM
4402 * @qc: Command to complete
4403 * @in_wq: 1 if called from workqueue, 0 otherwise
4404 *
4405 * Finish @qc which is running on standard HSM.
4406 *
4407 * LOCKING:
cca3974e 4408 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4409 * Otherwise, none on entry and grabs host lock.
4410 */
4411static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4412{
4413 struct ata_port *ap = qc->ap;
4414 unsigned long flags;
4415
4416 if (ap->ops->error_handler) {
4417 if (in_wq) {
ba6a1308 4418 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4419
cca3974e
JG
4420 /* EH might have kicked in while host lock is
4421 * released.
c17ea20d
TH
4422 */
4423 qc = ata_qc_from_tag(ap, qc->tag);
4424 if (qc) {
4425 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4426 ap->ops->irq_on(ap);
c17ea20d
TH
4427 ata_qc_complete(qc);
4428 } else
4429 ata_port_freeze(ap);
4430 }
4431
ba6a1308 4432 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4433 } else {
4434 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4435 ata_qc_complete(qc);
4436 else
4437 ata_port_freeze(ap);
4438 }
4439 } else {
4440 if (in_wq) {
ba6a1308 4441 spin_lock_irqsave(ap->lock, flags);
83625006 4442 ap->ops->irq_on(ap);
c17ea20d 4443 ata_qc_complete(qc);
ba6a1308 4444 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4445 } else
4446 ata_qc_complete(qc);
4447 }
1da177e4 4448
c81e29b4 4449 ata_altstatus(ap); /* flush */
c17ea20d
TH
4450}
4451
bb5cb290
AL
4452/**
4453 * ata_hsm_move - move the HSM to the next state.
4454 * @ap: the target ata_port
4455 * @qc: qc on going
4456 * @status: current device status
4457 * @in_wq: 1 if called from workqueue, 0 otherwise
4458 *
4459 * RETURNS:
4460 * 1 when poll next status needed, 0 otherwise.
4461 */
9a1004d0
TH
4462int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4463 u8 status, int in_wq)
e2cec771 4464{
bb5cb290
AL
4465 unsigned long flags = 0;
4466 int poll_next;
4467
6912ccd5
AL
4468 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4469
bb5cb290
AL
4470 /* Make sure ata_qc_issue_prot() does not throw things
4471 * like DMA polling into the workqueue. Notice that
4472 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4473 */
c234fb00 4474 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4475
e2cec771 4476fsm_start:
999bb6f4 4477 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4478 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4479
e2cec771
AL
4480 switch (ap->hsm_task_state) {
4481 case HSM_ST_FIRST:
bb5cb290
AL
4482 /* Send first data block or PACKET CDB */
4483
4484 /* If polling, we will stay in the work queue after
4485 * sending the data. Otherwise, interrupt handler
4486 * takes over after sending the data.
4487 */
4488 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4489
e2cec771 4490 /* check device status */
3655d1d3
AL
4491 if (unlikely((status & ATA_DRQ) == 0)) {
4492 /* handle BSY=0, DRQ=0 as error */
4493 if (likely(status & (ATA_ERR | ATA_DF)))
4494 /* device stops HSM for abort/error */
4495 qc->err_mask |= AC_ERR_DEV;
4496 else
4497 /* HSM violation. Let EH handle this */
4498 qc->err_mask |= AC_ERR_HSM;
4499
14be71f4 4500 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4501 goto fsm_start;
1da177e4
LT
4502 }
4503
71601958
AL
4504 /* Device should not ask for data transfer (DRQ=1)
4505 * when it finds something wrong.
eee6c32f
AL
4506 * We ignore DRQ here and stop the HSM by
4507 * changing hsm_task_state to HSM_ST_ERR and
4508 * let the EH abort the command or reset the device.
71601958
AL
4509 */
4510 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4511 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4512 "error, dev_stat 0x%X\n", status);
3655d1d3 4513 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4514 ap->hsm_task_state = HSM_ST_ERR;
4515 goto fsm_start;
71601958 4516 }
1da177e4 4517
bb5cb290
AL
4518 /* Send the CDB (atapi) or the first data block (ata pio out).
4519 * During the state transition, interrupt handler shouldn't
4520 * be invoked before the data transfer is complete and
4521 * hsm_task_state is changed. Hence, the following locking.
4522 */
4523 if (in_wq)
ba6a1308 4524 spin_lock_irqsave(ap->lock, flags);
1da177e4 4525
bb5cb290
AL
4526 if (qc->tf.protocol == ATA_PROT_PIO) {
4527 /* PIO data out protocol.
4528 * send first data block.
4529 */
0565c26d 4530
bb5cb290
AL
4531 /* ata_pio_sectors() might change the state
4532 * to HSM_ST_LAST. so, the state is changed here
4533 * before ata_pio_sectors().
4534 */
4535 ap->hsm_task_state = HSM_ST;
4536 ata_pio_sectors(qc);
4537 ata_altstatus(ap); /* flush */
4538 } else
4539 /* send CDB */
4540 atapi_send_cdb(ap, qc);
4541
4542 if (in_wq)
ba6a1308 4543 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4544
4545 /* if polling, ata_pio_task() handles the rest.
4546 * otherwise, interrupt handler takes over from here.
4547 */
e2cec771 4548 break;
1c848984 4549
e2cec771
AL
4550 case HSM_ST:
4551 /* complete command or read/write the data register */
4552 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4553 /* ATAPI PIO protocol */
4554 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4555 /* No more data to transfer or device error.
4556 * Device error will be tagged in HSM_ST_LAST.
4557 */
e2cec771
AL
4558 ap->hsm_task_state = HSM_ST_LAST;
4559 goto fsm_start;
4560 }
1da177e4 4561
71601958
AL
4562 /* Device should not ask for data transfer (DRQ=1)
4563 * when it finds something wrong.
eee6c32f
AL
4564 * We ignore DRQ here and stop the HSM by
4565 * changing hsm_task_state to HSM_ST_ERR and
4566 * let the EH abort the command or reset the device.
71601958
AL
4567 */
4568 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4569 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4570 "device error, dev_stat 0x%X\n",
4571 status);
3655d1d3 4572 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4573 ap->hsm_task_state = HSM_ST_ERR;
4574 goto fsm_start;
71601958 4575 }
1da177e4 4576
e2cec771 4577 atapi_pio_bytes(qc);
7fb6ec28 4578
e2cec771
AL
4579 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4580 /* bad ireason reported by device */
4581 goto fsm_start;
1da177e4 4582
e2cec771
AL
4583 } else {
4584 /* ATA PIO protocol */
4585 if (unlikely((status & ATA_DRQ) == 0)) {
4586 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4587 if (likely(status & (ATA_ERR | ATA_DF)))
4588 /* device stops HSM for abort/error */
4589 qc->err_mask |= AC_ERR_DEV;
4590 else
55a8e2c8
TH
4591 /* HSM violation. Let EH handle this.
4592 * Phantom devices also trigger this
4593 * condition. Mark hint.
4594 */
4595 qc->err_mask |= AC_ERR_HSM |
4596 AC_ERR_NODEV_HINT;
3655d1d3 4597
e2cec771
AL
4598 ap->hsm_task_state = HSM_ST_ERR;
4599 goto fsm_start;
4600 }
1da177e4 4601
eee6c32f
AL
4602 /* For PIO reads, some devices may ask for
4603 * data transfer (DRQ=1) alone with ERR=1.
4604 * We respect DRQ here and transfer one
4605 * block of junk data before changing the
4606 * hsm_task_state to HSM_ST_ERR.
4607 *
4608 * For PIO writes, ERR=1 DRQ=1 doesn't make
4609 * sense since the data block has been
4610 * transferred to the device.
71601958
AL
4611 */
4612 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4613 /* data might be corrputed */
4614 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4615
4616 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4617 ata_pio_sectors(qc);
4618 ata_altstatus(ap);
4619 status = ata_wait_idle(ap);
4620 }
4621
3655d1d3
AL
4622 if (status & (ATA_BUSY | ATA_DRQ))
4623 qc->err_mask |= AC_ERR_HSM;
4624
eee6c32f
AL
4625 /* ata_pio_sectors() might change the
4626 * state to HSM_ST_LAST. so, the state
4627 * is changed after ata_pio_sectors().
