]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/ata/libata-core.c
[libata] Turn on ACPI by default
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
9f45cbd3 71static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
3373efd8 72static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 73static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
baf4fdfa
ML
88int atapi_passthru16 = 1;
89module_param(atapi_passthru16, int, 0444);
90MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
c3c013a2
JG
92int libata_fua = 0;
93module_param_named(fua, libata_fua, int, 0444);
94MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
1e999736
AC
96static int ata_ignore_hpa = 0;
97module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
b3a70601
AC
100static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
101module_param_named(dma, libata_dma_mask, int, 0444);
102MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
103
a8601e5f
AM
104static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
105module_param(ata_probe_timeout, int, 0444);
106MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
107
6ebe9d86 108int libata_noacpi = 0;
d7d0dad6 109module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 110MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 111
1da177e4
LT
112MODULE_AUTHOR("Jeff Garzik");
113MODULE_DESCRIPTION("Library module for ATA devices");
114MODULE_LICENSE("GPL");
115MODULE_VERSION(DRV_VERSION);
116
0baab86b 117
1da177e4
LT
118/**
119 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
120 * @tf: Taskfile to convert
1da177e4 121 * @pmp: Port multiplier port
9977126c
TH
122 * @is_cmd: This FIS is for command
123 * @fis: Buffer into which data will output
1da177e4
LT
124 *
125 * Converts a standard ATA taskfile to a Serial ATA
126 * FIS structure (Register - Host to Device).
127 *
128 * LOCKING:
129 * Inherited from caller.
130 */
9977126c 131void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 132{
9977126c
TH
133 fis[0] = 0x27; /* Register - Host to Device FIS */
134 fis[1] = pmp & 0xf; /* Port multiplier number*/
135 if (is_cmd)
136 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
137
1da177e4
LT
138 fis[2] = tf->command;
139 fis[3] = tf->feature;
140
141 fis[4] = tf->lbal;
142 fis[5] = tf->lbam;
143 fis[6] = tf->lbah;
144 fis[7] = tf->device;
145
146 fis[8] = tf->hob_lbal;
147 fis[9] = tf->hob_lbam;
148 fis[10] = tf->hob_lbah;
149 fis[11] = tf->hob_feature;
150
151 fis[12] = tf->nsect;
152 fis[13] = tf->hob_nsect;
153 fis[14] = 0;
154 fis[15] = tf->ctl;
155
156 fis[16] = 0;
157 fis[17] = 0;
158 fis[18] = 0;
159 fis[19] = 0;
160}
161
162/**
163 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
164 * @fis: Buffer from which data will be input
165 * @tf: Taskfile to output
166 *
e12a1be6 167 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
168 *
169 * LOCKING:
170 * Inherited from caller.
171 */
172
057ace5e 173void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
174{
175 tf->command = fis[2]; /* status */
176 tf->feature = fis[3]; /* error */
177
178 tf->lbal = fis[4];
179 tf->lbam = fis[5];
180 tf->lbah = fis[6];
181 tf->device = fis[7];
182
183 tf->hob_lbal = fis[8];
184 tf->hob_lbam = fis[9];
185 tf->hob_lbah = fis[10];
186
187 tf->nsect = fis[12];
188 tf->hob_nsect = fis[13];
189}
190
8cbd6df1
AL
191static const u8 ata_rw_cmds[] = {
192 /* pio multi */
193 ATA_CMD_READ_MULTI,
194 ATA_CMD_WRITE_MULTI,
195 ATA_CMD_READ_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
197 0,
198 0,
199 0,
200 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
201 /* pio */
202 ATA_CMD_PIO_READ,
203 ATA_CMD_PIO_WRITE,
204 ATA_CMD_PIO_READ_EXT,
205 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
206 0,
207 0,
208 0,
209 0,
8cbd6df1
AL
210 /* dma */
211 ATA_CMD_READ,
212 ATA_CMD_WRITE,
213 ATA_CMD_READ_EXT,
9a3dccc4
TH
214 ATA_CMD_WRITE_EXT,
215 0,
216 0,
217 0,
218 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 219};
1da177e4
LT
220
221/**
8cbd6df1 222 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
223 * @tf: command to examine and configure
224 * @dev: device tf belongs to
1da177e4 225 *
2e9edbf8 226 * Examine the device configuration and tf->flags to calculate
8cbd6df1 227 * the proper read/write commands and protocol to use.
1da177e4
LT
228 *
229 * LOCKING:
230 * caller.
231 */
bd056d7e 232static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 233{
9a3dccc4 234 u8 cmd;
1da177e4 235
9a3dccc4 236 int index, fua, lba48, write;
2e9edbf8 237
9a3dccc4 238 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
239 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
240 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 241
8cbd6df1
AL
242 if (dev->flags & ATA_DFLAG_PIO) {
243 tf->protocol = ATA_PROT_PIO;
9a3dccc4 244 index = dev->multi_count ? 0 : 8;
9af5c9c9 245 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
246 /* Unable to use DMA due to host limitation */
247 tf->protocol = ATA_PROT_PIO;
0565c26d 248 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
249 } else {
250 tf->protocol = ATA_PROT_DMA;
9a3dccc4 251 index = 16;
8cbd6df1 252 }
1da177e4 253
9a3dccc4
TH
254 cmd = ata_rw_cmds[index + fua + lba48 + write];
255 if (cmd) {
256 tf->command = cmd;
257 return 0;
258 }
259 return -1;
1da177e4
LT
260}
261
35b649fe
TH
262/**
263 * ata_tf_read_block - Read block address from ATA taskfile
264 * @tf: ATA taskfile of interest
265 * @dev: ATA device @tf belongs to
266 *
267 * LOCKING:
268 * None.
269 *
270 * Read block address from @tf. This function can handle all
271 * three address formats - LBA, LBA48 and CHS. tf->protocol and
272 * flags select the address format to use.
273 *
274 * RETURNS:
275 * Block address read from @tf.
276 */
277u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
278{
279 u64 block = 0;
280
281 if (tf->flags & ATA_TFLAG_LBA) {
282 if (tf->flags & ATA_TFLAG_LBA48) {
283 block |= (u64)tf->hob_lbah << 40;
284 block |= (u64)tf->hob_lbam << 32;
285 block |= tf->hob_lbal << 24;
286 } else
287 block |= (tf->device & 0xf) << 24;
288
289 block |= tf->lbah << 16;
290 block |= tf->lbam << 8;
291 block |= tf->lbal;
292 } else {
293 u32 cyl, head, sect;
294
295 cyl = tf->lbam | (tf->lbah << 8);
296 head = tf->device & 0xf;
297 sect = tf->lbal;
298
299 block = (cyl * dev->heads + head) * dev->sectors + sect;
300 }
301
302 return block;
303}
304
bd056d7e
TH
305/**
306 * ata_build_rw_tf - Build ATA taskfile for given read/write request
307 * @tf: Target ATA taskfile
308 * @dev: ATA device @tf belongs to
309 * @block: Block address
310 * @n_block: Number of blocks
311 * @tf_flags: RW/FUA etc...
312 * @tag: tag
313 *
314 * LOCKING:
315 * None.
316 *
317 * Build ATA taskfile @tf for read/write request described by
318 * @block, @n_block, @tf_flags and @tag on @dev.
319 *
320 * RETURNS:
321 *
322 * 0 on success, -ERANGE if the request is too large for @dev,
323 * -EINVAL if the request is invalid.
324 */
325int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
326 u64 block, u32 n_block, unsigned int tf_flags,
327 unsigned int tag)
328{
329 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
330 tf->flags |= tf_flags;
331
6d1245bf 332 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
333 /* yay, NCQ */
334 if (!lba_48_ok(block, n_block))
335 return -ERANGE;
336
337 tf->protocol = ATA_PROT_NCQ;
338 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
339
340 if (tf->flags & ATA_TFLAG_WRITE)
341 tf->command = ATA_CMD_FPDMA_WRITE;
342 else
343 tf->command = ATA_CMD_FPDMA_READ;
344
345 tf->nsect = tag << 3;
346 tf->hob_feature = (n_block >> 8) & 0xff;
347 tf->feature = n_block & 0xff;
348
349 tf->hob_lbah = (block >> 40) & 0xff;
350 tf->hob_lbam = (block >> 32) & 0xff;
351 tf->hob_lbal = (block >> 24) & 0xff;
352 tf->lbah = (block >> 16) & 0xff;
353 tf->lbam = (block >> 8) & 0xff;
354 tf->lbal = block & 0xff;
355
356 tf->device = 1 << 6;
357 if (tf->flags & ATA_TFLAG_FUA)
358 tf->device |= 1 << 7;
359 } else if (dev->flags & ATA_DFLAG_LBA) {
360 tf->flags |= ATA_TFLAG_LBA;
361
362 if (lba_28_ok(block, n_block)) {
363 /* use LBA28 */
364 tf->device |= (block >> 24) & 0xf;
365 } else if (lba_48_ok(block, n_block)) {
366 if (!(dev->flags & ATA_DFLAG_LBA48))
367 return -ERANGE;
368
369 /* use LBA48 */
370 tf->flags |= ATA_TFLAG_LBA48;
371
372 tf->hob_nsect = (n_block >> 8) & 0xff;
373
374 tf->hob_lbah = (block >> 40) & 0xff;
375 tf->hob_lbam = (block >> 32) & 0xff;
376 tf->hob_lbal = (block >> 24) & 0xff;
377 } else
378 /* request too large even for LBA48 */
379 return -ERANGE;
380
381 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
382 return -EINVAL;
383
384 tf->nsect = n_block & 0xff;
385
386 tf->lbah = (block >> 16) & 0xff;
387 tf->lbam = (block >> 8) & 0xff;
388 tf->lbal = block & 0xff;
389
390 tf->device |= ATA_LBA;
391 } else {
392 /* CHS */
393 u32 sect, head, cyl, track;
394
395 /* The request -may- be too large for CHS addressing. */
396 if (!lba_28_ok(block, n_block))
397 return -ERANGE;
398
399 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
400 return -EINVAL;
401
402 /* Convert LBA to CHS */
403 track = (u32)block / dev->sectors;
404 cyl = track / dev->heads;
405 head = track % dev->heads;
406 sect = (u32)block % dev->sectors + 1;
407
408 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
409 (u32)block, track, cyl, head, sect);
410
411 /* Check whether the converted CHS can fit.
412 Cylinder: 0-65535
413 Head: 0-15
414 Sector: 1-255*/
415 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
416 return -ERANGE;
417
418 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
419 tf->lbal = sect;
420 tf->lbam = cyl;
421 tf->lbah = cyl >> 8;
422 tf->device |= head;
423 }
424
425 return 0;
426}
427
cb95d562
TH
428/**
429 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
430 * @pio_mask: pio_mask
431 * @mwdma_mask: mwdma_mask
432 * @udma_mask: udma_mask
433 *
434 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
435 * unsigned int xfer_mask.
436 *
437 * LOCKING:
438 * None.
439 *
440 * RETURNS:
441 * Packed xfer_mask.
442 */
443static unsigned int ata_pack_xfermask(unsigned int pio_mask,
444 unsigned int mwdma_mask,
445 unsigned int udma_mask)
446{
447 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
448 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
449 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
450}
451
c0489e4e
TH
452/**
453 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
454 * @xfer_mask: xfer_mask to unpack
455 * @pio_mask: resulting pio_mask
456 * @mwdma_mask: resulting mwdma_mask
457 * @udma_mask: resulting udma_mask
458 *
459 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
460 * Any NULL distination masks will be ignored.
461 */
462static void ata_unpack_xfermask(unsigned int xfer_mask,
463 unsigned int *pio_mask,
464 unsigned int *mwdma_mask,
465 unsigned int *udma_mask)
466{
467 if (pio_mask)
468 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
469 if (mwdma_mask)
470 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
471 if (udma_mask)
472 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
473}
474
cb95d562 475static const struct ata_xfer_ent {
be9a50c8 476 int shift, bits;
cb95d562
TH
477 u8 base;
478} ata_xfer_tbl[] = {
479 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
480 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
481 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
482 { -1, },
483};
484
485/**
486 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
487 * @xfer_mask: xfer_mask of interest
488 *
489 * Return matching XFER_* value for @xfer_mask. Only the highest
490 * bit of @xfer_mask is considered.
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Matching XFER_* value, 0 if no match found.
497 */
498static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
499{
500 int highbit = fls(xfer_mask) - 1;
501 const struct ata_xfer_ent *ent;
502
503 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
504 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
505 return ent->base + highbit - ent->shift;
506 return 0;
507}
508
509/**
510 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
511 * @xfer_mode: XFER_* of interest
512 *
513 * Return matching xfer_mask for @xfer_mode.
514 *
515 * LOCKING:
516 * None.
517 *
518 * RETURNS:
519 * Matching xfer_mask, 0 if no match found.
520 */
521static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
522{
523 const struct ata_xfer_ent *ent;
524
525 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
526 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
527 return 1 << (ent->shift + xfer_mode - ent->base);
528 return 0;
529}
530
531/**
532 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
533 * @xfer_mode: XFER_* of interest
534 *
535 * Return matching xfer_shift for @xfer_mode.
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Matching xfer_shift, -1 if no match found.
542 */
543static int ata_xfer_mode2shift(unsigned int xfer_mode)
544{
545 const struct ata_xfer_ent *ent;
546
547 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
548 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
549 return ent->shift;
550 return -1;
551}
552
1da177e4 553/**
1da7b0d0
TH
554 * ata_mode_string - convert xfer_mask to string
555 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
556 *
557 * Determine string which represents the highest speed
1da7b0d0 558 * (highest bit in @modemask).
1da177e4
LT
559 *
560 * LOCKING:
561 * None.
562 *
563 * RETURNS:
564 * Constant C string representing highest speed listed in
1da7b0d0 565 * @mode_mask, or the constant C string "<n/a>".
1da177e4 566 */
1da7b0d0 567static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 568{
75f554bc
TH
569 static const char * const xfer_mode_str[] = {
570 "PIO0",
571 "PIO1",
572 "PIO2",
573 "PIO3",
574 "PIO4",
b352e57d
AC
575 "PIO5",
576 "PIO6",
75f554bc
TH
577 "MWDMA0",
578 "MWDMA1",
579 "MWDMA2",
b352e57d
AC
580 "MWDMA3",
581 "MWDMA4",
75f554bc
TH
582 "UDMA/16",
583 "UDMA/25",
584 "UDMA/33",
585 "UDMA/44",
586 "UDMA/66",
587 "UDMA/100",
588 "UDMA/133",
589 "UDMA7",
590 };
1da7b0d0 591 int highbit;
1da177e4 592
1da7b0d0
TH
593 highbit = fls(xfer_mask) - 1;
594 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
595 return xfer_mode_str[highbit];
1da177e4 596 return "<n/a>";
1da177e4
LT
597}
598
4c360c81
TH
599static const char *sata_spd_string(unsigned int spd)
600{
601 static const char * const spd_str[] = {
602 "1.5 Gbps",
603 "3.0 Gbps",
604 };
605
606 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
607 return "<unknown>";
608 return spd_str[spd - 1];
609}
610
3373efd8 611void ata_dev_disable(struct ata_device *dev)
0b8efb0a 612{
09d7f9b0 613 if (ata_dev_enabled(dev)) {
9af5c9c9 614 if (ata_msg_drv(dev->link->ap))
09d7f9b0 615 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
616 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
617 ATA_DNXFER_QUIET);
0b8efb0a
TH
618 dev->class++;
619 }
620}
621
1da177e4 622/**
0d5ff566 623 * ata_devchk - PATA device presence detection
1da177e4
LT
624 * @ap: ATA channel to examine
625 * @device: Device to examine (starting at zero)
626 *
627 * This technique was originally described in
628 * Hale Landis's ATADRVR (www.ata-atapi.com), and
629 * later found its way into the ATA/ATAPI spec.
630 *
631 * Write a pattern to the ATA shadow registers,
632 * and if a device is present, it will respond by
633 * correctly storing and echoing back the
634 * ATA shadow register contents.
635 *
636 * LOCKING:
637 * caller.
638 */
639
0d5ff566 640static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
641{
642 struct ata_ioports *ioaddr = &ap->ioaddr;
643 u8 nsect, lbal;
644
645 ap->ops->dev_select(ap, device);
646
0d5ff566
TH
647 iowrite8(0x55, ioaddr->nsect_addr);
648 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 649
0d5ff566
TH
650 iowrite8(0xaa, ioaddr->nsect_addr);
651 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 652
0d5ff566
TH
653 iowrite8(0x55, ioaddr->nsect_addr);
654 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 655
0d5ff566
TH
656 nsect = ioread8(ioaddr->nsect_addr);
657 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
658
659 if ((nsect == 0x55) && (lbal == 0xaa))
660 return 1; /* we found a device */
661
662 return 0; /* nothing found */
663}
664
1da177e4
LT
665/**
666 * ata_dev_classify - determine device type based on ATA-spec signature
667 * @tf: ATA taskfile register set for device to be identified
668 *
669 * Determine from taskfile register contents whether a device is
670 * ATA or ATAPI, as per "Signature and persistence" section
671 * of ATA/PI spec (volume 1, sect 5.14).
672 *
673 * LOCKING:
674 * None.
675 *
676 * RETURNS:
633273a3
TH
677 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
678 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 679 */
057ace5e 680unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
681{
682 /* Apple's open source Darwin code hints that some devices only
683 * put a proper signature into the LBA mid/high registers,
684 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
685 *
686 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
687 * signatures for ATA and ATAPI devices attached on SerialATA,
688 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
689 * spec has never mentioned about using different signatures
690 * for ATA/ATAPI devices. Then, Serial ATA II: Port
691 * Multiplier specification began to use 0x69/0x96 to identify
692 * port multpliers and 0x3c/0xc3 to identify SEMB device.
693 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
694 * 0x69/0x96 shortly and described them as reserved for
695 * SerialATA.
696 *
697 * We follow the current spec and consider that 0x69/0x96
698 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 699 */
633273a3 700 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
701 DPRINTK("found ATA device by sig\n");
702 return ATA_DEV_ATA;
703 }
704
633273a3 705 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
706 DPRINTK("found ATAPI device by sig\n");
707 return ATA_DEV_ATAPI;
708 }
709
633273a3
TH
710 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
711 DPRINTK("found PMP device by sig\n");
712 return ATA_DEV_PMP;
713 }
714
715 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
716 printk("ata: SEMB device ignored\n");
717 return ATA_DEV_SEMB_UNSUP; /* not yet */
718 }
719
1da177e4
LT
720 DPRINTK("unknown device\n");
721 return ATA_DEV_UNKNOWN;
722}
723
724/**
725 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
726 * @dev: ATA device to classify (starting at zero)
727 * @present: device seems present
b4dc7623 728 * @r_err: Value of error register on completion
1da177e4
LT
729 *
730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
731 * an ATA/ATAPI-defined set of values is placed in the ATA
732 * shadow registers, indicating the results of device detection
733 * and diagnostics.
734 *
735 * Select the ATA device, and read the values from the ATA shadow
736 * registers. Then parse according to the Error register value,
737 * and the spec-defined values examined by ata_dev_classify().
738 *
739 * LOCKING:
740 * caller.
b4dc7623
TH
741 *
742 * RETURNS:
743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 744 */
3f19859e
TH
745unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
746 u8 *r_err)
1da177e4 747{
3f19859e 748 struct ata_port *ap = dev->link->ap;
1da177e4
LT
749 struct ata_taskfile tf;
750 unsigned int class;
751 u8 err;
752
3f19859e 753 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
754
755 memset(&tf, 0, sizeof(tf));
756
1da177e4 757 ap->ops->tf_read(ap, &tf);
0169e284 758 err = tf.feature;
b4dc7623
TH
759 if (r_err)
760 *r_err = err;
1da177e4 761
93590859 762 /* see if device passed diags: if master then continue and warn later */
3f19859e 763 if (err == 0 && dev->devno == 0)
93590859 764 /* diagnostic fail : do nothing _YET_ */
3f19859e 765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 766 else if (err == 1)
1da177e4 767 /* do nothing */ ;
3f19859e 768 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
769 /* do nothing */ ;
770 else
b4dc7623 771 return ATA_DEV_NONE;
1da177e4 772
b4dc7623 773 /* determine if device is ATA or ATAPI */
1da177e4 774 class = ata_dev_classify(&tf);
b4dc7623 775
d7fbee05
TH
776 if (class == ATA_DEV_UNKNOWN) {
777 /* If the device failed diagnostic, it's likely to
778 * have reported incorrect device signature too.
779 * Assume ATA device if the device seems present but
780 * device signature is invalid with diagnostic
781 * failure.
782 */
783 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
784 class = ATA_DEV_ATA;
785 else
786 class = ATA_DEV_NONE;
787 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
788 class = ATA_DEV_NONE;
789
b4dc7623 790 return class;
1da177e4
LT
791}
792
793/**
6a62a04d 794 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
795 * @id: IDENTIFY DEVICE results we will examine
796 * @s: string into which data is output
797 * @ofs: offset into identify device page
798 * @len: length of string to return. must be an even number.
799 *
800 * The strings in the IDENTIFY DEVICE page are broken up into
801 * 16-bit chunks. Run through the string, and output each
802 * 8-bit chunk linearly, regardless of platform.
803 *
804 * LOCKING:
805 * caller.
806 */
807
6a62a04d
TH
808void ata_id_string(const u16 *id, unsigned char *s,
809 unsigned int ofs, unsigned int len)
1da177e4
LT
810{
811 unsigned int c;
812
813 while (len > 0) {
814 c = id[ofs] >> 8;
815 *s = c;
816 s++;
817
818 c = id[ofs] & 0xff;
819 *s = c;
820 s++;
821
822 ofs++;
823 len -= 2;
824 }
825}
826
0e949ff3 827/**
6a62a04d 828 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
829 * @id: IDENTIFY DEVICE results we will examine
830 * @s: string into which data is output
831 * @ofs: offset into identify device page
832 * @len: length of string to return. must be an odd number.
833 *
6a62a04d 834 * This function is identical to ata_id_string except that it
0e949ff3
TH
835 * trims trailing spaces and terminates the resulting string with
836 * null. @len must be actual maximum length (even number) + 1.
837 *
838 * LOCKING:
839 * caller.
840 */
6a62a04d
TH
841void ata_id_c_string(const u16 *id, unsigned char *s,
842 unsigned int ofs, unsigned int len)
0e949ff3
TH
843{
844 unsigned char *p;
845
846 WARN_ON(!(len & 1));
847
6a62a04d 848 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
849
850 p = s + strnlen(s, len - 1);
851 while (p > s && p[-1] == ' ')
852 p--;
853 *p = '\0';
854}
0baab86b 855
db6f8759
TH
856static u64 ata_id_n_sectors(const u16 *id)
857{
858 if (ata_id_has_lba(id)) {
859 if (ata_id_has_lba48(id))
860 return ata_id_u64(id, 100);
861 else
862 return ata_id_u32(id, 60);
863 } else {
864 if (ata_id_current_chs_valid(id))
865 return ata_id_u32(id, 57);
866 else
867 return id[1] * id[3] * id[6];
868 }
869}
870
1e999736
AC
871static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
872{
873 u64 sectors = 0;
874
875 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
876 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
877 sectors |= (tf->hob_lbal & 0xff) << 24;
878 sectors |= (tf->lbah & 0xff) << 16;
879 sectors |= (tf->lbam & 0xff) << 8;
880 sectors |= (tf->lbal & 0xff);
881
882 return ++sectors;
883}
884
885static u64 ata_tf_to_lba(struct ata_taskfile *tf)
886{
887 u64 sectors = 0;
888
889 sectors |= (tf->device & 0x0f) << 24;
890 sectors |= (tf->lbah & 0xff) << 16;
891 sectors |= (tf->lbam & 0xff) << 8;
892 sectors |= (tf->lbal & 0xff);
893
894 return ++sectors;
895}
896
897/**
c728a914
TH
898 * ata_read_native_max_address - Read native max address
899 * @dev: target device
900 * @max_sectors: out parameter for the result native max address
1e999736 901 *
c728a914
TH
902 * Perform an LBA48 or LBA28 native size query upon the device in
903 * question.
1e999736 904 *
c728a914
TH
905 * RETURNS:
906 * 0 on success, -EACCES if command is aborted by the drive.
907 * -EIO on other errors.
1e999736 908 */
c728a914 909static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 910{
c728a914 911 unsigned int err_mask;
1e999736 912 struct ata_taskfile tf;
c728a914 913 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
914
915 ata_tf_init(dev, &tf);
916
c728a914 917 /* always clear all address registers */
1e999736 918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 919
c728a914
TH
920 if (lba48) {
921 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
922 tf.flags |= ATA_TFLAG_LBA48;
923 } else
924 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 925
1e999736 926 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
927 tf.device |= ATA_LBA;
928
929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
930 if (err_mask) {
931 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
932 "max address (err_mask=0x%x)\n", err_mask);
933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
934 return -EACCES;
935 return -EIO;
936 }
1e999736 937
c728a914
TH
938 if (lba48)
939 *max_sectors = ata_tf_to_lba48(&tf);
940 else
941 *max_sectors = ata_tf_to_lba(&tf);
93328e11
AC
942 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
943 (*max_sectors)--;
c728a914 944 return 0;
1e999736
AC
945}
946
947/**
c728a914
TH
948 * ata_set_max_sectors - Set max sectors
949 * @dev: target device
6b38d1d1 950 * @new_sectors: new max sectors value to set for the device
1e999736 951 *
c728a914
TH
952 * Set max sectors of @dev to @new_sectors.
953 *
954 * RETURNS:
955 * 0 on success, -EACCES if command is aborted or denied (due to
956 * previous non-volatile SET_MAX) by the drive. -EIO on other
957 * errors.
1e999736 958 */
05027adc 959static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 960{
c728a914 961 unsigned int err_mask;
1e999736 962 struct ata_taskfile tf;
c728a914 963 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
964
965 new_sectors--;
966
967 ata_tf_init(dev, &tf);
968
1e999736 969 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
970
971 if (lba48) {
972 tf.command = ATA_CMD_SET_MAX_EXT;
973 tf.flags |= ATA_TFLAG_LBA48;
974
975 tf.hob_lbal = (new_sectors >> 24) & 0xff;
976 tf.hob_lbam = (new_sectors >> 32) & 0xff;
977 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 978 } else {
c728a914
TH
979 tf.command = ATA_CMD_SET_MAX;
980
1e582ba4
TH
981 tf.device |= (new_sectors >> 24) & 0xf;
982 }
983
1e999736 984 tf.protocol |= ATA_PROT_NODATA;
c728a914 985 tf.device |= ATA_LBA;
1e999736
AC
986
987 tf.lbal = (new_sectors >> 0) & 0xff;
988 tf.lbam = (new_sectors >> 8) & 0xff;
989 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 990
c728a914
TH
991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
992 if (err_mask) {
993 ata_dev_printk(dev, KERN_WARNING, "failed to set "
994 "max address (err_mask=0x%x)\n", err_mask);
995 if (err_mask == AC_ERR_DEV &&
996 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
997 return -EACCES;
998 return -EIO;
999 }
1000
c728a914 1001 return 0;
1e999736
AC
1002}
1003
1004/**
1005 * ata_hpa_resize - Resize a device with an HPA set
1006 * @dev: Device to resize
1007 *
1008 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1009 * it if required to the full size of the media. The caller must check
1010 * the drive has the HPA feature set enabled.
05027adc
TH
1011 *
1012 * RETURNS:
1013 * 0 on success, -errno on failure.
1e999736 1014 */
05027adc 1015static int ata_hpa_resize(struct ata_device *dev)
1e999736 1016{
05027adc
TH
1017 struct ata_eh_context *ehc = &dev->link->eh_context;
1018 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1019 u64 sectors = ata_id_n_sectors(dev->id);
1020 u64 native_sectors;
c728a914 1021 int rc;
a617c09f 1022
05027adc
TH
1023 /* do we need to do it? */
1024 if (dev->class != ATA_DEV_ATA ||
1025 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1026 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1027 return 0;
1e999736 1028
05027adc
TH
1029 /* read native max address */
1030 rc = ata_read_native_max_address(dev, &native_sectors);
1031 if (rc) {
1032 /* If HPA isn't going to be unlocked, skip HPA
1033 * resizing from the next try.
