]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/ata/libata-core.c
pata_hpt37x: Fix outstanding bug reports on the HPT374 and 37x cable detect
[mirror_ubuntu-eoan-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
2dcb407e 52#include <linux/io.h>
1da177e4 53#include <scsi/scsi.h>
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
1da177e4
LT
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
71static unsigned int ata_dev_set_feature(struct ata_device *dev,
72 u8 enable, u8 feature);
3373efd8 73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
baf4fdfa
ML
89int atapi_passthru16 = 1;
90module_param(atapi_passthru16, int, 0444);
91MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
92
c3c013a2
JG
93int libata_fua = 0;
94module_param_named(fua, libata_fua, int, 0444);
95MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
96
2dcb407e 97static int ata_ignore_hpa;
1e999736
AC
98module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
99MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
100
b3a70601
AC
101static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
102module_param_named(dma, libata_dma_mask, int, 0444);
103MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
104
a8601e5f
AM
105static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
106module_param(ata_probe_timeout, int, 0444);
107MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
108
6ebe9d86 109int libata_noacpi = 0;
d7d0dad6 110module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 111MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 112
1da177e4
LT
113MODULE_AUTHOR("Jeff Garzik");
114MODULE_DESCRIPTION("Library module for ATA devices");
115MODULE_LICENSE("GPL");
116MODULE_VERSION(DRV_VERSION);
117
0baab86b 118
1da177e4
LT
119/**
120 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
121 * @tf: Taskfile to convert
1da177e4 122 * @pmp: Port multiplier port
9977126c
TH
123 * @is_cmd: This FIS is for command
124 * @fis: Buffer into which data will output
1da177e4
LT
125 *
126 * Converts a standard ATA taskfile to a Serial ATA
127 * FIS structure (Register - Host to Device).
128 *
129 * LOCKING:
130 * Inherited from caller.
131 */
9977126c 132void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 133{
9977126c
TH
134 fis[0] = 0x27; /* Register - Host to Device FIS */
135 fis[1] = pmp & 0xf; /* Port multiplier number*/
136 if (is_cmd)
137 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
138
1da177e4
LT
139 fis[2] = tf->command;
140 fis[3] = tf->feature;
141
142 fis[4] = tf->lbal;
143 fis[5] = tf->lbam;
144 fis[6] = tf->lbah;
145 fis[7] = tf->device;
146
147 fis[8] = tf->hob_lbal;
148 fis[9] = tf->hob_lbam;
149 fis[10] = tf->hob_lbah;
150 fis[11] = tf->hob_feature;
151
152 fis[12] = tf->nsect;
153 fis[13] = tf->hob_nsect;
154 fis[14] = 0;
155 fis[15] = tf->ctl;
156
157 fis[16] = 0;
158 fis[17] = 0;
159 fis[18] = 0;
160 fis[19] = 0;
161}
162
163/**
164 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
165 * @fis: Buffer from which data will be input
166 * @tf: Taskfile to output
167 *
e12a1be6 168 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
169 *
170 * LOCKING:
171 * Inherited from caller.
172 */
173
057ace5e 174void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
175{
176 tf->command = fis[2]; /* status */
177 tf->feature = fis[3]; /* error */
178
179 tf->lbal = fis[4];
180 tf->lbam = fis[5];
181 tf->lbah = fis[6];
182 tf->device = fis[7];
183
184 tf->hob_lbal = fis[8];
185 tf->hob_lbam = fis[9];
186 tf->hob_lbah = fis[10];
187
188 tf->nsect = fis[12];
189 tf->hob_nsect = fis[13];
190}
191
8cbd6df1
AL
192static const u8 ata_rw_cmds[] = {
193 /* pio multi */
194 ATA_CMD_READ_MULTI,
195 ATA_CMD_WRITE_MULTI,
196 ATA_CMD_READ_MULTI_EXT,
197 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
198 0,
199 0,
200 0,
201 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
202 /* pio */
203 ATA_CMD_PIO_READ,
204 ATA_CMD_PIO_WRITE,
205 ATA_CMD_PIO_READ_EXT,
206 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
207 0,
208 0,
209 0,
210 0,
8cbd6df1
AL
211 /* dma */
212 ATA_CMD_READ,
213 ATA_CMD_WRITE,
214 ATA_CMD_READ_EXT,
9a3dccc4
TH
215 ATA_CMD_WRITE_EXT,
216 0,
217 0,
218 0,
219 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 220};
1da177e4
LT
221
222/**
8cbd6df1 223 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
224 * @tf: command to examine and configure
225 * @dev: device tf belongs to
1da177e4 226 *
2e9edbf8 227 * Examine the device configuration and tf->flags to calculate
8cbd6df1 228 * the proper read/write commands and protocol to use.
1da177e4
LT
229 *
230 * LOCKING:
231 * caller.
232 */
bd056d7e 233static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 234{
9a3dccc4 235 u8 cmd;
1da177e4 236
9a3dccc4 237 int index, fua, lba48, write;
2e9edbf8 238
9a3dccc4 239 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
240 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
241 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 242
8cbd6df1
AL
243 if (dev->flags & ATA_DFLAG_PIO) {
244 tf->protocol = ATA_PROT_PIO;
9a3dccc4 245 index = dev->multi_count ? 0 : 8;
9af5c9c9 246 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
247 /* Unable to use DMA due to host limitation */
248 tf->protocol = ATA_PROT_PIO;
0565c26d 249 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
250 } else {
251 tf->protocol = ATA_PROT_DMA;
9a3dccc4 252 index = 16;
8cbd6df1 253 }
1da177e4 254
9a3dccc4
TH
255 cmd = ata_rw_cmds[index + fua + lba48 + write];
256 if (cmd) {
257 tf->command = cmd;
258 return 0;
259 }
260 return -1;
1da177e4
LT
261}
262
35b649fe
TH
263/**
264 * ata_tf_read_block - Read block address from ATA taskfile
265 * @tf: ATA taskfile of interest
266 * @dev: ATA device @tf belongs to
267 *
268 * LOCKING:
269 * None.
270 *
271 * Read block address from @tf. This function can handle all
272 * three address formats - LBA, LBA48 and CHS. tf->protocol and
273 * flags select the address format to use.
274 *
275 * RETURNS:
276 * Block address read from @tf.
277 */
278u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
279{
280 u64 block = 0;
281
282 if (tf->flags & ATA_TFLAG_LBA) {
283 if (tf->flags & ATA_TFLAG_LBA48) {
284 block |= (u64)tf->hob_lbah << 40;
285 block |= (u64)tf->hob_lbam << 32;
286 block |= tf->hob_lbal << 24;
287 } else
288 block |= (tf->device & 0xf) << 24;
289
290 block |= tf->lbah << 16;
291 block |= tf->lbam << 8;
292 block |= tf->lbal;
293 } else {
294 u32 cyl, head, sect;
295
296 cyl = tf->lbam | (tf->lbah << 8);
297 head = tf->device & 0xf;
298 sect = tf->lbal;
299
300 block = (cyl * dev->heads + head) * dev->sectors + sect;
301 }
302
303 return block;
304}
305
bd056d7e
TH
306/**
307 * ata_build_rw_tf - Build ATA taskfile for given read/write request
308 * @tf: Target ATA taskfile
309 * @dev: ATA device @tf belongs to
310 * @block: Block address
311 * @n_block: Number of blocks
312 * @tf_flags: RW/FUA etc...
313 * @tag: tag
314 *
315 * LOCKING:
316 * None.
317 *
318 * Build ATA taskfile @tf for read/write request described by
319 * @block, @n_block, @tf_flags and @tag on @dev.
320 *
321 * RETURNS:
322 *
323 * 0 on success, -ERANGE if the request is too large for @dev,
324 * -EINVAL if the request is invalid.
325 */
326int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
327 u64 block, u32 n_block, unsigned int tf_flags,
328 unsigned int tag)
329{
330 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
331 tf->flags |= tf_flags;
332
6d1245bf 333 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
334 /* yay, NCQ */
335 if (!lba_48_ok(block, n_block))
336 return -ERANGE;
337
338 tf->protocol = ATA_PROT_NCQ;
339 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
340
341 if (tf->flags & ATA_TFLAG_WRITE)
342 tf->command = ATA_CMD_FPDMA_WRITE;
343 else
344 tf->command = ATA_CMD_FPDMA_READ;
345
346 tf->nsect = tag << 3;
347 tf->hob_feature = (n_block >> 8) & 0xff;
348 tf->feature = n_block & 0xff;
349
350 tf->hob_lbah = (block >> 40) & 0xff;
351 tf->hob_lbam = (block >> 32) & 0xff;
352 tf->hob_lbal = (block >> 24) & 0xff;
353 tf->lbah = (block >> 16) & 0xff;
354 tf->lbam = (block >> 8) & 0xff;
355 tf->lbal = block & 0xff;
356
357 tf->device = 1 << 6;
358 if (tf->flags & ATA_TFLAG_FUA)
359 tf->device |= 1 << 7;
360 } else if (dev->flags & ATA_DFLAG_LBA) {
361 tf->flags |= ATA_TFLAG_LBA;
362
363 if (lba_28_ok(block, n_block)) {
364 /* use LBA28 */
365 tf->device |= (block >> 24) & 0xf;
366 } else if (lba_48_ok(block, n_block)) {
367 if (!(dev->flags & ATA_DFLAG_LBA48))
368 return -ERANGE;
369
370 /* use LBA48 */
371 tf->flags |= ATA_TFLAG_LBA48;
372
373 tf->hob_nsect = (n_block >> 8) & 0xff;
374
375 tf->hob_lbah = (block >> 40) & 0xff;
376 tf->hob_lbam = (block >> 32) & 0xff;
377 tf->hob_lbal = (block >> 24) & 0xff;
378 } else
379 /* request too large even for LBA48 */
380 return -ERANGE;
381
382 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
383 return -EINVAL;
384
385 tf->nsect = n_block & 0xff;
386
387 tf->lbah = (block >> 16) & 0xff;
388 tf->lbam = (block >> 8) & 0xff;
389 tf->lbal = block & 0xff;
390
391 tf->device |= ATA_LBA;
392 } else {
393 /* CHS */
394 u32 sect, head, cyl, track;
395
396 /* The request -may- be too large for CHS addressing. */
397 if (!lba_28_ok(block, n_block))
398 return -ERANGE;
399
400 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
401 return -EINVAL;
402
403 /* Convert LBA to CHS */
404 track = (u32)block / dev->sectors;
405 cyl = track / dev->heads;
406 head = track % dev->heads;
407 sect = (u32)block % dev->sectors + 1;
408
409 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
410 (u32)block, track, cyl, head, sect);
411
412 /* Check whether the converted CHS can fit.
413 Cylinder: 0-65535
414 Head: 0-15
415 Sector: 1-255*/
416 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
417 return -ERANGE;
418
419 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
420 tf->lbal = sect;
421 tf->lbam = cyl;
422 tf->lbah = cyl >> 8;
423 tf->device |= head;
424 }
425
426 return 0;
427}
428
cb95d562
TH
429/**
430 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
431 * @pio_mask: pio_mask
432 * @mwdma_mask: mwdma_mask
433 * @udma_mask: udma_mask
434 *
435 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
436 * unsigned int xfer_mask.
437 *
438 * LOCKING:
439 * None.
440 *
441 * RETURNS:
442 * Packed xfer_mask.
443 */
444static unsigned int ata_pack_xfermask(unsigned int pio_mask,
445 unsigned int mwdma_mask,
446 unsigned int udma_mask)
447{
448 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
449 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
450 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
451}
452
c0489e4e
TH
453/**
454 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
455 * @xfer_mask: xfer_mask to unpack
456 * @pio_mask: resulting pio_mask
457 * @mwdma_mask: resulting mwdma_mask
458 * @udma_mask: resulting udma_mask
459 *
460 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
461 * Any NULL distination masks will be ignored.
462 */
463static void ata_unpack_xfermask(unsigned int xfer_mask,
464 unsigned int *pio_mask,
465 unsigned int *mwdma_mask,
466 unsigned int *udma_mask)
467{
468 if (pio_mask)
469 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
470 if (mwdma_mask)
471 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
472 if (udma_mask)
473 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
474}
475
cb95d562 476static const struct ata_xfer_ent {
be9a50c8 477 int shift, bits;
cb95d562
TH
478 u8 base;
479} ata_xfer_tbl[] = {
480 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
481 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
482 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
483 { -1, },
484};
485
486/**
487 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
488 * @xfer_mask: xfer_mask of interest
489 *
490 * Return matching XFER_* value for @xfer_mask. Only the highest
491 * bit of @xfer_mask is considered.
492 *
493 * LOCKING:
494 * None.
495 *
496 * RETURNS:
497 * Matching XFER_* value, 0 if no match found.
498 */
499static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
500{
501 int highbit = fls(xfer_mask) - 1;
502 const struct ata_xfer_ent *ent;
503
504 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
505 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
506 return ent->base + highbit - ent->shift;
507 return 0;
508}
509
510/**
511 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
512 * @xfer_mode: XFER_* of interest
513 *
514 * Return matching xfer_mask for @xfer_mode.
515 *
516 * LOCKING:
517 * None.
518 *
519 * RETURNS:
520 * Matching xfer_mask, 0 if no match found.
521 */
522static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
523{
524 const struct ata_xfer_ent *ent;
525
526 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
527 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
528 return 1 << (ent->shift + xfer_mode - ent->base);
529 return 0;
530}
531
532/**
533 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
534 * @xfer_mode: XFER_* of interest
535 *
536 * Return matching xfer_shift for @xfer_mode.
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Matching xfer_shift, -1 if no match found.
543 */
544static int ata_xfer_mode2shift(unsigned int xfer_mode)
545{
546 const struct ata_xfer_ent *ent;
547
548 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
549 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
550 return ent->shift;
551 return -1;
552}
553
1da177e4 554/**
1da7b0d0
TH
555 * ata_mode_string - convert xfer_mask to string
556 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
557 *
558 * Determine string which represents the highest speed
1da7b0d0 559 * (highest bit in @modemask).
1da177e4
LT
560 *
561 * LOCKING:
562 * None.
563 *
564 * RETURNS:
565 * Constant C string representing highest speed listed in
1da7b0d0 566 * @mode_mask, or the constant C string "<n/a>".
1da177e4 567 */
1da7b0d0 568static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 569{
75f554bc
TH
570 static const char * const xfer_mode_str[] = {
571 "PIO0",
572 "PIO1",
573 "PIO2",
574 "PIO3",
575 "PIO4",
b352e57d
AC
576 "PIO5",
577 "PIO6",
75f554bc
TH
578 "MWDMA0",
579 "MWDMA1",
580 "MWDMA2",
b352e57d
AC
581 "MWDMA3",
582 "MWDMA4",
75f554bc
TH
583 "UDMA/16",
584 "UDMA/25",
585 "UDMA/33",
586 "UDMA/44",
587 "UDMA/66",
588 "UDMA/100",
589 "UDMA/133",
590 "UDMA7",
591 };
1da7b0d0 592 int highbit;
1da177e4 593
1da7b0d0
TH
594 highbit = fls(xfer_mask) - 1;
595 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
596 return xfer_mode_str[highbit];
1da177e4 597 return "<n/a>";
1da177e4
LT
598}
599
4c360c81
TH
600static const char *sata_spd_string(unsigned int spd)
601{
602 static const char * const spd_str[] = {
603 "1.5 Gbps",
604 "3.0 Gbps",
605 };
606
607 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
608 return "<unknown>";
609 return spd_str[spd - 1];
610}
611
3373efd8 612void ata_dev_disable(struct ata_device *dev)
0b8efb0a 613{
09d7f9b0 614 if (ata_dev_enabled(dev)) {
9af5c9c9 615 if (ata_msg_drv(dev->link->ap))
09d7f9b0 616 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
617 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
618 ATA_DNXFER_QUIET);
0b8efb0a
TH
619 dev->class++;
620 }
621}
622
ca77329f
KCA
623static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
624{
625 struct ata_link *link = dev->link;
626 struct ata_port *ap = link->ap;
627 u32 scontrol;
628 unsigned int err_mask;
629 int rc;
630
631 /*
632 * disallow DIPM for drivers which haven't set
633 * ATA_FLAG_IPM. This is because when DIPM is enabled,
634 * phy ready will be set in the interrupt status on
635 * state changes, which will cause some drivers to
636 * think there are errors - additionally drivers will
637 * need to disable hot plug.
638 */
639 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
640 ap->pm_policy = NOT_AVAILABLE;
641 return -EINVAL;
642 }
643
644 /*
645 * For DIPM, we will only enable it for the
646 * min_power setting.
647 *
648 * Why? Because Disks are too stupid to know that
649 * If the host rejects a request to go to SLUMBER
650 * they should retry at PARTIAL, and instead it
651 * just would give up. So, for medium_power to
652 * work at all, we need to only allow HIPM.
653 */
654 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
655 if (rc)
656 return rc;
657
658 switch (policy) {
659 case MIN_POWER:
660 /* no restrictions on IPM transitions */
661 scontrol &= ~(0x3 << 8);
662 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
663 if (rc)
664 return rc;
665
666 /* enable DIPM */
667 if (dev->flags & ATA_DFLAG_DIPM)
668 err_mask = ata_dev_set_feature(dev,
669 SETFEATURES_SATA_ENABLE, SATA_DIPM);
670 break;
671 case MEDIUM_POWER:
672 /* allow IPM to PARTIAL */
673 scontrol &= ~(0x1 << 8);
674 scontrol |= (0x2 << 8);
675 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
676 if (rc)
677 return rc;
678
f5456b63
KCA
679 /*
680 * we don't have to disable DIPM since IPM flags
681 * disallow transitions to SLUMBER, which effectively
682 * disable DIPM if it does not support PARTIAL
683 */
ca77329f
KCA
684 break;
685 case NOT_AVAILABLE:
686 case MAX_PERFORMANCE:
687 /* disable all IPM transitions */
688 scontrol |= (0x3 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
f5456b63
KCA
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow all transitions which effectively
696 * disable DIPM anyway.
697 */
ca77329f
KCA
698 break;
699 }
700
701 /* FIXME: handle SET FEATURES failure */
702 (void) err_mask;
703
704 return 0;
705}
706
707/**
708 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
709 * @dev: device to enable power management
710 * @policy: the link power management policy
ca77329f
KCA
711 *
712 * Enable SATA Interface power management. This will enable
713 * Device Interface Power Management (DIPM) for min_power
714 * policy, and then call driver specific callbacks for
715 * enabling Host Initiated Power management.
716 *
717 * Locking: Caller.
718 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
719 */
720void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
721{
722 int rc = 0;
723 struct ata_port *ap = dev->link->ap;
724
725 /* set HIPM first, then DIPM */
726 if (ap->ops->enable_pm)
727 rc = ap->ops->enable_pm(ap, policy);
728 if (rc)
729 goto enable_pm_out;
730 rc = ata_dev_set_dipm(dev, policy);
731
732enable_pm_out:
733 if (rc)
734 ap->pm_policy = MAX_PERFORMANCE;
735 else
736 ap->pm_policy = policy;
737 return /* rc */; /* hopefully we can use 'rc' eventually */
738}
739
1992a5ed 740#ifdef CONFIG_PM
ca77329f
KCA
741/**
742 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 743 * @dev: device to disable power management
ca77329f
KCA
744 *
745 * Disable SATA Interface power management. This will disable
746 * Device Interface Power Management (DIPM) without changing
747 * policy, call driver specific callbacks for disabling Host
748 * Initiated Power management.
749 *
750 * Locking: Caller.
751 * Returns: void
752 */
753static void ata_dev_disable_pm(struct ata_device *dev)
754{
755 struct ata_port *ap = dev->link->ap;
756
757 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
758 if (ap->ops->disable_pm)
759 ap->ops->disable_pm(ap);
760}
1992a5ed 761#endif /* CONFIG_PM */
ca77329f
KCA
762
763void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
764{
765 ap->pm_policy = policy;
766 ap->link.eh_info.action |= ATA_EHI_LPM;
767 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
768 ata_port_schedule_eh(ap);
769}
770
1992a5ed 771#ifdef CONFIG_PM
ca77329f
KCA
772static void ata_lpm_enable(struct ata_host *host)
773{
774 struct ata_link *link;
775 struct ata_port *ap;
776 struct ata_device *dev;
777 int i;
778
779 for (i = 0; i < host->n_ports; i++) {
780 ap = host->ports[i];
781 ata_port_for_each_link(link, ap) {
782 ata_link_for_each_dev(dev, link)
783 ata_dev_disable_pm(dev);
784 }
785 }
786}
787
788static void ata_lpm_disable(struct ata_host *host)
789{
790 int i;
791
792 for (i = 0; i < host->n_ports; i++) {
793 struct ata_port *ap = host->ports[i];
794 ata_lpm_schedule(ap, ap->pm_policy);
795 }
796}
1992a5ed 797#endif /* CONFIG_PM */
ca77329f
KCA
798
799
1da177e4 800/**
0d5ff566 801 * ata_devchk - PATA device presence detection
1da177e4
LT
802 * @ap: ATA channel to examine
803 * @device: Device to examine (starting at zero)
804 *
805 * This technique was originally described in
806 * Hale Landis's ATADRVR (www.ata-atapi.com), and
807 * later found its way into the ATA/ATAPI spec.
808 *
809 * Write a pattern to the ATA shadow registers,
810 * and if a device is present, it will respond by
811 * correctly storing and echoing back the
812 * ATA shadow register contents.
813 *
814 * LOCKING:
815 * caller.
816 */
817
0d5ff566 818static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
819{
820 struct ata_ioports *ioaddr = &ap->ioaddr;
821 u8 nsect, lbal;
822
823 ap->ops->dev_select(ap, device);
824
0d5ff566
TH
825 iowrite8(0x55, ioaddr->nsect_addr);
826 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 827
0d5ff566
TH
828 iowrite8(0xaa, ioaddr->nsect_addr);
829 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 830
0d5ff566
TH
831 iowrite8(0x55, ioaddr->nsect_addr);
832 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 833
0d5ff566
TH
834 nsect = ioread8(ioaddr->nsect_addr);
835 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
836
837 if ((nsect == 0x55) && (lbal == 0xaa))
838 return 1; /* we found a device */
839
840 return 0; /* nothing found */
841}
842
1da177e4
LT
843/**
844 * ata_dev_classify - determine device type based on ATA-spec signature
845 * @tf: ATA taskfile register set for device to be identified
846 *
847 * Determine from taskfile register contents whether a device is
848 * ATA or ATAPI, as per "Signature and persistence" section
849 * of ATA/PI spec (volume 1, sect 5.14).
850 *
851 * LOCKING:
852 * None.
853 *
854 * RETURNS:
633273a3
TH
855 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
856 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 857 */
057ace5e 858unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
859{
860 /* Apple's open source Darwin code hints that some devices only
861 * put a proper signature into the LBA mid/high registers,
862 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
863 *
864 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
865 * signatures for ATA and ATAPI devices attached on SerialATA,
866 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
867 * spec has never mentioned about using different signatures
868 * for ATA/ATAPI devices. Then, Serial ATA II: Port
869 * Multiplier specification began to use 0x69/0x96 to identify
870 * port multpliers and 0x3c/0xc3 to identify SEMB device.
871 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
872 * 0x69/0x96 shortly and described them as reserved for
873 * SerialATA.
874 *
875 * We follow the current spec and consider that 0x69/0x96
876 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 877 */
633273a3 878 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
879 DPRINTK("found ATA device by sig\n");
880 return ATA_DEV_ATA;
881 }
882
633273a3 883 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
884 DPRINTK("found ATAPI device by sig\n");
885 return ATA_DEV_ATAPI;
886 }
887
633273a3
TH
888 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
889 DPRINTK("found PMP device by sig\n");
890 return ATA_DEV_PMP;
891 }
892
893 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 894 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
895 return ATA_DEV_SEMB_UNSUP; /* not yet */
896 }
897
1da177e4
LT
898 DPRINTK("unknown device\n");
899 return ATA_DEV_UNKNOWN;
900}
901
902/**
903 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
904 * @dev: ATA device to classify (starting at zero)
905 * @present: device seems present
b4dc7623 906 * @r_err: Value of error register on completion
1da177e4
LT
907 *
908 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
909 * an ATA/ATAPI-defined set of values is placed in the ATA
910 * shadow registers, indicating the results of device detection
911 * and diagnostics.
912 *
913 * Select the ATA device, and read the values from the ATA shadow
914 * registers. Then parse according to the Error register value,
915 * and the spec-defined values examined by ata_dev_classify().
916 *
917 * LOCKING:
918 * caller.
b4dc7623
TH
919 *
920 * RETURNS:
921 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 922 */
3f19859e
TH
923unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
924 u8 *r_err)
1da177e4 925{
3f19859e 926 struct ata_port *ap = dev->link->ap;
1da177e4
LT
927 struct ata_taskfile tf;
928 unsigned int class;
929 u8 err;
930
3f19859e 931 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
932
933 memset(&tf, 0, sizeof(tf));
934
1da177e4 935 ap->ops->tf_read(ap, &tf);
0169e284 936 err = tf.feature;
b4dc7623
TH
937 if (r_err)
938 *r_err = err;
1da177e4 939
93590859 940 /* see if device passed diags: if master then continue and warn later */
3f19859e 941 if (err == 0 && dev->devno == 0)
93590859 942 /* diagnostic fail : do nothing _YET_ */
3f19859e 943 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 944 else if (err == 1)
1da177e4 945 /* do nothing */ ;
3f19859e 946 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
947 /* do nothing */ ;
948 else
b4dc7623 949 return ATA_DEV_NONE;
1da177e4 950
b4dc7623 951 /* determine if device is ATA or ATAPI */
1da177e4 952 class = ata_dev_classify(&tf);
b4dc7623 953
d7fbee05
TH
954 if (class == ATA_DEV_UNKNOWN) {
955 /* If the device failed diagnostic, it's likely to
956 * have reported incorrect device signature too.
957 * Assume ATA device if the device seems present but
958 * device signature is invalid with diagnostic
959 * failure.
960 */
961 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
962 class = ATA_DEV_ATA;
963 else
964 class = ATA_DEV_NONE;
965 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
966 class = ATA_DEV_NONE;
967
b4dc7623 968 return class;
1da177e4
LT
969}
970
971/**
6a62a04d 972 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
973 * @id: IDENTIFY DEVICE results we will examine
974 * @s: string into which data is output
975 * @ofs: offset into identify device page
976 * @len: length of string to return. must be an even number.
977 *
978 * The strings in the IDENTIFY DEVICE page are broken up into
979 * 16-bit chunks. Run through the string, and output each
980 * 8-bit chunk linearly, regardless of platform.
981 *
982 * LOCKING:
983 * caller.
984 */
985
6a62a04d
TH
986void ata_id_string(const u16 *id, unsigned char *s,
987 unsigned int ofs, unsigned int len)
1da177e4
LT
988{
989 unsigned int c;
990
991 while (len > 0) {
992 c = id[ofs] >> 8;
993 *s = c;
994 s++;
995
996 c = id[ofs] & 0xff;
997 *s = c;
998 s++;
999
1000 ofs++;
1001 len -= 2;
1002 }
1003}
1004
0e949ff3 1005/**
6a62a04d 1006 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1007 * @id: IDENTIFY DEVICE results we will examine
1008 * @s: string into which data is output
1009 * @ofs: offset into identify device page
1010 * @len: length of string to return. must be an odd number.
1011 *
6a62a04d 1012 * This function is identical to ata_id_string except that it
0e949ff3
TH
1013 * trims trailing spaces and terminates the resulting string with
1014 * null. @len must be actual maximum length (even number) + 1.
1015 *
1016 * LOCKING:
1017 * caller.
1018 */
6a62a04d
TH
1019void ata_id_c_string(const u16 *id, unsigned char *s,
1020 unsigned int ofs, unsigned int len)
0e949ff3
TH
1021{
1022 unsigned char *p;
1023
1024 WARN_ON(!(len & 1));
1025
6a62a04d 1026 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1027
1028 p = s + strnlen(s, len - 1);
1029 while (p > s && p[-1] == ' ')
1030 p--;
1031 *p = '\0';
1032}
0baab86b 1033
db6f8759
TH
1034static u64 ata_id_n_sectors(const u16 *id)
1035{
1036 if (ata_id_has_lba(id)) {
1037 if (ata_id_has_lba48(id))
1038 return ata_id_u64(id, 100);
1039 else
1040 return ata_id_u32(id, 60);
1041 } else {
1042 if (ata_id_current_chs_valid(id))
1043 return ata_id_u32(id, 57);
1044 else
1045 return id[1] * id[3] * id[6];
1046 }
1047}
1048
1e999736
AC
1049static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1050{
1051 u64 sectors = 0;
1052
1053 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1054 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1055 sectors |= (tf->hob_lbal & 0xff) << 24;
1056 sectors |= (tf->lbah & 0xff) << 16;
1057 sectors |= (tf->lbam & 0xff) << 8;
1058 sectors |= (tf->lbal & 0xff);
1059
1060 return ++sectors;
1061}
1062
1063static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1064{
1065 u64 sectors = 0;
1066
1067 sectors |= (tf->device & 0x0f) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1071
1072 return ++sectors;
1073}
1074
1075/**
c728a914
TH
1076 * ata_read_native_max_address - Read native max address
1077 * @dev: target device
1078 * @max_sectors: out parameter for the result native max address
1e999736 1079 *
c728a914
TH
1080 * Perform an LBA48 or LBA28 native size query upon the device in
1081 * question.
