]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/ata/libata-core.c
[libata] ahci: Add support for Enmotus Bobcat device.
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
9ee4f393 69#include <linux/pm_runtime.h>
b7db04d9 70#include <linux/platform_device.h>
1da177e4
LT
71
72#include "libata.h"
d9027470 73#include "libata-transport.h"
fda0efc5 74
d7bb4cc7 75/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
76const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 79
029cfd6b 80const struct ata_port_operations ata_base_port_ops = {
0aa1113d 81 .prereset = ata_std_prereset,
203c75b8 82 .postreset = ata_std_postreset,
a1efdaba 83 .error_handler = ata_std_error_handler,
e4a9c373
DW
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
029cfd6b
TH
86};
87
88const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
90
91 .qc_defer = ata_std_qc_defer,
57c9efdf 92 .hardreset = sata_std_hardreset,
029cfd6b
TH
93};
94
3373efd8
TH
95static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 99static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 100
a78f57af 101atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 102
33267325
TH
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
05944bdf 110 unsigned int lflags;
33267325
TH
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
2486fa56 127static int atapi_enabled = 1;
1623c81e 128module_param(atapi_enabled, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 130
c5c61bda 131static int atapi_dmadir = 0;
95de719a 132module_param(atapi_dmadir, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 134
baf4fdfa
ML
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 138
c3c013a2
JG
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 142
2dcb407e 143static int ata_ignore_hpa;
1e999736
AC
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
b3a70601
AC
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
87fbc5a0 151static int ata_probe_timeout;
a8601e5f
AM
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
6ebe9d86 155int libata_noacpi = 0;
d7d0dad6 156module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 158
ae8d4ee7
AC
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 162
e7ecd435
TH
163static int atapi_an;
164module_param(atapi_an, int, 0444);
165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
1da177e4
LT
167MODULE_AUTHOR("Jeff Garzik");
168MODULE_DESCRIPTION("Library module for ATA devices");
169MODULE_LICENSE("GPL");
170MODULE_VERSION(DRV_VERSION);
171
0baab86b 172
9913ff8a
TH
173static bool ata_sstatus_online(u32 sstatus)
174{
175 return (sstatus & 0xf) == 0x3;
176}
177
1eca4365
TH
178/**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
aadffb68 186 *
1eca4365
TH
187 * RETURNS:
188 * Pointer to the next link.
aadffb68 189 */
1eca4365
TH
190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
aadffb68 192{
1eca4365
TH
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
aadffb68 196 /* NULL link indicates start of iteration */
1eca4365
TH
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
aadffb68 207
1eca4365
TH
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
b1c72916 217 return ap->slave_link;
1eca4365
TH
218 /* fall through */
219 case ATA_LITER_EDGE:
aadffb68 220 return NULL;
b1c72916 221 }
aadffb68 222
b1c72916
TH
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
1eca4365 227 /* we were over a PMP link */
aadffb68
TH
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
1eca4365
TH
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
aadffb68
TH
234 return NULL;
235}
236
1eca4365
TH
237/**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251{
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288}
289
b1c72916
TH
290/**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305{
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313}
314
33267325
TH
315/**
316 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 317 * @ap: ATA port of interest
33267325
TH
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
a9a79dfe 342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
343 return;
344 }
345}
346
347/**
05944bdf 348 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
349 * @link: ATA link of interest
350 *
05944bdf
TH
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
33267325
TH
359 *
360 * LOCKING:
361 * EH context.
362 */
05944bdf 363static void ata_force_link_limits(struct ata_link *link)
33267325 364{
05944bdf 365 bool did_spd = false;
b1c72916
TH
366 int linkno = link->pmp;
367 int i;
33267325
TH
368
369 if (ata_is_host_link(link))
b1c72916 370 linkno += 15;
33267325
TH
371
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
374
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
377
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
380
05944bdf
TH
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
385 fe->param.name);
386 did_spd = true;
387 }
33267325 388
05944bdf
TH
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
a9a79dfe 392 ata_link_notice(link,
05944bdf
TH
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
33267325
TH
396 }
397}
398
399/**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410static void ata_force_xfermask(struct ata_device *dev)
411{
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
b1c72916
TH
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
33267325
TH
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
a9a79dfe
JP
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
33267325
TH
449 return;
450 }
451}
452
453/**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464static void ata_force_horkage(struct ata_device *dev)
465{
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
b1c72916
TH
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
33267325
TH
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
a9a79dfe
JP
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
33267325
TH
493 }
494}
495
436d34b3
TH
496/**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508int atapi_cmd_type(u8 opcode)
509{
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
e52dcc48
TH
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
436d34b3
TH
529 default:
530 return ATAPI_MISC;
531 }
532}
533
1da177e4
LT
534/**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
1da177e4 537 * @pmp: Port multiplier port
9977126c
TH
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
1da177e4
LT
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
9977126c 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 548{
9977126c
TH
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
1da177e4
LT
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = 0;
573 fis[17] = 0;
574 fis[18] = 0;
575 fis[19] = 0;
576}
577
578/**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
e12a1be6 583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
057ace5e 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
590{
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605}
606
8cbd6df1
AL
607static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
622 0,
623 0,
624 0,
625 0,
8cbd6df1
AL
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
9a3dccc4
TH
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 635};
1da177e4
LT
636
637/**
8cbd6df1 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
1da177e4 641 *
2e9edbf8 642 * Examine the device configuration and tf->flags to calculate
8cbd6df1 643 * the proper read/write commands and protocol to use.
1da177e4
LT
644 *
645 * LOCKING:
646 * caller.
647 */
bd056d7e 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 649{
9a3dccc4 650 u8 cmd;
1da177e4 651
9a3dccc4 652 int index, fua, lba48, write;
2e9edbf8 653
9a3dccc4 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 657
8cbd6df1
AL
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
9a3dccc4 660 index = dev->multi_count ? 0 : 8;
9af5c9c9 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
0565c26d 664 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
665 } else {
666 tf->protocol = ATA_PROT_DMA;
9a3dccc4 667 index = 16;
8cbd6df1 668 }
1da177e4 669
9a3dccc4
TH
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
1da177e4
LT
676}
677
35b649fe
TH
678/**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694{
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
44901a96 701 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
ac8672ea 715 if (!sect) {
a9a79dfe
JP
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
ac8672ea
TH
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
722 }
723
724 return block;
725}
726
bd056d7e
TH
727/**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750{
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
6d1245bf 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
9ca7cfa4 778 tf->device = ATA_LBA;
bd056d7e
TH
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848}
849
cb95d562
TH
850/**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
7dc951ae
TH
865unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
cb95d562
TH
868{
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872}
873
c0489e4e
TH
874/**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
7dc951ae
TH
884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
886{
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893}
894
cb95d562 895static const struct ata_xfer_ent {
be9a50c8 896 int shift, bits;
cb95d562
TH
897 u8 base;
898} ata_xfer_tbl[] = {
70cd071e
TH
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
902 { -1, },
903};
904
905/**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
70cd071e 916 * Matching XFER_* value, 0xff if no match found.
cb95d562 917 */
7dc951ae 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
919{
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
70cd071e 926 return 0xff;
cb95d562
TH
927}
928
929/**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
7dc951ae 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
942{
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
cb95d562
TH
949 return 0;
950}
951
952/**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
7dc951ae 964int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
965{
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972}
973
1da177e4 974/**
1da7b0d0
TH
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
977 *
978 * Determine string which represents the highest speed
1da7b0d0 979 * (highest bit in @modemask).
1da177e4
LT
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
1da7b0d0 986 * @mode_mask, or the constant C string "<n/a>".
1da177e4 987 */
7dc951ae 988const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 989{
75f554bc
TH
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
b352e57d
AC
996 "PIO5",
997 "PIO6",
75f554bc
TH
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
b352e57d
AC
1001 "MWDMA3",
1002 "MWDMA4",
75f554bc
TH
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1da7b0d0 1012 int highbit;
1da177e4 1013
1da7b0d0
TH
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1da177e4 1017 return "<n/a>";
1da177e4
LT
1018}
1019
d9027470 1020const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1021{
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
8522ee25 1025 "6.0 Gbps",
4c360c81
TH
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031}
1032
1da177e4
LT
1033/**
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1036 *
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1040 *
1041 * LOCKING:
1042 * None.
1043 *
1044 * RETURNS:
633273a3
TH
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1047 */
057ace5e 1048unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1049{
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1053 *
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1064 *
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1da177e4 1070 */
633273a3 1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1074 }
1075
633273a3 1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1079 }
1080
633273a3
TH
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1084 }
1085
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
633273a3
TH
1089 }
1090
1da177e4
LT
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1093}
1094
1da177e4 1095/**
6a62a04d 1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1101 *
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1105 *
1106 * LOCKING:
1107 * caller.
1108 */
1109
6a62a04d
TH
1110void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1da177e4
LT
1112{
1113 unsigned int c;
1114
963e4975
AC
1115 BUG_ON(len & 1);
1116
1da177e4
LT
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1121
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1125
1126 ofs++;
1127 len -= 2;
1128 }
1129}
1130
0e949ff3 1131/**
6a62a04d 1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1137 *
6a62a04d 1138 * This function is identical to ata_id_string except that it
0e949ff3
TH
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
6a62a04d
TH
1145void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
0e949ff3
TH
1147{
1148 unsigned char *p;
1149
6a62a04d 1150 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1151
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1156}
0baab86b 1157
db6f8759
TH
1158static u64 ata_id_n_sectors(const u16 *id)
1159{
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
968e594a 1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1163 else
968e594a 1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1165 } else {
1166 if (ata_id_current_chs_valid(id))
968e594a
RH
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
db6f8759 1169 else
968e594a
RH
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
db6f8759
TH
1172 }
1173}
1174
a5987e0a 1175u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1176{
1177 u64 sectors = 0;
1178
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1185
a5987e0a 1186 return sectors;
1e999736
AC
1187}
1188
a5987e0a 1189u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1190{
1191 u64 sectors = 0;
1192
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1197
a5987e0a 1198 return sectors;
1e999736
AC
1199}
1200
1201/**
c728a914
TH
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1e999736 1205 *
c728a914
TH
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1e999736 1208 *
c728a914
TH
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1e999736 1212 */
c728a914 1213static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1214{
c728a914 1215 unsigned int err_mask;
1e999736 1216 struct ata_taskfile tf;
c728a914 1217 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1218
1219 ata_tf_init(dev, &tf);
1220
c728a914 1221 /* always clear all address registers */
1e999736 1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1223
c728a914
TH
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1229
1e999736 1230 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1231 tf.device |= ATA_LBA;
1232
2b789108 1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1234 if (err_mask) {
a9a79dfe
JP
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
c728a914
TH
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1241 }
1e999736 1242
c728a914 1243 if (lba48)
a5987e0a 1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1245 else
a5987e0a 1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1248 (*max_sectors)--;
c728a914 1249 return 0;
1e999736
AC
1250}
1251
1252/**
c728a914
TH
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
6b38d1d1 1255 * @new_sectors: new max sectors value to set for the device
1e999736 1256 *
c728a914
TH
1257 * Set max sectors of @dev to @new_sectors.
1258 *
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1e999736 1263 */
05027adc 1264static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1265{
c728a914 1266 unsigned int err_mask;
1e999736 1267 struct ata_taskfile tf;
c728a914 1268 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1269
1270 new_sectors--;
1271
1272 ata_tf_init(dev, &tf);
1273
1e999736 1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1275
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1279
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1283 } else {
c728a914
TH
1284 tf.command = ATA_CMD_SET_MAX;
1285
1e582ba4
TH
1286 tf.device |= (new_sectors >> 24) & 0xf;
1287 }
1288
1e999736 1289 tf.protocol |= ATA_PROT_NODATA;
c728a914 1290 tf.device |= ATA_LBA;
1e999736
AC
1291
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1295
2b789108 1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1297 if (err_mask) {
a9a79dfe
JP
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
c728a914
TH
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1305 }
1306
c728a914 1307 return 0;
1e999736
AC
1308}
1309
1310/**
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1313 *
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
05027adc
TH
1317 *
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1e999736 1320 */
05027adc 1321static int ata_hpa_resize(struct ata_device *dev)
1e999736 1322{
05027adc
TH
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
c728a914 1328 int rc;
a617c09f 1329
05027adc
TH
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1334 return 0;
1e999736 1335
05027adc
TH
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
dda7aba1
TH
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
05027adc 1341 */
445d211b 1342 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1346
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1e999736 1350 }
37301a55 1351
05027adc
TH
1352 return rc;
1353 }
5920dadf 1354 dev->n_native_sectors = native_sectors;
05027adc
TH
1355
1356 /* nothing to do? */
445d211b 1357 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1360
1361 if (native_sectors > sectors)
a9a79dfe 1362 ata_dev_info(dev,
05027adc
TH
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
a9a79dfe
JP
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1372 }
1373
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
05027adc
TH
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1386
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
a9a79dfe
JP
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1392 return rc;
1393 }
1394
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1397 ata_dev_info(dev,
05027adc
TH
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1402 }
1403
1404 return 0;
1e999736
AC
1405}
1406
1da177e4
LT
1407/**
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1409 * @id: IDENTIFY DEVICE page to dump
1da177e4 1410 *
0bd3300a
TH
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1da177e4
LT
1413 *
1414 * LOCKING:
1415 * caller.
1416 */
1417
0bd3300a 1418static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1419{
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
0bd3300a
TH
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1da177e4
LT
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
0bd3300a
TH
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1da177e4
LT
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
0bd3300a
TH
1442 id[88],
1443 id[93]);
1da177e4
LT
1444}
1445
cb95d562
TH
1446/**
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1449 *
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1452 *
1453 * FIXME: pre IDE drive timing (do we care ?).
1454 *
1455 * LOCKING:
1456 * None.
1457 *
1458 * RETURNS:
1459 * Computed xfermask
1460 */
7dc951ae 1461unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1462{
7dc951ae 1463 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1464
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1474 */
7a0f1c8a 1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1476 if (mode < 5) /* Valid PIO range */
2dcb407e 1477 pio_mask = (2 << mode) - 1;
46767aeb
AC
1478 else
1479 pio_mask = 1;
cb95d562
TH
1480
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1486 */
1487 }
1488
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1490
b352e57d
AC
1491 if (ata_id_is_cfa(id)) {
1492 /*
1493 * Process compact flash extended modes
1494 */
62afe5d7
SS
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1497
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1506 }
1507
fb21f0d0
TH
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1511
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1513}
1514
7102d230 1515static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1516{
77853bf2 1517 struct completion *waiting = qc->private_data;
a2a7a662 1518
a2a7a662 1519 complete(waiting);
a2a7a662
TH
1520}
1521
1522/**
2432697b 1523 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
d69cf37d 1526 * @cdb: CDB for packet command
a2a7a662 1527 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1528 * @sgl: sg list for the data buffer of the command
2432697b 1529 * @n_elem: Number of sg entries
2b789108 1530 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1531 *
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1537 *
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
551e8889
TH
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1543 */
2432697b
TH
1544unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
87260216 1546 int dma_dir, struct scatterlist *sgl,
2b789108 1547 unsigned int n_elem, unsigned long timeout)
a2a7a662 1548{
9af5c9c9
TH
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
a2a7a662 1551 u8 command = tf->command;
87fbc5a0 1552 int auto_timeout = 0;
a2a7a662 1553 struct ata_queued_cmd *qc;
2ab7db1f 1554 unsigned int tag, preempted_tag;
dedaf2b0 1555 u32 preempted_sactive, preempted_qc_active;
da917d69 1556 int preempted_nr_active_links;
60be6b9a 1557 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1558 unsigned long flags;
77853bf2 1559 unsigned int err_mask;
d95a717f 1560 int rc;
a2a7a662 1561
ba6a1308 1562 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1563
e3180499 1564 /* no internal command while frozen */
b51e9e5d 1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1566 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1567 return AC_ERR_SYSTEM;
1568 }
1569
2ab7db1f 1570 /* initialize internal qc */
a2a7a662 1571
2ab7db1f
TH
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1576 */
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1581
8a8bc223
TH
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
f69499f4 1584 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1585
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1591
9af5c9c9
TH
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
dedaf2b0 1594 preempted_qc_active = ap->qc_active;
da917d69 1595 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
dedaf2b0 1598 ap->qc_active = 0;
da917d69 1599 ap->nr_active_links = 0;
2ab7db1f
TH
1600
1601 /* prepare & issue qc */
a2a7a662 1602 qc->tf = *tf;
d69cf37d
TH
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1605 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1606 qc->dma_dir = dma_dir;
1607 if (dma_dir != DMA_NONE) {
2432697b 1608 unsigned int i, buflen = 0;
87260216 1609 struct scatterlist *sg;
2432697b 1610
87260216
JA
1611 for_each_sg(sgl, sg, n_elem, i)
1612 buflen += sg->length;
2432697b 1613
87260216 1614 ata_sg_init(qc, sgl, n_elem);
49c80429 1615 qc->nbytes = buflen;
a2a7a662
TH
1616 }
1617
77853bf2 1618 qc->private_data = &wait;
a2a7a662
TH
1619 qc->complete_fn = ata_qc_complete_internal;
1620
8e0e694a 1621 ata_qc_issue(qc);
a2a7a662 1622
ba6a1308 1623 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1624
87fbc5a0
TH
1625 if (!timeout) {
1626 if (ata_probe_timeout)
1627 timeout = ata_probe_timeout * 1000;
1628 else {
1629 timeout = ata_internal_cmd_timeout(dev, command);
1630 auto_timeout = 1;
1631 }
1632 }
2b789108 1633
c0c362b6
TH
1634 if (ap->ops->error_handler)
1635 ata_eh_release(ap);
1636
2b789108 1637 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1638
c0c362b6
TH
1639 if (ap->ops->error_handler)
1640 ata_eh_acquire(ap);
1641
c429137a 1642 ata_sff_flush_pio_task(ap);
41ade50c 1643
d95a717f 1644 if (!rc) {
ba6a1308 1645 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1646
1647 /* We're racing with irq here. If we lose, the
1648 * following test prevents us from completing the qc
d95a717f
TH
1649 * twice. If we win, the port is frozen and will be
1650 * cleaned up by ->post_internal_cmd().
a2a7a662 1651 */
77853bf2 1652 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1653 qc->err_mask |= AC_ERR_TIMEOUT;
1654
1655 if (ap->ops->error_handler)
1656 ata_port_freeze(ap);
1657 else
1658 ata_qc_complete(qc);
f15a1daf 1659
0dd4b21f 1660 if (ata_msg_warn(ap))
a9a79dfe
JP
1661 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1662 command);
a2a7a662
TH
1663 }
1664
ba6a1308 1665 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1666 }
1667
d95a717f
TH
1668 /* do post_internal_cmd */
1669 if (ap->ops->post_internal_cmd)
1670 ap->ops->post_internal_cmd(qc);
1671
a51d644a
TH
1672 /* perform minimal error analysis */
1673 if (qc->flags & ATA_QCFLAG_FAILED) {
1674 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1675 qc->err_mask |= AC_ERR_DEV;
1676
1677 if (!qc->err_mask)
1678 qc->err_mask |= AC_ERR_OTHER;
1679
1680 if (qc->err_mask & ~AC_ERR_OTHER)
1681 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1682 }
1683
15869303 1684 /* finish up */
ba6a1308 1685 spin_lock_irqsave(ap->lock, flags);
15869303 1686
e61e0672 1687 *tf = qc->result_tf;
77853bf2
TH
1688 err_mask = qc->err_mask;
1689
1690 ata_qc_free(qc);
9af5c9c9
TH
1691 link->active_tag = preempted_tag;
1692 link->sactive = preempted_sactive;
dedaf2b0 1693 ap->qc_active = preempted_qc_active;
da917d69 1694 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1695
ba6a1308 1696 spin_unlock_irqrestore(ap->lock, flags);
15869303 1697
87fbc5a0
TH
1698 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1699 ata_internal_cmd_timed_out(dev, command);
1700
77853bf2 1701 return err_mask;
a2a7a662
TH
1702}
1703
2432697b 1704/**
33480a0e 1705 * ata_exec_internal - execute libata internal command
2432697b
TH
1706 * @dev: Device to which the command is sent
1707 * @tf: Taskfile registers for the command and the result
1708 * @cdb: CDB for packet command
1709 * @dma_dir: Data tranfer direction of the command
1710 * @buf: Data buffer of the command
1711 * @buflen: Length of data buffer
2b789108 1712 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1713 *
1714 * Wrapper around ata_exec_internal_sg() which takes simple
1715 * buffer instead of sg list.
1716 *
1717 * LOCKING:
1718 * None. Should be called with kernel context, might sleep.
1719 *
1720 * RETURNS:
1721 * Zero on success, AC_ERR_* mask on failure
1722 */
1723unsigned ata_exec_internal(struct ata_device *dev,
1724 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1725 int dma_dir, void *buf, unsigned int buflen,
1726 unsigned long timeout)
2432697b 1727{
33480a0e
TH
1728 struct scatterlist *psg = NULL, sg;
1729 unsigned int n_elem = 0;
2432697b 1730
33480a0e
TH
1731 if (dma_dir != DMA_NONE) {
1732 WARN_ON(!buf);
1733 sg_init_one(&sg, buf, buflen);
1734 psg = &sg;
1735 n_elem++;
1736 }
2432697b 1737
2b789108
TH
1738 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1739 timeout);
2432697b
TH
1740}
1741
977e6b9f
TH
1742/**
1743 * ata_do_simple_cmd - execute simple internal command
1744 * @dev: Device to which the command is sent
1745 * @cmd: Opcode to execute
1746 *
1747 * Execute a 'simple' command, that only consists of the opcode
1748 * 'cmd' itself, without filling any other registers
1749 *
1750 * LOCKING:
1751 * Kernel thread context (may sleep).
1752 *
1753 * RETURNS:
1754 * Zero on success, AC_ERR_* mask on failure
e58eb583 1755 */
77b08fb5 1756unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1757{
1758 struct ata_taskfile tf;
e58eb583
TH
1759
1760 ata_tf_init(dev, &tf);
1761
1762 tf.command = cmd;
1763 tf.flags |= ATA_TFLAG_DEVICE;
1764 tf.protocol = ATA_PROT_NODATA;
1765
2b789108 1766 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1767}
1768
1bc4ccff
AC
1769/**
1770 * ata_pio_need_iordy - check if iordy needed
1771 * @adev: ATA device
1772 *
1773 * Check if the current speed of the device requires IORDY. Used
1774 * by various controllers for chip configuration.
