]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/ata/libata-core.c
ata_piix: SATA 2port controller port map fix
[mirror_ubuntu-eoan-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
9f45cbd3 71static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
3373efd8 72static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 73static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
baf4fdfa
ML
88int atapi_passthru16 = 1;
89module_param(atapi_passthru16, int, 0444);
90MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
c3c013a2
JG
92int libata_fua = 0;
93module_param_named(fua, libata_fua, int, 0444);
94MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
1e999736
AC
96static int ata_ignore_hpa = 0;
97module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
b3a70601
AC
100static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
101module_param_named(dma, libata_dma_mask, int, 0444);
102MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
103
a8601e5f
AM
104static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
105module_param(ata_probe_timeout, int, 0444);
106MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
107
6ebe9d86 108int libata_noacpi = 0;
d7d0dad6 109module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 110MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 111
1da177e4
LT
112MODULE_AUTHOR("Jeff Garzik");
113MODULE_DESCRIPTION("Library module for ATA devices");
114MODULE_LICENSE("GPL");
115MODULE_VERSION(DRV_VERSION);
116
0baab86b 117
1da177e4
LT
118/**
119 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
120 * @tf: Taskfile to convert
1da177e4 121 * @pmp: Port multiplier port
9977126c
TH
122 * @is_cmd: This FIS is for command
123 * @fis: Buffer into which data will output
1da177e4
LT
124 *
125 * Converts a standard ATA taskfile to a Serial ATA
126 * FIS structure (Register - Host to Device).
127 *
128 * LOCKING:
129 * Inherited from caller.
130 */
9977126c 131void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 132{
9977126c
TH
133 fis[0] = 0x27; /* Register - Host to Device FIS */
134 fis[1] = pmp & 0xf; /* Port multiplier number*/
135 if (is_cmd)
136 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
137
1da177e4
LT
138 fis[2] = tf->command;
139 fis[3] = tf->feature;
140
141 fis[4] = tf->lbal;
142 fis[5] = tf->lbam;
143 fis[6] = tf->lbah;
144 fis[7] = tf->device;
145
146 fis[8] = tf->hob_lbal;
147 fis[9] = tf->hob_lbam;
148 fis[10] = tf->hob_lbah;
149 fis[11] = tf->hob_feature;
150
151 fis[12] = tf->nsect;
152 fis[13] = tf->hob_nsect;
153 fis[14] = 0;
154 fis[15] = tf->ctl;
155
156 fis[16] = 0;
157 fis[17] = 0;
158 fis[18] = 0;
159 fis[19] = 0;
160}
161
162/**
163 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
164 * @fis: Buffer from which data will be input
165 * @tf: Taskfile to output
166 *
e12a1be6 167 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
168 *
169 * LOCKING:
170 * Inherited from caller.
171 */
172
057ace5e 173void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
174{
175 tf->command = fis[2]; /* status */
176 tf->feature = fis[3]; /* error */
177
178 tf->lbal = fis[4];
179 tf->lbam = fis[5];
180 tf->lbah = fis[6];
181 tf->device = fis[7];
182
183 tf->hob_lbal = fis[8];
184 tf->hob_lbam = fis[9];
185 tf->hob_lbah = fis[10];
186
187 tf->nsect = fis[12];
188 tf->hob_nsect = fis[13];
189}
190
8cbd6df1
AL
191static const u8 ata_rw_cmds[] = {
192 /* pio multi */
193 ATA_CMD_READ_MULTI,
194 ATA_CMD_WRITE_MULTI,
195 ATA_CMD_READ_MULTI_EXT,
196 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
197 0,
198 0,
199 0,
200 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
201 /* pio */
202 ATA_CMD_PIO_READ,
203 ATA_CMD_PIO_WRITE,
204 ATA_CMD_PIO_READ_EXT,
205 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
206 0,
207 0,
208 0,
209 0,
8cbd6df1
AL
210 /* dma */
211 ATA_CMD_READ,
212 ATA_CMD_WRITE,
213 ATA_CMD_READ_EXT,
9a3dccc4
TH
214 ATA_CMD_WRITE_EXT,
215 0,
216 0,
217 0,
218 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 219};
1da177e4
LT
220
221/**
8cbd6df1 222 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
223 * @tf: command to examine and configure
224 * @dev: device tf belongs to
1da177e4 225 *
2e9edbf8 226 * Examine the device configuration and tf->flags to calculate
8cbd6df1 227 * the proper read/write commands and protocol to use.
1da177e4
LT
228 *
229 * LOCKING:
230 * caller.
231 */
bd056d7e 232static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 233{
9a3dccc4 234 u8 cmd;
1da177e4 235
9a3dccc4 236 int index, fua, lba48, write;
2e9edbf8 237
9a3dccc4 238 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
239 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
240 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 241
8cbd6df1
AL
242 if (dev->flags & ATA_DFLAG_PIO) {
243 tf->protocol = ATA_PROT_PIO;
9a3dccc4 244 index = dev->multi_count ? 0 : 8;
9af5c9c9 245 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
246 /* Unable to use DMA due to host limitation */
247 tf->protocol = ATA_PROT_PIO;
0565c26d 248 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
249 } else {
250 tf->protocol = ATA_PROT_DMA;
9a3dccc4 251 index = 16;
8cbd6df1 252 }
1da177e4 253
9a3dccc4
TH
254 cmd = ata_rw_cmds[index + fua + lba48 + write];
255 if (cmd) {
256 tf->command = cmd;
257 return 0;
258 }
259 return -1;
1da177e4
LT
260}
261
35b649fe
TH
262/**
263 * ata_tf_read_block - Read block address from ATA taskfile
264 * @tf: ATA taskfile of interest
265 * @dev: ATA device @tf belongs to
266 *
267 * LOCKING:
268 * None.
269 *
270 * Read block address from @tf. This function can handle all
271 * three address formats - LBA, LBA48 and CHS. tf->protocol and
272 * flags select the address format to use.
273 *
274 * RETURNS:
275 * Block address read from @tf.
276 */
277u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
278{
279 u64 block = 0;
280
281 if (tf->flags & ATA_TFLAG_LBA) {
282 if (tf->flags & ATA_TFLAG_LBA48) {
283 block |= (u64)tf->hob_lbah << 40;
284 block |= (u64)tf->hob_lbam << 32;
285 block |= tf->hob_lbal << 24;
286 } else
287 block |= (tf->device & 0xf) << 24;
288
289 block |= tf->lbah << 16;
290 block |= tf->lbam << 8;
291 block |= tf->lbal;
292 } else {
293 u32 cyl, head, sect;
294
295 cyl = tf->lbam | (tf->lbah << 8);
296 head = tf->device & 0xf;
297 sect = tf->lbal;
298
299 block = (cyl * dev->heads + head) * dev->sectors + sect;
300 }
301
302 return block;
303}
304
bd056d7e
TH
305/**
306 * ata_build_rw_tf - Build ATA taskfile for given read/write request
307 * @tf: Target ATA taskfile
308 * @dev: ATA device @tf belongs to
309 * @block: Block address
310 * @n_block: Number of blocks
311 * @tf_flags: RW/FUA etc...
312 * @tag: tag
313 *
314 * LOCKING:
315 * None.
316 *
317 * Build ATA taskfile @tf for read/write request described by
318 * @block, @n_block, @tf_flags and @tag on @dev.
319 *
320 * RETURNS:
321 *
322 * 0 on success, -ERANGE if the request is too large for @dev,
323 * -EINVAL if the request is invalid.
324 */
325int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
326 u64 block, u32 n_block, unsigned int tf_flags,
327 unsigned int tag)
328{
329 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
330 tf->flags |= tf_flags;
331
6d1245bf 332 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
333 /* yay, NCQ */
334 if (!lba_48_ok(block, n_block))
335 return -ERANGE;
336
337 tf->protocol = ATA_PROT_NCQ;
338 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
339
340 if (tf->flags & ATA_TFLAG_WRITE)
341 tf->command = ATA_CMD_FPDMA_WRITE;
342 else
343 tf->command = ATA_CMD_FPDMA_READ;
344
345 tf->nsect = tag << 3;
346 tf->hob_feature = (n_block >> 8) & 0xff;
347 tf->feature = n_block & 0xff;
348
349 tf->hob_lbah = (block >> 40) & 0xff;
350 tf->hob_lbam = (block >> 32) & 0xff;
351 tf->hob_lbal = (block >> 24) & 0xff;
352 tf->lbah = (block >> 16) & 0xff;
353 tf->lbam = (block >> 8) & 0xff;
354 tf->lbal = block & 0xff;
355
356 tf->device = 1 << 6;
357 if (tf->flags & ATA_TFLAG_FUA)
358 tf->device |= 1 << 7;
359 } else if (dev->flags & ATA_DFLAG_LBA) {
360 tf->flags |= ATA_TFLAG_LBA;
361
362 if (lba_28_ok(block, n_block)) {
363 /* use LBA28 */
364 tf->device |= (block >> 24) & 0xf;
365 } else if (lba_48_ok(block, n_block)) {
366 if (!(dev->flags & ATA_DFLAG_LBA48))
367 return -ERANGE;
368
369 /* use LBA48 */
370 tf->flags |= ATA_TFLAG_LBA48;
371
372 tf->hob_nsect = (n_block >> 8) & 0xff;
373
374 tf->hob_lbah = (block >> 40) & 0xff;
375 tf->hob_lbam = (block >> 32) & 0xff;
376 tf->hob_lbal = (block >> 24) & 0xff;
377 } else
378 /* request too large even for LBA48 */
379 return -ERANGE;
380
381 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
382 return -EINVAL;
383
384 tf->nsect = n_block & 0xff;
385
386 tf->lbah = (block >> 16) & 0xff;
387 tf->lbam = (block >> 8) & 0xff;
388 tf->lbal = block & 0xff;
389
390 tf->device |= ATA_LBA;
391 } else {
392 /* CHS */
393 u32 sect, head, cyl, track;
394
395 /* The request -may- be too large for CHS addressing. */
396 if (!lba_28_ok(block, n_block))
397 return -ERANGE;
398
399 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
400 return -EINVAL;
401
402 /* Convert LBA to CHS */
403 track = (u32)block / dev->sectors;
404 cyl = track / dev->heads;
405 head = track % dev->heads;
406 sect = (u32)block % dev->sectors + 1;
407
408 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
409 (u32)block, track, cyl, head, sect);
410
411 /* Check whether the converted CHS can fit.
412 Cylinder: 0-65535
413 Head: 0-15
414 Sector: 1-255*/
415 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
416 return -ERANGE;
417
418 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
419 tf->lbal = sect;
420 tf->lbam = cyl;
421 tf->lbah = cyl >> 8;
422 tf->device |= head;
423 }
424
425 return 0;
426}
427
cb95d562
TH
428/**
429 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
430 * @pio_mask: pio_mask
431 * @mwdma_mask: mwdma_mask
432 * @udma_mask: udma_mask
433 *
434 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
435 * unsigned int xfer_mask.
436 *
437 * LOCKING:
438 * None.
439 *
440 * RETURNS:
441 * Packed xfer_mask.
442 */
443static unsigned int ata_pack_xfermask(unsigned int pio_mask,
444 unsigned int mwdma_mask,
445 unsigned int udma_mask)
446{
447 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
448 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
449 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
450}
451
c0489e4e
TH
452/**
453 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
454 * @xfer_mask: xfer_mask to unpack
455 * @pio_mask: resulting pio_mask
456 * @mwdma_mask: resulting mwdma_mask
457 * @udma_mask: resulting udma_mask
458 *
459 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
460 * Any NULL distination masks will be ignored.