1e999736 1082 *
c728a914
TH
1083 * RETURNS:
1084 * 0 on success, -EACCES if command is aborted by the drive.
1085 * -EIO on other errors.
1e999736 1086 */
c728a914 1087static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1088{
c728a914 1089 unsigned int err_mask;
1e999736 1090 struct ata_taskfile tf;
c728a914 1091 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1092
1093 ata_tf_init(dev, &tf);
1094
c728a914 1095 /* always clear all address registers */
1e999736 1096 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1097
c728a914
TH
1098 if (lba48) {
1099 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1100 tf.flags |= ATA_TFLAG_LBA48;
1101 } else
1102 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1103
1e999736 1104 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1105 tf.device |= ATA_LBA;
1106
2b789108 1107 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1108 if (err_mask) {
1109 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1110 "max address (err_mask=0x%x)\n", err_mask);
1111 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1112 return -EACCES;
1113 return -EIO;
1114 }
1e999736 1115
c728a914
TH
1116 if (lba48)
1117 *max_sectors = ata_tf_to_lba48(&tf);
1118 else
1119 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1120 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1121 (*max_sectors)--;
c728a914 1122 return 0;
1e999736
AC
1123}
1124
1125/**
c728a914
TH
1126 * ata_set_max_sectors - Set max sectors
1127 * @dev: target device
6b38d1d1 1128 * @new_sectors: new max sectors value to set for the device
1e999736 1129 *
c728a914
TH
1130 * Set max sectors of @dev to @new_sectors.
1131 *
1132 * RETURNS:
1133 * 0 on success, -EACCES if command is aborted or denied (due to
1134 * previous non-volatile SET_MAX) by the drive. -EIO on other
1135 * errors.
1e999736 1136 */
05027adc 1137static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1138{
c728a914 1139 unsigned int err_mask;
1e999736 1140 struct ata_taskfile tf;
c728a914 1141 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1142
1143 new_sectors--;
1144
1145 ata_tf_init(dev, &tf);
1146
1e999736 1147 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1148
1149 if (lba48) {
1150 tf.command = ATA_CMD_SET_MAX_EXT;
1151 tf.flags |= ATA_TFLAG_LBA48;
1152
1153 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1154 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1155 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1156 } else {
c728a914
TH
1157 tf.command = ATA_CMD_SET_MAX;
1158
1e582ba4
TH
1159 tf.device |= (new_sectors >> 24) & 0xf;
1160 }
1161
1e999736 1162 tf.protocol |= ATA_PROT_NODATA;
c728a914 1163 tf.device |= ATA_LBA;
1e999736
AC
1164
1165 tf.lbal = (new_sectors >> 0) & 0xff;
1166 tf.lbam = (new_sectors >> 8) & 0xff;
1167 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1168
2b789108 1169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1170 if (err_mask) {
1171 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1172 "max address (err_mask=0x%x)\n", err_mask);
1173 if (err_mask == AC_ERR_DEV &&
1174 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1175 return -EACCES;
1176 return -EIO;
1177 }
1178
c728a914 1179 return 0;
1e999736
AC
1180}
1181
1182/**
1183 * ata_hpa_resize - Resize a device with an HPA set
1184 * @dev: Device to resize
1185 *
1186 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1187 * it if required to the full size of the media. The caller must check
1188 * the drive has the HPA feature set enabled.
05027adc
TH
1189 *
1190 * RETURNS:
1191 * 0 on success, -errno on failure.
1e999736 1192 */
05027adc 1193static int ata_hpa_resize(struct ata_device *dev)
1e999736 1194{
05027adc
TH
1195 struct ata_eh_context *ehc = &dev->link->eh_context;
1196 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1197 u64 sectors = ata_id_n_sectors(dev->id);
1198 u64 native_sectors;
c728a914 1199 int rc;
a617c09f 1200
05027adc
TH
1201 /* do we need to do it? */
1202 if (dev->class != ATA_DEV_ATA ||
1203 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1204 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1205 return 0;
1e999736 1206
05027adc
TH
1207 /* read native max address */
1208 rc = ata_read_native_max_address(dev, &native_sectors);
1209 if (rc) {
1210 /* If HPA isn't going to be unlocked, skip HPA
1211 * resizing from the next try.
1212 */
1213 if (!ata_ignore_hpa) {
1214 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1215 "broken, will skip HPA handling\n");
1216 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1217
1218 /* we can continue if device aborted the command */
1219 if (rc == -EACCES)
1220 rc = 0;
1e999736 1221 }
37301a55 1222
05027adc
TH
1223 return rc;
1224 }
1225
1226 /* nothing to do? */
1227 if (native_sectors <= sectors || !ata_ignore_hpa) {
1228 if (!print_info || native_sectors == sectors)
1229 return 0;
1230
1231 if (native_sectors > sectors)
1232 ata_dev_printk(dev, KERN_INFO,
1233 "HPA detected: current %llu, native %llu\n",
1234 (unsigned long long)sectors,
1235 (unsigned long long)native_sectors);
1236 else if (native_sectors < sectors)
1237 ata_dev_printk(dev, KERN_WARNING,
1238 "native sectors (%llu) is smaller than "
1239 "sectors (%llu)\n",
1240 (unsigned long long)native_sectors,
1241 (unsigned long long)sectors);
1242 return 0;
1243 }
1244
1245 /* let's unlock HPA */
1246 rc = ata_set_max_sectors(dev, native_sectors);
1247 if (rc == -EACCES) {
1248 /* if device aborted the command, skip HPA resizing */
1249 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1250 "(%llu -> %llu), skipping HPA handling\n",
1251 (unsigned long long)sectors,
1252 (unsigned long long)native_sectors);
1253 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1254 return 0;
1255 } else if (rc)
1256 return rc;
1257
1258 /* re-read IDENTIFY data */
1259 rc = ata_dev_reread_id(dev, 0);
1260 if (rc) {
1261 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1262 "data after HPA resizing\n");
1263 return rc;
1264 }
1265
1266 if (print_info) {
1267 u64 new_sectors = ata_id_n_sectors(dev->id);
1268 ata_dev_printk(dev, KERN_INFO,
1269 "HPA unlocked: %llu -> %llu, native %llu\n",
1270 (unsigned long long)sectors,
1271 (unsigned long long)new_sectors,
1272 (unsigned long long)native_sectors);
1273 }
1274
1275 return 0;
1e999736
AC
1276}
1277
10305f0f
AC
1278/**
1279 * ata_id_to_dma_mode - Identify DMA mode from id block
1280 * @dev: device to identify
cc261267 1281 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1282 *
1283 * Set up the timing values for the device based upon the identify
1284 * reported values for the DMA mode. This function is used by drivers
1285 * which rely upon firmware configured modes, but wish to report the
1286 * mode correctly when possible.
1287 *
1288 * In addition we emit similarly formatted messages to the default
1289 * ata_dev_set_mode handler, in order to provide consistency of
1290 * presentation.
1291 */
1292
1293void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1294{
1295 unsigned int mask;
1296 u8 mode;
1297
1298 /* Pack the DMA modes */
1299 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1300 if (dev->id[53] & 0x04)
1301 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1302
1303 /* Select the mode in use */
1304 mode = ata_xfer_mask2mode(mask);
1305
1306 if (mode != 0) {
1307 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1308 ata_mode_string(mask));
1309 } else {
1310 /* SWDMA perhaps ? */
1311 mode = unknown;
1312 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1313 }
1314
1315 /* Configure the device reporting */
1316 dev->xfer_mode = mode;
1317 dev->xfer_shift = ata_xfer_mode2shift(mode);
1318}
1319
0baab86b
EF
1320/**
1321 * ata_noop_dev_select - Select device 0/1 on ATA bus
1322 * @ap: ATA channel to manipulate
1323 * @device: ATA device (numbered from zero) to select
1324 *
1325 * This function performs no actual function.
1326 *
1327 * May be used as the dev_select() entry in ata_port_operations.
1328 *
1329 * LOCKING:
1330 * caller.
1331 */
2dcb407e 1332void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1333{
1334}
1335
0baab86b 1336
1da177e4
LT
1337/**
1338 * ata_std_dev_select - Select device 0/1 on ATA bus
1339 * @ap: ATA channel to manipulate
1340 * @device: ATA device (numbered from zero) to select
1341 *
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
0baab86b
EF
1344 * ATA channel. Works with both PIO and MMIO.
1345 *
1346 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1347 *
1348 * LOCKING:
1349 * caller.
1350 */
1351
2dcb407e 1352void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1353{
1354 u8 tmp;
1355
1356 if (device == 0)
1357 tmp = ATA_DEVICE_OBS;
1358 else
1359 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1360
0d5ff566 1361 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1362 ata_pause(ap); /* needed; also flushes, for mmio */
1363}
1364
1365/**
1366 * ata_dev_select - Select device 0/1 on ATA bus
1367 * @ap: ATA channel to manipulate
1368 * @device: ATA device (numbered from zero) to select
1369 * @wait: non-zero to wait for Status register BSY bit to clear
1370 * @can_sleep: non-zero if context allows sleeping
1371 *
1372 * Use the method defined in the ATA specification to
1373 * make either device 0, or device 1, active on the
1374 * ATA channel.
1375 *
1376 * This is a high-level version of ata_std_dev_select(),
1377 * which additionally provides the services of inserting
1378 * the proper pauses and status polling, where needed.
1379 *
1380 * LOCKING:
1381 * caller.
1382 */
1383
1384void ata_dev_select(struct ata_port *ap, unsigned int device,
1385 unsigned int wait, unsigned int can_sleep)
1386{
88574551 1387 if (ata_msg_probe(ap))
44877b4e
TH
1388 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1389 "device %u, wait %u\n", device, wait);
1da177e4
LT
1390
1391 if (wait)
1392 ata_wait_idle(ap);
1393
1394 ap->ops->dev_select(ap, device);
1395
1396 if (wait) {
9af5c9c9 1397 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1398 msleep(150);
1399 ata_wait_idle(ap);
1400 }
1401}
1402
1403/**
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1405 * @id: IDENTIFY DEVICE page to dump
1da177e4 1406 *
0bd3300a
TH
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1da177e4
LT
1409 *
1410 * LOCKING:
1411 * caller.
1412 */
1413
0bd3300a 1414static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1415{
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
0bd3300a
TH
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1da177e4
LT
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
0bd3300a
TH
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1da177e4
LT
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
0bd3300a
TH
1438 id[88],
1439 id[93]);
1da177e4
LT
1440}
1441
cb95d562
TH
1442/**
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1445 *
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1448 *
1449 * FIXME: pre IDE drive timing (do we care ?).
1450 *
1451 * LOCKING:
1452 * None.
1453 *
1454 * RETURNS:
1455 * Computed xfermask
1456 */
1457static unsigned int ata_id_xfermask(const u16 *id)
1458{
1459 unsigned int pio_mask, mwdma_mask, udma_mask;
1460
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1470 */
7a0f1c8a 1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1472 if (mode < 5) /* Valid PIO range */
2dcb407e 1473 pio_mask = (2 << mode) - 1;
46767aeb
AC
1474 else
1475 pio_mask = 1;
cb95d562
TH
1476
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1482 */
1483 }
1484
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1486
b352e57d
AC
1487 if (ata_id_is_cfa(id)) {
1488 /*
1489 * Process compact flash extended modes
1490 */
1491 int pio = id[163] & 0x7;
1492 int dma = (id[163] >> 3) & 7;
1493
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1502 }
1503
fb21f0d0
TH
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1507
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1509}
1510
86e45b6b
TH
1511/**
1512 * ata_port_queue_task - Queue port_task
1513 * @ap: The ata_port to queue port_task for
e2a7f77a 1514 * @fn: workqueue function to be scheduled
65f27f38 1515 * @data: data for @fn to use
e2a7f77a 1516 * @delay: delay time for workqueue function
86e45b6b
TH
1517 *
1518 * Schedule @fn(@data) for execution after @delay jiffies using
1519 * port_task. There is one port_task per port and it's the
1520 * user(low level driver)'s responsibility to make sure that only
1521 * one task is active at any given time.
1522 *
1523 * libata core layer takes care of synchronization between
1524 * port_task and EH. ata_port_queue_task() may be ignored for EH
1525 * synchronization.
1526 *
1527 * LOCKING:
1528 * Inherited from caller.
1529 */
65f27f38 1530void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1531 unsigned long delay)
1532{
65f27f38
DH
1533 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1534 ap->port_task_data = data;
86e45b6b 1535
45a66c1c
ON
1536 /* may fail if ata_port_flush_task() in progress */
1537 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1538}
1539
1540/**
1541 * ata_port_flush_task - Flush port_task
1542 * @ap: The ata_port to flush port_task for
1543 *
1544 * After this function completes, port_task is guranteed not to
1545 * be running or scheduled.
1546 *
1547 * LOCKING:
1548 * Kernel thread context (may sleep)
1549 */
1550void ata_port_flush_task(struct ata_port *ap)
1551{
86e45b6b
TH
1552 DPRINTK("ENTER\n");
1553
45a66c1c 1554 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1555
0dd4b21f
BP
1556 if (ata_msg_ctl(ap))
1557 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1558}
1559
7102d230 1560static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1561{
77853bf2 1562 struct completion *waiting = qc->private_data;
a2a7a662 1563
a2a7a662 1564 complete(waiting);
a2a7a662
TH
1565}
1566
1567/**
2432697b 1568 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1569 * @dev: Device to which the command is sent
1570 * @tf: Taskfile registers for the command and the result
d69cf37d 1571 * @cdb: CDB for packet command
a2a7a662 1572 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1573 * @sgl: sg list for the data buffer of the command
2432697b 1574 * @n_elem: Number of sg entries
2b789108 1575 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1576 *
1577 * Executes libata internal command with timeout. @tf contains
1578 * command on entry and result on return. Timeout and error
1579 * conditions are reported via return value. No recovery action
1580 * is taken after a command times out. It's caller's duty to
1581 * clean up after timeout.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
551e8889
TH
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1588 */
2432697b
TH
1589unsigned ata_exec_internal_sg(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
87260216 1591 int dma_dir, struct scatterlist *sgl,
2b789108 1592 unsigned int n_elem, unsigned long timeout)
a2a7a662 1593{
9af5c9c9
TH
1594 struct ata_link *link = dev->link;
1595 struct ata_port *ap = link->ap;
a2a7a662
TH
1596 u8 command = tf->command;
1597 struct ata_queued_cmd *qc;
2ab7db1f 1598 unsigned int tag, preempted_tag;
dedaf2b0 1599 u32 preempted_sactive, preempted_qc_active;
da917d69 1600 int preempted_nr_active_links;
60be6b9a 1601 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1602 unsigned long flags;
77853bf2 1603 unsigned int err_mask;
d95a717f 1604 int rc;
a2a7a662 1605
ba6a1308 1606 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1607
e3180499 1608 /* no internal command while frozen */
b51e9e5d 1609 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1610 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1611 return AC_ERR_SYSTEM;
1612 }
1613
2ab7db1f 1614 /* initialize internal qc */
a2a7a662 1615
2ab7db1f
TH
1616 /* XXX: Tag 0 is used for drivers with legacy EH as some
1617 * drivers choke if any other tag is given. This breaks
1618 * ata_tag_internal() test for those drivers. Don't use new
1619 * EH stuff without converting to it.
1620 */
1621 if (ap->ops->error_handler)
1622 tag = ATA_TAG_INTERNAL;
1623 else
1624 tag = 0;
1625
6cec4a39 1626 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1627 BUG();
f69499f4 1628 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1629
1630 qc->tag = tag;
1631 qc->scsicmd = NULL;
1632 qc->ap = ap;
1633 qc->dev = dev;
1634 ata_qc_reinit(qc);
1635
9af5c9c9
TH
1636 preempted_tag = link->active_tag;
1637 preempted_sactive = link->sactive;
dedaf2b0 1638 preempted_qc_active = ap->qc_active;
da917d69 1639 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1640 link->active_tag = ATA_TAG_POISON;
1641 link->sactive = 0;
dedaf2b0 1642 ap->qc_active = 0;
da917d69 1643 ap->nr_active_links = 0;
2ab7db1f
TH
1644
1645 /* prepare & issue qc */
a2a7a662 1646 qc->tf = *tf;
d69cf37d
TH
1647 if (cdb)
1648 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1649 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1650 qc->dma_dir = dma_dir;
1651 if (dma_dir != DMA_NONE) {
2432697b 1652 unsigned int i, buflen = 0;
87260216 1653 struct scatterlist *sg;
2432697b 1654
87260216
JA
1655 for_each_sg(sgl, sg, n_elem, i)
1656 buflen += sg->length;
2432697b 1657
87260216 1658 ata_sg_init(qc, sgl, n_elem);
49c80429 1659 qc->nbytes = buflen;
a2a7a662
TH
1660 }
1661
77853bf2 1662 qc->private_data = &wait;
a2a7a662
TH
1663 qc->complete_fn = ata_qc_complete_internal;
1664
8e0e694a 1665 ata_qc_issue(qc);
a2a7a662 1666
ba6a1308 1667 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1668
2b789108
TH
1669 if (!timeout)
1670 timeout = ata_probe_timeout * 1000 / HZ;
1671
1672 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1673
1674 ata_port_flush_task(ap);
41ade50c 1675
d95a717f 1676 if (!rc) {
ba6a1308 1677 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1678
1679 /* We're racing with irq here. If we lose, the
1680 * following test prevents us from completing the qc
d95a717f
TH
1681 * twice. If we win, the port is frozen and will be
1682 * cleaned up by ->post_internal_cmd().
a2a7a662 1683 */
77853bf2 1684 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1685 qc->err_mask |= AC_ERR_TIMEOUT;
1686
1687 if (ap->ops->error_handler)
1688 ata_port_freeze(ap);
1689 else
1690 ata_qc_complete(qc);
f15a1daf 1691
0dd4b21f
BP
1692 if (ata_msg_warn(ap))
1693 ata_dev_printk(dev, KERN_WARNING,
88574551 1694 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1695 }
1696
ba6a1308 1697 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1698 }
1699
d95a717f
TH
1700 /* do post_internal_cmd */
1701 if (ap->ops->post_internal_cmd)
1702 ap->ops->post_internal_cmd(qc);
1703
a51d644a
TH
1704 /* perform minimal error analysis */
1705 if (qc->flags & ATA_QCFLAG_FAILED) {
1706 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1707 qc->err_mask |= AC_ERR_DEV;
1708
1709 if (!qc->err_mask)
1710 qc->err_mask |= AC_ERR_OTHER;
1711
1712 if (qc->err_mask & ~AC_ERR_OTHER)
1713 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1714 }
1715
15869303 1716 /* finish up */
ba6a1308 1717 spin_lock_irqsave(ap->lock, flags);
15869303 1718
e61e0672 1719 *tf = qc->result_tf;
77853bf2
TH
1720 err_mask = qc->err_mask;
1721
1722 ata_qc_free(qc);
9af5c9c9
TH
1723 link->active_tag = preempted_tag;
1724 link->sactive = preempted_sactive;
dedaf2b0 1725 ap->qc_active = preempted_qc_active;
da917d69 1726 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1727
1f7dd3e9
TH
1728 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1729 * Until those drivers are fixed, we detect the condition
1730 * here, fail the command with AC_ERR_SYSTEM and reenable the
1731 * port.
1732 *
1733 * Note that this doesn't change any behavior as internal
1734 * command failure results in disabling the device in the
1735 * higher layer for LLDDs without new reset/EH callbacks.
1736 *
1737 * Kill the following code as soon as those drivers are fixed.
1738 */
198e0fed 1739 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1740 err_mask |= AC_ERR_SYSTEM;
1741 ata_port_probe(ap);
1742 }
1743
ba6a1308 1744 spin_unlock_irqrestore(ap->lock, flags);
15869303 1745
77853bf2 1746 return err_mask;
a2a7a662
TH
1747}
1748
2432697b 1749/**
33480a0e 1750 * ata_exec_internal - execute libata internal command
2432697b
TH
1751 * @dev: Device to which the command is sent
1752 * @tf: Taskfile registers for the command and the result
1753 * @cdb: CDB for packet command
1754 * @dma_dir: Data tranfer direction of the command
1755 * @buf: Data buffer of the command
1756 * @buflen: Length of data buffer
2b789108 1757 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1758 *
1759 * Wrapper around ata_exec_internal_sg() which takes simple
1760 * buffer instead of sg list.
1761 *
1762 * LOCKING:
1763 * None. Should be called with kernel context, might sleep.
1764 *
1765 * RETURNS:
1766 * Zero on success, AC_ERR_* mask on failure
1767 */
1768unsigned ata_exec_internal(struct ata_device *dev,
1769 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1770 int dma_dir, void *buf, unsigned int buflen,
1771 unsigned long timeout)
2432697b 1772{
33480a0e
TH
1773 struct scatterlist *psg = NULL, sg;
1774 unsigned int n_elem = 0;
2432697b 1775
33480a0e
TH
1776 if (dma_dir != DMA_NONE) {
1777 WARN_ON(!buf);
1778 sg_init_one(&sg, buf, buflen);
1779 psg = &sg;
1780 n_elem++;
1781 }
2432697b 1782
2b789108
TH
1783 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1784 timeout);
2432697b
TH
1785}
1786
977e6b9f
TH
1787/**
1788 * ata_do_simple_cmd - execute simple internal command
1789 * @dev: Device to which the command is sent
1790 * @cmd: Opcode to execute
1791 *
1792 * Execute a 'simple' command, that only consists of the opcode
1793 * 'cmd' itself, without filling any other registers
1794 *
1795 * LOCKING:
1796 * Kernel thread context (may sleep).
1797 *
1798 * RETURNS:
1799 * Zero on success, AC_ERR_* mask on failure
e58eb583 1800 */
77b08fb5 1801unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1802{
1803 struct ata_taskfile tf;
e58eb583
TH
1804
1805 ata_tf_init(dev, &tf);
1806
1807 tf.command = cmd;
1808 tf.flags |= ATA_TFLAG_DEVICE;
1809 tf.protocol = ATA_PROT_NODATA;
1810
2b789108 1811 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1812}
1813
1bc4ccff
AC
1814/**
1815 * ata_pio_need_iordy - check if iordy needed
1816 * @adev: ATA device
1817 *
1818 * Check if the current speed of the device requires IORDY. Used
1819 * by various controllers for chip configuration.
1820 */
a617c09f 1821
1bc4ccff
AC
1822unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1823{
432729f0
AC
1824 /* Controller doesn't support IORDY. Probably a pointless check
1825 as the caller should know this */
9af5c9c9 1826 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1827 return 0;
432729f0
AC
1828 /* PIO3 and higher it is mandatory */
1829 if (adev->pio_mode > XFER_PIO_2)
1830 return 1;
1831 /* We turn it on when possible */
1832 if (ata_id_has_iordy(adev->id))
1bc4ccff 1833 return 1;
432729f0
AC
1834 return 0;
1835}
2e9edbf8 1836
432729f0
AC
1837/**
1838 * ata_pio_mask_no_iordy - Return the non IORDY mask
1839 * @adev: ATA device
1840 *
1841 * Compute the highest mode possible if we are not using iordy. Return
1842 * -1 if no iordy mode is available.
1843 */
a617c09f 1844
432729f0
AC
1845static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1846{
1bc4ccff 1847 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1848 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1849 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1850 /* Is the speed faster than the drive allows non IORDY ? */
1851 if (pio) {
1852 /* This is cycle times not frequency - watch the logic! */
1853 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1854 return 3 << ATA_SHIFT_PIO;
1855 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1856 }
1857 }
432729f0 1858 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1859}
1860
1da177e4 1861/**
49016aca 1862 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1863 * @dev: target device
1864 * @p_class: pointer to class of the target device (may be changed)
bff04647 1865 * @flags: ATA_READID_* flags
fe635c7e 1866 * @id: buffer to read IDENTIFY data into
1da177e4 1867 *
49016aca
TH
1868 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1869 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1870 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1871 * for pre-ATA4 drives.
1da177e4 1872 *
50a99018 1873 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1874 * now we abort if we hit that case.
50a99018 1875 *
1da177e4 1876 * LOCKING:
49016aca
TH
1877 * Kernel thread context (may sleep)
1878 *
1879 * RETURNS:
1880 * 0 on success, -errno otherwise.
1da177e4 1881 */
a9beec95 1882int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1883 unsigned int flags, u16 *id)
1da177e4 1884{
9af5c9c9 1885 struct ata_port *ap = dev->link->ap;
49016aca 1886 unsigned int class = *p_class;
a0123703 1887 struct ata_taskfile tf;
49016aca
TH
1888 unsigned int err_mask = 0;
1889 const char *reason;
54936f8b 1890 int may_fallback = 1, tried_spinup = 0;
49016aca 1891 int rc;
1da177e4 1892
0dd4b21f 1893 if (ata_msg_ctl(ap))
44877b4e 1894 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1895
49016aca 1896 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1897 retry:
3373efd8 1898 ata_tf_init(dev, &tf);
a0123703 1899
49016aca
TH
1900 switch (class) {
1901 case ATA_DEV_ATA:
a0123703 1902 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1903 break;
1904 case ATA_DEV_ATAPI:
a0123703 1905 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1906 break;
1907 default:
1908 rc = -ENODEV;
1909 reason = "unsupported class";
1910 goto err_out;
1da177e4
LT
1911 }
1912
a0123703 1913 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1914
1915 /* Some devices choke if TF registers contain garbage. Make
1916 * sure those are properly initialized.
1917 */
1918 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1919
1920 /* Device presence detection is unreliable on some
1921 * controllers. Always poll IDENTIFY if available.
1922 */
1923 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1924
3373efd8 1925 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1926 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1927 if (err_mask) {
800b3996 1928 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1929 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1930 ap->print_id, dev->devno);
55a8e2c8
TH
1931 return -ENOENT;
1932 }
1933
54936f8b
TH
1934 /* Device or controller might have reported the wrong
1935 * device class. Give a shot at the other IDENTIFY if
1936 * the current one is aborted by the device.
1937 */
1938 if (may_fallback &&
1939 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1940 may_fallback = 0;
1941
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1947 }
1948
49016aca
TH
1949 rc = -EIO;
1950 reason = "I/O error";
1da177e4
LT
1951 goto err_out;
1952 }
1953
54936f8b
TH
1954 /* Falling back doesn't make sense if ID data was read
1955 * successfully at least once.
1956 */
1957 may_fallback = 0;
1958
49016aca 1959 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1960
49016aca 1961 /* sanity check */
a4f5749b 1962 rc = -EINVAL;
6070068b 1963 reason = "device reports invalid type";
a4f5749b
TH
1964
1965 if (class == ATA_DEV_ATA) {
1966 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1967 goto err_out;
1968 } else {
1969 if (ata_id_is_ata(id))
1970 goto err_out;
49016aca
TH
1971 }
1972
169439c2
ML
1973 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1974 tried_spinup = 1;
1975 /*
1976 * Drive powered-up in standby mode, and requires a specific
1977 * SET_FEATURES spin-up subcommand before it will accept
1978 * anything other than the original IDENTIFY command.
1979 */
218f3d30 1980 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1981 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1982 rc = -EIO;
1983 reason = "SPINUP failed";
1984 goto err_out;
1985 }
1986 /*
1987 * If the drive initially returned incomplete IDENTIFY info,
1988 * we now must reissue the IDENTIFY command.
1989 */
1990 if (id[2] == 0x37c8)
1991 goto retry;
1992 }
1993
bff04647 1994 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1995 /*
1996 * The exact sequence expected by certain pre-ATA4 drives is:
1997 * SRST RESET
50a99018
AC
1998 * IDENTIFY (optional in early ATA)
1999 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2000 * anything else..
2001 * Some drives were very specific about that exact sequence.
50a99018
AC
2002 *
2003 * Note that ATA4 says lba is mandatory so the second check
2004 * shoud never trigger.
49016aca
TH
2005 */
2006 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2007 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2008 if (err_mask) {
2009 rc = -EIO;
2010 reason = "INIT_DEV_PARAMS failed";
2011 goto err_out;
2012 }
2013
2014 /* current CHS translation info (id[53-58]) might be
2015 * changed. reread the identify device info.
2016 */
bff04647 2017 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2018 goto retry;
2019 }
2020 }
2021
2022 *p_class = class;
fe635c7e 2023
49016aca
TH
2024 return 0;
2025
2026 err_out:
88574551 2027 if (ata_msg_warn(ap))
0dd4b21f 2028 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2029 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2030 return rc;
2031}
2032
3373efd8 2033static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2034{
9af5c9c9
TH
2035 struct ata_port *ap = dev->link->ap;
2036 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2037}
2038
a6e6ce8e
TH
2039static void ata_dev_config_ncq(struct ata_device *dev,
2040 char *desc, size_t desc_sz)
2041{
9af5c9c9 2042 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2043 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2044
2045 if (!ata_id_has_ncq(dev->id)) {
2046 desc[0] = '\0';
2047 return;
2048 }
75683fe7 2049 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2050 snprintf(desc, desc_sz, "NCQ (not used)");
2051 return;
2052 }
a6e6ce8e 2053 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2054 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2055 dev->flags |= ATA_DFLAG_NCQ;
2056 }
2057
2058 if (hdepth >= ddepth)
2059 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2060 else
2061 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2062}
2063
49016aca 2064/**
ffeae418 2065 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2066 * @dev: Target device to configure
2067 *
2068 * Configure @dev according to @dev->id. Generic and low-level
2069 * driver specific fixups are also applied.