1775 */
1bc4ccff
AC
1776unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1777{
0d9e6659
TH
1778 /* Don't set IORDY if we're preparing for reset. IORDY may
1779 * lead to controller lock up on certain controllers if the
1780 * port is not occupied. See bko#11703 for details.
1781 */
1782 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1783 return 0;
1784 /* Controller doesn't support IORDY. Probably a pointless
1785 * check as the caller should know this.
1786 */
9af5c9c9 1787 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1788 return 0;
5c18c4d2
DD
1789 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1790 if (ata_id_is_cfa(adev->id)
1791 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1792 return 0;
432729f0
AC
1793 /* PIO3 and higher it is mandatory */
1794 if (adev->pio_mode > XFER_PIO_2)
1795 return 1;
1796 /* We turn it on when possible */
1797 if (ata_id_has_iordy(adev->id))
1bc4ccff 1798 return 1;
432729f0
AC
1799 return 0;
1800}
2e9edbf8 1801
432729f0
AC
1802/**
1803 * ata_pio_mask_no_iordy - Return the non IORDY mask
1804 * @adev: ATA device
1805 *
1806 * Compute the highest mode possible if we are not using iordy. Return
1807 * -1 if no iordy mode is available.
1808 */
432729f0
AC
1809static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1810{
1bc4ccff 1811 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1812 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1813 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1814 /* Is the speed faster than the drive allows non IORDY ? */
1815 if (pio) {
1816 /* This is cycle times not frequency - watch the logic! */
1817 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1818 return 3 << ATA_SHIFT_PIO;
1819 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1820 }
1821 }
432729f0 1822 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1823}
1824
963e4975
AC
1825/**
1826 * ata_do_dev_read_id - default ID read method
1827 * @dev: device
1828 * @tf: proposed taskfile
1829 * @id: data buffer
1830 *
1831 * Issue the identify taskfile and hand back the buffer containing
1832 * identify data. For some RAID controllers and for pre ATA devices
1833 * this function is wrapped or replaced by the driver
1834 */
1835unsigned int ata_do_dev_read_id(struct ata_device *dev,
1836 struct ata_taskfile *tf, u16 *id)
1837{
1838 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1839 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1840}
1841
1da177e4 1842/**
49016aca 1843 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1844 * @dev: target device
1845 * @p_class: pointer to class of the target device (may be changed)
bff04647 1846 * @flags: ATA_READID_* flags
fe635c7e 1847 * @id: buffer to read IDENTIFY data into
1da177e4 1848 *
49016aca
TH
1849 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1850 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1851 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1852 * for pre-ATA4 drives.
1da177e4 1853 *
50a99018 1854 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1855 * now we abort if we hit that case.
50a99018 1856 *
1da177e4 1857 * LOCKING:
49016aca
TH
1858 * Kernel thread context (may sleep)
1859 *
1860 * RETURNS:
1861 * 0 on success, -errno otherwise.
1da177e4 1862 */
a9beec95 1863int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1864 unsigned int flags, u16 *id)
1da177e4 1865{
9af5c9c9 1866 struct ata_port *ap = dev->link->ap;
49016aca 1867 unsigned int class = *p_class;
a0123703 1868 struct ata_taskfile tf;
49016aca
TH
1869 unsigned int err_mask = 0;
1870 const char *reason;
79b42bab 1871 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1872 int may_fallback = 1, tried_spinup = 0;
49016aca 1873 int rc;
1da177e4 1874
0dd4b21f 1875 if (ata_msg_ctl(ap))
a9a79dfe 1876 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1877
963e4975 1878retry:
3373efd8 1879 ata_tf_init(dev, &tf);
a0123703 1880
49016aca 1881 switch (class) {
79b42bab
TH
1882 case ATA_DEV_SEMB:
1883 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1884 case ATA_DEV_ATA:
a0123703 1885 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1886 break;
1887 case ATA_DEV_ATAPI:
a0123703 1888 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1da177e4
LT
1894 }
1895
a0123703 1896 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1907
963e4975
AC
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
a0123703 1913 if (err_mask) {
800b3996 1914 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1916 return -ENOENT;
1917 }
1918
79b42bab 1919 if (is_semb) {
a9a79dfe
JP
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1ffc151f
TH
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
a9a79dfe
JP
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1949 return -ENOENT;
54936f8b
TH
1950 }
1951
49016aca
TH
1952 rc = -EIO;
1953 reason = "I/O error";
1da177e4
LT
1954 goto err_out;
1955 }
1956
43c9c591 1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
43c9c591
TH
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
54936f8b
TH
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
49016aca 1970 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1971
49016aca 1972 /* sanity check */
a4f5749b 1973 rc = -EINVAL;
6070068b 1974 reason = "device reports invalid type";
a4f5749b
TH
1975
1976 if (class == ATA_DEV_ATA) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
db63a4c8
AW
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
a4f5749b
TH
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
49016aca
TH
1988 }
1989
169439c2
ML
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
218f3d30 1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1998 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
bff04647 2011 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
50a99018
AC
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
50a99018
AC
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2021 * should never trigger.
49016aca
TH
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
bff04647 2034 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
fe635c7e 2040
49016aca
TH
2041 return 0;
2042
2043 err_out:
88574551 2044 if (ata_msg_warn(ap))
a9a79dfe
JP
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
49016aca
TH
2047 return rc;
2048}
2049
9062712f
TH
2050static int ata_do_link_spd_horkage(struct ata_device *dev)
2051{
2052 struct ata_link *plink = ata_dev_phys_link(dev);
2053 u32 target, target_limit;
2054
2055 if (!sata_scr_valid(plink))
2056 return 0;
2057
2058 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059 target = 1;
2060 else
2061 return 0;
2062
2063 target_limit = (1 << target) - 1;
2064
2065 /* if already on stricter limit, no need to push further */
2066 if (plink->sata_spd_limit <= target_limit)
2067 return 0;
2068
2069 plink->sata_spd_limit = target_limit;
2070
2071 /* Request another EH round by returning -EAGAIN if link is
2072 * going faster than the target speed. Forward progress is
2073 * guaranteed by setting sata_spd_limit to target_limit above.
2074 */
2075 if (plink->sata_spd > target) {
a9a79dfe
JP
2076 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077 sata_spd_string(target));
9062712f
TH
2078 return -EAGAIN;
2079 }
2080 return 0;
2081}
2082
3373efd8 2083static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2084{
9af5c9c9 2085 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2086
2087 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088 return 0;
2089
9af5c9c9 2090 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2091}
2092
388539f3 2093static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2094 char *desc, size_t desc_sz)
2095{
9af5c9c9 2096 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2097 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2098 unsigned int err_mask;
2099 char *aa_desc = "";
a6e6ce8e
TH
2100
2101 if (!ata_id_has_ncq(dev->id)) {
2102 desc[0] = '\0';
388539f3 2103 return 0;
a6e6ce8e 2104 }
75683fe7 2105 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2106 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2107 return 0;
6919a0a6 2108 }
a6e6ce8e 2109 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2110 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2111 dev->flags |= ATA_DFLAG_NCQ;
2112 }
2113
388539f3
SL
2114 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2115 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2116 ata_id_has_fpdma_aa(dev->id)) {
2117 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2118 SATA_FPDMA_AA);
2119 if (err_mask) {
a9a79dfe
JP
2120 ata_dev_err(dev,
2121 "failed to enable AA (error_mask=0x%x)\n",
2122 err_mask);
388539f3
SL
2123 if (err_mask != AC_ERR_DEV) {
2124 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2125 return -EIO;
2126 }
2127 } else
2128 aa_desc = ", AA";
2129 }
2130
a6e6ce8e 2131 if (hdepth >= ddepth)
388539f3 2132 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2133 else
388539f3
SL
2134 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2135 ddepth, aa_desc);
2136 return 0;
a6e6ce8e
TH
2137}
2138
49016aca 2139/**
ffeae418 2140 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2141 * @dev: Target device to configure
2142 *
2143 * Configure @dev according to @dev->id. Generic and low-level
2144 * driver specific fixups are also applied.
49016aca
TH
2145 *
2146 * LOCKING:
ffeae418
TH
2147 * Kernel thread context (may sleep)
2148 *
2149 * RETURNS:
2150 * 0 on success, -errno otherwise
49016aca 2151 */
efdaedc4 2152int ata_dev_configure(struct ata_device *dev)
49016aca 2153{
9af5c9c9
TH
2154 struct ata_port *ap = dev->link->ap;
2155 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2156 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2157 const u16 *id = dev->id;
7dc951ae 2158 unsigned long xfer_mask;
65fe1f0f 2159 unsigned int err_mask;
b352e57d 2160 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2161 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2162 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2163 int rc;
49016aca 2164
0dd4b21f 2165 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2166 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2167 return 0;
49016aca
TH
2168 }
2169
0dd4b21f 2170 if (ata_msg_probe(ap))
a9a79dfe 2171 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2172
75683fe7
TH
2173 /* set horkage */
2174 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2175 ata_force_horkage(dev);
75683fe7 2176
50af2fa1 2177 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2178 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2179 ata_dev_disable(dev);
2180 return 0;
2181 }
2182
2486fa56
TH
2183 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2184 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2185 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2186 atapi_enabled ? "not supported with this driver"
2187 : "disabled");
2486fa56
TH
2188 ata_dev_disable(dev);
2189 return 0;
2190 }
2191
9062712f
TH
2192 rc = ata_do_link_spd_horkage(dev);
2193 if (rc)
2194 return rc;
2195
6746544c
TH
2196 /* let ACPI work its magic */
2197 rc = ata_acpi_on_devcfg(dev);
2198 if (rc)
2199 return rc;
08573a86 2200
05027adc
TH
2201 /* massage HPA, do it early as it might change IDENTIFY data */
2202 rc = ata_hpa_resize(dev);
2203 if (rc)
2204 return rc;
2205
c39f5ebe 2206 /* print device capabilities */
0dd4b21f 2207 if (ata_msg_probe(ap))
a9a79dfe
JP
2208 ata_dev_dbg(dev,
2209 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2210 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2211 __func__,
2212 id[49], id[82], id[83], id[84],
2213 id[85], id[86], id[87], id[88]);
c39f5ebe 2214
208a9933 2215 /* initialize to-be-configured parameters */
ea1dd4e1 2216 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2217 dev->max_sectors = 0;
2218 dev->cdb_len = 0;
2219 dev->n_sectors = 0;
2220 dev->cylinders = 0;
2221 dev->heads = 0;
2222 dev->sectors = 0;
e18086d6 2223 dev->multi_count = 0;
208a9933 2224
1da177e4
LT
2225 /*
2226 * common ATA, ATAPI feature tests
2227 */
2228
ff8854b2 2229 /* find max transfer mode; for printk only */
1148c3a7 2230 xfer_mask = ata_id_xfermask(id);
1da177e4 2231
0dd4b21f
BP
2232 if (ata_msg_probe(ap))
2233 ata_dump_id(id);
1da177e4 2234
ef143d57
AL
2235 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2236 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2237 sizeof(fwrevbuf));
2238
2239 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2240 sizeof(modelbuf));
2241
1da177e4
LT
2242 /* ATA-specific feature tests */
2243 if (dev->class == ATA_DEV_ATA) {
b352e57d 2244 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2245 /* CPRM may make this media unusable */
2246 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2247 ata_dev_warn(dev,
2248 "supports DRM functions and may not be fully accessible\n");
b352e57d 2249 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2250 } else {
2dcb407e 2251 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2252 /* Warn the user if the device has TPM extensions */
2253 if (ata_id_has_tpm(id))
a9a79dfe
JP
2254 ata_dev_warn(dev,
2255 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2256 }
b352e57d 2257
1148c3a7 2258 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2259
e18086d6
ML
2260 /* get current R/W Multiple count setting */
2261 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2262 unsigned int max = dev->id[47] & 0xff;
2263 unsigned int cnt = dev->id[59] & 0xff;
2264 /* only recognize/allow powers of two here */
2265 if (is_power_of_2(max) && is_power_of_2(cnt))
2266 if (cnt <= max)
2267 dev->multi_count = cnt;
2268 }
3f64f565 2269
1148c3a7 2270 if (ata_id_has_lba(id)) {
4c2d721a 2271 const char *lba_desc;
388539f3 2272 char ncq_desc[24];
8bf62ece 2273
4c2d721a
TH
2274 lba_desc = "LBA";
2275 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2276 if (ata_id_has_lba48(id)) {
8bf62ece 2277 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2278 lba_desc = "LBA48";
6fc49adb
TH
2279
2280 if (dev->n_sectors >= (1UL << 28) &&
2281 ata_id_has_flush_ext(id))
2282 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2283 }
8bf62ece 2284
a6e6ce8e 2285 /* config NCQ */
388539f3
SL
2286 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2287 if (rc)
2288 return rc;
a6e6ce8e 2289
8bf62ece 2290 /* print device info to dmesg */
3f64f565 2291 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2292 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2293 revbuf, modelbuf, fwrevbuf,
2294 ata_mode_string(xfer_mask));
2295 ata_dev_info(dev,
2296 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2297 (unsigned long long)dev->n_sectors,
3f64f565
EM
2298 dev->multi_count, lba_desc, ncq_desc);
2299 }
ffeae418 2300 } else {
8bf62ece
AL
2301 /* CHS */
2302
2303 /* Default translation */
1148c3a7
TH
2304 dev->cylinders = id[1];
2305 dev->heads = id[3];
2306 dev->sectors = id[6];
8bf62ece 2307
1148c3a7 2308 if (ata_id_current_chs_valid(id)) {
8bf62ece 2309 /* Current CHS translation is valid. */
1148c3a7
TH
2310 dev->cylinders = id[54];
2311 dev->heads = id[55];
2312 dev->sectors = id[56];
8bf62ece
AL
2313 }
2314
2315 /* print device info to dmesg */
3f64f565 2316 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2317 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2318 revbuf, modelbuf, fwrevbuf,
2319 ata_mode_string(xfer_mask));
2320 ata_dev_info(dev,
2321 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2322 (unsigned long long)dev->n_sectors,
2323 dev->multi_count, dev->cylinders,
2324 dev->heads, dev->sectors);
3f64f565 2325 }
07f6f7d0
AL
2326 }
2327
65fe1f0f
SH
2328 /* check and mark DevSlp capability */
2329 if (ata_id_has_devslp(dev->id))
2330 dev->flags |= ATA_DFLAG_DEVSLP;
2331
2332 /* Obtain SATA Settings page from Identify Device Data Log,
2333 * which contains DevSlp timing variables etc.
8349e5ae 2334 * Exclude old devices with ata_id_has_ncq()
65fe1f0f 2335 */
8349e5ae 2336 if (ata_id_has_ncq(dev->id)) {
65fe1f0f
SH
2337 err_mask = ata_read_log_page(dev,
2338 ATA_LOG_SATA_ID_DEV_DATA,
2339 ATA_LOG_SATA_SETTINGS,
2340 dev->sata_settings,
2341 1);
2342 if (err_mask)
2343 ata_dev_dbg(dev,
2344 "failed to get Identify Device Data, Emask 0x%x\n",
2345 err_mask);
2346 }
2347
6e7846e9 2348 dev->cdb_len = 16;
1da177e4
LT
2349 }
2350
2351 /* ATAPI-specific feature tests */
2c13b7ce 2352 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2353 const char *cdb_intr_string = "";
2354 const char *atapi_an_string = "";
91163006 2355 const char *dma_dir_string = "";
7d77b247 2356 u32 sntf;
08a556db 2357
1148c3a7 2358 rc = atapi_cdb_len(id);
1da177e4 2359 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2360 if (ata_msg_warn(ap))
a9a79dfe 2361 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2362 rc = -EINVAL;
1da177e4
LT
2363 goto err_out_nosup;
2364 }
6e7846e9 2365 dev->cdb_len = (unsigned int) rc;
1da177e4 2366
7d77b247
TH
2367 /* Enable ATAPI AN if both the host and device have
2368 * the support. If PMP is attached, SNTF is required
2369 * to enable ATAPI AN to discern between PHY status
2370 * changed notifications and ATAPI ANs.
9f45cbd3 2371 */
e7ecd435
TH
2372 if (atapi_an &&
2373 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2374 (!sata_pmp_attached(ap) ||
7d77b247 2375 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2376 /* issue SET feature command to turn this on */
218f3d30
JG
2377 err_mask = ata_dev_set_feature(dev,
2378 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2379 if (err_mask)
a9a79dfe
JP
2380 ata_dev_err(dev,
2381 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2382 err_mask);
854c73a2 2383 else {
9f45cbd3 2384 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2385 atapi_an_string = ", ATAPI AN";
2386 }
9f45cbd3
KCA
2387 }
2388
08a556db 2389 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2390 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2391 cdb_intr_string = ", CDB intr";
2392 }
312f7da2 2393
91163006
TH
2394 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2395 dev->flags |= ATA_DFLAG_DMADIR;
2396 dma_dir_string = ", DMADIR";
2397 }
2398
b1354cbb
LM
2399 if (ata_id_has_da(dev->id))
2400 dev->flags |= ATA_DFLAG_DA;
2401
1da177e4 2402 /* print device info to dmesg */
5afc8142 2403 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2404 ata_dev_info(dev,
2405 "ATAPI: %s, %s, max %s%s%s%s\n",
2406 modelbuf, fwrevbuf,
2407 ata_mode_string(xfer_mask),
2408 cdb_intr_string, atapi_an_string,
2409 dma_dir_string);
1da177e4
LT
2410 }
2411
914ed354
TH
2412 /* determine max_sectors */
2413 dev->max_sectors = ATA_MAX_SECTORS;
2414 if (dev->flags & ATA_DFLAG_LBA48)
2415 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2416
c5038fc0
AC
2417 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2418 200 sectors */
3373efd8 2419 if (ata_dev_knobble(dev)) {
5afc8142 2420 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2421 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2422 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2423 dev->max_sectors = ATA_MAX_SECTORS;
2424 }
2425
f8d8e579 2426 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2427 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2428 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2429 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2430 }
f8d8e579 2431
75683fe7 2432 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2433 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2434 dev->max_sectors);
18d6e9d5 2435
4b2f3ede 2436 if (ap->ops->dev_config)
cd0d3bbc 2437 ap->ops->dev_config(dev);
4b2f3ede 2438
c5038fc0
AC
2439 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2440 /* Let the user know. We don't want to disallow opens for
2441 rescue purposes, or in case the vendor is just a blithering
2442 idiot. Do this after the dev_config call as some controllers
2443 with buggy firmware may want to avoid reporting false device
2444 bugs */
2445
2446 if (print_info) {
a9a79dfe 2447 ata_dev_warn(dev,
c5038fc0 2448"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2449 ata_dev_warn(dev,
c5038fc0
AC
2450"fault or invalid emulation. Contact drive vendor for information.\n");
2451 }
2452 }
2453
ac70a964 2454 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2455 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2456 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2457 }
2458
ffeae418 2459 return 0;
1da177e4
LT
2460
2461err_out_nosup:
0dd4b21f 2462 if (ata_msg_probe(ap))
a9a79dfe 2463 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2464 return rc;
1da177e4
LT
2465}
2466
be0d18df 2467/**
2e41e8e6 2468 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2469 * @ap: port
2470 *
2e41e8e6 2471 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2472 * detection.
2473 */
2474
2475int ata_cable_40wire(struct ata_port *ap)
2476{
2477 return ATA_CBL_PATA40;
2478}
2479
2480/**
2e41e8e6 2481 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2482 * @ap: port
2483 *
2e41e8e6 2484 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2485 * detection.
2486 */
2487
2488int ata_cable_80wire(struct ata_port *ap)
2489{
2490 return ATA_CBL_PATA80;
2491}
2492
2493/**
2494 * ata_cable_unknown - return unknown PATA cable.
2495 * @ap: port
2496 *
2497 * Helper method for drivers which have no PATA cable detection.
2498 */
2499
2500int ata_cable_unknown(struct ata_port *ap)
2501{
2502 return ATA_CBL_PATA_UNK;
2503}
2504
c88f90c3
TH
2505/**
2506 * ata_cable_ignore - return ignored PATA cable.
2507 * @ap: port
2508 *
2509 * Helper method for drivers which don't use cable type to limit
2510 * transfer mode.
2511 */
2512int ata_cable_ignore(struct ata_port *ap)
2513{
2514 return ATA_CBL_PATA_IGN;
2515}
2516
be0d18df
AC
2517/**
2518 * ata_cable_sata - return SATA cable type
2519 * @ap: port
2520 *
2521 * Helper method for drivers which have SATA cables
2522 */
2523
2524int ata_cable_sata(struct ata_port *ap)
2525{
2526 return ATA_CBL_SATA;
2527}
2528
1da177e4
LT
2529/**
2530 * ata_bus_probe - Reset and probe ATA bus
2531 * @ap: Bus to probe
2532 *
0cba632b
JG
2533 * Master ATA bus probing function. Initiates a hardware-dependent
2534 * bus reset, then attempts to identify any devices found on
2535 * the bus.
2536 *
1da177e4 2537 * LOCKING:
0cba632b 2538 * PCI/etc. bus probe sem.
1da177e4
LT
2539 *
2540 * RETURNS:
96072e69 2541 * Zero on success, negative errno otherwise.
1da177e4
LT
2542 */
2543
80289167 2544int ata_bus_probe(struct ata_port *ap)
1da177e4 2545{
28ca5c57 2546 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2547 int tries[ATA_MAX_DEVICES];
f58229f8 2548 int rc;
e82cbdb9 2549 struct ata_device *dev;
1da177e4 2550
1eca4365 2551 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2552 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2553
2554 retry:
1eca4365 2555 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2556 /* If we issue an SRST then an ATA drive (not ATAPI)
2557 * may change configuration and be in PIO0 timing. If
2558 * we do a hard reset (or are coming from power on)
2559 * this is true for ATA or ATAPI. Until we've set a
2560 * suitable controller mode we should not touch the
2561 * bus as we may be talking too fast.
2562 */
2563 dev->pio_mode = XFER_PIO_0;
5416912a 2564 dev->dma_mode = 0xff;
cdeab114
TH
2565
2566 /* If the controller has a pio mode setup function
2567 * then use it to set the chipset to rights. Don't
2568 * touch the DMA setup as that will be dealt with when
2569 * configuring devices.