1034 */
1035 if (!ata_ignore_hpa) {
1036 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1037 "broken, will skip HPA handling\n");
1038 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1039
1040 /* we can continue if device aborted the command */
1041 if (rc == -EACCES)
1042 rc = 0;
1e999736 1043 }
37301a55 1044
05027adc
TH
1045 return rc;
1046 }
1047
1048 /* nothing to do? */
1049 if (native_sectors <= sectors || !ata_ignore_hpa) {
1050 if (!print_info || native_sectors == sectors)
1051 return 0;
1052
1053 if (native_sectors > sectors)
1054 ata_dev_printk(dev, KERN_INFO,
1055 "HPA detected: current %llu, native %llu\n",
1056 (unsigned long long)sectors,
1057 (unsigned long long)native_sectors);
1058 else if (native_sectors < sectors)
1059 ata_dev_printk(dev, KERN_WARNING,
1060 "native sectors (%llu) is smaller than "
1061 "sectors (%llu)\n",
1062 (unsigned long long)native_sectors,
1063 (unsigned long long)sectors);
1064 return 0;
1065 }
1066
1067 /* let's unlock HPA */
1068 rc = ata_set_max_sectors(dev, native_sectors);
1069 if (rc == -EACCES) {
1070 /* if device aborted the command, skip HPA resizing */
1071 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1072 "(%llu -> %llu), skipping HPA handling\n",
1073 (unsigned long long)sectors,
1074 (unsigned long long)native_sectors);
1075 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1076 return 0;
1077 } else if (rc)
1078 return rc;
1079
1080 /* re-read IDENTIFY data */
1081 rc = ata_dev_reread_id(dev, 0);
1082 if (rc) {
1083 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1084 "data after HPA resizing\n");
1085 return rc;
1086 }
1087
1088 if (print_info) {
1089 u64 new_sectors = ata_id_n_sectors(dev->id);
1090 ata_dev_printk(dev, KERN_INFO,
1091 "HPA unlocked: %llu -> %llu, native %llu\n",
1092 (unsigned long long)sectors,
1093 (unsigned long long)new_sectors,
1094 (unsigned long long)native_sectors);
1095 }
1096
1097 return 0;
1e999736
AC
1098}
1099
10305f0f
AC
1100/**
1101 * ata_id_to_dma_mode - Identify DMA mode from id block
1102 * @dev: device to identify
cc261267 1103 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1104 *
1105 * Set up the timing values for the device based upon the identify
1106 * reported values for the DMA mode. This function is used by drivers
1107 * which rely upon firmware configured modes, but wish to report the
1108 * mode correctly when possible.
1109 *
1110 * In addition we emit similarly formatted messages to the default
1111 * ata_dev_set_mode handler, in order to provide consistency of
1112 * presentation.
1113 */
1114
1115void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1116{
1117 unsigned int mask;
1118 u8 mode;
1119
1120 /* Pack the DMA modes */
1121 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1122 if (dev->id[53] & 0x04)
1123 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1124
1125 /* Select the mode in use */
1126 mode = ata_xfer_mask2mode(mask);
1127
1128 if (mode != 0) {
1129 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1130 ata_mode_string(mask));
1131 } else {
1132 /* SWDMA perhaps ? */
1133 mode = unknown;
1134 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1135 }
1136
1137 /* Configure the device reporting */
1138 dev->xfer_mode = mode;
1139 dev->xfer_shift = ata_xfer_mode2shift(mode);
1140}
1141
0baab86b
EF
1142/**
1143 * ata_noop_dev_select - Select device 0/1 on ATA bus
1144 * @ap: ATA channel to manipulate
1145 * @device: ATA device (numbered from zero) to select
1146 *
1147 * This function performs no actual function.
1148 *
1149 * May be used as the dev_select() entry in ata_port_operations.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
1da177e4
LT
1154void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1155{
1156}
1157
0baab86b 1158
1da177e4
LT
1159/**
1160 * ata_std_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 *
1164 * Use the method defined in the ATA specification to
1165 * make either device 0, or device 1, active on the
0baab86b
EF
1166 * ATA channel. Works with both PIO and MMIO.
1167 *
1168 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1169 *
1170 * LOCKING:
1171 * caller.
1172 */
1173
1174void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1175{
1176 u8 tmp;
1177
1178 if (device == 0)
1179 tmp = ATA_DEVICE_OBS;
1180 else
1181 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1182
0d5ff566 1183 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1184 ata_pause(ap); /* needed; also flushes, for mmio */
1185}
1186
1187/**
1188 * ata_dev_select - Select device 0/1 on ATA bus
1189 * @ap: ATA channel to manipulate
1190 * @device: ATA device (numbered from zero) to select
1191 * @wait: non-zero to wait for Status register BSY bit to clear
1192 * @can_sleep: non-zero if context allows sleeping
1193 *
1194 * Use the method defined in the ATA specification to
1195 * make either device 0, or device 1, active on the
1196 * ATA channel.
1197 *
1198 * This is a high-level version of ata_std_dev_select(),
1199 * which additionally provides the services of inserting
1200 * the proper pauses and status polling, where needed.
1201 *
1202 * LOCKING:
1203 * caller.
1204 */
1205
1206void ata_dev_select(struct ata_port *ap, unsigned int device,
1207 unsigned int wait, unsigned int can_sleep)
1208{
88574551 1209 if (ata_msg_probe(ap))
44877b4e
TH
1210 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1211 "device %u, wait %u\n", device, wait);
1da177e4
LT
1212
1213 if (wait)
1214 ata_wait_idle(ap);
1215
1216 ap->ops->dev_select(ap, device);
1217
1218 if (wait) {
9af5c9c9 1219 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1220 msleep(150);
1221 ata_wait_idle(ap);
1222 }
1223}
1224
1225/**
1226 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1227 * @id: IDENTIFY DEVICE page to dump
1da177e4 1228 *
0bd3300a
TH
1229 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1230 * page.
1da177e4
LT
1231 *
1232 * LOCKING:
1233 * caller.
1234 */
1235
0bd3300a 1236static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1237{
1238 DPRINTK("49==0x%04x "
1239 "53==0x%04x "
1240 "63==0x%04x "
1241 "64==0x%04x "
1242 "75==0x%04x \n",
0bd3300a
TH
1243 id[49],
1244 id[53],
1245 id[63],
1246 id[64],
1247 id[75]);
1da177e4
LT
1248 DPRINTK("80==0x%04x "
1249 "81==0x%04x "
1250 "82==0x%04x "
1251 "83==0x%04x "
1252 "84==0x%04x \n",
0bd3300a
TH
1253 id[80],
1254 id[81],
1255 id[82],
1256 id[83],
1257 id[84]);
1da177e4
LT
1258 DPRINTK("88==0x%04x "
1259 "93==0x%04x\n",
0bd3300a
TH
1260 id[88],
1261 id[93]);
1da177e4
LT
1262}
1263
cb95d562
TH
1264/**
1265 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1266 * @id: IDENTIFY data to compute xfer mask from
1267 *
1268 * Compute the xfermask for this device. This is not as trivial
1269 * as it seems if we must consider early devices correctly.
1270 *
1271 * FIXME: pre IDE drive timing (do we care ?).
1272 *
1273 * LOCKING:
1274 * None.
1275 *
1276 * RETURNS:
1277 * Computed xfermask
1278 */
1279static unsigned int ata_id_xfermask(const u16 *id)
1280{
1281 unsigned int pio_mask, mwdma_mask, udma_mask;
1282
1283 /* Usual case. Word 53 indicates word 64 is valid */
1284 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1285 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1286 pio_mask <<= 3;
1287 pio_mask |= 0x7;
1288 } else {
1289 /* If word 64 isn't valid then Word 51 high byte holds
1290 * the PIO timing number for the maximum. Turn it into
1291 * a mask.
1292 */
7a0f1c8a 1293 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1294 if (mode < 5) /* Valid PIO range */
1295 pio_mask = (2 << mode) - 1;
1296 else
1297 pio_mask = 1;
cb95d562
TH
1298
1299 /* But wait.. there's more. Design your standards by
1300 * committee and you too can get a free iordy field to
1301 * process. However its the speeds not the modes that
1302 * are supported... Note drivers using the timing API
1303 * will get this right anyway
1304 */
1305 }
1306
1307 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1308
b352e57d
AC
1309 if (ata_id_is_cfa(id)) {
1310 /*
1311 * Process compact flash extended modes
1312 */
1313 int pio = id[163] & 0x7;
1314 int dma = (id[163] >> 3) & 7;
1315
1316 if (pio)
1317 pio_mask |= (1 << 5);
1318 if (pio > 1)
1319 pio_mask |= (1 << 6);
1320 if (dma)
1321 mwdma_mask |= (1 << 3);
1322 if (dma > 1)
1323 mwdma_mask |= (1 << 4);
1324 }
1325
fb21f0d0
TH
1326 udma_mask = 0;
1327 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1328 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1329
1330 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1331}
1332
86e45b6b
TH
1333/**
1334 * ata_port_queue_task - Queue port_task
1335 * @ap: The ata_port to queue port_task for
e2a7f77a 1336 * @fn: workqueue function to be scheduled
65f27f38 1337 * @data: data for @fn to use
e2a7f77a 1338 * @delay: delay time for workqueue function
86e45b6b
TH
1339 *
1340 * Schedule @fn(@data) for execution after @delay jiffies using
1341 * port_task. There is one port_task per port and it's the
1342 * user(low level driver)'s responsibility to make sure that only
1343 * one task is active at any given time.
1344 *
1345 * libata core layer takes care of synchronization between
1346 * port_task and EH. ata_port_queue_task() may be ignored for EH
1347 * synchronization.
1348 *
1349 * LOCKING:
1350 * Inherited from caller.
1351 */
65f27f38 1352void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1353 unsigned long delay)
1354{
65f27f38
DH
1355 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1356 ap->port_task_data = data;
86e45b6b 1357
45a66c1c
ON
1358 /* may fail if ata_port_flush_task() in progress */
1359 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1360}
1361
1362/**
1363 * ata_port_flush_task - Flush port_task
1364 * @ap: The ata_port to flush port_task for
1365 *
1366 * After this function completes, port_task is guranteed not to
1367 * be running or scheduled.
1368 *
1369 * LOCKING:
1370 * Kernel thread context (may sleep)
1371 */
1372void ata_port_flush_task(struct ata_port *ap)
1373{
86e45b6b
TH
1374 DPRINTK("ENTER\n");
1375
45a66c1c 1376 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1377
0dd4b21f
BP
1378 if (ata_msg_ctl(ap))
1379 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1380}
1381
7102d230 1382static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1383{
77853bf2 1384 struct completion *waiting = qc->private_data;
a2a7a662 1385
a2a7a662 1386 complete(waiting);
a2a7a662
TH
1387}
1388
1389/**
2432697b 1390 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1391 * @dev: Device to which the command is sent
1392 * @tf: Taskfile registers for the command and the result
d69cf37d 1393 * @cdb: CDB for packet command
a2a7a662 1394 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1395 * @sg: sg list for the data buffer of the command
1396 * @n_elem: Number of sg entries
a2a7a662
TH
1397 *
1398 * Executes libata internal command with timeout. @tf contains
1399 * command on entry and result on return. Timeout and error
1400 * conditions are reported via return value. No recovery action
1401 * is taken after a command times out. It's caller's duty to
1402 * clean up after timeout.
1403 *
1404 * LOCKING:
1405 * None. Should be called with kernel context, might sleep.
551e8889
TH
1406 *
1407 * RETURNS:
1408 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1409 */
2432697b
TH
1410unsigned ata_exec_internal_sg(struct ata_device *dev,
1411 struct ata_taskfile *tf, const u8 *cdb,
1412 int dma_dir, struct scatterlist *sg,
1413 unsigned int n_elem)
a2a7a662 1414{
9af5c9c9
TH
1415 struct ata_link *link = dev->link;
1416 struct ata_port *ap = link->ap;
a2a7a662
TH
1417 u8 command = tf->command;
1418 struct ata_queued_cmd *qc;
2ab7db1f 1419 unsigned int tag, preempted_tag;
dedaf2b0 1420 u32 preempted_sactive, preempted_qc_active;
da917d69 1421 int preempted_nr_active_links;
60be6b9a 1422 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1423 unsigned long flags;
77853bf2 1424 unsigned int err_mask;
d95a717f 1425 int rc;
a2a7a662 1426
ba6a1308 1427 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1428
e3180499 1429 /* no internal command while frozen */
b51e9e5d 1430 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1431 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1432 return AC_ERR_SYSTEM;
1433 }
1434
2ab7db1f 1435 /* initialize internal qc */
a2a7a662 1436
2ab7db1f
TH
1437 /* XXX: Tag 0 is used for drivers with legacy EH as some
1438 * drivers choke if any other tag is given. This breaks
1439 * ata_tag_internal() test for those drivers. Don't use new
1440 * EH stuff without converting to it.
1441 */
1442 if (ap->ops->error_handler)
1443 tag = ATA_TAG_INTERNAL;
1444 else
1445 tag = 0;
1446
6cec4a39 1447 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1448 BUG();
f69499f4 1449 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1450
1451 qc->tag = tag;
1452 qc->scsicmd = NULL;
1453 qc->ap = ap;
1454 qc->dev = dev;
1455 ata_qc_reinit(qc);
1456
9af5c9c9
TH
1457 preempted_tag = link->active_tag;
1458 preempted_sactive = link->sactive;
dedaf2b0 1459 preempted_qc_active = ap->qc_active;
da917d69 1460 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1461 link->active_tag = ATA_TAG_POISON;
1462 link->sactive = 0;
dedaf2b0 1463 ap->qc_active = 0;
da917d69 1464 ap->nr_active_links = 0;
2ab7db1f
TH
1465
1466 /* prepare & issue qc */
a2a7a662 1467 qc->tf = *tf;
d69cf37d
TH
1468 if (cdb)
1469 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1470 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1471 qc->dma_dir = dma_dir;
1472 if (dma_dir != DMA_NONE) {
2432697b
TH
1473 unsigned int i, buflen = 0;
1474
1475 for (i = 0; i < n_elem; i++)
1476 buflen += sg[i].length;
1477
1478 ata_sg_init(qc, sg, n_elem);
49c80429 1479 qc->nbytes = buflen;
a2a7a662
TH
1480 }
1481
77853bf2 1482 qc->private_data = &wait;
a2a7a662
TH
1483 qc->complete_fn = ata_qc_complete_internal;
1484
8e0e694a 1485 ata_qc_issue(qc);
a2a7a662 1486
ba6a1308 1487 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1488
a8601e5f 1489 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1490
1491 ata_port_flush_task(ap);
41ade50c 1492
d95a717f 1493 if (!rc) {
ba6a1308 1494 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1495
1496 /* We're racing with irq here. If we lose, the
1497 * following test prevents us from completing the qc
d95a717f
TH
1498 * twice. If we win, the port is frozen and will be
1499 * cleaned up by ->post_internal_cmd().
a2a7a662 1500 */
77853bf2 1501 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1502 qc->err_mask |= AC_ERR_TIMEOUT;
1503
1504 if (ap->ops->error_handler)
1505 ata_port_freeze(ap);
1506 else
1507 ata_qc_complete(qc);
f15a1daf 1508
0dd4b21f
BP
1509 if (ata_msg_warn(ap))
1510 ata_dev_printk(dev, KERN_WARNING,
88574551 1511 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1512 }
1513
ba6a1308 1514 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1515 }
1516
d95a717f
TH
1517 /* do post_internal_cmd */
1518 if (ap->ops->post_internal_cmd)
1519 ap->ops->post_internal_cmd(qc);
1520
a51d644a
TH
1521 /* perform minimal error analysis */
1522 if (qc->flags & ATA_QCFLAG_FAILED) {
1523 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1524 qc->err_mask |= AC_ERR_DEV;
1525
1526 if (!qc->err_mask)
1527 qc->err_mask |= AC_ERR_OTHER;
1528
1529 if (qc->err_mask & ~AC_ERR_OTHER)
1530 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1531 }
1532
15869303 1533 /* finish up */
ba6a1308 1534 spin_lock_irqsave(ap->lock, flags);
15869303 1535
e61e0672 1536 *tf = qc->result_tf;
77853bf2
TH
1537 err_mask = qc->err_mask;
1538
1539 ata_qc_free(qc);
9af5c9c9
TH
1540 link->active_tag = preempted_tag;
1541 link->sactive = preempted_sactive;
dedaf2b0 1542 ap->qc_active = preempted_qc_active;
da917d69 1543 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1544
1f7dd3e9
TH
1545 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1546 * Until those drivers are fixed, we detect the condition
1547 * here, fail the command with AC_ERR_SYSTEM and reenable the
1548 * port.
1549 *
1550 * Note that this doesn't change any behavior as internal
1551 * command failure results in disabling the device in the
1552 * higher layer for LLDDs without new reset/EH callbacks.
1553 *
1554 * Kill the following code as soon as those drivers are fixed.
1555 */
198e0fed 1556 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1557 err_mask |= AC_ERR_SYSTEM;
1558 ata_port_probe(ap);
1559 }
1560
ba6a1308 1561 spin_unlock_irqrestore(ap->lock, flags);
15869303 1562
77853bf2 1563 return err_mask;
a2a7a662
TH
1564}
1565
2432697b 1566/**
33480a0e 1567 * ata_exec_internal - execute libata internal command
2432697b
TH
1568 * @dev: Device to which the command is sent
1569 * @tf: Taskfile registers for the command and the result
1570 * @cdb: CDB for packet command
1571 * @dma_dir: Data tranfer direction of the command
1572 * @buf: Data buffer of the command
1573 * @buflen: Length of data buffer
1574 *
1575 * Wrapper around ata_exec_internal_sg() which takes simple
1576 * buffer instead of sg list.
1577 *
1578 * LOCKING:
1579 * None. Should be called with kernel context, might sleep.
1580 *
1581 * RETURNS:
1582 * Zero on success, AC_ERR_* mask on failure
1583 */
1584unsigned ata_exec_internal(struct ata_device *dev,
1585 struct ata_taskfile *tf, const u8 *cdb,
1586 int dma_dir, void *buf, unsigned int buflen)
1587{
33480a0e
TH
1588 struct scatterlist *psg = NULL, sg;
1589 unsigned int n_elem = 0;
2432697b 1590
33480a0e
TH
1591 if (dma_dir != DMA_NONE) {
1592 WARN_ON(!buf);
1593 sg_init_one(&sg, buf, buflen);
1594 psg = &sg;
1595 n_elem++;
1596 }
2432697b 1597
33480a0e 1598 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1599}
1600
977e6b9f
TH
1601/**
1602 * ata_do_simple_cmd - execute simple internal command
1603 * @dev: Device to which the command is sent
1604 * @cmd: Opcode to execute
1605 *
1606 * Execute a 'simple' command, that only consists of the opcode
1607 * 'cmd' itself, without filling any other registers
1608 *
1609 * LOCKING:
1610 * Kernel thread context (may sleep).
1611 *
1612 * RETURNS:
1613 * Zero on success, AC_ERR_* mask on failure
e58eb583 1614 */
77b08fb5 1615unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1616{
1617 struct ata_taskfile tf;
e58eb583
TH
1618
1619 ata_tf_init(dev, &tf);
1620
1621 tf.command = cmd;
1622 tf.flags |= ATA_TFLAG_DEVICE;
1623 tf.protocol = ATA_PROT_NODATA;
1624
977e6b9f 1625 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1626}
1627
1bc4ccff
AC
1628/**
1629 * ata_pio_need_iordy - check if iordy needed
1630 * @adev: ATA device
1631 *
1632 * Check if the current speed of the device requires IORDY. Used
1633 * by various controllers for chip configuration.
1634 */
a617c09f 1635
1bc4ccff
AC
1636unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1637{
432729f0
AC
1638 /* Controller doesn't support IORDY. Probably a pointless check
1639 as the caller should know this */
9af5c9c9 1640 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1641 return 0;
432729f0
AC
1642 /* PIO3 and higher it is mandatory */
1643 if (adev->pio_mode > XFER_PIO_2)
1644 return 1;
1645 /* We turn it on when possible */
1646 if (ata_id_has_iordy(adev->id))
1bc4ccff 1647 return 1;
432729f0
AC
1648 return 0;
1649}
2e9edbf8 1650
432729f0
AC
1651/**
1652 * ata_pio_mask_no_iordy - Return the non IORDY mask
1653 * @adev: ATA device
1654 *
1655 * Compute the highest mode possible if we are not using iordy. Return
1656 * -1 if no iordy mode is available.
1657 */
a617c09f 1658
432729f0
AC
1659static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1660{
1bc4ccff 1661 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1662 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1663 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1664 /* Is the speed faster than the drive allows non IORDY ? */
1665 if (pio) {
1666 /* This is cycle times not frequency - watch the logic! */
1667 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1668 return 3 << ATA_SHIFT_PIO;
1669 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1670 }
1671 }
432729f0 1672 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1673}
1674
1da177e4 1675/**
49016aca 1676 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1677 * @dev: target device
1678 * @p_class: pointer to class of the target device (may be changed)
bff04647 1679 * @flags: ATA_READID_* flags
fe635c7e 1680 * @id: buffer to read IDENTIFY data into
1da177e4 1681 *
49016aca
TH
1682 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1683 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1684 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1685 * for pre-ATA4 drives.
1da177e4 1686 *
50a99018
AC
1687 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1688 * now we abort if we hit that case.
1689 *
1da177e4 1690 * LOCKING:
49016aca
TH
1691 * Kernel thread context (may sleep)
1692 *
1693 * RETURNS:
1694 * 0 on success, -errno otherwise.
1da177e4 1695 */
a9beec95 1696int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1697 unsigned int flags, u16 *id)
1da177e4 1698{
9af5c9c9 1699 struct ata_port *ap = dev->link->ap;
49016aca 1700 unsigned int class = *p_class;
a0123703 1701 struct ata_taskfile tf;
49016aca
TH
1702 unsigned int err_mask = 0;
1703 const char *reason;
54936f8b 1704 int may_fallback = 1, tried_spinup = 0;
49016aca 1705 int rc;
1da177e4 1706
0dd4b21f 1707 if (ata_msg_ctl(ap))
44877b4e 1708 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1709
49016aca 1710 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1711 retry:
3373efd8 1712 ata_tf_init(dev, &tf);
a0123703 1713
49016aca
TH
1714 switch (class) {
1715 case ATA_DEV_ATA:
a0123703 1716 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1717 break;
1718 case ATA_DEV_ATAPI:
a0123703 1719 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1720 break;
1721 default:
1722 rc = -ENODEV;
1723 reason = "unsupported class";
1724 goto err_out;
1da177e4
LT
1725 }
1726
a0123703 1727 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1728
1729 /* Some devices choke if TF registers contain garbage. Make
1730 * sure those are properly initialized.
1731 */
1732 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1733
1734 /* Device presence detection is unreliable on some
1735 * controllers. Always poll IDENTIFY if available.
1736 */
1737 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1738
3373efd8 1739 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1740 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1741 if (err_mask) {
800b3996 1742 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1743 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1744 ap->print_id, dev->devno);
55a8e2c8
TH
1745 return -ENOENT;
1746 }
1747
54936f8b
TH
1748 /* Device or controller might have reported the wrong
1749 * device class. Give a shot at the other IDENTIFY if
1750 * the current one is aborted by the device.
1751 */
1752 if (may_fallback &&
1753 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1754 may_fallback = 0;
1755
1756 if (class == ATA_DEV_ATA)
1757 class = ATA_DEV_ATAPI;
1758 else
1759 class = ATA_DEV_ATA;
1760 goto retry;
1761 }
1762
49016aca
TH
1763 rc = -EIO;
1764 reason = "I/O error";
1da177e4
LT
1765 goto err_out;
1766 }
1767
54936f8b
TH
1768 /* Falling back doesn't make sense if ID data was read
1769 * successfully at least once.
1770 */
1771 may_fallback = 0;
1772
49016aca 1773 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1774
49016aca 1775 /* sanity check */
a4f5749b 1776 rc = -EINVAL;
6070068b 1777 reason = "device reports invalid type";
a4f5749b
TH
1778
1779 if (class == ATA_DEV_ATA) {
1780 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1781 goto err_out;
1782 } else {
1783 if (ata_id_is_ata(id))
1784 goto err_out;
49016aca
TH
1785 }
1786
169439c2
ML
1787 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1788 tried_spinup = 1;
1789 /*
1790 * Drive powered-up in standby mode, and requires a specific
1791 * SET_FEATURES spin-up subcommand before it will accept
1792 * anything other than the original IDENTIFY command.
1793 */
1794 ata_tf_init(dev, &tf);
1795 tf.command = ATA_CMD_SET_FEATURES;
1796 tf.feature = SETFEATURES_SPINUP;
1797 tf.protocol = ATA_PROT_NODATA;
1798 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1799 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1800 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1801 rc = -EIO;
1802 reason = "SPINUP failed";
1803 goto err_out;
1804 }
1805 /*
1806 * If the drive initially returned incomplete IDENTIFY info,
1807 * we now must reissue the IDENTIFY command.
1808 */
1809 if (id[2] == 0x37c8)
1810 goto retry;
1811 }
1812
bff04647 1813 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1814 /*
1815 * The exact sequence expected by certain pre-ATA4 drives is:
1816 * SRST RESET
50a99018
AC
1817 * IDENTIFY (optional in early ATA)
1818 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1819 * anything else..
1820 * Some drives were very specific about that exact sequence.
50a99018
AC
1821 *
1822 * Note that ATA4 says lba is mandatory so the second check
1823 * shoud never trigger.
49016aca
TH
1824 */
1825 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1826 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1827 if (err_mask) {
1828 rc = -EIO;
1829 reason = "INIT_DEV_PARAMS failed";
1830 goto err_out;
1831 }
1832
1833 /* current CHS translation info (id[53-58]) might be
1834 * changed. reread the identify device info.
1835 */
bff04647 1836 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1837 goto retry;
1838 }
1839 }
1840
1841 *p_class = class;
fe635c7e 1842
49016aca
TH
1843 return 0;
1844
1845 err_out:
88574551 1846 if (ata_msg_warn(ap))
0dd4b21f 1847 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1848 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1849 return rc;
1850}
1851
3373efd8 1852static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1853{
9af5c9c9
TH
1854 struct ata_port *ap = dev->link->ap;
1855 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1856}
1857
a6e6ce8e
TH
1858static void ata_dev_config_ncq(struct ata_device *dev,
1859 char *desc, size_t desc_sz)
1860{
9af5c9c9 1861 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1862 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1863
1864 if (!ata_id_has_ncq(dev->id)) {
1865 desc[0] = '\0';
1866 return;
1867 }
75683fe7 1868 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1869 snprintf(desc, desc_sz, "NCQ (not used)");
1870 return;
1871 }
a6e6ce8e 1872 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1873 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1874 dev->flags |= ATA_DFLAG_NCQ;
1875 }
1876
1877 if (hdepth >= ddepth)
1878 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1879 else
1880 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1881}
1882
49016aca 1883/**
ffeae418 1884 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1885 * @dev: Target device to configure
1886 *
1887 * Configure @dev according to @dev->id. Generic and low-level
1888 * driver specific fixups are also applied.