461 */
462static void ata_unpack_xfermask(unsigned int xfer_mask,
463 unsigned int *pio_mask,
464 unsigned int *mwdma_mask,
465 unsigned int *udma_mask)
466{
467 if (pio_mask)
468 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
469 if (mwdma_mask)
470 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
471 if (udma_mask)
472 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
473}
474
cb95d562 475static const struct ata_xfer_ent {
be9a50c8 476 int shift, bits;
cb95d562
TH
477 u8 base;
478} ata_xfer_tbl[] = {
479 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
480 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
481 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
482 { -1, },
483};
484
485/**
486 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
487 * @xfer_mask: xfer_mask of interest
488 *
489 * Return matching XFER_* value for @xfer_mask. Only the highest
490 * bit of @xfer_mask is considered.
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Matching XFER_* value, 0 if no match found.
497 */
498static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
499{
500 int highbit = fls(xfer_mask) - 1;
501 const struct ata_xfer_ent *ent;
502
503 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
504 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
505 return ent->base + highbit - ent->shift;
506 return 0;
507}
508
509/**
510 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
511 * @xfer_mode: XFER_* of interest
512 *
513 * Return matching xfer_mask for @xfer_mode.
514 *
515 * LOCKING:
516 * None.
517 *
518 * RETURNS:
519 * Matching xfer_mask, 0 if no match found.
520 */
521static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
522{
523 const struct ata_xfer_ent *ent;
524
525 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
526 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
527 return 1 << (ent->shift + xfer_mode - ent->base);
528 return 0;
529}
530
531/**
532 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
533 * @xfer_mode: XFER_* of interest
534 *
535 * Return matching xfer_shift for @xfer_mode.
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Matching xfer_shift, -1 if no match found.
542 */
543static int ata_xfer_mode2shift(unsigned int xfer_mode)
544{
545 const struct ata_xfer_ent *ent;
546
547 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
548 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
549 return ent->shift;
550 return -1;
551}
552
1da177e4 553/**
1da7b0d0
TH
554 * ata_mode_string - convert xfer_mask to string
555 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
556 *
557 * Determine string which represents the highest speed
1da7b0d0 558 * (highest bit in @modemask).
1da177e4
LT
559 *
560 * LOCKING:
561 * None.
562 *
563 * RETURNS:
564 * Constant C string representing highest speed listed in
1da7b0d0 565 * @mode_mask, or the constant C string "<n/a>".
1da177e4 566 */
1da7b0d0 567static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 568{
75f554bc
TH
569 static const char * const xfer_mode_str[] = {
570 "PIO0",
571 "PIO1",
572 "PIO2",
573 "PIO3",
574 "PIO4",
b352e57d
AC
575 "PIO5",
576 "PIO6",
75f554bc
TH
577 "MWDMA0",
578 "MWDMA1",
579 "MWDMA2",
b352e57d
AC
580 "MWDMA3",
581 "MWDMA4",
75f554bc
TH
582 "UDMA/16",
583 "UDMA/25",
584 "UDMA/33",
585 "UDMA/44",
586 "UDMA/66",
587 "UDMA/100",
588 "UDMA/133",
589 "UDMA7",
590 };
1da7b0d0 591 int highbit;
1da177e4 592
1da7b0d0
TH
593 highbit = fls(xfer_mask) - 1;
594 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
595 return xfer_mode_str[highbit];
1da177e4 596 return "<n/a>";
1da177e4
LT
597}
598
4c360c81
TH
599static const char *sata_spd_string(unsigned int spd)
600{
601 static const char * const spd_str[] = {
602 "1.5 Gbps",
603 "3.0 Gbps",
604 };
605
606 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
607 return "<unknown>";
608 return spd_str[spd - 1];
609}
610
3373efd8 611void ata_dev_disable(struct ata_device *dev)
0b8efb0a 612{
09d7f9b0 613 if (ata_dev_enabled(dev)) {
9af5c9c9 614 if (ata_msg_drv(dev->link->ap))
09d7f9b0 615 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
616 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
617 ATA_DNXFER_QUIET);
0b8efb0a
TH
618 dev->class++;
619 }
620}
621
1da177e4 622/**
0d5ff566 623 * ata_devchk - PATA device presence detection
1da177e4
LT
624 * @ap: ATA channel to examine
625 * @device: Device to examine (starting at zero)
626 *
627 * This technique was originally described in
628 * Hale Landis's ATADRVR (www.ata-atapi.com), and
629 * later found its way into the ATA/ATAPI spec.
630 *
631 * Write a pattern to the ATA shadow registers,
632 * and if a device is present, it will respond by
633 * correctly storing and echoing back the
634 * ATA shadow register contents.
635 *
636 * LOCKING:
637 * caller.
638 */
639
0d5ff566 640static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
641{
642 struct ata_ioports *ioaddr = &ap->ioaddr;
643 u8 nsect, lbal;
644
645 ap->ops->dev_select(ap, device);
646
0d5ff566
TH
647 iowrite8(0x55, ioaddr->nsect_addr);
648 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 649
0d5ff566
TH
650 iowrite8(0xaa, ioaddr->nsect_addr);
651 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 652
0d5ff566
TH
653 iowrite8(0x55, ioaddr->nsect_addr);
654 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 655
0d5ff566
TH
656 nsect = ioread8(ioaddr->nsect_addr);
657 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
658
659 if ((nsect == 0x55) && (lbal == 0xaa))
660 return 1; /* we found a device */
661
662 return 0; /* nothing found */
663}
664
1da177e4
LT
665/**
666 * ata_dev_classify - determine device type based on ATA-spec signature
667 * @tf: ATA taskfile register set for device to be identified
668 *
669 * Determine from taskfile register contents whether a device is
670 * ATA or ATAPI, as per "Signature and persistence" section
671 * of ATA/PI spec (volume 1, sect 5.14).
672 *
673 * LOCKING:
674 * None.
675 *
676 * RETURNS:
633273a3
TH
677 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
678 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 679 */
057ace5e 680unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
681{
682 /* Apple's open source Darwin code hints that some devices only
683 * put a proper signature into the LBA mid/high registers,
684 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
685 *
686 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
687 * signatures for ATA and ATAPI devices attached on SerialATA,
688 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
689 * spec has never mentioned about using different signatures
690 * for ATA/ATAPI devices. Then, Serial ATA II: Port
691 * Multiplier specification began to use 0x69/0x96 to identify
692 * port multpliers and 0x3c/0xc3 to identify SEMB device.
693 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
694 * 0x69/0x96 shortly and described them as reserved for
695 * SerialATA.
696 *
697 * We follow the current spec and consider that 0x69/0x96
698 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 699 */
633273a3 700 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
701 DPRINTK("found ATA device by sig\n");
702 return ATA_DEV_ATA;
703 }
704
633273a3 705 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
706 DPRINTK("found ATAPI device by sig\n");
707 return ATA_DEV_ATAPI;
708 }
709
633273a3
TH
710 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
711 DPRINTK("found PMP device by sig\n");
712 return ATA_DEV_PMP;
713 }
714
715 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
716 printk("ata: SEMB device ignored\n");
717 return ATA_DEV_SEMB_UNSUP; /* not yet */
718 }
719
1da177e4
LT
720 DPRINTK("unknown device\n");
721 return ATA_DEV_UNKNOWN;
722}
723
724/**
725 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
726 * @dev: ATA device to classify (starting at zero)
727 * @present: device seems present
b4dc7623 728 * @r_err: Value of error register on completion
1da177e4
LT
729 *
730 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
731 * an ATA/ATAPI-defined set of values is placed in the ATA
732 * shadow registers, indicating the results of device detection
733 * and diagnostics.
734 *
735 * Select the ATA device, and read the values from the ATA shadow
736 * registers. Then parse according to the Error register value,
737 * and the spec-defined values examined by ata_dev_classify().
738 *
739 * LOCKING:
740 * caller.
b4dc7623
TH
741 *
742 * RETURNS:
743 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 744 */
3f19859e
TH
745unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
746 u8 *r_err)
1da177e4 747{
3f19859e 748 struct ata_port *ap = dev->link->ap;
1da177e4
LT
749 struct ata_taskfile tf;
750 unsigned int class;
751 u8 err;
752
3f19859e 753 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
754
755 memset(&tf, 0, sizeof(tf));
756
1da177e4 757 ap->ops->tf_read(ap, &tf);
0169e284 758 err = tf.feature;
b4dc7623
TH
759 if (r_err)
760 *r_err = err;
1da177e4 761
93590859 762 /* see if device passed diags: if master then continue and warn later */
3f19859e 763 if (err == 0 && dev->devno == 0)
93590859 764 /* diagnostic fail : do nothing _YET_ */
3f19859e 765 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 766 else if (err == 1)
1da177e4 767 /* do nothing */ ;
3f19859e 768 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
769 /* do nothing */ ;
770 else
b4dc7623 771 return ATA_DEV_NONE;
1da177e4 772
b4dc7623 773 /* determine if device is ATA or ATAPI */
1da177e4 774 class = ata_dev_classify(&tf);
b4dc7623 775
d7fbee05
TH
776 if (class == ATA_DEV_UNKNOWN) {
777 /* If the device failed diagnostic, it's likely to
778 * have reported incorrect device signature too.
779 * Assume ATA device if the device seems present but
780 * device signature is invalid with diagnostic
781 * failure.
782 */
783 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
784 class = ATA_DEV_ATA;
785 else
786 class = ATA_DEV_NONE;
787 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
788 class = ATA_DEV_NONE;
789
b4dc7623 790 return class;
1da177e4
LT
791}
792
793/**
6a62a04d 794 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
795 * @id: IDENTIFY DEVICE results we will examine
796 * @s: string into which data is output
797 * @ofs: offset into identify device page
798 * @len: length of string to return. must be an even number.
799 *
800 * The strings in the IDENTIFY DEVICE page are broken up into
801 * 16-bit chunks. Run through the string, and output each
802 * 8-bit chunk linearly, regardless of platform.
803 *
804 * LOCKING:
805 * caller.
806 */
807
6a62a04d
TH
808void ata_id_string(const u16 *id, unsigned char *s,
809 unsigned int ofs, unsigned int len)
1da177e4
LT
810{
811 unsigned int c;
812
813 while (len > 0) {
814 c = id[ofs] >> 8;
815 *s = c;
816 s++;
817
818 c = id[ofs] & 0xff;
819 *s = c;
820 s++;
821
822 ofs++;
823 len -= 2;
824 }
825}
826
0e949ff3 827/**
6a62a04d 828 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
829 * @id: IDENTIFY DEVICE results we will examine
830 * @s: string into which data is output
831 * @ofs: offset into identify device page
832 * @len: length of string to return. must be an odd number.
833 *
6a62a04d 834 * This function is identical to ata_id_string except that it
0e949ff3
TH
835 * trims trailing spaces and terminates the resulting string with
836 * null. @len must be actual maximum length (even number) + 1.
837 *
838 * LOCKING:
839 * caller.