2570 */
2571 if (ap->ops->set_piomode)
2572 ap->ops->set_piomode(ap, dev);
2573 }
2574
2044470c 2575 /* reset and determine device classes */
52783c5d 2576 ap->ops->phy_reset(ap);
2061a47a 2577
1eca4365 2578 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2579 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2580 classes[dev->devno] = dev->class;
2581 else
2582 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2583
52783c5d 2584 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2585 }
1da177e4 2586
f31f0cc2
JG
2587 /* read IDENTIFY page and configure devices. We have to do the identify
2588 specific sequence bass-ackwards so that PDIAG- is released by
2589 the slave device */
2590
1eca4365 2591 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2592 if (tries[dev->devno])
2593 dev->class = classes[dev->devno];
ffeae418 2594
14d2bac1 2595 if (!ata_dev_enabled(dev))
ffeae418 2596 continue;
ffeae418 2597
bff04647
TH
2598 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2599 dev->id);
14d2bac1
TH
2600 if (rc)
2601 goto fail;
f31f0cc2
JG
2602 }
2603
be0d18df
AC
2604 /* Now ask for the cable type as PDIAG- should have been released */
2605 if (ap->ops->cable_detect)
2606 ap->cbl = ap->ops->cable_detect(ap);
2607
1eca4365
TH
2608 /* We may have SATA bridge glue hiding here irrespective of
2609 * the reported cable types and sensed types. When SATA
2610 * drives indicate we have a bridge, we don't know which end
2611 * of the link the bridge is which is a problem.
2612 */
2613 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2614 if (ata_id_is_sata(dev->id))
2615 ap->cbl = ATA_CBL_SATA;
614fe29b 2616
f31f0cc2
JG
2617 /* After the identify sequence we can now set up the devices. We do
2618 this in the normal order so that the user doesn't get confused */
2619
1eca4365 2620 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2621 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2622 rc = ata_dev_configure(dev);
9af5c9c9 2623 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2624 if (rc)
2625 goto fail;
1da177e4
LT
2626 }
2627
e82cbdb9 2628 /* configure transfer mode */
0260731f 2629 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2630 if (rc)
51713d35 2631 goto fail;
1da177e4 2632
1eca4365
TH
2633 ata_for_each_dev(dev, &ap->link, ENABLED)
2634 return 0;
1da177e4 2635
96072e69 2636 return -ENODEV;
14d2bac1
TH
2637
2638 fail:
4ae72a1e
TH
2639 tries[dev->devno]--;
2640
14d2bac1
TH
2641 switch (rc) {
2642 case -EINVAL:
4ae72a1e 2643 /* eeek, something went very wrong, give up */
14d2bac1
TH
2644 tries[dev->devno] = 0;
2645 break;
4ae72a1e
TH
2646
2647 case -ENODEV:
2648 /* give it just one more chance */
2649 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2650 case -EIO:
4ae72a1e
TH
2651 if (tries[dev->devno] == 1) {
2652 /* This is the last chance, better to slow
2653 * down than lose it.
2654 */
a07d499b 2655 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2656 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2657 }
14d2bac1
TH
2658 }
2659
4ae72a1e 2660 if (!tries[dev->devno])
3373efd8 2661 ata_dev_disable(dev);
ec573755 2662
14d2bac1 2663 goto retry;
1da177e4
LT
2664}
2665
3be680b7
TH
2666/**
2667 * sata_print_link_status - Print SATA link status
936fd732 2668 * @link: SATA link to printk link status about
3be680b7
TH
2669 *
2670 * This function prints link speed and status of a SATA link.
2671 *
2672 * LOCKING:
2673 * None.
2674 */
6bdb4fc9 2675static void sata_print_link_status(struct ata_link *link)
3be680b7 2676{
6d5f9732 2677 u32 sstatus, scontrol, tmp;
3be680b7 2678
936fd732 2679 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2680 return;
936fd732 2681 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2682
b1c72916 2683 if (ata_phys_link_online(link)) {
3be680b7 2684 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2685 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2686 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2687 } else {
a9a79dfe
JP
2688 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2689 sstatus, scontrol);
3be680b7
TH
2690 }
2691}
2692
ebdfca6e
AC
2693/**
2694 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2695 * @adev: device
2696 *
2697 * Obtain the other device on the same cable, or if none is
2698 * present NULL is returned
2699 */
2e9edbf8 2700
3373efd8 2701struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2702{
9af5c9c9
TH
2703 struct ata_link *link = adev->link;
2704 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2705 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2706 return NULL;
2707 return pair;
2708}
2709
1c3fae4d 2710/**
3c567b7d 2711 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2712 * @link: Link to adjust SATA spd limit for
a07d499b 2713 * @spd_limit: Additional limit
1c3fae4d 2714 *
936fd732 2715 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2716 * function only adjusts the limit. The change must be applied
3c567b7d 2717 * using sata_set_spd().
1c3fae4d 2718 *
a07d499b
TH
2719 * If @spd_limit is non-zero, the speed is limited to equal to or
2720 * lower than @spd_limit if such speed is supported. If
2721 * @spd_limit is slower than any supported speed, only the lowest
2722 * supported speed is allowed.
2723 *
1c3fae4d
TH
2724 * LOCKING:
2725 * Inherited from caller.
2726 *
2727 * RETURNS:
2728 * 0 on success, negative errno on failure
2729 */
a07d499b 2730int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2731{
81952c54 2732 u32 sstatus, spd, mask;
a07d499b 2733 int rc, bit;
1c3fae4d 2734
936fd732 2735 if (!sata_scr_valid(link))
008a7896
TH
2736 return -EOPNOTSUPP;
2737
2738 /* If SCR can be read, use it to determine the current SPD.
936fd732 2739 * If not, use cached value in link->sata_spd.
008a7896 2740 */
936fd732 2741 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2742 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2743 spd = (sstatus >> 4) & 0xf;
2744 else
936fd732 2745 spd = link->sata_spd;
1c3fae4d 2746
936fd732 2747 mask = link->sata_spd_limit;
1c3fae4d
TH
2748 if (mask <= 1)
2749 return -EINVAL;
008a7896
TH
2750
2751 /* unconditionally mask off the highest bit */
a07d499b
TH
2752 bit = fls(mask) - 1;
2753 mask &= ~(1 << bit);
1c3fae4d 2754
008a7896
TH
2755 /* Mask off all speeds higher than or equal to the current
2756 * one. Force 1.5Gbps if current SPD is not available.
2757 */
2758 if (spd > 1)
2759 mask &= (1 << (spd - 1)) - 1;
2760 else
2761 mask &= 1;
2762
2763 /* were we already at the bottom? */
1c3fae4d
TH
2764 if (!mask)
2765 return -EINVAL;
2766
a07d499b
TH
2767 if (spd_limit) {
2768 if (mask & ((1 << spd_limit) - 1))
2769 mask &= (1 << spd_limit) - 1;
2770 else {
2771 bit = ffs(mask) - 1;
2772 mask = 1 << bit;
2773 }
2774 }
2775
936fd732 2776 link->sata_spd_limit = mask;
1c3fae4d 2777
a9a79dfe
JP
2778 ata_link_warn(link, "limiting SATA link speed to %s\n",
2779 sata_spd_string(fls(mask)));
1c3fae4d
TH
2780
2781 return 0;
2782}
2783
936fd732 2784static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2785{
5270222f
TH
2786 struct ata_link *host_link = &link->ap->link;
2787 u32 limit, target, spd;
1c3fae4d 2788
5270222f
TH
2789 limit = link->sata_spd_limit;
2790
2791 /* Don't configure downstream link faster than upstream link.
2792 * It doesn't speed up anything and some PMPs choke on such
2793 * configuration.
2794 */
2795 if (!ata_is_host_link(link) && host_link->sata_spd)
2796 limit &= (1 << host_link->sata_spd) - 1;
2797
2798 if (limit == UINT_MAX)
2799 target = 0;
1c3fae4d 2800 else
5270222f 2801 target = fls(limit);
1c3fae4d
TH
2802
2803 spd = (*scontrol >> 4) & 0xf;
5270222f 2804 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2805
5270222f 2806 return spd != target;
1c3fae4d
TH
2807}
2808
2809/**
3c567b7d 2810 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2811 * @link: Link in question
1c3fae4d
TH
2812 *
2813 * Test whether the spd limit in SControl matches
936fd732 2814 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2815 * whether hardreset is necessary to apply SATA spd
2816 * configuration.
2817 *
2818 * LOCKING:
2819 * Inherited from caller.
2820 *
2821 * RETURNS:
2822 * 1 if SATA spd configuration is needed, 0 otherwise.
2823 */
1dc55e87 2824static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2825{
2826 u32 scontrol;
2827
936fd732 2828 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2829 return 1;
1c3fae4d 2830
936fd732 2831 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2832}
2833
2834/**
3c567b7d 2835 * sata_set_spd - set SATA spd according to spd limit
936fd732 2836 * @link: Link to set SATA spd for
1c3fae4d 2837 *
936fd732 2838 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2839 *
2840 * LOCKING:
2841 * Inherited from caller.
2842 *
2843 * RETURNS:
2844 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2845 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2846 */
936fd732 2847int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2848{
2849 u32 scontrol;
81952c54 2850 int rc;
1c3fae4d 2851
936fd732 2852 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2853 return rc;
1c3fae4d 2854
936fd732 2855 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2856 return 0;
2857
936fd732 2858 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2859 return rc;
2860
1c3fae4d
TH
2861 return 1;
2862}
2863
452503f9
AC
2864/*
2865 * This mode timing computation functionality is ported over from
2866 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2867 */
2868/*
b352e57d 2869 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2870 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2871 * for UDMA6, which is currently supported only by Maxtor drives.
2872 *
2873 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2874 */
2875
2876static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2877/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2878 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2879 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2880 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2881 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2882 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2883 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2884 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2885
2886 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2887 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2888 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2889
2890 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2891 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2892 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2893 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2894 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2895
2896/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2897 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2898 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2899 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2900 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2901 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2902 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2903 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2904
2905 { 0xFF }
2906};
2907
2dcb407e
JG
2908#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2909#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2910
2911static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2912{
3ada9c12
DD
2913 q->setup = EZ(t->setup * 1000, T);
2914 q->act8b = EZ(t->act8b * 1000, T);
2915 q->rec8b = EZ(t->rec8b * 1000, T);
2916 q->cyc8b = EZ(t->cyc8b * 1000, T);
2917 q->active = EZ(t->active * 1000, T);
2918 q->recover = EZ(t->recover * 1000, T);
2919 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2920 q->cycle = EZ(t->cycle * 1000, T);
2921 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2922}
2923
2924void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2925 struct ata_timing *m, unsigned int what)
2926{
2927 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2928 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2929 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2930 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2931 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2932 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2933 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2934 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2935 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2936}
2937
6357357c 2938const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2939{
70cd071e
TH
2940 const struct ata_timing *t = ata_timing;
2941
2942 while (xfer_mode > t->mode)
2943 t++;
452503f9 2944
70cd071e
TH
2945 if (xfer_mode == t->mode)
2946 return t;
cd705d5a
BP
2947
2948 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2949 __func__, xfer_mode);
2950
70cd071e 2951 return NULL;
452503f9
AC
2952}
2953
2954int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2955 struct ata_timing *t, int T, int UT)
2956{
9e8808a9 2957 const u16 *id = adev->id;
452503f9
AC
2958 const struct ata_timing *s;
2959 struct ata_timing p;
2960
2961 /*
2e9edbf8 2962 * Find the mode.
75b1f2f8 2963 */
452503f9
AC
2964
2965 if (!(s = ata_timing_find_mode(speed)))
2966 return -EINVAL;
2967
75b1f2f8
AL
2968 memcpy(t, s, sizeof(*s));
2969
452503f9
AC
2970 /*
2971 * If the drive is an EIDE drive, it can tell us it needs extended
2972 * PIO/MW_DMA cycle timing.
2973 */
2974
9e8808a9 2975 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 2976 memset(&p, 0, sizeof(p));
9e8808a9 2977
bff00256 2978 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
2979 if (speed <= XFER_PIO_2)
2980 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2981 else if ((speed <= XFER_PIO_4) ||
2982 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2983 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2984 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2985 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2986
452503f9
AC
2987 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2988 }
2989
2990 /*
2991 * Convert the timing to bus clock counts.
2992 */
2993
75b1f2f8 2994 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2995
2996 /*
c893a3ae
RD
2997 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2998 * S.M.A.R.T * and some other commands. We have to ensure that the
2999 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3000 */
3001
fd3367af 3002 if (speed > XFER_PIO_6) {
452503f9
AC
3003 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3004 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3005 }
3006
3007 /*
c893a3ae 3008 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3009 */
3010
3011 if (t->act8b + t->rec8b < t->cyc8b) {
3012 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3013 t->rec8b = t->cyc8b - t->act8b;
3014 }
3015
3016 if (t->active + t->recover < t->cycle) {
3017 t->active += (t->cycle - (t->active + t->recover)) / 2;
3018 t->recover = t->cycle - t->active;
3019 }
a617c09f 3020
4f701d1e
AC
3021 /* In a few cases quantisation may produce enough errors to
3022 leave t->cycle too low for the sum of active and recovery
3023 if so we must correct this */
3024 if (t->active + t->recover > t->cycle)
3025 t->cycle = t->active + t->recover;
452503f9
AC
3026
3027 return 0;
3028}
3029
a0f79b92
TH
3030/**
3031 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3032 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3033 * @cycle: cycle duration in ns
3034 *
3035 * Return matching xfer mode for @cycle. The returned mode is of
3036 * the transfer type specified by @xfer_shift. If @cycle is too
3037 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3038 * than the fastest known mode, the fasted mode is returned.
3039 *
3040 * LOCKING:
3041 * None.
3042 *
3043 * RETURNS:
3044 * Matching xfer_mode, 0xff if no match found.
3045 */
3046u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3047{
3048 u8 base_mode = 0xff, last_mode = 0xff;
3049 const struct ata_xfer_ent *ent;
3050 const struct ata_timing *t;
3051
3052 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3053 if (ent->shift == xfer_shift)
3054 base_mode = ent->base;
3055
3056 for (t = ata_timing_find_mode(base_mode);
3057 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3058 unsigned short this_cycle;
3059
3060 switch (xfer_shift) {
3061 case ATA_SHIFT_PIO:
3062 case ATA_SHIFT_MWDMA:
3063 this_cycle = t->cycle;
3064 break;
3065 case ATA_SHIFT_UDMA:
3066 this_cycle = t->udma;
3067 break;
3068 default:
3069 return 0xff;
3070 }
3071
3072 if (cycle > this_cycle)
3073 break;
3074
3075 last_mode = t->mode;
3076 }
3077
3078 return last_mode;
3079}
3080
cf176e1a
TH
3081/**
3082 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3083 * @dev: Device to adjust xfer masks
458337db 3084 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3085 *
3086 * Adjust xfer masks of @dev downward. Note that this function
3087 * does not apply the change. Invoking ata_set_mode() afterwards
3088 * will apply the limit.
3089 *
3090 * LOCKING:
3091 * Inherited from caller.
3092 *
3093 * RETURNS:
3094 * 0 on success, negative errno on failure
3095 */
458337db 3096int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3097{
458337db 3098 char buf[32];
7dc951ae
TH
3099 unsigned long orig_mask, xfer_mask;
3100 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3101 int quiet, highbit;
cf176e1a 3102
458337db
TH
3103 quiet = !!(sel & ATA_DNXFER_QUIET);
3104 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3105
458337db
TH
3106 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3107 dev->mwdma_mask,
3108 dev->udma_mask);
3109 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3110
458337db
TH
3111 switch (sel) {
3112 case ATA_DNXFER_PIO:
3113 highbit = fls(pio_mask) - 1;
3114 pio_mask &= ~(1 << highbit);
3115 break;
3116
3117 case ATA_DNXFER_DMA:
3118 if (udma_mask) {
3119 highbit = fls(udma_mask) - 1;
3120 udma_mask &= ~(1 << highbit);
3121 if (!udma_mask)
3122 return -ENOENT;
3123 } else if (mwdma_mask) {
3124 highbit = fls(mwdma_mask) - 1;
3125 mwdma_mask &= ~(1 << highbit);
3126 if (!mwdma_mask)
3127 return -ENOENT;
3128 }
3129 break;
3130
3131 case ATA_DNXFER_40C:
3132 udma_mask &= ATA_UDMA_MASK_40C;
3133 break;
3134
3135 case ATA_DNXFER_FORCE_PIO0:
3136 pio_mask &= 1;
3137 case ATA_DNXFER_FORCE_PIO:
3138 mwdma_mask = 0;
3139 udma_mask = 0;
3140 break;
3141
458337db
TH
3142 default:
3143 BUG();
3144 }
3145
3146 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3147
3148 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3149 return -ENOENT;
3150
3151 if (!quiet) {
3152 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3153 snprintf(buf, sizeof(buf), "%s:%s",
3154 ata_mode_string(xfer_mask),
3155 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3156 else
3157 snprintf(buf, sizeof(buf), "%s",
3158 ata_mode_string(xfer_mask));
3159
a9a79dfe 3160 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3161 }
cf176e1a
TH
3162
3163 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3164 &dev->udma_mask);
3165
cf176e1a 3166 return 0;
cf176e1a
TH
3167}
3168
3373efd8 3169static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3170{
d0cb43b3 3171 struct ata_port *ap = dev->link->ap;
9af5c9c9 3172 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3173 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3174 const char *dev_err_whine = "";
3175 int ign_dev_err = 0;
d0cb43b3 3176 unsigned int err_mask = 0;
83206a29 3177 int rc;
1da177e4 3178
e8384607 3179 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3180 if (dev->xfer_shift == ATA_SHIFT_PIO)
3181 dev->flags |= ATA_DFLAG_PIO;
3182
d0cb43b3
TH
3183 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3184 dev_err_whine = " (SET_XFERMODE skipped)";
3185 else {
3186 if (nosetxfer)
a9a79dfe
JP
3187 ata_dev_warn(dev,
3188 "NOSETXFER but PATA detected - can't "
3189 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3190 err_mask = ata_dev_set_xfermode(dev);
3191 }
2dcb407e 3192
4055dee7
TH
3193 if (err_mask & ~AC_ERR_DEV)
3194 goto fail;
3195
3196 /* revalidate */
3197 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3198 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3199 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3200 if (rc)
3201 return rc;
3202
b93fda12
AC
3203 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3204 /* Old CFA may refuse this command, which is just fine */
3205 if (ata_id_is_cfa(dev->id))
3206 ign_dev_err = 1;
3207 /* Catch several broken garbage emulations plus some pre
3208 ATA devices */
3209 if (ata_id_major_version(dev->id) == 0 &&
3210 dev->pio_mode <= XFER_PIO_2)
3211 ign_dev_err = 1;
3212 /* Some very old devices and some bad newer ones fail
3213 any kind of SET_XFERMODE request but support PIO0-2
3214 timings and no IORDY */
3215 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3216 ign_dev_err = 1;
3217 }
3acaf94b
AC
3218 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3219 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3220 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3221 dev->dma_mode == XFER_MW_DMA_0 &&
3222 (dev->id[63] >> 8) & 1)
4055dee7 3223 ign_dev_err = 1;
3acaf94b 3224
4055dee7
TH
3225 /* if the device is actually configured correctly, ignore dev err */
3226 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3227 ign_dev_err = 1;
1da177e4 3228
4055dee7
TH
3229 if (err_mask & AC_ERR_DEV) {
3230 if (!ign_dev_err)
3231 goto fail;
3232 else
3233 dev_err_whine = " (device error ignored)";
3234 }
48a8a14f 3235
23e71c3d
TH
3236 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3237 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3238
a9a79dfe
JP
3239 ata_dev_info(dev, "configured for %s%s\n",
3240 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3241 dev_err_whine);
4055dee7 3242
83206a29 3243 return 0;
4055dee7
TH
3244
3245 fail:
a9a79dfe 3246 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3247 return -EIO;
1da177e4
LT
3248}
3249
1da177e4 3250/**
04351821 3251 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3252 * @link: link on which timings will be programmed
1967b7ff 3253 * @r_failed_dev: out parameter for failed device
1da177e4 3254 *
04351821
AC
3255 * Standard implementation of the function used to tune and set
3256 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3257 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3258 * returned in @r_failed_dev.
780a87f7 3259 *
1da177e4 3260 * LOCKING:
0cba632b 3261 * PCI/etc. bus probe sem.
e82cbdb9
TH
3262 *
3263 * RETURNS:
3264 * 0 on success, negative errno otherwise
1da177e4 3265 */
04351821 3266
0260731f 3267int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3268{
0260731f 3269 struct ata_port *ap = link->ap;
e8e0619f 3270 struct ata_device *dev;
f58229f8 3271 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3272
a6d5a51c 3273 /* step 1: calculate xfer_mask */
1eca4365 3274 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3275 unsigned long pio_mask, dma_mask;
b3a70601 3276 unsigned int mode_mask;
a6d5a51c 3277
b3a70601
AC
3278 mode_mask = ATA_DMA_MASK_ATA;
3279 if (dev->class == ATA_DEV_ATAPI)
3280 mode_mask = ATA_DMA_MASK_ATAPI;
3281 else if (ata_id_is_cfa(dev->id))
3282 mode_mask = ATA_DMA_MASK_CFA;
3283
3373efd8 3284 ata_dev_xfermask(dev);
33267325 3285 ata_force_xfermask(dev);
1da177e4 3286
acf356b1 3287 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3288
3289 if (libata_dma_mask & mode_mask)
80a9c430
SS
3290 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3291 dev->udma_mask);
b3a70601
AC
3292 else
3293 dma_mask = 0;
3294
acf356b1
TH
3295 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3296 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3297
4f65977d 3298 found = 1;
b15b3eba 3299 if (ata_dma_enabled(dev))
5444a6f4 3300 used_dma = 1;
a6d5a51c 3301 }
4f65977d 3302 if (!found)
e82cbdb9 3303 goto out;
a6d5a51c
TH
3304
3305 /* step 2: always set host PIO timings */
1eca4365 3306 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3307 if (dev->pio_mode == 0xff) {
a9a79dfe 3308 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3309 rc = -EINVAL;
e82cbdb9 3310 goto out;
e8e0619f
TH
3311 }
3312
3313 dev->xfer_mode = dev->pio_mode;
3314 dev->xfer_shift = ATA_SHIFT_PIO;
3315 if (ap->ops->set_piomode)
3316 ap->ops->set_piomode(ap, dev);
3317 }
1da177e4 3318
a6d5a51c 3319 /* step 3: set host DMA timings */
1eca4365
TH
3320 ata_for_each_dev(dev, link, ENABLED) {
3321 if (!ata_dma_enabled(dev))
e8e0619f
TH
3322 continue;
3323
3324 dev->xfer_mode = dev->dma_mode;
3325 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3326 if (ap->ops->set_dmamode)
3327 ap->ops->set_dmamode(ap, dev);
3328 }
1da177e4
LT
3329
3330 /* step 4: update devices' xfer mode */
1eca4365 3331 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3332 rc = ata_dev_set_mode(dev);
5bbc53f4 3333 if (rc)
e82cbdb9 3334 goto out;
83206a29 3335 }
1da177e4 3336
e8e0619f
TH
3337 /* Record simplex status. If we selected DMA then the other
3338 * host channels are not permitted to do so.