49016aca
TH
2070 *
2071 * LOCKING:
ffeae418
TH
2072 * Kernel thread context (may sleep)
2073 *
2074 * RETURNS:
2075 * 0 on success, -errno otherwise
49016aca 2076 */
efdaedc4 2077int ata_dev_configure(struct ata_device *dev)
49016aca 2078{
9af5c9c9
TH
2079 struct ata_port *ap = dev->link->ap;
2080 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2081 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2082 const u16 *id = dev->id;
ff8854b2 2083 unsigned int xfer_mask;
b352e57d 2084 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2085 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2086 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2087 int rc;
49016aca 2088
0dd4b21f 2089 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2090 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2091 __FUNCTION__);
ffeae418 2092 return 0;
49016aca
TH
2093 }
2094
0dd4b21f 2095 if (ata_msg_probe(ap))
44877b4e 2096 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2097
75683fe7
TH
2098 /* set horkage */
2099 dev->horkage |= ata_dev_blacklisted(dev);
2100
6746544c
TH
2101 /* let ACPI work its magic */
2102 rc = ata_acpi_on_devcfg(dev);
2103 if (rc)
2104 return rc;
08573a86 2105
05027adc
TH
2106 /* massage HPA, do it early as it might change IDENTIFY data */
2107 rc = ata_hpa_resize(dev);
2108 if (rc)
2109 return rc;
2110
c39f5ebe 2111 /* print device capabilities */
0dd4b21f 2112 if (ata_msg_probe(ap))
88574551
TH
2113 ata_dev_printk(dev, KERN_DEBUG,
2114 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2115 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2116 __FUNCTION__,
f15a1daf
TH
2117 id[49], id[82], id[83], id[84],
2118 id[85], id[86], id[87], id[88]);
c39f5ebe 2119
208a9933 2120 /* initialize to-be-configured parameters */
ea1dd4e1 2121 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2122 dev->max_sectors = 0;
2123 dev->cdb_len = 0;
2124 dev->n_sectors = 0;
2125 dev->cylinders = 0;
2126 dev->heads = 0;
2127 dev->sectors = 0;
2128
1da177e4
LT
2129 /*
2130 * common ATA, ATAPI feature tests
2131 */
2132
ff8854b2 2133 /* find max transfer mode; for printk only */
1148c3a7 2134 xfer_mask = ata_id_xfermask(id);
1da177e4 2135
0dd4b21f
BP
2136 if (ata_msg_probe(ap))
2137 ata_dump_id(id);
1da177e4 2138
ef143d57
AL
2139 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2140 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2141 sizeof(fwrevbuf));
2142
2143 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2144 sizeof(modelbuf));
2145
1da177e4
LT
2146 /* ATA-specific feature tests */
2147 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2148 if (ata_id_is_cfa(id)) {
2149 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2150 ata_dev_printk(dev, KERN_WARNING,
2151 "supports DRM functions and may "
2152 "not be fully accessable.\n");
b352e57d 2153 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2154 } else
2155 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2156
1148c3a7 2157 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2158
3f64f565
EM
2159 if (dev->id[59] & 0x100)
2160 dev->multi_count = dev->id[59] & 0xff;
2161
1148c3a7 2162 if (ata_id_has_lba(id)) {
4c2d721a 2163 const char *lba_desc;
a6e6ce8e 2164 char ncq_desc[20];
8bf62ece 2165
4c2d721a
TH
2166 lba_desc = "LBA";
2167 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2168 if (ata_id_has_lba48(id)) {
8bf62ece 2169 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2170 lba_desc = "LBA48";
6fc49adb
TH
2171
2172 if (dev->n_sectors >= (1UL << 28) &&
2173 ata_id_has_flush_ext(id))
2174 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2175 }
8bf62ece 2176
a6e6ce8e
TH
2177 /* config NCQ */
2178 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2179
8bf62ece 2180 /* print device info to dmesg */
3f64f565
EM
2181 if (ata_msg_drv(ap) && print_info) {
2182 ata_dev_printk(dev, KERN_INFO,
2183 "%s: %s, %s, max %s\n",
2184 revbuf, modelbuf, fwrevbuf,
2185 ata_mode_string(xfer_mask));
2186 ata_dev_printk(dev, KERN_INFO,
2187 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2188 (unsigned long long)dev->n_sectors,
3f64f565
EM
2189 dev->multi_count, lba_desc, ncq_desc);
2190 }
ffeae418 2191 } else {
8bf62ece
AL
2192 /* CHS */
2193
2194 /* Default translation */
1148c3a7
TH
2195 dev->cylinders = id[1];
2196 dev->heads = id[3];
2197 dev->sectors = id[6];
8bf62ece 2198
1148c3a7 2199 if (ata_id_current_chs_valid(id)) {
8bf62ece 2200 /* Current CHS translation is valid. */
1148c3a7
TH
2201 dev->cylinders = id[54];
2202 dev->heads = id[55];
2203 dev->sectors = id[56];
8bf62ece
AL
2204 }
2205
2206 /* print device info to dmesg */
3f64f565 2207 if (ata_msg_drv(ap) && print_info) {
88574551 2208 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2209 "%s: %s, %s, max %s\n",
2210 revbuf, modelbuf, fwrevbuf,
2211 ata_mode_string(xfer_mask));
a84471fe 2212 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2213 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2214 (unsigned long long)dev->n_sectors,
2215 dev->multi_count, dev->cylinders,
2216 dev->heads, dev->sectors);
2217 }
07f6f7d0
AL
2218 }
2219
6e7846e9 2220 dev->cdb_len = 16;
1da177e4
LT
2221 }
2222
2223 /* ATAPI-specific feature tests */
2c13b7ce 2224 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2225 const char *cdb_intr_string = "";
2226 const char *atapi_an_string = "";
7d77b247 2227 u32 sntf;
08a556db 2228
1148c3a7 2229 rc = atapi_cdb_len(id);
1da177e4 2230 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2231 if (ata_msg_warn(ap))
88574551
TH
2232 ata_dev_printk(dev, KERN_WARNING,
2233 "unsupported CDB len\n");
ffeae418 2234 rc = -EINVAL;
1da177e4
LT
2235 goto err_out_nosup;
2236 }
6e7846e9 2237 dev->cdb_len = (unsigned int) rc;
1da177e4 2238
7d77b247
TH
2239 /* Enable ATAPI AN if both the host and device have
2240 * the support. If PMP is attached, SNTF is required
2241 * to enable ATAPI AN to discern between PHY status
2242 * changed notifications and ATAPI ANs.
9f45cbd3 2243 */
7d77b247
TH
2244 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2245 (!ap->nr_pmp_links ||
2246 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2247 unsigned int err_mask;
2248
9f45cbd3 2249 /* issue SET feature command to turn this on */
218f3d30
JG
2250 err_mask = ata_dev_set_feature(dev,
2251 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2252 if (err_mask)
9f45cbd3 2253 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2254 "failed to enable ATAPI AN "
2255 "(err_mask=0x%x)\n", err_mask);
2256 else {
9f45cbd3 2257 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2258 atapi_an_string = ", ATAPI AN";
2259 }
9f45cbd3
KCA
2260 }
2261
08a556db 2262 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2263 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2264 cdb_intr_string = ", CDB intr";
2265 }
312f7da2 2266
1da177e4 2267 /* print device info to dmesg */
5afc8142 2268 if (ata_msg_drv(ap) && print_info)
ef143d57 2269 ata_dev_printk(dev, KERN_INFO,
854c73a2 2270 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2271 modelbuf, fwrevbuf,
12436c30 2272 ata_mode_string(xfer_mask),
854c73a2 2273 cdb_intr_string, atapi_an_string);
1da177e4
LT
2274 }
2275
914ed354
TH
2276 /* determine max_sectors */
2277 dev->max_sectors = ATA_MAX_SECTORS;
2278 if (dev->flags & ATA_DFLAG_LBA48)
2279 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2280
ca77329f
KCA
2281 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2282 if (ata_id_has_hipm(dev->id))
2283 dev->flags |= ATA_DFLAG_HIPM;
2284 if (ata_id_has_dipm(dev->id))
2285 dev->flags |= ATA_DFLAG_DIPM;
2286 }
2287
93590859
AC
2288 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2289 /* Let the user know. We don't want to disallow opens for
2290 rescue purposes, or in case the vendor is just a blithering
2291 idiot */
2dcb407e 2292 if (print_info) {
93590859
AC
2293 ata_dev_printk(dev, KERN_WARNING,
2294"Drive reports diagnostics failure. This may indicate a drive\n");
2295 ata_dev_printk(dev, KERN_WARNING,
2296"fault or invalid emulation. Contact drive vendor for information.\n");
2297 }
2298 }
2299
4b2f3ede 2300 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2301 if (ata_dev_knobble(dev)) {
5afc8142 2302 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2303 ata_dev_printk(dev, KERN_INFO,
2304 "applying bridge limits\n");
5a529139 2305 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2306 dev->max_sectors = ATA_MAX_SECTORS;
2307 }
2308
f8d8e579
TB
2309 if ((dev->class == ATA_DEV_ATAPI) &&
2310 (atapi_command_packet_set(id) == TYPE_TAPE))
2311 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2312
75683fe7 2313 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2314 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2315 dev->max_sectors);
18d6e9d5 2316
ca77329f
KCA
2317 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2318 dev->horkage |= ATA_HORKAGE_IPM;
2319
2320 /* reset link pm_policy for this port to no pm */
2321 ap->pm_policy = MAX_PERFORMANCE;
2322 }
2323
4b2f3ede 2324 if (ap->ops->dev_config)
cd0d3bbc 2325 ap->ops->dev_config(dev);
4b2f3ede 2326
0dd4b21f
BP
2327 if (ata_msg_probe(ap))
2328 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2329 __FUNCTION__, ata_chk_status(ap));
ffeae418 2330 return 0;
1da177e4
LT
2331
2332err_out_nosup:
0dd4b21f 2333 if (ata_msg_probe(ap))
88574551
TH
2334 ata_dev_printk(dev, KERN_DEBUG,
2335 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2336 return rc;
1da177e4
LT
2337}
2338
be0d18df 2339/**
2e41e8e6 2340 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2341 * @ap: port
2342 *
2e41e8e6 2343 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2344 * detection.
2345 */
2346
2347int ata_cable_40wire(struct ata_port *ap)
2348{
2349 return ATA_CBL_PATA40;
2350}
2351
2352/**
2e41e8e6 2353 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2354 * @ap: port
2355 *
2e41e8e6 2356 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2357 * detection.
2358 */
2359
2360int ata_cable_80wire(struct ata_port *ap)
2361{
2362 return ATA_CBL_PATA80;
2363}
2364
2365/**
2366 * ata_cable_unknown - return unknown PATA cable.
2367 * @ap: port
2368 *
2369 * Helper method for drivers which have no PATA cable detection.
2370 */
2371
2372int ata_cable_unknown(struct ata_port *ap)
2373{
2374 return ATA_CBL_PATA_UNK;
2375}
2376
2377/**
2378 * ata_cable_sata - return SATA cable type
2379 * @ap: port
2380 *
2381 * Helper method for drivers which have SATA cables
2382 */
2383
2384int ata_cable_sata(struct ata_port *ap)
2385{
2386 return ATA_CBL_SATA;
2387}
2388
1da177e4
LT
2389/**
2390 * ata_bus_probe - Reset and probe ATA bus
2391 * @ap: Bus to probe
2392 *
0cba632b
JG
2393 * Master ATA bus probing function. Initiates a hardware-dependent
2394 * bus reset, then attempts to identify any devices found on
2395 * the bus.
2396 *
1da177e4 2397 * LOCKING:
0cba632b 2398 * PCI/etc. bus probe sem.
1da177e4
LT
2399 *
2400 * RETURNS:
96072e69 2401 * Zero on success, negative errno otherwise.
1da177e4
LT
2402 */
2403
80289167 2404int ata_bus_probe(struct ata_port *ap)
1da177e4 2405{
28ca5c57 2406 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2407 int tries[ATA_MAX_DEVICES];
f58229f8 2408 int rc;
e82cbdb9 2409 struct ata_device *dev;
1da177e4 2410
28ca5c57 2411 ata_port_probe(ap);
c19ba8af 2412
f58229f8
TH
2413 ata_link_for_each_dev(dev, &ap->link)
2414 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2415
2416 retry:
cdeab114
TH
2417 ata_link_for_each_dev(dev, &ap->link) {
2418 /* If we issue an SRST then an ATA drive (not ATAPI)
2419 * may change configuration and be in PIO0 timing. If
2420 * we do a hard reset (or are coming from power on)
2421 * this is true for ATA or ATAPI. Until we've set a
2422 * suitable controller mode we should not touch the
2423 * bus as we may be talking too fast.
2424 */
2425 dev->pio_mode = XFER_PIO_0;
2426
2427 /* If the controller has a pio mode setup function
2428 * then use it to set the chipset to rights. Don't
2429 * touch the DMA setup as that will be dealt with when
2430 * configuring devices.
2431 */
2432 if (ap->ops->set_piomode)
2433 ap->ops->set_piomode(ap, dev);
2434 }
2435
2044470c 2436 /* reset and determine device classes */
52783c5d 2437 ap->ops->phy_reset(ap);
2061a47a 2438
f58229f8 2439 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2440 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2441 dev->class != ATA_DEV_UNKNOWN)
2442 classes[dev->devno] = dev->class;
2443 else
2444 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2445
52783c5d 2446 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2447 }
1da177e4 2448
52783c5d 2449 ata_port_probe(ap);
2044470c 2450
f31f0cc2
JG
2451 /* read IDENTIFY page and configure devices. We have to do the identify
2452 specific sequence bass-ackwards so that PDIAG- is released by
2453 the slave device */
2454
f58229f8
TH
2455 ata_link_for_each_dev(dev, &ap->link) {
2456 if (tries[dev->devno])
2457 dev->class = classes[dev->devno];
ffeae418 2458
14d2bac1 2459 if (!ata_dev_enabled(dev))
ffeae418 2460 continue;
ffeae418 2461
bff04647
TH
2462 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2463 dev->id);
14d2bac1
TH
2464 if (rc)
2465 goto fail;
f31f0cc2
JG
2466 }
2467
be0d18df
AC
2468 /* Now ask for the cable type as PDIAG- should have been released */
2469 if (ap->ops->cable_detect)
2470 ap->cbl = ap->ops->cable_detect(ap);
2471
614fe29b
AC
2472 /* We may have SATA bridge glue hiding here irrespective of the
2473 reported cable types and sensed types */
2474 ata_link_for_each_dev(dev, &ap->link) {
2475 if (!ata_dev_enabled(dev))
2476 continue;
2477 /* SATA drives indicate we have a bridge. We don't know which
2478 end of the link the bridge is which is a problem */
2479 if (ata_id_is_sata(dev->id))
2480 ap->cbl = ATA_CBL_SATA;
2481 }
2482
f31f0cc2
JG
2483 /* After the identify sequence we can now set up the devices. We do
2484 this in the normal order so that the user doesn't get confused */
2485
f58229f8 2486 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2487 if (!ata_dev_enabled(dev))
2488 continue;
14d2bac1 2489
9af5c9c9 2490 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2491 rc = ata_dev_configure(dev);
9af5c9c9 2492 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2493 if (rc)
2494 goto fail;
1da177e4
LT
2495 }
2496
e82cbdb9 2497 /* configure transfer mode */
0260731f 2498 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2499 if (rc)
51713d35 2500 goto fail;
1da177e4 2501
f58229f8
TH
2502 ata_link_for_each_dev(dev, &ap->link)
2503 if (ata_dev_enabled(dev))
e82cbdb9 2504 return 0;
1da177e4 2505
e82cbdb9
TH
2506 /* no device present, disable port */
2507 ata_port_disable(ap);
96072e69 2508 return -ENODEV;
14d2bac1
TH
2509
2510 fail:
4ae72a1e
TH
2511 tries[dev->devno]--;
2512
14d2bac1
TH
2513 switch (rc) {
2514 case -EINVAL:
4ae72a1e 2515 /* eeek, something went very wrong, give up */
14d2bac1
TH
2516 tries[dev->devno] = 0;
2517 break;
4ae72a1e
TH
2518
2519 case -ENODEV:
2520 /* give it just one more chance */
2521 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2522 case -EIO:
4ae72a1e
TH
2523 if (tries[dev->devno] == 1) {
2524 /* This is the last chance, better to slow
2525 * down than lose it.
2526 */
936fd732 2527 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2528 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2529 }
14d2bac1
TH
2530 }
2531
4ae72a1e 2532 if (!tries[dev->devno])
3373efd8 2533 ata_dev_disable(dev);
ec573755 2534
14d2bac1 2535 goto retry;
1da177e4
LT
2536}
2537
2538/**
0cba632b
JG
2539 * ata_port_probe - Mark port as enabled
2540 * @ap: Port for which we indicate enablement
1da177e4 2541 *
0cba632b
JG
2542 * Modify @ap data structure such that the system
2543 * thinks that the entire port is enabled.
2544 *
cca3974e 2545 * LOCKING: host lock, or some other form of
0cba632b 2546 * serialization.
1da177e4
LT
2547 */
2548
2549void ata_port_probe(struct ata_port *ap)
2550{
198e0fed 2551 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2552}
2553
3be680b7
TH
2554/**
2555 * sata_print_link_status - Print SATA link status
936fd732 2556 * @link: SATA link to printk link status about
3be680b7
TH
2557 *
2558 * This function prints link speed and status of a SATA link.
2559 *
2560 * LOCKING:
2561 * None.
2562 */
936fd732 2563void sata_print_link_status(struct ata_link *link)
3be680b7 2564{
6d5f9732 2565 u32 sstatus, scontrol, tmp;
3be680b7 2566
936fd732 2567 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2568 return;
936fd732 2569 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2570
936fd732 2571 if (ata_link_online(link)) {
3be680b7 2572 tmp = (sstatus >> 4) & 0xf;
936fd732 2573 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2574 "SATA link up %s (SStatus %X SControl %X)\n",
2575 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2576 } else {
936fd732 2577 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2578 "SATA link down (SStatus %X SControl %X)\n",
2579 sstatus, scontrol);
3be680b7
TH
2580 }
2581}
2582
1da177e4 2583/**
780a87f7
JG
2584 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2585 * @ap: SATA port associated with target SATA PHY.
1da177e4 2586 *
780a87f7
JG
2587 * This function issues commands to standard SATA Sxxx
2588 * PHY registers, to wake up the phy (and device), and
2589 * clear any reset condition.
1da177e4
LT
2590 *
2591 * LOCKING:
0cba632b 2592 * PCI/etc. bus probe sem.
1da177e4
LT
2593 *
2594 */
2595void __sata_phy_reset(struct ata_port *ap)
2596{
936fd732 2597 struct ata_link *link = &ap->link;
1da177e4 2598 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2599 u32 sstatus;
1da177e4
LT
2600
2601 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2602 /* issue phy wake/reset */
936fd732 2603 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2604 /* Couldn't find anything in SATA I/II specs, but
2605 * AHCI-1.1 10.4.2 says at least 1 ms. */
2606 mdelay(1);
1da177e4 2607 }
81952c54 2608 /* phy wake/clear reset */
936fd732 2609 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2610
2611 /* wait for phy to become ready, if necessary */
2612 do {
2613 msleep(200);
936fd732 2614 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2615 if ((sstatus & 0xf) != 1)
2616 break;
2617 } while (time_before(jiffies, timeout));
2618
3be680b7 2619 /* print link status */
936fd732 2620 sata_print_link_status(link);
656563e3 2621
3be680b7 2622 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2623 if (!ata_link_offline(link))
1da177e4 2624 ata_port_probe(ap);
3be680b7 2625 else
1da177e4 2626 ata_port_disable(ap);
1da177e4 2627
198e0fed 2628 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2629 return;
2630
2631 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2632 ata_port_disable(ap);
2633 return;
2634 }
2635
2636 ap->cbl = ATA_CBL_SATA;
2637}
2638
2639/**
780a87f7
JG
2640 * sata_phy_reset - Reset SATA bus.
2641 * @ap: SATA port associated with target SATA PHY.
1da177e4 2642 *
780a87f7
JG
2643 * This function resets the SATA bus, and then probes
2644 * the bus for devices.
1da177e4
LT
2645 *
2646 * LOCKING:
0cba632b 2647 * PCI/etc. bus probe sem.
1da177e4
LT
2648 *
2649 */
2650void sata_phy_reset(struct ata_port *ap)
2651{
2652 __sata_phy_reset(ap);
198e0fed 2653 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2654 return;
2655 ata_bus_reset(ap);
2656}
2657
ebdfca6e
AC
2658/**
2659 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2660 * @adev: device
2661 *
2662 * Obtain the other device on the same cable, or if none is
2663 * present NULL is returned
2664 */
2e9edbf8 2665
3373efd8 2666struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2667{
9af5c9c9
TH
2668 struct ata_link *link = adev->link;
2669 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2670 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2671 return NULL;
2672 return pair;
2673}
2674
1da177e4 2675/**
780a87f7
JG
2676 * ata_port_disable - Disable port.
2677 * @ap: Port to be disabled.
1da177e4 2678 *
780a87f7
JG
2679 * Modify @ap data structure such that the system
2680 * thinks that the entire port is disabled, and should
2681 * never attempt to probe or communicate with devices
2682 * on this port.
2683 *
cca3974e 2684 * LOCKING: host lock, or some other form of
780a87f7 2685 * serialization.
1da177e4
LT
2686 */
2687
2688void ata_port_disable(struct ata_port *ap)
2689{
9af5c9c9
TH
2690 ap->link.device[0].class = ATA_DEV_NONE;
2691 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2692 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2693}
2694
1c3fae4d 2695/**
3c567b7d 2696 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2697 * @link: Link to adjust SATA spd limit for
1c3fae4d 2698 *
936fd732 2699 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2700 * function only adjusts the limit. The change must be applied
3c567b7d 2701 * using sata_set_spd().
1c3fae4d
TH
2702 *
2703 * LOCKING:
2704 * Inherited from caller.
2705 *
2706 * RETURNS:
2707 * 0 on success, negative errno on failure
2708 */
936fd732 2709int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2710{
81952c54
TH
2711 u32 sstatus, spd, mask;
2712 int rc, highbit;
1c3fae4d 2713
936fd732 2714 if (!sata_scr_valid(link))
008a7896
TH
2715 return -EOPNOTSUPP;
2716
2717 /* If SCR can be read, use it to determine the current SPD.
936fd732 2718 * If not, use cached value in link->sata_spd.
008a7896 2719 */
936fd732 2720 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2721 if (rc == 0)
2722 spd = (sstatus >> 4) & 0xf;
2723 else
936fd732 2724 spd = link->sata_spd;
1c3fae4d 2725
936fd732 2726 mask = link->sata_spd_limit;
1c3fae4d
TH
2727 if (mask <= 1)
2728 return -EINVAL;
008a7896
TH
2729
2730 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2731 highbit = fls(mask) - 1;
2732 mask &= ~(1 << highbit);
2733
008a7896
TH
2734 /* Mask off all speeds higher than or equal to the current
2735 * one. Force 1.5Gbps if current SPD is not available.
2736 */
2737 if (spd > 1)
2738 mask &= (1 << (spd - 1)) - 1;
2739 else
2740 mask &= 1;
2741
2742 /* were we already at the bottom? */
1c3fae4d
TH
2743 if (!mask)
2744 return -EINVAL;
2745
936fd732 2746 link->sata_spd_limit = mask;
1c3fae4d 2747
936fd732 2748 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2749 sata_spd_string(fls(mask)));
1c3fae4d
TH
2750
2751 return 0;
2752}
2753
936fd732 2754static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2755{
5270222f
TH
2756 struct ata_link *host_link = &link->ap->link;
2757 u32 limit, target, spd;
1c3fae4d 2758
5270222f
TH
2759 limit = link->sata_spd_limit;
2760
2761 /* Don't configure downstream link faster than upstream link.
2762 * It doesn't speed up anything and some PMPs choke on such
2763 * configuration.
2764 */
2765 if (!ata_is_host_link(link) && host_link->sata_spd)
2766 limit &= (1 << host_link->sata_spd) - 1;
2767
2768 if (limit == UINT_MAX)
2769 target = 0;
1c3fae4d 2770 else
5270222f 2771 target = fls(limit);
1c3fae4d
TH
2772
2773 spd = (*scontrol >> 4) & 0xf;
5270222f 2774 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2775
5270222f 2776 return spd != target;
1c3fae4d
TH
2777}
2778
2779/**
3c567b7d 2780 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2781 * @link: Link in question
1c3fae4d
TH
2782 *
2783 * Test whether the spd limit in SControl matches
936fd732 2784 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2785 * whether hardreset is necessary to apply SATA spd
2786 * configuration.
2787 *
2788 * LOCKING:
2789 * Inherited from caller.
2790 *
2791 * RETURNS:
2792 * 1 if SATA spd configuration is needed, 0 otherwise.
2793 */
936fd732 2794int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2795{
2796 u32 scontrol;
2797
936fd732 2798 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2799 return 1;
1c3fae4d 2800
936fd732 2801 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2802}
2803
2804/**
3c567b7d 2805 * sata_set_spd - set SATA spd according to spd limit
936fd732 2806 * @link: Link to set SATA spd for
1c3fae4d 2807 *
936fd732 2808 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2809 *
2810 * LOCKING:
2811 * Inherited from caller.
2812 *
2813 * RETURNS:
2814 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2815 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2816 */
936fd732 2817int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2818{
2819 u32 scontrol;
81952c54 2820 int rc;
1c3fae4d 2821
936fd732 2822 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2823 return rc;
1c3fae4d 2824
936fd732 2825 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2826 return 0;
2827
936fd732 2828 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2829 return rc;
2830
1c3fae4d
TH
2831 return 1;
2832}
2833
452503f9
AC
2834/*
2835 * This mode timing computation functionality is ported over from
2836 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2837 */
2838/*
b352e57d 2839 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2840 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2841 * for UDMA6, which is currently supported only by Maxtor drives.
2842 *
2843 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2844 */
2845
2846static const struct ata_timing ata_timing[] = {
2847
2848 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2849 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2850 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2851 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2852
b352e57d
AC
2853 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2854 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2858
2859/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2860
452503f9
AC
2861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2864
452503f9
AC
2865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2868
b352e57d
AC
2869 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2870 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2871 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2872 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2873
2874 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2875 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2876 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2877
2878/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2879
2880 { 0xFF }
2881};
2882
2dcb407e
JG
2883#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2884#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2885
2886static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2887{
2888 q->setup = EZ(t->setup * 1000, T);
2889 q->act8b = EZ(t->act8b * 1000, T);
2890 q->rec8b = EZ(t->rec8b * 1000, T);
2891 q->cyc8b = EZ(t->cyc8b * 1000, T);
2892 q->active = EZ(t->active * 1000, T);
2893 q->recover = EZ(t->recover * 1000, T);
2894 q->cycle = EZ(t->cycle * 1000, T);
2895 q->udma = EZ(t->udma * 1000, UT);
2896}
2897
2898void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2899 struct ata_timing *m, unsigned int what)
2900{
2901 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2902 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2903 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2904 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2905 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2906 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2907 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2908 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2909}
2910
2dcb407e 2911static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2912{
2913 const struct ata_timing *t;
2914
2915 for (t = ata_timing; t->mode != speed; t++)
91190758 2916 if (t->mode == 0xFF)
452503f9 2917 return NULL;
2e9edbf8 2918 return t;
452503f9
AC
2919}
2920
2921int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2922 struct ata_timing *t, int T, int UT)
2923{
2924 const struct ata_timing *s;
2925 struct ata_timing p;
2926
2927 /*
2e9edbf8 2928 * Find the mode.
75b1f2f8 2929 */
452503f9
AC
2930
2931 if (!(s = ata_timing_find_mode(speed)))
2932 return -EINVAL;
2933
75b1f2f8
AL
2934 memcpy(t, s, sizeof(*s));
2935
452503f9
AC
2936 /*
2937 * If the drive is an EIDE drive, it can tell us it needs extended
2938 * PIO/MW_DMA cycle timing.
2939 */
2940
2941 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2942 memset(&p, 0, sizeof(p));
2dcb407e 2943 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2944 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2945 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2946 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2947 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2948 }
2949 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2950 }
2951
2952 /*
2953 * Convert the timing to bus clock counts.