840 */
6a62a04d
TH
841void ata_id_c_string(const u16 *id, unsigned char *s,
842 unsigned int ofs, unsigned int len)
0e949ff3
TH
843{
844 unsigned char *p;
845
846 WARN_ON(!(len & 1));
847
6a62a04d 848 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
849
850 p = s + strnlen(s, len - 1);
851 while (p > s && p[-1] == ' ')
852 p--;
853 *p = '\0';
854}
0baab86b 855
db6f8759
TH
856static u64 ata_id_n_sectors(const u16 *id)
857{
858 if (ata_id_has_lba(id)) {
859 if (ata_id_has_lba48(id))
860 return ata_id_u64(id, 100);
861 else
862 return ata_id_u32(id, 60);
863 } else {
864 if (ata_id_current_chs_valid(id))
865 return ata_id_u32(id, 57);
866 else
867 return id[1] * id[3] * id[6];
868 }
869}
870
1e999736
AC
871static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
872{
873 u64 sectors = 0;
874
875 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
876 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
877 sectors |= (tf->hob_lbal & 0xff) << 24;
878 sectors |= (tf->lbah & 0xff) << 16;
879 sectors |= (tf->lbam & 0xff) << 8;
880 sectors |= (tf->lbal & 0xff);
881
882 return ++sectors;
883}
884
885static u64 ata_tf_to_lba(struct ata_taskfile *tf)
886{
887 u64 sectors = 0;
888
889 sectors |= (tf->device & 0x0f) << 24;
890 sectors |= (tf->lbah & 0xff) << 16;
891 sectors |= (tf->lbam & 0xff) << 8;
892 sectors |= (tf->lbal & 0xff);
893
894 return ++sectors;
895}
896
897/**
c728a914
TH
898 * ata_read_native_max_address - Read native max address
899 * @dev: target device
900 * @max_sectors: out parameter for the result native max address
1e999736 901 *
c728a914
TH
902 * Perform an LBA48 or LBA28 native size query upon the device in
903 * question.
1e999736 904 *
c728a914
TH
905 * RETURNS:
906 * 0 on success, -EACCES if command is aborted by the drive.
907 * -EIO on other errors.
1e999736 908 */
c728a914 909static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 910{
c728a914 911 unsigned int err_mask;
1e999736 912 struct ata_taskfile tf;
c728a914 913 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
914
915 ata_tf_init(dev, &tf);
916
c728a914 917 /* always clear all address registers */
1e999736 918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 919
c728a914
TH
920 if (lba48) {
921 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
922 tf.flags |= ATA_TFLAG_LBA48;
923 } else
924 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 925
1e999736 926 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
927 tf.device |= ATA_LBA;
928
2b789108 929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
930 if (err_mask) {
931 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
932 "max address (err_mask=0x%x)\n", err_mask);
933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
934 return -EACCES;
935 return -EIO;
936 }
1e999736 937
c728a914
TH
938 if (lba48)
939 *max_sectors = ata_tf_to_lba48(&tf);
940 else
941 *max_sectors = ata_tf_to_lba(&tf);
93328e11
AC
942 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
943 (*max_sectors)--;
c728a914 944 return 0;
1e999736
AC
945}
946
947/**
c728a914
TH
948 * ata_set_max_sectors - Set max sectors
949 * @dev: target device
6b38d1d1 950 * @new_sectors: new max sectors value to set for the device
1e999736 951 *
c728a914
TH
952 * Set max sectors of @dev to @new_sectors.
953 *
954 * RETURNS:
955 * 0 on success, -EACCES if command is aborted or denied (due to
956 * previous non-volatile SET_MAX) by the drive. -EIO on other
957 * errors.
1e999736 958 */
05027adc 959static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 960{
c728a914 961 unsigned int err_mask;
1e999736 962 struct ata_taskfile tf;
c728a914 963 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
964
965 new_sectors--;
966
967 ata_tf_init(dev, &tf);
968
1e999736 969 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
970
971 if (lba48) {
972 tf.command = ATA_CMD_SET_MAX_EXT;
973 tf.flags |= ATA_TFLAG_LBA48;
974
975 tf.hob_lbal = (new_sectors >> 24) & 0xff;
976 tf.hob_lbam = (new_sectors >> 32) & 0xff;
977 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 978 } else {
c728a914
TH
979 tf.command = ATA_CMD_SET_MAX;
980
1e582ba4
TH
981 tf.device |= (new_sectors >> 24) & 0xf;
982 }
983
1e999736 984 tf.protocol |= ATA_PROT_NODATA;
c728a914 985 tf.device |= ATA_LBA;
1e999736
AC
986
987 tf.lbal = (new_sectors >> 0) & 0xff;
988 tf.lbam = (new_sectors >> 8) & 0xff;
989 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 990
2b789108 991 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
992 if (err_mask) {
993 ata_dev_printk(dev, KERN_WARNING, "failed to set "
994 "max address (err_mask=0x%x)\n", err_mask);
995 if (err_mask == AC_ERR_DEV &&
996 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
997 return -EACCES;
998 return -EIO;
999 }
1000
c728a914 1001 return 0;
1e999736
AC
1002}
1003
1004/**
1005 * ata_hpa_resize - Resize a device with an HPA set
1006 * @dev: Device to resize
1007 *
1008 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1009 * it if required to the full size of the media. The caller must check
1010 * the drive has the HPA feature set enabled.
05027adc
TH
1011 *
1012 * RETURNS:
1013 * 0 on success, -errno on failure.
1e999736 1014 */
05027adc 1015static int ata_hpa_resize(struct ata_device *dev)
1e999736 1016{
05027adc
TH
1017 struct ata_eh_context *ehc = &dev->link->eh_context;
1018 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1019 u64 sectors = ata_id_n_sectors(dev->id);
1020 u64 native_sectors;
c728a914 1021 int rc;
a617c09f 1022
05027adc
TH
1023 /* do we need to do it? */
1024 if (dev->class != ATA_DEV_ATA ||
1025 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1026 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1027 return 0;
1e999736 1028
05027adc
TH
1029 /* read native max address */
1030 rc = ata_read_native_max_address(dev, &native_sectors);
1031 if (rc) {
1032 /* If HPA isn't going to be unlocked, skip HPA
1033 * resizing from the next try.
1034 */
1035 if (!ata_ignore_hpa) {
1036 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1037 "broken, will skip HPA handling\n");
1038 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1039
1040 /* we can continue if device aborted the command */
1041 if (rc == -EACCES)
1042 rc = 0;
1e999736 1043 }
37301a55 1044
05027adc
TH
1045 return rc;
1046 }
1047
1048 /* nothing to do? */
1049 if (native_sectors <= sectors || !ata_ignore_hpa) {
1050 if (!print_info || native_sectors == sectors)
1051 return 0;
1052
1053 if (native_sectors > sectors)
1054 ata_dev_printk(dev, KERN_INFO,
1055 "HPA detected: current %llu, native %llu\n",
1056 (unsigned long long)sectors,
1057 (unsigned long long)native_sectors);
1058 else if (native_sectors < sectors)
1059 ata_dev_printk(dev, KERN_WARNING,
1060 "native sectors (%llu) is smaller than "
1061 "sectors (%llu)\n",
1062 (unsigned long long)native_sectors,
1063 (unsigned long long)sectors);
1064 return 0;
1065 }
1066
1067 /* let's unlock HPA */
1068 rc = ata_set_max_sectors(dev, native_sectors);
1069 if (rc == -EACCES) {
1070 /* if device aborted the command, skip HPA resizing */
1071 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1072 "(%llu -> %llu), skipping HPA handling\n",
1073 (unsigned long long)sectors,
1074 (unsigned long long)native_sectors);
1075 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1076 return 0;
1077 } else if (rc)
1078 return rc;
1079
1080 /* re-read IDENTIFY data */
1081 rc = ata_dev_reread_id(dev, 0);
1082 if (rc) {
1083 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1084 "data after HPA resizing\n");
1085 return rc;
1086 }
1087
1088 if (print_info) {
1089 u64 new_sectors = ata_id_n_sectors(dev->id);
1090 ata_dev_printk(dev, KERN_INFO,
1091 "HPA unlocked: %llu -> %llu, native %llu\n",
1092 (unsigned long long)sectors,
1093 (unsigned long long)new_sectors,
1094 (unsigned long long)native_sectors);
1095 }
1096
1097 return 0;
1e999736
AC
1098}
1099
10305f0f
AC
1100/**
1101 * ata_id_to_dma_mode - Identify DMA mode from id block
1102 * @dev: device to identify
cc261267 1103 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1104 *
1105 * Set up the timing values for the device based upon the identify
1106 * reported values for the DMA mode. This function is used by drivers
1107 * which rely upon firmware configured modes, but wish to report the
1108 * mode correctly when possible.
1109 *
1110 * In addition we emit similarly formatted messages to the default
1111 * ata_dev_set_mode handler, in order to provide consistency of
1112 * presentation.
1113 */
1114
1115void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1116{
1117 unsigned int mask;
1118 u8 mode;
1119
1120 /* Pack the DMA modes */
1121 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1122 if (dev->id[53] & 0x04)
1123 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1124
1125 /* Select the mode in use */
1126 mode = ata_xfer_mask2mode(mask);
1127
1128 if (mode != 0) {
1129 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1130 ata_mode_string(mask));
1131 } else {
1132 /* SWDMA perhaps ? */
1133 mode = unknown;
1134 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1135 }
1136
1137 /* Configure the device reporting */
1138 dev->xfer_mode = mode;
1139 dev->xfer_shift = ata_xfer_mode2shift(mode);
1140}
1141
0baab86b
EF
1142/**
1143 * ata_noop_dev_select - Select device 0/1 on ATA bus
1144 * @ap: ATA channel to manipulate
1145 * @device: ATA device (numbered from zero) to select
1146 *
1147 * This function performs no actual function.
1148 *
1149 * May be used as the dev_select() entry in ata_port_operations.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
1da177e4
LT
1154void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1155{
1156}
1157
0baab86b 1158
1da177e4
LT
1159/**
1160 * ata_std_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 *
1164 * Use the method defined in the ATA specification to
1165 * make either device 0, or device 1, active on the
0baab86b
EF
1166 * ATA channel. Works with both PIO and MMIO.
1167 *
1168 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1169 *
1170 * LOCKING:
1171 * caller.
1172 */
1173
1174void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1175{
1176 u8 tmp;
1177
1178 if (device == 0)
1179 tmp = ATA_DEVICE_OBS;
1180 else
1181 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1182
0d5ff566 1183 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1184 ata_pause(ap); /* needed; also flushes, for mmio */
1185}
1186
1187/**
1188 * ata_dev_select - Select device 0/1 on ATA bus
1189 * @ap: ATA channel to manipulate
1190 * @device: ATA device (numbered from zero) to select
1191 * @wait: non-zero to wait for Status register BSY bit to clear
1192 * @can_sleep: non-zero if context allows sleeping
1193 *
1194 * Use the method defined in the ATA specification to
1195 * make either device 0, or device 1, active on the
1196 * ATA channel.
1197 *
1198 * This is a high-level version of ata_std_dev_select(),
1199 * which additionally provides the services of inserting
1200 * the proper pauses and status polling, where needed.
1201 *
1202 * LOCKING:
1203 * caller.
1204 */
1205
1206void ata_dev_select(struct ata_port *ap, unsigned int device,
1207 unsigned int wait, unsigned int can_sleep)
1208{
88574551 1209 if (ata_msg_probe(ap))
44877b4e
TH
1210 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1211 "device %u, wait %u\n", device, wait);
1da177e4
LT
1212
1213 if (wait)
1214 ata_wait_idle(ap);
1215
1216 ap->ops->dev_select(ap, device);
1217
1218 if (wait) {
9af5c9c9 1219 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1220 msleep(150);
1221 ata_wait_idle(ap);
1222 }
1223}
1224
1225/**
1226 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1227 * @id: IDENTIFY DEVICE page to dump
1da177e4 1228 *
0bd3300a
TH
1229 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1230 * page.
1da177e4
LT
1231 *
1232 * LOCKING:
1233 * caller.