5444a6f4 3339 */
cca3974e 3340 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3341 ap->host->simplex_claimed = ap;
5444a6f4 3342
e82cbdb9
TH
3343 out:
3344 if (rc)
3345 *r_failed_dev = dev;
3346 return rc;
1da177e4
LT
3347}
3348
aa2731ad
TH
3349/**
3350 * ata_wait_ready - wait for link to become ready
3351 * @link: link to be waited on
3352 * @deadline: deadline jiffies for the operation
3353 * @check_ready: callback to check link readiness
3354 *
3355 * Wait for @link to become ready. @check_ready should return
3356 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3357 * link doesn't seem to be occupied, other errno for other error
3358 * conditions.
3359 *
3360 * Transient -ENODEV conditions are allowed for
3361 * ATA_TMOUT_FF_WAIT.
3362 *
3363 * LOCKING:
3364 * EH context.
3365 *
3366 * RETURNS:
3367 * 0 if @linke is ready before @deadline; otherwise, -errno.
3368 */
3369int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3370 int (*check_ready)(struct ata_link *link))
3371{
3372 unsigned long start = jiffies;
b48d58f5 3373 unsigned long nodev_deadline;
aa2731ad
TH
3374 int warned = 0;
3375
b48d58f5
TH
3376 /* choose which 0xff timeout to use, read comment in libata.h */
3377 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3378 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3379 else
3380 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3381
b1c72916
TH
3382 /* Slave readiness can't be tested separately from master. On
3383 * M/S emulation configuration, this function should be called
3384 * only on the master and it will handle both master and slave.
3385 */
3386 WARN_ON(link == link->ap->slave_link);
3387
aa2731ad
TH
3388 if (time_after(nodev_deadline, deadline))
3389 nodev_deadline = deadline;
3390
3391 while (1) {
3392 unsigned long now = jiffies;
3393 int ready, tmp;
3394
3395 ready = tmp = check_ready(link);
3396 if (ready > 0)
3397 return 0;
3398
b48d58f5
TH
3399 /*
3400 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3401 * is online. Also, some SATA devices take a long
b48d58f5
TH
3402 * time to clear 0xff after reset. Wait for
3403 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3404 * offline.
aa2731ad
TH
3405 *
3406 * Note that some PATA controllers (pata_ali) explode
3407 * if status register is read more than once when
3408 * there's no device attached.
3409 */
3410 if (ready == -ENODEV) {
3411 if (ata_link_online(link))
3412 ready = 0;
3413 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3414 !ata_link_offline(link) &&
3415 time_before(now, nodev_deadline))
3416 ready = 0;
3417 }
3418
3419 if (ready)
3420 return ready;
3421 if (time_after(now, deadline))
3422 return -EBUSY;
3423
3424 if (!warned && time_after(now, start + 5 * HZ) &&
3425 (deadline - now > 3 * HZ)) {
a9a79dfe 3426 ata_link_warn(link,
aa2731ad
TH
3427 "link is slow to respond, please be patient "
3428 "(ready=%d)\n", tmp);
3429 warned = 1;
3430 }
3431
97750ceb 3432 ata_msleep(link->ap, 50);
aa2731ad
TH
3433 }
3434}
3435
3436/**
3437 * ata_wait_after_reset - wait for link to become ready after reset
3438 * @link: link to be waited on
3439 * @deadline: deadline jiffies for the operation
3440 * @check_ready: callback to check link readiness
3441 *
3442 * Wait for @link to become ready after reset.
3443 *
3444 * LOCKING:
3445 * EH context.
3446 *
3447 * RETURNS:
3448 * 0 if @linke is ready before @deadline; otherwise, -errno.
3449 */
2b4221bb 3450int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3451 int (*check_ready)(struct ata_link *link))
3452{
97750ceb 3453 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3454
3455 return ata_wait_ready(link, deadline, check_ready);
3456}
3457
d7bb4cc7 3458/**
936fd732
TH
3459 * sata_link_debounce - debounce SATA phy status
3460 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3461 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3462 * @deadline: deadline jiffies for the operation
d7bb4cc7 3463 *
1152b261 3464 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3465 * holding the same value where DET is not 1 for @duration polled
3466 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3467 * beginning of the stable state. Because DET gets stuck at 1 on
3468 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3469 * until timeout then returns 0 if DET is stable at 1.
3470 *
d4b2bab4
TH
3471 * @timeout is further limited by @deadline. The sooner of the
3472 * two is used.
3473 *
d7bb4cc7
TH
3474 * LOCKING:
3475 * Kernel thread context (may sleep)
3476 *
3477 * RETURNS:
3478 * 0 on success, -errno on failure.
3479 */
936fd732
TH
3480int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3481 unsigned long deadline)
7a7921e8 3482{
341c2c95
TH
3483 unsigned long interval = params[0];
3484 unsigned long duration = params[1];
d4b2bab4 3485 unsigned long last_jiffies, t;
d7bb4cc7
TH
3486 u32 last, cur;
3487 int rc;
3488
341c2c95 3489 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3490 if (time_before(t, deadline))
3491 deadline = t;
3492
936fd732 3493 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3494 return rc;
3495 cur &= 0xf;
3496
3497 last = cur;
3498 last_jiffies = jiffies;
3499
3500 while (1) {
97750ceb 3501 ata_msleep(link->ap, interval);
936fd732 3502 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3503 return rc;
3504 cur &= 0xf;
3505
3506 /* DET stable? */
3507 if (cur == last) {
d4b2bab4 3508 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3509 continue;
341c2c95
TH
3510 if (time_after(jiffies,
3511 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3512 return 0;
3513 continue;
3514 }
3515
3516 /* unstable, start over */
3517 last = cur;
3518 last_jiffies = jiffies;
3519
f1545154
TH
3520 /* Check deadline. If debouncing failed, return
3521 * -EPIPE to tell upper layer to lower link speed.
3522 */
d4b2bab4 3523 if (time_after(jiffies, deadline))
f1545154 3524 return -EPIPE;
d7bb4cc7
TH
3525 }
3526}
3527
3528/**
936fd732
TH
3529 * sata_link_resume - resume SATA link
3530 * @link: ATA link to resume SATA
d7bb4cc7 3531 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3532 * @deadline: deadline jiffies for the operation
d7bb4cc7 3533 *
936fd732 3534 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3535 *
3536 * LOCKING:
3537 * Kernel thread context (may sleep)
3538 *
3539 * RETURNS:
3540 * 0 on success, -errno on failure.
3541 */
936fd732
TH
3542int sata_link_resume(struct ata_link *link, const unsigned long *params,
3543 unsigned long deadline)
d7bb4cc7 3544{
5040ab67 3545 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3546 u32 scontrol, serror;
81952c54
TH
3547 int rc;
3548
936fd732 3549 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3550 return rc;
7a7921e8 3551
5040ab67
TH
3552 /*
3553 * Writes to SControl sometimes get ignored under certain
3554 * controllers (ata_piix SIDPR). Make sure DET actually is
3555 * cleared.
3556 */
3557 do {
3558 scontrol = (scontrol & 0x0f0) | 0x300;
3559 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3560 return rc;
3561 /*
3562 * Some PHYs react badly if SStatus is pounded
3563 * immediately after resuming. Delay 200ms before
3564 * debouncing.
3565 */
97750ceb 3566 ata_msleep(link->ap, 200);
81952c54 3567
5040ab67
TH
3568 /* is SControl restored correctly? */
3569 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3570 return rc;
3571 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3572
5040ab67 3573 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3574 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3575 scontrol);
5040ab67
TH
3576 return 0;
3577 }
3578
3579 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3580 ata_link_warn(link, "link resume succeeded after %d retries\n",
3581 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3582
ac371987
TH
3583 if ((rc = sata_link_debounce(link, params, deadline)))
3584 return rc;
3585
f046519f 3586 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3587 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3588 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3589
f046519f 3590 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3591}
3592
1152b261
TH
3593/**
3594 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3595 * @link: ATA link to manipulate SControl for
3596 * @policy: LPM policy to configure
3597 * @spm_wakeup: initiate LPM transition to active state
3598 *
3599 * Manipulate the IPM field of the SControl register of @link
3600 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3601 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3602 * the link. This function also clears PHYRDY_CHG before
3603 * returning.
3604 *
3605 * LOCKING:
3606 * EH context.
3607 *
3608 * RETURNS:
3609 * 0 on succes, -errno otherwise.
3610 */
3611int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3612 bool spm_wakeup)
3613{
3614 struct ata_eh_context *ehc = &link->eh_context;
3615 bool woken_up = false;
3616 u32 scontrol;
3617 int rc;
3618
3619 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3620 if (rc)
3621 return rc;
3622
3623 switch (policy) {
3624 case ATA_LPM_MAX_POWER:
3625 /* disable all LPM transitions */
65fe1f0f 3626 scontrol |= (0x7 << 8);
1152b261
TH
3627 /* initiate transition to active state */
3628 if (spm_wakeup) {
3629 scontrol |= (0x4 << 12);
3630 woken_up = true;
3631 }
3632 break;
3633 case ATA_LPM_MED_POWER:
3634 /* allow LPM to PARTIAL */
3635 scontrol &= ~(0x1 << 8);
65fe1f0f 3636 scontrol |= (0x6 << 8);
1152b261
TH
3637 break;
3638 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3639 if (ata_link_nr_enabled(link) > 0)
3640 /* no restrictions on LPM transitions */
65fe1f0f 3641 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3642 else {
3643 /* empty port, power off */
3644 scontrol &= ~0xf;
3645 scontrol |= (0x1 << 2);
3646 }
1152b261
TH
3647 break;
3648 default:
3649 WARN_ON(1);
3650 }
3651
3652 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3653 if (rc)
3654 return rc;
3655
3656 /* give the link time to transit out of LPM state */
3657 if (woken_up)
3658 msleep(10);
3659
3660 /* clear PHYRDY_CHG from SError */
3661 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3662 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3663}
3664
f5914a46 3665/**
0aa1113d 3666 * ata_std_prereset - prepare for reset
cc0680a5 3667 * @link: ATA link to be reset
d4b2bab4 3668 * @deadline: deadline jiffies for the operation
f5914a46 3669 *
cc0680a5 3670 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3671 * prereset makes libata abort whole reset sequence and give up
3672 * that port, so prereset should be best-effort. It does its
3673 * best to prepare for reset sequence but if things go wrong, it
3674 * should just whine, not fail.
f5914a46
TH
3675 *
3676 * LOCKING:
3677 * Kernel thread context (may sleep)
3678 *
3679 * RETURNS:
3680 * 0 on success, -errno otherwise.
3681 */
0aa1113d 3682int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3683{
cc0680a5 3684 struct ata_port *ap = link->ap;
936fd732 3685 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3686 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3687 int rc;
3688
f5914a46
TH
3689 /* if we're about to do hardreset, nothing more to do */
3690 if (ehc->i.action & ATA_EH_HARDRESET)
3691 return 0;
3692
936fd732 3693 /* if SATA, resume link */
a16abc0b 3694 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3695 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3696 /* whine about phy resume failure but proceed */
3697 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3698 ata_link_warn(link,
3699 "failed to resume link for reset (errno=%d)\n",
3700 rc);
f5914a46
TH
3701 }
3702
45db2f6c 3703 /* no point in trying softreset on offline link */
b1c72916 3704 if (ata_phys_link_offline(link))
45db2f6c
TH
3705 ehc->i.action &= ~ATA_EH_SOFTRESET;
3706
f5914a46
TH
3707 return 0;
3708}
3709
c2bd5804 3710/**
624d5c51
TH
3711 * sata_link_hardreset - reset link via SATA phy reset
3712 * @link: link to reset
3713 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3714 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3715 * @online: optional out parameter indicating link onlineness
3716 * @check_ready: optional callback to check link readiness
c2bd5804 3717 *
624d5c51 3718 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3719 * After hardreset, link readiness is waited upon using
3720 * ata_wait_ready() if @check_ready is specified. LLDs are
3721 * allowed to not specify @check_ready and wait itself after this
3722 * function returns. Device classification is LLD's
3723 * responsibility.
3724 *
3725 * *@online is set to one iff reset succeeded and @link is online
3726 * after reset.
c2bd5804
TH
3727 *
3728 * LOCKING:
3729 * Kernel thread context (may sleep)
3730 *
3731 * RETURNS:
3732 * 0 on success, -errno otherwise.
3733 */
624d5c51 3734int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3735 unsigned long deadline,
3736 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3737{
624d5c51 3738 u32 scontrol;
81952c54 3739 int rc;
852ee16a 3740
c2bd5804
TH
3741 DPRINTK("ENTER\n");
3742
9dadd45b
TH
3743 if (online)
3744 *online = false;
3745
936fd732 3746 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3747 /* SATA spec says nothing about how to reconfigure
3748 * spd. To be on the safe side, turn off phy during
3749 * reconfiguration. This works for at least ICH7 AHCI
3750 * and Sil3124.
3751 */
936fd732 3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3753 goto out;
81952c54 3754
a34b6fc0 3755 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3756
936fd732 3757 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3758 goto out;
1c3fae4d 3759
936fd732 3760 sata_set_spd(link);
1c3fae4d
TH
3761 }
3762
3763 /* issue phy wake/reset */
936fd732 3764 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3765 goto out;
81952c54 3766
852ee16a 3767 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3768
936fd732 3769 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3770 goto out;
c2bd5804 3771
1c3fae4d 3772 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3773 * 10.4.2 says at least 1 ms.
3774 */
97750ceb 3775 ata_msleep(link->ap, 1);
c2bd5804 3776
936fd732
TH
3777 /* bring link back */
3778 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3779 if (rc)
3780 goto out;
3781 /* if link is offline nothing more to do */
b1c72916 3782 if (ata_phys_link_offline(link))
9dadd45b
TH
3783 goto out;
3784
3785 /* Link is online. From this point, -ENODEV too is an error. */
3786 if (online)
3787 *online = true;
3788
071f44b1 3789 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3790 /* If PMP is supported, we have to do follow-up SRST.
3791 * Some PMPs don't send D2H Reg FIS after hardreset if
3792 * the first port is empty. Wait only for
3793 * ATA_TMOUT_PMP_SRST_WAIT.
3794 */
3795 if (check_ready) {
3796 unsigned long pmp_deadline;
3797
341c2c95
TH
3798 pmp_deadline = ata_deadline(jiffies,
3799 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3800 if (time_after(pmp_deadline, deadline))
3801 pmp_deadline = deadline;
3802 ata_wait_ready(link, pmp_deadline, check_ready);
3803 }
3804 rc = -EAGAIN;
3805 goto out;
3806 }
3807
3808 rc = 0;
3809 if (check_ready)
3810 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3811 out:
0cbf0711
TH
3812 if (rc && rc != -EAGAIN) {
3813 /* online is set iff link is online && reset succeeded */
3814 if (online)
3815 *online = false;
a9a79dfe 3816 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3817 }
b6103f6d
TH
3818 DPRINTK("EXIT, rc=%d\n", rc);
3819 return rc;
3820}
3821
57c9efdf
TH
3822/**
3823 * sata_std_hardreset - COMRESET w/o waiting or classification
3824 * @link: link to reset
3825 * @class: resulting class of attached device
3826 * @deadline: deadline jiffies for the operation
3827 *
3828 * Standard SATA COMRESET w/o waiting or classification.
3829 *
3830 * LOCKING:
3831 * Kernel thread context (may sleep)
3832 *
3833 * RETURNS:
3834 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3835 */
3836int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3837 unsigned long deadline)
3838{
3839 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3840 bool online;
3841 int rc;
3842
3843 /* do hardreset */
3844 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3845 return online ? -EAGAIN : rc;
3846}
3847
c2bd5804 3848/**
203c75b8 3849 * ata_std_postreset - standard postreset callback
cc0680a5 3850 * @link: the target ata_link
c2bd5804
TH
3851 * @classes: classes of attached devices
3852 *
3853 * This function is invoked after a successful reset. Note that
3854 * the device might have been reset more than once using
3855 * different reset methods before postreset is invoked.
c2bd5804 3856 *
c2bd5804
TH
3857 * LOCKING:
3858 * Kernel thread context (may sleep)
3859 */
203c75b8 3860void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3861{
f046519f
TH
3862 u32 serror;
3863
c2bd5804
TH
3864 DPRINTK("ENTER\n");
3865
f046519f
TH
3866 /* reset complete, clear SError */
3867 if (!sata_scr_read(link, SCR_ERROR, &serror))
3868 sata_scr_write(link, SCR_ERROR, serror);
3869
c2bd5804 3870 /* print link status */
936fd732 3871 sata_print_link_status(link);
c2bd5804 3872
c2bd5804
TH
3873 DPRINTK("EXIT\n");
3874}
3875
623a3128
TH
3876/**
3877 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3878 * @dev: device to compare against
3879 * @new_class: class of the new device
3880 * @new_id: IDENTIFY page of the new device
3881 *
3882 * Compare @new_class and @new_id against @dev and determine
3883 * whether @dev is the device indicated by @new_class and
3884 * @new_id.
3885 *
3886 * LOCKING:
3887 * None.
3888 *
3889 * RETURNS:
3890 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3891 */
3373efd8
TH
3892static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3893 const u16 *new_id)
623a3128
TH
3894{
3895 const u16 *old_id = dev->id;
a0cf733b
TH
3896 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3897 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3898
3899 if (dev->class != new_class) {
a9a79dfe
JP
3900 ata_dev_info(dev, "class mismatch %d != %d\n",
3901 dev->class, new_class);
623a3128
TH
3902 return 0;
3903 }
3904
a0cf733b
TH
3905 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3906 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3907 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3908 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3909
3910 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
3911 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3912 model[0], model[1]);
623a3128
TH
3913 return 0;
3914 }
3915
3916 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
3917 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3918 serial[0], serial[1]);
623a3128
TH
3919 return 0;
3920 }
3921
623a3128
TH
3922 return 1;
3923}
3924
3925/**
fe30911b 3926 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3927 * @dev: target ATA device
bff04647 3928 * @readid_flags: read ID flags
623a3128
TH
3929 *
3930 * Re-read IDENTIFY page and make sure @dev is still attached to
3931 * the port.
3932 *
3933 * LOCKING:
3934 * Kernel thread context (may sleep)
3935 *
3936 * RETURNS:
3937 * 0 on success, negative errno otherwise
3938 */
fe30911b 3939int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3940{
5eb45c02 3941 unsigned int class = dev->class;
9af5c9c9 3942 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3943 int rc;
3944
fe635c7e 3945 /* read ID data */
bff04647 3946 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3947 if (rc)
fe30911b 3948 return rc;
623a3128
TH
3949
3950 /* is the device still there? */
fe30911b
TH
3951 if (!ata_dev_same_device(dev, class, id))
3952 return -ENODEV;
623a3128 3953
fe635c7e 3954 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3955 return 0;
3956}
3957
3958/**
3959 * ata_dev_revalidate - Revalidate ATA device
3960 * @dev: device to revalidate
422c9daa 3961 * @new_class: new class code
fe30911b
TH
3962 * @readid_flags: read ID flags
3963 *
3964 * Re-read IDENTIFY page, make sure @dev is still attached to the
3965 * port and reconfigure it according to the new IDENTIFY page.
3966 *
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, negative errno otherwise
3972 */
422c9daa
TH
3973int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3974 unsigned int readid_flags)
fe30911b 3975{
6ddcd3b0 3976 u64 n_sectors = dev->n_sectors;
5920dadf 3977 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
3978 int rc;
3979
3980 if (!ata_dev_enabled(dev))
3981 return -ENODEV;
3982
422c9daa
TH
3983 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3984 if (ata_class_enabled(new_class) &&
f0d0613d
BP
3985 new_class != ATA_DEV_ATA &&
3986 new_class != ATA_DEV_ATAPI &&
3987 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
3988 ata_dev_info(dev, "class mismatch %u != %u\n",
3989 dev->class, new_class);
422c9daa
TH
3990 rc = -ENODEV;
3991 goto fail;
3992 }
3993
fe30911b
TH
3994 /* re-read ID */
3995 rc = ata_dev_reread_id(dev, readid_flags);
3996 if (rc)
3997 goto fail;
623a3128
TH
3998
3999 /* configure device according to the new ID */
efdaedc4 4000 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4001 if (rc)
4002 goto fail;
4003
4004 /* verify n_sectors hasn't changed */
445d211b
TH
4005 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4006 dev->n_sectors == n_sectors)
4007 return 0;
4008
4009 /* n_sectors has changed */
a9a79dfe
JP
4010 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4011 (unsigned long long)n_sectors,
4012 (unsigned long long)dev->n_sectors);
445d211b
TH
4013
4014 /*
4015 * Something could have caused HPA to be unlocked
4016 * involuntarily. If n_native_sectors hasn't changed and the
4017 * new size matches it, keep the device.
4018 */
4019 if (dev->n_native_sectors == n_native_sectors &&
4020 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4021 ata_dev_warn(dev,
4022 "new n_sectors matches native, probably "
4023 "late HPA unlock, n_sectors updated\n");
68939ce5 4024 /* use the larger n_sectors */
445d211b 4025 return 0;
6ddcd3b0
TH
4026 }
4027
445d211b
TH
4028 /*
4029 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4030 * unlocking HPA in those cases.