4628 */
4629 ap->hsm_task_state = HSM_ST_ERR;
4630 goto fsm_start;
71601958
AL
4631 }
4632
e2cec771
AL
4633 ata_pio_sectors(qc);
4634
4635 if (ap->hsm_task_state == HSM_ST_LAST &&
4636 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4637 /* all data read */
4638 ata_altstatus(ap);
52a32205 4639 status = ata_wait_idle(ap);
e2cec771
AL
4640 goto fsm_start;
4641 }
4642 }
4643
4644 ata_altstatus(ap); /* flush */
bb5cb290 4645 poll_next = 1;
1da177e4
LT
4646 break;
4647
14be71f4 4648 case HSM_ST_LAST:
6912ccd5
AL
4649 if (unlikely(!ata_ok(status))) {
4650 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4651 ap->hsm_task_state = HSM_ST_ERR;
4652 goto fsm_start;
4653 }
4654
4655 /* no more data to transfer */
4332a771 4656 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4657 ap->print_id, qc->dev->devno, status);
e2cec771 4658
6912ccd5
AL
4659 WARN_ON(qc->err_mask);
4660
e2cec771 4661 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4662
e2cec771 4663 /* complete taskfile transaction */
c17ea20d 4664 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4665
4666 poll_next = 0;
1da177e4
LT
4667 break;
4668
14be71f4 4669 case HSM_ST_ERR:
e2cec771
AL
4670 /* make sure qc->err_mask is available to
4671 * know what's wrong and recover
4672 */
4673 WARN_ON(qc->err_mask == 0);
4674
4675 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4676
999bb6f4 4677 /* complete taskfile transaction */
c17ea20d 4678 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4679
4680 poll_next = 0;
e2cec771
AL
4681 break;
4682 default:
bb5cb290 4683 poll_next = 0;
6912ccd5 4684 BUG();
1da177e4
LT
4685 }
4686
bb5cb290 4687 return poll_next;
1da177e4
LT
4688}
4689
65f27f38 4690static void ata_pio_task(struct work_struct *work)
8061f5f0 4691{
65f27f38
DH
4692 struct ata_port *ap =
4693 container_of(work, struct ata_port, port_task.work);
4694 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4695 u8 status;
a1af3734 4696 int poll_next;
8061f5f0 4697
7fb6ec28 4698fsm_start:
a1af3734 4699 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4700
a1af3734
AL
4701 /*
4702 * This is purely heuristic. This is a fast path.
4703 * Sometimes when we enter, BSY will be cleared in
4704 * a chk-status or two. If not, the drive is probably seeking
4705 * or something. Snooze for a couple msecs, then
4706 * chk-status again. If still busy, queue delayed work.
4707 */
4708 status = ata_busy_wait(ap, ATA_BUSY, 5);
4709 if (status & ATA_BUSY) {
4710 msleep(2);
4711 status = ata_busy_wait(ap, ATA_BUSY, 10);
4712 if (status & ATA_BUSY) {
31ce6dae 4713 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4714 return;
4715 }
8061f5f0
TH
4716 }
4717
a1af3734
AL
4718 /* move the HSM */
4719 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4720
a1af3734
AL
4721 /* another command or interrupt handler
4722 * may be running at this point.
4723 */
4724 if (poll_next)
7fb6ec28 4725 goto fsm_start;
8061f5f0
TH
4726}
4727
1da177e4
LT
4728/**
4729 * ata_qc_new - Request an available ATA command, for queueing
4730 * @ap: Port associated with device @dev
4731 * @dev: Device from whom we request an available command structure
4732 *
4733 * LOCKING:
0cba632b 4734 * None.
1da177e4
LT
4735 */
4736
4737static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4738{
4739 struct ata_queued_cmd *qc = NULL;
4740 unsigned int i;
4741
e3180499 4742 /* no command while frozen */
b51e9e5d 4743 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4744 return NULL;
4745
2ab7db1f
TH
4746 /* the last tag is reserved for internal command. */
4747 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4748 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4749 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4750 break;
4751 }
4752
4753 if (qc)
4754 qc->tag = i;
4755
4756 return qc;
4757}
4758
4759/**
4760 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4761 * @dev: Device from whom we request an available command structure
4762 *
4763 * LOCKING:
0cba632b 4764 * None.
1da177e4
LT
4765 */
4766
3373efd8 4767struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4768{
3373efd8 4769 struct ata_port *ap = dev->ap;
1da177e4
LT
4770 struct ata_queued_cmd *qc;
4771
4772 qc = ata_qc_new(ap);
4773 if (qc) {
1da177e4
LT
4774 qc->scsicmd = NULL;
4775 qc->ap = ap;
4776 qc->dev = dev;
1da177e4 4777
2c13b7ce 4778 ata_qc_reinit(qc);
1da177e4
LT
4779 }
4780
4781 return qc;
4782}
4783
1da177e4
LT
4784/**
4785 * ata_qc_free - free unused ata_queued_cmd
4786 * @qc: Command to complete
4787 *
4788 * Designed to free unused ata_queued_cmd object
4789 * in case something prevents using it.
4790 *
4791 * LOCKING:
cca3974e 4792 * spin_lock_irqsave(host lock)
1da177e4
LT
4793 */
4794void ata_qc_free(struct ata_queued_cmd *qc)
4795{
4ba946e9
TH
4796 struct ata_port *ap = qc->ap;
4797 unsigned int tag;
4798
a4631474 4799 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4800
4ba946e9
TH
4801 qc->flags = 0;
4802 tag = qc->tag;
4803 if (likely(ata_tag_valid(tag))) {
4ba946e9 4804 qc->tag = ATA_TAG_POISON;
6cec4a39 4805 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4806 }
1da177e4
LT
4807}
4808
76014427 4809void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4810{
dedaf2b0
TH
4811 struct ata_port *ap = qc->ap;
4812
a4631474
TH
4813 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4814 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4815
4816 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4817 ata_sg_clean(qc);
4818
7401abf2 4819 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4820 if (qc->tf.protocol == ATA_PROT_NCQ)
4821 ap->sactive &= ~(1 << qc->tag);
4822 else
4823 ap->active_tag = ATA_TAG_POISON;
7401abf2 4824
3f3791d3
AL
4825 /* atapi: mark qc as inactive to prevent the interrupt handler
4826 * from completing the command twice later, before the error handler
4827 * is called. (when rc != 0 and atapi request sense is needed)
4828 */
4829 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4830 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4831
1da177e4 4832 /* call completion callback */
77853bf2 4833 qc->complete_fn(qc);
1da177e4
LT
4834}
4835
39599a53
TH
4836static void fill_result_tf(struct ata_queued_cmd *qc)
4837{
4838 struct ata_port *ap = qc->ap;
4839
39599a53 4840 qc->result_tf.flags = qc->tf.flags;
4742d54f 4841 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
4842}
4843
f686bcb8
TH
4844/**
4845 * ata_qc_complete - Complete an active ATA command
4846 * @qc: Command to complete
4847 * @err_mask: ATA Status register contents
4848 *
4849 * Indicate to the mid and upper layers that an ATA
4850 * command has completed, with either an ok or not-ok status.
4851 *
4852 * LOCKING:
cca3974e 4853 * spin_lock_irqsave(host lock)
f686bcb8
TH
4854 */
4855void ata_qc_complete(struct ata_queued_cmd *qc)
4856{
4857 struct ata_port *ap = qc->ap;
4858
4859 /* XXX: New EH and old EH use different mechanisms to
4860 * synchronize EH with regular execution path.
4861 *
4862 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4863 * Normal execution path is responsible for not accessing a
4864 * failed qc. libata core enforces the rule by returning NULL
4865 * from ata_qc_from_tag() for failed qcs.
4866 *
4867 * Old EH depends on ata_qc_complete() nullifying completion
4868 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4869 * not synchronize with interrupt handler. Only PIO task is
4870 * taken care of.
4871 */
4872 if (ap->ops->error_handler) {
b51e9e5d 4873 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4874
4875 if (unlikely(qc->err_mask))
4876 qc->flags |= ATA_QCFLAG_FAILED;
4877
4878 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4879 if (!ata_tag_internal(qc->tag)) {
4880 /* always fill result TF for failed qc */
39599a53 4881 fill_result_tf(qc);
f686bcb8
TH
4882 ata_qc_schedule_eh(qc);
4883 return;
4884 }
4885 }
4886
4887 /* read result TF if requested */
4888 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4889 fill_result_tf(qc);
f686bcb8
TH
4890
4891 __ata_qc_complete(qc);
4892 } else {
4893 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4894 return;
4895
4896 /* read result TF if failed or requested */
4897 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4898 fill_result_tf(qc);
f686bcb8
TH
4899
4900 __ata_qc_complete(qc);
4901 }
4902}
4903
dedaf2b0
TH
4904/**
4905 * ata_qc_complete_multiple - Complete multiple qcs successfully
4906 * @ap: port in question
4907 * @qc_active: new qc_active mask
4908 * @finish_qc: LLDD callback invoked before completing a qc
4909 *
4910 * Complete in-flight commands. This functions is meant to be
4911 * called from low-level driver's interrupt routine to complete
4912 * requests normally. ap->qc_active and @qc_active is compared
4913 * and commands are completed accordingly.