49016aca
TH
1889 *
1890 * LOCKING:
ffeae418
TH
1891 * Kernel thread context (may sleep)
1892 *
1893 * RETURNS:
1894 * 0 on success, -errno otherwise
49016aca 1895 */
efdaedc4 1896int ata_dev_configure(struct ata_device *dev)
49016aca 1897{
9af5c9c9
TH
1898 struct ata_port *ap = dev->link->ap;
1899 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1900 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1901 const u16 *id = dev->id;
ff8854b2 1902 unsigned int xfer_mask;
b352e57d 1903 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1904 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1905 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1906 int rc;
49016aca 1907
0dd4b21f 1908 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1909 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1910 __FUNCTION__);
ffeae418 1911 return 0;
49016aca
TH
1912 }
1913
0dd4b21f 1914 if (ata_msg_probe(ap))
44877b4e 1915 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1916
75683fe7
TH
1917 /* set horkage */
1918 dev->horkage |= ata_dev_blacklisted(dev);
1919
6746544c
TH
1920 /* let ACPI work its magic */
1921 rc = ata_acpi_on_devcfg(dev);
1922 if (rc)
1923 return rc;
08573a86 1924
05027adc
TH
1925 /* massage HPA, do it early as it might change IDENTIFY data */
1926 rc = ata_hpa_resize(dev);
1927 if (rc)
1928 return rc;
1929
c39f5ebe 1930 /* print device capabilities */
0dd4b21f 1931 if (ata_msg_probe(ap))
88574551
TH
1932 ata_dev_printk(dev, KERN_DEBUG,
1933 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1934 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1935 __FUNCTION__,
f15a1daf
TH
1936 id[49], id[82], id[83], id[84],
1937 id[85], id[86], id[87], id[88]);
c39f5ebe 1938
208a9933 1939 /* initialize to-be-configured parameters */
ea1dd4e1 1940 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1941 dev->max_sectors = 0;
1942 dev->cdb_len = 0;
1943 dev->n_sectors = 0;
1944 dev->cylinders = 0;
1945 dev->heads = 0;
1946 dev->sectors = 0;
1947
1da177e4
LT
1948 /*
1949 * common ATA, ATAPI feature tests
1950 */
1951
ff8854b2 1952 /* find max transfer mode; for printk only */
1148c3a7 1953 xfer_mask = ata_id_xfermask(id);
1da177e4 1954
0dd4b21f
BP
1955 if (ata_msg_probe(ap))
1956 ata_dump_id(id);
1da177e4 1957
ef143d57
AL
1958 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1959 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1960 sizeof(fwrevbuf));
1961
1962 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1963 sizeof(modelbuf));
1964
1da177e4
LT
1965 /* ATA-specific feature tests */
1966 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1967 if (ata_id_is_cfa(id)) {
1968 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1969 ata_dev_printk(dev, KERN_WARNING,
1970 "supports DRM functions and may "
1971 "not be fully accessable.\n");
b352e57d
AC
1972 snprintf(revbuf, 7, "CFA");
1973 }
1974 else
1975 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1976
1148c3a7 1977 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1978
3f64f565
EM
1979 if (dev->id[59] & 0x100)
1980 dev->multi_count = dev->id[59] & 0xff;
1981
1148c3a7 1982 if (ata_id_has_lba(id)) {
4c2d721a 1983 const char *lba_desc;
a6e6ce8e 1984 char ncq_desc[20];
8bf62ece 1985
4c2d721a
TH
1986 lba_desc = "LBA";
1987 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1988 if (ata_id_has_lba48(id)) {
8bf62ece 1989 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1990 lba_desc = "LBA48";
6fc49adb
TH
1991
1992 if (dev->n_sectors >= (1UL << 28) &&
1993 ata_id_has_flush_ext(id))
1994 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1995 }
8bf62ece 1996
a6e6ce8e
TH
1997 /* config NCQ */
1998 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1999
8bf62ece 2000 /* print device info to dmesg */
3f64f565
EM
2001 if (ata_msg_drv(ap) && print_info) {
2002 ata_dev_printk(dev, KERN_INFO,
2003 "%s: %s, %s, max %s\n",
2004 revbuf, modelbuf, fwrevbuf,
2005 ata_mode_string(xfer_mask));
2006 ata_dev_printk(dev, KERN_INFO,
2007 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2008 (unsigned long long)dev->n_sectors,
3f64f565
EM
2009 dev->multi_count, lba_desc, ncq_desc);
2010 }
ffeae418 2011 } else {
8bf62ece
AL
2012 /* CHS */
2013
2014 /* Default translation */
1148c3a7
TH
2015 dev->cylinders = id[1];
2016 dev->heads = id[3];
2017 dev->sectors = id[6];
8bf62ece 2018
1148c3a7 2019 if (ata_id_current_chs_valid(id)) {
8bf62ece 2020 /* Current CHS translation is valid. */
1148c3a7
TH
2021 dev->cylinders = id[54];
2022 dev->heads = id[55];
2023 dev->sectors = id[56];
8bf62ece
AL
2024 }
2025
2026 /* print device info to dmesg */
3f64f565 2027 if (ata_msg_drv(ap) && print_info) {
88574551 2028 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2029 "%s: %s, %s, max %s\n",
2030 revbuf, modelbuf, fwrevbuf,
2031 ata_mode_string(xfer_mask));
a84471fe 2032 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2033 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2034 (unsigned long long)dev->n_sectors,
2035 dev->multi_count, dev->cylinders,
2036 dev->heads, dev->sectors);
2037 }
07f6f7d0
AL
2038 }
2039
6e7846e9 2040 dev->cdb_len = 16;
1da177e4
LT
2041 }
2042
2043 /* ATAPI-specific feature tests */
2c13b7ce 2044 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2045 const char *cdb_intr_string = "";
2046 const char *atapi_an_string = "";
7d77b247 2047 u32 sntf;
08a556db 2048
1148c3a7 2049 rc = atapi_cdb_len(id);
1da177e4 2050 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2051 if (ata_msg_warn(ap))
88574551
TH
2052 ata_dev_printk(dev, KERN_WARNING,
2053 "unsupported CDB len\n");
ffeae418 2054 rc = -EINVAL;
1da177e4
LT
2055 goto err_out_nosup;
2056 }
6e7846e9 2057 dev->cdb_len = (unsigned int) rc;
1da177e4 2058
7d77b247
TH
2059 /* Enable ATAPI AN if both the host and device have
2060 * the support. If PMP is attached, SNTF is required
2061 * to enable ATAPI AN to discern between PHY status
2062 * changed notifications and ATAPI ANs.
9f45cbd3 2063 */
7d77b247
TH
2064 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2065 (!ap->nr_pmp_links ||
2066 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2067 unsigned int err_mask;
2068
9f45cbd3 2069 /* issue SET feature command to turn this on */
854c73a2
TH
2070 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2071 if (err_mask)
9f45cbd3 2072 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2073 "failed to enable ATAPI AN "
2074 "(err_mask=0x%x)\n", err_mask);
2075 else {
9f45cbd3 2076 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2077 atapi_an_string = ", ATAPI AN";
2078 }
9f45cbd3
KCA
2079 }
2080
08a556db 2081 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2082 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2083 cdb_intr_string = ", CDB intr";
2084 }
312f7da2 2085
1da177e4 2086 /* print device info to dmesg */
5afc8142 2087 if (ata_msg_drv(ap) && print_info)
ef143d57 2088 ata_dev_printk(dev, KERN_INFO,
854c73a2 2089 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2090 modelbuf, fwrevbuf,
12436c30 2091 ata_mode_string(xfer_mask),
854c73a2 2092 cdb_intr_string, atapi_an_string);
1da177e4
LT
2093 }
2094
914ed354
TH
2095 /* determine max_sectors */
2096 dev->max_sectors = ATA_MAX_SECTORS;
2097 if (dev->flags & ATA_DFLAG_LBA48)
2098 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2099
93590859
AC
2100 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2101 /* Let the user know. We don't want to disallow opens for
2102 rescue purposes, or in case the vendor is just a blithering
2103 idiot */
2104 if (print_info) {
2105 ata_dev_printk(dev, KERN_WARNING,
2106"Drive reports diagnostics failure. This may indicate a drive\n");
2107 ata_dev_printk(dev, KERN_WARNING,
2108"fault or invalid emulation. Contact drive vendor for information.\n");
2109 }
2110 }
2111
4b2f3ede 2112 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2113 if (ata_dev_knobble(dev)) {
5afc8142 2114 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2115 ata_dev_printk(dev, KERN_INFO,
2116 "applying bridge limits\n");
5a529139 2117 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2118 dev->max_sectors = ATA_MAX_SECTORS;
2119 }
2120
75683fe7 2121 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2122 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2123 dev->max_sectors);
18d6e9d5 2124
4b2f3ede 2125 if (ap->ops->dev_config)
cd0d3bbc 2126 ap->ops->dev_config(dev);
4b2f3ede 2127
0dd4b21f
BP
2128 if (ata_msg_probe(ap))
2129 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2130 __FUNCTION__, ata_chk_status(ap));
ffeae418 2131 return 0;
1da177e4
LT
2132
2133err_out_nosup:
0dd4b21f 2134 if (ata_msg_probe(ap))
88574551
TH
2135 ata_dev_printk(dev, KERN_DEBUG,
2136 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2137 return rc;
1da177e4
LT
2138}
2139
be0d18df 2140/**
2e41e8e6 2141 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2142 * @ap: port
2143 *
2e41e8e6 2144 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2145 * detection.
2146 */
2147
2148int ata_cable_40wire(struct ata_port *ap)
2149{
2150 return ATA_CBL_PATA40;
2151}
2152
2153/**
2e41e8e6 2154 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2155 * @ap: port
2156 *
2e41e8e6 2157 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2158 * detection.
2159 */
2160
2161int ata_cable_80wire(struct ata_port *ap)
2162{
2163 return ATA_CBL_PATA80;
2164}
2165
2166/**
2167 * ata_cable_unknown - return unknown PATA cable.
2168 * @ap: port
2169 *
2170 * Helper method for drivers which have no PATA cable detection.
2171 */
2172
2173int ata_cable_unknown(struct ata_port *ap)
2174{
2175 return ATA_CBL_PATA_UNK;
2176}
2177
2178/**
2179 * ata_cable_sata - return SATA cable type
2180 * @ap: port
2181 *
2182 * Helper method for drivers which have SATA cables
2183 */
2184
2185int ata_cable_sata(struct ata_port *ap)
2186{
2187 return ATA_CBL_SATA;
2188}
2189
1da177e4
LT
2190/**
2191 * ata_bus_probe - Reset and probe ATA bus
2192 * @ap: Bus to probe
2193 *
0cba632b
JG
2194 * Master ATA bus probing function. Initiates a hardware-dependent
2195 * bus reset, then attempts to identify any devices found on
2196 * the bus.
2197 *
1da177e4 2198 * LOCKING:
0cba632b 2199 * PCI/etc. bus probe sem.
1da177e4
LT
2200 *
2201 * RETURNS:
96072e69 2202 * Zero on success, negative errno otherwise.
1da177e4
LT
2203 */
2204
80289167 2205int ata_bus_probe(struct ata_port *ap)
1da177e4 2206{
28ca5c57 2207 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2208 int tries[ATA_MAX_DEVICES];
f58229f8 2209 int rc;
e82cbdb9 2210 struct ata_device *dev;
1da177e4 2211
28ca5c57 2212 ata_port_probe(ap);
c19ba8af 2213
f58229f8
TH
2214 ata_link_for_each_dev(dev, &ap->link)
2215 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2216
2217 retry:
2044470c 2218 /* reset and determine device classes */
52783c5d 2219 ap->ops->phy_reset(ap);
2061a47a 2220
f58229f8 2221 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2222 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2223 dev->class != ATA_DEV_UNKNOWN)
2224 classes[dev->devno] = dev->class;
2225 else
2226 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2227
52783c5d 2228 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2229 }
1da177e4 2230
52783c5d 2231 ata_port_probe(ap);
2044470c 2232
b6079ca4
AC
2233 /* after the reset the device state is PIO 0 and the controller
2234 state is undefined. Record the mode */
2235
f58229f8
TH
2236 ata_link_for_each_dev(dev, &ap->link)
2237 dev->pio_mode = XFER_PIO_0;
b6079ca4 2238
f31f0cc2
JG
2239 /* read IDENTIFY page and configure devices. We have to do the identify
2240 specific sequence bass-ackwards so that PDIAG- is released by
2241 the slave device */
2242
f58229f8
TH
2243 ata_link_for_each_dev(dev, &ap->link) {
2244 if (tries[dev->devno])
2245 dev->class = classes[dev->devno];
ffeae418 2246
14d2bac1 2247 if (!ata_dev_enabled(dev))
ffeae418 2248 continue;
ffeae418 2249
bff04647
TH
2250 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2251 dev->id);
14d2bac1
TH
2252 if (rc)
2253 goto fail;
f31f0cc2
JG
2254 }
2255
be0d18df
AC
2256 /* Now ask for the cable type as PDIAG- should have been released */
2257 if (ap->ops->cable_detect)
2258 ap->cbl = ap->ops->cable_detect(ap);
2259
614fe29b
AC
2260 /* We may have SATA bridge glue hiding here irrespective of the
2261 reported cable types and sensed types */
2262 ata_link_for_each_dev(dev, &ap->link) {
2263 if (!ata_dev_enabled(dev))
2264 continue;
2265 /* SATA drives indicate we have a bridge. We don't know which
2266 end of the link the bridge is which is a problem */
2267 if (ata_id_is_sata(dev->id))
2268 ap->cbl = ATA_CBL_SATA;
2269 }
2270
f31f0cc2
JG
2271 /* After the identify sequence we can now set up the devices. We do
2272 this in the normal order so that the user doesn't get confused */
2273
f58229f8 2274 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2275 if (!ata_dev_enabled(dev))
2276 continue;
14d2bac1 2277
9af5c9c9 2278 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2279 rc = ata_dev_configure(dev);
9af5c9c9 2280 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2281 if (rc)
2282 goto fail;
1da177e4
LT
2283 }
2284
e82cbdb9 2285 /* configure transfer mode */
0260731f 2286 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2287 if (rc)
51713d35 2288 goto fail;
1da177e4 2289
f58229f8
TH
2290 ata_link_for_each_dev(dev, &ap->link)
2291 if (ata_dev_enabled(dev))
e82cbdb9 2292 return 0;
1da177e4 2293
e82cbdb9
TH
2294 /* no device present, disable port */
2295 ata_port_disable(ap);
96072e69 2296 return -ENODEV;
14d2bac1
TH
2297
2298 fail:
4ae72a1e
TH
2299 tries[dev->devno]--;
2300
14d2bac1
TH
2301 switch (rc) {
2302 case -EINVAL:
4ae72a1e 2303 /* eeek, something went very wrong, give up */
14d2bac1
TH
2304 tries[dev->devno] = 0;
2305 break;
4ae72a1e
TH
2306
2307 case -ENODEV:
2308 /* give it just one more chance */
2309 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2310 case -EIO:
4ae72a1e
TH
2311 if (tries[dev->devno] == 1) {
2312 /* This is the last chance, better to slow
2313 * down than lose it.
2314 */
936fd732 2315 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2316 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2317 }
14d2bac1
TH
2318 }
2319
4ae72a1e 2320 if (!tries[dev->devno])
3373efd8 2321 ata_dev_disable(dev);
ec573755 2322
14d2bac1 2323 goto retry;
1da177e4
LT
2324}
2325
2326/**
0cba632b
JG
2327 * ata_port_probe - Mark port as enabled
2328 * @ap: Port for which we indicate enablement
1da177e4 2329 *
0cba632b
JG
2330 * Modify @ap data structure such that the system
2331 * thinks that the entire port is enabled.
2332 *
cca3974e 2333 * LOCKING: host lock, or some other form of
0cba632b 2334 * serialization.
1da177e4
LT
2335 */
2336
2337void ata_port_probe(struct ata_port *ap)
2338{
198e0fed 2339 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2340}
2341
3be680b7
TH
2342/**
2343 * sata_print_link_status - Print SATA link status
936fd732 2344 * @link: SATA link to printk link status about
3be680b7
TH
2345 *
2346 * This function prints link speed and status of a SATA link.
2347 *
2348 * LOCKING:
2349 * None.
2350 */
936fd732 2351void sata_print_link_status(struct ata_link *link)
3be680b7 2352{
6d5f9732 2353 u32 sstatus, scontrol, tmp;
3be680b7 2354
936fd732 2355 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2356 return;
936fd732 2357 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2358
936fd732 2359 if (ata_link_online(link)) {
3be680b7 2360 tmp = (sstatus >> 4) & 0xf;
936fd732 2361 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2362 "SATA link up %s (SStatus %X SControl %X)\n",
2363 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2364 } else {
936fd732 2365 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2366 "SATA link down (SStatus %X SControl %X)\n",
2367 sstatus, scontrol);
3be680b7
TH
2368 }
2369}
2370
1da177e4 2371/**
780a87f7
JG
2372 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2373 * @ap: SATA port associated with target SATA PHY.
1da177e4 2374 *
780a87f7
JG
2375 * This function issues commands to standard SATA Sxxx
2376 * PHY registers, to wake up the phy (and device), and
2377 * clear any reset condition.
1da177e4
LT
2378 *
2379 * LOCKING:
0cba632b 2380 * PCI/etc. bus probe sem.
1da177e4
LT
2381 *
2382 */
2383void __sata_phy_reset(struct ata_port *ap)
2384{
936fd732 2385 struct ata_link *link = &ap->link;
1da177e4 2386 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2387 u32 sstatus;
1da177e4
LT
2388
2389 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2390 /* issue phy wake/reset */
936fd732 2391 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2392 /* Couldn't find anything in SATA I/II specs, but
2393 * AHCI-1.1 10.4.2 says at least 1 ms. */
2394 mdelay(1);
1da177e4 2395 }
81952c54 2396 /* phy wake/clear reset */
936fd732 2397 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2398
2399 /* wait for phy to become ready, if necessary */
2400 do {
2401 msleep(200);
936fd732 2402 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2403 if ((sstatus & 0xf) != 1)
2404 break;
2405 } while (time_before(jiffies, timeout));
2406
3be680b7 2407 /* print link status */
936fd732 2408 sata_print_link_status(link);
656563e3 2409
3be680b7 2410 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2411 if (!ata_link_offline(link))
1da177e4 2412 ata_port_probe(ap);
3be680b7 2413 else
1da177e4 2414 ata_port_disable(ap);
1da177e4 2415
198e0fed 2416 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2417 return;
2418
2419 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2420 ata_port_disable(ap);
2421 return;
2422 }
2423
2424 ap->cbl = ATA_CBL_SATA;
2425}
2426
2427/**
780a87f7
JG
2428 * sata_phy_reset - Reset SATA bus.
2429 * @ap: SATA port associated with target SATA PHY.
1da177e4 2430 *
780a87f7
JG
2431 * This function resets the SATA bus, and then probes
2432 * the bus for devices.
1da177e4
LT
2433 *
2434 * LOCKING:
0cba632b 2435 * PCI/etc. bus probe sem.
1da177e4
LT
2436 *
2437 */
2438void sata_phy_reset(struct ata_port *ap)
2439{
2440 __sata_phy_reset(ap);
198e0fed 2441 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2442 return;
2443 ata_bus_reset(ap);
2444}
2445
ebdfca6e
AC
2446/**
2447 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2448 * @adev: device
2449 *
2450 * Obtain the other device on the same cable, or if none is
2451 * present NULL is returned
2452 */
2e9edbf8 2453
3373efd8 2454struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2455{
9af5c9c9
TH
2456 struct ata_link *link = adev->link;
2457 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2458 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2459 return NULL;
2460 return pair;
2461}
2462
1da177e4 2463/**
780a87f7
JG
2464 * ata_port_disable - Disable port.
2465 * @ap: Port to be disabled.
1da177e4 2466 *
780a87f7
JG
2467 * Modify @ap data structure such that the system
2468 * thinks that the entire port is disabled, and should
2469 * never attempt to probe or communicate with devices
2470 * on this port.
2471 *
cca3974e 2472 * LOCKING: host lock, or some other form of
780a87f7 2473 * serialization.
1da177e4
LT
2474 */
2475
2476void ata_port_disable(struct ata_port *ap)
2477{
9af5c9c9
TH
2478 ap->link.device[0].class = ATA_DEV_NONE;
2479 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2480 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2481}
2482
1c3fae4d 2483/**
3c567b7d 2484 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2485 * @link: Link to adjust SATA spd limit for
1c3fae4d 2486 *
936fd732 2487 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2488 * function only adjusts the limit. The change must be applied
3c567b7d 2489 * using sata_set_spd().
1c3fae4d
TH
2490 *
2491 * LOCKING:
2492 * Inherited from caller.
2493 *
2494 * RETURNS:
2495 * 0 on success, negative errno on failure
2496 */
936fd732 2497int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2498{
81952c54
TH
2499 u32 sstatus, spd, mask;
2500 int rc, highbit;
1c3fae4d 2501
936fd732 2502 if (!sata_scr_valid(link))
008a7896
TH
2503 return -EOPNOTSUPP;
2504
2505 /* If SCR can be read, use it to determine the current SPD.
936fd732 2506 * If not, use cached value in link->sata_spd.
008a7896 2507 */
936fd732 2508 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2509 if (rc == 0)
2510 spd = (sstatus >> 4) & 0xf;
2511 else
936fd732 2512 spd = link->sata_spd;
1c3fae4d 2513
936fd732 2514 mask = link->sata_spd_limit;
1c3fae4d
TH
2515 if (mask <= 1)
2516 return -EINVAL;
008a7896
TH
2517
2518 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2519 highbit = fls(mask) - 1;
2520 mask &= ~(1 << highbit);
2521
008a7896
TH
2522 /* Mask off all speeds higher than or equal to the current
2523 * one. Force 1.5Gbps if current SPD is not available.
2524 */
2525 if (spd > 1)
2526 mask &= (1 << (spd - 1)) - 1;
2527 else
2528 mask &= 1;
2529
2530 /* were we already at the bottom? */
1c3fae4d
TH
2531 if (!mask)
2532 return -EINVAL;
2533
936fd732 2534 link->sata_spd_limit = mask;
1c3fae4d 2535
936fd732 2536 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2537 sata_spd_string(fls(mask)));
1c3fae4d
TH
2538
2539 return 0;
2540}
2541
936fd732 2542static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2543{
2544 u32 spd, limit;
2545
936fd732 2546 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2547 limit = 0;
2548 else
936fd732 2549 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2550
2551 spd = (*scontrol >> 4) & 0xf;
2552 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2553
2554 return spd != limit;
2555}
2556
2557/**
3c567b7d 2558 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2559 * @link: Link in question
1c3fae4d
TH
2560 *
2561 * Test whether the spd limit in SControl matches
936fd732 2562 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2563 * whether hardreset is necessary to apply SATA spd
2564 * configuration.
2565 *
2566 * LOCKING:
2567 * Inherited from caller.
2568 *
2569 * RETURNS:
2570 * 1 if SATA spd configuration is needed, 0 otherwise.
2571 */
936fd732 2572int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2573{
2574 u32 scontrol;
2575
936fd732 2576 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2577 return 0;
2578
936fd732 2579 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2580}
2581
2582/**
3c567b7d 2583 * sata_set_spd - set SATA spd according to spd limit
936fd732 2584 * @link: Link to set SATA spd for
1c3fae4d 2585 *
936fd732 2586 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2587 *
2588 * LOCKING:
2589 * Inherited from caller.
2590 *
2591 * RETURNS:
2592 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2593 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2594 */
936fd732 2595int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2596{
2597 u32 scontrol;
81952c54 2598 int rc;
1c3fae4d 2599
936fd732 2600 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2601 return rc;
1c3fae4d 2602
936fd732 2603 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2604 return 0;
2605
936fd732 2606 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2607 return rc;
2608
1c3fae4d
TH
2609 return 1;
2610}
2611
452503f9
AC
2612/*
2613 * This mode timing computation functionality is ported over from
2614 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2615 */
2616/*
b352e57d 2617 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2618 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2619 * for UDMA6, which is currently supported only by Maxtor drives.
2620 *
2621 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2622 */
2623
2624static const struct ata_timing ata_timing[] = {
2625
2626 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2627 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2628 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2629 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2630
b352e57d
AC
2631 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2632 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2633 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2634 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2635 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2636
2637/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2638
452503f9
AC
2639 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2640 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2641 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2642
452503f9
AC
2643 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2644 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2645 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2646
b352e57d
AC
2647 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2648 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2649 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2650 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2651
2652 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2653 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2654 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2655
2656/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2657
2658 { 0xFF }
2659};
2660
2661#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2662#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2663
2664static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2665{
2666 q->setup = EZ(t->setup * 1000, T);
2667 q->act8b = EZ(t->act8b * 1000, T);
2668 q->rec8b = EZ(t->rec8b * 1000, T);
2669 q->cyc8b = EZ(t->cyc8b * 1000, T);
2670 q->active = EZ(t->active * 1000, T);
2671 q->recover = EZ(t->recover * 1000, T);
2672 q->cycle = EZ(t->cycle * 1000, T);
2673 q->udma = EZ(t->udma * 1000, UT);
2674}
2675
2676void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2677 struct ata_timing *m, unsigned int what)
2678{
2679 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2680 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2681 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2682 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2683 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2684 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2685 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2686 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2687}
2688
2689static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2690{
2691 const struct ata_timing *t;
2692
2693 for (t = ata_timing; t->mode != speed; t++)
91190758 2694 if (t->mode == 0xFF)
452503f9 2695 return NULL;
2e9edbf8 2696 return t;
452503f9
AC
2697}
2698
2699int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2700 struct ata_timing *t, int T, int UT)
2701{
2702 const struct ata_timing *s;
2703 struct ata_timing p;
2704
2705 /*
2e9edbf8 2706 * Find the mode.
75b1f2f8 2707 */
452503f9
AC
2708
2709 if (!(s = ata_timing_find_mode(speed)))
2710 return -EINVAL;
2711
75b1f2f8
AL
2712 memcpy(t, s, sizeof(*s));
2713
452503f9
AC
2714 /*
2715 * If the drive is an EIDE drive, it can tell us it needs extended
2716 * PIO/MW_DMA cycle timing.
2717 */
2718
2719 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2720 memset(&p, 0, sizeof(p));
2721 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2722 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2723 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2724 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2725 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2726 }
2727 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2728 }
2729
2730 /*
2731 * Convert the timing to bus clock counts.
2732 */
2733
75b1f2f8 2734 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2735
2736 /*
c893a3ae
RD
2737 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2738 * S.M.A.R.T * and some other commands. We have to ensure that the
2739 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2740 */
2741
fd3367af 2742 if (speed > XFER_PIO_6) {
452503f9
AC
2743 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2744 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2745 }
2746
2747 /*
c893a3ae 2748 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2749 */
2750
2751 if (t->act8b + t->rec8b < t->cyc8b) {
2752 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2753 t->rec8b = t->cyc8b - t->act8b;
2754 }
2755
2756 if (t->active + t->recover < t->cycle) {
2757 t->active += (t->cycle - (t->active + t->recover)) / 2;
2758 t->recover = t->cycle - t->active;
2759 }
a617c09f 2760
4f701d1e
AC
2761 /* In a few cases quantisation may produce enough errors to
2762 leave t->cycle too low for the sum of active and recovery
2763 if so we must correct this */
2764 if (t->active + t->recover > t->cycle)
2765 t->cycle = t->active + t->recover;
452503f9
AC
2766
2767 return 0;
2768}
2769
cf176e1a
TH
2770/**
2771 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2772 * @dev: Device to adjust xfer masks
458337db 2773 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2774 *
2775 * Adjust xfer masks of @dev downward. Note that this function
2776 * does not apply the change. Invoking ata_set_mode() afterwards
2777 * will apply the limit.
2778 *
2779 * LOCKING:
2780 * Inherited from caller.