4031 *
4032 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4033 */
4034 if (dev->n_native_sectors == n_native_sectors &&
4035 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4036 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4037 ata_dev_warn(dev,
4038 "old n_sectors matches native, probably "
4039 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4040 /* try unlocking HPA */
4041 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4042 rc = -EIO;
4043 } else
4044 rc = -ENODEV;
623a3128 4045
445d211b
TH
4046 /* restore original n_[native_]sectors and fail */
4047 dev->n_native_sectors = n_native_sectors;
4048 dev->n_sectors = n_sectors;
623a3128 4049 fail:
a9a79dfe 4050 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4051 return rc;
4052}
4053
6919a0a6
AC
4054struct ata_blacklist_entry {
4055 const char *model_num;
4056 const char *model_rev;
4057 unsigned long horkage;
4058};
4059
4060static const struct ata_blacklist_entry ata_device_blacklist [] = {
4061 /* Devices with DMA related problems under Linux */
4062 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4063 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4064 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4065 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4066 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4067 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4068 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4069 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4070 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4071 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4072 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4073 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4074 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4075 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4076 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4077 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4078 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4079 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4080 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4081 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4082 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4083 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4084 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4085 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4086 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4087 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4088 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4089 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4090 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3af9a77a 4091 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4092 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4093
18d6e9d5 4094 /* Weird ATAPI devices */
40a1d531 4095 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4096 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4097
6919a0a6
AC
4098 /* Devices we expect to fail diagnostics */
4099
4100 /* Devices where NCQ should be avoided */
4101 /* NCQ is slow */
2dcb407e 4102 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4103 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4104 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4105 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4106 /* NCQ is broken */
539cc7c7 4107 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4108 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4109 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4110 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4111 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4112
ac70a964 4113 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4114 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4115 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4116
4d1f9082 4117 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4118 ATA_HORKAGE_FIRMWARE_WARN },
4119
4d1f9082 4120 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4121 ATA_HORKAGE_FIRMWARE_WARN },
4122
4d1f9082 4123 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4124 ATA_HORKAGE_FIRMWARE_WARN },
4125
36e337d0
RH
4126 /* Blacklist entries taken from Silicon Image 3124/3132
4127 Windows driver .inf file - also several Linux problem reports */
4128 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4129 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4130 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4131
68b0ddb2
TH
4132 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4133 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4134
16c55b03
TH
4135 /* devices which puke on READ_NATIVE_MAX */
4136 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4137 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4138 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4139 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4140
7831387b
TH
4141 /* this one allows HPA unlocking but fails IOs on the area */
4142 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4143
93328e11
AC
4144 /* Devices which report 1 sector over size HPA */
4145 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4146 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4147 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4148
6bbfd53d
AC
4149 /* Devices which get the IVB wrong */
4150 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4151 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4152 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4153
9ce8e307
JA
4154 /* Devices that do not need bridging limits applied */
4155 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4156 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4157
9062712f
TH
4158 /* Devices which aren't very happy with higher link speeds */
4159 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4160 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4161
d0cb43b3
TH
4162 /*
4163 * Devices which choke on SETXFER. Applies only if both the
4164 * device and controller are SATA.
4165 */
cd691876 4166 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4167 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4168 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4169 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4170 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4171
6919a0a6
AC
4172 /* End Marker */
4173 { }
1da177e4 4174};
2e9edbf8 4175
bce036ce
ML
4176/**
4177 * glob_match - match a text string against a glob-style pattern
4178 * @text: the string to be examined
4179 * @pattern: the glob-style pattern to be matched against
4180 *
4181 * Either/both of text and pattern can be empty strings.
4182 *
4183 * Match text against a glob-style pattern, with wildcards and simple sets:
4184 *
4185 * ? matches any single character.
4186 * * matches any run of characters.
4187 * [xyz] matches a single character from the set: x, y, or z.
2f9e4d16
ML
4188 * [a-d] matches a single character from the range: a, b, c, or d.
4189 * [a-d0-9] matches a single character from either range.
bce036ce 4190 *
2f9e4d16
ML
4191 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4192 * Behaviour with malformed patterns is undefined, though generally reasonable.
bce036ce 4193 *
3d2be54b 4194 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
bce036ce
ML
4195 *
4196 * This function uses one level of recursion per '*' in pattern.
4197 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4198 * this will not cause stack problems for any reasonable use here.
4199 *
4200 * RETURNS:
4201 * 0 on match, 1 otherwise.
4202 */
4203static int glob_match (const char *text, const char *pattern)
539cc7c7 4204{
bce036ce
ML
4205 do {
4206 /* Match single character or a '?' wildcard */
4207 if (*text == *pattern || *pattern == '?') {
4208 if (!*pattern++)
4209 return 0; /* End of both strings: match */
4210 } else {
4211 /* Match single char against a '[' bracketed ']' pattern set */
4212 if (!*text || *pattern != '[')
4213 break; /* Not a pattern set */
2f9e4d16
ML
4214 while (*++pattern && *pattern != ']' && *text != *pattern) {
4215 if (*pattern == '-' && *(pattern - 1) != '[')
4216 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4217 ++pattern;
4218 break;
4219 }
4220 }
bce036ce
ML
4221 if (!*pattern || *pattern == ']')
4222 return 1; /* No match */
4223 while (*pattern && *pattern++ != ']');
4224 }
4225 } while (*++text && *pattern);
4226
4227 /* Match any run of chars against a '*' wildcard */
4228 if (*pattern == '*') {
4229 if (!*++pattern)
4230 return 0; /* Match: avoid recursion at end of pattern */
4231 /* Loop to handle additional pattern chars after the wildcard */
4232 while (*text) {
4233 if (glob_match(text, pattern) == 0)
4234 return 0; /* Remainder matched */
4235 ++text; /* Absorb (match) this char and try again */
317b50b8
AP
4236 }
4237 }
bce036ce
ML
4238 if (!*text && !*pattern)
4239 return 0; /* End of both strings: match */
4240 return 1; /* No match */
539cc7c7 4241}
4fca377f 4242
75683fe7 4243static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4244{
8bfa79fc
TH
4245 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4246 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4247 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4248
8bfa79fc
TH
4249 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4250 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4251
6919a0a6 4252 while (ad->model_num) {
bce036ce 4253 if (!glob_match(model_num, ad->model_num)) {
6919a0a6
AC
4254 if (ad->model_rev == NULL)
4255 return ad->horkage;
bce036ce 4256 if (!glob_match(model_rev, ad->model_rev))
6919a0a6 4257 return ad->horkage;
f4b15fef 4258 }
6919a0a6 4259 ad++;
f4b15fef 4260 }
1da177e4
LT
4261 return 0;
4262}
4263
6919a0a6
AC
4264static int ata_dma_blacklisted(const struct ata_device *dev)
4265{
4266 /* We don't support polling DMA.
4267 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4268 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4269 */
9af5c9c9 4270 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4271 (dev->flags & ATA_DFLAG_CDB_INTR))
4272 return 1;
75683fe7 4273 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4274}
4275
6bbfd53d
AC
4276/**
4277 * ata_is_40wire - check drive side detection
4278 * @dev: device
4279 *
4280 * Perform drive side detection decoding, allowing for device vendors
4281 * who can't follow the documentation.
4282 */
4283
4284static int ata_is_40wire(struct ata_device *dev)
4285{
4286 if (dev->horkage & ATA_HORKAGE_IVB)
4287 return ata_drive_40wire_relaxed(dev->id);
4288 return ata_drive_40wire(dev->id);
4289}
4290
15a5551c
AC
4291/**
4292 * cable_is_40wire - 40/80/SATA decider
4293 * @ap: port to consider
4294 *
4295 * This function encapsulates the policy for speed management
4296 * in one place. At the moment we don't cache the result but
4297 * there is a good case for setting ap->cbl to the result when
4298 * we are called with unknown cables (and figuring out if it
4299 * impacts hotplug at all).
4300 *
4301 * Return 1 if the cable appears to be 40 wire.
4302 */
4303
4304static int cable_is_40wire(struct ata_port *ap)
4305{
4306 struct ata_link *link;
4307 struct ata_device *dev;
4308
4a9c7b33 4309 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4310 if (ap->cbl == ATA_CBL_PATA40)
4311 return 1;
4a9c7b33
TH
4312
4313 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4314 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4315 return 0;
4a9c7b33
TH
4316
4317 /* If the system is known to be 40 wire short cable (eg
4318 * laptop), then we allow 80 wire modes even if the drive
4319 * isn't sure.
4320 */
f792068e
AC
4321 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4322 return 0;
4a9c7b33
TH
4323
4324 /* If the controller doesn't know, we scan.
4325 *
4326 * Note: We look for all 40 wire detects at this point. Any
4327 * 80 wire detect is taken to be 80 wire cable because
4328 * - in many setups only the one drive (slave if present) will
4329 * give a valid detect
4330 * - if you have a non detect capable drive you don't want it
4331 * to colour the choice
4332 */
1eca4365
TH
4333 ata_for_each_link(link, ap, EDGE) {
4334 ata_for_each_dev(dev, link, ENABLED) {
4335 if (!ata_is_40wire(dev))
15a5551c
AC
4336 return 0;
4337 }
4338 }
4339 return 1;
4340}
4341
a6d5a51c
TH
4342/**
4343 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4344 * @dev: Device to compute xfermask for
4345 *
acf356b1
TH
4346 * Compute supported xfermask of @dev and store it in
4347 * dev->*_mask. This function is responsible for applying all
4348 * known limits including host controller limits, device
4349 * blacklist, etc...
a6d5a51c
TH
4350 *
4351 * LOCKING:
4352 * None.
a6d5a51c 4353 */
3373efd8 4354static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4355{
9af5c9c9
TH
4356 struct ata_link *link = dev->link;
4357 struct ata_port *ap = link->ap;
cca3974e 4358 struct ata_host *host = ap->host;
a6d5a51c 4359 unsigned long xfer_mask;
1da177e4 4360
37deecb5 4361 /* controller modes available */
565083e1
TH
4362 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4363 ap->mwdma_mask, ap->udma_mask);
4364
8343f889 4365 /* drive modes available */
37deecb5
TH
4366 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4367 dev->mwdma_mask, dev->udma_mask);
4368 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4369
b352e57d
AC
4370 /*
4371 * CFA Advanced TrueIDE timings are not allowed on a shared
4372 * cable
4373 */
4374 if (ata_dev_pair(dev)) {
4375 /* No PIO5 or PIO6 */
4376 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4377 /* No MWDMA3 or MWDMA 4 */
4378 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4379 }
4380
37deecb5
TH
4381 if (ata_dma_blacklisted(dev)) {
4382 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4383 ata_dev_warn(dev,
4384 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4385 }
a6d5a51c 4386
14d66ab7 4387 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4388 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4389 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4390 ata_dev_warn(dev,
4391 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4392 }
565083e1 4393
e424675f
JG
4394 if (ap->flags & ATA_FLAG_NO_IORDY)
4395 xfer_mask &= ata_pio_mask_no_iordy(dev);
4396
5444a6f4 4397 if (ap->ops->mode_filter)
a76b62ca 4398 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4399
8343f889
RH
4400 /* Apply cable rule here. Don't apply it early because when
4401 * we handle hot plug the cable type can itself change.
4402 * Check this last so that we know if the transfer rate was
4403 * solely limited by the cable.
4404 * Unknown or 80 wire cables reported host side are checked
4405 * drive side as well. Cases where we know a 40wire cable
4406 * is used safely for 80 are not checked here.
4407 */
4408 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4409 /* UDMA/44 or higher would be available */
15a5551c 4410 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4411 ata_dev_warn(dev,
4412 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4413 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4414 }
4415
565083e1
TH
4416 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4417 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4418}
4419
1da177e4
LT
4420/**
4421 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4422 * @dev: Device to which command will be sent
4423 *
780a87f7
JG
4424 * Issue SET FEATURES - XFER MODE command to device @dev
4425 * on port @ap.
4426 *
1da177e4 4427 * LOCKING:
0cba632b 4428 * PCI/etc. bus probe sem.
83206a29
TH
4429 *
4430 * RETURNS:
4431 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4432 */
4433
3373efd8 4434static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4435{
a0123703 4436 struct ata_taskfile tf;
83206a29 4437 unsigned int err_mask;
1da177e4
LT
4438
4439 /* set up set-features taskfile */
4440 DPRINTK("set features - xfer mode\n");
4441
464cf177
TH
4442 /* Some controllers and ATAPI devices show flaky interrupt
4443 * behavior after setting xfer mode. Use polling instead.
4444 */
3373efd8 4445 ata_tf_init(dev, &tf);
a0123703
TH
4446 tf.command = ATA_CMD_SET_FEATURES;
4447 tf.feature = SETFEATURES_XFER;
464cf177 4448 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4449 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4450 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4451 if (ata_pio_need_iordy(dev))
4452 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4453 /* If the device has IORDY and the controller does not - turn it off */
4454 else if (ata_id_has_iordy(dev->id))
11b7becc 4455 tf.nsect = 0x01;
b9f8ab2d
AC
4456 else /* In the ancient relic department - skip all of this */
4457 return 0;
1da177e4 4458
2b789108 4459 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4460
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
4463}
1152b261 4464
9f45cbd3 4465/**
218f3d30 4466 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4467 * @dev: Device to which command will be sent
4468 * @enable: Whether to enable or disable the feature
218f3d30 4469 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4470 *
4471 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4472 * on port @ap with sector count
9f45cbd3
KCA
4473 *
4474 * LOCKING:
4475 * PCI/etc. bus probe sem.
4476 *
4477 * RETURNS:
4478 * 0 on success, AC_ERR_* mask otherwise.
4479 */
1152b261 4480unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4481{
4482 struct ata_taskfile tf;
4483 unsigned int err_mask;
4484
4485 /* set up set-features taskfile */
4486 DPRINTK("set features - SATA features\n");
4487
4488 ata_tf_init(dev, &tf);
4489 tf.command = ATA_CMD_SET_FEATURES;
4490 tf.feature = enable;
4491 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4492 tf.protocol = ATA_PROT_NODATA;
218f3d30 4493 tf.nsect = feature;
9f45cbd3 4494
2b789108 4495 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4496
83206a29
TH
4497 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4498 return err_mask;
1da177e4 4499}
633de4cc 4500EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4501
8bf62ece
AL
4502/**
4503 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4504 * @dev: Device to which command will be sent
e2a7f77a
RD
4505 * @heads: Number of heads (taskfile parameter)
4506 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4507 *
4508 * LOCKING:
6aff8f1f
TH
4509 * Kernel thread context (may sleep)
4510 *
4511 * RETURNS:
4512 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4513 */
3373efd8
TH
4514static unsigned int ata_dev_init_params(struct ata_device *dev,
4515 u16 heads, u16 sectors)
8bf62ece 4516{
a0123703 4517 struct ata_taskfile tf;
6aff8f1f 4518 unsigned int err_mask;
8bf62ece
AL
4519
4520 /* Number of sectors per track 1-255. Number of heads 1-16 */
4521 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4522 return AC_ERR_INVALID;
8bf62ece
AL
4523
4524 /* set up init dev params taskfile */
4525 DPRINTK("init dev params \n");
4526
3373efd8 4527 ata_tf_init(dev, &tf);
a0123703
TH
4528 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4529 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4530 tf.protocol = ATA_PROT_NODATA;
4531 tf.nsect = sectors;
4532 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4533
2b789108 4534 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4535 /* A clean abort indicates an original or just out of spec drive
4536 and we should continue as we issue the setup based on the
4537 drive reported working geometry */
4538 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4539 err_mask = 0;
8bf62ece 4540
6aff8f1f
TH
4541 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4542 return err_mask;
8bf62ece
AL
4543}
4544
1da177e4 4545/**
0cba632b
JG
4546 * ata_sg_clean - Unmap DMA memory associated with command
4547 * @qc: Command containing DMA memory to be released
4548 *
4549 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4550 *
4551 * LOCKING:
cca3974e 4552 * spin_lock_irqsave(host lock)
1da177e4 4553 */
70e6ad0c 4554void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4555{
4556 struct ata_port *ap = qc->ap;
ff2aeb1e 4557 struct scatterlist *sg = qc->sg;
1da177e4
LT
4558 int dir = qc->dma_dir;
4559
efcb3cf7 4560 WARN_ON_ONCE(sg == NULL);
1da177e4 4561
dde20207 4562 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4563
dde20207 4564 if (qc->n_elem)
5825627c 4565 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4566
4567 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4568 qc->sg = NULL;
1da177e4
LT
4569}
4570
1da177e4 4571/**
5895ef9a 4572 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4573 * @qc: Metadata associated with taskfile to check
4574 *
780a87f7
JG
4575 * Allow low-level driver to filter ATA PACKET commands, returning
4576 * a status indicating whether or not it is OK to use DMA for the
4577 * supplied PACKET command.
4578 *
1da177e4 4579 * LOCKING:
624d5c51
TH
4580 * spin_lock_irqsave(host lock)
4581 *
4582 * RETURNS: 0 when ATAPI DMA can be used
4583 * nonzero otherwise
4584 */
5895ef9a 4585int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4586{
4587 struct ata_port *ap = qc->ap;
71601958 4588
624d5c51
TH
4589 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4590 * few ATAPI devices choke on such DMA requests.
4591 */
6a87e42e
TH
4592 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4593 unlikely(qc->nbytes & 15))
624d5c51 4594 return 1;
e2cec771 4595
624d5c51
TH
4596 if (ap->ops->check_atapi_dma)
4597 return ap->ops->check_atapi_dma(qc);
e2cec771 4598
624d5c51
TH
4599 return 0;
4600}
1da177e4 4601
624d5c51
TH
4602/**
4603 * ata_std_qc_defer - Check whether a qc needs to be deferred
4604 * @qc: ATA command in question
4605 *
4606 * Non-NCQ commands cannot run with any other command, NCQ or
4607 * not. As upper layer only knows the queue depth, we are
4608 * responsible for maintaining exclusion. This function checks
4609 * whether a new command @qc can be issued.
4610 *
4611 * LOCKING:
4612 * spin_lock_irqsave(host lock)
4613 *
4614 * RETURNS:
4615 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4616 */
4617int ata_std_qc_defer(struct ata_queued_cmd *qc)
4618{
4619 struct ata_link *link = qc->dev->link;
e2cec771 4620
624d5c51
TH
4621 if (qc->tf.protocol == ATA_PROT_NCQ) {
4622 if (!ata_tag_valid(link->active_tag))
4623 return 0;
4624 } else {
4625 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4626 return 0;
4627 }
e2cec771 4628
624d5c51
TH
4629 return ATA_DEFER_LINK;
4630}
6912ccd5 4631
624d5c51 4632void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4633
624d5c51
TH
4634/**
4635 * ata_sg_init - Associate command with scatter-gather table.
4636 * @qc: Command to be associated
4637 * @sg: Scatter-gather table.
4638 * @n_elem: Number of elements in s/g table.
4639 *
4640 * Initialize the data-related elements of queued_cmd @qc
4641 * to point to a scatter-gather table @sg, containing @n_elem
4642 * elements.
4643 *
4644 * LOCKING:
4645 * spin_lock_irqsave(host lock)
4646 */
4647void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4648 unsigned int n_elem)
4649{
4650 qc->sg = sg;
4651 qc->n_elem = n_elem;
4652 qc->cursg = qc->sg;
4653}
bb5cb290 4654
624d5c51
TH
4655/**
4656 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4657 * @qc: Command with scatter-gather table to be mapped.
4658 *
4659 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4660 *
4661 * LOCKING:
4662 * spin_lock_irqsave(host lock)
4663 *
4664 * RETURNS:
4665 * Zero on success, negative on error.
4666 *
4667 */
4668static int ata_sg_setup(struct ata_queued_cmd *qc)
4669{
4670 struct ata_port *ap = qc->ap;
4671 unsigned int n_elem;
1da177e4 4672
624d5c51 4673 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4674
624d5c51
TH
4675 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4676 if (n_elem < 1)
4677 return -1;
bb5cb290 4678
624d5c51 4679 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4680 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4681 qc->n_elem = n_elem;
4682 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4683
624d5c51 4684 return 0;
1da177e4
LT
4685}
4686
624d5c51
TH
4687/**
4688 * swap_buf_le16 - swap halves of 16-bit words in place
4689 * @buf: Buffer to swap
4690 * @buf_words: Number of 16-bit words in buffer.
4691 *
4692 * Swap halves of 16-bit words if needed to convert from
4693 * little-endian byte order to native cpu byte order, or
4694 * vice-versa.
4695 *
4696 * LOCKING:
4697 * Inherited from caller.
4698 */
4699void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4700{
624d5c51
TH
4701#ifdef __BIG_ENDIAN
4702 unsigned int i;
8061f5f0 4703
624d5c51
TH
4704 for (i = 0; i < buf_words; i++)
4705 buf[i] = le16_to_cpu(buf[i]);
4706#endif /* __BIG_ENDIAN */
8061f5f0
TH
4707}
4708
8a8bc223
TH
4709/**
4710 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4711 * @ap: target port
8a8bc223
TH
4712 *
4713 * LOCKING:
4714 * None.
4715 */
4716
4717static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4718{
4719 struct ata_queued_cmd *qc = NULL;
4720 unsigned int i;
4721
4722 /* no command while frozen */
4723 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4724 return NULL;
4725
4726 /* the last tag is reserved for internal command. */
4727 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4728 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4729 qc = __ata_qc_from_tag(ap, i);
4730 break;
4731 }
4732
4733 if (qc)
4734 qc->tag = i;
4735
4736 return qc;
4737}
4738
1da177e4
LT
4739/**
4740 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4741 * @dev: Device from whom we request an available command structure
4742 *
4743 * LOCKING:
0cba632b 4744 * None.
1da177e4
LT
4745 */
4746
8a8bc223 4747struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4748{
9af5c9c9 4749 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4750 struct ata_queued_cmd *qc;
4751
8a8bc223 4752 qc = ata_qc_new(ap);
1da177e4 4753 if (qc) {
1da177e4
LT
4754 qc->scsicmd = NULL;
4755 qc->ap = ap;
4756 qc->dev = dev;
1da177e4 4757
2c13b7ce 4758 ata_qc_reinit(qc);
1da177e4
LT
4759 }
4760
4761 return qc;
4762}
4763
8a8bc223
TH
4764/**
4765 * ata_qc_free - free unused ata_queued_cmd
4766 * @qc: Command to complete
4767 *
4768 * Designed to free unused ata_queued_cmd object
4769 * in case something prevents using it.