2954 */
2955
75b1f2f8 2956 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2957
2958 /*
c893a3ae
RD
2959 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2960 * S.M.A.R.T * and some other commands. We have to ensure that the
2961 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2962 */
2963
fd3367af 2964 if (speed > XFER_PIO_6) {
452503f9
AC
2965 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2966 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2967 }
2968
2969 /*
c893a3ae 2970 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2971 */
2972
2973 if (t->act8b + t->rec8b < t->cyc8b) {
2974 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2975 t->rec8b = t->cyc8b - t->act8b;
2976 }
2977
2978 if (t->active + t->recover < t->cycle) {
2979 t->active += (t->cycle - (t->active + t->recover)) / 2;
2980 t->recover = t->cycle - t->active;
2981 }
a617c09f 2982
4f701d1e
AC
2983 /* In a few cases quantisation may produce enough errors to
2984 leave t->cycle too low for the sum of active and recovery
2985 if so we must correct this */
2986 if (t->active + t->recover > t->cycle)
2987 t->cycle = t->active + t->recover;
452503f9
AC
2988
2989 return 0;
2990}
2991
cf176e1a
TH
2992/**
2993 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2994 * @dev: Device to adjust xfer masks
458337db 2995 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2996 *
2997 * Adjust xfer masks of @dev downward. Note that this function
2998 * does not apply the change. Invoking ata_set_mode() afterwards
2999 * will apply the limit.
3000 *
3001 * LOCKING:
3002 * Inherited from caller.
3003 *
3004 * RETURNS:
3005 * 0 on success, negative errno on failure
3006 */
458337db 3007int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3008{
458337db
TH
3009 char buf[32];
3010 unsigned int orig_mask, xfer_mask;
3011 unsigned int pio_mask, mwdma_mask, udma_mask;
3012 int quiet, highbit;
cf176e1a 3013
458337db
TH
3014 quiet = !!(sel & ATA_DNXFER_QUIET);
3015 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3016
458337db
TH
3017 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3018 dev->mwdma_mask,
3019 dev->udma_mask);
3020 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3021
458337db
TH
3022 switch (sel) {
3023 case ATA_DNXFER_PIO:
3024 highbit = fls(pio_mask) - 1;
3025 pio_mask &= ~(1 << highbit);
3026 break;
3027
3028 case ATA_DNXFER_DMA:
3029 if (udma_mask) {
3030 highbit = fls(udma_mask) - 1;
3031 udma_mask &= ~(1 << highbit);
3032 if (!udma_mask)
3033 return -ENOENT;
3034 } else if (mwdma_mask) {
3035 highbit = fls(mwdma_mask) - 1;
3036 mwdma_mask &= ~(1 << highbit);
3037 if (!mwdma_mask)
3038 return -ENOENT;
3039 }
3040 break;
3041
3042 case ATA_DNXFER_40C:
3043 udma_mask &= ATA_UDMA_MASK_40C;
3044 break;
3045
3046 case ATA_DNXFER_FORCE_PIO0:
3047 pio_mask &= 1;
3048 case ATA_DNXFER_FORCE_PIO:
3049 mwdma_mask = 0;
3050 udma_mask = 0;
3051 break;
3052
458337db
TH
3053 default:
3054 BUG();
3055 }
3056
3057 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3058
3059 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3060 return -ENOENT;
3061
3062 if (!quiet) {
3063 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3064 snprintf(buf, sizeof(buf), "%s:%s",
3065 ata_mode_string(xfer_mask),
3066 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3067 else
3068 snprintf(buf, sizeof(buf), "%s",
3069 ata_mode_string(xfer_mask));
3070
3071 ata_dev_printk(dev, KERN_WARNING,
3072 "limiting speed to %s\n", buf);
3073 }
cf176e1a
TH
3074
3075 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3076 &dev->udma_mask);
3077
cf176e1a 3078 return 0;
cf176e1a
TH
3079}
3080
3373efd8 3081static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3082{
9af5c9c9 3083 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3084 unsigned int err_mask;
3085 int rc;
1da177e4 3086
e8384607 3087 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3088 if (dev->xfer_shift == ATA_SHIFT_PIO)
3089 dev->flags |= ATA_DFLAG_PIO;
3090
3373efd8 3091 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3092
11750a40
AC
3093 /* Old CFA may refuse this command, which is just fine */
3094 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3095 err_mask &= ~AC_ERR_DEV;
3096
0bc2a79a
AC
3097 /* Some very old devices and some bad newer ones fail any kind of
3098 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3099 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3100 dev->pio_mode <= XFER_PIO_2)
3101 err_mask &= ~AC_ERR_DEV;
2dcb407e 3102
3acaf94b
AC
3103 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3104 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3105 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3106 dev->dma_mode == XFER_MW_DMA_0 &&
3107 (dev->id[63] >> 8) & 1)
3108 err_mask &= ~AC_ERR_DEV;
3109
83206a29 3110 if (err_mask) {
f15a1daf
TH
3111 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3112 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3113 return -EIO;
3114 }
1da177e4 3115
baa1e78a 3116 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3117 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3118 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3119 if (rc)
83206a29 3120 return rc;
48a8a14f 3121
23e71c3d
TH
3122 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3123 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3124
f15a1daf
TH
3125 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3126 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3127 return 0;
1da177e4
LT
3128}
3129
1da177e4 3130/**
04351821 3131 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3132 * @link: link on which timings will be programmed
e82cbdb9 3133 * @r_failed_dev: out paramter for failed device
1da177e4 3134 *
04351821
AC
3135 * Standard implementation of the function used to tune and set
3136 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3137 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3138 * returned in @r_failed_dev.
780a87f7 3139 *
1da177e4 3140 * LOCKING:
0cba632b 3141 * PCI/etc. bus probe sem.
e82cbdb9
TH
3142 *
3143 * RETURNS:
3144 * 0 on success, negative errno otherwise
1da177e4 3145 */
04351821 3146
0260731f 3147int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3148{
0260731f 3149 struct ata_port *ap = link->ap;
e8e0619f 3150 struct ata_device *dev;
f58229f8 3151 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3152
a6d5a51c 3153 /* step 1: calculate xfer_mask */
f58229f8 3154 ata_link_for_each_dev(dev, link) {
acf356b1 3155 unsigned int pio_mask, dma_mask;
b3a70601 3156 unsigned int mode_mask;
a6d5a51c 3157
e1211e3f 3158 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3159 continue;
3160
b3a70601
AC
3161 mode_mask = ATA_DMA_MASK_ATA;
3162 if (dev->class == ATA_DEV_ATAPI)
3163 mode_mask = ATA_DMA_MASK_ATAPI;
3164 else if (ata_id_is_cfa(dev->id))
3165 mode_mask = ATA_DMA_MASK_CFA;
3166
3373efd8 3167 ata_dev_xfermask(dev);
1da177e4 3168
acf356b1
TH
3169 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3170 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3171
3172 if (libata_dma_mask & mode_mask)
3173 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3174 else
3175 dma_mask = 0;
3176
acf356b1
TH
3177 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3178 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3179
4f65977d 3180 found = 1;
5444a6f4
AC
3181 if (dev->dma_mode)
3182 used_dma = 1;
a6d5a51c 3183 }
4f65977d 3184 if (!found)
e82cbdb9 3185 goto out;
a6d5a51c
TH
3186
3187 /* step 2: always set host PIO timings */
f58229f8 3188 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3189 if (!ata_dev_enabled(dev))
3190 continue;
3191
3192 if (!dev->pio_mode) {
f15a1daf 3193 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3194 rc = -EINVAL;
e82cbdb9 3195 goto out;
e8e0619f
TH
3196 }
3197
3198 dev->xfer_mode = dev->pio_mode;
3199 dev->xfer_shift = ATA_SHIFT_PIO;
3200 if (ap->ops->set_piomode)
3201 ap->ops->set_piomode(ap, dev);
3202 }
1da177e4 3203
a6d5a51c 3204 /* step 3: set host DMA timings */
f58229f8 3205 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3206 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3207 continue;
3208
3209 dev->xfer_mode = dev->dma_mode;
3210 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3211 if (ap->ops->set_dmamode)
3212 ap->ops->set_dmamode(ap, dev);
3213 }
1da177e4
LT
3214
3215 /* step 4: update devices' xfer mode */
f58229f8 3216 ata_link_for_each_dev(dev, link) {
18d90deb 3217 /* don't update suspended devices' xfer mode */
9666f400 3218 if (!ata_dev_enabled(dev))
83206a29
TH
3219 continue;
3220
3373efd8 3221 rc = ata_dev_set_mode(dev);
5bbc53f4 3222 if (rc)
e82cbdb9 3223 goto out;
83206a29 3224 }
1da177e4 3225
e8e0619f
TH
3226 /* Record simplex status. If we selected DMA then the other
3227 * host channels are not permitted to do so.
5444a6f4 3228 */
cca3974e 3229 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3230 ap->host->simplex_claimed = ap;
5444a6f4 3231
e82cbdb9
TH
3232 out:
3233 if (rc)
3234 *r_failed_dev = dev;
3235 return rc;
1da177e4
LT
3236}
3237
04351821
AC
3238/**
3239 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3240 * @link: link on which timings will be programmed
04351821
AC
3241 * @r_failed_dev: out paramter for failed device
3242 *
3243 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3244 * ata_set_mode() fails, pointer to the failing device is
3245 * returned in @r_failed_dev.
3246 *
3247 * LOCKING:
3248 * PCI/etc. bus probe sem.
3249 *
3250 * RETURNS:
3251 * 0 on success, negative errno otherwise
3252 */
0260731f 3253int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3254{
0260731f
TH
3255 struct ata_port *ap = link->ap;
3256
04351821
AC
3257 /* has private set_mode? */
3258 if (ap->ops->set_mode)
0260731f
TH
3259 return ap->ops->set_mode(link, r_failed_dev);
3260 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3261}
3262
1fdffbce
JG
3263/**
3264 * ata_tf_to_host - issue ATA taskfile to host controller
3265 * @ap: port to which command is being issued
3266 * @tf: ATA taskfile register set
3267 *
3268 * Issues ATA taskfile register set to ATA host controller,
3269 * with proper synchronization with interrupt handler and
3270 * other threads.
3271 *
3272 * LOCKING:
cca3974e 3273 * spin_lock_irqsave(host lock)
1fdffbce
JG
3274 */
3275
3276static inline void ata_tf_to_host(struct ata_port *ap,
3277 const struct ata_taskfile *tf)
3278{
3279 ap->ops->tf_load(ap, tf);
3280 ap->ops->exec_command(ap, tf);
3281}
3282
1da177e4
LT
3283/**
3284 * ata_busy_sleep - sleep until BSY clears, or timeout
3285 * @ap: port containing status register to be polled
3286 * @tmout_pat: impatience timeout
3287 * @tmout: overall timeout
3288 *
780a87f7
JG
3289 * Sleep until ATA Status register bit BSY clears,
3290 * or a timeout occurs.
3291 *
d1adc1bb
TH
3292 * LOCKING:
3293 * Kernel thread context (may sleep).
3294 *
3295 * RETURNS:
3296 * 0 on success, -errno otherwise.
1da177e4 3297 */
d1adc1bb
TH
3298int ata_busy_sleep(struct ata_port *ap,
3299 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3300{
3301 unsigned long timer_start, timeout;
3302 u8 status;
3303
3304 status = ata_busy_wait(ap, ATA_BUSY, 300);
3305 timer_start = jiffies;
3306 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3307 while (status != 0xff && (status & ATA_BUSY) &&
3308 time_before(jiffies, timeout)) {
1da177e4
LT
3309 msleep(50);
3310 status = ata_busy_wait(ap, ATA_BUSY, 3);
3311 }
3312
d1adc1bb 3313 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3314 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3315 "port is slow to respond, please be patient "
3316 "(Status 0x%x)\n", status);
1da177e4
LT
3317
3318 timeout = timer_start + tmout;
d1adc1bb
TH
3319 while (status != 0xff && (status & ATA_BUSY) &&
3320 time_before(jiffies, timeout)) {
1da177e4
LT
3321 msleep(50);
3322 status = ata_chk_status(ap);
3323 }
3324
d1adc1bb
TH
3325 if (status == 0xff)
3326 return -ENODEV;
3327
1da177e4 3328 if (status & ATA_BUSY) {
f15a1daf 3329 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3330 "(%lu secs, Status 0x%x)\n",
3331 tmout / HZ, status);
d1adc1bb 3332 return -EBUSY;
1da177e4
LT
3333 }
3334
3335 return 0;
3336}
3337
88ff6eaf
TH
3338/**
3339 * ata_wait_after_reset - wait before checking status after reset
3340 * @ap: port containing status register to be polled
3341 * @deadline: deadline jiffies for the operation
3342 *
3343 * After reset, we need to pause a while before reading status.
3344 * Also, certain combination of controller and device report 0xff
3345 * for some duration (e.g. until SATA PHY is up and running)
3346 * which is interpreted as empty port in ATA world. This
3347 * function also waits for such devices to get out of 0xff
3348 * status.
3349 *
3350 * LOCKING:
3351 * Kernel thread context (may sleep).
3352 */
3353void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3354{
3355 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3356
3357 if (time_before(until, deadline))
3358 deadline = until;
3359
3360 /* Spec mandates ">= 2ms" before checking status. We wait
3361 * 150ms, because that was the magic delay used for ATAPI
3362 * devices in Hale Landis's ATADRVR, for the period of time
3363 * between when the ATA command register is written, and then
3364 * status is checked. Because waiting for "a while" before
3365 * checking status is fine, post SRST, we perform this magic
3366 * delay here as well.
3367 *
3368 * Old drivers/ide uses the 2mS rule and then waits for ready.
3369 */
3370 msleep(150);
3371
3372 /* Wait for 0xff to clear. Some SATA devices take a long time
3373 * to clear 0xff after reset. For example, HHD424020F7SV00
3374 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3375 * than that.
3376 */
3377 while (1) {
3378 u8 status = ata_chk_status(ap);
3379
3380 if (status != 0xff || time_after(jiffies, deadline))
3381 return;
3382
3383 msleep(50);
3384 }
3385}
3386
d4b2bab4
TH
3387/**
3388 * ata_wait_ready - sleep until BSY clears, or timeout
3389 * @ap: port containing status register to be polled
3390 * @deadline: deadline jiffies for the operation
3391 *
3392 * Sleep until ATA Status register bit BSY clears, or timeout
3393 * occurs.
3394 *
3395 * LOCKING:
3396 * Kernel thread context (may sleep).
3397 *
3398 * RETURNS:
3399 * 0 on success, -errno otherwise.
3400 */
3401int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3402{
3403 unsigned long start = jiffies;
3404 int warned = 0;
3405
3406 while (1) {
3407 u8 status = ata_chk_status(ap);
3408 unsigned long now = jiffies;
3409
3410 if (!(status & ATA_BUSY))
3411 return 0;
936fd732 3412 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3413 return -ENODEV;
3414 if (time_after(now, deadline))
3415 return -EBUSY;
3416
3417 if (!warned && time_after(now, start + 5 * HZ) &&
3418 (deadline - now > 3 * HZ)) {
3419 ata_port_printk(ap, KERN_WARNING,
3420 "port is slow to respond, please be patient "
3421 "(Status 0x%x)\n", status);
3422 warned = 1;
3423 }
3424
3425 msleep(50);
3426 }
3427}
3428
3429static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3430 unsigned long deadline)
1da177e4
LT
3431{
3432 struct ata_ioports *ioaddr = &ap->ioaddr;
3433 unsigned int dev0 = devmask & (1 << 0);
3434 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3435 int rc, ret = 0;
1da177e4
LT
3436
3437 /* if device 0 was found in ata_devchk, wait for its
3438 * BSY bit to clear
3439 */
d4b2bab4
TH
3440 if (dev0) {
3441 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3442 if (rc) {
3443 if (rc != -ENODEV)
3444 return rc;
3445 ret = rc;
3446 }
d4b2bab4 3447 }
1da177e4 3448
e141d999
TH
3449 /* if device 1 was found in ata_devchk, wait for register
3450 * access briefly, then wait for BSY to clear.
1da177e4 3451 */
e141d999
TH
3452 if (dev1) {
3453 int i;
1da177e4
LT
3454
3455 ap->ops->dev_select(ap, 1);
e141d999
TH
3456
3457 /* Wait for register access. Some ATAPI devices fail
3458 * to set nsect/lbal after reset, so don't waste too
3459 * much time on it. We're gonna wait for !BSY anyway.
3460 */
3461 for (i = 0; i < 2; i++) {
3462 u8 nsect, lbal;
3463
3464 nsect = ioread8(ioaddr->nsect_addr);
3465 lbal = ioread8(ioaddr->lbal_addr);
3466 if ((nsect == 1) && (lbal == 1))
3467 break;
3468 msleep(50); /* give drive a breather */
3469 }
3470
d4b2bab4 3471 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3472 if (rc) {
3473 if (rc != -ENODEV)
3474 return rc;
3475 ret = rc;
3476 }
d4b2bab4 3477 }
1da177e4
LT
3478
3479 /* is all this really necessary? */
3480 ap->ops->dev_select(ap, 0);
3481 if (dev1)
3482 ap->ops->dev_select(ap, 1);
3483 if (dev0)
3484 ap->ops->dev_select(ap, 0);
d4b2bab4 3485
9b89391c 3486 return ret;
1da177e4
LT
3487}
3488
d4b2bab4
TH
3489static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3490 unsigned long deadline)
1da177e4
LT
3491{
3492 struct ata_ioports *ioaddr = &ap->ioaddr;
3493
44877b4e 3494 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3495
3496 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3497 iowrite8(ap->ctl, ioaddr->ctl_addr);
3498 udelay(20); /* FIXME: flush */
3499 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3500 udelay(20); /* FIXME: flush */
3501 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3502
88ff6eaf
TH
3503 /* wait a while before checking status */
3504 ata_wait_after_reset(ap, deadline);
1da177e4 3505
2e9edbf8 3506 /* Before we perform post reset processing we want to see if
298a41ca
TH
3507 * the bus shows 0xFF because the odd clown forgets the D7
3508 * pulldown resistor.
3509 */
150981b0 3510 if (ata_chk_status(ap) == 0xFF)
9b89391c 3511 return -ENODEV;
09c7ad79 3512
d4b2bab4 3513 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3514}
3515
3516/**
3517 * ata_bus_reset - reset host port and associated ATA channel
3518 * @ap: port to reset
3519 *
3520 * This is typically the first time we actually start issuing
3521 * commands to the ATA channel. We wait for BSY to clear, then
3522 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3523 * result. Determine what devices, if any, are on the channel
3524 * by looking at the device 0/1 error register. Look at the signature
3525 * stored in each device's taskfile registers, to determine if
3526 * the device is ATA or ATAPI.
3527 *
3528 * LOCKING:
0cba632b 3529 * PCI/etc. bus probe sem.
cca3974e 3530 * Obtains host lock.
1da177e4
LT
3531 *
3532 * SIDE EFFECTS:
198e0fed 3533 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3534 */
3535
3536void ata_bus_reset(struct ata_port *ap)
3537{
9af5c9c9 3538 struct ata_device *device = ap->link.device;
1da177e4
LT
3539 struct ata_ioports *ioaddr = &ap->ioaddr;
3540 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3541 u8 err;
aec5c3c1 3542 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3543 int rc;
1da177e4 3544
44877b4e 3545 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3546
3547 /* determine if device 0/1 are present */
3548 if (ap->flags & ATA_FLAG_SATA_RESET)
3549 dev0 = 1;
3550 else {
3551 dev0 = ata_devchk(ap, 0);
3552 if (slave_possible)
3553 dev1 = ata_devchk(ap, 1);
3554 }
3555
3556 if (dev0)
3557 devmask |= (1 << 0);
3558 if (dev1)
3559 devmask |= (1 << 1);
3560
3561 /* select device 0 again */
3562 ap->ops->dev_select(ap, 0);
3563
3564 /* issue bus reset */
9b89391c
TH
3565 if (ap->flags & ATA_FLAG_SRST) {
3566 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3567 if (rc && rc != -ENODEV)
aec5c3c1 3568 goto err_out;
9b89391c 3569 }
1da177e4
LT
3570
3571 /*
3572 * determine by signature whether we have ATA or ATAPI devices
3573 */
3f19859e 3574 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3575 if ((slave_possible) && (err != 0x81))
3f19859e 3576 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3577
1da177e4 3578 /* is double-select really necessary? */
9af5c9c9 3579 if (device[1].class != ATA_DEV_NONE)
1da177e4 3580 ap->ops->dev_select(ap, 1);
9af5c9c9 3581 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3582 ap->ops->dev_select(ap, 0);
3583
3584 /* if no devices were detected, disable this port */
9af5c9c9
TH
3585 if ((device[0].class == ATA_DEV_NONE) &&
3586 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3587 goto err_out;
3588
3589 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3590 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3591 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3592 }
3593
3594 DPRINTK("EXIT\n");
3595 return;
3596
3597err_out:
f15a1daf 3598 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3599 ata_port_disable(ap);
1da177e4
LT
3600
3601 DPRINTK("EXIT\n");
3602}
3603
d7bb4cc7 3604/**
936fd732
TH
3605 * sata_link_debounce - debounce SATA phy status
3606 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3607 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3608 * @deadline: deadline jiffies for the operation
d7bb4cc7 3609 *
936fd732 3610* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3611 * holding the same value where DET is not 1 for @duration polled
3612 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3613 * beginning of the stable state. Because DET gets stuck at 1 on
3614 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3615 * until timeout then returns 0 if DET is stable at 1.
3616 *
d4b2bab4
TH
3617 * @timeout is further limited by @deadline. The sooner of the
3618 * two is used.
3619 *
d7bb4cc7
TH
3620 * LOCKING:
3621 * Kernel thread context (may sleep)
3622 *
3623 * RETURNS:
3624 * 0 on success, -errno on failure.
3625 */
936fd732
TH
3626int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3627 unsigned long deadline)
7a7921e8 3628{
d7bb4cc7 3629 unsigned long interval_msec = params[0];
d4b2bab4
TH
3630 unsigned long duration = msecs_to_jiffies(params[1]);
3631 unsigned long last_jiffies, t;
d7bb4cc7
TH
3632 u32 last, cur;
3633 int rc;
3634
d4b2bab4
TH
3635 t = jiffies + msecs_to_jiffies(params[2]);
3636 if (time_before(t, deadline))
3637 deadline = t;
3638
936fd732 3639 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3640 return rc;
3641 cur &= 0xf;
3642
3643 last = cur;
3644 last_jiffies = jiffies;
3645
3646 while (1) {
3647 msleep(interval_msec);
936fd732 3648 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3649 return rc;
3650 cur &= 0xf;
3651
3652 /* DET stable? */
3653 if (cur == last) {
d4b2bab4 3654 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3655 continue;
3656 if (time_after(jiffies, last_jiffies + duration))
3657 return 0;
3658 continue;
3659 }
3660
3661 /* unstable, start over */
3662 last = cur;
3663 last_jiffies = jiffies;
3664
f1545154
TH
3665 /* Check deadline. If debouncing failed, return
3666 * -EPIPE to tell upper layer to lower link speed.
3667 */
d4b2bab4 3668 if (time_after(jiffies, deadline))
f1545154 3669 return -EPIPE;
d7bb4cc7
TH
3670 }
3671}
3672
3673/**
936fd732
TH
3674 * sata_link_resume - resume SATA link
3675 * @link: ATA link to resume SATA
d7bb4cc7 3676 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3677 * @deadline: deadline jiffies for the operation
d7bb4cc7 3678 *
936fd732 3679 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 *
3684 * RETURNS:
3685 * 0 on success, -errno on failure.
3686 */
936fd732
TH
3687int sata_link_resume(struct ata_link *link, const unsigned long *params,
3688 unsigned long deadline)
d7bb4cc7
TH
3689{
3690 u32 scontrol;
81952c54
TH
3691 int rc;
3692
936fd732 3693 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3694 return rc;
7a7921e8 3695
852ee16a 3696 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3697
936fd732 3698 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3699 return rc;
7a7921e8 3700
d7bb4cc7
TH
3701 /* Some PHYs react badly if SStatus is pounded immediately
3702 * after resuming. Delay 200ms before debouncing.
3703 */
3704 msleep(200);
7a7921e8 3705
936fd732 3706 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3707}
3708
f5914a46
TH
3709/**
3710 * ata_std_prereset - prepare for reset
cc0680a5 3711 * @link: ATA link to be reset
d4b2bab4 3712 * @deadline: deadline jiffies for the operation
f5914a46 3713 *
cc0680a5 3714 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3715 * prereset makes libata abort whole reset sequence and give up
3716 * that port, so prereset should be best-effort. It does its
3717 * best to prepare for reset sequence but if things go wrong, it
3718 * should just whine, not fail.
f5914a46
TH
3719 *
3720 * LOCKING:
3721 * Kernel thread context (may sleep)
3722 *
3723 * RETURNS:
3724 * 0 on success, -errno otherwise.
3725 */
cc0680a5 3726int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3727{
cc0680a5 3728 struct ata_port *ap = link->ap;
936fd732 3729 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3730 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3731 int rc;
3732
31daabda 3733 /* handle link resume */
28324304 3734 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3735 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3736 ehc->i.action |= ATA_EH_HARDRESET;
3737
633273a3
TH
3738 /* Some PMPs don't work with only SRST, force hardreset if PMP
3739 * is supported.
3740 */
3741 if (ap->flags & ATA_FLAG_PMP)
3742 ehc->i.action |= ATA_EH_HARDRESET;
3743
f5914a46
TH
3744 /* if we're about to do hardreset, nothing more to do */
3745 if (ehc->i.action & ATA_EH_HARDRESET)
3746 return 0;
3747
936fd732 3748 /* if SATA, resume link */
a16abc0b 3749 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3750 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3751 /* whine about phy resume failure but proceed */
3752 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3753 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3754 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3755 }
3756
3757 /* Wait for !BSY if the controller can wait for the first D2H
3758 * Reg FIS and we don't know that no device is attached.
3759 */
0c88758b 3760 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3761 rc = ata_wait_ready(ap, deadline);
6dffaf61 3762 if (rc && rc != -ENODEV) {
cc0680a5 3763 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3764 "(errno=%d), forcing hardreset\n", rc);
3765 ehc->i.action |= ATA_EH_HARDRESET;
3766 }
3767 }
f5914a46
TH
3768
3769 return 0;
3770}
3771
c2bd5804
TH
3772/**
3773 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3774 * @link: ATA link to reset
c2bd5804 3775 * @classes: resulting classes of attached devices
d4b2bab4 3776 * @deadline: deadline jiffies for the operation
c2bd5804 3777 *
52783c5d 3778 * Reset host port using ATA SRST.
c2bd5804
TH
3779 *
3780 * LOCKING:
3781 * Kernel thread context (may sleep)
3782 *
3783 * RETURNS:
3784 * 0 on success, -errno otherwise.
3785 */
cc0680a5 3786int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3787 unsigned long deadline)
c2bd5804 3788{
cc0680a5 3789 struct ata_port *ap = link->ap;
c2bd5804 3790 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3791 unsigned int devmask = 0;
3792 int rc;
c2bd5804
TH
3793 u8 err;
3794
3795 DPRINTK("ENTER\n");
3796
936fd732 3797 if (ata_link_offline(link)) {
3a39746a
TH
3798 classes[0] = ATA_DEV_NONE;
3799 goto out;
3800 }
3801
c2bd5804
TH
3802 /* determine if device 0/1 are present */
3803 if (ata_devchk(ap, 0))
3804 devmask |= (1 << 0);
3805 if (slave_possible && ata_devchk(ap, 1))
3806 devmask |= (1 << 1);
3807
c2bd5804
TH
3808 /* select device 0 again */
3809 ap->ops->dev_select(ap, 0);
3810
3811 /* issue bus reset */
3812 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3813 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3814 /* if link is occupied, -ENODEV too is an error */
936fd732 3815 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3816 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3817 return rc;
c2bd5804
TH
3818 }
3819
3820 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3821 classes[0] = ata_dev_try_classify(&link->device[0],
3822 devmask & (1 << 0), &err);
c2bd5804 3823 if (slave_possible && err != 0x81)
3f19859e
TH
3824 classes[1] = ata_dev_try_classify(&link->device[1],
3825 devmask & (1 << 1), &err);
c2bd5804 3826
3a39746a 3827 out:
c2bd5804
TH
3828 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3829 return 0;
3830}
3831
3832/**
cc0680a5
TH
3833 * sata_link_hardreset - reset link via SATA phy reset
3834 * @link: link to reset
b6103f6d 3835 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3836 * @deadline: deadline jiffies for the operation
c2bd5804 3837 *
cc0680a5 3838 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3839 *
3840 * LOCKING:
3841 * Kernel thread context (may sleep)
3842 *
3843 * RETURNS:
3844 * 0 on success, -errno otherwise.
3845 */
cc0680a5 3846int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3847 unsigned long deadline)
c2bd5804 3848{
852ee16a 3849 u32 scontrol;
81952c54 3850 int rc;
852ee16a 3851
c2bd5804
TH
3852 DPRINTK("ENTER\n");
3853
936fd732 3854 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3855 /* SATA spec says nothing about how to reconfigure
3856 * spd. To be on the safe side, turn off phy during
3857 * reconfiguration. This works for at least ICH7 AHCI
3858 * and Sil3124.
3859 */
936fd732 3860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3861 goto out;
81952c54 3862
a34b6fc0 3863 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3864
936fd732 3865 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3866 goto out;
1c3fae4d 3867
936fd732 3868 sata_set_spd(link);
1c3fae4d
TH
3869 }
3870
3871 /* issue phy wake/reset */
936fd732 3872 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3873 goto out;
81952c54 3874
852ee16a 3875 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3876
936fd732 3877 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3878 goto out;
c2bd5804 3879
1c3fae4d 3880 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3881 * 10.4.2 says at least 1 ms.