2781 *
2782 * RETURNS:
2783 * 0 on success, negative errno on failure
2784 */
458337db 2785int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2786{
458337db
TH
2787 char buf[32];
2788 unsigned int orig_mask, xfer_mask;
2789 unsigned int pio_mask, mwdma_mask, udma_mask;
2790 int quiet, highbit;
cf176e1a 2791
458337db
TH
2792 quiet = !!(sel & ATA_DNXFER_QUIET);
2793 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2794
458337db
TH
2795 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2796 dev->mwdma_mask,
2797 dev->udma_mask);
2798 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2799
458337db
TH
2800 switch (sel) {
2801 case ATA_DNXFER_PIO:
2802 highbit = fls(pio_mask) - 1;
2803 pio_mask &= ~(1 << highbit);
2804 break;
2805
2806 case ATA_DNXFER_DMA:
2807 if (udma_mask) {
2808 highbit = fls(udma_mask) - 1;
2809 udma_mask &= ~(1 << highbit);
2810 if (!udma_mask)
2811 return -ENOENT;
2812 } else if (mwdma_mask) {
2813 highbit = fls(mwdma_mask) - 1;
2814 mwdma_mask &= ~(1 << highbit);
2815 if (!mwdma_mask)
2816 return -ENOENT;
2817 }
2818 break;
2819
2820 case ATA_DNXFER_40C:
2821 udma_mask &= ATA_UDMA_MASK_40C;
2822 break;
2823
2824 case ATA_DNXFER_FORCE_PIO0:
2825 pio_mask &= 1;
2826 case ATA_DNXFER_FORCE_PIO:
2827 mwdma_mask = 0;
2828 udma_mask = 0;
2829 break;
2830
458337db
TH
2831 default:
2832 BUG();
2833 }
2834
2835 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2836
2837 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2838 return -ENOENT;
2839
2840 if (!quiet) {
2841 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2842 snprintf(buf, sizeof(buf), "%s:%s",
2843 ata_mode_string(xfer_mask),
2844 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2845 else
2846 snprintf(buf, sizeof(buf), "%s",
2847 ata_mode_string(xfer_mask));
2848
2849 ata_dev_printk(dev, KERN_WARNING,
2850 "limiting speed to %s\n", buf);
2851 }
cf176e1a
TH
2852
2853 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2854 &dev->udma_mask);
2855
cf176e1a 2856 return 0;
cf176e1a
TH
2857}
2858
3373efd8 2859static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2860{
9af5c9c9 2861 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2862 unsigned int err_mask;
2863 int rc;
1da177e4 2864
e8384607 2865 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2866 if (dev->xfer_shift == ATA_SHIFT_PIO)
2867 dev->flags |= ATA_DFLAG_PIO;
2868
3373efd8 2869 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2870 /* Old CFA may refuse this command, which is just fine */
2871 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2872 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2873 /* Some very old devices and some bad newer ones fail any kind of
2874 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2875 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2876 dev->pio_mode <= XFER_PIO_2)
2877 err_mask &= ~AC_ERR_DEV;
83206a29 2878 if (err_mask) {
f15a1daf
TH
2879 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2880 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2881 return -EIO;
2882 }
1da177e4 2883
baa1e78a 2884 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2885 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2886 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2887 if (rc)
83206a29 2888 return rc;
48a8a14f 2889
23e71c3d
TH
2890 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2891 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2892
f15a1daf
TH
2893 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2894 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2895 return 0;
1da177e4
LT
2896}
2897
1da177e4 2898/**
04351821 2899 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2900 * @link: link on which timings will be programmed
e82cbdb9 2901 * @r_failed_dev: out paramter for failed device
1da177e4 2902 *
04351821
AC
2903 * Standard implementation of the function used to tune and set
2904 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2905 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2906 * returned in @r_failed_dev.
780a87f7 2907 *
1da177e4 2908 * LOCKING:
0cba632b 2909 * PCI/etc. bus probe sem.
e82cbdb9
TH
2910 *
2911 * RETURNS:
2912 * 0 on success, negative errno otherwise
1da177e4 2913 */
04351821 2914
0260731f 2915int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2916{
0260731f 2917 struct ata_port *ap = link->ap;
e8e0619f 2918 struct ata_device *dev;
f58229f8 2919 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2920
a6d5a51c 2921 /* step 1: calculate xfer_mask */
f58229f8 2922 ata_link_for_each_dev(dev, link) {
acf356b1 2923 unsigned int pio_mask, dma_mask;
b3a70601 2924 unsigned int mode_mask;
a6d5a51c 2925
e1211e3f 2926 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2927 continue;
2928
b3a70601
AC
2929 mode_mask = ATA_DMA_MASK_ATA;
2930 if (dev->class == ATA_DEV_ATAPI)
2931 mode_mask = ATA_DMA_MASK_ATAPI;
2932 else if (ata_id_is_cfa(dev->id))
2933 mode_mask = ATA_DMA_MASK_CFA;
2934
3373efd8 2935 ata_dev_xfermask(dev);
1da177e4 2936
acf356b1
TH
2937 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2938 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2939
2940 if (libata_dma_mask & mode_mask)
2941 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2942 else
2943 dma_mask = 0;
2944
acf356b1
TH
2945 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2946 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2947
4f65977d 2948 found = 1;
5444a6f4
AC
2949 if (dev->dma_mode)
2950 used_dma = 1;
a6d5a51c 2951 }
4f65977d 2952 if (!found)
e82cbdb9 2953 goto out;
a6d5a51c
TH
2954
2955 /* step 2: always set host PIO timings */
f58229f8 2956 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2957 if (!ata_dev_enabled(dev))
2958 continue;
2959
2960 if (!dev->pio_mode) {
f15a1daf 2961 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2962 rc = -EINVAL;
e82cbdb9 2963 goto out;
e8e0619f
TH
2964 }
2965
2966 dev->xfer_mode = dev->pio_mode;
2967 dev->xfer_shift = ATA_SHIFT_PIO;
2968 if (ap->ops->set_piomode)
2969 ap->ops->set_piomode(ap, dev);
2970 }
1da177e4 2971
a6d5a51c 2972 /* step 3: set host DMA timings */
f58229f8 2973 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2974 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2975 continue;
2976
2977 dev->xfer_mode = dev->dma_mode;
2978 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2979 if (ap->ops->set_dmamode)
2980 ap->ops->set_dmamode(ap, dev);
2981 }
1da177e4
LT
2982
2983 /* step 4: update devices' xfer mode */
f58229f8 2984 ata_link_for_each_dev(dev, link) {
18d90deb 2985 /* don't update suspended devices' xfer mode */
9666f400 2986 if (!ata_dev_enabled(dev))
83206a29
TH
2987 continue;
2988
3373efd8 2989 rc = ata_dev_set_mode(dev);
5bbc53f4 2990 if (rc)
e82cbdb9 2991 goto out;
83206a29 2992 }
1da177e4 2993
e8e0619f
TH
2994 /* Record simplex status. If we selected DMA then the other
2995 * host channels are not permitted to do so.
5444a6f4 2996 */
cca3974e 2997 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2998 ap->host->simplex_claimed = ap;
5444a6f4 2999
e82cbdb9
TH
3000 out:
3001 if (rc)
3002 *r_failed_dev = dev;
3003 return rc;
1da177e4
LT
3004}
3005
04351821
AC
3006/**
3007 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3008 * @link: link on which timings will be programmed
04351821
AC
3009 * @r_failed_dev: out paramter for failed device
3010 *
3011 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3012 * ata_set_mode() fails, pointer to the failing device is
3013 * returned in @r_failed_dev.
3014 *
3015 * LOCKING:
3016 * PCI/etc. bus probe sem.
3017 *
3018 * RETURNS:
3019 * 0 on success, negative errno otherwise
3020 */
0260731f 3021int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3022{
0260731f
TH
3023 struct ata_port *ap = link->ap;
3024
04351821
AC
3025 /* has private set_mode? */
3026 if (ap->ops->set_mode)
0260731f
TH
3027 return ap->ops->set_mode(link, r_failed_dev);
3028 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3029}
3030
1fdffbce
JG
3031/**
3032 * ata_tf_to_host - issue ATA taskfile to host controller
3033 * @ap: port to which command is being issued
3034 * @tf: ATA taskfile register set
3035 *
3036 * Issues ATA taskfile register set to ATA host controller,
3037 * with proper synchronization with interrupt handler and
3038 * other threads.
3039 *
3040 * LOCKING:
cca3974e 3041 * spin_lock_irqsave(host lock)
1fdffbce
JG
3042 */
3043
3044static inline void ata_tf_to_host(struct ata_port *ap,
3045 const struct ata_taskfile *tf)
3046{
3047 ap->ops->tf_load(ap, tf);
3048 ap->ops->exec_command(ap, tf);
3049}
3050
1da177e4
LT
3051/**
3052 * ata_busy_sleep - sleep until BSY clears, or timeout
3053 * @ap: port containing status register to be polled
3054 * @tmout_pat: impatience timeout
3055 * @tmout: overall timeout
3056 *
780a87f7
JG
3057 * Sleep until ATA Status register bit BSY clears,
3058 * or a timeout occurs.
3059 *
d1adc1bb
TH
3060 * LOCKING:
3061 * Kernel thread context (may sleep).
3062 *
3063 * RETURNS:
3064 * 0 on success, -errno otherwise.
1da177e4 3065 */
d1adc1bb
TH
3066int ata_busy_sleep(struct ata_port *ap,
3067 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3068{
3069 unsigned long timer_start, timeout;
3070 u8 status;
3071
3072 status = ata_busy_wait(ap, ATA_BUSY, 300);
3073 timer_start = jiffies;
3074 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3075 while (status != 0xff && (status & ATA_BUSY) &&
3076 time_before(jiffies, timeout)) {
1da177e4
LT
3077 msleep(50);
3078 status = ata_busy_wait(ap, ATA_BUSY, 3);
3079 }
3080
d1adc1bb 3081 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3082 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3083 "port is slow to respond, please be patient "
3084 "(Status 0x%x)\n", status);
1da177e4
LT
3085
3086 timeout = timer_start + tmout;
d1adc1bb
TH
3087 while (status != 0xff && (status & ATA_BUSY) &&
3088 time_before(jiffies, timeout)) {
1da177e4
LT
3089 msleep(50);
3090 status = ata_chk_status(ap);
3091 }
3092
d1adc1bb
TH
3093 if (status == 0xff)
3094 return -ENODEV;
3095
1da177e4 3096 if (status & ATA_BUSY) {
f15a1daf 3097 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3098 "(%lu secs, Status 0x%x)\n",
3099 tmout / HZ, status);
d1adc1bb 3100 return -EBUSY;
1da177e4
LT
3101 }
3102
3103 return 0;
3104}
3105
d4b2bab4
TH
3106/**
3107 * ata_wait_ready - sleep until BSY clears, or timeout
3108 * @ap: port containing status register to be polled
3109 * @deadline: deadline jiffies for the operation
3110 *
3111 * Sleep until ATA Status register bit BSY clears, or timeout
3112 * occurs.
3113 *
3114 * LOCKING:
3115 * Kernel thread context (may sleep).
3116 *
3117 * RETURNS:
3118 * 0 on success, -errno otherwise.
3119 */
3120int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3121{
3122 unsigned long start = jiffies;
3123 int warned = 0;
3124
3125 while (1) {
3126 u8 status = ata_chk_status(ap);
3127 unsigned long now = jiffies;
3128
3129 if (!(status & ATA_BUSY))
3130 return 0;
936fd732 3131 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3132 return -ENODEV;
3133 if (time_after(now, deadline))
3134 return -EBUSY;
3135
3136 if (!warned && time_after(now, start + 5 * HZ) &&
3137 (deadline - now > 3 * HZ)) {
3138 ata_port_printk(ap, KERN_WARNING,
3139 "port is slow to respond, please be patient "
3140 "(Status 0x%x)\n", status);
3141 warned = 1;
3142 }
3143
3144 msleep(50);
3145 }
3146}
3147
3148static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3149 unsigned long deadline)
1da177e4
LT
3150{
3151 struct ata_ioports *ioaddr = &ap->ioaddr;
3152 unsigned int dev0 = devmask & (1 << 0);
3153 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3154 int rc, ret = 0;
1da177e4
LT
3155
3156 /* if device 0 was found in ata_devchk, wait for its
3157 * BSY bit to clear
3158 */
d4b2bab4
TH
3159 if (dev0) {
3160 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3161 if (rc) {
3162 if (rc != -ENODEV)
3163 return rc;
3164 ret = rc;
3165 }
d4b2bab4 3166 }
1da177e4 3167
e141d999
TH
3168 /* if device 1 was found in ata_devchk, wait for register
3169 * access briefly, then wait for BSY to clear.
1da177e4 3170 */
e141d999
TH
3171 if (dev1) {
3172 int i;
1da177e4
LT
3173
3174 ap->ops->dev_select(ap, 1);
e141d999
TH
3175
3176 /* Wait for register access. Some ATAPI devices fail
3177 * to set nsect/lbal after reset, so don't waste too
3178 * much time on it. We're gonna wait for !BSY anyway.
3179 */
3180 for (i = 0; i < 2; i++) {
3181 u8 nsect, lbal;
3182
3183 nsect = ioread8(ioaddr->nsect_addr);
3184 lbal = ioread8(ioaddr->lbal_addr);
3185 if ((nsect == 1) && (lbal == 1))
3186 break;
3187 msleep(50); /* give drive a breather */
3188 }
3189
d4b2bab4 3190 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3191 if (rc) {
3192 if (rc != -ENODEV)
3193 return rc;
3194 ret = rc;
3195 }
d4b2bab4 3196 }
1da177e4
LT
3197
3198 /* is all this really necessary? */
3199 ap->ops->dev_select(ap, 0);
3200 if (dev1)
3201 ap->ops->dev_select(ap, 1);
3202 if (dev0)
3203 ap->ops->dev_select(ap, 0);
d4b2bab4 3204
9b89391c 3205 return ret;
1da177e4
LT
3206}
3207
d4b2bab4
TH
3208static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3209 unsigned long deadline)
1da177e4
LT
3210{
3211 struct ata_ioports *ioaddr = &ap->ioaddr;
681c80b5
AC
3212 struct ata_device *dev;
3213 int i = 0;
1da177e4 3214
44877b4e 3215 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3216
3217 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3218 iowrite8(ap->ctl, ioaddr->ctl_addr);
3219 udelay(20); /* FIXME: flush */
3220 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3221 udelay(20); /* FIXME: flush */
3222 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3223
681c80b5
AC
3224 /* If we issued an SRST then an ATA drive (not ATAPI)
3225 * may have changed configuration and be in PIO0 timing. If
3226 * we did a hard reset (or are coming from power on) this is
3227 * true for ATA or ATAPI. Until we've set a suitable controller
3228 * mode we should not touch the bus as we may be talking too fast.
3229 */
3230
3231 ata_link_for_each_dev(dev, &ap->link)
3232 dev->pio_mode = XFER_PIO_0;
3233
3234 /* If the controller has a pio mode setup function then use
3235 it to set the chipset to rights. Don't touch the DMA setup
3236 as that will be dealt with when revalidating */
3237 if (ap->ops->set_piomode) {
3238 ata_link_for_each_dev(dev, &ap->link)
3239 if (devmask & (1 << i++))
3240 ap->ops->set_piomode(ap, dev);
3241 }
3242
1da177e4
LT
3243 /* spec mandates ">= 2ms" before checking status.
3244 * We wait 150ms, because that was the magic delay used for
3245 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3246 * between when the ATA command register is written, and then
3247 * status is checked. Because waiting for "a while" before
3248 * checking status is fine, post SRST, we perform this magic
3249 * delay here as well.
09c7ad79
AC
3250 *
3251 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3252 */
3253 msleep(150);
3254
2e9edbf8 3255 /* Before we perform post reset processing we want to see if
298a41ca
TH
3256 * the bus shows 0xFF because the odd clown forgets the D7
3257 * pulldown resistor.
3258 */
d1adc1bb 3259 if (ata_check_status(ap) == 0xFF)
9b89391c 3260 return -ENODEV;
09c7ad79 3261
d4b2bab4 3262 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3263}
3264
3265/**
3266 * ata_bus_reset - reset host port and associated ATA channel
3267 * @ap: port to reset
3268 *
3269 * This is typically the first time we actually start issuing
3270 * commands to the ATA channel. We wait for BSY to clear, then
3271 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3272 * result. Determine what devices, if any, are on the channel
3273 * by looking at the device 0/1 error register. Look at the signature
3274 * stored in each device's taskfile registers, to determine if
3275 * the device is ATA or ATAPI.
3276 *
3277 * LOCKING:
0cba632b 3278 * PCI/etc. bus probe sem.
cca3974e 3279 * Obtains host lock.
1da177e4
LT
3280 *
3281 * SIDE EFFECTS:
198e0fed 3282 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3283 */
3284
3285void ata_bus_reset(struct ata_port *ap)
3286{
9af5c9c9 3287 struct ata_device *device = ap->link.device;
1da177e4
LT
3288 struct ata_ioports *ioaddr = &ap->ioaddr;
3289 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3290 u8 err;
aec5c3c1 3291 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3292 int rc;
1da177e4 3293
44877b4e 3294 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3295
3296 /* determine if device 0/1 are present */
3297 if (ap->flags & ATA_FLAG_SATA_RESET)
3298 dev0 = 1;
3299 else {
3300 dev0 = ata_devchk(ap, 0);
3301 if (slave_possible)
3302 dev1 = ata_devchk(ap, 1);
3303 }
3304
3305 if (dev0)
3306 devmask |= (1 << 0);
3307 if (dev1)
3308 devmask |= (1 << 1);
3309
3310 /* select device 0 again */
3311 ap->ops->dev_select(ap, 0);
3312
3313 /* issue bus reset */
9b89391c
TH
3314 if (ap->flags & ATA_FLAG_SRST) {
3315 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3316 if (rc && rc != -ENODEV)
aec5c3c1 3317 goto err_out;
9b89391c 3318 }
1da177e4
LT
3319
3320 /*
3321 * determine by signature whether we have ATA or ATAPI devices
3322 */
3f19859e 3323 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3324 if ((slave_possible) && (err != 0x81))
3f19859e 3325 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3326
1da177e4 3327 /* is double-select really necessary? */
9af5c9c9 3328 if (device[1].class != ATA_DEV_NONE)
1da177e4 3329 ap->ops->dev_select(ap, 1);
9af5c9c9 3330 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3331 ap->ops->dev_select(ap, 0);
3332
3333 /* if no devices were detected, disable this port */
9af5c9c9
TH
3334 if ((device[0].class == ATA_DEV_NONE) &&
3335 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3336 goto err_out;
3337
3338 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3339 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3340 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3341 }
3342
3343 DPRINTK("EXIT\n");
3344 return;
3345
3346err_out:
f15a1daf 3347 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3348 ata_port_disable(ap);
1da177e4
LT
3349
3350 DPRINTK("EXIT\n");
3351}
3352
d7bb4cc7 3353/**
936fd732
TH
3354 * sata_link_debounce - debounce SATA phy status
3355 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3356 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3357 * @deadline: deadline jiffies for the operation
d7bb4cc7 3358 *
936fd732 3359* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3360 * holding the same value where DET is not 1 for @duration polled
3361 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3362 * beginning of the stable state. Because DET gets stuck at 1 on
3363 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3364 * until timeout then returns 0 if DET is stable at 1.
3365 *
d4b2bab4
TH
3366 * @timeout is further limited by @deadline. The sooner of the
3367 * two is used.
3368 *
d7bb4cc7
TH
3369 * LOCKING:
3370 * Kernel thread context (may sleep)
3371 *
3372 * RETURNS:
3373 * 0 on success, -errno on failure.
3374 */
936fd732
TH
3375int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3376 unsigned long deadline)
7a7921e8 3377{
d7bb4cc7 3378 unsigned long interval_msec = params[0];
d4b2bab4
TH
3379 unsigned long duration = msecs_to_jiffies(params[1]);
3380 unsigned long last_jiffies, t;
d7bb4cc7
TH
3381 u32 last, cur;
3382 int rc;
3383
d4b2bab4
TH
3384 t = jiffies + msecs_to_jiffies(params[2]);
3385 if (time_before(t, deadline))
3386 deadline = t;
3387
936fd732 3388 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3389 return rc;
3390 cur &= 0xf;
3391
3392 last = cur;
3393 last_jiffies = jiffies;
3394
3395 while (1) {
3396 msleep(interval_msec);
936fd732 3397 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3398 return rc;
3399 cur &= 0xf;
3400
3401 /* DET stable? */
3402 if (cur == last) {
d4b2bab4 3403 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3404 continue;
3405 if (time_after(jiffies, last_jiffies + duration))
3406 return 0;
3407 continue;
3408 }
3409
3410 /* unstable, start over */
3411 last = cur;
3412 last_jiffies = jiffies;
3413
f1545154
TH
3414 /* Check deadline. If debouncing failed, return
3415 * -EPIPE to tell upper layer to lower link speed.
3416 */
d4b2bab4 3417 if (time_after(jiffies, deadline))
f1545154 3418 return -EPIPE;
d7bb4cc7
TH
3419 }
3420}
3421
3422/**
936fd732
TH
3423 * sata_link_resume - resume SATA link
3424 * @link: ATA link to resume SATA
d7bb4cc7 3425 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3426 * @deadline: deadline jiffies for the operation
d7bb4cc7 3427 *
936fd732 3428 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3429 *
3430 * LOCKING:
3431 * Kernel thread context (may sleep)
3432 *
3433 * RETURNS:
3434 * 0 on success, -errno on failure.
3435 */
936fd732
TH
3436int sata_link_resume(struct ata_link *link, const unsigned long *params,
3437 unsigned long deadline)
d7bb4cc7
TH
3438{
3439 u32 scontrol;
81952c54
TH
3440 int rc;
3441
936fd732 3442 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3443 return rc;
7a7921e8 3444
852ee16a 3445 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3446
936fd732 3447 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3448 return rc;
7a7921e8 3449
d7bb4cc7
TH
3450 /* Some PHYs react badly if SStatus is pounded immediately
3451 * after resuming. Delay 200ms before debouncing.
3452 */
3453 msleep(200);
7a7921e8 3454
936fd732 3455 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3456}
3457
f5914a46
TH
3458/**
3459 * ata_std_prereset - prepare for reset
cc0680a5 3460 * @link: ATA link to be reset
d4b2bab4 3461 * @deadline: deadline jiffies for the operation
f5914a46 3462 *
cc0680a5 3463 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3464 * prereset makes libata abort whole reset sequence and give up
3465 * that port, so prereset should be best-effort. It does its
3466 * best to prepare for reset sequence but if things go wrong, it
3467 * should just whine, not fail.
f5914a46
TH
3468 *
3469 * LOCKING:
3470 * Kernel thread context (may sleep)
3471 *
3472 * RETURNS:
3473 * 0 on success, -errno otherwise.
3474 */
cc0680a5 3475int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3476{
cc0680a5 3477 struct ata_port *ap = link->ap;
936fd732 3478 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3479 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3480 int rc;
3481
31daabda 3482 /* handle link resume */
28324304 3483 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3484 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3485 ehc->i.action |= ATA_EH_HARDRESET;
3486
633273a3
TH
3487 /* Some PMPs don't work with only SRST, force hardreset if PMP
3488 * is supported.
3489 */
3490 if (ap->flags & ATA_FLAG_PMP)
3491 ehc->i.action |= ATA_EH_HARDRESET;
3492
f5914a46
TH
3493 /* if we're about to do hardreset, nothing more to do */
3494 if (ehc->i.action & ATA_EH_HARDRESET)
3495 return 0;
3496
936fd732 3497 /* if SATA, resume link */
a16abc0b 3498 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3499 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3500 /* whine about phy resume failure but proceed */
3501 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3502 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3503 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3504 }
3505
3506 /* Wait for !BSY if the controller can wait for the first D2H
3507 * Reg FIS and we don't know that no device is attached.
3508 */
0c88758b 3509 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3510 rc = ata_wait_ready(ap, deadline);
6dffaf61 3511 if (rc && rc != -ENODEV) {
cc0680a5 3512 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3513 "(errno=%d), forcing hardreset\n", rc);
3514 ehc->i.action |= ATA_EH_HARDRESET;
3515 }
3516 }
f5914a46
TH
3517
3518 return 0;
3519}
3520
c2bd5804
TH
3521/**
3522 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3523 * @link: ATA link to reset
c2bd5804 3524 * @classes: resulting classes of attached devices
d4b2bab4 3525 * @deadline: deadline jiffies for the operation
c2bd5804 3526 *
52783c5d 3527 * Reset host port using ATA SRST.
c2bd5804
TH
3528 *
3529 * LOCKING:
3530 * Kernel thread context (may sleep)
3531 *
3532 * RETURNS:
3533 * 0 on success, -errno otherwise.
3534 */
cc0680a5 3535int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3536 unsigned long deadline)
c2bd5804 3537{
cc0680a5 3538 struct ata_port *ap = link->ap;
c2bd5804 3539 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3540 unsigned int devmask = 0;
3541 int rc;
c2bd5804
TH
3542 u8 err;
3543
3544 DPRINTK("ENTER\n");
3545
936fd732 3546 if (ata_link_offline(link)) {
3a39746a
TH
3547 classes[0] = ATA_DEV_NONE;
3548 goto out;
3549 }
3550
c2bd5804
TH
3551 /* determine if device 0/1 are present */
3552 if (ata_devchk(ap, 0))
3553 devmask |= (1 << 0);
3554 if (slave_possible && ata_devchk(ap, 1))
3555 devmask |= (1 << 1);
3556
c2bd5804
TH
3557 /* select device 0 again */
3558 ap->ops->dev_select(ap, 0);
3559
3560 /* issue bus reset */
3561 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3562 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3563 /* if link is occupied, -ENODEV too is an error */
936fd732 3564 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3565 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3566 return rc;
c2bd5804
TH
3567 }
3568
3569 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3570 classes[0] = ata_dev_try_classify(&link->device[0],
3571 devmask & (1 << 0), &err);
c2bd5804 3572 if (slave_possible && err != 0x81)
3f19859e
TH
3573 classes[1] = ata_dev_try_classify(&link->device[1],
3574 devmask & (1 << 1), &err);
c2bd5804 3575
3a39746a 3576 out:
c2bd5804
TH
3577 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3578 return 0;
3579}
3580
3581/**
cc0680a5
TH
3582 * sata_link_hardreset - reset link via SATA phy reset
3583 * @link: link to reset
b6103f6d 3584 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3585 * @deadline: deadline jiffies for the operation
c2bd5804 3586 *
cc0680a5 3587 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3588 *
3589 * LOCKING:
3590 * Kernel thread context (may sleep)
3591 *
3592 * RETURNS:
3593 * 0 on success, -errno otherwise.
3594 */
cc0680a5 3595int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3596 unsigned long deadline)
c2bd5804 3597{
852ee16a 3598 u32 scontrol;
81952c54 3599 int rc;
852ee16a 3600
c2bd5804
TH
3601 DPRINTK("ENTER\n");
3602
936fd732 3603 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3604 /* SATA spec says nothing about how to reconfigure
3605 * spd. To be on the safe side, turn off phy during
3606 * reconfiguration. This works for at least ICH7 AHCI
3607 * and Sil3124.
3608 */
936fd732 3609 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3610 goto out;
81952c54 3611
a34b6fc0 3612 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3613
936fd732 3614 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3615 goto out;
1c3fae4d 3616
936fd732 3617 sata_set_spd(link);
1c3fae4d
TH
3618 }
3619
3620 /* issue phy wake/reset */
936fd732 3621 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3622 goto out;
81952c54 3623
852ee16a 3624 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3625
936fd732 3626 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3627 goto out;
c2bd5804 3628
1c3fae4d 3629 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3630 * 10.4.2 says at least 1 ms.
3631 */
3632 msleep(1);
3633
936fd732
TH
3634 /* bring link back */
3635 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3636 out:
3637 DPRINTK("EXIT, rc=%d\n", rc);
3638 return rc;
3639}
3640
3641/**
3642 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3643 * @link: link to reset
b6103f6d 3644 * @class: resulting class of attached device
d4b2bab4 3645 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3646 *
3647 * SATA phy-reset host port using DET bits of SControl register,
3648 * wait for !BSY and classify the attached device.
3649 *
3650 * LOCKING:
3651 * Kernel thread context (may sleep)
3652 *
3653 * RETURNS:
3654 * 0 on success, -errno otherwise.
3655 */
cc0680a5 3656int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3657 unsigned long deadline)
b6103f6d 3658{
cc0680a5 3659 struct ata_port *ap = link->ap;
936fd732 3660 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3661 int rc;
3662
3663 DPRINTK("ENTER\n");
3664
3665 /* do hardreset */
cc0680a5 3666 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3667 if (rc) {
cc0680a5 3668 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3669 "COMRESET failed (errno=%d)\n", rc);
3670 return rc;
3671 }
c2bd5804 3672
c2bd5804 3673 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3674 if (ata_link_offline(link)) {
c2bd5804
TH
3675 *class = ATA_DEV_NONE;
3676 DPRINTK("EXIT, link offline\n");
3677 return 0;
3678 }
3679
34fee227
TH
3680 /* wait a while before checking status, see SRST for more info */
3681 msleep(150);
3682
633273a3
TH
3683 /* If PMP is supported, we have to do follow-up SRST. Note
3684 * that some PMPs don't send D2H Reg FIS after hardreset at
3685 * all if the first port is empty. Wait for it just for a
3686 * second and request follow-up SRST.