4914 *
4915 * LOCKING:
cca3974e 4916 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4917 *
4918 * RETURNS:
4919 * Number of completed commands on success, -errno otherwise.
4920 */
4921int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4922 void (*finish_qc)(struct ata_queued_cmd *))
4923{
4924 int nr_done = 0;
4925 u32 done_mask;
4926 int i;
4927
4928 done_mask = ap->qc_active ^ qc_active;
4929
4930 if (unlikely(done_mask & qc_active)) {
4931 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4932 "(%08x->%08x)\n", ap->qc_active, qc_active);
4933 return -EINVAL;
4934 }
4935
4936 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4937 struct ata_queued_cmd *qc;
4938
4939 if (!(done_mask & (1 << i)))
4940 continue;
4941
4942 if ((qc = ata_qc_from_tag(ap, i))) {
4943 if (finish_qc)
4944 finish_qc(qc);
4945 ata_qc_complete(qc);
4946 nr_done++;
4947 }
4948 }
4949
4950 return nr_done;
4951}
4952
1da177e4
LT
4953static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4954{
4955 struct ata_port *ap = qc->ap;
4956
4957 switch (qc->tf.protocol) {
3dc1d881 4958 case ATA_PROT_NCQ:
1da177e4
LT
4959 case ATA_PROT_DMA:
4960 case ATA_PROT_ATAPI_DMA:
4961 return 1;
4962
4963 case ATA_PROT_ATAPI:
4964 case ATA_PROT_PIO:
1da177e4
LT
4965 if (ap->flags & ATA_FLAG_PIO_DMA)
4966 return 1;
4967
4968 /* fall through */
4969
4970 default:
4971 return 0;
4972 }
4973
4974 /* never reached */
4975}
4976
4977/**
4978 * ata_qc_issue - issue taskfile to device
4979 * @qc: command to issue to device
4980 *
4981 * Prepare an ATA command to submission to device.
4982 * This includes mapping the data into a DMA-able
4983 * area, filling in the S/G table, and finally
4984 * writing the taskfile to hardware, starting the command.
4985 *
4986 * LOCKING:
cca3974e 4987 * spin_lock_irqsave(host lock)
1da177e4 4988 */
8e0e694a 4989void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4990{
4991 struct ata_port *ap = qc->ap;
4992
dedaf2b0
TH
4993 /* Make sure only one non-NCQ command is outstanding. The
4994 * check is skipped for old EH because it reuses active qc to
4995 * request ATAPI sense.
4996 */
4997 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4998
4999 if (qc->tf.protocol == ATA_PROT_NCQ) {
5000 WARN_ON(ap->sactive & (1 << qc->tag));
5001 ap->sactive |= 1 << qc->tag;
5002 } else {
5003 WARN_ON(ap->sactive);
5004 ap->active_tag = qc->tag;
5005 }
5006
e4a70e76 5007 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5008 ap->qc_active |= 1 << qc->tag;
e4a70e76 5009
1da177e4
LT
5010 if (ata_should_dma_map(qc)) {
5011 if (qc->flags & ATA_QCFLAG_SG) {
5012 if (ata_sg_setup(qc))
8e436af9 5013 goto sg_err;
1da177e4
LT
5014 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5015 if (ata_sg_setup_one(qc))
8e436af9 5016 goto sg_err;
1da177e4
LT
5017 }
5018 } else {
5019 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5020 }
5021
5022 ap->ops->qc_prep(qc);
5023
8e0e694a
TH
5024 qc->err_mask |= ap->ops->qc_issue(qc);
5025 if (unlikely(qc->err_mask))
5026 goto err;
5027 return;
1da177e4 5028
8e436af9
TH
5029sg_err:
5030 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5031 qc->err_mask |= AC_ERR_SYSTEM;
5032err:
5033 ata_qc_complete(qc);
1da177e4
LT
5034}
5035
5036/**
5037 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5038 * @qc: command to issue to device
5039 *
5040 * Using various libata functions and hooks, this function
5041 * starts an ATA command. ATA commands are grouped into
5042 * classes called "protocols", and issuing each type of protocol
5043 * is slightly different.
5044 *
0baab86b
EF
5045 * May be used as the qc_issue() entry in ata_port_operations.
5046 *
1da177e4 5047 * LOCKING:
cca3974e 5048 * spin_lock_irqsave(host lock)
1da177e4
LT
5049 *
5050 * RETURNS:
9a3d9eb0 5051 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5052 */
5053
9a3d9eb0 5054unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5055{
5056 struct ata_port *ap = qc->ap;
5057
e50362ec
AL
5058 /* Use polling pio if the LLD doesn't handle
5059 * interrupt driven pio and atapi CDB interrupt.
5060 */
5061 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5062 switch (qc->tf.protocol) {
5063 case ATA_PROT_PIO:
e3472cbe 5064 case ATA_PROT_NODATA:
e50362ec
AL
5065 case ATA_PROT_ATAPI:
5066 case ATA_PROT_ATAPI_NODATA:
5067 qc->tf.flags |= ATA_TFLAG_POLLING;
5068 break;
5069 case ATA_PROT_ATAPI_DMA:
5070 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5071 /* see ata_dma_blacklisted() */
e50362ec
AL
5072 BUG();
5073 break;
5074 default:
5075 break;
5076 }
5077 }
5078
3d3cca37
TH
5079 /* Some controllers show flaky interrupt behavior after
5080 * setting xfer mode. Use polling instead.
5081 */
5082 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5083 qc->tf.feature == SETFEATURES_XFER) &&
5084 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5085 qc->tf.flags |= ATA_TFLAG_POLLING;
5086
312f7da2 5087 /* select the device */
1da177e4
LT
5088 ata_dev_select(ap, qc->dev->devno, 1, 0);
5089
312f7da2 5090 /* start the command */
1da177e4
LT
5091 switch (qc->tf.protocol) {
5092 case ATA_PROT_NODATA:
312f7da2
AL
5093 if (qc->tf.flags & ATA_TFLAG_POLLING)
5094 ata_qc_set_polling(qc);
5095
e5338254 5096 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5097 ap->hsm_task_state = HSM_ST_LAST;
5098
5099 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5100 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5101
1da177e4
LT
5102 break;
5103
5104 case ATA_PROT_DMA:
587005de 5105 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5106
1da177e4
LT
5107 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5108 ap->ops->bmdma_setup(qc); /* set up bmdma */
5109 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5110 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5111 break;
5112
312f7da2
AL
5113 case ATA_PROT_PIO:
5114 if (qc->tf.flags & ATA_TFLAG_POLLING)
5115 ata_qc_set_polling(qc);
1da177e4 5116
e5338254 5117 ata_tf_to_host(ap, &qc->tf);
312f7da2 5118
54f00389
AL
5119 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5120 /* PIO data out protocol */
5121 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5122 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5123
5124 /* always send first data block using
e27486db 5125 * the ata_pio_task() codepath.
54f00389 5126 */
312f7da2 5127 } else {
54f00389
AL
5128 /* PIO data in protocol */
5129 ap->hsm_task_state = HSM_ST;
5130
5131 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5132 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5133
5134 /* if polling, ata_pio_task() handles the rest.
5135 * otherwise, interrupt handler takes over from here.
5136 */
312f7da2
AL
5137 }
5138
1da177e4
LT
5139 break;
5140
1da177e4 5141 case ATA_PROT_ATAPI:
1da177e4 5142 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5143 if (qc->tf.flags & ATA_TFLAG_POLLING)
5144 ata_qc_set_polling(qc);
5145
e5338254 5146 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5147
312f7da2
AL
5148 ap->hsm_task_state = HSM_ST_FIRST;
5149
5150 /* send cdb by polling if no cdb interrupt */
5151 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5152 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5153 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5154 break;
5155
5156 case ATA_PROT_ATAPI_DMA:
587005de 5157 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5158
1da177e4
LT
5159 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5160 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5161 ap->hsm_task_state = HSM_ST_FIRST;
5162
5163 /* send cdb by polling if no cdb interrupt */
5164 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5165 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5166 break;
5167
5168 default:
5169 WARN_ON(1);
9a3d9eb0 5170 return AC_ERR_SYSTEM;
1da177e4
LT
5171 }
5172
5173 return 0;
5174}
5175
1da177e4
LT
5176/**
5177 * ata_host_intr - Handle host interrupt for given (port, task)
5178 * @ap: Port on which interrupt arrived (possibly...)
5179 * @qc: Taskfile currently active in engine
5180 *
5181 * Handle host interrupt for given queued command. Currently,
5182 * only DMA interrupts are handled. All other commands are
5183 * handled via polling with interrupts disabled (nIEN bit).