3882 */
3883 msleep(1);
3884
936fd732
TH
3885 /* bring link back */
3886 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3887 out:
3888 DPRINTK("EXIT, rc=%d\n", rc);
3889 return rc;
3890}
3891
3892/**
3893 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3894 * @link: link to reset
b6103f6d 3895 * @class: resulting class of attached device
d4b2bab4 3896 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3897 *
3898 * SATA phy-reset host port using DET bits of SControl register,
3899 * wait for !BSY and classify the attached device.
3900 *
3901 * LOCKING:
3902 * Kernel thread context (may sleep)
3903 *
3904 * RETURNS:
3905 * 0 on success, -errno otherwise.
3906 */
cc0680a5 3907int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3908 unsigned long deadline)
b6103f6d 3909{
cc0680a5 3910 struct ata_port *ap = link->ap;
936fd732 3911 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3912 int rc;
3913
3914 DPRINTK("ENTER\n");
3915
3916 /* do hardreset */
cc0680a5 3917 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3918 if (rc) {
cc0680a5 3919 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3920 "COMRESET failed (errno=%d)\n", rc);
3921 return rc;
3922 }
c2bd5804 3923
c2bd5804 3924 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3925 if (ata_link_offline(link)) {
c2bd5804
TH
3926 *class = ATA_DEV_NONE;
3927 DPRINTK("EXIT, link offline\n");
3928 return 0;
3929 }
3930
88ff6eaf
TH
3931 /* wait a while before checking status */
3932 ata_wait_after_reset(ap, deadline);
34fee227 3933
633273a3
TH
3934 /* If PMP is supported, we have to do follow-up SRST. Note
3935 * that some PMPs don't send D2H Reg FIS after hardreset at
3936 * all if the first port is empty. Wait for it just for a
3937 * second and request follow-up SRST.
3938 */
3939 if (ap->flags & ATA_FLAG_PMP) {
3940 ata_wait_ready(ap, jiffies + HZ);
3941 return -EAGAIN;
3942 }
3943
d4b2bab4 3944 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3945 /* link occupied, -ENODEV too is an error */
3946 if (rc) {
cc0680a5 3947 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3948 "COMRESET failed (errno=%d)\n", rc);
3949 return rc;
c2bd5804
TH
3950 }
3951
3a39746a
TH
3952 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3953
3f19859e 3954 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3955
3956 DPRINTK("EXIT, class=%u\n", *class);
3957 return 0;
3958}
3959
3960/**
3961 * ata_std_postreset - standard postreset callback
cc0680a5 3962 * @link: the target ata_link
c2bd5804
TH
3963 * @classes: classes of attached devices
3964 *
3965 * This function is invoked after a successful reset. Note that
3966 * the device might have been reset more than once using
3967 * different reset methods before postreset is invoked.
c2bd5804 3968 *
c2bd5804
TH
3969 * LOCKING:
3970 * Kernel thread context (may sleep)
3971 */
cc0680a5 3972void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3973{
cc0680a5 3974 struct ata_port *ap = link->ap;
dc2b3515
TH
3975 u32 serror;
3976
c2bd5804
TH
3977 DPRINTK("ENTER\n");
3978
c2bd5804 3979 /* print link status */
936fd732 3980 sata_print_link_status(link);
c2bd5804 3981
dc2b3515 3982 /* clear SError */
936fd732
TH
3983 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3984 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3985
c2bd5804
TH
3986 /* is double-select really necessary? */
3987 if (classes[0] != ATA_DEV_NONE)
3988 ap->ops->dev_select(ap, 1);
3989 if (classes[1] != ATA_DEV_NONE)
3990 ap->ops->dev_select(ap, 0);
3991
3a39746a
TH
3992 /* bail out if no device is present */
3993 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3994 DPRINTK("EXIT, no device\n");
3995 return;
3996 }
3997
3998 /* set up device control */
0d5ff566
TH
3999 if (ap->ioaddr.ctl_addr)
4000 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
4001
4002 DPRINTK("EXIT\n");
4003}
4004
623a3128
TH
4005/**
4006 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4007 * @dev: device to compare against
4008 * @new_class: class of the new device
4009 * @new_id: IDENTIFY page of the new device
4010 *
4011 * Compare @new_class and @new_id against @dev and determine
4012 * whether @dev is the device indicated by @new_class and
4013 * @new_id.
4014 *
4015 * LOCKING:
4016 * None.
4017 *
4018 * RETURNS:
4019 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4020 */
3373efd8
TH
4021static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4022 const u16 *new_id)
623a3128
TH
4023{
4024 const u16 *old_id = dev->id;
a0cf733b
TH
4025 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4026 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4027
4028 if (dev->class != new_class) {
f15a1daf
TH
4029 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4030 dev->class, new_class);
623a3128
TH
4031 return 0;
4032 }
4033
a0cf733b
TH
4034 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4035 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4036 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4037 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4038
4039 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4040 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4041 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4042 return 0;
4043 }
4044
4045 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4046 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4047 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4048 return 0;
4049 }
4050
623a3128
TH
4051 return 1;
4052}
4053
4054/**
fe30911b 4055 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4056 * @dev: target ATA device
bff04647 4057 * @readid_flags: read ID flags
623a3128
TH
4058 *
4059 * Re-read IDENTIFY page and make sure @dev is still attached to
4060 * the port.
4061 *
4062 * LOCKING:
4063 * Kernel thread context (may sleep)
4064 *
4065 * RETURNS:
4066 * 0 on success, negative errno otherwise
4067 */
fe30911b 4068int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4069{
5eb45c02 4070 unsigned int class = dev->class;
9af5c9c9 4071 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4072 int rc;
4073
fe635c7e 4074 /* read ID data */
bff04647 4075 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4076 if (rc)
fe30911b 4077 return rc;
623a3128
TH
4078
4079 /* is the device still there? */
fe30911b
TH
4080 if (!ata_dev_same_device(dev, class, id))
4081 return -ENODEV;
623a3128 4082
fe635c7e 4083 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4084 return 0;
4085}
4086
4087/**
4088 * ata_dev_revalidate - Revalidate ATA device
4089 * @dev: device to revalidate
422c9daa 4090 * @new_class: new class code
fe30911b
TH
4091 * @readid_flags: read ID flags
4092 *
4093 * Re-read IDENTIFY page, make sure @dev is still attached to the
4094 * port and reconfigure it according to the new IDENTIFY page.
4095 *
4096 * LOCKING:
4097 * Kernel thread context (may sleep)
4098 *
4099 * RETURNS:
4100 * 0 on success, negative errno otherwise
4101 */
422c9daa
TH
4102int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4103 unsigned int readid_flags)
fe30911b 4104{
6ddcd3b0 4105 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4106 int rc;
4107
4108 if (!ata_dev_enabled(dev))
4109 return -ENODEV;
4110
422c9daa
TH
4111 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4112 if (ata_class_enabled(new_class) &&
4113 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4114 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4115 dev->class, new_class);
4116 rc = -ENODEV;
4117 goto fail;
4118 }
4119
fe30911b
TH
4120 /* re-read ID */
4121 rc = ata_dev_reread_id(dev, readid_flags);
4122 if (rc)
4123 goto fail;
623a3128
TH
4124
4125 /* configure device according to the new ID */
efdaedc4 4126 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4127 if (rc)
4128 goto fail;
4129
4130 /* verify n_sectors hasn't changed */
b54eebd6
TH
4131 if (dev->class == ATA_DEV_ATA && n_sectors &&
4132 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4133 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4134 "%llu != %llu\n",
4135 (unsigned long long)n_sectors,
4136 (unsigned long long)dev->n_sectors);
8270bec4
TH
4137
4138 /* restore original n_sectors */
4139 dev->n_sectors = n_sectors;
4140
6ddcd3b0
TH
4141 rc = -ENODEV;
4142 goto fail;
4143 }
4144
4145 return 0;
623a3128
TH
4146
4147 fail:
f15a1daf 4148 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4149 return rc;
4150}
4151
6919a0a6
AC
4152struct ata_blacklist_entry {
4153 const char *model_num;
4154 const char *model_rev;
4155 unsigned long horkage;
4156};
4157
4158static const struct ata_blacklist_entry ata_device_blacklist [] = {
4159 /* Devices with DMA related problems under Linux */
4160 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4161 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4165 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4166 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4167 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4168 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4170 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4171 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4172 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4173 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4174 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4175 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4176 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4177 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4178 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4179 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4180 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4181 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4182 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4183 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4184 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4185 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4186 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4187 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4188 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4189 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4190 /* Odd clown on sil3726/4726 PMPs */
4191 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4192 ATA_HORKAGE_SKIP_PM },
6919a0a6 4193
18d6e9d5 4194 /* Weird ATAPI devices */
40a1d531 4195 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4196
6919a0a6
AC
4197 /* Devices we expect to fail diagnostics */
4198
4199 /* Devices where NCQ should be avoided */
4200 /* NCQ is slow */
2dcb407e 4201 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4202 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4203 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4204 /* NCQ is broken */
539cc7c7 4205 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4206 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4207 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4208 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4210
36e337d0
RH
4211 /* Blacklist entries taken from Silicon Image 3124/3132
4212 Windows driver .inf file - also several Linux problem reports */
4213 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4214 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4215 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4216 /* Drives which do spurious command completion */
4217 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4218 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4219 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4220 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4221 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4222 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4223 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4224 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4225 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4226 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4227 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4228 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4229 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4230 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4231 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4232 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4233
16c55b03
TH
4234 /* devices which puke on READ_NATIVE_MAX */
4235 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4236 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4237 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4238 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4239
93328e11
AC
4240 /* Devices which report 1 sector over size HPA */
4241 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4242 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4243
6919a0a6
AC
4244 /* End Marker */
4245 { }
1da177e4 4246};
2e9edbf8 4247
741b7763 4248static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4249{
4250 const char *p;
4251 int len;
4252
4253 /*
4254 * check for trailing wildcard: *\0
4255 */
4256 p = strchr(patt, wildchar);
4257 if (p && ((*(p + 1)) == 0))
4258 len = p - patt;
317b50b8 4259 else {
539cc7c7 4260 len = strlen(name);
317b50b8
AP
4261 if (!len) {
4262 if (!*patt)
4263 return 0;
4264 return -1;
4265 }
4266 }
539cc7c7
JG
4267
4268 return strncmp(patt, name, len);
4269}
4270
75683fe7 4271static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4272{
8bfa79fc
TH
4273 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4274 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4275 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4276
8bfa79fc
TH
4277 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4278 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4279
6919a0a6 4280 while (ad->model_num) {
539cc7c7 4281 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4282 if (ad->model_rev == NULL)
4283 return ad->horkage;
539cc7c7 4284 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4285 return ad->horkage;
f4b15fef 4286 }
6919a0a6 4287 ad++;
f4b15fef 4288 }
1da177e4
LT
4289 return 0;
4290}
4291
6919a0a6
AC
4292static int ata_dma_blacklisted(const struct ata_device *dev)
4293{
4294 /* We don't support polling DMA.
4295 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4296 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4297 */
9af5c9c9 4298 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4299 (dev->flags & ATA_DFLAG_CDB_INTR))
4300 return 1;
75683fe7 4301 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4302}
4303
a6d5a51c
TH
4304/**
4305 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4306 * @dev: Device to compute xfermask for
4307 *
acf356b1
TH
4308 * Compute supported xfermask of @dev and store it in
4309 * dev->*_mask. This function is responsible for applying all
4310 * known limits including host controller limits, device
4311 * blacklist, etc...
a6d5a51c
TH
4312 *
4313 * LOCKING:
4314 * None.
a6d5a51c 4315 */
3373efd8 4316static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4317{
9af5c9c9
TH
4318 struct ata_link *link = dev->link;
4319 struct ata_port *ap = link->ap;
cca3974e 4320 struct ata_host *host = ap->host;
a6d5a51c 4321 unsigned long xfer_mask;
1da177e4 4322
37deecb5 4323 /* controller modes available */
565083e1
TH
4324 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4325 ap->mwdma_mask, ap->udma_mask);
4326
8343f889 4327 /* drive modes available */
37deecb5
TH
4328 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4329 dev->mwdma_mask, dev->udma_mask);
4330 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4331
b352e57d
AC
4332 /*
4333 * CFA Advanced TrueIDE timings are not allowed on a shared
4334 * cable
4335 */
4336 if (ata_dev_pair(dev)) {
4337 /* No PIO5 or PIO6 */
4338 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4339 /* No MWDMA3 or MWDMA 4 */
4340 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4341 }
4342
37deecb5
TH
4343 if (ata_dma_blacklisted(dev)) {
4344 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4345 ata_dev_printk(dev, KERN_WARNING,
4346 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4347 }
a6d5a51c 4348
14d66ab7 4349 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4350 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4351 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4352 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4353 "other device, disabling DMA\n");
5444a6f4 4354 }
565083e1 4355
e424675f
JG
4356 if (ap->flags & ATA_FLAG_NO_IORDY)
4357 xfer_mask &= ata_pio_mask_no_iordy(dev);
4358
5444a6f4 4359 if (ap->ops->mode_filter)
a76b62ca 4360 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4361
8343f889
RH
4362 /* Apply cable rule here. Don't apply it early because when
4363 * we handle hot plug the cable type can itself change.
4364 * Check this last so that we know if the transfer rate was
4365 * solely limited by the cable.
4366 * Unknown or 80 wire cables reported host side are checked
4367 * drive side as well. Cases where we know a 40wire cable
4368 * is used safely for 80 are not checked here.
4369 */
4370 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4371 /* UDMA/44 or higher would be available */
2dcb407e
JG
4372 if ((ap->cbl == ATA_CBL_PATA40) ||
4373 (ata_drive_40wire(dev->id) &&
4374 (ap->cbl == ATA_CBL_PATA_UNK ||
4375 ap->cbl == ATA_CBL_PATA80))) {
4376 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4377 "limited to UDMA/33 due to 40-wire cable\n");
4378 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4379 }
4380
565083e1
TH
4381 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4382 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4383}
4384
1da177e4
LT
4385/**
4386 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4387 * @dev: Device to which command will be sent
4388 *
780a87f7
JG
4389 * Issue SET FEATURES - XFER MODE command to device @dev
4390 * on port @ap.
4391 *
1da177e4 4392 * LOCKING:
0cba632b 4393 * PCI/etc. bus probe sem.
83206a29
TH
4394 *
4395 * RETURNS:
4396 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4397 */
4398
3373efd8 4399static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4400{
a0123703 4401 struct ata_taskfile tf;
83206a29 4402 unsigned int err_mask;
1da177e4
LT
4403
4404 /* set up set-features taskfile */
4405 DPRINTK("set features - xfer mode\n");
4406
464cf177
TH
4407 /* Some controllers and ATAPI devices show flaky interrupt
4408 * behavior after setting xfer mode. Use polling instead.
4409 */
3373efd8 4410 ata_tf_init(dev, &tf);
a0123703
TH
4411 tf.command = ATA_CMD_SET_FEATURES;
4412 tf.feature = SETFEATURES_XFER;
464cf177 4413 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4414 tf.protocol = ATA_PROT_NODATA;
4415 tf.nsect = dev->xfer_mode;
1da177e4 4416
2b789108 4417 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4418
4419 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4420 return err_mask;
4421}
9f45cbd3 4422/**
218f3d30 4423 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4424 * @dev: Device to which command will be sent
4425 * @enable: Whether to enable or disable the feature
218f3d30 4426 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4427 *
4428 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4429 * on port @ap with sector count
9f45cbd3
KCA
4430 *
4431 * LOCKING:
4432 * PCI/etc. bus probe sem.
4433 *
4434 * RETURNS:
4435 * 0 on success, AC_ERR_* mask otherwise.
4436 */
218f3d30
JG
4437static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4438 u8 feature)
9f45cbd3
KCA
4439{
4440 struct ata_taskfile tf;
4441 unsigned int err_mask;
4442
4443 /* set up set-features taskfile */
4444 DPRINTK("set features - SATA features\n");
4445
4446 ata_tf_init(dev, &tf);
4447 tf.command = ATA_CMD_SET_FEATURES;
4448 tf.feature = enable;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
218f3d30 4451 tf.nsect = feature;
9f45cbd3 4452
2b789108 4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4454
83206a29
TH
4455 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 return err_mask;
1da177e4
LT
4457}
4458
8bf62ece
AL
4459/**
4460 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4461 * @dev: Device to which command will be sent
e2a7f77a
RD
4462 * @heads: Number of heads (taskfile parameter)
4463 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4464 *
4465 * LOCKING:
6aff8f1f
TH
4466 * Kernel thread context (may sleep)
4467 *
4468 * RETURNS:
4469 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4470 */
3373efd8
TH
4471static unsigned int ata_dev_init_params(struct ata_device *dev,
4472 u16 heads, u16 sectors)
8bf62ece 4473{
a0123703 4474 struct ata_taskfile tf;
6aff8f1f 4475 unsigned int err_mask;
8bf62ece
AL
4476
4477 /* Number of sectors per track 1-255. Number of heads 1-16 */
4478 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4479 return AC_ERR_INVALID;
8bf62ece
AL
4480
4481 /* set up init dev params taskfile */
4482 DPRINTK("init dev params \n");
4483
3373efd8 4484 ata_tf_init(dev, &tf);
a0123703
TH
4485 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4486 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4487 tf.protocol = ATA_PROT_NODATA;
4488 tf.nsect = sectors;
4489 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4490
2b789108 4491 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4492 /* A clean abort indicates an original or just out of spec drive
4493 and we should continue as we issue the setup based on the
4494 drive reported working geometry */
4495 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4496 err_mask = 0;
8bf62ece 4497
6aff8f1f
TH
4498 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4499 return err_mask;
8bf62ece
AL
4500}
4501
1da177e4 4502/**
0cba632b
JG
4503 * ata_sg_clean - Unmap DMA memory associated with command
4504 * @qc: Command containing DMA memory to be released
4505 *
4506 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4507 *
4508 * LOCKING:
cca3974e 4509 * spin_lock_irqsave(host lock)
1da177e4 4510 */
70e6ad0c 4511void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4512{
4513 struct ata_port *ap = qc->ap;
cedc9a47 4514 struct scatterlist *sg = qc->__sg;
1da177e4 4515 int dir = qc->dma_dir;
cedc9a47 4516 void *pad_buf = NULL;
1da177e4 4517
a4631474
TH
4518 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4519 WARN_ON(sg == NULL);
1da177e4
LT
4520
4521 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4522 WARN_ON(qc->n_elem > 1);
1da177e4 4523
2c13b7ce 4524 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4525
cedc9a47
JG
4526 /* if we padded the buffer out to 32-bit bound, and data
4527 * xfer direction is from-device, we must copy from the
4528 * pad buffer back into the supplied buffer
4529 */
4530 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4531 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4532
4533 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4534 if (qc->n_elem)
2f1f610b 4535 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4536 /* restore last sg */
87260216 4537 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4538 if (pad_buf) {
4539 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4540 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4541 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4542 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4543 }
4544 } else {
2e242fa9 4545 if (qc->n_elem)
2f1f610b 4546 dma_unmap_single(ap->dev,
e1410f2d
JG
4547 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4548 dir);
cedc9a47
JG
4549 /* restore sg */
4550 sg->length += qc->pad_len;
4551 if (pad_buf)
4552 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4553 pad_buf, qc->pad_len);
4554 }
1da177e4
LT
4555
4556 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4557 qc->__sg = NULL;
1da177e4
LT
4558}
4559
4560/**
4561 * ata_fill_sg - Fill PCI IDE PRD table
4562 * @qc: Metadata associated with taskfile to be transferred
4563 *
780a87f7
JG
4564 * Fill PCI IDE PRD (scatter-gather) table with segments
4565 * associated with the current disk command.
4566 *
1da177e4 4567 * LOCKING:
cca3974e 4568 * spin_lock_irqsave(host lock)
1da177e4
LT
4569 *
4570 */
4571static void ata_fill_sg(struct ata_queued_cmd *qc)
4572{
1da177e4 4573 struct ata_port *ap = qc->ap;
cedc9a47
JG
4574 struct scatterlist *sg;
4575 unsigned int idx;
1da177e4 4576
a4631474 4577 WARN_ON(qc->__sg == NULL);
f131883e 4578 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4579
4580 idx = 0;
cedc9a47 4581 ata_for_each_sg(sg, qc) {
1da177e4
LT
4582 u32 addr, offset;
4583 u32 sg_len, len;
4584
4585 /* determine if physical DMA addr spans 64K boundary.
4586 * Note h/w doesn't support 64-bit, so we unconditionally
4587 * truncate dma_addr_t to u32.
4588 */
4589 addr = (u32) sg_dma_address(sg);
4590 sg_len = sg_dma_len(sg);
4591
4592 while (sg_len) {
4593 offset = addr & 0xffff;
4594 len = sg_len;
4595 if ((offset + sg_len) > 0x10000)
4596 len = 0x10000 - offset;
4597
4598 ap->prd[idx].addr = cpu_to_le32(addr);
4599 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4600 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4601
4602 idx++;
4603 sg_len -= len;
4604 addr += len;
4605 }
4606 }
4607
4608 if (idx)
4609 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4610}
b9a4197e 4611
d26fc955
AC
4612/**
4613 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4614 * @qc: Metadata associated with taskfile to be transferred
4615 *
4616 * Fill PCI IDE PRD (scatter-gather) table with segments
4617 * associated with the current disk command. Perform the fill
4618 * so that we avoid writing any length 64K records for
4619 * controllers that don't follow the spec.
4620 *
4621 * LOCKING:
4622 * spin_lock_irqsave(host lock)
4623 *
4624 */
4625static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4626{
4627 struct ata_port *ap = qc->ap;
4628 struct scatterlist *sg;
4629 unsigned int idx;
4630
4631 WARN_ON(qc->__sg == NULL);
4632 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4633
4634 idx = 0;
4635 ata_for_each_sg(sg, qc) {
4636 u32 addr, offset;
4637 u32 sg_len, len, blen;
4638
2dcb407e 4639 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4640 * Note h/w doesn't support 64-bit, so we unconditionally
4641 * truncate dma_addr_t to u32.
4642 */
4643 addr = (u32) sg_dma_address(sg);
4644 sg_len = sg_dma_len(sg);
4645
4646 while (sg_len) {
4647 offset = addr & 0xffff;
4648 len = sg_len;
4649 if ((offset + sg_len) > 0x10000)
4650 len = 0x10000 - offset;
4651
4652 blen = len & 0xffff;
4653 ap->prd[idx].addr = cpu_to_le32(addr);
4654 if (blen == 0) {
4655 /* Some PATA chipsets like the CS5530 can't
4656 cope with 0x0000 meaning 64K as the spec says */
4657 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4658 blen = 0x8000;
4659 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4660 }
4661 ap->prd[idx].flags_len = cpu_to_le32(blen);
4662 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4663
4664 idx++;
4665 sg_len -= len;
4666 addr += len;
4667 }
4668 }
4669
4670 if (idx)
4671 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4672}
4673
1da177e4
LT
4674/**
4675 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4676 * @qc: Metadata associated with taskfile to check
4677 *
780a87f7
JG
4678 * Allow low-level driver to filter ATA PACKET commands, returning
4679 * a status indicating whether or not it is OK to use DMA for the
4680 * supplied PACKET command.
4681 *
1da177e4 4682 * LOCKING:
cca3974e 4683 * spin_lock_irqsave(host lock)
0cba632b 4684 *
1da177e4
LT
4685 * RETURNS: 0 when ATAPI DMA can be used
4686 * nonzero otherwise
4687 */
4688int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4689{
4690 struct ata_port *ap = qc->ap;
b9a4197e
TH
4691
4692 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4693 * few ATAPI devices choke on such DMA requests.
4694 */
4695 if (unlikely(qc->nbytes & 15))
4696 return 1;
6f23a31d 4697
1da177e4 4698 if (ap->ops->check_atapi_dma)
b9a4197e 4699 return ap->ops->check_atapi_dma(qc);
1da177e4 4700
b9a4197e 4701 return 0;
1da177e4 4702}
b9a4197e 4703
31cc23b3
TH
4704/**
4705 * ata_std_qc_defer - Check whether a qc needs to be deferred
4706 * @qc: ATA command in question
4707 *
4708 * Non-NCQ commands cannot run with any other command, NCQ or
4709 * not. As upper layer only knows the queue depth, we are
4710 * responsible for maintaining exclusion. This function checks
4711 * whether a new command @qc can be issued.
4712 *
4713 * LOCKING:
4714 * spin_lock_irqsave(host lock)
4715 *
4716 * RETURNS:
4717 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4718 */
4719int ata_std_qc_defer(struct ata_queued_cmd *qc)
4720{
4721 struct ata_link *link = qc->dev->link;
4722
4723 if (qc->tf.protocol == ATA_PROT_NCQ) {
4724 if (!ata_tag_valid(link->active_tag))
4725 return 0;
4726 } else {
4727 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4728 return 0;
4729 }
4730
4731 return ATA_DEFER_LINK;
4732}
4733
1da177e4
LT
4734/**
4735 * ata_qc_prep - Prepare taskfile for submission
4736 * @qc: Metadata associated with taskfile to be prepared
4737 *
780a87f7
JG
4738 * Prepare ATA taskfile for submission.
4739 *
1da177e4 4740 * LOCKING:
cca3974e 4741 * spin_lock_irqsave(host lock)
1da177e4
LT
4742 */
4743void ata_qc_prep(struct ata_queued_cmd *qc)
4744{
4745 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4746 return;
4747
4748 ata_fill_sg(qc);
4749}
4750
d26fc955
AC
4751/**
4752 * ata_dumb_qc_prep - Prepare taskfile for submission
4753 * @qc: Metadata associated with taskfile to be prepared
4754 *
4755 * Prepare ATA taskfile for submission.
4756 *
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4759 */
4760void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4761{
4762 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4763 return;
4764
4765 ata_fill_sg_dumb(qc);
4766}
4767
e46834cd
BK
4768void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4769
0cba632b
JG
4770/**
4771 * ata_sg_init_one - Associate command with memory buffer
4772 * @qc: Command to be associated
4773 * @buf: Memory buffer
4774 * @buflen: Length of memory buffer, in bytes.
4775 *
4776 * Initialize the data-related elements of queued_cmd @qc
4777 * to point to a single memory buffer, @buf of byte length @buflen.
4778 *
4779 * LOCKING:
cca3974e 4780 * spin_lock_irqsave(host lock)
0cba632b
JG
4781 */
4782
1da177e4
LT
4783void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4784{
1da177e4
LT
4785 qc->flags |= ATA_QCFLAG_SINGLE;
4786
cedc9a47 4787 qc->__sg = &qc->sgent;
1da177e4 4788 qc->n_elem = 1;
cedc9a47 4789 qc->orig_n_elem = 1;
1da177e4 4790 qc->buf_virt = buf;
233277ca 4791 qc->nbytes = buflen;
87260216 4792 qc->cursg = qc->__sg;
1da177e4 4793
61c0596c 4794 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4795}
4796
0cba632b
JG
4797/**
4798 * ata_sg_init - Associate command with scatter-gather table.
4799 * @qc: Command to be associated
4800 * @sg: Scatter-gather table.
4801 * @n_elem: Number of elements in s/g table.
4802 *
4803 * Initialize the data-related elements of queued_cmd @qc
4804 * to point to a scatter-gather table @sg, containing @n_elem
4805 * elements.
4806 *
4807 * LOCKING:
cca3974e 4808 * spin_lock_irqsave(host lock)
0cba632b
JG
4809 */
4810
1da177e4
LT
4811void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4812 unsigned int n_elem)
4813{
4814 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4815 qc->__sg = sg;
1da177e4 4816 qc->n_elem = n_elem;
cedc9a47 4817 qc->orig_n_elem = n_elem;
87260216 4818 qc->cursg = qc->__sg;
1da177e4
LT
4819}
4820
4821/**
0cba632b
JG
4822 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4823 * @qc: Command with memory buffer to be mapped.
4824 *
4825 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4826 *
4827 * LOCKING:
cca3974e 4828 * spin_lock_irqsave(host lock)
1da177e4
LT
4829 *
4830 * RETURNS:
0cba632b 4831 * Zero on success, negative on error.
1da177e4
LT
4832 */
4833
4834static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4835{
4836 struct ata_port *ap = qc->ap;
4837 int dir = qc->dma_dir;
cedc9a47 4838 struct scatterlist *sg = qc->__sg;
1da177e4 4839 dma_addr_t dma_address;
2e242fa9 4840 int trim_sg = 0;
1da177e4 4841
cedc9a47
JG
4842 /* we must lengthen transfers to end on a 32-bit boundary */
4843 qc->pad_len = sg->length & 3;
4844 if (qc->pad_len) {
4845 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4846 struct scatterlist *psg = &qc->pad_sgent;
4847
a4631474 4848 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4849
4850 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4851
4852 if (qc->tf.flags & ATA_TFLAG_WRITE)
4853 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4854 qc->pad_len);
4855
4856 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4857 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4858 /* trim sg */
4859 sg->length -= qc->pad_len;
2e242fa9
TH
4860 if (sg->length == 0)
4861 trim_sg = 1;
cedc9a47
JG
4862
4863 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4864 sg->length, qc->pad_len);
4865 }
4866
2e242fa9
TH
4867 if (trim_sg) {
4868 qc->n_elem--;
e1410f2d
JG
4869 goto skip_map;
4870 }
4871
2f1f610b 4872 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4873 sg->length, dir);
537a95d9
TH
4874 if (dma_mapping_error(dma_address)) {
4875 /* restore sg */
4876 sg->length += qc->pad_len;
1da177e4 4877 return -1;
537a95d9 4878 }
1da177e4
LT
4879
4880 sg_dma_address(sg) = dma_address;
32529e01 4881 sg_dma_len(sg) = sg->length;
1da177e4 4882
2e242fa9 4883skip_map:
1da177e4
LT
4884 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4885 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4886
4887 return 0;
4888}
4889
4890/**
0cba632b
JG
4891 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4892 * @qc: Command with scatter-gather table to be mapped.