3687 */
3688 if (ap->flags & ATA_FLAG_PMP) {
3689 ata_wait_ready(ap, jiffies + HZ);
3690 return -EAGAIN;
3691 }
3692
d4b2bab4 3693 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3694 /* link occupied, -ENODEV too is an error */
3695 if (rc) {
cc0680a5 3696 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3697 "COMRESET failed (errno=%d)\n", rc);
3698 return rc;
c2bd5804
TH
3699 }
3700
3a39746a
TH
3701 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3702
3f19859e 3703 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3704
3705 DPRINTK("EXIT, class=%u\n", *class);
3706 return 0;
3707}
3708
3709/**
3710 * ata_std_postreset - standard postreset callback
cc0680a5 3711 * @link: the target ata_link
c2bd5804
TH
3712 * @classes: classes of attached devices
3713 *
3714 * This function is invoked after a successful reset. Note that
3715 * the device might have been reset more than once using
3716 * different reset methods before postreset is invoked.
c2bd5804 3717 *
c2bd5804
TH
3718 * LOCKING:
3719 * Kernel thread context (may sleep)
3720 */
cc0680a5 3721void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3722{
cc0680a5 3723 struct ata_port *ap = link->ap;
dc2b3515
TH
3724 u32 serror;
3725
c2bd5804
TH
3726 DPRINTK("ENTER\n");
3727
c2bd5804 3728 /* print link status */
936fd732 3729 sata_print_link_status(link);
c2bd5804 3730
dc2b3515 3731 /* clear SError */
936fd732
TH
3732 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3733 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3734
c2bd5804
TH
3735 /* is double-select really necessary? */
3736 if (classes[0] != ATA_DEV_NONE)
3737 ap->ops->dev_select(ap, 1);
3738 if (classes[1] != ATA_DEV_NONE)
3739 ap->ops->dev_select(ap, 0);
3740
3a39746a
TH
3741 /* bail out if no device is present */
3742 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3743 DPRINTK("EXIT, no device\n");
3744 return;
3745 }
3746
3747 /* set up device control */
0d5ff566
TH
3748 if (ap->ioaddr.ctl_addr)
3749 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3750
3751 DPRINTK("EXIT\n");
3752}
3753
623a3128
TH
3754/**
3755 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3756 * @dev: device to compare against
3757 * @new_class: class of the new device
3758 * @new_id: IDENTIFY page of the new device
3759 *
3760 * Compare @new_class and @new_id against @dev and determine
3761 * whether @dev is the device indicated by @new_class and
3762 * @new_id.
3763 *
3764 * LOCKING:
3765 * None.
3766 *
3767 * RETURNS:
3768 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3769 */
3373efd8
TH
3770static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3771 const u16 *new_id)
623a3128
TH
3772{
3773 const u16 *old_id = dev->id;
a0cf733b
TH
3774 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3775 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3776
3777 if (dev->class != new_class) {
f15a1daf
TH
3778 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3779 dev->class, new_class);
623a3128
TH
3780 return 0;
3781 }
3782
a0cf733b
TH
3783 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3784 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3785 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3786 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3787
3788 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3789 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3790 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3791 return 0;
3792 }
3793
3794 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3795 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3796 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3797 return 0;
3798 }
3799
623a3128
TH
3800 return 1;
3801}
3802
3803/**
fe30911b 3804 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3805 * @dev: target ATA device
bff04647 3806 * @readid_flags: read ID flags
623a3128
TH
3807 *
3808 * Re-read IDENTIFY page and make sure @dev is still attached to
3809 * the port.
3810 *
3811 * LOCKING:
3812 * Kernel thread context (may sleep)
3813 *
3814 * RETURNS:
3815 * 0 on success, negative errno otherwise
3816 */
fe30911b 3817int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3818{
5eb45c02 3819 unsigned int class = dev->class;
9af5c9c9 3820 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3821 int rc;
3822
fe635c7e 3823 /* read ID data */
bff04647 3824 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3825 if (rc)
fe30911b 3826 return rc;
623a3128
TH
3827
3828 /* is the device still there? */
fe30911b
TH
3829 if (!ata_dev_same_device(dev, class, id))
3830 return -ENODEV;
623a3128 3831
fe635c7e 3832 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3833 return 0;
3834}
3835
3836/**
3837 * ata_dev_revalidate - Revalidate ATA device
3838 * @dev: device to revalidate
422c9daa 3839 * @new_class: new class code
fe30911b
TH
3840 * @readid_flags: read ID flags
3841 *
3842 * Re-read IDENTIFY page, make sure @dev is still attached to the
3843 * port and reconfigure it according to the new IDENTIFY page.
3844 *
3845 * LOCKING:
3846 * Kernel thread context (may sleep)
3847 *
3848 * RETURNS:
3849 * 0 on success, negative errno otherwise
3850 */
422c9daa
TH
3851int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3852 unsigned int readid_flags)
fe30911b 3853{
6ddcd3b0 3854 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3855 int rc;
3856
3857 if (!ata_dev_enabled(dev))
3858 return -ENODEV;
3859
422c9daa
TH
3860 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3861 if (ata_class_enabled(new_class) &&
3862 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3863 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3864 dev->class, new_class);
3865 rc = -ENODEV;
3866 goto fail;
3867 }
3868
fe30911b
TH
3869 /* re-read ID */
3870 rc = ata_dev_reread_id(dev, readid_flags);
3871 if (rc)
3872 goto fail;
623a3128
TH
3873
3874 /* configure device according to the new ID */
efdaedc4 3875 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3876 if (rc)
3877 goto fail;
3878
3879 /* verify n_sectors hasn't changed */
b54eebd6
TH
3880 if (dev->class == ATA_DEV_ATA && n_sectors &&
3881 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3882 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3883 "%llu != %llu\n",
3884 (unsigned long long)n_sectors,
3885 (unsigned long long)dev->n_sectors);
8270bec4
TH
3886
3887 /* restore original n_sectors */
3888 dev->n_sectors = n_sectors;
3889
6ddcd3b0
TH
3890 rc = -ENODEV;
3891 goto fail;
3892 }
3893
3894 return 0;
623a3128
TH
3895
3896 fail:
f15a1daf 3897 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3898 return rc;
3899}
3900
6919a0a6
AC
3901struct ata_blacklist_entry {
3902 const char *model_num;
3903 const char *model_rev;
3904 unsigned long horkage;
3905};
3906
3907static const struct ata_blacklist_entry ata_device_blacklist [] = {
3908 /* Devices with DMA related problems under Linux */
3909 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3910 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3911 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3912 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3913 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3914 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3915 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3916 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3917 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3918 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3919 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3920 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3921 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3922 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3923 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3924 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3925 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3926 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3927 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3928 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3929 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3930 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3931 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3932 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3933 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3934 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3935 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3936 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3937 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3938 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3939 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3940 { "IOMEGA ZIP 250 ATAPI Floppy",
3941 NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3942 /* Odd clown on sil3726/4726 PMPs */
3943 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3944 ATA_HORKAGE_SKIP_PM },
6919a0a6 3945
18d6e9d5 3946 /* Weird ATAPI devices */
40a1d531 3947 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3948
6919a0a6
AC
3949 /* Devices we expect to fail diagnostics */
3950
3951 /* Devices where NCQ should be avoided */
3952 /* NCQ is slow */
3953 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3954 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3955 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3956 /* NCQ is broken */
539cc7c7 3957 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3958 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
3959 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3960 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
539cc7c7 3961
36e337d0
RH
3962 /* Blacklist entries taken from Silicon Image 3124/3132
3963 Windows driver .inf file - also several Linux problem reports */
3964 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3965 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3966 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3967 /* Drives which do spurious command completion */
3968 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3969 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3970 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3971 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 3972 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 3973 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 3974 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 3975 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
7f567620
TH
3976 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3977 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 3978 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3979
16c55b03
TH
3980 /* devices which puke on READ_NATIVE_MAX */
3981 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3982 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3983 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3984 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 3985
93328e11
AC
3986 /* Devices which report 1 sector over size HPA */
3987 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
3988 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
3989
6919a0a6
AC
3990 /* End Marker */
3991 { }
1da177e4 3992};
2e9edbf8 3993
539cc7c7
JG
3994int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3995{
3996 const char *p;
3997 int len;
3998
3999 /*
4000 * check for trailing wildcard: *\0
4001 */
4002 p = strchr(patt, wildchar);
4003 if (p && ((*(p + 1)) == 0))
4004 len = p - patt;
4005 else
4006 len = strlen(name);
4007
4008 return strncmp(patt, name, len);
4009}
4010
75683fe7 4011static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4012{
8bfa79fc
TH
4013 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4014 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4015 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4016
8bfa79fc
TH
4017 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4018 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4019
6919a0a6 4020 while (ad->model_num) {
539cc7c7 4021 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4022 if (ad->model_rev == NULL)
4023 return ad->horkage;
539cc7c7 4024 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4025 return ad->horkage;
f4b15fef 4026 }
6919a0a6 4027 ad++;
f4b15fef 4028 }
1da177e4
LT
4029 return 0;
4030}
4031
6919a0a6
AC
4032static int ata_dma_blacklisted(const struct ata_device *dev)
4033{
4034 /* We don't support polling DMA.
4035 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4036 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4037 */
9af5c9c9 4038 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4039 (dev->flags & ATA_DFLAG_CDB_INTR))
4040 return 1;
75683fe7 4041 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4042}
4043
a6d5a51c
TH
4044/**
4045 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4046 * @dev: Device to compute xfermask for
4047 *
acf356b1
TH
4048 * Compute supported xfermask of @dev and store it in
4049 * dev->*_mask. This function is responsible for applying all
4050 * known limits including host controller limits, device
4051 * blacklist, etc...
a6d5a51c
TH
4052 *
4053 * LOCKING:
4054 * None.
a6d5a51c 4055 */
3373efd8 4056static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4057{
9af5c9c9
TH
4058 struct ata_link *link = dev->link;
4059 struct ata_port *ap = link->ap;
cca3974e 4060 struct ata_host *host = ap->host;
a6d5a51c 4061 unsigned long xfer_mask;
1da177e4 4062
37deecb5 4063 /* controller modes available */
565083e1
TH
4064 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4065 ap->mwdma_mask, ap->udma_mask);
4066
8343f889 4067 /* drive modes available */
37deecb5
TH
4068 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4069 dev->mwdma_mask, dev->udma_mask);
4070 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4071
b352e57d
AC
4072 /*
4073 * CFA Advanced TrueIDE timings are not allowed on a shared
4074 * cable
4075 */
4076 if (ata_dev_pair(dev)) {
4077 /* No PIO5 or PIO6 */
4078 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4079 /* No MWDMA3 or MWDMA 4 */
4080 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4081 }
4082
37deecb5
TH
4083 if (ata_dma_blacklisted(dev)) {
4084 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4085 ata_dev_printk(dev, KERN_WARNING,
4086 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4087 }
a6d5a51c 4088
14d66ab7
PV
4089 if ((host->flags & ATA_HOST_SIMPLEX) &&
4090 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4091 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4092 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4093 "other device, disabling DMA\n");
5444a6f4 4094 }
565083e1 4095
e424675f
JG
4096 if (ap->flags & ATA_FLAG_NO_IORDY)
4097 xfer_mask &= ata_pio_mask_no_iordy(dev);
4098
5444a6f4 4099 if (ap->ops->mode_filter)
a76b62ca 4100 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4101
8343f889
RH
4102 /* Apply cable rule here. Don't apply it early because when
4103 * we handle hot plug the cable type can itself change.
4104 * Check this last so that we know if the transfer rate was
4105 * solely limited by the cable.
4106 * Unknown or 80 wire cables reported host side are checked
4107 * drive side as well. Cases where we know a 40wire cable
4108 * is used safely for 80 are not checked here.
4109 */
4110 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4111 /* UDMA/44 or higher would be available */
4112 if((ap->cbl == ATA_CBL_PATA40) ||
4113 (ata_drive_40wire(dev->id) &&
4114 (ap->cbl == ATA_CBL_PATA_UNK ||
4115 ap->cbl == ATA_CBL_PATA80))) {
4116 ata_dev_printk(dev, KERN_WARNING,
4117 "limited to UDMA/33 due to 40-wire cable\n");
4118 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4119 }
4120
565083e1
TH
4121 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4122 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4123}
4124
1da177e4
LT
4125/**
4126 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4127 * @dev: Device to which command will be sent
4128 *
780a87f7
JG
4129 * Issue SET FEATURES - XFER MODE command to device @dev
4130 * on port @ap.
4131 *
1da177e4 4132 * LOCKING:
0cba632b 4133 * PCI/etc. bus probe sem.
83206a29
TH
4134 *
4135 * RETURNS:
4136 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4137 */
4138
3373efd8 4139static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4140{
a0123703 4141 struct ata_taskfile tf;
83206a29 4142 unsigned int err_mask;
1da177e4
LT
4143
4144 /* set up set-features taskfile */
4145 DPRINTK("set features - xfer mode\n");
4146
464cf177
TH
4147 /* Some controllers and ATAPI devices show flaky interrupt
4148 * behavior after setting xfer mode. Use polling instead.
4149 */
3373efd8 4150 ata_tf_init(dev, &tf);
a0123703
TH
4151 tf.command = ATA_CMD_SET_FEATURES;
4152 tf.feature = SETFEATURES_XFER;
464cf177 4153 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4154 tf.protocol = ATA_PROT_NODATA;
4155 tf.nsect = dev->xfer_mode;
1da177e4 4156
3373efd8 4157 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9f45cbd3
KCA
4158
4159 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4160 return err_mask;
4161}
4162
4163/**
4164 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4165 * @dev: Device to which command will be sent
4166 * @enable: Whether to enable or disable the feature
4167 *
4168 * Issue SET FEATURES - SATA FEATURES command to device @dev
4169 * on port @ap with sector count set to indicate Asynchronous
4170 * Notification feature
4171 *
4172 * LOCKING:
4173 * PCI/etc. bus probe sem.
4174 *
4175 * RETURNS:
4176 * 0 on success, AC_ERR_* mask otherwise.
4177 */
4178static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4179{
4180 struct ata_taskfile tf;
4181 unsigned int err_mask;
4182
4183 /* set up set-features taskfile */
4184 DPRINTK("set features - SATA features\n");
4185
4186 ata_tf_init(dev, &tf);
4187 tf.command = ATA_CMD_SET_FEATURES;
4188 tf.feature = enable;
4189 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4190 tf.protocol = ATA_PROT_NODATA;
4191 tf.nsect = SATA_AN;
4192
4193 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 4194
83206a29
TH
4195 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4196 return err_mask;
1da177e4
LT
4197}
4198
8bf62ece
AL
4199/**
4200 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4201 * @dev: Device to which command will be sent
e2a7f77a
RD
4202 * @heads: Number of heads (taskfile parameter)
4203 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4204 *
4205 * LOCKING:
6aff8f1f
TH
4206 * Kernel thread context (may sleep)
4207 *
4208 * RETURNS:
4209 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4210 */
3373efd8
TH
4211static unsigned int ata_dev_init_params(struct ata_device *dev,
4212 u16 heads, u16 sectors)
8bf62ece 4213{
a0123703 4214 struct ata_taskfile tf;
6aff8f1f 4215 unsigned int err_mask;
8bf62ece
AL
4216
4217 /* Number of sectors per track 1-255. Number of heads 1-16 */
4218 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4219 return AC_ERR_INVALID;
8bf62ece
AL
4220
4221 /* set up init dev params taskfile */
4222 DPRINTK("init dev params \n");
4223
3373efd8 4224 ata_tf_init(dev, &tf);
a0123703
TH
4225 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4226 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4227 tf.protocol = ATA_PROT_NODATA;
4228 tf.nsect = sectors;
4229 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4230
3373efd8 4231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
4232 /* A clean abort indicates an original or just out of spec drive
4233 and we should continue as we issue the setup based on the
4234 drive reported working geometry */
4235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4236 err_mask = 0;
8bf62ece 4237
6aff8f1f
TH
4238 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4239 return err_mask;
8bf62ece
AL
4240}
4241
1da177e4 4242/**
0cba632b
JG
4243 * ata_sg_clean - Unmap DMA memory associated with command
4244 * @qc: Command containing DMA memory to be released
4245 *
4246 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4247 *
4248 * LOCKING:
cca3974e 4249 * spin_lock_irqsave(host lock)
1da177e4 4250 */
70e6ad0c 4251void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4252{
4253 struct ata_port *ap = qc->ap;
cedc9a47 4254 struct scatterlist *sg = qc->__sg;
1da177e4 4255 int dir = qc->dma_dir;
cedc9a47 4256 void *pad_buf = NULL;
1da177e4 4257
a4631474
TH
4258 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4259 WARN_ON(sg == NULL);
1da177e4
LT
4260
4261 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4262 WARN_ON(qc->n_elem > 1);
1da177e4 4263
2c13b7ce 4264 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4265
cedc9a47
JG
4266 /* if we padded the buffer out to 32-bit bound, and data
4267 * xfer direction is from-device, we must copy from the
4268 * pad buffer back into the supplied buffer
4269 */
4270 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4271 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4272
4273 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4274 if (qc->n_elem)
2f1f610b 4275 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4276 /* restore last sg */
4277 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4278 if (pad_buf) {
4279 struct scatterlist *psg = &qc->pad_sgent;
4280 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4281 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4282 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4283 }
4284 } else {
2e242fa9 4285 if (qc->n_elem)
2f1f610b 4286 dma_unmap_single(ap->dev,
e1410f2d
JG
4287 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4288 dir);
cedc9a47
JG
4289 /* restore sg */
4290 sg->length += qc->pad_len;
4291 if (pad_buf)
4292 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4293 pad_buf, qc->pad_len);
4294 }
1da177e4
LT
4295
4296 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4297 qc->__sg = NULL;
1da177e4
LT
4298}
4299
4300/**
4301 * ata_fill_sg - Fill PCI IDE PRD table
4302 * @qc: Metadata associated with taskfile to be transferred
4303 *
780a87f7
JG
4304 * Fill PCI IDE PRD (scatter-gather) table with segments
4305 * associated with the current disk command.
4306 *
1da177e4 4307 * LOCKING:
cca3974e 4308 * spin_lock_irqsave(host lock)
1da177e4
LT
4309 *
4310 */
4311static void ata_fill_sg(struct ata_queued_cmd *qc)
4312{
1da177e4 4313 struct ata_port *ap = qc->ap;
cedc9a47
JG
4314 struct scatterlist *sg;
4315 unsigned int idx;
1da177e4 4316
a4631474 4317 WARN_ON(qc->__sg == NULL);
f131883e 4318 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4319
4320 idx = 0;
cedc9a47 4321 ata_for_each_sg(sg, qc) {
1da177e4
LT
4322 u32 addr, offset;
4323 u32 sg_len, len;
4324
4325 /* determine if physical DMA addr spans 64K boundary.
4326 * Note h/w doesn't support 64-bit, so we unconditionally
4327 * truncate dma_addr_t to u32.
4328 */
4329 addr = (u32) sg_dma_address(sg);
4330 sg_len = sg_dma_len(sg);
4331
4332 while (sg_len) {
4333 offset = addr & 0xffff;
4334 len = sg_len;
4335 if ((offset + sg_len) > 0x10000)
4336 len = 0x10000 - offset;
4337
4338 ap->prd[idx].addr = cpu_to_le32(addr);
4339 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4340 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4341
4342 idx++;
4343 sg_len -= len;
4344 addr += len;
4345 }
4346 }
4347
4348 if (idx)
4349 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4350}
b9a4197e 4351
d26fc955
AC
4352/**
4353 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4354 * @qc: Metadata associated with taskfile to be transferred
4355 *
4356 * Fill PCI IDE PRD (scatter-gather) table with segments
4357 * associated with the current disk command. Perform the fill
4358 * so that we avoid writing any length 64K records for
4359 * controllers that don't follow the spec.
4360 *
4361 * LOCKING:
4362 * spin_lock_irqsave(host lock)
4363 *
4364 */
4365static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4366{
4367 struct ata_port *ap = qc->ap;
4368 struct scatterlist *sg;
4369 unsigned int idx;
4370
4371 WARN_ON(qc->__sg == NULL);
4372 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4373
4374 idx = 0;
4375 ata_for_each_sg(sg, qc) {
4376 u32 addr, offset;
4377 u32 sg_len, len, blen;
4378
4379 /* determine if physical DMA addr spans 64K boundary.
4380 * Note h/w doesn't support 64-bit, so we unconditionally
4381 * truncate dma_addr_t to u32.
4382 */
4383 addr = (u32) sg_dma_address(sg);
4384 sg_len = sg_dma_len(sg);
4385
4386 while (sg_len) {
4387 offset = addr & 0xffff;
4388 len = sg_len;
4389 if ((offset + sg_len) > 0x10000)
4390 len = 0x10000 - offset;
4391
4392 blen = len & 0xffff;
4393 ap->prd[idx].addr = cpu_to_le32(addr);
4394 if (blen == 0) {
4395 /* Some PATA chipsets like the CS5530 can't
4396 cope with 0x0000 meaning 64K as the spec says */
4397 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4398 blen = 0x8000;
4399 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4400 }
4401 ap->prd[idx].flags_len = cpu_to_le32(blen);
4402 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4403
4404 idx++;
4405 sg_len -= len;
4406 addr += len;
4407 }
4408 }
4409
4410 if (idx)
4411 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4412}
4413
1da177e4
LT
4414/**
4415 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4416 * @qc: Metadata associated with taskfile to check
4417 *
780a87f7
JG
4418 * Allow low-level driver to filter ATA PACKET commands, returning
4419 * a status indicating whether or not it is OK to use DMA for the
4420 * supplied PACKET command.
4421 *
1da177e4 4422 * LOCKING:
cca3974e 4423 * spin_lock_irqsave(host lock)
0cba632b 4424 *
1da177e4
LT
4425 * RETURNS: 0 when ATAPI DMA can be used
4426 * nonzero otherwise
4427 */
4428int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4429{
4430 struct ata_port *ap = qc->ap;
b9a4197e
TH
4431
4432 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4433 * few ATAPI devices choke on such DMA requests.
4434 */
4435 if (unlikely(qc->nbytes & 15))
4436 return 1;
6f23a31d 4437
1da177e4 4438 if (ap->ops->check_atapi_dma)
b9a4197e 4439 return ap->ops->check_atapi_dma(qc);
1da177e4 4440
b9a4197e 4441 return 0;
1da177e4 4442}
b9a4197e 4443
31cc23b3
TH
4444/**
4445 * ata_std_qc_defer - Check whether a qc needs to be deferred
4446 * @qc: ATA command in question
4447 *
4448 * Non-NCQ commands cannot run with any other command, NCQ or
4449 * not. As upper layer only knows the queue depth, we are
4450 * responsible for maintaining exclusion. This function checks
4451 * whether a new command @qc can be issued.
4452 *
4453 * LOCKING:
4454 * spin_lock_irqsave(host lock)
4455 *
4456 * RETURNS:
4457 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4458 */
4459int ata_std_qc_defer(struct ata_queued_cmd *qc)
4460{
4461 struct ata_link *link = qc->dev->link;
4462
4463 if (qc->tf.protocol == ATA_PROT_NCQ) {
4464 if (!ata_tag_valid(link->active_tag))
4465 return 0;
4466 } else {
4467 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4468 return 0;
4469 }
4470
4471 return ATA_DEFER_LINK;
4472}
4473
1da177e4
LT
4474/**
4475 * ata_qc_prep - Prepare taskfile for submission
4476 * @qc: Metadata associated with taskfile to be prepared
4477 *
780a87f7
JG
4478 * Prepare ATA taskfile for submission.
4479 *
1da177e4 4480 * LOCKING:
cca3974e 4481 * spin_lock_irqsave(host lock)
1da177e4
LT
4482 */
4483void ata_qc_prep(struct ata_queued_cmd *qc)
4484{
4485 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4486 return;
4487
4488 ata_fill_sg(qc);
4489}
4490
d26fc955
AC
4491/**
4492 * ata_dumb_qc_prep - Prepare taskfile for submission
4493 * @qc: Metadata associated with taskfile to be prepared
4494 *
4495 * Prepare ATA taskfile for submission.
4496 *
4497 * LOCKING:
4498 * spin_lock_irqsave(host lock)
4499 */
4500void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4501{
4502 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4503 return;
4504
4505 ata_fill_sg_dumb(qc);
4506}
4507
e46834cd
BK
4508void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4509
0cba632b
JG
4510/**
4511 * ata_sg_init_one - Associate command with memory buffer
4512 * @qc: Command to be associated
4513 * @buf: Memory buffer
4514 * @buflen: Length of memory buffer, in bytes.
4515 *
4516 * Initialize the data-related elements of queued_cmd @qc
4517 * to point to a single memory buffer, @buf of byte length @buflen.
4518 *
4519 * LOCKING:
cca3974e 4520 * spin_lock_irqsave(host lock)
0cba632b
JG
4521 */
4522
1da177e4
LT
4523void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4524{
1da177e4
LT
4525 qc->flags |= ATA_QCFLAG_SINGLE;
4526
cedc9a47 4527 qc->__sg = &qc->sgent;
1da177e4 4528 qc->n_elem = 1;
cedc9a47 4529 qc->orig_n_elem = 1;
1da177e4 4530 qc->buf_virt = buf;
233277ca 4531 qc->nbytes = buflen;
1da177e4 4532
61c0596c 4533 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4534}
4535
0cba632b
JG
4536/**
4537 * ata_sg_init - Associate command with scatter-gather table.
4538 * @qc: Command to be associated
4539 * @sg: Scatter-gather table.
4540 * @n_elem: Number of elements in s/g table.
4541 *
4542 * Initialize the data-related elements of queued_cmd @qc
4543 * to point to a scatter-gather table @sg, containing @n_elem
4544 * elements.
4545 *
4546 * LOCKING:
cca3974e 4547 * spin_lock_irqsave(host lock)
0cba632b
JG
4548 */
4549
1da177e4
LT
4550void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4551 unsigned int n_elem)
4552{
4553 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4554 qc->__sg = sg;
1da177e4 4555 qc->n_elem = n_elem;
cedc9a47 4556 qc->orig_n_elem = n_elem;
1da177e4
LT
4557}
4558
4559/**
0cba632b
JG
4560 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4561 * @qc: Command with memory buffer to be mapped.
4562 *
4563 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4564 *
4565 * LOCKING:
cca3974e 4566 * spin_lock_irqsave(host lock)
1da177e4
LT
4567 *
4568 * RETURNS:
0cba632b 4569 * Zero on success, negative on error.
1da177e4
LT
4570 */
4571
4572static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4573{
4574 struct ata_port *ap = qc->ap;
4575 int dir = qc->dma_dir;
cedc9a47 4576 struct scatterlist *sg = qc->__sg;
1da177e4 4577 dma_addr_t dma_address;
2e242fa9 4578 int trim_sg = 0;
1da177e4 4579
cedc9a47
JG
4580 /* we must lengthen transfers to end on a 32-bit boundary */
4581 qc->pad_len = sg->length & 3;
4582 if (qc->pad_len) {
4583 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4584 struct scatterlist *psg = &qc->pad_sgent;
4585
a4631474 4586 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4587
4588 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4589
4590 if (qc->tf.flags & ATA_TFLAG_WRITE)
4591 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4592 qc->pad_len);
4593
4594 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4595 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4596 /* trim sg */
4597 sg->length -= qc->pad_len;
2e242fa9
TH
4598 if (sg->length == 0)
4599 trim_sg = 1;
cedc9a47
JG
4600
4601 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4602 sg->length, qc->pad_len);
4603 }
4604
2e242fa9
TH
4605 if (trim_sg) {
4606 qc->n_elem--;
e1410f2d
JG
4607 goto skip_map;
4608 }
4609
2f1f610b 4610 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4611 sg->length, dir);
537a95d9
TH
4612 if (dma_mapping_error(dma_address)) {
4613 /* restore sg */
4614 sg->length += qc->pad_len;
1da177e4 4615 return -1;
537a95d9 4616 }
1da177e4
LT
4617
4618 sg_dma_address(sg) = dma_address;
32529e01 4619 sg_dma_len(sg) = sg->length;
1da177e4 4620
2e242fa9 4621skip_map:
1da177e4
LT
4622 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4623 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4624
4625 return 0;
4626}
4627
4628/**
0cba632b
JG
4629 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4630 * @qc: Command with scatter-gather table to be mapped.
4631 *
4632 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4633 *
4634 * LOCKING:
cca3974e 4635 * spin_lock_irqsave(host lock)
1da177e4
LT
4636 *
4637 * RETURNS:
0cba632b 4638 * Zero on success, negative on error.