5184 *
5185 * LOCKING:
cca3974e 5186 * spin_lock_irqsave(host lock)
1da177e4
LT
5187 *
5188 * RETURNS:
5189 * One if interrupt was handled, zero if not (shared irq).
5190 */
5191
5192inline unsigned int ata_host_intr (struct ata_port *ap,
5193 struct ata_queued_cmd *qc)
5194{
ea54763f 5195 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5196 u8 status, host_stat = 0;
1da177e4 5197
312f7da2 5198 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5199 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5200
312f7da2
AL
5201 /* Check whether we are expecting interrupt in this state */
5202 switch (ap->hsm_task_state) {
5203 case HSM_ST_FIRST:
6912ccd5
AL
5204 /* Some pre-ATAPI-4 devices assert INTRQ
5205 * at this state when ready to receive CDB.
5206 */
1da177e4 5207
312f7da2
AL
5208 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5209 * The flag was turned on only for atapi devices.
5210 * No need to check is_atapi_taskfile(&qc->tf) again.
5211 */
5212 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5213 goto idle_irq;
1da177e4 5214 break;
312f7da2
AL
5215 case HSM_ST_LAST:
5216 if (qc->tf.protocol == ATA_PROT_DMA ||
5217 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5218 /* check status of DMA engine */
5219 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5220 VPRINTK("ata%u: host_stat 0x%X\n",
5221 ap->print_id, host_stat);
312f7da2
AL
5222
5223 /* if it's not our irq... */
5224 if (!(host_stat & ATA_DMA_INTR))
5225 goto idle_irq;
5226
5227 /* before we do anything else, clear DMA-Start bit */
5228 ap->ops->bmdma_stop(qc);
a4f16610
AL
5229
5230 if (unlikely(host_stat & ATA_DMA_ERR)) {
5231 /* error when transfering data to/from memory */
5232 qc->err_mask |= AC_ERR_HOST_BUS;
5233 ap->hsm_task_state = HSM_ST_ERR;
5234 }
312f7da2
AL
5235 }
5236 break;
5237 case HSM_ST:
5238 break;
1da177e4
LT
5239 default:
5240 goto idle_irq;
5241 }
5242
312f7da2
AL
5243 /* check altstatus */
5244 status = ata_altstatus(ap);
5245 if (status & ATA_BUSY)
5246 goto idle_irq;
1da177e4 5247
312f7da2
AL
5248 /* check main status, clearing INTRQ */
5249 status = ata_chk_status(ap);
5250 if (unlikely(status & ATA_BUSY))
5251 goto idle_irq;
1da177e4 5252
312f7da2
AL
5253 /* ack bmdma irq events */
5254 ap->ops->irq_clear(ap);
1da177e4 5255
bb5cb290 5256 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5257
5258 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5259 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5260 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5261
1da177e4
LT
5262 return 1; /* irq handled */
5263
5264idle_irq:
5265 ap->stats.idle_irq++;
5266
5267#ifdef ATA_IRQ_TRAP
5268 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5269 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5270 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5271 return 1;
1da177e4
LT
5272 }
5273#endif
5274 return 0; /* irq not handled */
5275}
5276
5277/**
5278 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5279 * @irq: irq line (unused)
cca3974e 5280 * @dev_instance: pointer to our ata_host information structure
1da177e4 5281 *
0cba632b
JG
5282 * Default interrupt handler for PCI IDE devices. Calls
5283 * ata_host_intr() for each port that is not disabled.
5284 *
1da177e4 5285 * LOCKING:
cca3974e 5286 * Obtains host lock during operation.
1da177e4
LT
5287 *
5288 * RETURNS:
0cba632b 5289 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5290 */
5291
7d12e780 5292irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5293{
cca3974e 5294 struct ata_host *host = dev_instance;
1da177e4
LT
5295 unsigned int i;
5296 unsigned int handled = 0;
5297 unsigned long flags;
5298
5299 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5300 spin_lock_irqsave(&host->lock, flags);
1da177e4 5301
cca3974e 5302 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5303 struct ata_port *ap;
5304
cca3974e 5305 ap = host->ports[i];
c1389503 5306 if (ap &&
029f5468 5307 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5308 struct ata_queued_cmd *qc;
5309
5310 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5311 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5312 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5313 handled |= ata_host_intr(ap, qc);
5314 }
5315 }
5316
cca3974e 5317 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5318
5319 return IRQ_RETVAL(handled);
5320}
5321
34bf2170
TH
5322/**
5323 * sata_scr_valid - test whether SCRs are accessible
5324 * @ap: ATA port to test SCR accessibility for
5325 *
5326 * Test whether SCRs are accessible for @ap.
5327 *
5328 * LOCKING:
5329 * None.
5330 *
5331 * RETURNS:
5332 * 1 if SCRs are accessible, 0 otherwise.
5333 */
5334int sata_scr_valid(struct ata_port *ap)
5335{
5336 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5337}
5338
5339/**
5340 * sata_scr_read - read SCR register of the specified port
5341 * @ap: ATA port to read SCR for
5342 * @reg: SCR to read
5343 * @val: Place to store read value
5344 *
5345 * Read SCR register @reg of @ap into *@val. This function is
5346 * guaranteed to succeed if the cable type of the port is SATA
5347 * and the port implements ->scr_read.
5348 *
5349 * LOCKING:
5350 * None.
5351 *
5352 * RETURNS:
5353 * 0 on success, negative errno on failure.
5354 */
5355int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5356{
5357 if (sata_scr_valid(ap)) {
5358 *val = ap->ops->scr_read(ap, reg);
5359 return 0;
5360 }
5361 return -EOPNOTSUPP;
5362}
5363
5364/**
5365 * sata_scr_write - write SCR register of the specified port
5366 * @ap: ATA port to write SCR for
5367 * @reg: SCR to write
5368 * @val: value to write
5369 *
5370 * Write @val to SCR register @reg of @ap. This function is
5371 * guaranteed to succeed if the cable type of the port is SATA
5372 * and the port implements ->scr_read.
5373 *
5374 * LOCKING:
5375 * None.
5376 *
5377 * RETURNS:
5378 * 0 on success, negative errno on failure.
5379 */
5380int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5381{
5382 if (sata_scr_valid(ap)) {
5383 ap->ops->scr_write(ap, reg, val);
5384 return 0;
5385 }
5386 return -EOPNOTSUPP;
5387}
5388
5389/**
5390 * sata_scr_write_flush - write SCR register of the specified port and flush
5391 * @ap: ATA port to write SCR for
5392 * @reg: SCR to write
5393 * @val: value to write
5394 *
5395 * This function is identical to sata_scr_write() except that this
5396 * function performs flush after writing to the register.
5397 *
5398 * LOCKING:
5399 * None.
5400 *
5401 * RETURNS:
5402 * 0 on success, negative errno on failure.
5403 */
5404int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5405{
5406 if (sata_scr_valid(ap)) {
5407 ap->ops->scr_write(ap, reg, val);
5408 ap->ops->scr_read(ap, reg);
5409 return 0;
5410 }
5411 return -EOPNOTSUPP;
5412}
5413
5414/**
5415 * ata_port_online - test whether the given port is online
5416 * @ap: ATA port to test
5417 *
5418 * Test whether @ap is online. Note that this function returns 0
5419 * if online status of @ap cannot be obtained, so
5420 * ata_port_online(ap) != !ata_port_offline(ap).
5421 *
5422 * LOCKING:
5423 * None.
5424 *
5425 * RETURNS:
5426 * 1 if the port online status is available and online.
5427 */
5428int ata_port_online(struct ata_port *ap)
5429{
5430 u32 sstatus;
5431
5432 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5433 return 1;
5434 return 0;
5435}
5436
5437/**
5438 * ata_port_offline - test whether the given port is offline
5439 * @ap: ATA port to test
5440 *
5441 * Test whether @ap is offline. Note that this function returns
5442 * 0 if offline status of @ap cannot be obtained, so
5443 * ata_port_online(ap) != !ata_port_offline(ap).
5444 *
5445 * LOCKING:
5446 * None.
5447 *
5448 * RETURNS:
5449 * 1 if the port offline status is available and offline.