1234 */
1235
0bd3300a 1236static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1237{
1238 DPRINTK("49==0x%04x "
1239 "53==0x%04x "
1240 "63==0x%04x "
1241 "64==0x%04x "
1242 "75==0x%04x \n",
0bd3300a
TH
1243 id[49],
1244 id[53],
1245 id[63],
1246 id[64],
1247 id[75]);
1da177e4
LT
1248 DPRINTK("80==0x%04x "
1249 "81==0x%04x "
1250 "82==0x%04x "
1251 "83==0x%04x "
1252 "84==0x%04x \n",
0bd3300a
TH
1253 id[80],
1254 id[81],
1255 id[82],
1256 id[83],
1257 id[84]);
1da177e4
LT
1258 DPRINTK("88==0x%04x "
1259 "93==0x%04x\n",
0bd3300a
TH
1260 id[88],
1261 id[93]);
1da177e4
LT
1262}
1263
cb95d562
TH
1264/**
1265 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1266 * @id: IDENTIFY data to compute xfer mask from
1267 *
1268 * Compute the xfermask for this device. This is not as trivial
1269 * as it seems if we must consider early devices correctly.
1270 *
1271 * FIXME: pre IDE drive timing (do we care ?).
1272 *
1273 * LOCKING:
1274 * None.
1275 *
1276 * RETURNS:
1277 * Computed xfermask
1278 */
1279static unsigned int ata_id_xfermask(const u16 *id)
1280{
1281 unsigned int pio_mask, mwdma_mask, udma_mask;
1282
1283 /* Usual case. Word 53 indicates word 64 is valid */
1284 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1285 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1286 pio_mask <<= 3;
1287 pio_mask |= 0x7;
1288 } else {
1289 /* If word 64 isn't valid then Word 51 high byte holds
1290 * the PIO timing number for the maximum. Turn it into
1291 * a mask.
1292 */
7a0f1c8a 1293 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1294 if (mode < 5) /* Valid PIO range */
1295 pio_mask = (2 << mode) - 1;
1296 else
1297 pio_mask = 1;
cb95d562
TH
1298
1299 /* But wait.. there's more. Design your standards by
1300 * committee and you too can get a free iordy field to
1301 * process. However its the speeds not the modes that
1302 * are supported... Note drivers using the timing API
1303 * will get this right anyway
1304 */
1305 }
1306
1307 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1308
b352e57d
AC
1309 if (ata_id_is_cfa(id)) {
1310 /*
1311 * Process compact flash extended modes
1312 */
1313 int pio = id[163] & 0x7;
1314 int dma = (id[163] >> 3) & 7;
1315
1316 if (pio)
1317 pio_mask |= (1 << 5);
1318 if (pio > 1)
1319 pio_mask |= (1 << 6);
1320 if (dma)
1321 mwdma_mask |= (1 << 3);
1322 if (dma > 1)
1323 mwdma_mask |= (1 << 4);
1324 }
1325
fb21f0d0
TH
1326 udma_mask = 0;
1327 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1328 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1329
1330 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1331}
1332
86e45b6b
TH
1333/**
1334 * ata_port_queue_task - Queue port_task
1335 * @ap: The ata_port to queue port_task for
e2a7f77a 1336 * @fn: workqueue function to be scheduled
65f27f38 1337 * @data: data for @fn to use
e2a7f77a 1338 * @delay: delay time for workqueue function
86e45b6b
TH
1339 *
1340 * Schedule @fn(@data) for execution after @delay jiffies using
1341 * port_task. There is one port_task per port and it's the
1342 * user(low level driver)'s responsibility to make sure that only
1343 * one task is active at any given time.
1344 *
1345 * libata core layer takes care of synchronization between
1346 * port_task and EH. ata_port_queue_task() may be ignored for EH
1347 * synchronization.
1348 *
1349 * LOCKING:
1350 * Inherited from caller.
1351 */
65f27f38 1352void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1353 unsigned long delay)
1354{
65f27f38
DH
1355 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1356 ap->port_task_data = data;
86e45b6b 1357
45a66c1c
ON
1358 /* may fail if ata_port_flush_task() in progress */
1359 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1360}
1361
1362/**
1363 * ata_port_flush_task - Flush port_task
1364 * @ap: The ata_port to flush port_task for
1365 *
1366 * After this function completes, port_task is guranteed not to
1367 * be running or scheduled.
1368 *
1369 * LOCKING:
1370 * Kernel thread context (may sleep)
1371 */
1372void ata_port_flush_task(struct ata_port *ap)
1373{
86e45b6b
TH
1374 DPRINTK("ENTER\n");
1375
45a66c1c 1376 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1377
0dd4b21f
BP
1378 if (ata_msg_ctl(ap))
1379 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1380}
1381
7102d230 1382static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1383{
77853bf2 1384 struct completion *waiting = qc->private_data;
a2a7a662 1385
a2a7a662 1386 complete(waiting);
a2a7a662
TH
1387}
1388
1389/**
2432697b 1390 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1391 * @dev: Device to which the command is sent
1392 * @tf: Taskfile registers for the command and the result
d69cf37d 1393 * @cdb: CDB for packet command
a2a7a662 1394 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1395 * @sg: sg list for the data buffer of the command
1396 * @n_elem: Number of sg entries
2b789108 1397 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1398 *
1399 * Executes libata internal command with timeout. @tf contains
1400 * command on entry and result on return. Timeout and error
1401 * conditions are reported via return value. No recovery action
1402 * is taken after a command times out. It's caller's duty to
1403 * clean up after timeout.
1404 *
1405 * LOCKING:
1406 * None. Should be called with kernel context, might sleep.
551e8889
TH
1407 *
1408 * RETURNS:
1409 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1410 */
2432697b
TH
1411unsigned ata_exec_internal_sg(struct ata_device *dev,
1412 struct ata_taskfile *tf, const u8 *cdb,
1413 int dma_dir, struct scatterlist *sg,
2b789108 1414 unsigned int n_elem, unsigned long timeout)
a2a7a662 1415{
9af5c9c9
TH
1416 struct ata_link *link = dev->link;
1417 struct ata_port *ap = link->ap;
a2a7a662
TH
1418 u8 command = tf->command;
1419 struct ata_queued_cmd *qc;
2ab7db1f 1420 unsigned int tag, preempted_tag;
dedaf2b0 1421 u32 preempted_sactive, preempted_qc_active;
da917d69 1422 int preempted_nr_active_links;
60be6b9a 1423 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1424 unsigned long flags;
77853bf2 1425 unsigned int err_mask;
d95a717f 1426 int rc;
a2a7a662 1427
ba6a1308 1428 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1429
e3180499 1430 /* no internal command while frozen */
b51e9e5d 1431 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1432 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1433 return AC_ERR_SYSTEM;
1434 }
1435
2ab7db1f 1436 /* initialize internal qc */
a2a7a662 1437
2ab7db1f
TH
1438 /* XXX: Tag 0 is used for drivers with legacy EH as some
1439 * drivers choke if any other tag is given. This breaks
1440 * ata_tag_internal() test for those drivers. Don't use new
1441 * EH stuff without converting to it.
1442 */
1443 if (ap->ops->error_handler)
1444 tag = ATA_TAG_INTERNAL;
1445 else
1446 tag = 0;
1447
6cec4a39 1448 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1449 BUG();
f69499f4 1450 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1451
1452 qc->tag = tag;
1453 qc->scsicmd = NULL;
1454 qc->ap = ap;
1455 qc->dev = dev;
1456 ata_qc_reinit(qc);
1457
9af5c9c9
TH
1458 preempted_tag = link->active_tag;
1459 preempted_sactive = link->sactive;
dedaf2b0 1460 preempted_qc_active = ap->qc_active;
da917d69 1461 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1462 link->active_tag = ATA_TAG_POISON;
1463 link->sactive = 0;
dedaf2b0 1464 ap->qc_active = 0;
da917d69 1465 ap->nr_active_links = 0;
2ab7db1f
TH
1466
1467 /* prepare & issue qc */
a2a7a662 1468 qc->tf = *tf;
d69cf37d
TH
1469 if (cdb)
1470 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1471 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1472 qc->dma_dir = dma_dir;
1473 if (dma_dir != DMA_NONE) {
2432697b
TH
1474 unsigned int i, buflen = 0;
1475
1476 for (i = 0; i < n_elem; i++)
1477 buflen += sg[i].length;
1478
1479 ata_sg_init(qc, sg, n_elem);
49c80429 1480 qc->nbytes = buflen;
a2a7a662
TH
1481 }
1482
77853bf2 1483 qc->private_data = &wait;
a2a7a662
TH
1484 qc->complete_fn = ata_qc_complete_internal;
1485
8e0e694a 1486 ata_qc_issue(qc);
a2a7a662 1487
ba6a1308 1488 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1489
2b789108
TH
1490 if (!timeout)
1491 timeout = ata_probe_timeout * 1000 / HZ;
1492
1493 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1494
1495 ata_port_flush_task(ap);
41ade50c 1496
d95a717f 1497 if (!rc) {
ba6a1308 1498 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1499
1500 /* We're racing with irq here. If we lose, the
1501 * following test prevents us from completing the qc
d95a717f
TH
1502 * twice. If we win, the port is frozen and will be
1503 * cleaned up by ->post_internal_cmd().
a2a7a662 1504 */
77853bf2 1505 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1506 qc->err_mask |= AC_ERR_TIMEOUT;
1507
1508 if (ap->ops->error_handler)
1509 ata_port_freeze(ap);
1510 else
1511 ata_qc_complete(qc);
f15a1daf 1512
0dd4b21f
BP
1513 if (ata_msg_warn(ap))
1514 ata_dev_printk(dev, KERN_WARNING,
88574551 1515 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1516 }
1517
ba6a1308 1518 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1519 }
1520
d95a717f
TH
1521 /* do post_internal_cmd */
1522 if (ap->ops->post_internal_cmd)
1523 ap->ops->post_internal_cmd(qc);
1524
a51d644a
TH
1525 /* perform minimal error analysis */
1526 if (qc->flags & ATA_QCFLAG_FAILED) {
1527 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1528 qc->err_mask |= AC_ERR_DEV;
1529
1530 if (!qc->err_mask)
1531 qc->err_mask |= AC_ERR_OTHER;
1532
1533 if (qc->err_mask & ~AC_ERR_OTHER)
1534 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1535 }
1536
15869303 1537 /* finish up */
ba6a1308 1538 spin_lock_irqsave(ap->lock, flags);
15869303 1539
e61e0672 1540 *tf = qc->result_tf;
77853bf2
TH
1541 err_mask = qc->err_mask;
1542
1543 ata_qc_free(qc);
9af5c9c9
TH
1544 link->active_tag = preempted_tag;
1545 link->sactive = preempted_sactive;
dedaf2b0 1546 ap->qc_active = preempted_qc_active;
da917d69 1547 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1548
1f7dd3e9
TH
1549 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1550 * Until those drivers are fixed, we detect the condition
1551 * here, fail the command with AC_ERR_SYSTEM and reenable the
1552 * port.
1553 *
1554 * Note that this doesn't change any behavior as internal
1555 * command failure results in disabling the device in the
1556 * higher layer for LLDDs without new reset/EH callbacks.
1557 *
1558 * Kill the following code as soon as those drivers are fixed.
1559 */
198e0fed 1560 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1561 err_mask |= AC_ERR_SYSTEM;
1562 ata_port_probe(ap);
1563 }
1564
ba6a1308 1565 spin_unlock_irqrestore(ap->lock, flags);
15869303 1566
77853bf2 1567 return err_mask;
a2a7a662
TH
1568}
1569
2432697b 1570/**
33480a0e 1571 * ata_exec_internal - execute libata internal command
2432697b
TH
1572 * @dev: Device to which the command is sent
1573 * @tf: Taskfile registers for the command and the result
1574 * @cdb: CDB for packet command
1575 * @dma_dir: Data tranfer direction of the command
1576 * @buf: Data buffer of the command
1577 * @buflen: Length of data buffer
2b789108 1578 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1579 *
1580 * Wrapper around ata_exec_internal_sg() which takes simple
1581 * buffer instead of sg list.