1da177e4
LT
4639 *
4640 */
4641
4642static int ata_sg_setup(struct ata_queued_cmd *qc)
4643{
4644 struct ata_port *ap = qc->ap;
cedc9a47
JG
4645 struct scatterlist *sg = qc->__sg;
4646 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4647 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4648
44877b4e 4649 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4650 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4651
cedc9a47
JG
4652 /* we must lengthen transfers to end on a 32-bit boundary */
4653 qc->pad_len = lsg->length & 3;
4654 if (qc->pad_len) {
4655 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4656 struct scatterlist *psg = &qc->pad_sgent;
4657 unsigned int offset;
4658
a4631474 4659 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4660
4661 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4662
4663 /*
4664 * psg->page/offset are used to copy to-be-written
4665 * data in this function or read data in ata_sg_clean.
4666 */
4667 offset = lsg->offset + lsg->length - qc->pad_len;
4668 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4669 psg->offset = offset_in_page(offset);
4670
4671 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4672 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4673 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4674 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4675 }
4676
4677 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4678 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4679 /* trim last sg */
4680 lsg->length -= qc->pad_len;
e1410f2d
JG
4681 if (lsg->length == 0)
4682 trim_sg = 1;
cedc9a47
JG
4683
4684 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4685 qc->n_elem - 1, lsg->length, qc->pad_len);
4686 }
4687
e1410f2d
JG
4688 pre_n_elem = qc->n_elem;
4689 if (trim_sg && pre_n_elem)
4690 pre_n_elem--;
4691
4692 if (!pre_n_elem) {
4693 n_elem = 0;
4694 goto skip_map;
4695 }
4696
1da177e4 4697 dir = qc->dma_dir;
2f1f610b 4698 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4699 if (n_elem < 1) {
4700 /* restore last sg */
4701 lsg->length += qc->pad_len;
1da177e4 4702 return -1;
537a95d9 4703 }
1da177e4
LT
4704
4705 DPRINTK("%d sg elements mapped\n", n_elem);
4706
e1410f2d 4707skip_map:
1da177e4
LT
4708 qc->n_elem = n_elem;
4709
4710 return 0;
4711}
4712
0baab86b 4713/**
c893a3ae 4714 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4715 * @buf: Buffer to swap
4716 * @buf_words: Number of 16-bit words in buffer.
4717 *
4718 * Swap halves of 16-bit words if needed to convert from
4719 * little-endian byte order to native cpu byte order, or
4720 * vice-versa.
4721 *
4722 * LOCKING:
6f0ef4fa 4723 * Inherited from caller.
0baab86b 4724 */
1da177e4
LT
4725void swap_buf_le16(u16 *buf, unsigned int buf_words)
4726{
4727#ifdef __BIG_ENDIAN
4728 unsigned int i;
4729
4730 for (i = 0; i < buf_words; i++)
4731 buf[i] = le16_to_cpu(buf[i]);
4732#endif /* __BIG_ENDIAN */
4733}
4734
6ae4cfb5 4735/**
0d5ff566 4736 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4737 * @adev: device to target
6ae4cfb5
AL
4738 * @buf: data buffer
4739 * @buflen: buffer length
344babaa 4740 * @write_data: read/write
6ae4cfb5
AL
4741 *
4742 * Transfer data from/to the device data register by PIO.
4743 *
4744 * LOCKING:
4745 * Inherited from caller.
6ae4cfb5 4746 */
0d5ff566
TH
4747void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4748 unsigned int buflen, int write_data)
1da177e4 4749{
9af5c9c9 4750 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4751 unsigned int words = buflen >> 1;
1da177e4 4752
6ae4cfb5 4753 /* Transfer multiple of 2 bytes */
1da177e4 4754 if (write_data)
0d5ff566 4755 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4756 else
0d5ff566 4757 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4758
4759 /* Transfer trailing 1 byte, if any. */
4760 if (unlikely(buflen & 0x01)) {
4761 u16 align_buf[1] = { 0 };
4762 unsigned char *trailing_buf = buf + buflen - 1;
4763
4764 if (write_data) {
4765 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4766 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4767 } else {
0d5ff566 4768 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4769 memcpy(trailing_buf, align_buf, 1);
4770 }
4771 }
1da177e4
LT
4772}
4773
75e99585 4774/**
0d5ff566 4775 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4776 * @adev: device to target
4777 * @buf: data buffer
4778 * @buflen: buffer length
4779 * @write_data: read/write
4780 *
88574551 4781 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4782 * transfer with interrupts disabled.
4783 *
4784 * LOCKING:
4785 * Inherited from caller.
4786 */
0d5ff566
TH
4787void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4788 unsigned int buflen, int write_data)
75e99585
AC
4789{
4790 unsigned long flags;
4791 local_irq_save(flags);
0d5ff566 4792 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4793 local_irq_restore(flags);
4794}
4795
4796
6ae4cfb5 4797/**
5a5dbd18 4798 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4799 * @qc: Command on going
4800 *
5a5dbd18 4801 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4802 *
4803 * LOCKING:
4804 * Inherited from caller.
4805 */
4806
1da177e4
LT
4807static void ata_pio_sector(struct ata_queued_cmd *qc)
4808{
4809 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4810 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4811 struct ata_port *ap = qc->ap;
4812 struct page *page;
4813 unsigned int offset;
4814 unsigned char *buf;
4815
5a5dbd18 4816 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4817 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4818
4819 page = sg[qc->cursg].page;
726f0785 4820 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4821
4822 /* get the current page and offset */
4823 page = nth_page(page, (offset >> PAGE_SHIFT));
4824 offset %= PAGE_SIZE;
4825
1da177e4
LT
4826 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4827
91b8b313
AL
4828 if (PageHighMem(page)) {
4829 unsigned long flags;
4830
a6b2c5d4 4831 /* FIXME: use a bounce buffer */
91b8b313
AL
4832 local_irq_save(flags);
4833 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4834
91b8b313 4835 /* do the actual data transfer */
5a5dbd18 4836 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4837
91b8b313
AL
4838 kunmap_atomic(buf, KM_IRQ0);
4839 local_irq_restore(flags);
4840 } else {
4841 buf = page_address(page);
5a5dbd18 4842 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4843 }
1da177e4 4844
5a5dbd18
ML
4845 qc->curbytes += qc->sect_size;
4846 qc->cursg_ofs += qc->sect_size;
1da177e4 4847
726f0785 4848 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4849 qc->cursg++;
4850 qc->cursg_ofs = 0;
4851 }
1da177e4 4852}
1da177e4 4853
07f6f7d0 4854/**
5a5dbd18 4855 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4856 * @qc: Command on going
4857 *
5a5dbd18 4858 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4859 * ATA device for the DRQ request.
4860 *
4861 * LOCKING:
4862 * Inherited from caller.
4863 */
1da177e4 4864
07f6f7d0
AL
4865static void ata_pio_sectors(struct ata_queued_cmd *qc)
4866{
4867 if (is_multi_taskfile(&qc->tf)) {
4868 /* READ/WRITE MULTIPLE */
4869 unsigned int nsect;
4870
587005de 4871 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4872
5a5dbd18 4873 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4874 qc->dev->multi_count);
07f6f7d0
AL
4875 while (nsect--)
4876 ata_pio_sector(qc);
4877 } else
4878 ata_pio_sector(qc);
4cc980b3
AL
4879
4880 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4881}
4882
c71c1857
AL
4883/**
4884 * atapi_send_cdb - Write CDB bytes to hardware
4885 * @ap: Port to which ATAPI device is attached.
4886 * @qc: Taskfile currently active
4887 *
4888 * When device has indicated its readiness to accept
4889 * a CDB, this function is called. Send the CDB.
4890 *
4891 * LOCKING:
4892 * caller.
4893 */
4894
4895static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4896{
4897 /* send SCSI cdb */
4898 DPRINTK("send cdb\n");
db024d53 4899 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4900
a6b2c5d4 4901 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4902 ata_altstatus(ap); /* flush */
4903
4904 switch (qc->tf.protocol) {
4905 case ATA_PROT_ATAPI:
4906 ap->hsm_task_state = HSM_ST;
4907 break;
4908 case ATA_PROT_ATAPI_NODATA:
4909 ap->hsm_task_state = HSM_ST_LAST;
4910 break;
4911 case ATA_PROT_ATAPI_DMA:
4912 ap->hsm_task_state = HSM_ST_LAST;
4913 /* initiate bmdma */
4914 ap->ops->bmdma_start(qc);
4915 break;
4916 }
1da177e4
LT
4917}
4918
6ae4cfb5
AL
4919/**
4920 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4921 * @qc: Command on going
4922 * @bytes: number of bytes
4923 *
4924 * Transfer Transfer data from/to the ATAPI device.
4925 *
4926 * LOCKING:
4927 * Inherited from caller.
4928 *
4929 */
4930
1da177e4
LT
4931static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4932{
4933 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4934 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4935 struct ata_port *ap = qc->ap;
4936 struct page *page;
4937 unsigned char *buf;
4938 unsigned int offset, count;
4939
563a6e1f 4940 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4941 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4942
4943next_sg:
563a6e1f 4944 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4945 /*
563a6e1f
AL
4946 * The end of qc->sg is reached and the device expects
4947 * more data to transfer. In order not to overrun qc->sg
4948 * and fulfill length specified in the byte count register,
4949 * - for read case, discard trailing data from the device
4950 * - for write case, padding zero data to the device
4951 */
4952 u16 pad_buf[1] = { 0 };
4953 unsigned int words = bytes >> 1;
4954 unsigned int i;
4955
4956 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4957 ata_dev_printk(qc->dev, KERN_WARNING,
4958 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4959
4960 for (i = 0; i < words; i++)
a6b2c5d4 4961 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4962
14be71f4 4963 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4964 return;
4965 }
4966
cedc9a47 4967 sg = &qc->__sg[qc->cursg];
1da177e4 4968
1da177e4
LT
4969 page = sg->page;
4970 offset = sg->offset + qc->cursg_ofs;
4971
4972 /* get the current page and offset */
4973 page = nth_page(page, (offset >> PAGE_SHIFT));
4974 offset %= PAGE_SIZE;
4975
6952df03 4976 /* don't overrun current sg */
32529e01 4977 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4978
4979 /* don't cross page boundaries */
4980 count = min(count, (unsigned int)PAGE_SIZE - offset);
4981
7282aa4b
AL
4982 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4983
91b8b313
AL
4984 if (PageHighMem(page)) {
4985 unsigned long flags;
4986
a6b2c5d4 4987 /* FIXME: use bounce buffer */
91b8b313
AL
4988 local_irq_save(flags);
4989 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4990
91b8b313 4991 /* do the actual data transfer */
a6b2c5d4 4992 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4993
91b8b313
AL
4994 kunmap_atomic(buf, KM_IRQ0);
4995 local_irq_restore(flags);
4996 } else {
4997 buf = page_address(page);
a6b2c5d4 4998 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4999 }
1da177e4
LT
5000
5001 bytes -= count;
5002 qc->curbytes += count;
5003 qc->cursg_ofs += count;
5004
32529e01 5005 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
5006 qc->cursg++;
5007 qc->cursg_ofs = 0;
5008 }
5009
563a6e1f 5010 if (bytes)
1da177e4 5011 goto next_sg;
1da177e4
LT
5012}
5013
6ae4cfb5
AL
5014/**
5015 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5016 * @qc: Command on going
5017 *
5018 * Transfer Transfer data from/to the ATAPI device.
5019 *
5020 * LOCKING:
5021 * Inherited from caller.
6ae4cfb5
AL
5022 */
5023
1da177e4
LT
5024static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5025{
5026 struct ata_port *ap = qc->ap;
5027 struct ata_device *dev = qc->dev;
5028 unsigned int ireason, bc_lo, bc_hi, bytes;
5029 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5030
eec4c3f3
AL
5031 /* Abuse qc->result_tf for temp storage of intermediate TF
5032 * here to save some kernel stack usage.
5033 * For normal completion, qc->result_tf is not relevant. For
5034 * error, qc->result_tf is later overwritten by ata_qc_complete().
5035 * So, the correctness of qc->result_tf is not affected.
5036 */
5037 ap->ops->tf_read(ap, &qc->result_tf);
5038 ireason = qc->result_tf.nsect;
5039 bc_lo = qc->result_tf.lbam;
5040 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5041 bytes = (bc_hi << 8) | bc_lo;
5042
5043 /* shall be cleared to zero, indicating xfer of data */
5044 if (ireason & (1 << 0))
5045 goto err_out;
5046
5047 /* make sure transfer direction matches expected */
5048 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5049 if (do_write != i_write)
5050 goto err_out;
5051
44877b4e 5052 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5053
1da177e4 5054 __atapi_pio_bytes(qc, bytes);
4cc980b3 5055 ata_altstatus(ap); /* flush */
1da177e4
LT
5056
5057 return;
5058
5059err_out:
f15a1daf 5060 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5061 qc->err_mask |= AC_ERR_HSM;
14be71f4 5062 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5063}
5064
5065/**
c234fb00
AL
5066 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5067 * @ap: the target ata_port
5068 * @qc: qc on going
1da177e4 5069 *
c234fb00
AL
5070 * RETURNS:
5071 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5072 */
c234fb00
AL
5073
5074static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5075{
c234fb00
AL
5076 if (qc->tf.flags & ATA_TFLAG_POLLING)
5077 return 1;
1da177e4 5078
c234fb00
AL
5079 if (ap->hsm_task_state == HSM_ST_FIRST) {
5080 if (qc->tf.protocol == ATA_PROT_PIO &&
5081 (qc->tf.flags & ATA_TFLAG_WRITE))
5082 return 1;
1da177e4 5083
c234fb00
AL
5084 if (is_atapi_taskfile(&qc->tf) &&
5085 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5086 return 1;
fe79e683
AL
5087 }
5088
c234fb00
AL
5089 return 0;
5090}
1da177e4 5091
c17ea20d
TH
5092/**
5093 * ata_hsm_qc_complete - finish a qc running on standard HSM
5094 * @qc: Command to complete
5095 * @in_wq: 1 if called from workqueue, 0 otherwise
5096 *
5097 * Finish @qc which is running on standard HSM.
5098 *
5099 * LOCKING:
cca3974e 5100 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5101 * Otherwise, none on entry and grabs host lock.
5102 */
5103static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5104{
5105 struct ata_port *ap = qc->ap;
5106 unsigned long flags;
5107
5108 if (ap->ops->error_handler) {
5109 if (in_wq) {
ba6a1308 5110 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5111
cca3974e
JG
5112 /* EH might have kicked in while host lock is
5113 * released.
c17ea20d
TH
5114 */
5115 qc = ata_qc_from_tag(ap, qc->tag);
5116 if (qc) {
5117 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5118 ap->ops->irq_on(ap);
c17ea20d
TH
5119 ata_qc_complete(qc);
5120 } else
5121 ata_port_freeze(ap);
5122 }
5123
ba6a1308 5124 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5125 } else {
5126 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5127 ata_qc_complete(qc);
5128 else
5129 ata_port_freeze(ap);
5130 }
5131 } else {
5132 if (in_wq) {
ba6a1308 5133 spin_lock_irqsave(ap->lock, flags);
83625006 5134 ap->ops->irq_on(ap);
c17ea20d 5135 ata_qc_complete(qc);
ba6a1308 5136 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5137 } else
5138 ata_qc_complete(qc);
5139 }
5140}
5141
bb5cb290
AL
5142/**
5143 * ata_hsm_move - move the HSM to the next state.
5144 * @ap: the target ata_port
5145 * @qc: qc on going
5146 * @status: current device status
5147 * @in_wq: 1 if called from workqueue, 0 otherwise
5148 *
5149 * RETURNS:
5150 * 1 when poll next status needed, 0 otherwise.
5151 */
9a1004d0
TH
5152int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5153 u8 status, int in_wq)
e2cec771 5154{
bb5cb290
AL
5155 unsigned long flags = 0;
5156 int poll_next;
5157
6912ccd5
AL
5158 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5159
bb5cb290
AL
5160 /* Make sure ata_qc_issue_prot() does not throw things
5161 * like DMA polling into the workqueue. Notice that
5162 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5163 */
c234fb00 5164 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5165
e2cec771 5166fsm_start:
999bb6f4 5167 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5168 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5169
e2cec771
AL
5170 switch (ap->hsm_task_state) {
5171 case HSM_ST_FIRST:
bb5cb290
AL
5172 /* Send first data block or PACKET CDB */
5173
5174 /* If polling, we will stay in the work queue after
5175 * sending the data. Otherwise, interrupt handler
5176 * takes over after sending the data.
5177 */
5178 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5179
e2cec771 5180 /* check device status */
3655d1d3
AL
5181 if (unlikely((status & ATA_DRQ) == 0)) {
5182 /* handle BSY=0, DRQ=0 as error */
5183 if (likely(status & (ATA_ERR | ATA_DF)))
5184 /* device stops HSM for abort/error */
5185 qc->err_mask |= AC_ERR_DEV;
5186 else
5187 /* HSM violation. Let EH handle this */
5188 qc->err_mask |= AC_ERR_HSM;
5189
14be71f4 5190 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5191 goto fsm_start;
1da177e4
LT
5192 }
5193
71601958
AL
5194 /* Device should not ask for data transfer (DRQ=1)
5195 * when it finds something wrong.
eee6c32f
AL
5196 * We ignore DRQ here and stop the HSM by
5197 * changing hsm_task_state to HSM_ST_ERR and
5198 * let the EH abort the command or reset the device.
71601958
AL
5199 */
5200 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5201 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5202 "error, dev_stat 0x%X\n", status);
3655d1d3 5203 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5204 ap->hsm_task_state = HSM_ST_ERR;
5205 goto fsm_start;
71601958 5206 }
1da177e4 5207
bb5cb290
AL
5208 /* Send the CDB (atapi) or the first data block (ata pio out).
5209 * During the state transition, interrupt handler shouldn't
5210 * be invoked before the data transfer is complete and
5211 * hsm_task_state is changed. Hence, the following locking.
5212 */
5213 if (in_wq)
ba6a1308 5214 spin_lock_irqsave(ap->lock, flags);
1da177e4 5215
bb5cb290
AL
5216 if (qc->tf.protocol == ATA_PROT_PIO) {
5217 /* PIO data out protocol.
5218 * send first data block.
5219 */
0565c26d 5220
bb5cb290
AL
5221 /* ata_pio_sectors() might change the state
5222 * to HSM_ST_LAST. so, the state is changed here
5223 * before ata_pio_sectors().
5224 */
5225 ap->hsm_task_state = HSM_ST;
5226 ata_pio_sectors(qc);
bb5cb290
AL
5227 } else
5228 /* send CDB */
5229 atapi_send_cdb(ap, qc);
5230
5231 if (in_wq)
ba6a1308 5232 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5233
5234 /* if polling, ata_pio_task() handles the rest.
5235 * otherwise, interrupt handler takes over from here.
5236 */
e2cec771 5237 break;
1c848984 5238
e2cec771
AL
5239 case HSM_ST:
5240 /* complete command or read/write the data register */
5241 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5242 /* ATAPI PIO protocol */
5243 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5244 /* No more data to transfer or device error.
5245 * Device error will be tagged in HSM_ST_LAST.
5246 */
e2cec771
AL
5247 ap->hsm_task_state = HSM_ST_LAST;
5248 goto fsm_start;
5249 }
1da177e4 5250
71601958
AL
5251 /* Device should not ask for data transfer (DRQ=1)
5252 * when it finds something wrong.
eee6c32f
AL
5253 * We ignore DRQ here and stop the HSM by
5254 * changing hsm_task_state to HSM_ST_ERR and
5255 * let the EH abort the command or reset the device.
71601958
AL
5256 */
5257 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5258 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5259 "device error, dev_stat 0x%X\n",
5260 status);
3655d1d3 5261 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5262 ap->hsm_task_state = HSM_ST_ERR;
5263 goto fsm_start;
71601958 5264 }
1da177e4 5265
e2cec771 5266 atapi_pio_bytes(qc);
7fb6ec28 5267
e2cec771
AL
5268 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5269 /* bad ireason reported by device */
5270 goto fsm_start;
1da177e4 5271
e2cec771
AL
5272 } else {
5273 /* ATA PIO protocol */
5274 if (unlikely((status & ATA_DRQ) == 0)) {
5275 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5276 if (likely(status & (ATA_ERR | ATA_DF)))
5277 /* device stops HSM for abort/error */
5278 qc->err_mask |= AC_ERR_DEV;
5279 else
55a8e2c8
TH
5280 /* HSM violation. Let EH handle this.
5281 * Phantom devices also trigger this
5282 * condition. Mark hint.
5283 */
5284 qc->err_mask |= AC_ERR_HSM |
5285 AC_ERR_NODEV_HINT;
3655d1d3 5286
e2cec771
AL
5287 ap->hsm_task_state = HSM_ST_ERR;
5288 goto fsm_start;
5289 }
1da177e4 5290
eee6c32f
AL
5291 /* For PIO reads, some devices may ask for
5292 * data transfer (DRQ=1) alone with ERR=1.
5293 * We respect DRQ here and transfer one
5294 * block of junk data before changing the
5295 * hsm_task_state to HSM_ST_ERR.
5296 *
5297 * For PIO writes, ERR=1 DRQ=1 doesn't make
5298 * sense since the data block has been
5299 * transferred to the device.
71601958
AL
5300 */
5301 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5302 /* data might be corrputed */
5303 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5304
5305 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5306 ata_pio_sectors(qc);
eee6c32f
AL
5307 status = ata_wait_idle(ap);
5308 }
5309
3655d1d3
AL
5310 if (status & (ATA_BUSY | ATA_DRQ))
5311 qc->err_mask |= AC_ERR_HSM;
5312
eee6c32f
AL
5313 /* ata_pio_sectors() might change the
5314 * state to HSM_ST_LAST. so, the state
5315 * is changed after ata_pio_sectors().
5316 */
5317 ap->hsm_task_state = HSM_ST_ERR;
5318 goto fsm_start;
71601958
AL
5319 }
5320
e2cec771
AL
5321 ata_pio_sectors(qc);
5322
5323 if (ap->hsm_task_state == HSM_ST_LAST &&
5324 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5325 /* all data read */
52a32205 5326 status = ata_wait_idle(ap);
e2cec771
AL
5327 goto fsm_start;
5328 }
5329 }
5330
bb5cb290 5331 poll_next = 1;
1da177e4
LT
5332 break;
5333
14be71f4 5334 case HSM_ST_LAST:
6912ccd5
AL
5335 if (unlikely(!ata_ok(status))) {
5336 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5337 ap->hsm_task_state = HSM_ST_ERR;
5338 goto fsm_start;
5339 }
5340
5341 /* no more data to transfer */
4332a771 5342 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5343 ap->print_id, qc->dev->devno, status);
e2cec771 5344
6912ccd5
AL
5345 WARN_ON(qc->err_mask);
5346
e2cec771 5347 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5348
e2cec771 5349 /* complete taskfile transaction */
c17ea20d 5350 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5351
5352 poll_next = 0;
1da177e4
LT
5353 break;
5354
14be71f4 5355 case HSM_ST_ERR:
e2cec771
AL
5356 /* make sure qc->err_mask is available to
5357 * know what's wrong and recover
5358 */
5359 WARN_ON(qc->err_mask == 0);
5360
5361 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5362
999bb6f4 5363 /* complete taskfile transaction */
c17ea20d 5364 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5365
5366 poll_next = 0;
e2cec771
AL
5367 break;
5368 default:
bb5cb290 5369 poll_next = 0;
6912ccd5 5370 BUG();
1da177e4
LT
5371 }
5372
bb5cb290 5373 return poll_next;
1da177e4
LT
5374}
5375
65f27f38 5376static void ata_pio_task(struct work_struct *work)
8061f5f0 5377{
65f27f38
DH
5378 struct ata_port *ap =
5379 container_of(work, struct ata_port, port_task.work);
5380 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5381 u8 status;
a1af3734 5382 int poll_next;
8061f5f0 5383
7fb6ec28 5384fsm_start:
a1af3734 5385 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5386
a1af3734
AL
5387 /*
5388 * This is purely heuristic. This is a fast path.
5389 * Sometimes when we enter, BSY will be cleared in
5390 * a chk-status or two. If not, the drive is probably seeking
5391 * or something. Snooze for a couple msecs, then
5392 * chk-status again. If still busy, queue delayed work.
5393 */
5394 status = ata_busy_wait(ap, ATA_BUSY, 5);
5395 if (status & ATA_BUSY) {
5396 msleep(2);
5397 status = ata_busy_wait(ap, ATA_BUSY, 10);
5398 if (status & ATA_BUSY) {
31ce6dae 5399 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5400 return;
5401 }
8061f5f0
TH
5402 }
5403
a1af3734
AL
5404 /* move the HSM */
5405 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5406
a1af3734
AL
5407 /* another command or interrupt handler
5408 * may be running at this point.
5409 */
5410 if (poll_next)
7fb6ec28 5411 goto fsm_start;
8061f5f0
TH
5412}
5413
1da177e4
LT
5414/**
5415 * ata_qc_new - Request an available ATA command, for queueing
5416 * @ap: Port associated with device @dev
5417 * @dev: Device from whom we request an available command structure
5418 *
5419 * LOCKING:
0cba632b 5420 * None.
1da177e4
LT
5421 */
5422
5423static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5424{
5425 struct ata_queued_cmd *qc = NULL;
5426 unsigned int i;
5427
e3180499 5428 /* no command while frozen */
b51e9e5d 5429 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5430 return NULL;
5431
2ab7db1f
TH
5432 /* the last tag is reserved for internal command. */
5433 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5434 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5435 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5436 break;
5437 }
5438
5439 if (qc)
5440 qc->tag = i;
5441
5442 return qc;
5443}
5444
5445/**
5446 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5447 * @dev: Device from whom we request an available command structure
5448 *
5449 * LOCKING:
0cba632b 5450 * None.
1da177e4
LT
5451 */
5452
3373efd8 5453struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5454{
9af5c9c9 5455 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5456 struct ata_queued_cmd *qc;
5457
5458 qc = ata_qc_new(ap);
5459 if (qc) {
1da177e4
LT
5460 qc->scsicmd = NULL;
5461 qc->ap = ap;
5462 qc->dev = dev;
1da177e4 5463
2c13b7ce 5464 ata_qc_reinit(qc);
1da177e4
LT
5465 }
5466
5467 return qc;
5468}
5469
1da177e4
LT
5470/**
5471 * ata_qc_free - free unused ata_queued_cmd
5472 * @qc: Command to complete
5473 *
5474 * Designed to free unused ata_queued_cmd object
5475 * in case something prevents using it.
5476 *
5477 * LOCKING:
cca3974e 5478 * spin_lock_irqsave(host lock)
1da177e4
LT
5479 */
5480void ata_qc_free(struct ata_queued_cmd *qc)
5481{
4ba946e9
TH
5482 struct ata_port *ap = qc->ap;
5483 unsigned int tag;
5484
a4631474 5485 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5486
4ba946e9
TH
5487 qc->flags = 0;
5488 tag = qc->tag;
5489 if (likely(ata_tag_valid(tag))) {
4ba946e9 5490 qc->tag = ATA_TAG_POISON;
6cec4a39 5491 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5492 }
1da177e4
LT
5493}
5494
76014427 5495void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5496{
dedaf2b0 5497 struct ata_port *ap = qc->ap;
9af5c9c9 5498 struct ata_link *link = qc->dev->link;
dedaf2b0 5499
a4631474
TH
5500 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5501 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5502
5503 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5504 ata_sg_clean(qc);
5505
7401abf2 5506 /* command should be marked inactive atomically with qc completion */
da917d69 5507 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5508 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5509 if (!link->sactive)
5510 ap->nr_active_links--;
5511 } else {
9af5c9c9 5512 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5513 ap->nr_active_links--;
5514 }
5515
5516 /* clear exclusive status */
5517 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5518 ap->excl_link == link))
5519 ap->excl_link = NULL;
7401abf2 5520
3f3791d3
AL
5521 /* atapi: mark qc as inactive to prevent the interrupt handler
5522 * from completing the command twice later, before the error handler
5523 * is called. (when rc != 0 and atapi request sense is needed)
5524 */
5525 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5526 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5527
1da177e4 5528 /* call completion callback */
77853bf2 5529 qc->complete_fn(qc);
1da177e4
LT
5530}
5531
39599a53
TH
5532static void fill_result_tf(struct ata_queued_cmd *qc)
5533{
5534 struct ata_port *ap = qc->ap;
5535
39599a53 5536 qc->result_tf.flags = qc->tf.flags;
4742d54f 5537 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5538}
5539
f686bcb8
TH
5540/**
5541 * ata_qc_complete - Complete an active ATA command
5542 * @qc: Command to complete
5543 * @err_mask: ATA Status register contents
5544 *
5545 * Indicate to the mid and upper layers that an ATA
5546 * command has completed, with either an ok or not-ok status.