5450 */
5451int ata_port_offline(struct ata_port *ap)
5452{
5453 u32 sstatus;
5454
5455 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5456 return 1;
5457 return 0;
5458}
0baab86b 5459
77b08fb5 5460int ata_flush_cache(struct ata_device *dev)
9b847548 5461{
977e6b9f 5462 unsigned int err_mask;
9b847548
JA
5463 u8 cmd;
5464
5465 if (!ata_try_flush_cache(dev))
5466 return 0;
5467
6fc49adb 5468 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5469 cmd = ATA_CMD_FLUSH_EXT;
5470 else
5471 cmd = ATA_CMD_FLUSH;
5472
977e6b9f
TH
5473 err_mask = ata_do_simple_cmd(dev, cmd);
5474 if (err_mask) {
5475 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5476 return -EIO;
5477 }
5478
5479 return 0;
9b847548
JA
5480}
5481
6ffa01d8 5482#ifdef CONFIG_PM
cca3974e
JG
5483static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5484 unsigned int action, unsigned int ehi_flags,
5485 int wait)
500530f6
TH
5486{
5487 unsigned long flags;
5488 int i, rc;
5489
cca3974e
JG
5490 for (i = 0; i < host->n_ports; i++) {
5491 struct ata_port *ap = host->ports[i];
500530f6
TH
5492
5493 /* Previous resume operation might still be in
5494 * progress. Wait for PM_PENDING to clear.
5495 */
5496 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5497 ata_port_wait_eh(ap);
5498 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5499 }
5500
5501 /* request PM ops to EH */
5502 spin_lock_irqsave(ap->lock, flags);
5503
5504 ap->pm_mesg = mesg;
5505 if (wait) {
5506 rc = 0;
5507 ap->pm_result = &rc;
5508 }
5509
5510 ap->pflags |= ATA_PFLAG_PM_PENDING;
5511 ap->eh_info.action |= action;
5512 ap->eh_info.flags |= ehi_flags;
5513
5514 ata_port_schedule_eh(ap);
5515
5516 spin_unlock_irqrestore(ap->lock, flags);
5517
5518 /* wait and check result */
5519 if (wait) {
5520 ata_port_wait_eh(ap);
5521 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5522 if (rc)
5523 return rc;
5524 }
5525 }
5526
5527 return 0;
5528}
5529
5530/**
cca3974e
JG
5531 * ata_host_suspend - suspend host
5532 * @host: host to suspend
500530f6
TH
5533 * @mesg: PM message
5534 *
cca3974e 5535 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5536 * function requests EH to perform PM operations and waits for EH
5537 * to finish.
5538 *
5539 * LOCKING:
5540 * Kernel thread context (may sleep).
5541 *
5542 * RETURNS:
5543 * 0 on success, -errno on failure.
5544 */
cca3974e 5545int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5546{
5547 int i, j, rc;
5548
cca3974e 5549 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5550 if (rc)
5551 goto fail;
5552
5553 /* EH is quiescent now. Fail if we have any ready device.
5554 * This happens if hotplug occurs between completion of device
5555 * suspension and here.
5556 */
cca3974e
JG
5557 for (i = 0; i < host->n_ports; i++) {
5558 struct ata_port *ap = host->ports[i];
500530f6
TH
5559
5560 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5561 struct ata_device *dev = &ap->device[j];
5562
5563 if (ata_dev_ready(dev)) {
5564 ata_port_printk(ap, KERN_WARNING,
5565 "suspend failed, device %d "
5566 "still active\n", dev->devno);
5567 rc = -EBUSY;
5568 goto fail;
5569 }
5570 }
5571 }
5572
cca3974e 5573 host->dev->power.power_state = mesg;
500530f6
TH
5574 return 0;
5575
5576 fail:
cca3974e 5577 ata_host_resume(host);
500530f6
TH
5578 return rc;
5579}
5580
5581/**
cca3974e
JG
5582 * ata_host_resume - resume host
5583 * @host: host to resume
500530f6 5584 *
cca3974e 5585 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5586 * function requests EH to perform PM operations and returns.
5587 * Note that all resume operations are performed parallely.
5588 *
5589 * LOCKING:
5590 * Kernel thread context (may sleep).
5591 */
cca3974e 5592void ata_host_resume(struct ata_host *host)
500530f6 5593{
cca3974e
JG
5594 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5595 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5596 host->dev->power.power_state = PMSG_ON;
500530f6 5597}
6ffa01d8 5598#endif
500530f6 5599
c893a3ae
RD
5600/**
5601 * ata_port_start - Set port up for dma.
5602 * @ap: Port to initialize
5603 *
5604 * Called just after data structures for each port are
5605 * initialized. Allocates space for PRD table.
5606 *
5607 * May be used as the port_start() entry in ata_port_operations.
5608 *
5609 * LOCKING:
5610 * Inherited from caller.
5611 */
f0d36efd 5612int ata_port_start(struct ata_port *ap)
1da177e4 5613{
2f1f610b 5614 struct device *dev = ap->dev;
6037d6bb 5615 int rc;
1da177e4 5616
f0d36efd
TH
5617 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5618 GFP_KERNEL);
1da177e4
LT
5619 if (!ap->prd)
5620 return -ENOMEM;
5621
6037d6bb 5622 rc = ata_pad_alloc(ap, dev);
f0d36efd 5623 if (rc)
6037d6bb 5624 return rc;
1da177e4 5625
f0d36efd
TH
5626 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5627 (unsigned long long)ap->prd_dma);
1da177e4
LT
5628 return 0;
5629}
5630
3ef3b43d
TH
5631/**
5632 * ata_dev_init - Initialize an ata_device structure
5633 * @dev: Device structure to initialize
5634 *
5635 * Initialize @dev in preparation for probing.
5636 *
5637 * LOCKING:
5638 * Inherited from caller.
5639 */
5640void ata_dev_init(struct ata_device *dev)
5641{
5642 struct ata_port *ap = dev->ap;
72fa4b74
TH
5643 unsigned long flags;
5644
5a04bf4b
TH
5645 /* SATA spd limit is bound to the first device */
5646 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5647
72fa4b74
TH
5648 /* High bits of dev->flags are used to record warm plug
5649 * requests which occur asynchronously. Synchronize using
cca3974e 5650 * host lock.
72fa4b74 5651 */
ba6a1308 5652 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5653 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5654 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5655
72fa4b74
TH
5656 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5657 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5658 dev->pio_mask = UINT_MAX;
5659 dev->mwdma_mask = UINT_MAX;
5660 dev->udma_mask = UINT_MAX;
5661}
5662
1da177e4 5663/**
155a8a9c 5664 * ata_port_init - Initialize an ata_port structure
1da177e4 5665 * @ap: Structure to initialize
cca3974e 5666 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5667 * @ent: Probe information provided by low-level driver
5668 * @port_no: Port number associated with this ata_port
5669 *
155a8a9c 5670 * Initialize a new ata_port structure.
0cba632b 5671 *
1da177e4 5672 * LOCKING:
0cba632b 5673 * Inherited from caller.
1da177e4 5674 */
cca3974e 5675void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5676 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5677{
5678 unsigned int i;
5679
cca3974e 5680 ap->lock = &host->lock;
198e0fed 5681 ap->flags = ATA_FLAG_DISABLED;
44877b4e 5682 ap->print_id = ata_print_id++;
1da177e4 5683 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5684 ap->host = host;
2f1f610b 5685 ap->dev = ent->dev;
1da177e4 5686 ap->port_no = port_no;
fea63e38
TH
5687 if (port_no == 1 && ent->pinfo2) {
5688 ap->pio_mask = ent->pinfo2->pio_mask;
5689 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5690 ap->udma_mask = ent->pinfo2->udma_mask;
5691 ap->flags |= ent->pinfo2->flags;
5692 ap->ops = ent->pinfo2->port_ops;
5693 } else {
5694 ap->pio_mask = ent->pio_mask;
5695 ap->mwdma_mask = ent->mwdma_mask;
5696 ap->udma_mask = ent->udma_mask;
5697 ap->flags |= ent->port_flags;
5698 ap->ops = ent->port_ops;
5699 }
5a04bf4b 5700 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5701 ap->active_tag = ATA_TAG_POISON;
5702 ap->last_ctl = 0xFF;
bd5d825c
BP
5703
5704#if defined(ATA_VERBOSE_DEBUG)
5705 /* turn on all debugging levels */
5706 ap->msg_enable = 0x00FF;
5707#elif defined(ATA_DEBUG)
5708 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5709#else
0dd4b21f 5710 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5711#endif
1da177e4 5712
65f27f38
DH
5713 INIT_DELAYED_WORK(&ap->port_task, NULL);
5714 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5715 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5716 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5717 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5718
838df628
TH
5719 /* set cable type */
5720 ap->cbl = ATA_CBL_NONE;
5721 if (ap->flags & ATA_FLAG_SATA)
5722 ap->cbl = ATA_CBL_SATA;
5723
acf356b1
TH
5724 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5725 struct ata_device *dev = &ap->device[i];
38d87234 5726 dev->ap = ap;
72fa4b74 5727 dev->devno = i;
3ef3b43d 5728 ata_dev_init(dev);
acf356b1 5729 }
1da177e4
LT
5730
5731#ifdef ATA_IRQ_TRAP
5732 ap->stats.unhandled_irq = 1;
5733 ap->stats.idle_irq = 1;
5734#endif
5735
5736 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5737}
5738
155a8a9c 5739/**
4608c160
TH
5740 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5741 * @ap: ATA port to initialize SCSI host for
5742 * @shost: SCSI host associated with @ap
155a8a9c 5743 *
4608c160 5744 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5745 *
5746 * LOCKING:
5747 * Inherited from caller.