4770 *
4771 * LOCKING:
4772 * spin_lock_irqsave(host lock)
4773 */
4774void ata_qc_free(struct ata_queued_cmd *qc)
4775{
a1104016 4776 struct ata_port *ap;
8a8bc223
TH
4777 unsigned int tag;
4778
efcb3cf7 4779 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4780 ap = qc->ap;
8a8bc223
TH
4781
4782 qc->flags = 0;
4783 tag = qc->tag;
4784 if (likely(ata_tag_valid(tag))) {
4785 qc->tag = ATA_TAG_POISON;
4786 clear_bit(tag, &ap->qc_allocated);
4787 }
4788}
4789
76014427 4790void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4791{
a1104016
JL
4792 struct ata_port *ap;
4793 struct ata_link *link;
dedaf2b0 4794
efcb3cf7
TH
4795 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4796 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4797 ap = qc->ap;
4798 link = qc->dev->link;
1da177e4
LT
4799
4800 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4801 ata_sg_clean(qc);
4802
7401abf2 4803 /* command should be marked inactive atomically with qc completion */
da917d69 4804 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4805 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4806 if (!link->sactive)
4807 ap->nr_active_links--;
4808 } else {
9af5c9c9 4809 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4810 ap->nr_active_links--;
4811 }
4812
4813 /* clear exclusive status */
4814 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4815 ap->excl_link == link))
4816 ap->excl_link = NULL;
7401abf2 4817
3f3791d3
AL
4818 /* atapi: mark qc as inactive to prevent the interrupt handler
4819 * from completing the command twice later, before the error handler
4820 * is called. (when rc != 0 and atapi request sense is needed)
4821 */
4822 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4823 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4824
1da177e4 4825 /* call completion callback */
77853bf2 4826 qc->complete_fn(qc);
1da177e4
LT
4827}
4828
39599a53
TH
4829static void fill_result_tf(struct ata_queued_cmd *qc)
4830{
4831 struct ata_port *ap = qc->ap;
4832
39599a53 4833 qc->result_tf.flags = qc->tf.flags;
22183bf5 4834 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4835}
4836
00115e0f
TH
4837static void ata_verify_xfer(struct ata_queued_cmd *qc)
4838{
4839 struct ata_device *dev = qc->dev;
4840
00115e0f
TH
4841 if (ata_is_nodata(qc->tf.protocol))
4842 return;
4843
4844 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4845 return;
4846
4847 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4848}
4849
f686bcb8
TH
4850/**
4851 * ata_qc_complete - Complete an active ATA command
4852 * @qc: Command to complete
f686bcb8 4853 *
1aadf5c3
TH
4854 * Indicate to the mid and upper layers that an ATA command has
4855 * completed, with either an ok or not-ok status.
4856 *
4857 * Refrain from calling this function multiple times when
4858 * successfully completing multiple NCQ commands.
4859 * ata_qc_complete_multiple() should be used instead, which will
4860 * properly update IRQ expect state.
f686bcb8
TH
4861 *
4862 * LOCKING:
cca3974e 4863 * spin_lock_irqsave(host lock)
f686bcb8
TH
4864 */
4865void ata_qc_complete(struct ata_queued_cmd *qc)
4866{
4867 struct ata_port *ap = qc->ap;
4868
4869 /* XXX: New EH and old EH use different mechanisms to
4870 * synchronize EH with regular execution path.
4871 *
4872 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4873 * Normal execution path is responsible for not accessing a
4874 * failed qc. libata core enforces the rule by returning NULL
4875 * from ata_qc_from_tag() for failed qcs.
4876 *
4877 * Old EH depends on ata_qc_complete() nullifying completion
4878 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4879 * not synchronize with interrupt handler. Only PIO task is
4880 * taken care of.
4881 */
4882 if (ap->ops->error_handler) {
4dbfa39b
TH
4883 struct ata_device *dev = qc->dev;
4884 struct ata_eh_info *ehi = &dev->link->eh_info;
4885
f686bcb8
TH
4886 if (unlikely(qc->err_mask))
4887 qc->flags |= ATA_QCFLAG_FAILED;
4888
f08dc1ac
TH
4889 /*
4890 * Finish internal commands without any further processing
4891 * and always with the result TF filled.
4892 */
4893 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 4894 fill_result_tf(qc);
f08dc1ac
TH
4895 __ata_qc_complete(qc);
4896 return;
4897 }
f4b31db9 4898
f08dc1ac
TH
4899 /*
4900 * Non-internal qc has failed. Fill the result TF and
4901 * summon EH.
4902 */
4903 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4904 fill_result_tf(qc);
4905 ata_qc_schedule_eh(qc);
f4b31db9 4906 return;
f686bcb8
TH
4907 }
4908
4dc738ed
TH
4909 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4910
f686bcb8
TH
4911 /* read result TF if requested */
4912 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4913 fill_result_tf(qc);
f686bcb8 4914
4dbfa39b
TH
4915 /* Some commands need post-processing after successful
4916 * completion.
4917 */
4918 switch (qc->tf.command) {
4919 case ATA_CMD_SET_FEATURES:
4920 if (qc->tf.feature != SETFEATURES_WC_ON &&
4921 qc->tf.feature != SETFEATURES_WC_OFF)
4922 break;
4923 /* fall through */
4924 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4925 case ATA_CMD_SET_MULTI: /* multi_count changed */
4926 /* revalidate device */
4927 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4928 ata_port_schedule_eh(ap);
4929 break;
054a5fba
TH
4930
4931 case ATA_CMD_SLEEP:
4932 dev->flags |= ATA_DFLAG_SLEEPING;
4933 break;
4dbfa39b
TH
4934 }
4935
00115e0f
TH
4936 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4937 ata_verify_xfer(qc);
4938
f686bcb8
TH
4939 __ata_qc_complete(qc);
4940 } else {
4941 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4942 return;
4943
4944 /* read result TF if failed or requested */
4945 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4946 fill_result_tf(qc);
f686bcb8
TH
4947
4948 __ata_qc_complete(qc);
4949 }
4950}
4951
dedaf2b0
TH
4952/**
4953 * ata_qc_complete_multiple - Complete multiple qcs successfully
4954 * @ap: port in question
4955 * @qc_active: new qc_active mask
dedaf2b0
TH
4956 *
4957 * Complete in-flight commands. This functions is meant to be
4958 * called from low-level driver's interrupt routine to complete
4959 * requests normally. ap->qc_active and @qc_active is compared
4960 * and commands are completed accordingly.
4961 *
1aadf5c3
TH
4962 * Always use this function when completing multiple NCQ commands
4963 * from IRQ handlers instead of calling ata_qc_complete()
4964 * multiple times to keep IRQ expect status properly in sync.
4965 *
dedaf2b0 4966 * LOCKING:
cca3974e 4967 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4968 *
4969 * RETURNS:
4970 * Number of completed commands on success, -errno otherwise.
4971 */
79f97dad 4972int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4973{
4974 int nr_done = 0;
4975 u32 done_mask;
dedaf2b0
TH
4976
4977 done_mask = ap->qc_active ^ qc_active;
4978
4979 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
4980 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4981 ap->qc_active, qc_active);
dedaf2b0
TH
4982 return -EINVAL;
4983 }
4984
43768180 4985 while (done_mask) {
dedaf2b0 4986 struct ata_queued_cmd *qc;
43768180 4987 unsigned int tag = __ffs(done_mask);
dedaf2b0 4988
43768180
JA
4989 qc = ata_qc_from_tag(ap, tag);
4990 if (qc) {
dedaf2b0
TH
4991 ata_qc_complete(qc);
4992 nr_done++;
4993 }
43768180 4994 done_mask &= ~(1 << tag);
dedaf2b0
TH
4995 }
4996
4997 return nr_done;
4998}
4999
1da177e4
LT
5000/**
5001 * ata_qc_issue - issue taskfile to device
5002 * @qc: command to issue to device
5003 *
5004 * Prepare an ATA command to submission to device.
5005 * This includes mapping the data into a DMA-able
5006 * area, filling in the S/G table, and finally
5007 * writing the taskfile to hardware, starting the command.
5008 *
5009 * LOCKING:
cca3974e 5010 * spin_lock_irqsave(host lock)
1da177e4 5011 */
8e0e694a 5012void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5013{
5014 struct ata_port *ap = qc->ap;
9af5c9c9 5015 struct ata_link *link = qc->dev->link;
405e66b3 5016 u8 prot = qc->tf.protocol;
1da177e4 5017
dedaf2b0
TH
5018 /* Make sure only one non-NCQ command is outstanding. The
5019 * check is skipped for old EH because it reuses active qc to
5020 * request ATAPI sense.
5021 */
efcb3cf7 5022 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5023
1973a023 5024 if (ata_is_ncq(prot)) {
efcb3cf7 5025 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5026
5027 if (!link->sactive)
5028 ap->nr_active_links++;
9af5c9c9 5029 link->sactive |= 1 << qc->tag;
dedaf2b0 5030 } else {
efcb3cf7 5031 WARN_ON_ONCE(link->sactive);
da917d69
TH
5032
5033 ap->nr_active_links++;
9af5c9c9 5034 link->active_tag = qc->tag;
dedaf2b0
TH
5035 }
5036
e4a70e76 5037 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5038 ap->qc_active |= 1 << qc->tag;
e4a70e76 5039
60f5d6ef
TH
5040 /*
5041 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5042 * non-zero sg if the command is a data command.
5043 */
60f5d6ef
TH
5044 if (WARN_ON_ONCE(ata_is_data(prot) &&
5045 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5046 goto sys_err;
f92a2636 5047
405e66b3 5048 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5049 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5050 if (ata_sg_setup(qc))
60f5d6ef 5051 goto sys_err;
1da177e4 5052
cf480626 5053 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5054 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5055 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5056 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5057 ata_link_abort(link);
5058 return;
5059 }
5060
1da177e4
LT
5061 ap->ops->qc_prep(qc);
5062
8e0e694a
TH
5063 qc->err_mask |= ap->ops->qc_issue(qc);
5064 if (unlikely(qc->err_mask))
5065 goto err;
5066 return;
1da177e4 5067
60f5d6ef 5068sys_err:
8e0e694a
TH
5069 qc->err_mask |= AC_ERR_SYSTEM;
5070err:
5071 ata_qc_complete(qc);
1da177e4
LT
5072}
5073
34bf2170
TH
5074/**
5075 * sata_scr_valid - test whether SCRs are accessible
936fd732 5076 * @link: ATA link to test SCR accessibility for
34bf2170 5077 *
936fd732 5078 * Test whether SCRs are accessible for @link.
34bf2170
TH
5079 *
5080 * LOCKING:
5081 * None.
5082 *
5083 * RETURNS:
5084 * 1 if SCRs are accessible, 0 otherwise.
5085 */
936fd732 5086int sata_scr_valid(struct ata_link *link)
34bf2170 5087{
936fd732
TH
5088 struct ata_port *ap = link->ap;
5089
a16abc0b 5090 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5091}
5092
5093/**
5094 * sata_scr_read - read SCR register of the specified port
936fd732 5095 * @link: ATA link to read SCR for
34bf2170
TH
5096 * @reg: SCR to read
5097 * @val: Place to store read value
5098 *
936fd732 5099 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5100 * guaranteed to succeed if @link is ap->link, the cable type of
5101 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5102 *
5103 * LOCKING:
633273a3 5104 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5105 *
5106 * RETURNS:
5107 * 0 on success, negative errno on failure.
5108 */
936fd732 5109int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5110{
633273a3 5111 if (ata_is_host_link(link)) {
633273a3 5112 if (sata_scr_valid(link))
82ef04fb 5113 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5114 return -EOPNOTSUPP;
5115 }
5116
5117 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5118}
5119
5120/**
5121 * sata_scr_write - write SCR register of the specified port
936fd732 5122 * @link: ATA link to write SCR for
34bf2170
TH
5123 * @reg: SCR to write
5124 * @val: value to write
5125 *
936fd732 5126 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5127 * guaranteed to succeed if @link is ap->link, the cable type of
5128 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5129 *
5130 * LOCKING:
633273a3 5131 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5132 *
5133 * RETURNS:
5134 * 0 on success, negative errno on failure.
5135 */
936fd732 5136int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5137{
633273a3 5138 if (ata_is_host_link(link)) {
633273a3 5139 if (sata_scr_valid(link))
82ef04fb 5140 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5141 return -EOPNOTSUPP;
5142 }
936fd732 5143
633273a3 5144 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5145}
5146
5147/**
5148 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5149 * @link: ATA link to write SCR for
34bf2170
TH
5150 * @reg: SCR to write
5151 * @val: value to write
5152 *
5153 * This function is identical to sata_scr_write() except that this
5154 * function performs flush after writing to the register.
5155 *
5156 * LOCKING:
633273a3 5157 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5158 *
5159 * RETURNS:
5160 * 0 on success, negative errno on failure.
5161 */
936fd732 5162int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5163{
633273a3 5164 if (ata_is_host_link(link)) {
633273a3 5165 int rc;
da3dbb17 5166
633273a3 5167 if (sata_scr_valid(link)) {
82ef04fb 5168 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5169 if (rc == 0)
82ef04fb 5170 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5171 return rc;
5172 }
5173 return -EOPNOTSUPP;
34bf2170 5174 }
633273a3
TH
5175
5176 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5177}
5178
5179/**
b1c72916 5180 * ata_phys_link_online - test whether the given link is online
936fd732 5181 * @link: ATA link to test
34bf2170 5182 *
936fd732
TH
5183 * Test whether @link is online. Note that this function returns
5184 * 0 if online status of @link cannot be obtained, so
5185 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5186 *
5187 * LOCKING:
5188 * None.
5189 *
5190 * RETURNS:
b5b3fa38 5191 * True if the port online status is available and online.
34bf2170 5192 */
b1c72916 5193bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5194{
5195 u32 sstatus;
5196
936fd732 5197 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5198 ata_sstatus_online(sstatus))
b5b3fa38
TH
5199 return true;
5200 return false;
34bf2170
TH
5201}
5202
5203/**
b1c72916 5204 * ata_phys_link_offline - test whether the given link is offline
936fd732 5205 * @link: ATA link to test
34bf2170 5206 *
936fd732
TH
5207 * Test whether @link is offline. Note that this function
5208 * returns 0 if offline status of @link cannot be obtained, so
5209 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5210 *
5211 * LOCKING:
5212 * None.
5213 *
5214 * RETURNS:
b5b3fa38 5215 * True if the port offline status is available and offline.
34bf2170 5216 */
b1c72916 5217bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5218{
5219 u32 sstatus;
5220
936fd732 5221 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5222 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5223 return true;
5224 return false;
34bf2170 5225}
0baab86b 5226
b1c72916
TH
5227/**
5228 * ata_link_online - test whether the given link is online
5229 * @link: ATA link to test
5230 *
5231 * Test whether @link is online. This is identical to
5232 * ata_phys_link_online() when there's no slave link. When
5233 * there's a slave link, this function should only be called on
5234 * the master link and will return true if any of M/S links is
5235 * online.
5236 *
5237 * LOCKING:
5238 * None.
5239 *
5240 * RETURNS:
5241 * True if the port online status is available and online.
5242 */
5243bool ata_link_online(struct ata_link *link)
5244{
5245 struct ata_link *slave = link->ap->slave_link;
5246
5247 WARN_ON(link == slave); /* shouldn't be called on slave link */
5248
5249 return ata_phys_link_online(link) ||
5250 (slave && ata_phys_link_online(slave));
5251}
5252
5253/**
5254 * ata_link_offline - test whether the given link is offline
5255 * @link: ATA link to test
5256 *
5257 * Test whether @link is offline. This is identical to
5258 * ata_phys_link_offline() when there's no slave link. When
5259 * there's a slave link, this function should only be called on
5260 * the master link and will return true if both M/S links are
5261 * offline.
5262 *
5263 * LOCKING:
5264 * None.
5265 *
5266 * RETURNS:
5267 * True if the port offline status is available and offline.
5268 */
5269bool ata_link_offline(struct ata_link *link)
5270{
5271 struct ata_link *slave = link->ap->slave_link;
5272
5273 WARN_ON(link == slave); /* shouldn't be called on slave link */
5274
5275 return ata_phys_link_offline(link) &&
5276 (!slave || ata_phys_link_offline(slave));
5277}
5278
6ffa01d8 5279#ifdef CONFIG_PM
5ef41082 5280static int ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
cca3974e 5281 unsigned int action, unsigned int ehi_flags,
2fcbdcb4 5282 int *async)
500530f6 5283{
5ef41082 5284 struct ata_link *link;
500530f6 5285 unsigned long flags;
2fcbdcb4 5286 int rc = 0;
500530f6 5287
5ef41082
LM
5288 /* Previous resume operation might still be in
5289 * progress. Wait for PM_PENDING to clear.
5290 */
5291 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
2fcbdcb4
DW
5292 if (async) {
5293 *async = -EAGAIN;
5294 return 0;
5295 }
5ef41082
LM
5296 ata_port_wait_eh(ap);
5297 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5298 }
500530f6 5299
5ef41082
LM
5300 /* request PM ops to EH */
5301 spin_lock_irqsave(ap->lock, flags);
500530f6 5302
5ef41082 5303 ap->pm_mesg = mesg;
2fcbdcb4
DW
5304 if (async)
5305 ap->pm_result = async;
5306 else
5ef41082 5307 ap->pm_result = &rc;
500530f6 5308
5ef41082
LM
5309 ap->pflags |= ATA_PFLAG_PM_PENDING;
5310 ata_for_each_link(link, ap, HOST_FIRST) {
5311 link->eh_info.action |= action;
5312 link->eh_info.flags |= ehi_flags;
5313 }
500530f6 5314
5ef41082 5315 ata_port_schedule_eh(ap);
500530f6 5316
5ef41082 5317 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5318
5ef41082 5319 /* wait and check result */
2fcbdcb4 5320 if (!async) {
5ef41082
LM
5321 ata_port_wait_eh(ap);
5322 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6
TH
5323 }
5324
5ef41082 5325 return rc;
500530f6
TH
5326}
5327
2fcbdcb4 5328static int __ata_port_suspend_common(struct ata_port *ap, pm_message_t mesg, int *async)
5ef41082 5329{
33574d68 5330 unsigned int ehi_flags = ATA_EHI_QUIET;
5ef41082
LM
5331 int rc;
5332
33574d68
LM
5333 /*
5334 * On some hardware, device fails to respond after spun down
5335 * for suspend. As the device won't be used before being
5336 * resumed, we don't need to touch the device. Ask EH to skip
5337 * the usual stuff and proceed directly to suspend.
5338 *
5339 * http://thread.gmane.org/gmane.linux.ide/46764
5340 */
5341 if (mesg.event == PM_EVENT_SUSPEND)
5342 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5343
2fcbdcb4 5344 rc = ata_port_request_pm(ap, mesg, 0, ehi_flags, async);
5ef41082
LM
5345 return rc;
5346}
5347
2fcbdcb4
DW
5348static int ata_port_suspend_common(struct device *dev, pm_message_t mesg)
5349{
5350 struct ata_port *ap = to_ata_port(dev);
5351
5352 return __ata_port_suspend_common(ap, mesg, NULL);
5353}
5354
5ef41082
LM
5355static int ata_port_suspend(struct device *dev)
5356{
5357 if (pm_runtime_suspended(dev))
5358 return 0;
5359
33574d68
LM
5360 return ata_port_suspend_common(dev, PMSG_SUSPEND);
5361}
5362
5363static int ata_port_do_freeze(struct device *dev)
5364{
5365 if (pm_runtime_suspended(dev))
5366 pm_runtime_resume(dev);
5367
5368 return ata_port_suspend_common(dev, PMSG_FREEZE);
5369}
5370
5371static int ata_port_poweroff(struct device *dev)
5372{
5373 if (pm_runtime_suspended(dev))
5374 return 0;
5375
5376 return ata_port_suspend_common(dev, PMSG_HIBERNATE);
5ef41082
LM
5377}
5378
2fcbdcb4 5379static int __ata_port_resume_common(struct ata_port *ap, int *async)
5ef41082 5380{
5ef41082
LM
5381 int rc;
5382
5383 rc = ata_port_request_pm(ap, PMSG_ON, ATA_EH_RESET,
2fcbdcb4 5384 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, async);
5ef41082
LM
5385 return rc;
5386}
5387
2fcbdcb4
DW
5388static int ata_port_resume_common(struct device *dev)
5389{
5390 struct ata_port *ap = to_ata_port(dev);
5391
5392 return __ata_port_resume_common(ap, NULL);
5393}
5394
e90b1e5a
LM
5395static int ata_port_resume(struct device *dev)
5396{
5397 int rc;
5398
5399 rc = ata_port_resume_common(dev);
5400 if (!rc) {
5401 pm_runtime_disable(dev);
5402 pm_runtime_set_active(dev);
5403 pm_runtime_enable(dev);
5404 }
5405
5406 return rc;
5407}
5408
9ee4f393
LM
5409static int ata_port_runtime_idle(struct device *dev)
5410{
5411 return pm_runtime_suspend(dev);
5412}
5413
5ef41082
LM
5414static const struct dev_pm_ops ata_port_pm_ops = {
5415 .suspend = ata_port_suspend,
5416 .resume = ata_port_resume,
33574d68
LM
5417 .freeze = ata_port_do_freeze,
5418 .thaw = ata_port_resume,
5419 .poweroff = ata_port_poweroff,
5420 .restore = ata_port_resume,
9ee4f393 5421
33574d68 5422 .runtime_suspend = ata_port_suspend,
e90b1e5a 5423 .runtime_resume = ata_port_resume_common,
9ee4f393 5424 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5425};
5426
2fcbdcb4
DW
5427/* sas ports don't participate in pm runtime management of ata_ports,
5428 * and need to resume ata devices at the domain level, not the per-port
5429 * level. sas suspend/resume is async to allow parallel port recovery
5430 * since sas has multiple ata_port instances per Scsi_Host.
5431 */
5432int ata_sas_port_async_suspend(struct ata_port *ap, int *async)
5433{
5434 return __ata_port_suspend_common(ap, PMSG_SUSPEND, async);
5435}
5436EXPORT_SYMBOL_GPL(ata_sas_port_async_suspend);
5437
5438int ata_sas_port_async_resume(struct ata_port *ap, int *async)
5439{
5440 return __ata_port_resume_common(ap, async);
5441}
5442EXPORT_SYMBOL_GPL(ata_sas_port_async_resume);
5443
5444
500530f6 5445/**
cca3974e
JG
5446 * ata_host_suspend - suspend host
5447 * @host: host to suspend
500530f6
TH
5448 * @mesg: PM message
5449 *
5ef41082 5450 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5451 */
cca3974e 5452int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5453{
5ef41082
LM
5454 host->dev->power.power_state = mesg;
5455 return 0;
500530f6
TH
5456}
5457
5458/**
cca3974e
JG
5459 * ata_host_resume - resume host
5460 * @host: host to resume
500530f6 5461 *
5ef41082 5462 * Resume @host. Actual operation is performed by port resume.