5547 *
5548 * LOCKING:
cca3974e 5549 * spin_lock_irqsave(host lock)
f686bcb8
TH
5550 */
5551void ata_qc_complete(struct ata_queued_cmd *qc)
5552{
5553 struct ata_port *ap = qc->ap;
5554
5555 /* XXX: New EH and old EH use different mechanisms to
5556 * synchronize EH with regular execution path.
5557 *
5558 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5559 * Normal execution path is responsible for not accessing a
5560 * failed qc. libata core enforces the rule by returning NULL
5561 * from ata_qc_from_tag() for failed qcs.
5562 *
5563 * Old EH depends on ata_qc_complete() nullifying completion
5564 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5565 * not synchronize with interrupt handler. Only PIO task is
5566 * taken care of.
5567 */
5568 if (ap->ops->error_handler) {
b51e9e5d 5569 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5570
5571 if (unlikely(qc->err_mask))
5572 qc->flags |= ATA_QCFLAG_FAILED;
5573
5574 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5575 if (!ata_tag_internal(qc->tag)) {
5576 /* always fill result TF for failed qc */
39599a53 5577 fill_result_tf(qc);
f686bcb8
TH
5578 ata_qc_schedule_eh(qc);
5579 return;
5580 }
5581 }
5582
5583 /* read result TF if requested */
5584 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5585 fill_result_tf(qc);
f686bcb8
TH
5586
5587 __ata_qc_complete(qc);
5588 } else {
5589 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5590 return;
5591
5592 /* read result TF if failed or requested */
5593 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5594 fill_result_tf(qc);
f686bcb8
TH
5595
5596 __ata_qc_complete(qc);
5597 }
5598}
5599
dedaf2b0
TH
5600/**
5601 * ata_qc_complete_multiple - Complete multiple qcs successfully
5602 * @ap: port in question
5603 * @qc_active: new qc_active mask
5604 * @finish_qc: LLDD callback invoked before completing a qc
5605 *
5606 * Complete in-flight commands. This functions is meant to be
5607 * called from low-level driver's interrupt routine to complete
5608 * requests normally. ap->qc_active and @qc_active is compared
5609 * and commands are completed accordingly.
5610 *
5611 * LOCKING:
cca3974e 5612 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5613 *
5614 * RETURNS:
5615 * Number of completed commands on success, -errno otherwise.
5616 */
5617int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5618 void (*finish_qc)(struct ata_queued_cmd *))
5619{
5620 int nr_done = 0;
5621 u32 done_mask;
5622 int i;
5623
5624 done_mask = ap->qc_active ^ qc_active;
5625
5626 if (unlikely(done_mask & qc_active)) {
5627 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5628 "(%08x->%08x)\n", ap->qc_active, qc_active);
5629 return -EINVAL;
5630 }
5631
5632 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5633 struct ata_queued_cmd *qc;
5634
5635 if (!(done_mask & (1 << i)))
5636 continue;
5637
5638 if ((qc = ata_qc_from_tag(ap, i))) {
5639 if (finish_qc)
5640 finish_qc(qc);
5641 ata_qc_complete(qc);
5642 nr_done++;
5643 }
5644 }
5645
5646 return nr_done;
5647}
5648
1da177e4
LT
5649static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5650{
5651 struct ata_port *ap = qc->ap;
5652
5653 switch (qc->tf.protocol) {
3dc1d881 5654 case ATA_PROT_NCQ:
1da177e4
LT
5655 case ATA_PROT_DMA:
5656 case ATA_PROT_ATAPI_DMA:
5657 return 1;
5658
5659 case ATA_PROT_ATAPI:
5660 case ATA_PROT_PIO:
1da177e4
LT
5661 if (ap->flags & ATA_FLAG_PIO_DMA)
5662 return 1;
5663
5664 /* fall through */
5665
5666 default:
5667 return 0;
5668 }
5669
5670 /* never reached */
5671}
5672
5673/**
5674 * ata_qc_issue - issue taskfile to device
5675 * @qc: command to issue to device
5676 *
5677 * Prepare an ATA command to submission to device.
5678 * This includes mapping the data into a DMA-able
5679 * area, filling in the S/G table, and finally
5680 * writing the taskfile to hardware, starting the command.
5681 *
5682 * LOCKING:
cca3974e 5683 * spin_lock_irqsave(host lock)
1da177e4 5684 */
8e0e694a 5685void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5686{
5687 struct ata_port *ap = qc->ap;
9af5c9c9 5688 struct ata_link *link = qc->dev->link;
1da177e4 5689
dedaf2b0
TH
5690 /* Make sure only one non-NCQ command is outstanding. The
5691 * check is skipped for old EH because it reuses active qc to
5692 * request ATAPI sense.
5693 */
9af5c9c9 5694 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5695
5696 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5697 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5698
5699 if (!link->sactive)
5700 ap->nr_active_links++;
9af5c9c9 5701 link->sactive |= 1 << qc->tag;
dedaf2b0 5702 } else {
9af5c9c9 5703 WARN_ON(link->sactive);
da917d69
TH
5704
5705 ap->nr_active_links++;
9af5c9c9 5706 link->active_tag = qc->tag;
dedaf2b0
TH
5707 }
5708
e4a70e76 5709 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5710 ap->qc_active |= 1 << qc->tag;
e4a70e76 5711
1da177e4
LT
5712 if (ata_should_dma_map(qc)) {
5713 if (qc->flags & ATA_QCFLAG_SG) {
5714 if (ata_sg_setup(qc))
8e436af9 5715 goto sg_err;
1da177e4
LT
5716 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5717 if (ata_sg_setup_one(qc))
8e436af9 5718 goto sg_err;
1da177e4
LT
5719 }
5720 } else {
5721 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5722 }
5723
5724 ap->ops->qc_prep(qc);
5725
8e0e694a
TH
5726 qc->err_mask |= ap->ops->qc_issue(qc);
5727 if (unlikely(qc->err_mask))
5728 goto err;
5729 return;
1da177e4 5730
8e436af9
TH
5731sg_err:
5732 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5733 qc->err_mask |= AC_ERR_SYSTEM;
5734err:
5735 ata_qc_complete(qc);
1da177e4
LT
5736}
5737
5738/**
5739 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5740 * @qc: command to issue to device
5741 *
5742 * Using various libata functions and hooks, this function
5743 * starts an ATA command. ATA commands are grouped into
5744 * classes called "protocols", and issuing each type of protocol
5745 * is slightly different.
5746 *
0baab86b
EF
5747 * May be used as the qc_issue() entry in ata_port_operations.
5748 *
1da177e4 5749 * LOCKING:
cca3974e 5750 * spin_lock_irqsave(host lock)
1da177e4
LT
5751 *
5752 * RETURNS:
9a3d9eb0 5753 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5754 */
5755
9a3d9eb0 5756unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5757{
5758 struct ata_port *ap = qc->ap;
5759
e50362ec
AL
5760 /* Use polling pio if the LLD doesn't handle
5761 * interrupt driven pio and atapi CDB interrupt.
5762 */
5763 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5764 switch (qc->tf.protocol) {
5765 case ATA_PROT_PIO:
e3472cbe 5766 case ATA_PROT_NODATA:
e50362ec
AL
5767 case ATA_PROT_ATAPI:
5768 case ATA_PROT_ATAPI_NODATA:
5769 qc->tf.flags |= ATA_TFLAG_POLLING;
5770 break;
5771 case ATA_PROT_ATAPI_DMA:
5772 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5773 /* see ata_dma_blacklisted() */
e50362ec
AL
5774 BUG();
5775 break;
5776 default:
5777 break;
5778 }
5779 }
5780
312f7da2 5781 /* select the device */
1da177e4
LT
5782 ata_dev_select(ap, qc->dev->devno, 1, 0);
5783
312f7da2 5784 /* start the command */
1da177e4
LT
5785 switch (qc->tf.protocol) {
5786 case ATA_PROT_NODATA:
312f7da2
AL
5787 if (qc->tf.flags & ATA_TFLAG_POLLING)
5788 ata_qc_set_polling(qc);
5789
e5338254 5790 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5791 ap->hsm_task_state = HSM_ST_LAST;
5792
5793 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5794 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5795
1da177e4
LT
5796 break;
5797
5798 case ATA_PROT_DMA:
587005de 5799 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5800
1da177e4
LT
5801 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5802 ap->ops->bmdma_setup(qc); /* set up bmdma */
5803 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5804 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5805 break;
5806
312f7da2
AL
5807 case ATA_PROT_PIO:
5808 if (qc->tf.flags & ATA_TFLAG_POLLING)
5809 ata_qc_set_polling(qc);
1da177e4 5810
e5338254 5811 ata_tf_to_host(ap, &qc->tf);
312f7da2 5812
54f00389
AL
5813 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5814 /* PIO data out protocol */
5815 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5816 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5817
5818 /* always send first data block using
e27486db 5819 * the ata_pio_task() codepath.
54f00389 5820 */
312f7da2 5821 } else {
54f00389
AL
5822 /* PIO data in protocol */
5823 ap->hsm_task_state = HSM_ST;
5824
5825 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5826 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5827
5828 /* if polling, ata_pio_task() handles the rest.
5829 * otherwise, interrupt handler takes over from here.
5830 */
312f7da2
AL
5831 }
5832
1da177e4
LT
5833 break;
5834
1da177e4 5835 case ATA_PROT_ATAPI:
1da177e4 5836 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5837 if (qc->tf.flags & ATA_TFLAG_POLLING)
5838 ata_qc_set_polling(qc);
5839
e5338254 5840 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5841
312f7da2
AL
5842 ap->hsm_task_state = HSM_ST_FIRST;
5843
5844 /* send cdb by polling if no cdb interrupt */
5845 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5846 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5847 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5848 break;
5849
5850 case ATA_PROT_ATAPI_DMA:
587005de 5851 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5852
1da177e4
LT
5853 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5854 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5855 ap->hsm_task_state = HSM_ST_FIRST;
5856
5857 /* send cdb by polling if no cdb interrupt */
5858 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5859 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5860 break;
5861
5862 default:
5863 WARN_ON(1);
9a3d9eb0 5864 return AC_ERR_SYSTEM;
1da177e4
LT
5865 }
5866
5867 return 0;
5868}
5869
1da177e4
LT
5870/**
5871 * ata_host_intr - Handle host interrupt for given (port, task)
5872 * @ap: Port on which interrupt arrived (possibly...)
5873 * @qc: Taskfile currently active in engine
5874 *
5875 * Handle host interrupt for given queued command. Currently,
5876 * only DMA interrupts are handled. All other commands are
5877 * handled via polling with interrupts disabled (nIEN bit).
5878 *
5879 * LOCKING:
cca3974e 5880 * spin_lock_irqsave(host lock)
1da177e4
LT
5881 *
5882 * RETURNS:
5883 * One if interrupt was handled, zero if not (shared irq).
5884 */
5885
5886inline unsigned int ata_host_intr (struct ata_port *ap,
5887 struct ata_queued_cmd *qc)
5888{
9af5c9c9 5889 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5890 u8 status, host_stat = 0;
1da177e4 5891
312f7da2 5892 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5893 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5894
312f7da2
AL
5895 /* Check whether we are expecting interrupt in this state */
5896 switch (ap->hsm_task_state) {
5897 case HSM_ST_FIRST:
6912ccd5
AL
5898 /* Some pre-ATAPI-4 devices assert INTRQ
5899 * at this state when ready to receive CDB.
5900 */
1da177e4 5901
312f7da2
AL
5902 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5903 * The flag was turned on only for atapi devices.
5904 * No need to check is_atapi_taskfile(&qc->tf) again.
5905 */
5906 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5907 goto idle_irq;
1da177e4 5908 break;
312f7da2
AL
5909 case HSM_ST_LAST:
5910 if (qc->tf.protocol == ATA_PROT_DMA ||
5911 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5912 /* check status of DMA engine */
5913 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5914 VPRINTK("ata%u: host_stat 0x%X\n",
5915 ap->print_id, host_stat);
312f7da2
AL
5916
5917 /* if it's not our irq... */
5918 if (!(host_stat & ATA_DMA_INTR))
5919 goto idle_irq;
5920
5921 /* before we do anything else, clear DMA-Start bit */
5922 ap->ops->bmdma_stop(qc);
a4f16610
AL
5923
5924 if (unlikely(host_stat & ATA_DMA_ERR)) {
5925 /* error when transfering data to/from memory */
5926 qc->err_mask |= AC_ERR_HOST_BUS;
5927 ap->hsm_task_state = HSM_ST_ERR;
5928 }
312f7da2
AL
5929 }
5930 break;
5931 case HSM_ST:
5932 break;
1da177e4
LT
5933 default:
5934 goto idle_irq;
5935 }
5936
312f7da2
AL
5937 /* check altstatus */
5938 status = ata_altstatus(ap);
5939 if (status & ATA_BUSY)
5940 goto idle_irq;
1da177e4 5941
312f7da2
AL
5942 /* check main status, clearing INTRQ */
5943 status = ata_chk_status(ap);
5944 if (unlikely(status & ATA_BUSY))
5945 goto idle_irq;
1da177e4 5946
312f7da2
AL
5947 /* ack bmdma irq events */
5948 ap->ops->irq_clear(ap);
1da177e4 5949
bb5cb290 5950 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5951
5952 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5953 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5954 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5955
1da177e4
LT
5956 return 1; /* irq handled */
5957
5958idle_irq:
5959 ap->stats.idle_irq++;
5960
5961#ifdef ATA_IRQ_TRAP
5962 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5963 ata_chk_status(ap);
5964 ap->ops->irq_clear(ap);
f15a1daf 5965 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5966 return 1;
1da177e4
LT
5967 }
5968#endif
5969 return 0; /* irq not handled */
5970}
5971
5972/**
5973 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5974 * @irq: irq line (unused)
cca3974e 5975 * @dev_instance: pointer to our ata_host information structure
1da177e4 5976 *
0cba632b
JG
5977 * Default interrupt handler for PCI IDE devices. Calls
5978 * ata_host_intr() for each port that is not disabled.
5979 *
1da177e4 5980 * LOCKING:
cca3974e 5981 * Obtains host lock during operation.
1da177e4
LT
5982 *
5983 * RETURNS:
0cba632b 5984 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5985 */
5986
7d12e780 5987irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5988{
cca3974e 5989 struct ata_host *host = dev_instance;
1da177e4
LT
5990 unsigned int i;
5991 unsigned int handled = 0;
5992 unsigned long flags;
5993
5994 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5995 spin_lock_irqsave(&host->lock, flags);
1da177e4 5996
cca3974e 5997 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5998 struct ata_port *ap;
5999
cca3974e 6000 ap = host->ports[i];
c1389503 6001 if (ap &&
029f5468 6002 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6003 struct ata_queued_cmd *qc;
6004
9af5c9c9 6005 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6006 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6007 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6008 handled |= ata_host_intr(ap, qc);
6009 }
6010 }
6011
cca3974e 6012 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6013
6014 return IRQ_RETVAL(handled);
6015}
6016
34bf2170
TH
6017/**
6018 * sata_scr_valid - test whether SCRs are accessible
936fd732 6019 * @link: ATA link to test SCR accessibility for
34bf2170 6020 *
936fd732 6021 * Test whether SCRs are accessible for @link.
34bf2170
TH
6022 *
6023 * LOCKING:
6024 * None.
6025 *
6026 * RETURNS:
6027 * 1 if SCRs are accessible, 0 otherwise.
6028 */
936fd732 6029int sata_scr_valid(struct ata_link *link)
34bf2170 6030{
936fd732
TH
6031 struct ata_port *ap = link->ap;
6032
a16abc0b 6033 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6034}
6035
6036/**
6037 * sata_scr_read - read SCR register of the specified port
936fd732 6038 * @link: ATA link to read SCR for
34bf2170
TH
6039 * @reg: SCR to read
6040 * @val: Place to store read value
6041 *
936fd732 6042 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6043 * guaranteed to succeed if @link is ap->link, the cable type of
6044 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6045 *
6046 * LOCKING:
633273a3 6047 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6048 *
6049 * RETURNS:
6050 * 0 on success, negative errno on failure.
6051 */
936fd732 6052int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6053{
633273a3
TH
6054 if (ata_is_host_link(link)) {
6055 struct ata_port *ap = link->ap;
936fd732 6056
633273a3
TH
6057 if (sata_scr_valid(link))
6058 return ap->ops->scr_read(ap, reg, val);
6059 return -EOPNOTSUPP;
6060 }
6061
6062 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6063}
6064
6065/**
6066 * sata_scr_write - write SCR register of the specified port
936fd732 6067 * @link: ATA link to write SCR for
34bf2170
TH
6068 * @reg: SCR to write
6069 * @val: value to write
6070 *
936fd732 6071 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6072 * guaranteed to succeed if @link is ap->link, the cable type of
6073 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6074 *
6075 * LOCKING:
633273a3 6076 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6077 *
6078 * RETURNS:
6079 * 0 on success, negative errno on failure.
6080 */
936fd732 6081int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6082{
633273a3
TH
6083 if (ata_is_host_link(link)) {
6084 struct ata_port *ap = link->ap;
6085
6086 if (sata_scr_valid(link))
6087 return ap->ops->scr_write(ap, reg, val);
6088 return -EOPNOTSUPP;
6089 }
936fd732 6090
633273a3 6091 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6092}
6093
6094/**
6095 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6096 * @link: ATA link to write SCR for
34bf2170
TH
6097 * @reg: SCR to write
6098 * @val: value to write
6099 *
6100 * This function is identical to sata_scr_write() except that this
6101 * function performs flush after writing to the register.
6102 *
6103 * LOCKING:
633273a3 6104 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6105 *
6106 * RETURNS:
6107 * 0 on success, negative errno on failure.
6108 */
936fd732 6109int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6110{
633273a3
TH
6111 if (ata_is_host_link(link)) {
6112 struct ata_port *ap = link->ap;
6113 int rc;
da3dbb17 6114
633273a3
TH
6115 if (sata_scr_valid(link)) {
6116 rc = ap->ops->scr_write(ap, reg, val);
6117 if (rc == 0)
6118 rc = ap->ops->scr_read(ap, reg, &val);
6119 return rc;
6120 }
6121 return -EOPNOTSUPP;
34bf2170 6122 }
633273a3
TH
6123
6124 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6125}
6126
6127/**
936fd732
TH
6128 * ata_link_online - test whether the given link is online
6129 * @link: ATA link to test
34bf2170 6130 *
936fd732
TH
6131 * Test whether @link is online. Note that this function returns
6132 * 0 if online status of @link cannot be obtained, so
6133 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6134 *
6135 * LOCKING:
6136 * None.
6137 *
6138 * RETURNS:
6139 * 1 if the port online status is available and online.
6140 */
936fd732 6141int ata_link_online(struct ata_link *link)
34bf2170
TH
6142{
6143 u32 sstatus;
6144
936fd732
TH
6145 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6146 (sstatus & 0xf) == 0x3)
34bf2170
TH
6147 return 1;
6148 return 0;
6149}
6150
6151/**
936fd732
TH
6152 * ata_link_offline - test whether the given link is offline
6153 * @link: ATA link to test
34bf2170 6154 *
936fd732
TH
6155 * Test whether @link is offline. Note that this function
6156 * returns 0 if offline status of @link cannot be obtained, so
6157 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6158 *
6159 * LOCKING:
6160 * None.
6161 *
6162 * RETURNS:
6163 * 1 if the port offline status is available and offline.
6164 */
936fd732 6165int ata_link_offline(struct ata_link *link)
34bf2170
TH
6166{
6167 u32 sstatus;
6168
936fd732
TH
6169 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6170 (sstatus & 0xf) != 0x3)
34bf2170
TH
6171 return 1;
6172 return 0;
6173}
0baab86b 6174
77b08fb5 6175int ata_flush_cache(struct ata_device *dev)
9b847548 6176{
977e6b9f 6177 unsigned int err_mask;
9b847548
JA
6178 u8 cmd;
6179
6180 if (!ata_try_flush_cache(dev))
6181 return 0;
6182
6fc49adb 6183 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6184 cmd = ATA_CMD_FLUSH_EXT;
6185 else
6186 cmd = ATA_CMD_FLUSH;
6187
4f34337b
AC
6188 /* This is wrong. On a failed flush we get back the LBA of the lost
6189 sector and we should (assuming it wasn't aborted as unknown) issue
6190 a further flush command to continue the writeback until it
6191 does not error */
977e6b9f
TH
6192 err_mask = ata_do_simple_cmd(dev, cmd);
6193 if (err_mask) {
6194 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6195 return -EIO;
6196 }
6197
6198 return 0;
9b847548
JA
6199}
6200
6ffa01d8 6201#ifdef CONFIG_PM
cca3974e
JG
6202static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6203 unsigned int action, unsigned int ehi_flags,
6204 int wait)
500530f6
TH
6205{
6206 unsigned long flags;
6207 int i, rc;
6208
cca3974e
JG
6209 for (i = 0; i < host->n_ports; i++) {
6210 struct ata_port *ap = host->ports[i];
e3667ebf 6211 struct ata_link *link;
500530f6
TH
6212
6213 /* Previous resume operation might still be in
6214 * progress. Wait for PM_PENDING to clear.
6215 */
6216 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6217 ata_port_wait_eh(ap);
6218 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6219 }
6220
6221 /* request PM ops to EH */
6222 spin_lock_irqsave(ap->lock, flags);
6223
6224 ap->pm_mesg = mesg;
6225 if (wait) {
6226 rc = 0;
6227 ap->pm_result = &rc;
6228 }
6229
6230 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6231 __ata_port_for_each_link(link, ap) {
6232 link->eh_info.action |= action;
6233 link->eh_info.flags |= ehi_flags;
6234 }
500530f6
TH
6235
6236 ata_port_schedule_eh(ap);
6237
6238 spin_unlock_irqrestore(ap->lock, flags);
6239
6240 /* wait and check result */
6241 if (wait) {
6242 ata_port_wait_eh(ap);
6243 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6244 if (rc)
6245 return rc;
6246 }
6247 }
6248
6249 return 0;
6250}
6251
6252/**
cca3974e
JG
6253 * ata_host_suspend - suspend host
6254 * @host: host to suspend
500530f6
TH
6255 * @mesg: PM message
6256 *
cca3974e 6257 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6258 * function requests EH to perform PM operations and waits for EH
6259 * to finish.
6260 *
6261 * LOCKING:
6262 * Kernel thread context (may sleep).
6263 *
6264 * RETURNS:
6265 * 0 on success, -errno on failure.
6266 */
cca3974e 6267int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6268{
9666f400 6269 int rc;
500530f6 6270
cca3974e 6271 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6272 if (rc == 0)
6273 host->dev->power.power_state = mesg;
500530f6
TH
6274 return rc;
6275}
6276
6277/**
cca3974e
JG
6278 * ata_host_resume - resume host
6279 * @host: host to resume
500530f6 6280 *
cca3974e 6281 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6282 * function requests EH to perform PM operations and returns.
6283 * Note that all resume operations are performed parallely.
6284 *
6285 * LOCKING:
6286 * Kernel thread context (may sleep).
6287 */
cca3974e 6288void ata_host_resume(struct ata_host *host)
500530f6 6289{
cca3974e
JG
6290 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6291 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6292 host->dev->power.power_state = PMSG_ON;
500530f6 6293}
6ffa01d8 6294#endif
500530f6 6295
c893a3ae
RD
6296/**
6297 * ata_port_start - Set port up for dma.
6298 * @ap: Port to initialize
6299 *
6300 * Called just after data structures for each port are
6301 * initialized. Allocates space for PRD table.
6302 *
6303 * May be used as the port_start() entry in ata_port_operations.
6304 *
6305 * LOCKING:
6306 * Inherited from caller.
6307 */
f0d36efd 6308int ata_port_start(struct ata_port *ap)
1da177e4 6309{
2f1f610b 6310 struct device *dev = ap->dev;
6037d6bb 6311 int rc;
1da177e4 6312
f0d36efd
TH
6313 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6314 GFP_KERNEL);
1da177e4
LT
6315 if (!ap->prd)
6316 return -ENOMEM;
6317
6037d6bb 6318 rc = ata_pad_alloc(ap, dev);
f0d36efd 6319 if (rc)
6037d6bb 6320 return rc;
1da177e4 6321
f0d36efd
TH
6322 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6323 (unsigned long long)ap->prd_dma);
1da177e4
LT
6324 return 0;
6325}
6326
3ef3b43d
TH
6327/**
6328 * ata_dev_init - Initialize an ata_device structure
6329 * @dev: Device structure to initialize
6330 *
6331 * Initialize @dev in preparation for probing.
6332 *
6333 * LOCKING:
6334 * Inherited from caller.
6335 */
6336void ata_dev_init(struct ata_device *dev)
6337{
9af5c9c9
TH
6338 struct ata_link *link = dev->link;
6339 struct ata_port *ap = link->ap;
72fa4b74
TH
6340 unsigned long flags;
6341
5a04bf4b 6342 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6343 link->sata_spd_limit = link->hw_sata_spd_limit;
6344 link->sata_spd = 0;
5a04bf4b 6345
72fa4b74
TH
6346 /* High bits of dev->flags are used to record warm plug
6347 * requests which occur asynchronously. Synchronize using
cca3974e 6348 * host lock.
72fa4b74 6349 */
ba6a1308 6350 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6351 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6352 dev->horkage = 0;
ba6a1308 6353 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6354
72fa4b74
TH
6355 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6356 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6357 dev->pio_mask = UINT_MAX;
6358 dev->mwdma_mask = UINT_MAX;
6359 dev->udma_mask = UINT_MAX;
6360}
6361
4fb37a25
TH
6362/**
6363 * ata_link_init - Initialize an ata_link structure
6364 * @ap: ATA port link is attached to
6365 * @link: Link structure to initialize
8989805d 6366 * @pmp: Port multiplier port number
4fb37a25
TH
6367 *
6368 * Initialize @link.
6369 *
6370 * LOCKING:
6371 * Kernel thread context (may sleep)
6372 */
fb7fd614 6373void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6374{
6375 int i;
6376
6377 /* clear everything except for devices */
6378 memset(link, 0, offsetof(struct ata_link, device[0]));
6379
6380 link->ap = ap;
8989805d 6381 link->pmp = pmp;
4fb37a25
TH
6382 link->active_tag = ATA_TAG_POISON;
6383 link->hw_sata_spd_limit = UINT_MAX;
6384
6385 /* can't use iterator, ap isn't initialized yet */
6386 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6387 struct ata_device *dev = &link->device[i];
6388
6389 dev->link = link;
6390 dev->devno = dev - link->device;
6391 ata_dev_init(dev);
6392 }
6393}
6394
6395/**
6396 * sata_link_init_spd - Initialize link->sata_spd_limit
6397 * @link: Link to configure sata_spd_limit for
6398 *
6399 * Initialize @link->[hw_]sata_spd_limit to the currently
6400 * configured value.
6401 *
6402 * LOCKING:
6403 * Kernel thread context (may sleep).
6404 *
6405 * RETURNS:
6406 * 0 on success, -errno on failure.
6407 */
fb7fd614 6408int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6409{
6410 u32 scontrol, spd;
6411 int rc;
6412
6413 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6414 if (rc)
6415 return rc;
6416
6417 spd = (scontrol >> 4) & 0xf;
6418 if (spd)
6419 link->hw_sata_spd_limit &= (1 << spd) - 1;
6420
6421 link->sata_spd_limit = link->hw_sata_spd_limit;
6422
6423 return 0;
6424}
6425
1da177e4 6426/**
f3187195
TH
6427 * ata_port_alloc - allocate and initialize basic ATA port resources
6428 * @host: ATA host this allocated port belongs to
1da177e4 6429 *
f3187195
TH
6430 * Allocate and initialize basic ATA port resources.
6431 *
6432 * RETURNS:
6433 * Allocate ATA port on success, NULL on failure.
0cba632b 6434 *
1da177e4 6435 * LOCKING:
f3187195 6436 * Inherited from calling layer (may sleep).