5748 */
4608c160 5749static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5750{
cca3974e 5751 ap->scsi_host = shost;
155a8a9c 5752
44877b4e 5753 shost->unique_id = ap->print_id;
4608c160
TH
5754 shost->max_id = 16;
5755 shost->max_lun = 1;
5756 shost->max_channel = 1;
f0ef88ed 5757 shost->max_cmd_len = 16;
155a8a9c
BK
5758}
5759
1da177e4 5760/**
996139f1 5761 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5762 * @ent: Information provided by low-level driver
cca3974e 5763 * @host: Collections of ports to which we add
1da177e4
LT
5764 * @port_no: Port number associated with this host
5765 *
0cba632b
JG
5766 * Attach low-level ATA driver to system.
5767 *
1da177e4 5768 * LOCKING:
0cba632b 5769 * PCI/etc. bus probe sem.
1da177e4
LT
5770 *
5771 * RETURNS:
0cba632b 5772 * New ata_port on success, for NULL on error.
1da177e4 5773 */
996139f1 5774static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5775 struct ata_host *host,
1da177e4
LT
5776 unsigned int port_no)
5777{
996139f1 5778 struct Scsi_Host *shost;
1da177e4 5779 struct ata_port *ap;
1da177e4
LT
5780
5781 DPRINTK("ENTER\n");
aec5c3c1 5782
52783c5d 5783 if (!ent->port_ops->error_handler &&
cca3974e 5784 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5785 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5786 port_no);
5787 return NULL;
5788 }
5789
996139f1
JG
5790 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5791 if (!shost)
1da177e4
LT
5792 return NULL;
5793
996139f1 5794 shost->transportt = &ata_scsi_transport_template;
30afc84c 5795
996139f1 5796 ap = ata_shost_to_port(shost);
1da177e4 5797
cca3974e 5798 ata_port_init(ap, host, ent, port_no);
996139f1 5799 ata_port_init_shost(ap, shost);
1da177e4 5800
1da177e4 5801 return ap;
1da177e4
LT
5802}
5803
f0d36efd
TH
5804static void ata_host_release(struct device *gendev, void *res)
5805{
5806 struct ata_host *host = dev_get_drvdata(gendev);
5807 int i;
5808
5809 for (i = 0; i < host->n_ports; i++) {
5810 struct ata_port *ap = host->ports[i];
5811
1aa506e4 5812 if (ap && ap->ops->port_stop)
f0d36efd 5813 ap->ops->port_stop(ap);
f0d36efd
TH
5814 }
5815
5816 if (host->ops->host_stop)
5817 host->ops->host_stop(host);
1aa56cca 5818
1aa506e4
TH
5819 for (i = 0; i < host->n_ports; i++) {
5820 struct ata_port *ap = host->ports[i];
5821
5822 if (ap)
5823 scsi_host_put(ap->scsi_host);
5824
5825 host->ports[i] = NULL;
5826 }
5827
1aa56cca 5828 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5829}
5830
b03732f0 5831/**
cca3974e
JG
5832 * ata_sas_host_init - Initialize a host struct
5833 * @host: host to initialize
5834 * @dev: device host is attached to
5835 * @flags: host flags
5836 * @ops: port_ops
b03732f0
BK
5837 *
5838 * LOCKING:
5839 * PCI/etc. bus probe sem.
5840 *
5841 */
5842
cca3974e
JG
5843void ata_host_init(struct ata_host *host, struct device *dev,
5844 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5845{
cca3974e
JG
5846 spin_lock_init(&host->lock);
5847 host->dev = dev;
5848 host->flags = flags;
5849 host->ops = ops;
b03732f0
BK
5850}
5851
1da177e4 5852/**
0cba632b
JG
5853 * ata_device_add - Register hardware device with ATA and SCSI layers
5854 * @ent: Probe information describing hardware device to be registered
5855 *
5856 * This function processes the information provided in the probe
5857 * information struct @ent, allocates the necessary ATA and SCSI
5858 * host information structures, initializes them, and registers
5859 * everything with requisite kernel subsystems.
5860 *
5861 * This function requests irqs, probes the ATA bus, and probes
5862 * the SCSI bus.
1da177e4
LT
5863 *
5864 * LOCKING:
0cba632b 5865 * PCI/etc. bus probe sem.
1da177e4
LT
5866 *
5867 * RETURNS:
0cba632b 5868 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5869 */
057ace5e 5870int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5871{
6d0500df 5872 unsigned int i;
1da177e4 5873 struct device *dev = ent->dev;
cca3974e 5874 struct ata_host *host;
39b07ce6 5875 int rc;
1da177e4
LT
5876
5877 DPRINTK("ENTER\n");
f20b16ff 5878
02f076aa
AC
5879 if (ent->irq == 0) {
5880 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5881 return 0;
5882 }
f0d36efd
TH
5883
5884 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5885 return 0;
5886
1da177e4 5887 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5888 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5889 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5890 if (!host)
f0d36efd
TH
5891 goto err_out;
5892 devres_add(dev, host);
5893 dev_set_drvdata(dev, host);
1da177e4 5894
cca3974e
JG
5895 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5896 host->n_ports = ent->n_ports;
5897 host->irq = ent->irq;
5898 host->irq2 = ent->irq2;
0d5ff566 5899 host->iomap = ent->iomap;
cca3974e 5900 host->private_data = ent->private_data;
1da177e4
LT
5901
5902 /* register each port bound to this device */
cca3974e 5903 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5904 struct ata_port *ap;
5905 unsigned long xfer_mode_mask;
2ec7df04 5906 int irq_line = ent->irq;
1da177e4 5907
cca3974e 5908 ap = ata_port_add(ent, host, i);
c38778c3 5909 host->ports[i] = ap;
1da177e4
LT
5910 if (!ap)
5911 goto err_out;
5912
dd5b06c4
TH
5913 /* dummy? */
5914 if (ent->dummy_port_mask & (1 << i)) {
5915 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5916 ap->ops = &ata_dummy_port_ops;
5917 continue;
5918 }
5919
5920 /* start port */
5921 rc = ap->ops->port_start(ap);
5922 if (rc) {
cca3974e
JG
5923 host->ports[i] = NULL;
5924 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5925 goto err_out;
5926 }
5927
2ec7df04
AC
5928 /* Report the secondary IRQ for second channel legacy */
5929 if (i == 1 && ent->irq2)
5930 irq_line = ent->irq2;
5931
1da177e4
LT
5932 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5933 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5934 (ap->pio_mask << ATA_SHIFT_PIO);
5935
5936 /* print per-port info to dmesg */
0d5ff566
TH
5937 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5938 "ctl 0x%p bmdma 0x%p irq %d\n",
f15a1daf
TH
5939 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5940 ata_mode_string(xfer_mode_mask),
5941 ap->ioaddr.cmd_addr,
5942 ap->ioaddr.ctl_addr,
5943 ap->ioaddr.bmdma_addr,
2ec7df04 5944 irq_line);
1da177e4 5945
0f0a3ad3
TH
5946 /* freeze port before requesting IRQ */
5947 ata_eh_freeze_port(ap);
1da177e4
LT
5948 }
5949
2ec7df04 5950 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5951 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5952 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5953 if (rc) {
5954 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5955 ent->irq, rc);
1da177e4 5956 goto err_out;
39b07ce6 5957 }
1da177e4 5958
2ec7df04
AC
5959 /* do we have a second IRQ for the other channel, eg legacy mode */
5960 if (ent->irq2) {
5961 /* We will get weird core code crashes later if this is true
5962 so trap it now */
5963 BUG_ON(ent->irq == ent->irq2);
5964
f0d36efd
TH
5965 rc = devm_request_irq(dev, ent->irq2,
5966 ent->port_ops->irq_handler, ent->irq_flags,
5967 DRV_NAME, host);
2ec7df04
AC
5968 if (rc) {
5969 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5970 ent->irq2, rc);
f0d36efd 5971 goto err_out;
2ec7df04
AC
5972 }
5973 }
5974
f0d36efd 5975 /* resource acquisition complete */
b878ca5d 5976 devres_remove_group(dev, ata_device_add);
f0d36efd 5977
1da177e4
LT
5978 /* perform each probe synchronously */
5979 DPRINTK("probe begin\n");
cca3974e
JG
5980 for (i = 0; i < host->n_ports; i++) {
5981 struct ata_port *ap = host->ports[i];
5a04bf4b 5982 u32 scontrol;
1da177e4
LT
5983 int rc;
5984
5a04bf4b
TH
5985 /* init sata_spd_limit to the current value */
5986 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5987 int spd = (scontrol >> 4) & 0xf;
5988 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5989 }
5990 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5991
cca3974e 5992 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5993 if (rc) {
f15a1daf 5994 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5995 /* FIXME: do something useful here */
5996 /* FIXME: handle unconditional calls to
5997 * scsi_scan_host and ata_host_remove, below,
5998 * at the very least
5999 */
6000 }
3e706399 6001
52783c5d 6002 if (ap->ops->error_handler) {
1cdaf534 6003 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
6004 unsigned long flags;
6005
6006 ata_port_probe(ap);
6007
6008 /* kick EH for boot probing */
ba6a1308 6009 spin_lock_irqsave(ap->lock, flags);
3e706399 6010
1cdaf534
TH
6011 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6012 ehi->action |= ATA_EH_SOFTRESET;
6013 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 6014
b51e9e5d 6015 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
6016 ata_port_schedule_eh(ap);
6017
ba6a1308 6018 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
6019
6020 /* wait for EH to finish */
6021 ata_port_wait_eh(ap);
6022 } else {
44877b4e 6023 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
3e706399 6024 rc = ata_bus_probe(ap);
44877b4e 6025 DPRINTK("ata%u: bus probe end\n", ap->print_id);
3e706399
TH
6026
6027 if (rc) {
6028 /* FIXME: do something useful here?