4893 *
4894 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4895 *
4896 * LOCKING:
cca3974e 4897 * spin_lock_irqsave(host lock)
1da177e4
LT
4898 *
4899 * RETURNS:
0cba632b 4900 * Zero on success, negative on error.
1da177e4
LT
4901 *
4902 */
4903
4904static int ata_sg_setup(struct ata_queued_cmd *qc)
4905{
4906 struct ata_port *ap = qc->ap;
cedc9a47 4907 struct scatterlist *sg = qc->__sg;
87260216 4908 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4909 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4910
44877b4e 4911 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4912 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4913
cedc9a47
JG
4914 /* we must lengthen transfers to end on a 32-bit boundary */
4915 qc->pad_len = lsg->length & 3;
4916 if (qc->pad_len) {
4917 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4918 struct scatterlist *psg = &qc->pad_sgent;
4919 unsigned int offset;
4920
a4631474 4921 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4922
4923 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4924
4925 /*
4926 * psg->page/offset are used to copy to-be-written
4927 * data in this function or read data in ata_sg_clean.
4928 */
4929 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4930 sg_init_table(psg, 1);
642f1490
JA
4931 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4932 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4933
4934 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4935 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4936 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4937 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4938 }
4939
4940 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4941 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4942 /* trim last sg */
4943 lsg->length -= qc->pad_len;
e1410f2d
JG
4944 if (lsg->length == 0)
4945 trim_sg = 1;
cedc9a47
JG
4946
4947 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4948 qc->n_elem - 1, lsg->length, qc->pad_len);
4949 }
4950
e1410f2d
JG
4951 pre_n_elem = qc->n_elem;
4952 if (trim_sg && pre_n_elem)
4953 pre_n_elem--;
4954
4955 if (!pre_n_elem) {
4956 n_elem = 0;
4957 goto skip_map;
4958 }
4959
1da177e4 4960 dir = qc->dma_dir;
2f1f610b 4961 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4962 if (n_elem < 1) {
4963 /* restore last sg */
4964 lsg->length += qc->pad_len;
1da177e4 4965 return -1;
537a95d9 4966 }
1da177e4
LT
4967
4968 DPRINTK("%d sg elements mapped\n", n_elem);
4969
e1410f2d 4970skip_map:
1da177e4
LT
4971 qc->n_elem = n_elem;
4972
4973 return 0;
4974}
4975
0baab86b 4976/**
c893a3ae 4977 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4978 * @buf: Buffer to swap
4979 * @buf_words: Number of 16-bit words in buffer.
4980 *
4981 * Swap halves of 16-bit words if needed to convert from
4982 * little-endian byte order to native cpu byte order, or
4983 * vice-versa.
4984 *
4985 * LOCKING:
6f0ef4fa 4986 * Inherited from caller.
0baab86b 4987 */
1da177e4
LT
4988void swap_buf_le16(u16 *buf, unsigned int buf_words)
4989{
4990#ifdef __BIG_ENDIAN
4991 unsigned int i;
4992
4993 for (i = 0; i < buf_words; i++)
4994 buf[i] = le16_to_cpu(buf[i]);
4995#endif /* __BIG_ENDIAN */
4996}
4997
6ae4cfb5 4998/**
0d5ff566 4999 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 5000 * @adev: device to target
6ae4cfb5
AL
5001 * @buf: data buffer
5002 * @buflen: buffer length
344babaa 5003 * @write_data: read/write
6ae4cfb5
AL
5004 *
5005 * Transfer data from/to the device data register by PIO.
5006 *
5007 * LOCKING:
5008 * Inherited from caller.
6ae4cfb5 5009 */
0d5ff566
TH
5010void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
5011 unsigned int buflen, int write_data)
1da177e4 5012{
9af5c9c9 5013 struct ata_port *ap = adev->link->ap;
6ae4cfb5 5014 unsigned int words = buflen >> 1;
1da177e4 5015
6ae4cfb5 5016 /* Transfer multiple of 2 bytes */
1da177e4 5017 if (write_data)
0d5ff566 5018 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 5019 else
0d5ff566 5020 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5021
5022 /* Transfer trailing 1 byte, if any. */
5023 if (unlikely(buflen & 0x01)) {
5024 u16 align_buf[1] = { 0 };
5025 unsigned char *trailing_buf = buf + buflen - 1;
5026
5027 if (write_data) {
5028 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5029 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5030 } else {
0d5ff566 5031 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5032 memcpy(trailing_buf, align_buf, 1);
5033 }
5034 }
1da177e4
LT
5035}
5036
75e99585 5037/**
0d5ff566 5038 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5039 * @adev: device to target
5040 * @buf: data buffer
5041 * @buflen: buffer length
5042 * @write_data: read/write
5043 *
88574551 5044 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5045 * transfer with interrupts disabled.
5046 *
5047 * LOCKING:
5048 * Inherited from caller.
5049 */
0d5ff566
TH
5050void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5051 unsigned int buflen, int write_data)
75e99585
AC
5052{
5053 unsigned long flags;
5054 local_irq_save(flags);
0d5ff566 5055 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5056 local_irq_restore(flags);
5057}
5058
5059
6ae4cfb5 5060/**
5a5dbd18 5061 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5062 * @qc: Command on going
5063 *
5a5dbd18 5064 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5065 *
5066 * LOCKING:
5067 * Inherited from caller.
5068 */
5069
1da177e4
LT
5070static void ata_pio_sector(struct ata_queued_cmd *qc)
5071{
5072 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5073 struct ata_port *ap = qc->ap;
5074 struct page *page;
5075 unsigned int offset;
5076 unsigned char *buf;
5077
5a5dbd18 5078 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5079 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5080
45711f1a 5081 page = sg_page(qc->cursg);
87260216 5082 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5083
5084 /* get the current page and offset */
5085 page = nth_page(page, (offset >> PAGE_SHIFT));
5086 offset %= PAGE_SIZE;
5087
1da177e4
LT
5088 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5089
91b8b313
AL
5090 if (PageHighMem(page)) {
5091 unsigned long flags;
5092
a6b2c5d4 5093 /* FIXME: use a bounce buffer */
91b8b313
AL
5094 local_irq_save(flags);
5095 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5096
91b8b313 5097 /* do the actual data transfer */
5a5dbd18 5098 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5099
91b8b313
AL
5100 kunmap_atomic(buf, KM_IRQ0);
5101 local_irq_restore(flags);
5102 } else {
5103 buf = page_address(page);
5a5dbd18 5104 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5105 }
1da177e4 5106
5a5dbd18
ML
5107 qc->curbytes += qc->sect_size;
5108 qc->cursg_ofs += qc->sect_size;
1da177e4 5109
87260216
JA
5110 if (qc->cursg_ofs == qc->cursg->length) {
5111 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5112 qc->cursg_ofs = 0;
5113 }
1da177e4 5114}
1da177e4 5115
07f6f7d0 5116/**
5a5dbd18 5117 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5118 * @qc: Command on going
5119 *
5a5dbd18 5120 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5121 * ATA device for the DRQ request.
5122 *
5123 * LOCKING:
5124 * Inherited from caller.
5125 */
1da177e4 5126
07f6f7d0
AL
5127static void ata_pio_sectors(struct ata_queued_cmd *qc)
5128{
5129 if (is_multi_taskfile(&qc->tf)) {
5130 /* READ/WRITE MULTIPLE */
5131 unsigned int nsect;
5132
587005de 5133 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5134
5a5dbd18 5135 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5136 qc->dev->multi_count);
07f6f7d0
AL
5137 while (nsect--)
5138 ata_pio_sector(qc);
5139 } else
5140 ata_pio_sector(qc);
4cc980b3
AL
5141
5142 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5143}
5144
c71c1857
AL
5145/**
5146 * atapi_send_cdb - Write CDB bytes to hardware
5147 * @ap: Port to which ATAPI device is attached.
5148 * @qc: Taskfile currently active
5149 *
5150 * When device has indicated its readiness to accept
5151 * a CDB, this function is called. Send the CDB.
5152 *
5153 * LOCKING:
5154 * caller.
5155 */
5156
5157static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5158{
5159 /* send SCSI cdb */
5160 DPRINTK("send cdb\n");
db024d53 5161 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5162
a6b2c5d4 5163 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5164 ata_altstatus(ap); /* flush */
5165
5166 switch (qc->tf.protocol) {
5167 case ATA_PROT_ATAPI:
5168 ap->hsm_task_state = HSM_ST;
5169 break;
5170 case ATA_PROT_ATAPI_NODATA:
5171 ap->hsm_task_state = HSM_ST_LAST;
5172 break;
5173 case ATA_PROT_ATAPI_DMA:
5174 ap->hsm_task_state = HSM_ST_LAST;
5175 /* initiate bmdma */
5176 ap->ops->bmdma_start(qc);
5177 break;
5178 }
1da177e4
LT
5179}
5180
6ae4cfb5
AL
5181/**
5182 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5183 * @qc: Command on going
5184 * @bytes: number of bytes
5185 *
5186 * Transfer Transfer data from/to the ATAPI device.
5187 *
5188 * LOCKING:
5189 * Inherited from caller.
5190 *
5191 */
5192
1da177e4
LT
5193static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5194{
5195 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5196 struct scatterlist *sg = qc->__sg;
0874ee76 5197 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5198 struct ata_port *ap = qc->ap;
5199 struct page *page;
5200 unsigned char *buf;
5201 unsigned int offset, count;
0874ee76 5202 int no_more_sg = 0;
1da177e4 5203
563a6e1f 5204 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5205 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5206
5207next_sg:
0874ee76 5208 if (unlikely(no_more_sg)) {
7fb6ec28 5209 /*
563a6e1f
AL
5210 * The end of qc->sg is reached and the device expects
5211 * more data to transfer. In order not to overrun qc->sg
5212 * and fulfill length specified in the byte count register,
5213 * - for read case, discard trailing data from the device
5214 * - for write case, padding zero data to the device
5215 */
5216 u16 pad_buf[1] = { 0 };
5217 unsigned int words = bytes >> 1;
5218 unsigned int i;
5219
5220 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5221 ata_dev_printk(qc->dev, KERN_WARNING,
5222 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5223
5224 for (i = 0; i < words; i++)
2dcb407e 5225 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5226
14be71f4 5227 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5228 return;
5229 }
5230
87260216 5231 sg = qc->cursg;
1da177e4 5232
45711f1a 5233 page = sg_page(sg);
1da177e4
LT
5234 offset = sg->offset + qc->cursg_ofs;
5235
5236 /* get the current page and offset */
5237 page = nth_page(page, (offset >> PAGE_SHIFT));
5238 offset %= PAGE_SIZE;
5239
6952df03 5240 /* don't overrun current sg */
32529e01 5241 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5242
5243 /* don't cross page boundaries */
5244 count = min(count, (unsigned int)PAGE_SIZE - offset);
5245
7282aa4b
AL
5246 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5247
91b8b313
AL
5248 if (PageHighMem(page)) {
5249 unsigned long flags;
5250
a6b2c5d4 5251 /* FIXME: use bounce buffer */
91b8b313
AL
5252 local_irq_save(flags);
5253 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5254
91b8b313 5255 /* do the actual data transfer */
a6b2c5d4 5256 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5257
91b8b313
AL
5258 kunmap_atomic(buf, KM_IRQ0);
5259 local_irq_restore(flags);
5260 } else {
5261 buf = page_address(page);
a6b2c5d4 5262 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5263 }
1da177e4
LT
5264
5265 bytes -= count;
5266 qc->curbytes += count;
5267 qc->cursg_ofs += count;
5268
32529e01 5269 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5270 if (qc->cursg == lsg)
5271 no_more_sg = 1;
5272
87260216 5273 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5274 qc->cursg_ofs = 0;
5275 }
5276
563a6e1f 5277 if (bytes)
1da177e4 5278 goto next_sg;
1da177e4
LT
5279}
5280
6ae4cfb5
AL
5281/**
5282 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5283 * @qc: Command on going
5284 *
5285 * Transfer Transfer data from/to the ATAPI device.
5286 *
5287 * LOCKING:
5288 * Inherited from caller.
6ae4cfb5
AL
5289 */
5290
1da177e4
LT
5291static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5292{
5293 struct ata_port *ap = qc->ap;
5294 struct ata_device *dev = qc->dev;
5295 unsigned int ireason, bc_lo, bc_hi, bytes;
5296 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5297
eec4c3f3
AL
5298 /* Abuse qc->result_tf for temp storage of intermediate TF
5299 * here to save some kernel stack usage.
5300 * For normal completion, qc->result_tf is not relevant. For
5301 * error, qc->result_tf is later overwritten by ata_qc_complete().
5302 * So, the correctness of qc->result_tf is not affected.
5303 */
5304 ap->ops->tf_read(ap, &qc->result_tf);
5305 ireason = qc->result_tf.nsect;
5306 bc_lo = qc->result_tf.lbam;
5307 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5308 bytes = (bc_hi << 8) | bc_lo;
5309
5310 /* shall be cleared to zero, indicating xfer of data */
5311 if (ireason & (1 << 0))
5312 goto err_out;
5313
5314 /* make sure transfer direction matches expected */
5315 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5316 if (do_write != i_write)
5317 goto err_out;
5318
44877b4e 5319 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5320
1da177e4 5321 __atapi_pio_bytes(qc, bytes);
4cc980b3 5322 ata_altstatus(ap); /* flush */
1da177e4
LT
5323
5324 return;
5325
5326err_out:
f15a1daf 5327 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5328 qc->err_mask |= AC_ERR_HSM;
14be71f4 5329 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5330}
5331
5332/**
c234fb00
AL
5333 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5334 * @ap: the target ata_port
5335 * @qc: qc on going
1da177e4 5336 *
c234fb00
AL
5337 * RETURNS:
5338 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5339 */
c234fb00
AL
5340
5341static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5342{
c234fb00
AL
5343 if (qc->tf.flags & ATA_TFLAG_POLLING)
5344 return 1;
1da177e4 5345
c234fb00
AL
5346 if (ap->hsm_task_state == HSM_ST_FIRST) {
5347 if (qc->tf.protocol == ATA_PROT_PIO &&
5348 (qc->tf.flags & ATA_TFLAG_WRITE))
5349 return 1;
1da177e4 5350
c234fb00
AL
5351 if (is_atapi_taskfile(&qc->tf) &&
5352 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5353 return 1;
fe79e683
AL
5354 }
5355
c234fb00
AL
5356 return 0;
5357}
1da177e4 5358
c17ea20d
TH
5359/**
5360 * ata_hsm_qc_complete - finish a qc running on standard HSM
5361 * @qc: Command to complete
5362 * @in_wq: 1 if called from workqueue, 0 otherwise
5363 *
5364 * Finish @qc which is running on standard HSM.
5365 *
5366 * LOCKING:
cca3974e 5367 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5368 * Otherwise, none on entry and grabs host lock.
5369 */
5370static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5371{
5372 struct ata_port *ap = qc->ap;
5373 unsigned long flags;
5374
5375 if (ap->ops->error_handler) {
5376 if (in_wq) {
ba6a1308 5377 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5378
cca3974e
JG
5379 /* EH might have kicked in while host lock is
5380 * released.
c17ea20d
TH
5381 */
5382 qc = ata_qc_from_tag(ap, qc->tag);
5383 if (qc) {
5384 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5385 ap->ops->irq_on(ap);
c17ea20d
TH
5386 ata_qc_complete(qc);
5387 } else
5388 ata_port_freeze(ap);
5389 }
5390
ba6a1308 5391 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5392 } else {
5393 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5394 ata_qc_complete(qc);
5395 else
5396 ata_port_freeze(ap);
5397 }
5398 } else {
5399 if (in_wq) {
ba6a1308 5400 spin_lock_irqsave(ap->lock, flags);
83625006 5401 ap->ops->irq_on(ap);
c17ea20d 5402 ata_qc_complete(qc);
ba6a1308 5403 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5404 } else
5405 ata_qc_complete(qc);
5406 }
5407}
5408
bb5cb290
AL
5409/**
5410 * ata_hsm_move - move the HSM to the next state.
5411 * @ap: the target ata_port
5412 * @qc: qc on going
5413 * @status: current device status
5414 * @in_wq: 1 if called from workqueue, 0 otherwise
5415 *
5416 * RETURNS:
5417 * 1 when poll next status needed, 0 otherwise.
5418 */
9a1004d0
TH
5419int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5420 u8 status, int in_wq)
e2cec771 5421{
bb5cb290
AL
5422 unsigned long flags = 0;
5423 int poll_next;
5424
6912ccd5
AL
5425 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5426
bb5cb290
AL
5427 /* Make sure ata_qc_issue_prot() does not throw things
5428 * like DMA polling into the workqueue. Notice that
5429 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5430 */
c234fb00 5431 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5432
e2cec771 5433fsm_start:
999bb6f4 5434 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5435 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5436
e2cec771
AL
5437 switch (ap->hsm_task_state) {
5438 case HSM_ST_FIRST:
bb5cb290
AL
5439 /* Send first data block or PACKET CDB */
5440
5441 /* If polling, we will stay in the work queue after
5442 * sending the data. Otherwise, interrupt handler
5443 * takes over after sending the data.
5444 */
5445 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5446
e2cec771 5447 /* check device status */
3655d1d3
AL
5448 if (unlikely((status & ATA_DRQ) == 0)) {
5449 /* handle BSY=0, DRQ=0 as error */
5450 if (likely(status & (ATA_ERR | ATA_DF)))
5451 /* device stops HSM for abort/error */
5452 qc->err_mask |= AC_ERR_DEV;
5453 else
5454 /* HSM violation. Let EH handle this */
5455 qc->err_mask |= AC_ERR_HSM;
5456
14be71f4 5457 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5458 goto fsm_start;
1da177e4
LT
5459 }
5460
71601958
AL
5461 /* Device should not ask for data transfer (DRQ=1)
5462 * when it finds something wrong.
eee6c32f
AL
5463 * We ignore DRQ here and stop the HSM by
5464 * changing hsm_task_state to HSM_ST_ERR and
5465 * let the EH abort the command or reset the device.
71601958
AL
5466 */
5467 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5468 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5469 "error, dev_stat 0x%X\n", status);
3655d1d3 5470 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5471 ap->hsm_task_state = HSM_ST_ERR;
5472 goto fsm_start;
71601958 5473 }
1da177e4 5474
bb5cb290
AL
5475 /* Send the CDB (atapi) or the first data block (ata pio out).
5476 * During the state transition, interrupt handler shouldn't
5477 * be invoked before the data transfer is complete and
5478 * hsm_task_state is changed. Hence, the following locking.
5479 */
5480 if (in_wq)
ba6a1308 5481 spin_lock_irqsave(ap->lock, flags);
1da177e4 5482
bb5cb290
AL
5483 if (qc->tf.protocol == ATA_PROT_PIO) {
5484 /* PIO data out protocol.
5485 * send first data block.
5486 */
0565c26d 5487
bb5cb290
AL
5488 /* ata_pio_sectors() might change the state
5489 * to HSM_ST_LAST. so, the state is changed here
5490 * before ata_pio_sectors().
5491 */
5492 ap->hsm_task_state = HSM_ST;
5493 ata_pio_sectors(qc);
bb5cb290
AL
5494 } else
5495 /* send CDB */
5496 atapi_send_cdb(ap, qc);
5497
5498 if (in_wq)
ba6a1308 5499 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5500
5501 /* if polling, ata_pio_task() handles the rest.
5502 * otherwise, interrupt handler takes over from here.
5503 */
e2cec771 5504 break;
1c848984 5505
e2cec771
AL
5506 case HSM_ST:
5507 /* complete command or read/write the data register */
5508 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5509 /* ATAPI PIO protocol */
5510 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5511 /* No more data to transfer or device error.
5512 * Device error will be tagged in HSM_ST_LAST.
5513 */
e2cec771
AL
5514 ap->hsm_task_state = HSM_ST_LAST;
5515 goto fsm_start;
5516 }
1da177e4 5517
71601958
AL
5518 /* Device should not ask for data transfer (DRQ=1)
5519 * when it finds something wrong.
eee6c32f
AL
5520 * We ignore DRQ here and stop the HSM by
5521 * changing hsm_task_state to HSM_ST_ERR and
5522 * let the EH abort the command or reset the device.
71601958
AL
5523 */
5524 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5525 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5526 "device error, dev_stat 0x%X\n",
5527 status);
3655d1d3 5528 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5529 ap->hsm_task_state = HSM_ST_ERR;
5530 goto fsm_start;
71601958 5531 }
1da177e4 5532
e2cec771 5533 atapi_pio_bytes(qc);
7fb6ec28 5534
e2cec771
AL
5535 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5536 /* bad ireason reported by device */
5537 goto fsm_start;
1da177e4 5538
e2cec771
AL
5539 } else {
5540 /* ATA PIO protocol */
5541 if (unlikely((status & ATA_DRQ) == 0)) {
5542 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5543 if (likely(status & (ATA_ERR | ATA_DF)))
5544 /* device stops HSM for abort/error */
5545 qc->err_mask |= AC_ERR_DEV;
5546 else
55a8e2c8
TH
5547 /* HSM violation. Let EH handle this.
5548 * Phantom devices also trigger this
5549 * condition. Mark hint.
5550 */
5551 qc->err_mask |= AC_ERR_HSM |
5552 AC_ERR_NODEV_HINT;
3655d1d3 5553
e2cec771
AL
5554 ap->hsm_task_state = HSM_ST_ERR;
5555 goto fsm_start;
5556 }
1da177e4 5557
eee6c32f
AL
5558 /* For PIO reads, some devices may ask for
5559 * data transfer (DRQ=1) alone with ERR=1.
5560 * We respect DRQ here and transfer one
5561 * block of junk data before changing the
5562 * hsm_task_state to HSM_ST_ERR.
5563 *
5564 * For PIO writes, ERR=1 DRQ=1 doesn't make
5565 * sense since the data block has been
5566 * transferred to the device.
71601958
AL
5567 */
5568 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5569 /* data might be corrputed */
5570 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5571
5572 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5573 ata_pio_sectors(qc);
eee6c32f
AL
5574 status = ata_wait_idle(ap);
5575 }
5576
3655d1d3
AL
5577 if (status & (ATA_BUSY | ATA_DRQ))
5578 qc->err_mask |= AC_ERR_HSM;
5579
eee6c32f
AL
5580 /* ata_pio_sectors() might change the
5581 * state to HSM_ST_LAST. so, the state
5582 * is changed after ata_pio_sectors().
5583 */
5584 ap->hsm_task_state = HSM_ST_ERR;
5585 goto fsm_start;
71601958
AL
5586 }
5587
e2cec771
AL
5588 ata_pio_sectors(qc);
5589
5590 if (ap->hsm_task_state == HSM_ST_LAST &&
5591 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5592 /* all data read */
52a32205 5593 status = ata_wait_idle(ap);
e2cec771
AL
5594 goto fsm_start;
5595 }
5596 }
5597
bb5cb290 5598 poll_next = 1;
1da177e4
LT
5599 break;
5600
14be71f4 5601 case HSM_ST_LAST:
6912ccd5
AL
5602 if (unlikely(!ata_ok(status))) {
5603 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5604 ap->hsm_task_state = HSM_ST_ERR;
5605 goto fsm_start;
5606 }
5607
5608 /* no more data to transfer */
4332a771 5609 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5610 ap->print_id, qc->dev->devno, status);
e2cec771 5611
6912ccd5
AL
5612 WARN_ON(qc->err_mask);
5613
e2cec771 5614 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5615
e2cec771 5616 /* complete taskfile transaction */
c17ea20d 5617 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5618
5619 poll_next = 0;
1da177e4
LT
5620 break;
5621
14be71f4 5622 case HSM_ST_ERR:
e2cec771
AL
5623 /* make sure qc->err_mask is available to
5624 * know what's wrong and recover
5625 */
5626 WARN_ON(qc->err_mask == 0);
5627
5628 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5629
999bb6f4 5630 /* complete taskfile transaction */
c17ea20d 5631 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5632
5633 poll_next = 0;
e2cec771
AL
5634 break;
5635 default:
bb5cb290 5636 poll_next = 0;
6912ccd5 5637 BUG();
1da177e4
LT
5638 }
5639
bb5cb290 5640 return poll_next;
1da177e4
LT
5641}
5642
65f27f38 5643static void ata_pio_task(struct work_struct *work)
8061f5f0 5644{
65f27f38
DH
5645 struct ata_port *ap =
5646 container_of(work, struct ata_port, port_task.work);
5647 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5648 u8 status;
a1af3734 5649 int poll_next;
8061f5f0 5650
7fb6ec28 5651fsm_start:
a1af3734 5652 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5653
a1af3734
AL
5654 /*
5655 * This is purely heuristic. This is a fast path.
5656 * Sometimes when we enter, BSY will be cleared in
5657 * a chk-status or two. If not, the drive is probably seeking
5658 * or something. Snooze for a couple msecs, then
5659 * chk-status again. If still busy, queue delayed work.
5660 */
5661 status = ata_busy_wait(ap, ATA_BUSY, 5);
5662 if (status & ATA_BUSY) {
5663 msleep(2);
5664 status = ata_busy_wait(ap, ATA_BUSY, 10);
5665 if (status & ATA_BUSY) {
31ce6dae 5666 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5667 return;
5668 }
8061f5f0
TH
5669 }
5670
a1af3734
AL
5671 /* move the HSM */
5672 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5673
a1af3734
AL
5674 /* another command or interrupt handler
5675 * may be running at this point.
5676 */
5677 if (poll_next)
7fb6ec28 5678 goto fsm_start;
8061f5f0
TH
5679}
5680
1da177e4
LT
5681/**
5682 * ata_qc_new - Request an available ATA command, for queueing
5683 * @ap: Port associated with device @dev
5684 * @dev: Device from whom we request an available command structure
5685 *
5686 * LOCKING:
0cba632b 5687 * None.
1da177e4
LT
5688 */
5689
5690static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5691{
5692 struct ata_queued_cmd *qc = NULL;
5693 unsigned int i;
5694
e3180499 5695 /* no command while frozen */
b51e9e5d 5696 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5697 return NULL;
5698
2ab7db1f
TH
5699 /* the last tag is reserved for internal command. */
5700 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5701 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5702 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5703 break;
5704 }
5705
5706 if (qc)
5707 qc->tag = i;
5708
5709 return qc;
5710}
5711
5712/**
5713 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5714 * @dev: Device from whom we request an available command structure
5715 *
5716 * LOCKING:
0cba632b 5717 * None.
1da177e4
LT
5718 */
5719
3373efd8 5720struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5721{
9af5c9c9 5722 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5723 struct ata_queued_cmd *qc;
5724
5725 qc = ata_qc_new(ap);
5726 if (qc) {
1da177e4
LT
5727 qc->scsicmd = NULL;
5728 qc->ap = ap;
5729 qc->dev = dev;
1da177e4 5730
2c13b7ce 5731 ata_qc_reinit(qc);
1da177e4
LT
5732 }
5733
5734 return qc;
5735}
5736
1da177e4
LT
5737/**
5738 * ata_qc_free - free unused ata_queued_cmd
5739 * @qc: Command to complete
5740 *
5741 * Designed to free unused ata_queued_cmd object
5742 * in case something prevents using it.
5743 *
5744 * LOCKING:
cca3974e 5745 * spin_lock_irqsave(host lock)
1da177e4
LT
5746 */
5747void ata_qc_free(struct ata_queued_cmd *qc)
5748{
4ba946e9
TH
5749 struct ata_port *ap = qc->ap;
5750 unsigned int tag;
5751
a4631474 5752 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5753
4ba946e9
TH
5754 qc->flags = 0;
5755 tag = qc->tag;
5756 if (likely(ata_tag_valid(tag))) {
4ba946e9 5757 qc->tag = ATA_TAG_POISON;
6cec4a39 5758 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5759 }
1da177e4
LT
5760}
5761
76014427 5762void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5763{
dedaf2b0 5764 struct ata_port *ap = qc->ap;
9af5c9c9 5765 struct ata_link *link = qc->dev->link;
dedaf2b0 5766
a4631474
TH
5767 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5768 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5769
5770 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5771 ata_sg_clean(qc);
5772
7401abf2 5773 /* command should be marked inactive atomically with qc completion */
da917d69 5774 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5775 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5776 if (!link->sactive)
5777 ap->nr_active_links--;
5778 } else {
9af5c9c9 5779 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5780 ap->nr_active_links--;
5781 }
5782
5783 /* clear exclusive status */
5784 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5785 ap->excl_link == link))
5786 ap->excl_link = NULL;
7401abf2 5787
3f3791d3
AL
5788 /* atapi: mark qc as inactive to prevent the interrupt handler
5789 * from completing the command twice later, before the error handler
5790 * is called. (when rc != 0 and atapi request sense is needed)
5791 */
5792 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5793 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5794
1da177e4 5795 /* call completion callback */
77853bf2 5796 qc->complete_fn(qc);
1da177e4
LT
5797}
5798
39599a53
TH
5799static void fill_result_tf(struct ata_queued_cmd *qc)
5800{
5801 struct ata_port *ap = qc->ap;
5802
39599a53 5803 qc->result_tf.flags = qc->tf.flags;
4742d54f 5804 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5805}
5806
f686bcb8
TH
5807/**
5808 * ata_qc_complete - Complete an active ATA command
5809 * @qc: Command to complete
5810 * @err_mask: ATA Status register contents
5811 *
5812 * Indicate to the mid and upper layers that an ATA
5813 * command has completed, with either an ok or not-ok status.