500530f6 5463 */
cca3974e 5464void ata_host_resume(struct ata_host *host)
500530f6 5465{
72ad6ec4 5466 host->dev->power.power_state = PMSG_ON;
500530f6 5467}
6ffa01d8 5468#endif
500530f6 5469
5ef41082
LM
5470struct device_type ata_port_type = {
5471 .name = "ata_port",
5472#ifdef CONFIG_PM
5473 .pm = &ata_port_pm_ops,
5474#endif
5475};
5476
3ef3b43d
TH
5477/**
5478 * ata_dev_init - Initialize an ata_device structure
5479 * @dev: Device structure to initialize
5480 *
5481 * Initialize @dev in preparation for probing.
5482 *
5483 * LOCKING:
5484 * Inherited from caller.
5485 */
5486void ata_dev_init(struct ata_device *dev)
5487{
b1c72916 5488 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5489 struct ata_port *ap = link->ap;
72fa4b74
TH
5490 unsigned long flags;
5491
b1c72916 5492 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5493 link->sata_spd_limit = link->hw_sata_spd_limit;
5494 link->sata_spd = 0;
5a04bf4b 5495
72fa4b74
TH
5496 /* High bits of dev->flags are used to record warm plug
5497 * requests which occur asynchronously. Synchronize using
cca3974e 5498 * host lock.
72fa4b74 5499 */
ba6a1308 5500 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5501 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5502 dev->horkage = 0;
ba6a1308 5503 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5504
99cf610a
TH
5505 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5506 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5507 dev->pio_mask = UINT_MAX;
5508 dev->mwdma_mask = UINT_MAX;
5509 dev->udma_mask = UINT_MAX;
5510}
5511
4fb37a25
TH
5512/**
5513 * ata_link_init - Initialize an ata_link structure
5514 * @ap: ATA port link is attached to
5515 * @link: Link structure to initialize
8989805d 5516 * @pmp: Port multiplier port number
4fb37a25
TH
5517 *
5518 * Initialize @link.
5519 *
5520 * LOCKING:
5521 * Kernel thread context (may sleep)
5522 */
fb7fd614 5523void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5524{
5525 int i;
5526
5527 /* clear everything except for devices */
d9027470
GG
5528 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5529 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5530
5531 link->ap = ap;
8989805d 5532 link->pmp = pmp;
4fb37a25
TH
5533 link->active_tag = ATA_TAG_POISON;
5534 link->hw_sata_spd_limit = UINT_MAX;
5535
5536 /* can't use iterator, ap isn't initialized yet */
5537 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5538 struct ata_device *dev = &link->device[i];
5539
5540 dev->link = link;
5541 dev->devno = dev - link->device;
110f66d2
TH
5542#ifdef CONFIG_ATA_ACPI
5543 dev->gtf_filter = ata_acpi_gtf_filter;
5544#endif
4fb37a25
TH
5545 ata_dev_init(dev);
5546 }
5547}
5548
5549/**
5550 * sata_link_init_spd - Initialize link->sata_spd_limit
5551 * @link: Link to configure sata_spd_limit for
5552 *
5553 * Initialize @link->[hw_]sata_spd_limit to the currently
5554 * configured value.
5555 *
5556 * LOCKING:
5557 * Kernel thread context (may sleep).
5558 *
5559 * RETURNS:
5560 * 0 on success, -errno on failure.
5561 */
fb7fd614 5562int sata_link_init_spd(struct ata_link *link)
4fb37a25 5563{
33267325 5564 u8 spd;
4fb37a25
TH
5565 int rc;
5566
d127ea7b 5567 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5568 if (rc)
5569 return rc;
5570
d127ea7b 5571 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5572 if (spd)
5573 link->hw_sata_spd_limit &= (1 << spd) - 1;
5574
05944bdf 5575 ata_force_link_limits(link);
33267325 5576
4fb37a25
TH
5577 link->sata_spd_limit = link->hw_sata_spd_limit;
5578
5579 return 0;
5580}
5581
1da177e4 5582/**
f3187195
TH
5583 * ata_port_alloc - allocate and initialize basic ATA port resources
5584 * @host: ATA host this allocated port belongs to
1da177e4 5585 *
f3187195
TH
5586 * Allocate and initialize basic ATA port resources.
5587 *
5588 * RETURNS:
5589 * Allocate ATA port on success, NULL on failure.
0cba632b 5590 *
1da177e4 5591 * LOCKING:
f3187195 5592 * Inherited from calling layer (may sleep).
1da177e4 5593 */
f3187195 5594struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5595{
f3187195 5596 struct ata_port *ap;
1da177e4 5597
f3187195
TH
5598 DPRINTK("ENTER\n");
5599
5600 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5601 if (!ap)
5602 return NULL;
4fca377f 5603
7b3a24c5 5604 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5605 ap->lock = &host->lock;
f3187195 5606 ap->print_id = -1;
cca3974e 5607 ap->host = host;
f3187195 5608 ap->dev = host->dev;
bd5d825c
BP
5609
5610#if defined(ATA_VERBOSE_DEBUG)
5611 /* turn on all debugging levels */
5612 ap->msg_enable = 0x00FF;
5613#elif defined(ATA_DEBUG)
5614 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5615#else
0dd4b21f 5616 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5617#endif
1da177e4 5618
ad72cf98 5619 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5620 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5621 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5622 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5623 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5624 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5625 init_timer_deferrable(&ap->fastdrain_timer);
5626 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5627 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5628
838df628 5629 ap->cbl = ATA_CBL_NONE;
838df628 5630
8989805d 5631 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5632
5633#ifdef ATA_IRQ_TRAP
5634 ap->stats.unhandled_irq = 1;
5635 ap->stats.idle_irq = 1;
5636#endif
270390e1
TH
5637 ata_sff_port_init(ap);
5638
1da177e4 5639 return ap;
1da177e4
LT
5640}
5641
f0d36efd
TH
5642static void ata_host_release(struct device *gendev, void *res)
5643{
5644 struct ata_host *host = dev_get_drvdata(gendev);
5645 int i;
5646
1aa506e4
TH
5647 for (i = 0; i < host->n_ports; i++) {
5648 struct ata_port *ap = host->ports[i];
5649
4911487a
TH
5650 if (!ap)
5651 continue;
5652
5653 if (ap->scsi_host)
1aa506e4
TH
5654 scsi_host_put(ap->scsi_host);
5655
633273a3 5656 kfree(ap->pmp_link);
b1c72916 5657 kfree(ap->slave_link);
4911487a 5658 kfree(ap);
1aa506e4
TH
5659 host->ports[i] = NULL;
5660 }
5661
1aa56cca 5662 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5663}
5664
f3187195
TH
5665/**
5666 * ata_host_alloc - allocate and init basic ATA host resources
5667 * @dev: generic device this host is associated with
5668 * @max_ports: maximum number of ATA ports associated with this host
5669 *
5670 * Allocate and initialize basic ATA host resources. LLD calls
5671 * this function to allocate a host, initializes it fully and
5672 * attaches it using ata_host_register().
5673 *
5674 * @max_ports ports are allocated and host->n_ports is
5675 * initialized to @max_ports. The caller is allowed to decrease
5676 * host->n_ports before calling ata_host_register(). The unused
5677 * ports will be automatically freed on registration.
5678 *
5679 * RETURNS:
5680 * Allocate ATA host on success, NULL on failure.
5681 *
5682 * LOCKING:
5683 * Inherited from calling layer (may sleep).
5684 */
5685struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5686{
5687 struct ata_host *host;
5688 size_t sz;
5689 int i;
5690
5691 DPRINTK("ENTER\n");
5692
5693 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5694 return NULL;
5695
5696 /* alloc a container for our list of ATA ports (buses) */
5697 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5698 /* alloc a container for our list of ATA ports (buses) */
5699 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5700 if (!host)
5701 goto err_out;
5702
5703 devres_add(dev, host);
5704 dev_set_drvdata(dev, host);
5705
5706 spin_lock_init(&host->lock);
c0c362b6 5707 mutex_init(&host->eh_mutex);
f3187195
TH
5708 host->dev = dev;
5709 host->n_ports = max_ports;
5710
5711 /* allocate ports bound to this host */
5712 for (i = 0; i < max_ports; i++) {
5713 struct ata_port *ap;
5714
5715 ap = ata_port_alloc(host);
5716 if (!ap)
5717 goto err_out;
5718
5719 ap->port_no = i;
5720 host->ports[i] = ap;
5721 }
5722
5723 devres_remove_group(dev, NULL);
5724 return host;
5725
5726 err_out:
5727 devres_release_group(dev, NULL);
5728 return NULL;
5729}
5730
f5cda257
TH
5731/**
5732 * ata_host_alloc_pinfo - alloc host and init with port_info array
5733 * @dev: generic device this host is associated with
5734 * @ppi: array of ATA port_info to initialize host with
5735 * @n_ports: number of ATA ports attached to this host
5736 *
5737 * Allocate ATA host and initialize with info from @ppi. If NULL
5738 * terminated, @ppi may contain fewer entries than @n_ports. The
5739 * last entry will be used for the remaining ports.
5740 *
5741 * RETURNS:
5742 * Allocate ATA host on success, NULL on failure.
5743 *
5744 * LOCKING:
5745 * Inherited from calling layer (may sleep).
5746 */
5747struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5748 const struct ata_port_info * const * ppi,
5749 int n_ports)
5750{
5751 const struct ata_port_info *pi;
5752 struct ata_host *host;
5753 int i, j;
5754
5755 host = ata_host_alloc(dev, n_ports);
5756 if (!host)
5757 return NULL;
5758
5759 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5760 struct ata_port *ap = host->ports[i];
5761
5762 if (ppi[j])
5763 pi = ppi[j++];
5764
5765 ap->pio_mask = pi->pio_mask;
5766 ap->mwdma_mask = pi->mwdma_mask;
5767 ap->udma_mask = pi->udma_mask;
5768 ap->flags |= pi->flags;
0c88758b 5769 ap->link.flags |= pi->link_flags;
f5cda257
TH
5770 ap->ops = pi->port_ops;
5771
5772 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5773 host->ops = pi->port_ops;
f5cda257
TH
5774 }
5775
5776 return host;
5777}
5778
b1c72916
TH
5779/**
5780 * ata_slave_link_init - initialize slave link
5781 * @ap: port to initialize slave link for
5782 *
5783 * Create and initialize slave link for @ap. This enables slave
5784 * link handling on the port.
5785 *
5786 * In libata, a port contains links and a link contains devices.
5787 * There is single host link but if a PMP is attached to it,
5788 * there can be multiple fan-out links. On SATA, there's usually
5789 * a single device connected to a link but PATA and SATA
5790 * controllers emulating TF based interface can have two - master
5791 * and slave.
5792 *
5793 * However, there are a few controllers which don't fit into this
5794 * abstraction too well - SATA controllers which emulate TF
5795 * interface with both master and slave devices but also have
5796 * separate SCR register sets for each device. These controllers
5797 * need separate links for physical link handling
5798 * (e.g. onlineness, link speed) but should be treated like a
5799 * traditional M/S controller for everything else (e.g. command
5800 * issue, softreset).
5801 *
5802 * slave_link is libata's way of handling this class of
5803 * controllers without impacting core layer too much. For
5804 * anything other than physical link handling, the default host
5805 * link is used for both master and slave. For physical link
5806 * handling, separate @ap->slave_link is used. All dirty details
5807 * are implemented inside libata core layer. From LLD's POV, the
5808 * only difference is that prereset, hardreset and postreset are
5809 * called once more for the slave link, so the reset sequence
5810 * looks like the following.
5811 *
5812 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5813 * softreset(M) -> postreset(M) -> postreset(S)
5814 *
5815 * Note that softreset is called only for the master. Softreset
5816 * resets both M/S by definition, so SRST on master should handle
5817 * both (the standard method will work just fine).
5818 *
5819 * LOCKING:
5820 * Should be called before host is registered.
5821 *
5822 * RETURNS:
5823 * 0 on success, -errno on failure.
5824 */
5825int ata_slave_link_init(struct ata_port *ap)
5826{
5827 struct ata_link *link;
5828
5829 WARN_ON(ap->slave_link);
5830 WARN_ON(ap->flags & ATA_FLAG_PMP);
5831
5832 link = kzalloc(sizeof(*link), GFP_KERNEL);
5833 if (!link)
5834 return -ENOMEM;
5835
5836 ata_link_init(ap, link, 1);
5837 ap->slave_link = link;
5838 return 0;
5839}
5840
32ebbc0c
TH
5841static void ata_host_stop(struct device *gendev, void *res)
5842{
5843 struct ata_host *host = dev_get_drvdata(gendev);
5844 int i;
5845
5846 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5847
5848 for (i = 0; i < host->n_ports; i++) {
5849 struct ata_port *ap = host->ports[i];
5850
5851 if (ap->ops->port_stop)
5852 ap->ops->port_stop(ap);
5853 }
5854
5855 if (host->ops->host_stop)
5856 host->ops->host_stop(host);
5857}
5858
029cfd6b
TH
5859/**
5860 * ata_finalize_port_ops - finalize ata_port_operations
5861 * @ops: ata_port_operations to finalize
5862 *
5863 * An ata_port_operations can inherit from another ops and that
5864 * ops can again inherit from another. This can go on as many
5865 * times as necessary as long as there is no loop in the
5866 * inheritance chain.
5867 *
5868 * Ops tables are finalized when the host is started. NULL or
5869 * unspecified entries are inherited from the closet ancestor
5870 * which has the method and the entry is populated with it.
5871 * After finalization, the ops table directly points to all the
5872 * methods and ->inherits is no longer necessary and cleared.
5873 *
5874 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5875 *
5876 * LOCKING:
5877 * None.
5878 */
5879static void ata_finalize_port_ops(struct ata_port_operations *ops)
5880{
2da67659 5881 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5882 const struct ata_port_operations *cur;
5883 void **begin = (void **)ops;
5884 void **end = (void **)&ops->inherits;
5885 void **pp;
5886
5887 if (!ops || !ops->inherits)
5888 return;
5889
5890 spin_lock(&lock);
5891
5892 for (cur = ops->inherits; cur; cur = cur->inherits) {
5893 void **inherit = (void **)cur;
5894
5895 for (pp = begin; pp < end; pp++, inherit++)
5896 if (!*pp)
5897 *pp = *inherit;
5898 }
5899
5900 for (pp = begin; pp < end; pp++)
5901 if (IS_ERR(*pp))
5902 *pp = NULL;
5903
5904 ops->inherits = NULL;
5905
5906 spin_unlock(&lock);
5907}
5908
ecef7253
TH
5909/**
5910 * ata_host_start - start and freeze ports of an ATA host
5911 * @host: ATA host to start ports for
5912 *
5913 * Start and then freeze ports of @host. Started status is
5914 * recorded in host->flags, so this function can be called
5915 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5916 * once. If host->ops isn't initialized yet, its set to the
5917 * first non-dummy port ops.
ecef7253
TH
5918 *
5919 * LOCKING:
5920 * Inherited from calling layer (may sleep).
5921 *
5922 * RETURNS:
5923 * 0 if all ports are started successfully, -errno otherwise.
5924 */
5925int ata_host_start(struct ata_host *host)
5926{
32ebbc0c
TH
5927 int have_stop = 0;
5928 void *start_dr = NULL;
ecef7253
TH
5929 int i, rc;
5930
5931 if (host->flags & ATA_HOST_STARTED)
5932 return 0;
5933
029cfd6b
TH
5934 ata_finalize_port_ops(host->ops);
5935
ecef7253
TH
5936 for (i = 0; i < host->n_ports; i++) {
5937 struct ata_port *ap = host->ports[i];
5938
029cfd6b
TH
5939 ata_finalize_port_ops(ap->ops);
5940
f3187195
TH
5941 if (!host->ops && !ata_port_is_dummy(ap))
5942 host->ops = ap->ops;
5943
32ebbc0c
TH
5944 if (ap->ops->port_stop)
5945 have_stop = 1;
5946 }
5947
5948 if (host->ops->host_stop)
5949 have_stop = 1;
5950
5951 if (have_stop) {
5952 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5953 if (!start_dr)
5954 return -ENOMEM;
5955 }
5956
5957 for (i = 0; i < host->n_ports; i++) {
5958 struct ata_port *ap = host->ports[i];
5959
ecef7253
TH
5960 if (ap->ops->port_start) {
5961 rc = ap->ops->port_start(ap);
5962 if (rc) {
0f9fe9b7 5963 if (rc != -ENODEV)
a44fec1f
JP
5964 dev_err(host->dev,
5965 "failed to start port %d (errno=%d)\n",
5966 i, rc);
ecef7253
TH
5967 goto err_out;
5968 }
5969 }
ecef7253
TH
5970 ata_eh_freeze_port(ap);
5971 }
5972
32ebbc0c
TH
5973 if (start_dr)
5974 devres_add(host->dev, start_dr);
ecef7253
TH
5975 host->flags |= ATA_HOST_STARTED;
5976 return 0;
5977
5978 err_out:
5979 while (--i >= 0) {
5980 struct ata_port *ap = host->ports[i];
5981
5982 if (ap->ops->port_stop)
5983 ap->ops->port_stop(ap);
5984 }
32ebbc0c 5985 devres_free(start_dr);
ecef7253
TH
5986 return rc;
5987}
5988
b03732f0 5989/**
8d8e7d13 5990 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
5991 * @host: host to initialize
5992 * @dev: device host is attached to
cca3974e 5993 * @ops: port_ops
b03732f0 5994 *
b03732f0 5995 */
cca3974e 5996void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 5997 struct ata_port_operations *ops)
b03732f0 5998{
cca3974e 5999 spin_lock_init(&host->lock);
c0c362b6 6000 mutex_init(&host->eh_mutex);
cca3974e 6001 host->dev = dev;
cca3974e 6002 host->ops = ops;
b03732f0
BK
6003}
6004
9508a66f 6005void __ata_port_probe(struct ata_port *ap)
79318057 6006{
9508a66f
DW
6007 struct ata_eh_info *ehi = &ap->link.eh_info;
6008 unsigned long flags;
886ad09f 6009
9508a66f
DW
6010 /* kick EH for boot probing */
6011 spin_lock_irqsave(ap->lock, flags);
79318057 6012
9508a66f
DW
6013 ehi->probe_mask |= ATA_ALL_DEVICES;
6014 ehi->action |= ATA_EH_RESET;
6015 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6016
9508a66f
DW
6017 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6018 ap->pflags |= ATA_PFLAG_LOADING;
6019 ata_port_schedule_eh(ap);
79318057 6020
9508a66f
DW
6021 spin_unlock_irqrestore(ap->lock, flags);
6022}
79318057 6023
9508a66f
DW
6024int ata_port_probe(struct ata_port *ap)
6025{
6026 int rc = 0;
79318057 6027
9508a66f
DW
6028 if (ap->ops->error_handler) {
6029 __ata_port_probe(ap);
79318057
AV
6030 ata_port_wait_eh(ap);
6031 } else {
6032 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6033 rc = ata_bus_probe(ap);
6034 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6035 }
238c9cf9
JB
6036 return rc;
6037}
6038
6039
6040static void async_port_probe(void *data, async_cookie_t cookie)
6041{
6042 struct ata_port *ap = data;
4fca377f 6043
238c9cf9
JB
6044 /*
6045 * If we're not allowed to scan this host in parallel,
6046 * we need to wait until all previous scans have completed
6047 * before going further.
6048 * Jeff Garzik says this is only within a controller, so we
6049 * don't need to wait for port 0, only for later ports.
6050 */
6051 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6052 async_synchronize_cookie(cookie);
6053
6054 (void)ata_port_probe(ap);
f29d3b23
AV
6055
6056 /* in order to keep device order, we need to synchronize at this point */
6057 async_synchronize_cookie(cookie);
6058
6059 ata_scsi_scan_host(ap, 1);
79318057 6060}
238c9cf9 6061
f3187195
TH
6062/**
6063 * ata_host_register - register initialized ATA host
6064 * @host: ATA host to register
6065 * @sht: template for SCSI host
6066 *
6067 * Register initialized ATA host. @host is allocated using
6068 * ata_host_alloc() and fully initialized by LLD. This function
6069 * starts ports, registers @host with ATA and SCSI layers and
6070 * probe registered devices.
6071 *
6072 * LOCKING:
6073 * Inherited from calling layer (may sleep).
6074 *
6075 * RETURNS:
6076 * 0 on success, -errno otherwise.
6077 */
6078int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6079{
6080 int i, rc;
6081
6082 /* host must have been started */
6083 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6084 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6085 WARN_ON(1);
6086 return -EINVAL;
6087 }
6088
6089 /* Blow away unused ports. This happens when LLD can't
6090 * determine the exact number of ports to allocate at
6091 * allocation time.
6092 */
6093 for (i = host->n_ports; host->ports[i]; i++)
6094 kfree(host->ports[i]);
6095
6096 /* give ports names and add SCSI hosts */
6097 for (i = 0; i < host->n_ports; i++)
85d6725b 6098 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
f3187195 6099
4fca377f 6100
d9027470
GG
6101 /* Create associated sysfs transport objects */
6102 for (i = 0; i < host->n_ports; i++) {
6103 rc = ata_tport_add(host->dev,host->ports[i]);
6104 if (rc) {
6105 goto err_tadd;
6106 }
6107 }
6108
f3187195
TH
6109 rc = ata_scsi_add_hosts(host, sht);
6110 if (rc)
d9027470 6111 goto err_tadd;
f3187195
TH
6112
6113 /* set cable, sata_spd_limit and report */
6114 for (i = 0; i < host->n_ports; i++) {
6115 struct ata_port *ap = host->ports[i];
f3187195
TH
6116 unsigned long xfer_mask;
6117
6118 /* set SATA cable type if still unset */
6119 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6120 ap->cbl = ATA_CBL_SATA;
6121
6122 /* init sata_spd_limit to the current value */
4fb37a25 6123 sata_link_init_spd(&ap->link);
b1c72916
TH
6124 if (ap->slave_link)
6125 sata_link_init_spd(ap->slave_link);
f3187195 6126
cbcdd875 6127 /* print per-port info to dmesg */
f3187195
TH
6128 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6129 ap->udma_mask);
6130
abf6e8ed 6131 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6132 ata_port_info(ap, "%cATA max %s %s\n",
6133 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6134 ata_mode_string(xfer_mask),
6135 ap->link.eh_info.desc);
abf6e8ed
TH
6136 ata_ehi_clear_desc(&ap->link.eh_info);
6137 } else
a9a79dfe 6138 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6139 }
6140
f6005354 6141 /* perform each probe asynchronously */
f3187195
TH
6142 for (i = 0; i < host->n_ports; i++) {
6143 struct ata_port *ap = host->ports[i];
79318057 6144 async_schedule(async_port_probe, ap);
f3187195 6145 }
f3187195
TH
6146
6147 return 0;
d9027470
GG
6148
6149 err_tadd:
6150 while (--i >= 0) {
6151 ata_tport_delete(host->ports[i]);
6152 }
6153 return rc;
6154
f3187195
TH
6155}
6156
f5cda257
TH
6157/**
6158 * ata_host_activate - start host, request IRQ and register it
6159 * @host: target ATA host
6160 * @irq: IRQ to request
6161 * @irq_handler: irq_handler used when requesting IRQ
6162 * @irq_flags: irq_flags used when requesting IRQ
6163 * @sht: scsi_host_template to use when registering the host
6164 *
6165 * After allocating an ATA host and initializing it, most libata
6166 * LLDs perform three steps to activate the host - start host,
6167 * request IRQ and register it. This helper takes necessasry
6168 * arguments and performs the three steps in one go.