1582 *
1583 * LOCKING:
1584 * None. Should be called with kernel context, might sleep.
1585 *
1586 * RETURNS:
1587 * Zero on success, AC_ERR_* mask on failure
1588 */
1589unsigned ata_exec_internal(struct ata_device *dev,
1590 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1591 int dma_dir, void *buf, unsigned int buflen,
1592 unsigned long timeout)
2432697b 1593{
33480a0e
TH
1594 struct scatterlist *psg = NULL, sg;
1595 unsigned int n_elem = 0;
2432697b 1596
33480a0e
TH
1597 if (dma_dir != DMA_NONE) {
1598 WARN_ON(!buf);
1599 sg_init_one(&sg, buf, buflen);
1600 psg = &sg;
1601 n_elem++;
1602 }
2432697b 1603
2b789108
TH
1604 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1605 timeout);
2432697b
TH
1606}
1607
977e6b9f
TH
1608/**
1609 * ata_do_simple_cmd - execute simple internal command
1610 * @dev: Device to which the command is sent
1611 * @cmd: Opcode to execute
1612 *
1613 * Execute a 'simple' command, that only consists of the opcode
1614 * 'cmd' itself, without filling any other registers
1615 *
1616 * LOCKING:
1617 * Kernel thread context (may sleep).
1618 *
1619 * RETURNS:
1620 * Zero on success, AC_ERR_* mask on failure
e58eb583 1621 */
77b08fb5 1622unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1623{
1624 struct ata_taskfile tf;
e58eb583
TH
1625
1626 ata_tf_init(dev, &tf);
1627
1628 tf.command = cmd;
1629 tf.flags |= ATA_TFLAG_DEVICE;
1630 tf.protocol = ATA_PROT_NODATA;
1631
2b789108 1632 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1633}
1634
1bc4ccff
AC
1635/**
1636 * ata_pio_need_iordy - check if iordy needed
1637 * @adev: ATA device
1638 *
1639 * Check if the current speed of the device requires IORDY. Used
1640 * by various controllers for chip configuration.
1641 */
a617c09f 1642
1bc4ccff
AC
1643unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644{
432729f0
AC
1645 /* Controller doesn't support IORDY. Probably a pointless check
1646 as the caller should know this */
9af5c9c9 1647 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1648 return 0;
432729f0
AC
1649 /* PIO3 and higher it is mandatory */
1650 if (adev->pio_mode > XFER_PIO_2)
1651 return 1;
1652 /* We turn it on when possible */
1653 if (ata_id_has_iordy(adev->id))
1bc4ccff 1654 return 1;
432729f0
AC
1655 return 0;
1656}
2e9edbf8 1657
432729f0
AC
1658/**
1659 * ata_pio_mask_no_iordy - Return the non IORDY mask
1660 * @adev: ATA device
1661 *
1662 * Compute the highest mode possible if we are not using iordy. Return
1663 * -1 if no iordy mode is available.
1664 */
a617c09f 1665
432729f0
AC
1666static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1667{
1bc4ccff 1668 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1669 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1670 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1671 /* Is the speed faster than the drive allows non IORDY ? */
1672 if (pio) {
1673 /* This is cycle times not frequency - watch the logic! */
1674 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1675 return 3 << ATA_SHIFT_PIO;
1676 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1677 }
1678 }
432729f0 1679 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1680}
1681
1da177e4 1682/**
49016aca 1683 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1684 * @dev: target device
1685 * @p_class: pointer to class of the target device (may be changed)
bff04647 1686 * @flags: ATA_READID_* flags
fe635c7e 1687 * @id: buffer to read IDENTIFY data into
1da177e4 1688 *
49016aca
TH
1689 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1690 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1691 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1692 * for pre-ATA4 drives.
1da177e4 1693 *
50a99018
AC
1694 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1695 * now we abort if we hit that case.
1696 *
1da177e4 1697 * LOCKING:
49016aca
TH
1698 * Kernel thread context (may sleep)
1699 *
1700 * RETURNS:
1701 * 0 on success, -errno otherwise.
1da177e4 1702 */
a9beec95 1703int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1704 unsigned int flags, u16 *id)
1da177e4 1705{
9af5c9c9 1706 struct ata_port *ap = dev->link->ap;
49016aca 1707 unsigned int class = *p_class;
a0123703 1708 struct ata_taskfile tf;
49016aca
TH
1709 unsigned int err_mask = 0;
1710 const char *reason;
54936f8b 1711 int may_fallback = 1, tried_spinup = 0;
49016aca 1712 int rc;
1da177e4 1713
0dd4b21f 1714 if (ata_msg_ctl(ap))
44877b4e 1715 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1716
49016aca 1717 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1718 retry:
3373efd8 1719 ata_tf_init(dev, &tf);
a0123703 1720
49016aca
TH
1721 switch (class) {
1722 case ATA_DEV_ATA:
a0123703 1723 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1724 break;
1725 case ATA_DEV_ATAPI:
a0123703 1726 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1727 break;
1728 default:
1729 rc = -ENODEV;
1730 reason = "unsupported class";
1731 goto err_out;
1da177e4
LT
1732 }
1733
a0123703 1734 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1735
1736 /* Some devices choke if TF registers contain garbage. Make
1737 * sure those are properly initialized.
1738 */
1739 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1740
1741 /* Device presence detection is unreliable on some
1742 * controllers. Always poll IDENTIFY if available.
1743 */
1744 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1745
3373efd8 1746 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1747 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1748 if (err_mask) {
800b3996 1749 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1750 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1751 ap->print_id, dev->devno);
55a8e2c8
TH
1752 return -ENOENT;
1753 }
1754
54936f8b
TH
1755 /* Device or controller might have reported the wrong
1756 * device class. Give a shot at the other IDENTIFY if
1757 * the current one is aborted by the device.
1758 */
1759 if (may_fallback &&
1760 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1761 may_fallback = 0;
1762
1763 if (class == ATA_DEV_ATA)
1764 class = ATA_DEV_ATAPI;
1765 else
1766 class = ATA_DEV_ATA;
1767 goto retry;
1768 }
1769
49016aca
TH
1770 rc = -EIO;
1771 reason = "I/O error";
1da177e4
LT
1772 goto err_out;
1773 }
1774
54936f8b
TH
1775 /* Falling back doesn't make sense if ID data was read
1776 * successfully at least once.
1777 */
1778 may_fallback = 0;
1779
49016aca 1780 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1781
49016aca 1782 /* sanity check */
a4f5749b 1783 rc = -EINVAL;
6070068b 1784 reason = "device reports invalid type";
a4f5749b
TH
1785
1786 if (class == ATA_DEV_ATA) {
1787 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1788 goto err_out;
1789 } else {
1790 if (ata_id_is_ata(id))
1791 goto err_out;
49016aca
TH
1792 }
1793
169439c2
ML
1794 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1795 tried_spinup = 1;
1796 /*
1797 * Drive powered-up in standby mode, and requires a specific
1798 * SET_FEATURES spin-up subcommand before it will accept
1799 * anything other than the original IDENTIFY command.
1800 */
1801 ata_tf_init(dev, &tf);
1802 tf.command = ATA_CMD_SET_FEATURES;
1803 tf.feature = SETFEATURES_SPINUP;
1804 tf.protocol = ATA_PROT_NODATA;
1805 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2b789108
TH
1806 err_mask = ata_exec_internal(dev, &tf, NULL,
1807 DMA_NONE, NULL, 0, 0);
fb0582f9 1808 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1809 rc = -EIO;
1810 reason = "SPINUP failed";
1811 goto err_out;
1812 }
1813 /*
1814 * If the drive initially returned incomplete IDENTIFY info,
1815 * we now must reissue the IDENTIFY command.
1816 */
1817 if (id[2] == 0x37c8)
1818 goto retry;
1819 }
1820
bff04647 1821 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1822 /*
1823 * The exact sequence expected by certain pre-ATA4 drives is:
1824 * SRST RESET
50a99018
AC
1825 * IDENTIFY (optional in early ATA)
1826 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1827 * anything else..
1828 * Some drives were very specific about that exact sequence.
50a99018
AC
1829 *
1830 * Note that ATA4 says lba is mandatory so the second check
1831 * shoud never trigger.
49016aca
TH
1832 */
1833 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1834 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1835 if (err_mask) {
1836 rc = -EIO;
1837 reason = "INIT_DEV_PARAMS failed";
1838 goto err_out;
1839 }
1840
1841 /* current CHS translation info (id[53-58]) might be
1842 * changed. reread the identify device info.
1843 */
bff04647 1844 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1845 goto retry;
1846 }
1847 }
1848
1849 *p_class = class;
fe635c7e 1850
49016aca
TH
1851 return 0;
1852
1853 err_out:
88574551 1854 if (ata_msg_warn(ap))
0dd4b21f 1855 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1856 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1857 return rc;
1858}
1859
3373efd8 1860static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1861{
9af5c9c9
TH
1862 struct ata_port *ap = dev->link->ap;
1863 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1864}
1865
a6e6ce8e
TH
1866static void ata_dev_config_ncq(struct ata_device *dev,
1867 char *desc, size_t desc_sz)
1868{
9af5c9c9 1869 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1870 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1871
1872 if (!ata_id_has_ncq(dev->id)) {
1873 desc[0] = '\0';
1874 return;
1875 }
75683fe7 1876 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1877 snprintf(desc, desc_sz, "NCQ (not used)");
1878 return;
1879 }
a6e6ce8e 1880 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1881 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1882 dev->flags |= ATA_DFLAG_NCQ;
1883 }
1884
1885 if (hdepth >= ddepth)
1886 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1887 else
1888 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1889}
1890
49016aca 1891/**
ffeae418 1892 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1893 * @dev: Target device to configure
1894 *
1895 * Configure @dev according to @dev->id. Generic and low-level
1896 * driver specific fixups are also applied.