5814 *
5815 * LOCKING:
cca3974e 5816 * spin_lock_irqsave(host lock)
f686bcb8
TH
5817 */
5818void ata_qc_complete(struct ata_queued_cmd *qc)
5819{
5820 struct ata_port *ap = qc->ap;
5821
5822 /* XXX: New EH and old EH use different mechanisms to
5823 * synchronize EH with regular execution path.
5824 *
5825 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5826 * Normal execution path is responsible for not accessing a
5827 * failed qc. libata core enforces the rule by returning NULL
5828 * from ata_qc_from_tag() for failed qcs.
5829 *
5830 * Old EH depends on ata_qc_complete() nullifying completion
5831 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5832 * not synchronize with interrupt handler. Only PIO task is
5833 * taken care of.
5834 */
5835 if (ap->ops->error_handler) {
4dbfa39b
TH
5836 struct ata_device *dev = qc->dev;
5837 struct ata_eh_info *ehi = &dev->link->eh_info;
5838
b51e9e5d 5839 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5840
5841 if (unlikely(qc->err_mask))
5842 qc->flags |= ATA_QCFLAG_FAILED;
5843
5844 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5845 if (!ata_tag_internal(qc->tag)) {
5846 /* always fill result TF for failed qc */
39599a53 5847 fill_result_tf(qc);
f686bcb8
TH
5848 ata_qc_schedule_eh(qc);
5849 return;
5850 }
5851 }
5852
5853 /* read result TF if requested */
5854 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5855 fill_result_tf(qc);
f686bcb8 5856
4dbfa39b
TH
5857 /* Some commands need post-processing after successful
5858 * completion.
5859 */
5860 switch (qc->tf.command) {
5861 case ATA_CMD_SET_FEATURES:
5862 if (qc->tf.feature != SETFEATURES_WC_ON &&
5863 qc->tf.feature != SETFEATURES_WC_OFF)
5864 break;
5865 /* fall through */
5866 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5867 case ATA_CMD_SET_MULTI: /* multi_count changed */
5868 /* revalidate device */
5869 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5870 ata_port_schedule_eh(ap);
5871 break;
054a5fba
TH
5872
5873 case ATA_CMD_SLEEP:
5874 dev->flags |= ATA_DFLAG_SLEEPING;
5875 break;
4dbfa39b
TH
5876 }
5877
f686bcb8
TH
5878 __ata_qc_complete(qc);
5879 } else {
5880 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5881 return;
5882
5883 /* read result TF if failed or requested */
5884 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5885 fill_result_tf(qc);
f686bcb8
TH
5886
5887 __ata_qc_complete(qc);
5888 }
5889}
5890
dedaf2b0
TH
5891/**
5892 * ata_qc_complete_multiple - Complete multiple qcs successfully
5893 * @ap: port in question
5894 * @qc_active: new qc_active mask
5895 * @finish_qc: LLDD callback invoked before completing a qc
5896 *
5897 * Complete in-flight commands. This functions is meant to be
5898 * called from low-level driver's interrupt routine to complete
5899 * requests normally. ap->qc_active and @qc_active is compared
5900 * and commands are completed accordingly.
5901 *
5902 * LOCKING:
cca3974e 5903 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5904 *
5905 * RETURNS:
5906 * Number of completed commands on success, -errno otherwise.
5907 */
5908int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5909 void (*finish_qc)(struct ata_queued_cmd *))
5910{
5911 int nr_done = 0;
5912 u32 done_mask;
5913 int i;
5914
5915 done_mask = ap->qc_active ^ qc_active;
5916
5917 if (unlikely(done_mask & qc_active)) {
5918 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5919 "(%08x->%08x)\n", ap->qc_active, qc_active);
5920 return -EINVAL;
5921 }
5922
5923 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5924 struct ata_queued_cmd *qc;
5925
5926 if (!(done_mask & (1 << i)))
5927 continue;
5928
5929 if ((qc = ata_qc_from_tag(ap, i))) {
5930 if (finish_qc)
5931 finish_qc(qc);
5932 ata_qc_complete(qc);
5933 nr_done++;
5934 }
5935 }
5936
5937 return nr_done;
5938}
5939
1da177e4
LT
5940static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5941{
5942 struct ata_port *ap = qc->ap;
5943
5944 switch (qc->tf.protocol) {
3dc1d881 5945 case ATA_PROT_NCQ:
1da177e4
LT
5946 case ATA_PROT_DMA:
5947 case ATA_PROT_ATAPI_DMA:
5948 return 1;
5949
5950 case ATA_PROT_ATAPI:
5951 case ATA_PROT_PIO:
1da177e4
LT
5952 if (ap->flags & ATA_FLAG_PIO_DMA)
5953 return 1;
5954
5955 /* fall through */
5956
5957 default:
5958 return 0;
5959 }
5960
5961 /* never reached */
5962}
5963
5964/**
5965 * ata_qc_issue - issue taskfile to device
5966 * @qc: command to issue to device
5967 *
5968 * Prepare an ATA command to submission to device.
5969 * This includes mapping the data into a DMA-able
5970 * area, filling in the S/G table, and finally
5971 * writing the taskfile to hardware, starting the command.
5972 *
5973 * LOCKING:
cca3974e 5974 * spin_lock_irqsave(host lock)
1da177e4 5975 */
8e0e694a 5976void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5977{
5978 struct ata_port *ap = qc->ap;
9af5c9c9 5979 struct ata_link *link = qc->dev->link;
1da177e4 5980
dedaf2b0
TH
5981 /* Make sure only one non-NCQ command is outstanding. The
5982 * check is skipped for old EH because it reuses active qc to
5983 * request ATAPI sense.
5984 */
9af5c9c9 5985 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5986
5987 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5988 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5989
5990 if (!link->sactive)
5991 ap->nr_active_links++;
9af5c9c9 5992 link->sactive |= 1 << qc->tag;
dedaf2b0 5993 } else {
9af5c9c9 5994 WARN_ON(link->sactive);
da917d69
TH
5995
5996 ap->nr_active_links++;
9af5c9c9 5997 link->active_tag = qc->tag;
dedaf2b0
TH
5998 }
5999
e4a70e76 6000 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 6001 ap->qc_active |= 1 << qc->tag;
e4a70e76 6002
1da177e4
LT
6003 if (ata_should_dma_map(qc)) {
6004 if (qc->flags & ATA_QCFLAG_SG) {
6005 if (ata_sg_setup(qc))
8e436af9 6006 goto sg_err;
1da177e4
LT
6007 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6008 if (ata_sg_setup_one(qc))
8e436af9 6009 goto sg_err;
1da177e4
LT
6010 }
6011 } else {
6012 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6013 }
6014
054a5fba
TH
6015 /* if device is sleeping, schedule softreset and abort the link */
6016 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6017 link->eh_info.action |= ATA_EH_SOFTRESET;
6018 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6019 ata_link_abort(link);
6020 return;
6021 }
6022
1da177e4
LT
6023 ap->ops->qc_prep(qc);
6024
8e0e694a
TH
6025 qc->err_mask |= ap->ops->qc_issue(qc);
6026 if (unlikely(qc->err_mask))
6027 goto err;
6028 return;
1da177e4 6029
8e436af9
TH
6030sg_err:
6031 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6032 qc->err_mask |= AC_ERR_SYSTEM;
6033err:
6034 ata_qc_complete(qc);
1da177e4
LT
6035}
6036
6037/**
6038 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6039 * @qc: command to issue to device
6040 *
6041 * Using various libata functions and hooks, this function
6042 * starts an ATA command. ATA commands are grouped into
6043 * classes called "protocols", and issuing each type of protocol
6044 * is slightly different.
6045 *
0baab86b
EF
6046 * May be used as the qc_issue() entry in ata_port_operations.
6047 *
1da177e4 6048 * LOCKING:
cca3974e 6049 * spin_lock_irqsave(host lock)
1da177e4
LT
6050 *
6051 * RETURNS:
9a3d9eb0 6052 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6053 */
6054
9a3d9eb0 6055unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6056{
6057 struct ata_port *ap = qc->ap;
6058
e50362ec
AL
6059 /* Use polling pio if the LLD doesn't handle
6060 * interrupt driven pio and atapi CDB interrupt.
6061 */
6062 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6063 switch (qc->tf.protocol) {
6064 case ATA_PROT_PIO:
e3472cbe 6065 case ATA_PROT_NODATA:
e50362ec
AL
6066 case ATA_PROT_ATAPI:
6067 case ATA_PROT_ATAPI_NODATA:
6068 qc->tf.flags |= ATA_TFLAG_POLLING;
6069 break;
6070 case ATA_PROT_ATAPI_DMA:
6071 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6072 /* see ata_dma_blacklisted() */
e50362ec
AL
6073 BUG();
6074 break;
6075 default:
6076 break;
6077 }
6078 }
6079
312f7da2 6080 /* select the device */
1da177e4
LT
6081 ata_dev_select(ap, qc->dev->devno, 1, 0);
6082
312f7da2 6083 /* start the command */
1da177e4
LT
6084 switch (qc->tf.protocol) {
6085 case ATA_PROT_NODATA:
312f7da2
AL
6086 if (qc->tf.flags & ATA_TFLAG_POLLING)
6087 ata_qc_set_polling(qc);
6088
e5338254 6089 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6090 ap->hsm_task_state = HSM_ST_LAST;
6091
6092 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6093 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6094
1da177e4
LT
6095 break;
6096
6097 case ATA_PROT_DMA:
587005de 6098 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6099
1da177e4
LT
6100 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6101 ap->ops->bmdma_setup(qc); /* set up bmdma */
6102 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6103 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6104 break;
6105
312f7da2
AL
6106 case ATA_PROT_PIO:
6107 if (qc->tf.flags & ATA_TFLAG_POLLING)
6108 ata_qc_set_polling(qc);
1da177e4 6109
e5338254 6110 ata_tf_to_host(ap, &qc->tf);
312f7da2 6111
54f00389
AL
6112 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6113 /* PIO data out protocol */
6114 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6115 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6116
6117 /* always send first data block using
e27486db 6118 * the ata_pio_task() codepath.
54f00389 6119 */
312f7da2 6120 } else {
54f00389
AL
6121 /* PIO data in protocol */
6122 ap->hsm_task_state = HSM_ST;
6123
6124 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6125 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6126
6127 /* if polling, ata_pio_task() handles the rest.
6128 * otherwise, interrupt handler takes over from here.
6129 */
312f7da2
AL
6130 }
6131
1da177e4
LT
6132 break;
6133
1da177e4 6134 case ATA_PROT_ATAPI:
1da177e4 6135 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6136 if (qc->tf.flags & ATA_TFLAG_POLLING)
6137 ata_qc_set_polling(qc);
6138
e5338254 6139 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6140
312f7da2
AL
6141 ap->hsm_task_state = HSM_ST_FIRST;
6142
6143 /* send cdb by polling if no cdb interrupt */
6144 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6145 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6146 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6147 break;
6148
6149 case ATA_PROT_ATAPI_DMA:
587005de 6150 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6151
1da177e4
LT
6152 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6153 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6154 ap->hsm_task_state = HSM_ST_FIRST;
6155
6156 /* send cdb by polling if no cdb interrupt */
6157 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6158 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6159 break;
6160
6161 default:
6162 WARN_ON(1);
9a3d9eb0 6163 return AC_ERR_SYSTEM;
1da177e4
LT
6164 }
6165
6166 return 0;
6167}
6168
1da177e4
LT
6169/**
6170 * ata_host_intr - Handle host interrupt for given (port, task)
6171 * @ap: Port on which interrupt arrived (possibly...)
6172 * @qc: Taskfile currently active in engine
6173 *
6174 * Handle host interrupt for given queued command. Currently,
6175 * only DMA interrupts are handled. All other commands are
6176 * handled via polling with interrupts disabled (nIEN bit).
6177 *
6178 * LOCKING:
cca3974e 6179 * spin_lock_irqsave(host lock)
1da177e4
LT
6180 *
6181 * RETURNS:
6182 * One if interrupt was handled, zero if not (shared irq).
6183 */
6184
2dcb407e
JG
6185inline unsigned int ata_host_intr(struct ata_port *ap,
6186 struct ata_queued_cmd *qc)
1da177e4 6187{
9af5c9c9 6188 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6189 u8 status, host_stat = 0;
1da177e4 6190
312f7da2 6191 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6192 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6193
312f7da2
AL
6194 /* Check whether we are expecting interrupt in this state */
6195 switch (ap->hsm_task_state) {
6196 case HSM_ST_FIRST:
6912ccd5
AL
6197 /* Some pre-ATAPI-4 devices assert INTRQ
6198 * at this state when ready to receive CDB.
6199 */
1da177e4 6200
312f7da2
AL
6201 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6202 * The flag was turned on only for atapi devices.
6203 * No need to check is_atapi_taskfile(&qc->tf) again.
6204 */
6205 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6206 goto idle_irq;
1da177e4 6207 break;
312f7da2
AL
6208 case HSM_ST_LAST:
6209 if (qc->tf.protocol == ATA_PROT_DMA ||
6210 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6211 /* check status of DMA engine */
6212 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6213 VPRINTK("ata%u: host_stat 0x%X\n",
6214 ap->print_id, host_stat);
312f7da2
AL
6215
6216 /* if it's not our irq... */
6217 if (!(host_stat & ATA_DMA_INTR))
6218 goto idle_irq;
6219
6220 /* before we do anything else, clear DMA-Start bit */
6221 ap->ops->bmdma_stop(qc);
a4f16610
AL
6222
6223 if (unlikely(host_stat & ATA_DMA_ERR)) {
6224 /* error when transfering data to/from memory */
6225 qc->err_mask |= AC_ERR_HOST_BUS;
6226 ap->hsm_task_state = HSM_ST_ERR;
6227 }
312f7da2
AL
6228 }
6229 break;
6230 case HSM_ST:
6231 break;
1da177e4
LT
6232 default:
6233 goto idle_irq;
6234 }
6235
312f7da2
AL
6236 /* check altstatus */
6237 status = ata_altstatus(ap);
6238 if (status & ATA_BUSY)
6239 goto idle_irq;
1da177e4 6240
312f7da2
AL
6241 /* check main status, clearing INTRQ */
6242 status = ata_chk_status(ap);
6243 if (unlikely(status & ATA_BUSY))
6244 goto idle_irq;
1da177e4 6245
312f7da2
AL
6246 /* ack bmdma irq events */
6247 ap->ops->irq_clear(ap);
1da177e4 6248
bb5cb290 6249 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6250
6251 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6252 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6253 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6254
1da177e4
LT
6255 return 1; /* irq handled */
6256
6257idle_irq:
6258 ap->stats.idle_irq++;
6259
6260#ifdef ATA_IRQ_TRAP
6261 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6262 ata_chk_status(ap);
6263 ap->ops->irq_clear(ap);
f15a1daf 6264 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6265 return 1;
1da177e4
LT
6266 }
6267#endif
6268 return 0; /* irq not handled */
6269}
6270
6271/**
6272 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6273 * @irq: irq line (unused)
cca3974e 6274 * @dev_instance: pointer to our ata_host information structure
1da177e4 6275 *
0cba632b
JG
6276 * Default interrupt handler for PCI IDE devices. Calls
6277 * ata_host_intr() for each port that is not disabled.
6278 *
1da177e4 6279 * LOCKING:
cca3974e 6280 * Obtains host lock during operation.
1da177e4
LT
6281 *
6282 * RETURNS:
0cba632b 6283 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6284 */
6285
2dcb407e 6286irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6287{
cca3974e 6288 struct ata_host *host = dev_instance;
1da177e4
LT
6289 unsigned int i;
6290 unsigned int handled = 0;
6291 unsigned long flags;
6292
6293 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6294 spin_lock_irqsave(&host->lock, flags);
1da177e4 6295
cca3974e 6296 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6297 struct ata_port *ap;
6298
cca3974e 6299 ap = host->ports[i];
c1389503 6300 if (ap &&
029f5468 6301 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6302 struct ata_queued_cmd *qc;
6303
9af5c9c9 6304 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6305 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6306 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6307 handled |= ata_host_intr(ap, qc);
6308 }
6309 }
6310
cca3974e 6311 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6312
6313 return IRQ_RETVAL(handled);
6314}
6315
34bf2170
TH
6316/**
6317 * sata_scr_valid - test whether SCRs are accessible
936fd732 6318 * @link: ATA link to test SCR accessibility for
34bf2170 6319 *
936fd732 6320 * Test whether SCRs are accessible for @link.
34bf2170
TH
6321 *
6322 * LOCKING:
6323 * None.
6324 *
6325 * RETURNS:
6326 * 1 if SCRs are accessible, 0 otherwise.
6327 */
936fd732 6328int sata_scr_valid(struct ata_link *link)
34bf2170 6329{
936fd732
TH
6330 struct ata_port *ap = link->ap;
6331
a16abc0b 6332 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6333}
6334
6335/**
6336 * sata_scr_read - read SCR register of the specified port
936fd732 6337 * @link: ATA link to read SCR for
34bf2170
TH
6338 * @reg: SCR to read
6339 * @val: Place to store read value
6340 *
936fd732 6341 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6342 * guaranteed to succeed if @link is ap->link, the cable type of
6343 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6344 *
6345 * LOCKING:
633273a3 6346 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6347 *
6348 * RETURNS:
6349 * 0 on success, negative errno on failure.
6350 */
936fd732 6351int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6352{
633273a3
TH
6353 if (ata_is_host_link(link)) {
6354 struct ata_port *ap = link->ap;
936fd732 6355
633273a3
TH
6356 if (sata_scr_valid(link))
6357 return ap->ops->scr_read(ap, reg, val);
6358 return -EOPNOTSUPP;
6359 }
6360
6361 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6362}
6363
6364/**
6365 * sata_scr_write - write SCR register of the specified port
936fd732 6366 * @link: ATA link to write SCR for
34bf2170
TH
6367 * @reg: SCR to write
6368 * @val: value to write
6369 *
936fd732 6370 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6371 * guaranteed to succeed if @link is ap->link, the cable type of
6372 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6373 *
6374 * LOCKING:
633273a3 6375 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6376 *
6377 * RETURNS:
6378 * 0 on success, negative errno on failure.
6379 */
936fd732 6380int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6381{
633273a3
TH
6382 if (ata_is_host_link(link)) {
6383 struct ata_port *ap = link->ap;
6384
6385 if (sata_scr_valid(link))
6386 return ap->ops->scr_write(ap, reg, val);
6387 return -EOPNOTSUPP;
6388 }
936fd732 6389
633273a3 6390 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6391}
6392
6393/**
6394 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6395 * @link: ATA link to write SCR for
34bf2170
TH
6396 * @reg: SCR to write
6397 * @val: value to write
6398 *
6399 * This function is identical to sata_scr_write() except that this
6400 * function performs flush after writing to the register.
6401 *
6402 * LOCKING:
633273a3 6403 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6404 *
6405 * RETURNS:
6406 * 0 on success, negative errno on failure.
6407 */
936fd732 6408int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6409{
633273a3
TH
6410 if (ata_is_host_link(link)) {
6411 struct ata_port *ap = link->ap;
6412 int rc;
da3dbb17 6413
633273a3
TH
6414 if (sata_scr_valid(link)) {
6415 rc = ap->ops->scr_write(ap, reg, val);
6416 if (rc == 0)
6417 rc = ap->ops->scr_read(ap, reg, &val);
6418 return rc;
6419 }
6420 return -EOPNOTSUPP;
34bf2170 6421 }
633273a3
TH
6422
6423 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6424}
6425
6426/**
936fd732
TH
6427 * ata_link_online - test whether the given link is online
6428 * @link: ATA link to test
34bf2170 6429 *
936fd732
TH
6430 * Test whether @link is online. Note that this function returns
6431 * 0 if online status of @link cannot be obtained, so
6432 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6433 *
6434 * LOCKING:
6435 * None.
6436 *
6437 * RETURNS:
6438 * 1 if the port online status is available and online.
6439 */
936fd732 6440int ata_link_online(struct ata_link *link)
34bf2170
TH
6441{
6442 u32 sstatus;
6443
936fd732
TH
6444 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6445 (sstatus & 0xf) == 0x3)
34bf2170
TH
6446 return 1;
6447 return 0;
6448}
6449
6450/**
936fd732
TH
6451 * ata_link_offline - test whether the given link is offline
6452 * @link: ATA link to test
34bf2170 6453 *
936fd732
TH
6454 * Test whether @link is offline. Note that this function
6455 * returns 0 if offline status of @link cannot be obtained, so
6456 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6457 *
6458 * LOCKING:
6459 * None.
6460 *
6461 * RETURNS:
6462 * 1 if the port offline status is available and offline.
6463 */
936fd732 6464int ata_link_offline(struct ata_link *link)
34bf2170
TH
6465{
6466 u32 sstatus;
6467
936fd732
TH
6468 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6469 (sstatus & 0xf) != 0x3)
34bf2170
TH
6470 return 1;
6471 return 0;
6472}
0baab86b 6473
77b08fb5 6474int ata_flush_cache(struct ata_device *dev)
9b847548 6475{
977e6b9f 6476 unsigned int err_mask;
9b847548
JA
6477 u8 cmd;
6478
6479 if (!ata_try_flush_cache(dev))
6480 return 0;
6481
6fc49adb 6482 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6483 cmd = ATA_CMD_FLUSH_EXT;
6484 else
6485 cmd = ATA_CMD_FLUSH;
6486
4f34337b
AC
6487 /* This is wrong. On a failed flush we get back the LBA of the lost
6488 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6489 a further flush command to continue the writeback until it
4f34337b 6490 does not error */
977e6b9f
TH
6491 err_mask = ata_do_simple_cmd(dev, cmd);
6492 if (err_mask) {
6493 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6494 return -EIO;
6495 }
6496
6497 return 0;
9b847548
JA
6498}
6499
6ffa01d8 6500#ifdef CONFIG_PM
cca3974e
JG
6501static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6502 unsigned int action, unsigned int ehi_flags,
6503 int wait)
500530f6
TH
6504{
6505 unsigned long flags;
6506 int i, rc;
6507
cca3974e
JG
6508 for (i = 0; i < host->n_ports; i++) {
6509 struct ata_port *ap = host->ports[i];
e3667ebf 6510 struct ata_link *link;
500530f6
TH
6511
6512 /* Previous resume operation might still be in
6513 * progress. Wait for PM_PENDING to clear.
6514 */
6515 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6516 ata_port_wait_eh(ap);
6517 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6518 }
6519
6520 /* request PM ops to EH */
6521 spin_lock_irqsave(ap->lock, flags);
6522
6523 ap->pm_mesg = mesg;
6524 if (wait) {
6525 rc = 0;
6526 ap->pm_result = &rc;
6527 }
6528
6529 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6530 __ata_port_for_each_link(link, ap) {
6531 link->eh_info.action |= action;
6532 link->eh_info.flags |= ehi_flags;
6533 }
500530f6
TH
6534
6535 ata_port_schedule_eh(ap);
6536
6537 spin_unlock_irqrestore(ap->lock, flags);
6538
6539 /* wait and check result */
6540 if (wait) {
6541 ata_port_wait_eh(ap);
6542 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6543 if (rc)
6544 return rc;
6545 }
6546 }
6547
6548 return 0;
6549}
6550
6551/**
cca3974e
JG
6552 * ata_host_suspend - suspend host
6553 * @host: host to suspend
500530f6
TH
6554 * @mesg: PM message
6555 *
cca3974e 6556 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6557 * function requests EH to perform PM operations and waits for EH
6558 * to finish.
6559 *
6560 * LOCKING:
6561 * Kernel thread context (may sleep).
6562 *
6563 * RETURNS:
6564 * 0 on success, -errno on failure.
6565 */
cca3974e 6566int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6567{
9666f400 6568 int rc;
500530f6 6569
ca77329f
KCA
6570 /*
6571 * disable link pm on all ports before requesting
6572 * any pm activity
6573 */
6574 ata_lpm_enable(host);
6575
cca3974e 6576 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6577 if (rc == 0)
6578 host->dev->power.power_state = mesg;
500530f6
TH
6579 return rc;
6580}
6581
6582/**
cca3974e
JG
6583 * ata_host_resume - resume host
6584 * @host: host to resume
500530f6 6585 *
cca3974e 6586 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6587 * function requests EH to perform PM operations and returns.
6588 * Note that all resume operations are performed parallely.
6589 *
6590 * LOCKING:
6591 * Kernel thread context (may sleep).
6592 */
cca3974e 6593void ata_host_resume(struct ata_host *host)
500530f6 6594{
cca3974e
JG
6595 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6596 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6597 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6598
6599 /* reenable link pm */
6600 ata_lpm_disable(host);
500530f6 6601}
6ffa01d8 6602#endif
500530f6 6603
c893a3ae
RD
6604/**
6605 * ata_port_start - Set port up for dma.
6606 * @ap: Port to initialize
6607 *
6608 * Called just after data structures for each port are
6609 * initialized. Allocates space for PRD table.
6610 *
6611 * May be used as the port_start() entry in ata_port_operations.
6612 *
6613 * LOCKING:
6614 * Inherited from caller.
6615 */
f0d36efd 6616int ata_port_start(struct ata_port *ap)
1da177e4 6617{
2f1f610b 6618 struct device *dev = ap->dev;
6037d6bb 6619 int rc;
1da177e4 6620
f0d36efd
TH
6621 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6622 GFP_KERNEL);
1da177e4
LT
6623 if (!ap->prd)
6624 return -ENOMEM;
6625
6037d6bb 6626 rc = ata_pad_alloc(ap, dev);
f0d36efd 6627 if (rc)
6037d6bb 6628 return rc;
1da177e4 6629
f0d36efd
TH
6630 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6631 (unsigned long long)ap->prd_dma);
1da177e4
LT
6632 return 0;
6633}
6634
3ef3b43d
TH
6635/**
6636 * ata_dev_init - Initialize an ata_device structure
6637 * @dev: Device structure to initialize
6638 *
6639 * Initialize @dev in preparation for probing.
6640 *
6641 * LOCKING:
6642 * Inherited from caller.
6643 */
6644void ata_dev_init(struct ata_device *dev)
6645{
9af5c9c9
TH
6646 struct ata_link *link = dev->link;
6647 struct ata_port *ap = link->ap;
72fa4b74
TH
6648 unsigned long flags;
6649
5a04bf4b 6650 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6651 link->sata_spd_limit = link->hw_sata_spd_limit;
6652 link->sata_spd = 0;
5a04bf4b 6653
72fa4b74
TH
6654 /* High bits of dev->flags are used to record warm plug
6655 * requests which occur asynchronously. Synchronize using
cca3974e 6656 * host lock.
72fa4b74 6657 */
ba6a1308 6658 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6659 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6660 dev->horkage = 0;
ba6a1308 6661 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6662
72fa4b74
TH
6663 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6664 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6665 dev->pio_mask = UINT_MAX;
6666 dev->mwdma_mask = UINT_MAX;
6667 dev->udma_mask = UINT_MAX;
6668}
6669
4fb37a25
TH
6670/**
6671 * ata_link_init - Initialize an ata_link structure
6672 * @ap: ATA port link is attached to
6673 * @link: Link structure to initialize
8989805d 6674 * @pmp: Port multiplier port number
4fb37a25
TH
6675 *
6676 * Initialize @link.
6677 *
6678 * LOCKING:
6679 * Kernel thread context (may sleep)
6680 */
fb7fd614 6681void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6682{
6683 int i;
6684
6685 /* clear everything except for devices */
6686 memset(link, 0, offsetof(struct ata_link, device[0]));
6687
6688 link->ap = ap;
8989805d 6689 link->pmp = pmp;
4fb37a25
TH
6690 link->active_tag = ATA_TAG_POISON;
6691 link->hw_sata_spd_limit = UINT_MAX;
6692
6693 /* can't use iterator, ap isn't initialized yet */
6694 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6695 struct ata_device *dev = &link->device[i];
6696
6697 dev->link = link;
6698 dev->devno = dev - link->device;
6699 ata_dev_init(dev);
6700 }
6701}
6702
6703/**
6704 * sata_link_init_spd - Initialize link->sata_spd_limit
6705 * @link: Link to configure sata_spd_limit for
6706 *
6707 * Initialize @link->[hw_]sata_spd_limit to the currently
6708 * configured value.