1da177e4 6437 */
f3187195 6438struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6439{
f3187195 6440 struct ata_port *ap;
1da177e4 6441
f3187195
TH
6442 DPRINTK("ENTER\n");
6443
6444 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6445 if (!ap)
6446 return NULL;
6447
f4d6d004 6448 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6449 ap->lock = &host->lock;
198e0fed 6450 ap->flags = ATA_FLAG_DISABLED;
f3187195 6451 ap->print_id = -1;
1da177e4 6452 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6453 ap->host = host;
f3187195 6454 ap->dev = host->dev;
1da177e4 6455 ap->last_ctl = 0xFF;
bd5d825c
BP
6456
6457#if defined(ATA_VERBOSE_DEBUG)
6458 /* turn on all debugging levels */
6459 ap->msg_enable = 0x00FF;
6460#elif defined(ATA_DEBUG)
6461 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6462#else
0dd4b21f 6463 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6464#endif
1da177e4 6465
65f27f38
DH
6466 INIT_DELAYED_WORK(&ap->port_task, NULL);
6467 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6468 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6469 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6470 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6471 init_timer_deferrable(&ap->fastdrain_timer);
6472 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6473 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6474
838df628 6475 ap->cbl = ATA_CBL_NONE;
838df628 6476
8989805d 6477 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6478
6479#ifdef ATA_IRQ_TRAP
6480 ap->stats.unhandled_irq = 1;
6481 ap->stats.idle_irq = 1;
6482#endif
1da177e4 6483 return ap;
1da177e4
LT
6484}
6485
f0d36efd
TH
6486static void ata_host_release(struct device *gendev, void *res)
6487{
6488 struct ata_host *host = dev_get_drvdata(gendev);
6489 int i;
6490
6491 for (i = 0; i < host->n_ports; i++) {
6492 struct ata_port *ap = host->ports[i];
6493
ecef7253
TH
6494 if (!ap)
6495 continue;
6496
6497 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6498 ap->ops->port_stop(ap);
f0d36efd
TH
6499 }
6500
ecef7253 6501 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6502 host->ops->host_stop(host);
1aa56cca 6503
1aa506e4
TH
6504 for (i = 0; i < host->n_ports; i++) {
6505 struct ata_port *ap = host->ports[i];
6506
4911487a
TH
6507 if (!ap)
6508 continue;
6509
6510 if (ap->scsi_host)
1aa506e4
TH
6511 scsi_host_put(ap->scsi_host);
6512
633273a3 6513 kfree(ap->pmp_link);
4911487a 6514 kfree(ap);
1aa506e4
TH
6515 host->ports[i] = NULL;
6516 }
6517
1aa56cca 6518 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6519}
6520
f3187195
TH
6521/**
6522 * ata_host_alloc - allocate and init basic ATA host resources
6523 * @dev: generic device this host is associated with
6524 * @max_ports: maximum number of ATA ports associated with this host
6525 *
6526 * Allocate and initialize basic ATA host resources. LLD calls
6527 * this function to allocate a host, initializes it fully and
6528 * attaches it using ata_host_register().
6529 *
6530 * @max_ports ports are allocated and host->n_ports is
6531 * initialized to @max_ports. The caller is allowed to decrease
6532 * host->n_ports before calling ata_host_register(). The unused
6533 * ports will be automatically freed on registration.
6534 *
6535 * RETURNS:
6536 * Allocate ATA host on success, NULL on failure.
6537 *
6538 * LOCKING:
6539 * Inherited from calling layer (may sleep).
6540 */
6541struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6542{
6543 struct ata_host *host;
6544 size_t sz;
6545 int i;
6546
6547 DPRINTK("ENTER\n");
6548
6549 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6550 return NULL;
6551
6552 /* alloc a container for our list of ATA ports (buses) */
6553 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6554 /* alloc a container for our list of ATA ports (buses) */
6555 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6556 if (!host)
6557 goto err_out;
6558
6559 devres_add(dev, host);
6560 dev_set_drvdata(dev, host);
6561
6562 spin_lock_init(&host->lock);
6563 host->dev = dev;
6564 host->n_ports = max_ports;
6565
6566 /* allocate ports bound to this host */
6567 for (i = 0; i < max_ports; i++) {
6568 struct ata_port *ap;
6569
6570 ap = ata_port_alloc(host);
6571 if (!ap)
6572 goto err_out;
6573
6574 ap->port_no = i;
6575 host->ports[i] = ap;
6576 }
6577
6578 devres_remove_group(dev, NULL);
6579 return host;
6580
6581 err_out:
6582 devres_release_group(dev, NULL);
6583 return NULL;
6584}
6585
f5cda257
TH
6586/**
6587 * ata_host_alloc_pinfo - alloc host and init with port_info array
6588 * @dev: generic device this host is associated with
6589 * @ppi: array of ATA port_info to initialize host with
6590 * @n_ports: number of ATA ports attached to this host
6591 *
6592 * Allocate ATA host and initialize with info from @ppi. If NULL
6593 * terminated, @ppi may contain fewer entries than @n_ports. The
6594 * last entry will be used for the remaining ports.
6595 *
6596 * RETURNS:
6597 * Allocate ATA host on success, NULL on failure.
6598 *
6599 * LOCKING:
6600 * Inherited from calling layer (may sleep).
6601 */
6602struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6603 const struct ata_port_info * const * ppi,
6604 int n_ports)
6605{
6606 const struct ata_port_info *pi;
6607 struct ata_host *host;
6608 int i, j;
6609
6610 host = ata_host_alloc(dev, n_ports);
6611 if (!host)
6612 return NULL;
6613
6614 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6615 struct ata_port *ap = host->ports[i];
6616
6617 if (ppi[j])
6618 pi = ppi[j++];
6619
6620 ap->pio_mask = pi->pio_mask;
6621 ap->mwdma_mask = pi->mwdma_mask;
6622 ap->udma_mask = pi->udma_mask;
6623 ap->flags |= pi->flags;
0c88758b 6624 ap->link.flags |= pi->link_flags;
f5cda257
TH
6625 ap->ops = pi->port_ops;
6626
6627 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6628 host->ops = pi->port_ops;
6629 if (!host->private_data && pi->private_data)
6630 host->private_data = pi->private_data;
6631 }
6632
6633 return host;
6634}
6635
ecef7253
TH
6636/**
6637 * ata_host_start - start and freeze ports of an ATA host
6638 * @host: ATA host to start ports for
6639 *
6640 * Start and then freeze ports of @host. Started status is
6641 * recorded in host->flags, so this function can be called
6642 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6643 * once. If host->ops isn't initialized yet, its set to the
6644 * first non-dummy port ops.
ecef7253
TH
6645 *
6646 * LOCKING:
6647 * Inherited from calling layer (may sleep).
6648 *
6649 * RETURNS:
6650 * 0 if all ports are started successfully, -errno otherwise.
6651 */
6652int ata_host_start(struct ata_host *host)
6653{
6654 int i, rc;
6655
6656 if (host->flags & ATA_HOST_STARTED)
6657 return 0;
6658
6659 for (i = 0; i < host->n_ports; i++) {
6660 struct ata_port *ap = host->ports[i];
6661
f3187195
TH
6662 if (!host->ops && !ata_port_is_dummy(ap))
6663 host->ops = ap->ops;
6664
ecef7253
TH
6665 if (ap->ops->port_start) {
6666 rc = ap->ops->port_start(ap);
6667 if (rc) {
6668 ata_port_printk(ap, KERN_ERR, "failed to "
6669 "start port (errno=%d)\n", rc);
6670 goto err_out;
6671 }
6672 }
6673
6674 ata_eh_freeze_port(ap);
6675 }
6676
6677 host->flags |= ATA_HOST_STARTED;
6678 return 0;
6679
6680 err_out:
6681 while (--i >= 0) {
6682 struct ata_port *ap = host->ports[i];
6683
6684 if (ap->ops->port_stop)
6685 ap->ops->port_stop(ap);
6686 }
6687 return rc;
6688}
6689
b03732f0 6690/**
cca3974e
JG
6691 * ata_sas_host_init - Initialize a host struct
6692 * @host: host to initialize
6693 * @dev: device host is attached to
6694 * @flags: host flags
6695 * @ops: port_ops
b03732f0
BK
6696 *
6697 * LOCKING:
6698 * PCI/etc. bus probe sem.
6699 *
6700 */
f3187195 6701/* KILLME - the only user left is ipr */
cca3974e
JG
6702void ata_host_init(struct ata_host *host, struct device *dev,
6703 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6704{
cca3974e
JG
6705 spin_lock_init(&host->lock);
6706 host->dev = dev;
6707 host->flags = flags;
6708 host->ops = ops;
b03732f0
BK
6709}
6710
f3187195
TH
6711/**
6712 * ata_host_register - register initialized ATA host
6713 * @host: ATA host to register
6714 * @sht: template for SCSI host
6715 *
6716 * Register initialized ATA host. @host is allocated using
6717 * ata_host_alloc() and fully initialized by LLD. This function
6718 * starts ports, registers @host with ATA and SCSI layers and
6719 * probe registered devices.
6720 *
6721 * LOCKING:
6722 * Inherited from calling layer (may sleep).
6723 *
6724 * RETURNS:
6725 * 0 on success, -errno otherwise.
6726 */
6727int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6728{
6729 int i, rc;
6730
6731 /* host must have been started */
6732 if (!(host->flags & ATA_HOST_STARTED)) {
6733 dev_printk(KERN_ERR, host->dev,
6734 "BUG: trying to register unstarted host\n");
6735 WARN_ON(1);
6736 return -EINVAL;
6737 }
6738
6739 /* Blow away unused ports. This happens when LLD can't
6740 * determine the exact number of ports to allocate at
6741 * allocation time.
6742 */
6743 for (i = host->n_ports; host->ports[i]; i++)
6744 kfree(host->ports[i]);
6745
6746 /* give ports names and add SCSI hosts */
6747 for (i = 0; i < host->n_ports; i++)
6748 host->ports[i]->print_id = ata_print_id++;
6749
6750 rc = ata_scsi_add_hosts(host, sht);
6751 if (rc)
6752 return rc;
6753
fafbae87
TH
6754 /* associate with ACPI nodes */
6755 ata_acpi_associate(host);
6756
f3187195
TH
6757 /* set cable, sata_spd_limit and report */
6758 for (i = 0; i < host->n_ports; i++) {
6759 struct ata_port *ap = host->ports[i];
f3187195
TH
6760 unsigned long xfer_mask;
6761
6762 /* set SATA cable type if still unset */
6763 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6764 ap->cbl = ATA_CBL_SATA;
6765
6766 /* init sata_spd_limit to the current value */
4fb37a25 6767 sata_link_init_spd(&ap->link);
f3187195 6768
cbcdd875 6769 /* print per-port info to dmesg */
f3187195
TH
6770 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6771 ap->udma_mask);
6772
f3187195 6773 if (!ata_port_is_dummy(ap))
cbcdd875
TH
6774 ata_port_printk(ap, KERN_INFO,
6775 "%cATA max %s %s\n",
a16abc0b 6776 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6777 ata_mode_string(xfer_mask),
cbcdd875 6778 ap->link.eh_info.desc);
f3187195
TH
6779 else
6780 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6781 }
6782
6783 /* perform each probe synchronously */
6784 DPRINTK("probe begin\n");
6785 for (i = 0; i < host->n_ports; i++) {
6786 struct ata_port *ap = host->ports[i];
6787 int rc;
6788
6789 /* probe */
6790 if (ap->ops->error_handler) {
9af5c9c9 6791 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6792 unsigned long flags;
6793
6794 ata_port_probe(ap);
6795
6796 /* kick EH for boot probing */
6797 spin_lock_irqsave(ap->lock, flags);
6798
f58229f8
TH
6799 ehi->probe_mask =
6800 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6801 ehi->action |= ATA_EH_SOFTRESET;
6802 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6803
f4d6d004 6804 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6805 ap->pflags |= ATA_PFLAG_LOADING;
6806 ata_port_schedule_eh(ap);
6807
6808 spin_unlock_irqrestore(ap->lock, flags);
6809
6810 /* wait for EH to finish */
6811 ata_port_wait_eh(ap);
6812 } else {
6813 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6814 rc = ata_bus_probe(ap);
6815 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6816
6817 if (rc) {
6818 /* FIXME: do something useful here?
6819 * Current libata behavior will
6820 * tear down everything when
6821 * the module is removed
6822 * or the h/w is unplugged.
6823 */
6824 }
6825 }
6826 }
6827
6828 /* probes are done, now scan each port's disk(s) */
6829 DPRINTK("host probe begin\n");
6830 for (i = 0; i < host->n_ports; i++) {
6831 struct ata_port *ap = host->ports[i];
6832
1ae46317 6833 ata_scsi_scan_host(ap, 1);
f3187195
TH
6834 }
6835
6836 return 0;
6837}
6838
f5cda257
TH
6839/**
6840 * ata_host_activate - start host, request IRQ and register it
6841 * @host: target ATA host
6842 * @irq: IRQ to request
6843 * @irq_handler: irq_handler used when requesting IRQ
6844 * @irq_flags: irq_flags used when requesting IRQ
6845 * @sht: scsi_host_template to use when registering the host
6846 *
6847 * After allocating an ATA host and initializing it, most libata
6848 * LLDs perform three steps to activate the host - start host,
6849 * request IRQ and register it. This helper takes necessasry
6850 * arguments and performs the three steps in one go.
6851 *
6852 * LOCKING:
6853 * Inherited from calling layer (may sleep).
6854 *
6855 * RETURNS:
6856 * 0 on success, -errno otherwise.
6857 */
6858int ata_host_activate(struct ata_host *host, int irq,
6859 irq_handler_t irq_handler, unsigned long irq_flags,
6860 struct scsi_host_template *sht)
6861{
cbcdd875 6862 int i, rc;
f5cda257
TH
6863
6864 rc = ata_host_start(host);
6865 if (rc)
6866 return rc;
6867
6868 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6869 dev_driver_string(host->dev), host);
6870 if (rc)
6871 return rc;
6872
cbcdd875
TH
6873 for (i = 0; i < host->n_ports; i++)
6874 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6875
f5cda257
TH
6876 rc = ata_host_register(host, sht);
6877 /* if failed, just free the IRQ and leave ports alone */
6878 if (rc)
6879 devm_free_irq(host->dev, irq, host);
6880
6881 return rc;
6882}
6883
720ba126
TH
6884/**
6885 * ata_port_detach - Detach ATA port in prepration of device removal
6886 * @ap: ATA port to be detached
6887 *
6888 * Detach all ATA devices and the associated SCSI devices of @ap;
6889 * then, remove the associated SCSI host. @ap is guaranteed to
6890 * be quiescent on return from this function.
6891 *
6892 * LOCKING:
6893 * Kernel thread context (may sleep).
6894 */
6895void ata_port_detach(struct ata_port *ap)
6896{
6897 unsigned long flags;
41bda9c9 6898 struct ata_link *link;
f58229f8 6899 struct ata_device *dev;
720ba126
TH
6900
6901 if (!ap->ops->error_handler)
c3cf30a9 6902 goto skip_eh;
720ba126
TH
6903
6904 /* tell EH we're leaving & flush EH */
ba6a1308 6905 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6906 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6907 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6908
6909 ata_port_wait_eh(ap);
6910
6911 /* EH is now guaranteed to see UNLOADING, so no new device
6912 * will be attached. Disable all existing devices.
6913 */
ba6a1308 6914 spin_lock_irqsave(ap->lock, flags);
720ba126 6915
41bda9c9
TH
6916 ata_port_for_each_link(link, ap) {
6917 ata_link_for_each_dev(dev, link)
6918 ata_dev_disable(dev);
6919 }
720ba126 6920
ba6a1308 6921 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6922
6923 /* Final freeze & EH. All in-flight commands are aborted. EH
6924 * will be skipped and retrials will be terminated with bad
6925 * target.
6926 */
ba6a1308 6927 spin_lock_irqsave(ap->lock, flags);
720ba126 6928 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6929 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6930
6931 ata_port_wait_eh(ap);
45a66c1c 6932 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6933
c3cf30a9 6934 skip_eh:
720ba126 6935 /* remove the associated SCSI host */
cca3974e 6936 scsi_remove_host(ap->scsi_host);
720ba126
TH
6937}
6938
0529c159
TH
6939/**
6940 * ata_host_detach - Detach all ports of an ATA host
6941 * @host: Host to detach
6942 *
6943 * Detach all ports of @host.
6944 *
6945 * LOCKING:
6946 * Kernel thread context (may sleep).
6947 */
6948void ata_host_detach(struct ata_host *host)
6949{
6950 int i;
6951
6952 for (i = 0; i < host->n_ports; i++)
6953 ata_port_detach(host->ports[i]);
6954}
6955
1da177e4
LT
6956/**
6957 * ata_std_ports - initialize ioaddr with standard port offsets.
6958 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6959 *
6960 * Utility function which initializes data_addr, error_addr,
6961 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6962 * device_addr, status_addr, and command_addr to standard offsets
6963 * relative to cmd_addr.
6964 *
6965 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6966 */
0baab86b 6967
1da177e4
LT
6968void ata_std_ports(struct ata_ioports *ioaddr)
6969{
6970 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6971 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6972 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6973 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6974 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6975 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6976 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6977 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6978 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6979 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6980}
6981
0baab86b 6982
374b1873
JG
6983#ifdef CONFIG_PCI
6984
1da177e4
LT
6985/**
6986 * ata_pci_remove_one - PCI layer callback for device removal
6987 * @pdev: PCI device that was removed
6988 *
b878ca5d
TH
6989 * PCI layer indicates to libata via this hook that hot-unplug or
6990 * module unload event has occurred. Detach all ports. Resource
6991 * release is handled via devres.
1da177e4
LT
6992 *
6993 * LOCKING:
6994 * Inherited from PCI layer (may sleep).
6995 */
f0d36efd 6996void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6997{
6998 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6999 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7000
b878ca5d 7001 ata_host_detach(host);
1da177e4
LT
7002}
7003
7004/* move to PCI subsystem */
057ace5e 7005int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7006{
7007 unsigned long tmp = 0;
7008
7009 switch (bits->width) {
7010 case 1: {
7011 u8 tmp8 = 0;
7012 pci_read_config_byte(pdev, bits->reg, &tmp8);
7013 tmp = tmp8;
7014 break;
7015 }
7016 case 2: {
7017 u16 tmp16 = 0;
7018 pci_read_config_word(pdev, bits->reg, &tmp16);
7019 tmp = tmp16;
7020 break;
7021 }
7022 case 4: {
7023 u32 tmp32 = 0;
7024 pci_read_config_dword(pdev, bits->reg, &tmp32);
7025 tmp = tmp32;
7026 break;
7027 }
7028
7029 default:
7030 return -EINVAL;
7031 }
7032
7033 tmp &= bits->mask;
7034
7035 return (tmp == bits->val) ? 1 : 0;
7036}
9b847548 7037
6ffa01d8 7038#ifdef CONFIG_PM
3c5100c1 7039void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7040{
7041 pci_save_state(pdev);
4c90d971 7042 pci_disable_device(pdev);
500530f6 7043
4c90d971 7044 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7045 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7046}
7047
553c4aa6 7048int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7049{
553c4aa6
TH
7050 int rc;
7051
9b847548
JA
7052 pci_set_power_state(pdev, PCI_D0);
7053 pci_restore_state(pdev);
553c4aa6 7054
b878ca5d 7055 rc = pcim_enable_device(pdev);
553c4aa6
TH
7056 if (rc) {
7057 dev_printk(KERN_ERR, &pdev->dev,
7058 "failed to enable device after resume (%d)\n", rc);
7059 return rc;
7060 }
7061
9b847548 7062 pci_set_master(pdev);
553c4aa6 7063 return 0;
500530f6
TH
7064}
7065
3c5100c1 7066int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7067{
cca3974e 7068 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7069 int rc = 0;
7070
cca3974e 7071 rc = ata_host_suspend(host, mesg);
500530f6
TH
7072 if (rc)
7073 return rc;
7074
3c5100c1 7075 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7076
7077 return 0;
7078}
7079
7080int ata_pci_device_resume(struct pci_dev *pdev)
7081{
cca3974e 7082 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7083 int rc;
500530f6 7084
553c4aa6
TH
7085 rc = ata_pci_device_do_resume(pdev);
7086 if (rc == 0)
7087 ata_host_resume(host);
7088 return rc;
9b847548 7089}
6ffa01d8
TH
7090#endif /* CONFIG_PM */
7091
1da177e4
LT
7092#endif /* CONFIG_PCI */
7093
7094
1da177e4
LT
7095static int __init ata_init(void)
7096{
a8601e5f 7097 ata_probe_timeout *= HZ;
1da177e4
LT
7098 ata_wq = create_workqueue("ata");
7099 if (!ata_wq)
7100 return -ENOMEM;
7101
453b07ac
TH
7102 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7103 if (!ata_aux_wq) {
7104 destroy_workqueue(ata_wq);
7105 return -ENOMEM;
7106 }
7107
1da177e4
LT
7108 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7109 return 0;
7110}
7111
7112static void __exit ata_exit(void)
7113{
7114 destroy_workqueue(ata_wq);
453b07ac 7115 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7116}
7117
a4625085 7118subsys_initcall(ata_init);
1da177e4
LT
7119module_exit(ata_exit);
7120
67846b30 7121static unsigned long ratelimit_time;
34af946a 7122static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7123
7124int ata_ratelimit(void)
7125{
7126 int rc;
7127 unsigned long flags;
7128
7129 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7130
7131 if (time_after(jiffies, ratelimit_time)) {
7132 rc = 1;
7133 ratelimit_time = jiffies + (HZ/5);
7134 } else
7135 rc = 0;
7136
7137 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7138
7139 return rc;
7140}
7141
c22daff4
TH
7142/**
7143 * ata_wait_register - wait until register value changes
7144 * @reg: IO-mapped register
7145 * @mask: Mask to apply to read register value
7146 * @val: Wait condition
7147 * @interval_msec: polling interval in milliseconds
7148 * @timeout_msec: timeout in milliseconds
7149 *
7150 * Waiting for some bits of register to change is a common
7151 * operation for ATA controllers. This function reads 32bit LE
7152 * IO-mapped register @reg and tests for the following condition.
7153 *
7154 * (*@reg & mask) != val
7155 *
7156 * If the condition is met, it returns; otherwise, the process is
7157 * repeated after @interval_msec until timeout.
7158 *
7159 * LOCKING:
7160 * Kernel thread context (may sleep)
7161 *
7162 * RETURNS:
7163 * The final register value.
7164 */
7165u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7166 unsigned long interval_msec,
7167 unsigned long timeout_msec)
7168{
7169 unsigned long timeout;
7170 u32 tmp;
7171
7172 tmp = ioread32(reg);
7173
7174 /* Calculate timeout _after_ the first read to make sure
7175 * preceding writes reach the controller before starting to
7176 * eat away the timeout.
7177 */
7178 timeout = jiffies + (timeout_msec * HZ) / 1000;
7179
7180 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7181 msleep(interval_msec);
7182 tmp = ioread32(reg);
7183 }
7184
7185 return tmp;
7186}
7187
dd5b06c4
TH
7188/*
7189 * Dummy port_ops
7190 */
7191static void ata_dummy_noret(struct ata_port *ap) { }
7192static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7193static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7194
7195static u8 ata_dummy_check_status(struct ata_port *ap)
7196{
7197 return ATA_DRDY;
7198}
7199
7200static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7201{
7202 return AC_ERR_SYSTEM;
7203}
7204
7205const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7206 .check_status = ata_dummy_check_status,
7207 .check_altstatus = ata_dummy_check_status,
7208 .dev_select = ata_noop_dev_select,
7209 .qc_prep = ata_noop_qc_prep,
7210 .qc_issue = ata_dummy_qc_issue,
7211 .freeze = ata_dummy_noret,
7212 .thaw = ata_dummy_noret,
7213 .error_handler = ata_dummy_noret,
7214 .post_internal_cmd = ata_dummy_qc_noret,
7215 .irq_clear = ata_dummy_noret,
7216 .port_start = ata_dummy_ret0,
7217 .port_stop = ata_dummy_noret,
7218};
7219
21b0ad4f
TH
7220const struct ata_port_info ata_dummy_port_info = {
7221 .port_ops = &ata_dummy_port_ops,
7222};
7223
1da177e4
LT
7224/*
7225 * libata is essentially a library of internal helper functions for
7226 * low-level ATA host controller drivers. As such, the API/ABI is
7227 * likely to change as new drivers are added and updated.
7228 * Do not depend on ABI/API stability.
7229 */
7230
e9c83914
TH
7231EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7232EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7233EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7234EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7235EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7236EXPORT_SYMBOL_GPL(ata_std_bios_param);
7237EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7238EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7239EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7240EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7241EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7242EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7243EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7244EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7245EXPORT_SYMBOL_GPL(ata_sg_init);
7246EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7247EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7248EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7249EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7250EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7251EXPORT_SYMBOL_GPL(ata_tf_load);
7252EXPORT_SYMBOL_GPL(ata_tf_read);
7253EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7254EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7255EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7256EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7257EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7258EXPORT_SYMBOL_GPL(ata_check_status);
7259EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7260EXPORT_SYMBOL_GPL(ata_exec_command);
7261EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7262EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7263EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7264EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7265EXPORT_SYMBOL_GPL(ata_data_xfer);
7266EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7267EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7268EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7269EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7270EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7271EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7272EXPORT_SYMBOL_GPL(ata_bmdma_start);
7273EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7274EXPORT_SYMBOL_GPL(ata_bmdma_status);
7275EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7276EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7277EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7278EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7279EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7280EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7281EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7282EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7283EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7284EXPORT_SYMBOL_GPL(sata_link_debounce);
7285EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7286EXPORT_SYMBOL_GPL(sata_phy_reset);
7287EXPORT_SYMBOL_GPL(__sata_phy_reset);
7288EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7289EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7290EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7291EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7292EXPORT_SYMBOL_GPL(sata_std_hardreset);
7293EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7294EXPORT_SYMBOL_GPL(ata_dev_classify);
7295EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7296EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7297EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7298EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7299EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7300EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7301EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7302EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7303EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7304EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7305EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7306EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7307EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7308EXPORT_SYMBOL_GPL(sata_scr_valid);
7309EXPORT_SYMBOL_GPL(sata_scr_read);
7310EXPORT_SYMBOL_GPL(sata_scr_write);
7311EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7312EXPORT_SYMBOL_GPL(ata_link_online);
7313EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7314#ifdef CONFIG_PM
cca3974e
JG
7315EXPORT_SYMBOL_GPL(ata_host_suspend);
7316EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7317#endif /* CONFIG_PM */
6a62a04d
TH
7318EXPORT_SYMBOL_GPL(ata_id_string);
7319EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7320EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7321EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7322
1bc4ccff 7323EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7324EXPORT_SYMBOL_GPL(ata_timing_compute);
7325EXPORT_SYMBOL_GPL(ata_timing_merge);
7326
1da177e4
LT
7327#ifdef CONFIG_PCI
7328EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7329EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7330EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7331EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7332EXPORT_SYMBOL_GPL(ata_pci_init_one);
7333EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7334#ifdef CONFIG_PM
500530f6
TH
7335EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7336EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7337EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7338EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7339#endif /* CONFIG_PM */
67951ade
AC
7340EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7341EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7342#endif /* CONFIG_PCI */
9b847548 7343
31f88384 7344EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7345EXPORT_SYMBOL_GPL(sata_pmp_read_init_tf);
7346EXPORT_SYMBOL_GPL(sata_pmp_read_val);
7347EXPORT_SYMBOL_GPL(sata_pmp_write_init_tf);
7348EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7349EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7350EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7351EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7352
b64bbc39
TH
7353EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7354EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7355EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7356EXPORT_SYMBOL_GPL(ata_port_desc);
7357#ifdef CONFIG_PCI
7358EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7359#endif /* CONFIG_PCI */
ece1d636 7360EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7361EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7362EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7363EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7364EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7365EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7366EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7367EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7368EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7369EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7370EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7371EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7372EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7373
7374EXPORT_SYMBOL_GPL(ata_cable_40wire);
7375EXPORT_SYMBOL_GPL(ata_cable_80wire);
7376EXPORT_SYMBOL_GPL(ata_cable_unknown);
7377EXPORT_SYMBOL_GPL(ata_cable_sata);