49016aca
TH
1897 *
1898 * LOCKING:
ffeae418
TH
1899 * Kernel thread context (may sleep)
1900 *
1901 * RETURNS:
1902 * 0 on success, -errno otherwise
49016aca 1903 */
efdaedc4 1904int ata_dev_configure(struct ata_device *dev)
49016aca 1905{
9af5c9c9
TH
1906 struct ata_port *ap = dev->link->ap;
1907 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1908 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1909 const u16 *id = dev->id;
ff8854b2 1910 unsigned int xfer_mask;
b352e57d 1911 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1912 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1913 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1914 int rc;
49016aca 1915
0dd4b21f 1916 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1917 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1918 __FUNCTION__);
ffeae418 1919 return 0;
49016aca
TH
1920 }
1921
0dd4b21f 1922 if (ata_msg_probe(ap))
44877b4e 1923 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1924
75683fe7
TH
1925 /* set horkage */
1926 dev->horkage |= ata_dev_blacklisted(dev);
1927
6746544c
TH
1928 /* let ACPI work its magic */
1929 rc = ata_acpi_on_devcfg(dev);
1930 if (rc)
1931 return rc;
08573a86 1932
05027adc
TH
1933 /* massage HPA, do it early as it might change IDENTIFY data */
1934 rc = ata_hpa_resize(dev);
1935 if (rc)
1936 return rc;
1937
c39f5ebe 1938 /* print device capabilities */
0dd4b21f 1939 if (ata_msg_probe(ap))
88574551
TH
1940 ata_dev_printk(dev, KERN_DEBUG,
1941 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1942 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1943 __FUNCTION__,
f15a1daf
TH
1944 id[49], id[82], id[83], id[84],
1945 id[85], id[86], id[87], id[88]);
c39f5ebe 1946
208a9933 1947 /* initialize to-be-configured parameters */
ea1dd4e1 1948 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1949 dev->max_sectors = 0;
1950 dev->cdb_len = 0;
1951 dev->n_sectors = 0;
1952 dev->cylinders = 0;
1953 dev->heads = 0;
1954 dev->sectors = 0;
1955
1da177e4
LT
1956 /*
1957 * common ATA, ATAPI feature tests
1958 */
1959
ff8854b2 1960 /* find max transfer mode; for printk only */
1148c3a7 1961 xfer_mask = ata_id_xfermask(id);
1da177e4 1962
0dd4b21f
BP
1963 if (ata_msg_probe(ap))
1964 ata_dump_id(id);
1da177e4 1965
ef143d57
AL
1966 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1967 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1968 sizeof(fwrevbuf));
1969
1970 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1971 sizeof(modelbuf));
1972
1da177e4
LT
1973 /* ATA-specific feature tests */
1974 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1975 if (ata_id_is_cfa(id)) {
1976 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1977 ata_dev_printk(dev, KERN_WARNING,
1978 "supports DRM functions and may "
1979 "not be fully accessable.\n");
b352e57d
AC
1980 snprintf(revbuf, 7, "CFA");
1981 }
1982 else
1983 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1984
1148c3a7 1985 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1986
3f64f565
EM
1987 if (dev->id[59] & 0x100)
1988 dev->multi_count = dev->id[59] & 0xff;
1989
1148c3a7 1990 if (ata_id_has_lba(id)) {
4c2d721a 1991 const char *lba_desc;
a6e6ce8e 1992 char ncq_desc[20];
8bf62ece 1993
4c2d721a
TH
1994 lba_desc = "LBA";
1995 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1996 if (ata_id_has_lba48(id)) {
8bf62ece 1997 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1998 lba_desc = "LBA48";
6fc49adb
TH
1999
2000 if (dev->n_sectors >= (1UL << 28) &&
2001 ata_id_has_flush_ext(id))
2002 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2003 }
8bf62ece 2004
a6e6ce8e
TH
2005 /* config NCQ */
2006 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2007
8bf62ece 2008 /* print device info to dmesg */
3f64f565
EM
2009 if (ata_msg_drv(ap) && print_info) {
2010 ata_dev_printk(dev, KERN_INFO,
2011 "%s: %s, %s, max %s\n",
2012 revbuf, modelbuf, fwrevbuf,
2013 ata_mode_string(xfer_mask));
2014 ata_dev_printk(dev, KERN_INFO,
2015 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2016 (unsigned long long)dev->n_sectors,
3f64f565
EM
2017 dev->multi_count, lba_desc, ncq_desc);
2018 }
ffeae418 2019 } else {
8bf62ece
AL
2020 /* CHS */
2021
2022 /* Default translation */
1148c3a7
TH
2023 dev->cylinders = id[1];
2024 dev->heads = id[3];
2025 dev->sectors = id[6];
8bf62ece 2026
1148c3a7 2027 if (ata_id_current_chs_valid(id)) {
8bf62ece 2028 /* Current CHS translation is valid. */
1148c3a7
TH
2029 dev->cylinders = id[54];
2030 dev->heads = id[55];
2031 dev->sectors = id[56];
8bf62ece
AL
2032 }
2033
2034 /* print device info to dmesg */
3f64f565 2035 if (ata_msg_drv(ap) && print_info) {
88574551 2036 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2037 "%s: %s, %s, max %s\n",
2038 revbuf, modelbuf, fwrevbuf,
2039 ata_mode_string(xfer_mask));
a84471fe 2040 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2041 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2042 (unsigned long long)dev->n_sectors,
2043 dev->multi_count, dev->cylinders,
2044 dev->heads, dev->sectors);
2045 }
07f6f7d0
AL
2046 }
2047
6e7846e9 2048 dev->cdb_len = 16;
1da177e4
LT
2049 }
2050
2051 /* ATAPI-specific feature tests */
2c13b7ce 2052 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2053 const char *cdb_intr_string = "";
2054 const char *atapi_an_string = "";
7d77b247 2055 u32 sntf;
08a556db 2056
1148c3a7 2057 rc = atapi_cdb_len(id);
1da177e4 2058 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2059 if (ata_msg_warn(ap))
88574551
TH
2060 ata_dev_printk(dev, KERN_WARNING,
2061 "unsupported CDB len\n");
ffeae418 2062 rc = -EINVAL;
1da177e4
LT
2063 goto err_out_nosup;
2064 }
6e7846e9 2065 dev->cdb_len = (unsigned int) rc;
1da177e4 2066
7d77b247
TH
2067 /* Enable ATAPI AN if both the host and device have
2068 * the support. If PMP is attached, SNTF is required
2069 * to enable ATAPI AN to discern between PHY status
2070 * changed notifications and ATAPI ANs.
9f45cbd3 2071 */
7d77b247
TH
2072 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2073 (!ap->nr_pmp_links ||
2074 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2075 unsigned int err_mask;
2076
9f45cbd3 2077 /* issue SET feature command to turn this on */
854c73a2
TH
2078 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2079 if (err_mask)
9f45cbd3 2080 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2081 "failed to enable ATAPI AN "
2082 "(err_mask=0x%x)\n", err_mask);
2083 else {
9f45cbd3 2084 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2085 atapi_an_string = ", ATAPI AN";
2086 }
9f45cbd3
KCA
2087 }
2088
08a556db 2089 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2090 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2091 cdb_intr_string = ", CDB intr";
2092 }
312f7da2 2093
1da177e4 2094 /* print device info to dmesg */
5afc8142 2095 if (ata_msg_drv(ap) && print_info)
ef143d57 2096 ata_dev_printk(dev, KERN_INFO,
854c73a2 2097 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2098 modelbuf, fwrevbuf,
12436c30 2099 ata_mode_string(xfer_mask),
854c73a2 2100 cdb_intr_string, atapi_an_string);
1da177e4
LT
2101 }
2102
914ed354
TH
2103 /* determine max_sectors */
2104 dev->max_sectors = ATA_MAX_SECTORS;
2105 if (dev->flags & ATA_DFLAG_LBA48)
2106 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2107
93590859
AC
2108 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2109 /* Let the user know. We don't want to disallow opens for
2110 rescue purposes, or in case the vendor is just a blithering
2111 idiot */
2112 if (print_info) {
2113 ata_dev_printk(dev, KERN_WARNING,
2114"Drive reports diagnostics failure. This may indicate a drive\n");
2115 ata_dev_printk(dev, KERN_WARNING,
2116"fault or invalid emulation. Contact drive vendor for information.\n");
2117 }
2118 }
2119
4b2f3ede 2120 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2121 if (ata_dev_knobble(dev)) {
5afc8142 2122 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2123 ata_dev_printk(dev, KERN_INFO,
2124 "applying bridge limits\n");
5a529139 2125 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2126 dev->max_sectors = ATA_MAX_SECTORS;
2127 }
2128
75683fe7 2129 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2130 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2131 dev->max_sectors);
18d6e9d5 2132
4b2f3ede 2133 if (ap->ops->dev_config)
cd0d3bbc 2134 ap->ops->dev_config(dev);
4b2f3ede 2135
0dd4b21f
BP
2136 if (ata_msg_probe(ap))
2137 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2138 __FUNCTION__, ata_chk_status(ap));
ffeae418 2139 return 0;
1da177e4
LT
2140
2141err_out_nosup:
0dd4b21f 2142 if (ata_msg_probe(ap))
88574551
TH
2143 ata_dev_printk(dev, KERN_DEBUG,
2144 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2145 return rc;
1da177e4
LT
2146}
2147
be0d18df 2148/**
2e41e8e6 2149 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2150 * @ap: port
2151 *
2e41e8e6 2152 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2153 * detection.
2154 */
2155
2156int ata_cable_40wire(struct ata_port *ap)
2157{
2158 return ATA_CBL_PATA40;
2159}
2160
2161/**
2e41e8e6 2162 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2163 * @ap: port
2164 *
2e41e8e6 2165 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2166 * detection.
2167 */
2168
2169int ata_cable_80wire(struct ata_port *ap)
2170{
2171 return ATA_CBL_PATA80;
2172}
2173
2174/**
2175 * ata_cable_unknown - return unknown PATA cable.
2176 * @ap: port
2177 *
2178 * Helper method for drivers which have no PATA cable detection.
2179 */
2180
2181int ata_cable_unknown(struct ata_port *ap)
2182{
2183 return ATA_CBL_PATA_UNK;
2184}
2185
2186/**
2187 * ata_cable_sata - return SATA cable type
2188 * @ap: port
2189 *
2190 * Helper method for drivers which have SATA cables
2191 */
2192
2193int ata_cable_sata(struct ata_port *ap)
2194{
2195 return ATA_CBL_SATA;
2196}
2197
1da177e4
LT
2198/**
2199 * ata_bus_probe - Reset and probe ATA bus
2200 * @ap: Bus to probe
2201 *
0cba632b
JG
2202 * Master ATA bus probing function. Initiates a hardware-dependent
2203 * bus reset, then attempts to identify any devices found on
2204 * the bus.
2205 *
1da177e4 2206 * LOCKING:
0cba632b 2207 * PCI/etc. bus probe sem.
1da177e4
LT
2208 *
2209 * RETURNS:
96072e69 2210 * Zero on success, negative errno otherwise.
1da177e4
LT
2211 */
2212
80289167 2213int ata_bus_probe(struct ata_port *ap)
1da177e4 2214{
28ca5c57 2215 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2216 int tries[ATA_MAX_DEVICES];
f58229f8 2217 int rc;
e82cbdb9 2218 struct ata_device *dev;
1da177e4 2219
28ca5c57 2220 ata_port_probe(ap);
c19ba8af 2221
f58229f8
TH
2222 ata_link_for_each_dev(dev, &ap->link)
2223 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2224
2225 retry:
2044470c 2226 /* reset and determine device classes */
52783c5d 2227 ap->ops->phy_reset(ap);
2061a47a 2228
f58229f8 2229 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2230 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2231 dev->class != ATA_DEV_UNKNOWN)
2232 classes[dev->devno] = dev->class;
2233 else
2234 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2235
52783c5d 2236 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2237 }
1da177e4 2238
52783c5d 2239 ata_port_probe(ap);
2044470c 2240
b6079ca4
AC
2241 /* after the reset the device state is PIO 0 and the controller
2242 state is undefined. Record the mode */
2243
f58229f8
TH
2244 ata_link_for_each_dev(dev, &ap->link)
2245 dev->pio_mode = XFER_PIO_0;
b6079ca4 2246
f31f0cc2
JG
2247 /* read IDENTIFY page and configure devices. We have to do the identify
2248 specific sequence bass-ackwards so that PDIAG- is released by
2249 the slave device */
2250
f58229f8
TH
2251 ata_link_for_each_dev(dev, &ap->link) {
2252 if (tries[dev->devno])
2253 dev->class = classes[dev->devno];
ffeae418 2254
14d2bac1 2255 if (!ata_dev_enabled(dev))
ffeae418 2256 continue;
ffeae418 2257
bff04647
TH
2258 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2259 dev->id);
14d2bac1
TH
2260 if (rc)
2261 goto fail;
f31f0cc2
JG
2262 }
2263
be0d18df
AC
2264 /* Now ask for the cable type as PDIAG- should have been released */
2265 if (ap->ops->cable_detect)
2266 ap->cbl = ap->ops->cable_detect(ap);
2267
614fe29b
AC
2268 /* We may have SATA bridge glue hiding here irrespective of the
2269 reported cable types and sensed types */
2270 ata_link_for_each_dev(dev, &ap->link) {
2271 if (!ata_dev_enabled(dev))
2272 continue;
2273 /* SATA drives indicate we have a bridge. We don't know which
2274 end of the link the bridge is which is a problem */
2275 if (ata_id_is_sata(dev->id))
2276 ap->cbl = ATA_CBL_SATA;
2277 }
2278
f31f0cc2
JG
2279 /* After the identify sequence we can now set up the devices. We do
2280 this in the normal order so that the user doesn't get confused */
2281
f58229f8 2282 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2283 if (!ata_dev_enabled(dev))
2284 continue;
14d2bac1 2285
9af5c9c9 2286 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2287 rc = ata_dev_configure(dev);
9af5c9c9 2288 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2289 if (rc)
2290 goto fail;
1da177e4
LT
2291 }
2292
e82cbdb9 2293 /* configure transfer mode */
0260731f 2294 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2295 if (rc)
51713d35 2296 goto fail;
1da177e4 2297
f58229f8
TH
2298 ata_link_for_each_dev(dev, &ap->link)
2299 if (ata_dev_enabled(dev))
e82cbdb9 2300 return 0;
1da177e4 2301
e82cbdb9
TH
2302 /* no device present, disable port */
2303 ata_port_disable(ap);
96072e69 2304 return -ENODEV;
14d2bac1
TH
2305
2306 fail:
4ae72a1e
TH
2307 tries[dev->devno]--;
2308
14d2bac1
TH
2309 switch (rc) {
2310 case -EINVAL:
4ae72a1e 2311 /* eeek, something went very wrong, give up */
14d2bac1
TH
2312 tries[dev->devno] = 0;
2313 break;
4ae72a1e
TH
2314
2315 case -ENODEV:
2316 /* give it just one more chance */
2317 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2318 case -EIO:
4ae72a1e
TH
2319 if (tries[dev->devno] == 1) {
2320 /* This is the last chance, better to slow
2321 * down than lose it.