6709 *
6710 * LOCKING:
6711 * Kernel thread context (may sleep).
6712 *
6713 * RETURNS:
6714 * 0 on success, -errno on failure.
6715 */
fb7fd614 6716int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6717{
6718 u32 scontrol, spd;
6719 int rc;
6720
6721 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6722 if (rc)
6723 return rc;
6724
6725 spd = (scontrol >> 4) & 0xf;
6726 if (spd)
6727 link->hw_sata_spd_limit &= (1 << spd) - 1;
6728
6729 link->sata_spd_limit = link->hw_sata_spd_limit;
6730
6731 return 0;
6732}
6733
1da177e4 6734/**
f3187195
TH
6735 * ata_port_alloc - allocate and initialize basic ATA port resources
6736 * @host: ATA host this allocated port belongs to
1da177e4 6737 *
f3187195
TH
6738 * Allocate and initialize basic ATA port resources.
6739 *
6740 * RETURNS:
6741 * Allocate ATA port on success, NULL on failure.
0cba632b 6742 *
1da177e4 6743 * LOCKING:
f3187195 6744 * Inherited from calling layer (may sleep).
1da177e4 6745 */
f3187195 6746struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6747{
f3187195 6748 struct ata_port *ap;
1da177e4 6749
f3187195
TH
6750 DPRINTK("ENTER\n");
6751
6752 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6753 if (!ap)
6754 return NULL;
6755
f4d6d004 6756 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6757 ap->lock = &host->lock;
198e0fed 6758 ap->flags = ATA_FLAG_DISABLED;
f3187195 6759 ap->print_id = -1;
1da177e4 6760 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6761 ap->host = host;
f3187195 6762 ap->dev = host->dev;
1da177e4 6763 ap->last_ctl = 0xFF;
bd5d825c
BP
6764
6765#if defined(ATA_VERBOSE_DEBUG)
6766 /* turn on all debugging levels */
6767 ap->msg_enable = 0x00FF;
6768#elif defined(ATA_DEBUG)
6769 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6770#else
0dd4b21f 6771 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6772#endif
1da177e4 6773
65f27f38
DH
6774 INIT_DELAYED_WORK(&ap->port_task, NULL);
6775 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6776 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6777 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6778 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6779 init_timer_deferrable(&ap->fastdrain_timer);
6780 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6781 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6782
838df628 6783 ap->cbl = ATA_CBL_NONE;
838df628 6784
8989805d 6785 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6786
6787#ifdef ATA_IRQ_TRAP
6788 ap->stats.unhandled_irq = 1;
6789 ap->stats.idle_irq = 1;
6790#endif
1da177e4 6791 return ap;
1da177e4
LT
6792}
6793
f0d36efd
TH
6794static void ata_host_release(struct device *gendev, void *res)
6795{
6796 struct ata_host *host = dev_get_drvdata(gendev);
6797 int i;
6798
6799 for (i = 0; i < host->n_ports; i++) {
6800 struct ata_port *ap = host->ports[i];
6801
ecef7253
TH
6802 if (!ap)
6803 continue;
6804
6805 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6806 ap->ops->port_stop(ap);
f0d36efd
TH
6807 }
6808
ecef7253 6809 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6810 host->ops->host_stop(host);
1aa56cca 6811
1aa506e4
TH
6812 for (i = 0; i < host->n_ports; i++) {
6813 struct ata_port *ap = host->ports[i];
6814
4911487a
TH
6815 if (!ap)
6816 continue;
6817
6818 if (ap->scsi_host)
1aa506e4
TH
6819 scsi_host_put(ap->scsi_host);
6820
633273a3 6821 kfree(ap->pmp_link);
4911487a 6822 kfree(ap);
1aa506e4
TH
6823 host->ports[i] = NULL;
6824 }
6825
1aa56cca 6826 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6827}
6828
f3187195
TH
6829/**
6830 * ata_host_alloc - allocate and init basic ATA host resources
6831 * @dev: generic device this host is associated with
6832 * @max_ports: maximum number of ATA ports associated with this host
6833 *
6834 * Allocate and initialize basic ATA host resources. LLD calls
6835 * this function to allocate a host, initializes it fully and
6836 * attaches it using ata_host_register().
6837 *
6838 * @max_ports ports are allocated and host->n_ports is
6839 * initialized to @max_ports. The caller is allowed to decrease
6840 * host->n_ports before calling ata_host_register(). The unused
6841 * ports will be automatically freed on registration.
6842 *
6843 * RETURNS:
6844 * Allocate ATA host on success, NULL on failure.
6845 *
6846 * LOCKING:
6847 * Inherited from calling layer (may sleep).
6848 */
6849struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6850{
6851 struct ata_host *host;
6852 size_t sz;
6853 int i;
6854
6855 DPRINTK("ENTER\n");
6856
6857 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6858 return NULL;
6859
6860 /* alloc a container for our list of ATA ports (buses) */
6861 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6862 /* alloc a container for our list of ATA ports (buses) */
6863 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6864 if (!host)
6865 goto err_out;
6866
6867 devres_add(dev, host);
6868 dev_set_drvdata(dev, host);
6869
6870 spin_lock_init(&host->lock);
6871 host->dev = dev;
6872 host->n_ports = max_ports;
6873
6874 /* allocate ports bound to this host */
6875 for (i = 0; i < max_ports; i++) {
6876 struct ata_port *ap;
6877
6878 ap = ata_port_alloc(host);
6879 if (!ap)
6880 goto err_out;
6881
6882 ap->port_no = i;
6883 host->ports[i] = ap;
6884 }
6885
6886 devres_remove_group(dev, NULL);
6887 return host;
6888
6889 err_out:
6890 devres_release_group(dev, NULL);
6891 return NULL;
6892}
6893
f5cda257
TH
6894/**
6895 * ata_host_alloc_pinfo - alloc host and init with port_info array
6896 * @dev: generic device this host is associated with
6897 * @ppi: array of ATA port_info to initialize host with
6898 * @n_ports: number of ATA ports attached to this host
6899 *
6900 * Allocate ATA host and initialize with info from @ppi. If NULL
6901 * terminated, @ppi may contain fewer entries than @n_ports. The
6902 * last entry will be used for the remaining ports.
6903 *
6904 * RETURNS:
6905 * Allocate ATA host on success, NULL on failure.
6906 *
6907 * LOCKING:
6908 * Inherited from calling layer (may sleep).
6909 */
6910struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6911 const struct ata_port_info * const * ppi,
6912 int n_ports)
6913{
6914 const struct ata_port_info *pi;
6915 struct ata_host *host;
6916 int i, j;
6917
6918 host = ata_host_alloc(dev, n_ports);
6919 if (!host)
6920 return NULL;
6921
6922 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6923 struct ata_port *ap = host->ports[i];
6924
6925 if (ppi[j])
6926 pi = ppi[j++];
6927
6928 ap->pio_mask = pi->pio_mask;
6929 ap->mwdma_mask = pi->mwdma_mask;
6930 ap->udma_mask = pi->udma_mask;
6931 ap->flags |= pi->flags;
0c88758b 6932 ap->link.flags |= pi->link_flags;
f5cda257
TH
6933 ap->ops = pi->port_ops;
6934
6935 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6936 host->ops = pi->port_ops;
6937 if (!host->private_data && pi->private_data)
6938 host->private_data = pi->private_data;
6939 }
6940
6941 return host;
6942}
6943
ecef7253
TH
6944/**
6945 * ata_host_start - start and freeze ports of an ATA host
6946 * @host: ATA host to start ports for
6947 *
6948 * Start and then freeze ports of @host. Started status is
6949 * recorded in host->flags, so this function can be called
6950 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6951 * once. If host->ops isn't initialized yet, its set to the
6952 * first non-dummy port ops.
ecef7253
TH
6953 *
6954 * LOCKING:
6955 * Inherited from calling layer (may sleep).
6956 *
6957 * RETURNS:
6958 * 0 if all ports are started successfully, -errno otherwise.
6959 */
6960int ata_host_start(struct ata_host *host)
6961{
6962 int i, rc;
6963
6964 if (host->flags & ATA_HOST_STARTED)
6965 return 0;
6966
6967 for (i = 0; i < host->n_ports; i++) {
6968 struct ata_port *ap = host->ports[i];
6969
f3187195
TH
6970 if (!host->ops && !ata_port_is_dummy(ap))
6971 host->ops = ap->ops;
6972
ecef7253
TH
6973 if (ap->ops->port_start) {
6974 rc = ap->ops->port_start(ap);
6975 if (rc) {
6976 ata_port_printk(ap, KERN_ERR, "failed to "
6977 "start port (errno=%d)\n", rc);
6978 goto err_out;
6979 }
6980 }
6981
6982 ata_eh_freeze_port(ap);
6983 }
6984
6985 host->flags |= ATA_HOST_STARTED;
6986 return 0;
6987
6988 err_out:
6989 while (--i >= 0) {
6990 struct ata_port *ap = host->ports[i];
6991
6992 if (ap->ops->port_stop)
6993 ap->ops->port_stop(ap);
6994 }
6995 return rc;
6996}
6997
b03732f0 6998/**
cca3974e
JG
6999 * ata_sas_host_init - Initialize a host struct
7000 * @host: host to initialize
7001 * @dev: device host is attached to
7002 * @flags: host flags
7003 * @ops: port_ops
b03732f0
BK
7004 *
7005 * LOCKING:
7006 * PCI/etc. bus probe sem.
7007 *
7008 */
f3187195 7009/* KILLME - the only user left is ipr */
cca3974e
JG
7010void ata_host_init(struct ata_host *host, struct device *dev,
7011 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7012{
cca3974e
JG
7013 spin_lock_init(&host->lock);
7014 host->dev = dev;
7015 host->flags = flags;
7016 host->ops = ops;
b03732f0
BK
7017}
7018
f3187195
TH
7019/**
7020 * ata_host_register - register initialized ATA host
7021 * @host: ATA host to register
7022 * @sht: template for SCSI host
7023 *
7024 * Register initialized ATA host. @host is allocated using
7025 * ata_host_alloc() and fully initialized by LLD. This function
7026 * starts ports, registers @host with ATA and SCSI layers and
7027 * probe registered devices.
7028 *
7029 * LOCKING:
7030 * Inherited from calling layer (may sleep).
7031 *
7032 * RETURNS:
7033 * 0 on success, -errno otherwise.
7034 */
7035int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7036{
7037 int i, rc;
7038
7039 /* host must have been started */
7040 if (!(host->flags & ATA_HOST_STARTED)) {
7041 dev_printk(KERN_ERR, host->dev,
7042 "BUG: trying to register unstarted host\n");
7043 WARN_ON(1);
7044 return -EINVAL;
7045 }
7046
7047 /* Blow away unused ports. This happens when LLD can't
7048 * determine the exact number of ports to allocate at
7049 * allocation time.
7050 */
7051 for (i = host->n_ports; host->ports[i]; i++)
7052 kfree(host->ports[i]);
7053
7054 /* give ports names and add SCSI hosts */
7055 for (i = 0; i < host->n_ports; i++)
7056 host->ports[i]->print_id = ata_print_id++;
7057
7058 rc = ata_scsi_add_hosts(host, sht);
7059 if (rc)
7060 return rc;
7061
fafbae87
TH
7062 /* associate with ACPI nodes */
7063 ata_acpi_associate(host);
7064
f3187195
TH
7065 /* set cable, sata_spd_limit and report */
7066 for (i = 0; i < host->n_ports; i++) {
7067 struct ata_port *ap = host->ports[i];
f3187195
TH
7068 unsigned long xfer_mask;
7069
7070 /* set SATA cable type if still unset */
7071 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7072 ap->cbl = ATA_CBL_SATA;
7073
7074 /* init sata_spd_limit to the current value */
4fb37a25 7075 sata_link_init_spd(&ap->link);
f3187195 7076
cbcdd875 7077 /* print per-port info to dmesg */
f3187195
TH
7078 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7079 ap->udma_mask);
7080
abf6e8ed 7081 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7082 ata_port_printk(ap, KERN_INFO,
7083 "%cATA max %s %s\n",
a16abc0b 7084 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7085 ata_mode_string(xfer_mask),
cbcdd875 7086 ap->link.eh_info.desc);
abf6e8ed
TH
7087 ata_ehi_clear_desc(&ap->link.eh_info);
7088 } else
f3187195
TH
7089 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7090 }
7091
7092 /* perform each probe synchronously */
7093 DPRINTK("probe begin\n");
7094 for (i = 0; i < host->n_ports; i++) {
7095 struct ata_port *ap = host->ports[i];
7096 int rc;
7097
7098 /* probe */
7099 if (ap->ops->error_handler) {
9af5c9c9 7100 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7101 unsigned long flags;
7102
7103 ata_port_probe(ap);
7104
7105 /* kick EH for boot probing */
7106 spin_lock_irqsave(ap->lock, flags);
7107
f58229f8
TH
7108 ehi->probe_mask =
7109 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7110 ehi->action |= ATA_EH_SOFTRESET;
7111 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7112
f4d6d004 7113 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7114 ap->pflags |= ATA_PFLAG_LOADING;
7115 ata_port_schedule_eh(ap);
7116
7117 spin_unlock_irqrestore(ap->lock, flags);
7118
7119 /* wait for EH to finish */
7120 ata_port_wait_eh(ap);
7121 } else {
7122 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7123 rc = ata_bus_probe(ap);
7124 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7125
7126 if (rc) {
7127 /* FIXME: do something useful here?
7128 * Current libata behavior will
7129 * tear down everything when
7130 * the module is removed
7131 * or the h/w is unplugged.
7132 */
7133 }
7134 }
7135 }
7136
7137 /* probes are done, now scan each port's disk(s) */
7138 DPRINTK("host probe begin\n");
7139 for (i = 0; i < host->n_ports; i++) {
7140 struct ata_port *ap = host->ports[i];
7141
1ae46317 7142 ata_scsi_scan_host(ap, 1);
ca77329f 7143 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7144 }
7145
7146 return 0;
7147}
7148
f5cda257
TH
7149/**
7150 * ata_host_activate - start host, request IRQ and register it
7151 * @host: target ATA host
7152 * @irq: IRQ to request
7153 * @irq_handler: irq_handler used when requesting IRQ
7154 * @irq_flags: irq_flags used when requesting IRQ
7155 * @sht: scsi_host_template to use when registering the host
7156 *
7157 * After allocating an ATA host and initializing it, most libata
7158 * LLDs perform three steps to activate the host - start host,
7159 * request IRQ and register it. This helper takes necessasry
7160 * arguments and performs the three steps in one go.
7161 *
7162 * LOCKING:
7163 * Inherited from calling layer (may sleep).
7164 *
7165 * RETURNS:
7166 * 0 on success, -errno otherwise.
7167 */
7168int ata_host_activate(struct ata_host *host, int irq,
7169 irq_handler_t irq_handler, unsigned long irq_flags,
7170 struct scsi_host_template *sht)
7171{
cbcdd875 7172 int i, rc;
f5cda257
TH
7173
7174 rc = ata_host_start(host);
7175 if (rc)
7176 return rc;
7177
7178 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7179 dev_driver_string(host->dev), host);
7180 if (rc)
7181 return rc;
7182
cbcdd875
TH
7183 for (i = 0; i < host->n_ports; i++)
7184 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7185
f5cda257
TH
7186 rc = ata_host_register(host, sht);
7187 /* if failed, just free the IRQ and leave ports alone */
7188 if (rc)
7189 devm_free_irq(host->dev, irq, host);
7190
7191 return rc;
7192}
7193
720ba126
TH
7194/**
7195 * ata_port_detach - Detach ATA port in prepration of device removal
7196 * @ap: ATA port to be detached
7197 *
7198 * Detach all ATA devices and the associated SCSI devices of @ap;
7199 * then, remove the associated SCSI host. @ap is guaranteed to
7200 * be quiescent on return from this function.
7201 *
7202 * LOCKING:
7203 * Kernel thread context (may sleep).
7204 */
741b7763 7205static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7206{
7207 unsigned long flags;
41bda9c9 7208 struct ata_link *link;
f58229f8 7209 struct ata_device *dev;
720ba126
TH
7210
7211 if (!ap->ops->error_handler)
c3cf30a9 7212 goto skip_eh;
720ba126
TH
7213
7214 /* tell EH we're leaving & flush EH */
ba6a1308 7215 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7216 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7217 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7218
7219 ata_port_wait_eh(ap);
7220
7221 /* EH is now guaranteed to see UNLOADING, so no new device
7222 * will be attached. Disable all existing devices.
7223 */
ba6a1308 7224 spin_lock_irqsave(ap->lock, flags);
720ba126 7225
41bda9c9
TH
7226 ata_port_for_each_link(link, ap) {
7227 ata_link_for_each_dev(dev, link)
7228 ata_dev_disable(dev);
7229 }
720ba126 7230
ba6a1308 7231 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7232
7233 /* Final freeze & EH. All in-flight commands are aborted. EH
7234 * will be skipped and retrials will be terminated with bad
7235 * target.
7236 */
ba6a1308 7237 spin_lock_irqsave(ap->lock, flags);
720ba126 7238 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7239 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7240
7241 ata_port_wait_eh(ap);
45a66c1c 7242 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7243
c3cf30a9 7244 skip_eh:
720ba126 7245 /* remove the associated SCSI host */
cca3974e 7246 scsi_remove_host(ap->scsi_host);
720ba126
TH
7247}
7248
0529c159
TH
7249/**
7250 * ata_host_detach - Detach all ports of an ATA host
7251 * @host: Host to detach
7252 *
7253 * Detach all ports of @host.
7254 *
7255 * LOCKING:
7256 * Kernel thread context (may sleep).
7257 */
7258void ata_host_detach(struct ata_host *host)
7259{
7260 int i;
7261
7262 for (i = 0; i < host->n_ports; i++)
7263 ata_port_detach(host->ports[i]);
7264}
7265
1da177e4
LT
7266/**
7267 * ata_std_ports - initialize ioaddr with standard port offsets.
7268 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7269 *
7270 * Utility function which initializes data_addr, error_addr,
7271 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7272 * device_addr, status_addr, and command_addr to standard offsets
7273 * relative to cmd_addr.
7274 *
7275 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7276 */
0baab86b 7277
1da177e4
LT
7278void ata_std_ports(struct ata_ioports *ioaddr)
7279{
7280 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7281 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7282 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7283 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7284 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7285 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7286 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7287 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7288 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7289 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7290}
7291
0baab86b 7292
374b1873
JG
7293#ifdef CONFIG_PCI
7294
1da177e4
LT
7295/**
7296 * ata_pci_remove_one - PCI layer callback for device removal
7297 * @pdev: PCI device that was removed
7298 *
b878ca5d
TH
7299 * PCI layer indicates to libata via this hook that hot-unplug or
7300 * module unload event has occurred. Detach all ports. Resource
7301 * release is handled via devres.
1da177e4
LT
7302 *
7303 * LOCKING:
7304 * Inherited from PCI layer (may sleep).
7305 */
f0d36efd 7306void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7307{
2855568b 7308 struct device *dev = &pdev->dev;
cca3974e 7309 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7310
b878ca5d 7311 ata_host_detach(host);
1da177e4
LT
7312}
7313
7314/* move to PCI subsystem */
057ace5e 7315int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7316{
7317 unsigned long tmp = 0;
7318
7319 switch (bits->width) {
7320 case 1: {
7321 u8 tmp8 = 0;
7322 pci_read_config_byte(pdev, bits->reg, &tmp8);
7323 tmp = tmp8;
7324 break;
7325 }
7326 case 2: {
7327 u16 tmp16 = 0;
7328 pci_read_config_word(pdev, bits->reg, &tmp16);
7329 tmp = tmp16;
7330 break;
7331 }
7332 case 4: {
7333 u32 tmp32 = 0;
7334 pci_read_config_dword(pdev, bits->reg, &tmp32);
7335 tmp = tmp32;
7336 break;
7337 }
7338
7339 default:
7340 return -EINVAL;
7341 }
7342
7343 tmp &= bits->mask;
7344
7345 return (tmp == bits->val) ? 1 : 0;
7346}
9b847548 7347
6ffa01d8 7348#ifdef CONFIG_PM
3c5100c1 7349void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7350{
7351 pci_save_state(pdev);
4c90d971 7352 pci_disable_device(pdev);
500530f6 7353
4c90d971 7354 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7355 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7356}
7357
553c4aa6 7358int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7359{
553c4aa6
TH
7360 int rc;
7361
9b847548
JA
7362 pci_set_power_state(pdev, PCI_D0);
7363 pci_restore_state(pdev);
553c4aa6 7364
b878ca5d 7365 rc = pcim_enable_device(pdev);
553c4aa6
TH
7366 if (rc) {
7367 dev_printk(KERN_ERR, &pdev->dev,
7368 "failed to enable device after resume (%d)\n", rc);
7369 return rc;
7370 }
7371
9b847548 7372 pci_set_master(pdev);
553c4aa6 7373 return 0;
500530f6
TH
7374}
7375
3c5100c1 7376int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7377{
cca3974e 7378 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7379 int rc = 0;
7380
cca3974e 7381 rc = ata_host_suspend(host, mesg);
500530f6
TH
7382 if (rc)
7383 return rc;
7384
3c5100c1 7385 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7386
7387 return 0;
7388}
7389
7390int ata_pci_device_resume(struct pci_dev *pdev)
7391{
cca3974e 7392 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7393 int rc;
500530f6 7394
553c4aa6
TH
7395 rc = ata_pci_device_do_resume(pdev);
7396 if (rc == 0)
7397 ata_host_resume(host);
7398 return rc;
9b847548 7399}
6ffa01d8
TH
7400#endif /* CONFIG_PM */
7401
1da177e4
LT
7402#endif /* CONFIG_PCI */
7403
7404
1da177e4
LT
7405static int __init ata_init(void)
7406{
a8601e5f 7407 ata_probe_timeout *= HZ;
1da177e4
LT
7408 ata_wq = create_workqueue("ata");
7409 if (!ata_wq)
7410 return -ENOMEM;
7411
453b07ac
TH
7412 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7413 if (!ata_aux_wq) {
7414 destroy_workqueue(ata_wq);
7415 return -ENOMEM;
7416 }
7417
1da177e4
LT
7418 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7419 return 0;
7420}
7421
7422static void __exit ata_exit(void)
7423{
7424 destroy_workqueue(ata_wq);
453b07ac 7425 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7426}
7427
a4625085 7428subsys_initcall(ata_init);
1da177e4
LT
7429module_exit(ata_exit);
7430
67846b30 7431static unsigned long ratelimit_time;
34af946a 7432static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7433
7434int ata_ratelimit(void)
7435{
7436 int rc;
7437 unsigned long flags;
7438
7439 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7440
7441 if (time_after(jiffies, ratelimit_time)) {
7442 rc = 1;
7443 ratelimit_time = jiffies + (HZ/5);
7444 } else
7445 rc = 0;
7446
7447 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7448
7449 return rc;
7450}
7451
c22daff4
TH
7452/**
7453 * ata_wait_register - wait until register value changes
7454 * @reg: IO-mapped register
7455 * @mask: Mask to apply to read register value
7456 * @val: Wait condition
7457 * @interval_msec: polling interval in milliseconds
7458 * @timeout_msec: timeout in milliseconds
7459 *
7460 * Waiting for some bits of register to change is a common
7461 * operation for ATA controllers. This function reads 32bit LE
7462 * IO-mapped register @reg and tests for the following condition.
7463 *
7464 * (*@reg & mask) != val
7465 *
7466 * If the condition is met, it returns; otherwise, the process is
7467 * repeated after @interval_msec until timeout.
7468 *
7469 * LOCKING:
7470 * Kernel thread context (may sleep)
7471 *
7472 * RETURNS:
7473 * The final register value.
7474 */
7475u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7476 unsigned long interval_msec,
7477 unsigned long timeout_msec)
7478{
7479 unsigned long timeout;
7480 u32 tmp;
7481
7482 tmp = ioread32(reg);
7483
7484 /* Calculate timeout _after_ the first read to make sure
7485 * preceding writes reach the controller before starting to
7486 * eat away the timeout.
7487 */
7488 timeout = jiffies + (timeout_msec * HZ) / 1000;
7489
7490 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7491 msleep(interval_msec);
7492 tmp = ioread32(reg);
7493 }
7494
7495 return tmp;
7496}
7497
dd5b06c4
TH
7498/*
7499 * Dummy port_ops
7500 */
7501static void ata_dummy_noret(struct ata_port *ap) { }
7502static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7503static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7504
7505static u8 ata_dummy_check_status(struct ata_port *ap)
7506{
7507 return ATA_DRDY;
7508}
7509
7510static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7511{
7512 return AC_ERR_SYSTEM;
7513}
7514
7515const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7516 .check_status = ata_dummy_check_status,
7517 .check_altstatus = ata_dummy_check_status,
7518 .dev_select = ata_noop_dev_select,
7519 .qc_prep = ata_noop_qc_prep,
7520 .qc_issue = ata_dummy_qc_issue,
7521 .freeze = ata_dummy_noret,
7522 .thaw = ata_dummy_noret,
7523 .error_handler = ata_dummy_noret,
7524 .post_internal_cmd = ata_dummy_qc_noret,
7525 .irq_clear = ata_dummy_noret,
7526 .port_start = ata_dummy_ret0,
7527 .port_stop = ata_dummy_noret,
7528};
7529
21b0ad4f
TH
7530const struct ata_port_info ata_dummy_port_info = {
7531 .port_ops = &ata_dummy_port_ops,
7532};
7533
1da177e4
LT
7534/*
7535 * libata is essentially a library of internal helper functions for
7536 * low-level ATA host controller drivers. As such, the API/ABI is
7537 * likely to change as new drivers are added and updated.
7538 * Do not depend on ABI/API stability.
7539 */
e9c83914
TH
7540EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7541EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7542EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7543EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7544EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7545EXPORT_SYMBOL_GPL(ata_std_bios_param);
7546EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7547EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7548EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7549EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7550EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7551EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7552EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7553EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7554EXPORT_SYMBOL_GPL(ata_sg_init);
7555EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7556EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7557EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7558EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7559EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7560EXPORT_SYMBOL_GPL(ata_tf_load);
7561EXPORT_SYMBOL_GPL(ata_tf_read);
7562EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7563EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7564EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7565EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7566EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7567EXPORT_SYMBOL_GPL(ata_check_status);
7568EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7569EXPORT_SYMBOL_GPL(ata_exec_command);
7570EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7571EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7572EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7573EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7574EXPORT_SYMBOL_GPL(ata_data_xfer);
7575EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7576EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7577EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7578EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7579EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7580EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7581EXPORT_SYMBOL_GPL(ata_bmdma_start);
7582EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7583EXPORT_SYMBOL_GPL(ata_bmdma_status);
7584EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7585EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7586EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7587EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7588EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7589EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7590EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7591EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7592EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7593EXPORT_SYMBOL_GPL(sata_link_debounce);
7594EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7595EXPORT_SYMBOL_GPL(sata_phy_reset);
7596EXPORT_SYMBOL_GPL(__sata_phy_reset);
7597EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7598EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7599EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7600EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7601EXPORT_SYMBOL_GPL(sata_std_hardreset);
7602EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7603EXPORT_SYMBOL_GPL(ata_dev_classify);
7604EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7605EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7606EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7607EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7608EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7609EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7610EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7611EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7612EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7613EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7614EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7615EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7616EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7617EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7618EXPORT_SYMBOL_GPL(sata_scr_valid);
7619EXPORT_SYMBOL_GPL(sata_scr_read);
7620EXPORT_SYMBOL_GPL(sata_scr_write);
7621EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7622EXPORT_SYMBOL_GPL(ata_link_online);
7623EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7624#ifdef CONFIG_PM
cca3974e
JG
7625EXPORT_SYMBOL_GPL(ata_host_suspend);
7626EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7627#endif /* CONFIG_PM */
6a62a04d
TH
7628EXPORT_SYMBOL_GPL(ata_id_string);
7629EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7630EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7631EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7632
1bc4ccff 7633EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7634EXPORT_SYMBOL_GPL(ata_timing_compute);
7635EXPORT_SYMBOL_GPL(ata_timing_merge);
7636
1da177e4
LT
7637#ifdef CONFIG_PCI
7638EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7639EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7640EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7641EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7642EXPORT_SYMBOL_GPL(ata_pci_init_one);
7643EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7644#ifdef CONFIG_PM
500530f6
TH
7645EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7646EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7647EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7648EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7649#endif /* CONFIG_PM */
67951ade
AC
7650EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7651EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7652#endif /* CONFIG_PCI */
9b847548 7653
31f88384 7654EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7655EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7656EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7657EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7658EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7659
b64bbc39
TH
7660EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7661EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7662EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7663EXPORT_SYMBOL_GPL(ata_port_desc);
7664#ifdef CONFIG_PCI
7665EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7666#endif /* CONFIG_PCI */
ece1d636 7667EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7668EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7669EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7670EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7671EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7672EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7673EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7674EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7675EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7676EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7677EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7678EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7679EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7680
7681EXPORT_SYMBOL_GPL(ata_cable_40wire);
7682EXPORT_SYMBOL_GPL(ata_cable_80wire);
7683EXPORT_SYMBOL_GPL(ata_cable_unknown);
7684EXPORT_SYMBOL_GPL(ata_cable_sata);