6029 * Current libata behavior will
6030 * tear down everything when
6031 * the module is removed
6032 * or the h/w is unplugged.
6033 */
6034 }
6035 }
1da177e4
LT
6036 }
6037
6038 /* probes are done, now scan each port's disk(s) */
c893a3ae 6039 DPRINTK("host probe begin\n");
cca3974e
JG
6040 for (i = 0; i < host->n_ports; i++) {
6041 struct ata_port *ap = host->ports[i];
1da177e4 6042
644dd0cc 6043 ata_scsi_scan_host(ap);
1da177e4
LT
6044 }
6045
1da177e4
LT
6046 VPRINTK("EXIT, returning %u\n", ent->n_ports);
6047 return ent->n_ports; /* success */
6048
f0d36efd
TH
6049 err_out:
6050 devres_release_group(dev, ata_device_add);
f0d36efd 6051 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
6052 return 0;
6053}
6054
720ba126
TH
6055/**
6056 * ata_port_detach - Detach ATA port in prepration of device removal
6057 * @ap: ATA port to be detached
6058 *
6059 * Detach all ATA devices and the associated SCSI devices of @ap;
6060 * then, remove the associated SCSI host. @ap is guaranteed to
6061 * be quiescent on return from this function.
6062 *
6063 * LOCKING:
6064 * Kernel thread context (may sleep).
6065 */
6066void ata_port_detach(struct ata_port *ap)
6067{
6068 unsigned long flags;
6069 int i;
6070
6071 if (!ap->ops->error_handler)
c3cf30a9 6072 goto skip_eh;
720ba126
TH
6073
6074 /* tell EH we're leaving & flush EH */
ba6a1308 6075 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6076 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6077 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6078
6079 ata_port_wait_eh(ap);
6080
6081 /* EH is now guaranteed to see UNLOADING, so no new device
6082 * will be attached. Disable all existing devices.
6083 */
ba6a1308 6084 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6085
6086 for (i = 0; i < ATA_MAX_DEVICES; i++)
6087 ata_dev_disable(&ap->device[i]);
6088
ba6a1308 6089 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6090
6091 /* Final freeze & EH. All in-flight commands are aborted. EH
6092 * will be skipped and retrials will be terminated with bad
6093 * target.
6094 */
ba6a1308 6095 spin_lock_irqsave(ap->lock, flags);
720ba126 6096 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6097 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6098
6099 ata_port_wait_eh(ap);
6100
6101 /* Flush hotplug task. The sequence is similar to
6102 * ata_port_flush_task().
6103 */
6104 flush_workqueue(ata_aux_wq);
6105 cancel_delayed_work(&ap->hotplug_task);
6106 flush_workqueue(ata_aux_wq);
6107
c3cf30a9 6108 skip_eh:
720ba126 6109 /* remove the associated SCSI host */
cca3974e 6110 scsi_remove_host(ap->scsi_host);
720ba126
TH
6111}
6112
0529c159
TH
6113/**
6114 * ata_host_detach - Detach all ports of an ATA host
6115 * @host: Host to detach
6116 *
6117 * Detach all ports of @host.
6118 *
6119 * LOCKING:
6120 * Kernel thread context (may sleep).
6121 */
6122void ata_host_detach(struct ata_host *host)
6123{
6124 int i;
6125
6126 for (i = 0; i < host->n_ports; i++)
6127 ata_port_detach(host->ports[i]);
6128}
6129
f6d950e2
BK
6130struct ata_probe_ent *
6131ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6132{
6133 struct ata_probe_ent *probe_ent;
6134
4d05447e 6135 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
6136 if (!probe_ent) {
6137 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6138 kobject_name(&(dev->kobj)));
6139 return NULL;
6140 }
6141
6142 INIT_LIST_HEAD(&probe_ent->node);
6143 probe_ent->dev = dev;
6144
6145 probe_ent->sht = port->sht;
cca3974e 6146 probe_ent->port_flags = port->flags;
f6d950e2
BK
6147 probe_ent->pio_mask = port->pio_mask;
6148 probe_ent->mwdma_mask = port->mwdma_mask;
6149 probe_ent->udma_mask = port->udma_mask;
6150 probe_ent->port_ops = port->port_ops;
d639ca94 6151 probe_ent->private_data = port->private_data;
f6d950e2
BK
6152
6153 return probe_ent;
6154}
6155
1da177e4
LT
6156/**
6157 * ata_std_ports - initialize ioaddr with standard port offsets.
6158 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6159 *
6160 * Utility function which initializes data_addr, error_addr,
6161 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6162 * device_addr, status_addr, and command_addr to standard offsets
6163 * relative to cmd_addr.
6164 *
6165 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6166 */
0baab86b 6167
1da177e4
LT
6168void ata_std_ports(struct ata_ioports *ioaddr)
6169{
6170 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6171 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6172 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6173 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6174 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6175 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6176 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6177 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6178 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6179 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6180}
6181
0baab86b 6182
374b1873
JG
6183#ifdef CONFIG_PCI
6184
1da177e4
LT
6185/**
6186 * ata_pci_remove_one - PCI layer callback for device removal
6187 * @pdev: PCI device that was removed
6188 *
b878ca5d
TH
6189 * PCI layer indicates to libata via this hook that hot-unplug or
6190 * module unload event has occurred. Detach all ports. Resource
6191 * release is handled via devres.
1da177e4
LT
6192 *
6193 * LOCKING:
6194 * Inherited from PCI layer (may sleep).