6169 *
3d46b2e2
PM
6170 * An invalid IRQ skips the IRQ registration and expects the host to
6171 * have set polling mode on the port. In this case, @irq_handler
6172 * should be NULL.
6173 *
f5cda257
TH
6174 * LOCKING:
6175 * Inherited from calling layer (may sleep).
6176 *
6177 * RETURNS:
6178 * 0 on success, -errno otherwise.
6179 */
6180int ata_host_activate(struct ata_host *host, int irq,
6181 irq_handler_t irq_handler, unsigned long irq_flags,
6182 struct scsi_host_template *sht)
6183{
cbcdd875 6184 int i, rc;
f5cda257
TH
6185
6186 rc = ata_host_start(host);
6187 if (rc)
6188 return rc;
6189
3d46b2e2
PM
6190 /* Special case for polling mode */
6191 if (!irq) {
6192 WARN_ON(irq_handler);
6193 return ata_host_register(host, sht);
6194 }
6195
f5cda257
TH
6196 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6197 dev_driver_string(host->dev), host);
6198 if (rc)
6199 return rc;
6200
cbcdd875
TH
6201 for (i = 0; i < host->n_ports; i++)
6202 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6203
f5cda257
TH
6204 rc = ata_host_register(host, sht);
6205 /* if failed, just free the IRQ and leave ports alone */
6206 if (rc)
6207 devm_free_irq(host->dev, irq, host);
6208
6209 return rc;
6210}
6211
720ba126
TH
6212/**
6213 * ata_port_detach - Detach ATA port in prepration of device removal
6214 * @ap: ATA port to be detached
6215 *
6216 * Detach all ATA devices and the associated SCSI devices of @ap;
6217 * then, remove the associated SCSI host. @ap is guaranteed to
6218 * be quiescent on return from this function.
6219 *
6220 * LOCKING:
6221 * Kernel thread context (may sleep).
6222 */
741b7763 6223static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6224{
6225 unsigned long flags;
720ba126
TH
6226
6227 if (!ap->ops->error_handler)
c3cf30a9 6228 goto skip_eh;
720ba126
TH
6229
6230 /* tell EH we're leaving & flush EH */
ba6a1308 6231 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6232 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6233 ata_port_schedule_eh(ap);
ba6a1308 6234 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6235
ece180d1 6236 /* wait till EH commits suicide */
720ba126
TH
6237 ata_port_wait_eh(ap);
6238
ece180d1
TH
6239 /* it better be dead now */
6240 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6241
afe2c511 6242 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6243
c3cf30a9 6244 skip_eh:
d9027470
GG
6245 if (ap->pmp_link) {
6246 int i;
6247 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6248 ata_tlink_delete(&ap->pmp_link[i]);
6249 }
6250 ata_tport_delete(ap);
6251
720ba126 6252 /* remove the associated SCSI host */
cca3974e 6253 scsi_remove_host(ap->scsi_host);
720ba126
TH
6254}
6255
0529c159
TH
6256/**
6257 * ata_host_detach - Detach all ports of an ATA host
6258 * @host: Host to detach
6259 *
6260 * Detach all ports of @host.
6261 *
6262 * LOCKING:
6263 * Kernel thread context (may sleep).
6264 */
6265void ata_host_detach(struct ata_host *host)
6266{
6267 int i;
6268
6269 for (i = 0; i < host->n_ports; i++)
6270 ata_port_detach(host->ports[i]);
562f0c2d
TH
6271
6272 /* the host is dead now, dissociate ACPI */
6273 ata_acpi_dissociate(host);
0529c159
TH
6274}
6275
374b1873
JG
6276#ifdef CONFIG_PCI
6277
1da177e4
LT
6278/**
6279 * ata_pci_remove_one - PCI layer callback for device removal
6280 * @pdev: PCI device that was removed
6281 *
b878ca5d
TH
6282 * PCI layer indicates to libata via this hook that hot-unplug or
6283 * module unload event has occurred. Detach all ports. Resource
6284 * release is handled via devres.
1da177e4
LT
6285 *
6286 * LOCKING:
6287 * Inherited from PCI layer (may sleep).
6288 */
f0d36efd 6289void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6290{
04a3f5b7 6291 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6292
b878ca5d 6293 ata_host_detach(host);
1da177e4
LT
6294}
6295
6296/* move to PCI subsystem */
057ace5e 6297int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6298{
6299 unsigned long tmp = 0;
6300
6301 switch (bits->width) {
6302 case 1: {
6303 u8 tmp8 = 0;
6304 pci_read_config_byte(pdev, bits->reg, &tmp8);
6305 tmp = tmp8;
6306 break;
6307 }
6308 case 2: {
6309 u16 tmp16 = 0;
6310 pci_read_config_word(pdev, bits->reg, &tmp16);
6311 tmp = tmp16;
6312 break;
6313 }
6314 case 4: {
6315 u32 tmp32 = 0;
6316 pci_read_config_dword(pdev, bits->reg, &tmp32);
6317 tmp = tmp32;
6318 break;
6319 }
6320
6321 default:
6322 return -EINVAL;
6323 }
6324
6325 tmp &= bits->mask;
6326
6327 return (tmp == bits->val) ? 1 : 0;
6328}
9b847548 6329
6ffa01d8 6330#ifdef CONFIG_PM
3c5100c1 6331void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6332{
6333 pci_save_state(pdev);
4c90d971 6334 pci_disable_device(pdev);
500530f6 6335
3a2d5b70 6336 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6337 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6338}
6339
553c4aa6 6340int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6341{
553c4aa6
TH
6342 int rc;
6343
9b847548
JA
6344 pci_set_power_state(pdev, PCI_D0);
6345 pci_restore_state(pdev);
553c4aa6 6346
b878ca5d 6347 rc = pcim_enable_device(pdev);
553c4aa6 6348 if (rc) {
a44fec1f
JP
6349 dev_err(&pdev->dev,
6350 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6351 return rc;
6352 }
6353
9b847548 6354 pci_set_master(pdev);
553c4aa6 6355 return 0;
500530f6
TH
6356}
6357
3c5100c1 6358int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6359{
04a3f5b7 6360 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6361 int rc = 0;
6362
cca3974e 6363 rc = ata_host_suspend(host, mesg);
500530f6
TH
6364 if (rc)
6365 return rc;
6366
3c5100c1 6367 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6368
6369 return 0;
6370}
6371
6372int ata_pci_device_resume(struct pci_dev *pdev)
6373{
04a3f5b7 6374 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6375 int rc;
500530f6 6376
553c4aa6
TH
6377 rc = ata_pci_device_do_resume(pdev);
6378 if (rc == 0)
6379 ata_host_resume(host);
6380 return rc;
9b847548 6381}
6ffa01d8
TH
6382#endif /* CONFIG_PM */
6383
1da177e4
LT
6384#endif /* CONFIG_PCI */
6385
b7db04d9
BN
6386/**
6387 * ata_platform_remove_one - Platform layer callback for device removal
6388 * @pdev: Platform device that was removed
6389 *
6390 * Platform layer indicates to libata via this hook that hot-unplug or
6391 * module unload event has occurred. Detach all ports. Resource
6392 * release is handled via devres.
6393 *
6394 * LOCKING:
6395 * Inherited from platform layer (may sleep).
6396 */
6397int ata_platform_remove_one(struct platform_device *pdev)
6398{
6399 struct ata_host *host = platform_get_drvdata(pdev);
6400
6401 ata_host_detach(host);
6402
6403 return 0;
6404}
6405
33267325
TH
6406static int __init ata_parse_force_one(char **cur,
6407 struct ata_force_ent *force_ent,
6408 const char **reason)
6409{
6410 /* FIXME: Currently, there's no way to tag init const data and
6411 * using __initdata causes build failure on some versions of
6412 * gcc. Once __initdataconst is implemented, add const to the
6413 * following structure.
6414 */
6415 static struct ata_force_param force_tbl[] __initdata = {
6416 { "40c", .cbl = ATA_CBL_PATA40 },
6417 { "80c", .cbl = ATA_CBL_PATA80 },
6418 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6419 { "unk", .cbl = ATA_CBL_PATA_UNK },
6420 { "ign", .cbl = ATA_CBL_PATA_IGN },
6421 { "sata", .cbl = ATA_CBL_SATA },
6422 { "1.5Gbps", .spd_limit = 1 },
6423 { "3.0Gbps", .spd_limit = 2 },
6424 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6425 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6426 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6427 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6428 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6429 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6430 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6431 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6432 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6433 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6434 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6435 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6436 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6437 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6438 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6439 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6440 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6441 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6442 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6443 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6444 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6445 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6446 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6447 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6448 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6449 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6450 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6451 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6452 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6453 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6454 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6455 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6456 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6457 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6458 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6459 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6460 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6461 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6462 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6463 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6464 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
33267325
TH
6465 };
6466 char *start = *cur, *p = *cur;
6467 char *id, *val, *endp;
6468 const struct ata_force_param *match_fp = NULL;
6469 int nr_matches = 0, i;
6470
6471 /* find where this param ends and update *cur */
6472 while (*p != '\0' && *p != ',')
6473 p++;
6474
6475 if (*p == '\0')
6476 *cur = p;
6477 else
6478 *cur = p + 1;
6479
6480 *p = '\0';
6481
6482 /* parse */
6483 p = strchr(start, ':');
6484 if (!p) {
6485 val = strstrip(start);
6486 goto parse_val;
6487 }
6488 *p = '\0';
6489
6490 id = strstrip(start);
6491 val = strstrip(p + 1);
6492
6493 /* parse id */
6494 p = strchr(id, '.');
6495 if (p) {
6496 *p++ = '\0';
6497 force_ent->device = simple_strtoul(p, &endp, 10);
6498 if (p == endp || *endp != '\0') {
6499 *reason = "invalid device";
6500 return -EINVAL;
6501 }
6502 }
6503
6504 force_ent->port = simple_strtoul(id, &endp, 10);
6505 if (p == endp || *endp != '\0') {
6506 *reason = "invalid port/link";
6507 return -EINVAL;
6508 }
6509
6510 parse_val:
6511 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6512 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6513 const struct ata_force_param *fp = &force_tbl[i];
6514
6515 if (strncasecmp(val, fp->name, strlen(val)))
6516 continue;
6517
6518 nr_matches++;
6519 match_fp = fp;
6520
6521 if (strcasecmp(val, fp->name) == 0) {
6522 nr_matches = 1;
6523 break;
6524 }
6525 }
6526
6527 if (!nr_matches) {
6528 *reason = "unknown value";
6529 return -EINVAL;
6530 }
6531 if (nr_matches > 1) {
6532 *reason = "ambigious value";
6533 return -EINVAL;
6534 }
6535
6536 force_ent->param = *match_fp;
6537
6538 return 0;
6539}
6540
6541static void __init ata_parse_force_param(void)
6542{
6543 int idx = 0, size = 1;
6544 int last_port = -1, last_device = -1;
6545 char *p, *cur, *next;
6546
6547 /* calculate maximum number of params and allocate force_tbl */
6548 for (p = ata_force_param_buf; *p; p++)
6549 if (*p == ',')
6550 size++;
6551
6552 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6553 if (!ata_force_tbl) {
6554 printk(KERN_WARNING "ata: failed to extend force table, "
6555 "libata.force ignored\n");
6556 return;
6557 }
6558
6559 /* parse and populate the table */
6560 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6561 const char *reason = "";
6562 struct ata_force_ent te = { .port = -1, .device = -1 };
6563
6564 next = cur;
6565 if (ata_parse_force_one(&next, &te, &reason)) {
6566 printk(KERN_WARNING "ata: failed to parse force "
6567 "parameter \"%s\" (%s)\n",
6568 cur, reason);
6569 continue;
6570 }
6571
6572 if (te.port == -1) {
6573 te.port = last_port;
6574 te.device = last_device;
6575 }
6576
6577 ata_force_tbl[idx++] = te;
6578
6579 last_port = te.port;
6580 last_device = te.device;
6581 }
6582
6583 ata_force_tbl_size = idx;
6584}
1da177e4 6585
1da177e4
LT
6586static int __init ata_init(void)
6587{
d9027470 6588 int rc;
270390e1 6589
33267325
TH
6590 ata_parse_force_param();
6591
6b66d958
MG
6592 ata_acpi_register();
6593
270390e1 6594 rc = ata_sff_init();
ad72cf98
TH
6595 if (rc) {
6596 kfree(ata_force_tbl);
6597 return rc;
6598 }
453b07ac 6599
d9027470
GG
6600 libata_transport_init();
6601 ata_scsi_transport_template = ata_attach_transport();
6602 if (!ata_scsi_transport_template) {
6603 ata_sff_exit();
6604 rc = -ENOMEM;
6605 goto err_out;
4fca377f 6606 }
d9027470 6607
1da177e4
LT
6608 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6609 return 0;
d9027470
GG
6610
6611err_out:
6612 return rc;
1da177e4
LT
6613}
6614
6615static void __exit ata_exit(void)
6616{
d9027470
GG
6617 ata_release_transport(ata_scsi_transport_template);
6618 libata_transport_exit();
270390e1 6619 ata_sff_exit();
6b66d958 6620 ata_acpi_unregister();
33267325 6621 kfree(ata_force_tbl);
1da177e4
LT
6622}
6623
a4625085 6624subsys_initcall(ata_init);
1da177e4
LT
6625module_exit(ata_exit);
6626
9990b6f3 6627static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6628
6629int ata_ratelimit(void)
6630{
9990b6f3 6631 return __ratelimit(&ratelimit);
67846b30
JG
6632}
6633
c0c362b6
TH
6634/**
6635 * ata_msleep - ATA EH owner aware msleep
6636 * @ap: ATA port to attribute the sleep to
6637 * @msecs: duration to sleep in milliseconds
6638 *
6639 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6640 * ownership is released before going to sleep and reacquired
6641 * after the sleep is complete. IOW, other ports sharing the
6642 * @ap->host will be allowed to own the EH while this task is
6643 * sleeping.
6644 *
6645 * LOCKING:
6646 * Might sleep.
6647 */
97750ceb
TH
6648void ata_msleep(struct ata_port *ap, unsigned int msecs)
6649{
c0c362b6
TH
6650 bool owns_eh = ap && ap->host->eh_owner == current;
6651
6652 if (owns_eh)
6653 ata_eh_release(ap);
6654
97750ceb 6655 msleep(msecs);
c0c362b6
TH
6656
6657 if (owns_eh)
6658 ata_eh_acquire(ap);
97750ceb
TH
6659}
6660
c22daff4
TH
6661/**
6662 * ata_wait_register - wait until register value changes
97750ceb 6663 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6664 * @reg: IO-mapped register
6665 * @mask: Mask to apply to read register value
6666 * @val: Wait condition
341c2c95
TH
6667 * @interval: polling interval in milliseconds
6668 * @timeout: timeout in milliseconds
c22daff4
TH
6669 *
6670 * Waiting for some bits of register to change is a common
6671 * operation for ATA controllers. This function reads 32bit LE
6672 * IO-mapped register @reg and tests for the following condition.
6673 *
6674 * (*@reg & mask) != val
6675 *
6676 * If the condition is met, it returns; otherwise, the process is
6677 * repeated after @interval_msec until timeout.
6678 *
6679 * LOCKING:
6680 * Kernel thread context (may sleep)
6681 *
6682 * RETURNS:
6683 * The final register value.
6684 */
97750ceb 6685u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6686 unsigned long interval, unsigned long timeout)
c22daff4 6687{
341c2c95 6688 unsigned long deadline;
c22daff4
TH
6689 u32 tmp;
6690
6691 tmp = ioread32(reg);
6692
6693 /* Calculate timeout _after_ the first read to make sure
6694 * preceding writes reach the controller before starting to
6695 * eat away the timeout.
6696 */
341c2c95 6697 deadline = ata_deadline(jiffies, timeout);
c22daff4 6698
341c2c95 6699 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6700 ata_msleep(ap, interval);
c22daff4
TH
6701 tmp = ioread32(reg);
6702 }
6703
6704 return tmp;
6705}
6706
dd5b06c4
TH
6707/*
6708 * Dummy port_ops
6709 */
182d7bba 6710static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6711{
182d7bba 6712 return AC_ERR_SYSTEM;
dd5b06c4
TH
6713}
6714
182d7bba 6715static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6716{
182d7bba 6717 /* truly dummy */
dd5b06c4
TH
6718}
6719
029cfd6b 6720struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6721 .qc_prep = ata_noop_qc_prep,
6722 .qc_issue = ata_dummy_qc_issue,
182d7bba 6723 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6724 .sched_eh = ata_std_sched_eh,
6725 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6726};
6727
21b0ad4f
TH
6728const struct ata_port_info ata_dummy_port_info = {
6729 .port_ops = &ata_dummy_port_ops,
6730};
6731
a9a79dfe
JP
6732/*
6733 * Utility print functions
6734 */
6735int ata_port_printk(const struct ata_port *ap, const char *level,
6736 const char *fmt, ...)
6737{
6738 struct va_format vaf;
6739 va_list args;
6740 int r;
6741
6742 va_start(args, fmt);
6743
6744 vaf.fmt = fmt;
6745 vaf.va = &args;
6746
6747 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6748
6749 va_end(args);
6750
6751 return r;
6752}
6753EXPORT_SYMBOL(ata_port_printk);
6754
6755int ata_link_printk(const struct ata_link *link, const char *level,
6756 const char *fmt, ...)
6757{
6758 struct va_format vaf;
6759 va_list args;
6760 int r;
6761
6762 va_start(args, fmt);
6763
6764 vaf.fmt = fmt;
6765 vaf.va = &args;
6766
6767 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6768 r = printk("%sata%u.%02u: %pV",
6769 level, link->ap->print_id, link->pmp, &vaf);
6770 else
6771 r = printk("%sata%u: %pV",
6772 level, link->ap->print_id, &vaf);
6773
6774 va_end(args);
6775
6776 return r;
6777}
6778EXPORT_SYMBOL(ata_link_printk);
6779
6780int ata_dev_printk(const struct ata_device *dev, const char *level,
6781 const char *fmt, ...)
6782{
6783 struct va_format vaf;
6784 va_list args;
6785 int r;
6786
6787 va_start(args, fmt);
6788
6789 vaf.fmt = fmt;
6790 vaf.va = &args;
6791
6792 r = printk("%sata%u.%02u: %pV",
6793 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6794 &vaf);
6795
6796 va_end(args);
6797
6798 return r;
6799}
6800EXPORT_SYMBOL(ata_dev_printk);
6801
06296a1e
JP
6802void ata_print_version(const struct device *dev, const char *version)
6803{
6804 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6805}
6806EXPORT_SYMBOL(ata_print_version);
6807
1da177e4
LT
6808/*
6809 * libata is essentially a library of internal helper functions for
6810 * low-level ATA host controller drivers. As such, the API/ABI is
6811 * likely to change as new drivers are added and updated.
6812 * Do not depend on ABI/API stability.
6813 */
e9c83914
TH
6814EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6815EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6816EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6817EXPORT_SYMBOL_GPL(ata_base_port_ops);
6818EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6819EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6820EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6821EXPORT_SYMBOL_GPL(ata_link_next);
6822EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6823EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6824EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6825EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6826EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6827EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6828EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6829EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6830EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6831EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6832EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6833EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6834EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6835EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6836EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6837EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6838EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6839EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6840EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6841EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6842EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6843EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6844EXPORT_SYMBOL_GPL(ata_mode_string);
6845EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6846EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6847EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6848EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6849EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6850EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6851EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6852EXPORT_SYMBOL_GPL(sata_link_debounce);
6853EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6854EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6855EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6856EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6857EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6858EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6859EXPORT_SYMBOL_GPL(ata_dev_classify);
6860EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6861EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6862EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6863EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6864EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6865EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6866EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6867EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 6868EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
6869EXPORT_SYMBOL_GPL(sata_scr_valid);
6870EXPORT_SYMBOL_GPL(sata_scr_read);
6871EXPORT_SYMBOL_GPL(sata_scr_write);
6872EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6873EXPORT_SYMBOL_GPL(ata_link_online);
6874EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6875#ifdef CONFIG_PM
cca3974e
JG
6876EXPORT_SYMBOL_GPL(ata_host_suspend);
6877EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6878#endif /* CONFIG_PM */
6a62a04d
TH
6879EXPORT_SYMBOL_GPL(ata_id_string);
6880EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6881EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6882EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6883
1bc4ccff 6884EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6885EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6886EXPORT_SYMBOL_GPL(ata_timing_compute);
6887EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6888EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6889
1da177e4
LT
6890#ifdef CONFIG_PCI
6891EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6892EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6893#ifdef CONFIG_PM
500530f6
TH
6894EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6895EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6896EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6897EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6898#endif /* CONFIG_PM */
1da177e4 6899#endif /* CONFIG_PCI */
9b847548 6900
b7db04d9
BN
6901EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6902
b64bbc39
TH
6903EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6904EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6905EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6906EXPORT_SYMBOL_GPL(ata_port_desc);
6907#ifdef CONFIG_PCI
6908EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6909#endif /* CONFIG_PCI */
7b70fc03 6910EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6911EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6912EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6913EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6914EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6915EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6916EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6917EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6918EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6919EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6920EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6921EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6922
6923EXPORT_SYMBOL_GPL(ata_cable_40wire);
6924EXPORT_SYMBOL_GPL(ata_cable_80wire);
6925EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6926EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6927EXPORT_SYMBOL_GPL(ata_cable_sata);