2322 */
936fd732 2323 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2324 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2325 }
14d2bac1
TH
2326 }
2327
4ae72a1e 2328 if (!tries[dev->devno])
3373efd8 2329 ata_dev_disable(dev);
ec573755 2330
14d2bac1 2331 goto retry;
1da177e4
LT
2332}
2333
2334/**
0cba632b
JG
2335 * ata_port_probe - Mark port as enabled
2336 * @ap: Port for which we indicate enablement
1da177e4 2337 *
0cba632b
JG
2338 * Modify @ap data structure such that the system
2339 * thinks that the entire port is enabled.
2340 *
cca3974e 2341 * LOCKING: host lock, or some other form of
0cba632b 2342 * serialization.
1da177e4
LT
2343 */
2344
2345void ata_port_probe(struct ata_port *ap)
2346{
198e0fed 2347 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2348}
2349
3be680b7
TH
2350/**
2351 * sata_print_link_status - Print SATA link status
936fd732 2352 * @link: SATA link to printk link status about
3be680b7
TH
2353 *
2354 * This function prints link speed and status of a SATA link.
2355 *
2356 * LOCKING:
2357 * None.
2358 */
936fd732 2359void sata_print_link_status(struct ata_link *link)
3be680b7 2360{
6d5f9732 2361 u32 sstatus, scontrol, tmp;
3be680b7 2362
936fd732 2363 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2364 return;
936fd732 2365 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2366
936fd732 2367 if (ata_link_online(link)) {
3be680b7 2368 tmp = (sstatus >> 4) & 0xf;
936fd732 2369 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2370 "SATA link up %s (SStatus %X SControl %X)\n",
2371 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2372 } else {
936fd732 2373 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2374 "SATA link down (SStatus %X SControl %X)\n",
2375 sstatus, scontrol);
3be680b7
TH
2376 }
2377}
2378
1da177e4 2379/**
780a87f7
JG
2380 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2381 * @ap: SATA port associated with target SATA PHY.
1da177e4 2382 *
780a87f7
JG
2383 * This function issues commands to standard SATA Sxxx
2384 * PHY registers, to wake up the phy (and device), and
2385 * clear any reset condition.
1da177e4
LT
2386 *
2387 * LOCKING:
0cba632b 2388 * PCI/etc. bus probe sem.
1da177e4
LT
2389 *
2390 */
2391void __sata_phy_reset(struct ata_port *ap)
2392{
936fd732 2393 struct ata_link *link = &ap->link;
1da177e4 2394 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2395 u32 sstatus;
1da177e4
LT
2396
2397 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2398 /* issue phy wake/reset */
936fd732 2399 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2400 /* Couldn't find anything in SATA I/II specs, but
2401 * AHCI-1.1 10.4.2 says at least 1 ms. */
2402 mdelay(1);
1da177e4 2403 }
81952c54 2404 /* phy wake/clear reset */
936fd732 2405 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2406
2407 /* wait for phy to become ready, if necessary */
2408 do {
2409 msleep(200);
936fd732 2410 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2411 if ((sstatus & 0xf) != 1)
2412 break;
2413 } while (time_before(jiffies, timeout));
2414
3be680b7 2415 /* print link status */
936fd732 2416 sata_print_link_status(link);
656563e3 2417
3be680b7 2418 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2419 if (!ata_link_offline(link))
1da177e4 2420 ata_port_probe(ap);
3be680b7 2421 else
1da177e4 2422 ata_port_disable(ap);
1da177e4 2423
198e0fed 2424 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2425 return;
2426
2427 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2428 ata_port_disable(ap);
2429 return;
2430 }
2431
2432 ap->cbl = ATA_CBL_SATA;
2433}
2434
2435/**
780a87f7
JG
2436 * sata_phy_reset - Reset SATA bus.
2437 * @ap: SATA port associated with target SATA PHY.
1da177e4 2438 *
780a87f7
JG
2439 * This function resets the SATA bus, and then probes
2440 * the bus for devices.
1da177e4
LT
2441 *
2442 * LOCKING:
0cba632b 2443 * PCI/etc. bus probe sem.
1da177e4
LT
2444 *
2445 */
2446void sata_phy_reset(struct ata_port *ap)
2447{
2448 __sata_phy_reset(ap);
198e0fed 2449 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2450 return;
2451 ata_bus_reset(ap);
2452}
2453
ebdfca6e
AC
2454/**
2455 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2456 * @adev: device
2457 *
2458 * Obtain the other device on the same cable, or if none is
2459 * present NULL is returned
2460 */
2e9edbf8 2461
3373efd8 2462struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2463{
9af5c9c9
TH
2464 struct ata_link *link = adev->link;
2465 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2466 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2467 return NULL;
2468 return pair;
2469}
2470
1da177e4 2471/**
780a87f7
JG
2472 * ata_port_disable - Disable port.
2473 * @ap: Port to be disabled.
1da177e4 2474 *
780a87f7
JG
2475 * Modify @ap data structure such that the system
2476 * thinks that the entire port is disabled, and should
2477 * never attempt to probe or communicate with devices
2478 * on this port.
2479 *
cca3974e 2480 * LOCKING: host lock, or some other form of
780a87f7 2481 * serialization.
1da177e4
LT
2482 */
2483
2484void ata_port_disable(struct ata_port *ap)
2485{
9af5c9c9
TH
2486 ap->link.device[0].class = ATA_DEV_NONE;
2487 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2488 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2489}
2490
1c3fae4d 2491/**
3c567b7d 2492 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2493 * @link: Link to adjust SATA spd limit for
1c3fae4d 2494 *
936fd732 2495 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2496 * function only adjusts the limit. The change must be applied
3c567b7d 2497 * using sata_set_spd().
1c3fae4d
TH
2498 *
2499 * LOCKING:
2500 * Inherited from caller.
2501 *
2502 * RETURNS:
2503 * 0 on success, negative errno on failure
2504 */
936fd732 2505int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2506{
81952c54
TH
2507 u32 sstatus, spd, mask;
2508 int rc, highbit;
1c3fae4d 2509
936fd732 2510 if (!sata_scr_valid(link))
008a7896
TH
2511 return -EOPNOTSUPP;
2512
2513 /* If SCR can be read, use it to determine the current SPD.
936fd732 2514 * If not, use cached value in link->sata_spd.
008a7896 2515 */
936fd732 2516 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2517 if (rc == 0)
2518 spd = (sstatus >> 4) & 0xf;
2519 else
936fd732 2520 spd = link->sata_spd;
1c3fae4d 2521
936fd732 2522 mask = link->sata_spd_limit;
1c3fae4d
TH
2523 if (mask <= 1)
2524 return -EINVAL;
008a7896
TH
2525
2526 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2527 highbit = fls(mask) - 1;
2528 mask &= ~(1 << highbit);
2529
008a7896
TH
2530 /* Mask off all speeds higher than or equal to the current
2531 * one. Force 1.5Gbps if current SPD is not available.
2532 */
2533 if (spd > 1)
2534 mask &= (1 << (spd - 1)) - 1;
2535 else
2536 mask &= 1;
2537
2538 /* were we already at the bottom? */
1c3fae4d
TH
2539 if (!mask)
2540 return -EINVAL;
2541
936fd732 2542 link->sata_spd_limit = mask;
1c3fae4d 2543
936fd732 2544 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2545 sata_spd_string(fls(mask)));
1c3fae4d
TH
2546
2547 return 0;
2548}
2549
936fd732 2550static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2551{
2552 u32 spd, limit;
2553
936fd732 2554 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2555 limit = 0;
2556 else
936fd732 2557 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2558
2559 spd = (*scontrol >> 4) & 0xf;
2560 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2561
2562 return spd != limit;
2563}
2564
2565/**
3c567b7d 2566 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2567 * @link: Link in question
1c3fae4d
TH
2568 *
2569 * Test whether the spd limit in SControl matches
936fd732 2570 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2571 * whether hardreset is necessary to apply SATA spd
2572 * configuration.
2573 *
2574 * LOCKING:
2575 * Inherited from caller.
2576 *
2577 * RETURNS:
2578 * 1 if SATA spd configuration is needed, 0 otherwise.
2579 */
936fd732 2580int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2581{
2582 u32 scontrol;
2583
936fd732 2584 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2585 return 0;
2586
936fd732 2587 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2588}
2589
2590/**
3c567b7d 2591 * sata_set_spd - set SATA spd according to spd limit
936fd732 2592 * @link: Link to set SATA spd for
1c3fae4d 2593 *
936fd732 2594 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2595 *
2596 * LOCKING:
2597 * Inherited from caller.
2598 *
2599 * RETURNS:
2600 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2601 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2602 */
936fd732 2603int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2604{
2605 u32 scontrol;
81952c54 2606 int rc;
1c3fae4d 2607
936fd732 2608 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2609 return rc;
1c3fae4d 2610
936fd732 2611 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2612 return 0;
2613
936fd732 2614 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2615 return rc;
2616
1c3fae4d
TH
2617 return 1;
2618}
2619
452503f9
AC
2620/*
2621 * This mode timing computation functionality is ported over from
2622 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2623 */
2624/*
b352e57d 2625 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2626 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2627 * for UDMA6, which is currently supported only by Maxtor drives.