6195 */
f0d36efd 6196void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6197{
6198 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6199 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6200
b878ca5d 6201 ata_host_detach(host);
1da177e4
LT
6202}
6203
6204/* move to PCI subsystem */
057ace5e 6205int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6206{
6207 unsigned long tmp = 0;
6208
6209 switch (bits->width) {
6210 case 1: {
6211 u8 tmp8 = 0;
6212 pci_read_config_byte(pdev, bits->reg, &tmp8);
6213 tmp = tmp8;
6214 break;
6215 }
6216 case 2: {
6217 u16 tmp16 = 0;
6218 pci_read_config_word(pdev, bits->reg, &tmp16);
6219 tmp = tmp16;
6220 break;
6221 }
6222 case 4: {
6223 u32 tmp32 = 0;
6224 pci_read_config_dword(pdev, bits->reg, &tmp32);
6225 tmp = tmp32;
6226 break;
6227 }
6228
6229 default:
6230 return -EINVAL;
6231 }
6232
6233 tmp &= bits->mask;
6234
6235 return (tmp == bits->val) ? 1 : 0;
6236}
9b847548 6237
6ffa01d8 6238#ifdef CONFIG_PM
3c5100c1 6239void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6240{
6241 pci_save_state(pdev);
4c90d971 6242 pci_disable_device(pdev);
500530f6 6243
4c90d971 6244 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6245 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6246}
6247
553c4aa6 6248int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6249{
553c4aa6
TH
6250 int rc;
6251
9b847548
JA
6252 pci_set_power_state(pdev, PCI_D0);
6253 pci_restore_state(pdev);
553c4aa6 6254
b878ca5d 6255 rc = pcim_enable_device(pdev);
553c4aa6
TH
6256 if (rc) {
6257 dev_printk(KERN_ERR, &pdev->dev,
6258 "failed to enable device after resume (%d)\n", rc);
6259 return rc;
6260 }
6261
9b847548 6262 pci_set_master(pdev);
553c4aa6 6263 return 0;
500530f6
TH
6264}
6265
3c5100c1 6266int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6267{
cca3974e 6268 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6269 int rc = 0;
6270
cca3974e 6271 rc = ata_host_suspend(host, mesg);
500530f6
TH
6272 if (rc)
6273 return rc;
6274
3c5100c1 6275 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6276
6277 return 0;
6278}
6279
6280int ata_pci_device_resume(struct pci_dev *pdev)
6281{
cca3974e 6282 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6283 int rc;
500530f6 6284
553c4aa6
TH
6285 rc = ata_pci_device_do_resume(pdev);
6286 if (rc == 0)
6287 ata_host_resume(host);
6288 return rc;
9b847548 6289}
6ffa01d8
TH
6290#endif /* CONFIG_PM */
6291
1da177e4
LT
6292#endif /* CONFIG_PCI */
6293
6294
1da177e4
LT
6295static int __init ata_init(void)
6296{
a8601e5f 6297 ata_probe_timeout *= HZ;
1da177e4
LT
6298 ata_wq = create_workqueue("ata");
6299 if (!ata_wq)
6300 return -ENOMEM;
6301
453b07ac
TH
6302 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6303 if (!ata_aux_wq) {
6304 destroy_workqueue(ata_wq);
6305 return -ENOMEM;
6306 }
6307
1da177e4
LT
6308 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6309 return 0;
6310}
6311
6312static void __exit ata_exit(void)
6313{
6314 destroy_workqueue(ata_wq);
453b07ac 6315 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6316}
6317
a4625085 6318subsys_initcall(ata_init);
1da177e4
LT
6319module_exit(ata_exit);
6320
67846b30 6321static unsigned long ratelimit_time;
34af946a 6322static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6323
6324int ata_ratelimit(void)
6325{
6326 int rc;
6327 unsigned long flags;
6328
6329 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6330
6331 if (time_after(jiffies, ratelimit_time)) {
6332 rc = 1;
6333 ratelimit_time = jiffies + (HZ/5);
6334 } else
6335 rc = 0;
6336
6337 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6338
6339 return rc;
6340}
6341
c22daff4
TH
6342/**
6343 * ata_wait_register - wait until register value changes
6344 * @reg: IO-mapped register
6345 * @mask: Mask to apply to read register value
6346 * @val: Wait condition
6347 * @interval_msec: polling interval in milliseconds
6348 * @timeout_msec: timeout in milliseconds
6349 *
6350 * Waiting for some bits of register to change is a common
6351 * operation for ATA controllers. This function reads 32bit LE
6352 * IO-mapped register @reg and tests for the following condition.
6353 *
6354 * (*@reg & mask) != val
6355 *
6356 * If the condition is met, it returns; otherwise, the process is
6357 * repeated after @interval_msec until timeout.
6358 *
6359 * LOCKING:
6360 * Kernel thread context (may sleep)
6361 *
6362 * RETURNS:
6363 * The final register value.
6364 */
6365u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6366 unsigned long interval_msec,
6367 unsigned long timeout_msec)
6368{
6369 unsigned long timeout;
6370 u32 tmp;
6371
6372 tmp = ioread32(reg);
6373
6374 /* Calculate timeout _after_ the first read to make sure
6375 * preceding writes reach the controller before starting to
6376 * eat away the timeout.
6377 */
6378 timeout = jiffies + (timeout_msec * HZ) / 1000;
6379
6380 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6381 msleep(interval_msec);
6382 tmp = ioread32(reg);
6383 }
6384
6385 return tmp;
6386}
6387
dd5b06c4
TH
6388/*
6389 * Dummy port_ops
6390 */
6391static void ata_dummy_noret(struct ata_port *ap) { }
6392static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6393static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6394
6395static u8 ata_dummy_check_status(struct ata_port *ap)
6396{
6397 return ATA_DRDY;
6398}
6399
6400static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6401{
6402 return AC_ERR_SYSTEM;
6403}
6404
6405const struct ata_port_operations ata_dummy_port_ops = {
6406 .port_disable = ata_port_disable,
6407 .check_status = ata_dummy_check_status,
6408 .check_altstatus = ata_dummy_check_status,
6409 .dev_select = ata_noop_dev_select,
6410 .qc_prep = ata_noop_qc_prep,
6411 .qc_issue = ata_dummy_qc_issue,
6412 .freeze = ata_dummy_noret,
6413 .thaw = ata_dummy_noret,
6414 .error_handler = ata_dummy_noret,
6415 .post_internal_cmd = ata_dummy_qc_noret,
6416 .irq_clear = ata_dummy_noret,
6417 .port_start = ata_dummy_ret0,
6418 .port_stop = ata_dummy_noret,
6419};
6420
1da177e4
LT
6421/*
6422 * libata is essentially a library of internal helper functions for
6423 * low-level ATA host controller drivers. As such, the API/ABI is
6424 * likely to change as new drivers are added and updated.
6425 * Do not depend on ABI/API stability.
6426 */
6427
e9c83914
TH
6428EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6429EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6430EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6431EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6432EXPORT_SYMBOL_GPL(ata_std_bios_param);
6433EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6434EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6435EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6436EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6437EXPORT_SYMBOL_GPL(ata_sg_init);
6438EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6439EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6440EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6441EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6442EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6443EXPORT_SYMBOL_GPL(ata_tf_load);
6444EXPORT_SYMBOL_GPL(ata_tf_read);
6445EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6446EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6447EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6448EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6449EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6450EXPORT_SYMBOL_GPL(ata_check_status);
6451EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6452EXPORT_SYMBOL_GPL(ata_exec_command);
6453EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6454EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6455EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6456EXPORT_SYMBOL_GPL(ata_data_xfer);
6457EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6458EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6459EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6460EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6461EXPORT_SYMBOL_GPL(ata_bmdma_start);
6462EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6463EXPORT_SYMBOL_GPL(ata_bmdma_status);
6464EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6465EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6466EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6467EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6468EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6469EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6470EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6471EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6472EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6473EXPORT_SYMBOL_GPL(sata_phy_debounce);
6474EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6475EXPORT_SYMBOL_GPL(sata_phy_reset);
6476EXPORT_SYMBOL_GPL(__sata_phy_reset);
6477EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6478EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6479EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6480EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6481EXPORT_SYMBOL_GPL(sata_std_hardreset);
6482EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6483EXPORT_SYMBOL_GPL(ata_dev_classify);
6484EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6485EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6486EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6487EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6488EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6489EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6490EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6491EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6492EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6493EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6494EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6495EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6496EXPORT_SYMBOL_GPL(sata_scr_valid);
6497EXPORT_SYMBOL_GPL(sata_scr_read);
6498EXPORT_SYMBOL_GPL(sata_scr_write);
6499EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6500EXPORT_SYMBOL_GPL(ata_port_online);
6501EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6502#ifdef CONFIG_PM
cca3974e
JG
6503EXPORT_SYMBOL_GPL(ata_host_suspend);
6504EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6505#endif /* CONFIG_PM */
6a62a04d
TH
6506EXPORT_SYMBOL_GPL(ata_id_string);
6507EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6508EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6509EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6510EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6511
1bc4ccff 6512EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6513EXPORT_SYMBOL_GPL(ata_timing_compute);
6514EXPORT_SYMBOL_GPL(ata_timing_merge);
6515
1da177e4
LT
6516#ifdef CONFIG_PCI
6517EXPORT_SYMBOL_GPL(pci_test_config_bits);
6518EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6519EXPORT_SYMBOL_GPL(ata_pci_init_one);
6520EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6521#ifdef CONFIG_PM
500530f6
TH
6522EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6523EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6524EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6525EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6526#endif /* CONFIG_PM */
67951ade
AC
6527EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6528EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6529#endif /* CONFIG_PCI */
9b847548 6530
6ffa01d8 6531#ifdef CONFIG_PM
9b847548
JA
6532EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6533EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6534#endif /* CONFIG_PM */
ece1d636 6535
ece1d636 6536EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6537EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6538EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6539EXPORT_SYMBOL_GPL(ata_port_freeze);
6540EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6541EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6542EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6543EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6544EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6545EXPORT_SYMBOL_GPL(ata_irq_on);
6546EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6547EXPORT_SYMBOL_GPL(ata_irq_ack);
6548EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6549EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6550
6551EXPORT_SYMBOL_GPL(ata_cable_40wire);
6552EXPORT_SYMBOL_GPL(ata_cable_80wire);
6553EXPORT_SYMBOL_GPL(ata_cable_unknown);
6554EXPORT_SYMBOL_GPL(ata_cable_sata);