2628 *
2629 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2630 */
2631
2632static const struct ata_timing ata_timing[] = {
2633
2634 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2635 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2636 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2637 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2638
b352e57d
AC
2639 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2640 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2641 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2642 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2643 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2644
2645/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2646
452503f9
AC
2647 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2648 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2649 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2650
452503f9
AC
2651 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2652 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2653 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2654
b352e57d
AC
2655 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2656 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2657 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2658 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2659
2660 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2661 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2662 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2663
2664/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2665
2666 { 0xFF }
2667};
2668
2669#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2670#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2671
2672static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2673{
2674 q->setup = EZ(t->setup * 1000, T);
2675 q->act8b = EZ(t->act8b * 1000, T);
2676 q->rec8b = EZ(t->rec8b * 1000, T);
2677 q->cyc8b = EZ(t->cyc8b * 1000, T);
2678 q->active = EZ(t->active * 1000, T);
2679 q->recover = EZ(t->recover * 1000, T);
2680 q->cycle = EZ(t->cycle * 1000, T);
2681 q->udma = EZ(t->udma * 1000, UT);
2682}
2683
2684void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2685 struct ata_timing *m, unsigned int what)
2686{
2687 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2688 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2689 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2690 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2691 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2692 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2693 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2694 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2695}
2696
2697static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2698{
2699 const struct ata_timing *t;
2700
2701 for (t = ata_timing; t->mode != speed; t++)
91190758 2702 if (t->mode == 0xFF)
452503f9 2703 return NULL;
2e9edbf8 2704 return t;
452503f9
AC
2705}
2706
2707int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2708 struct ata_timing *t, int T, int UT)
2709{
2710 const struct ata_timing *s;
2711 struct ata_timing p;
2712
2713 /*
2e9edbf8 2714 * Find the mode.
75b1f2f8 2715 */
452503f9
AC
2716
2717 if (!(s = ata_timing_find_mode(speed)))
2718 return -EINVAL;
2719
75b1f2f8
AL
2720 memcpy(t, s, sizeof(*s));
2721
452503f9
AC
2722 /*
2723 * If the drive is an EIDE drive, it can tell us it needs extended
2724 * PIO/MW_DMA cycle timing.
2725 */
2726
2727 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2728 memset(&p, 0, sizeof(p));
2729 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2730 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2731 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2732 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2733 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2734 }
2735 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2736 }
2737
2738 /*
2739 * Convert the timing to bus clock counts.
2740 */
2741
75b1f2f8 2742 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2743
2744 /*
c893a3ae
RD
2745 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2746 * S.M.A.R.T * and some other commands. We have to ensure that the
2747 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2748 */
2749
fd3367af 2750 if (speed > XFER_PIO_6) {
452503f9
AC
2751 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2752 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2753 }
2754
2755 /*
c893a3ae 2756 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2757 */
2758
2759 if (t->act8b + t->rec8b < t->cyc8b) {
2760 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2761 t->rec8b = t->cyc8b - t->act8b;
2762 }
2763
2764 if (t->active + t->recover < t->cycle) {
2765 t->active += (t->cycle - (t->active + t->recover)) / 2;
2766 t->recover = t->cycle - t->active;
2767 }
a617c09f 2768
4f701d1e
AC
2769 /* In a few cases quantisation may produce enough errors to
2770 leave t->cycle too low for the sum of active and recovery
2771 if so we must correct this */
2772 if (t->active + t->recover > t->cycle)
2773 t->cycle = t->active + t->recover;
452503f9
AC
2774
2775 return 0;
2776}
2777
cf176e1a
TH
2778/**
2779 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2780 * @dev: Device to adjust xfer masks
458337db 2781 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2782 *
2783 * Adjust xfer masks of @dev downward. Note that this function
2784 * does not apply the change. Invoking ata_set_mode() afterwards
2785 * will apply the limit.
2786 *
2787 * LOCKING:
2788 * Inherited from caller.
2789 *
2790 * RETURNS:
2791 * 0 on success, negative errno on failure
2792 */
458337db 2793int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2794{
458337db
TH
2795 char buf[32];
2796 unsigned int orig_mask, xfer_mask;
2797 unsigned int pio_mask, mwdma_mask, udma_mask;
2798 int quiet, highbit;
cf176e1a 2799
458337db
TH
2800 quiet = !!(sel & ATA_DNXFER_QUIET);
2801 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2802
458337db
TH
2803 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2804 dev->mwdma_mask,
2805 dev->udma_mask);
2806 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2807
458337db
TH
2808 switch (sel) {
2809 case ATA_DNXFER_PIO:
2810 highbit = fls(pio_mask) - 1;
2811 pio_mask &= ~(1 << highbit);
2812 break;
2813
2814 case ATA_DNXFER_DMA:
2815 if (udma_mask) {
2816 highbit = fls(udma_mask) - 1;
2817 udma_mask &= ~(1 << highbit);
2818 if (!udma_mask)
2819 return -ENOENT;
2820 } else if (mwdma_mask) {
2821 highbit = fls(mwdma_mask) - 1;
2822 mwdma_mask &= ~(1 << highbit);
2823 if (!mwdma_mask)
2824 return -ENOENT;
2825 }
2826 break;
2827
2828 case ATA_DNXFER_40C:
2829 udma_mask &= ATA_UDMA_MASK_40C;
2830 break;
2831
2832 case ATA_DNXFER_FORCE_PIO0:
2833 pio_mask &= 1;
2834 case ATA_DNXFER_FORCE_PIO:
2835 mwdma_mask = 0;
2836 udma_mask = 0;
2837 break;
2838
458337db
TH
2839 default:
2840 BUG();
2841 }
2842
2843 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2844
2845 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2846 return -ENOENT;
2847
2848 if (!quiet) {
2849 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2850 snprintf(buf, sizeof(buf), "%s:%s",
2851 ata_mode_string(xfer_mask),
2852 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2853 else
2854 snprintf(buf, sizeof(buf), "%s",
2855 ata_mode_string(xfer_mask));
2856
2857 ata_dev_printk(dev, KERN_WARNING,
2858 "limiting speed to %s\n", buf);
2859 }
cf176e1a
TH
2860
2861 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2862 &dev->udma_mask);
2863
cf176e1a 2864 return 0;
cf176e1a
TH
2865}
2866
3373efd8 2867static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2868{
9af5c9c9 2869 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2870 unsigned int err_mask;
2871 int rc;
1da177e4 2872
e8384607 2873 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2874 if (dev->xfer_shift == ATA_SHIFT_PIO)
2875 dev->flags |= ATA_DFLAG_PIO;
2876
3373efd8 2877 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2878 /* Old CFA may refuse this command, which is just fine */
2879 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2880 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2881 /* Some very old devices and some bad newer ones fail any kind of
2882 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2883 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2884 dev->pio_mode <= XFER_PIO_2)
2885 err_mask &= ~AC_ERR_DEV;
83206a29 2886 if (err_mask) {
f15a1daf
TH
2887 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2888 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2889 return -EIO;
2890 }
1da177e4 2891
baa1e78a 2892 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2893 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2894 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2895 if (rc)
83206a29 2896 return rc;
48a8a14f 2897
23e71c3d
TH
2898 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2899 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2900
f15a1daf
TH
2901 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2902 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2903 return 0;
1da177e4
LT
2904}
2905
1da177e4 2906/**
04351821 2907 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2908 * @link: link on which timings will be programmed
e82cbdb9 2909 * @r_failed_dev: out paramter for failed device
1da177e4 2910 *
04351821
AC
2911 * Standard implementation of the function used to tune and set
2912 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2913 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2914 * returned in @r_failed_dev.
780a87f7 2915 *
1da177e4 2916 * LOCKING:
0cba632b 2917 * PCI/etc. bus probe sem.
e82cbdb9
TH
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
1da177e4 2921 */
04351821 2922
0260731f 2923int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2924{
0260731f 2925 struct ata_port *ap = link->ap;
e8e0619f 2926 struct ata_device *dev;
f58229f8 2927 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2928
a6d5a51c 2929 /* step 1: calculate xfer_mask */
f58229f8 2930 ata_link_for_each_dev(dev, link) {
acf356b1 2931 unsigned int pio_mask, dma_mask;
b3a70601 2932 unsigned int mode_mask;
a6d5a51c 2933
e1211e3f 2934 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2935 continue;
2936
b3a70601
AC
2937 mode_mask = ATA_DMA_MASK_ATA;
2938 if (dev->class == ATA_DEV_ATAPI)
2939 mode_mask = ATA_DMA_MASK_ATAPI;
2940 else if (ata_id_is_cfa(dev->id))
2941 mode_mask = ATA_DMA_MASK_CFA;
2942
3373efd8 2943 ata_dev_xfermask(dev);
1da177e4 2944
acf356b1
TH
2945 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2946 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
2947
2948 if (libata_dma_mask & mode_mask)
2949 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2950 else
2951 dma_mask = 0;
2952
acf356b1
TH
2953 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2954 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2955
4f65977d 2956 found = 1;
5444a6f4
AC
2957 if (dev->dma_mode)
2958 used_dma = 1;
a6d5a51c 2959 }
4f65977d 2960 if (!found)
e82cbdb9 2961 goto out;
a6d5a51c
TH
2962
2963 /* step 2: always set host PIO timings */
f58229f8 2964 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2965 if (!ata_dev_enabled(dev))
2966 continue;
2967
2968 if (!dev->pio_mode) {
f15a1daf 2969 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2970 rc = -EINVAL;
e82cbdb9 2971 goto out;
e8e0619f
TH
2972 }
2973
2974 dev->xfer_mode = dev->pio_mode;
2975 dev->xfer_shift = ATA_SHIFT_PIO;
2976 if (ap->ops->set_piomode)
2977 ap->ops->set_piomode(ap, dev);
2978 }
1da177e4 2979
a6d5a51c 2980 /* step 3: set host DMA timings */
f58229f8 2981 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2982 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2983 continue;
2984
2985 dev->xfer_mode = dev->dma_mode;
2986 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2987 if (ap->ops->set_dmamode)
2988 ap->ops->set_dmamode(ap, dev);
2989 }
1da177e4
LT
2990
2991 /* step 4: update devices' xfer mode */
f58229f8 2992 ata_link_for_each_dev(dev, link) {
18d90deb 2993 /* don't update suspended devices' xfer mode */
9666f400 2994 if (!ata_dev_enabled(dev))
83206a29
TH
2995 continue;
2996
3373efd8 2997 rc = ata_dev_set_mode(dev);
5bbc53f4 2998 if (rc)
e82cbdb9 2999 goto out;
83206a29 3000 }
1da177e4 3001
e8e0619f
TH
3002 /* Record simplex status. If we selected DMA then the other
3003 * host channels are not permitted to do so.
5444a6f4 3004 */
cca3974e 3005 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3006 ap->host->simplex_claimed = ap;
5444a6f4 3007
e82cbdb9
TH
3008 out:
3009 if (rc)
3010 *r_failed_dev = dev;
3011 return rc;
1da177e4
LT
3012}
3013
04351821
AC
3014/**
3015 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3016 * @link: link on which timings will be programmed
04351821
AC
3017 * @r_failed_dev: out paramter for failed device
3018 *
3019 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3020 * ata_set_mode() fails, pointer to the failing device is
3021 * returned in @r_failed_dev.
3022 *
3023 * LOCKING:
3024 * PCI/etc. bus probe sem.
3025 *
3026 * RETURNS:
3027 * 0 on success, negative errno otherwise
3028 */
0260731f 3029int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3030{
0260731f
TH
3031 struct ata_port *ap = link->ap;
3032
04351821
AC
3033 /* has private set_mode? */
3034 if (ap->ops->set_mode)
0260731f
TH
3035 return ap->ops->set_mode(link, r_failed_dev);
3036 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3037}
3038
1fdffbce
JG
3039/**
3040 * ata_tf_to_host - issue ATA taskfile to host controller
3041 * @ap: port to which command is being issued
3042 * @tf: ATA taskfile register set
3043 *
3044 * Issues ATA taskfile register set to ATA host controller,
3045 * with proper synchronization with interrupt handler and
3046 * other threads.
3047 *
3048 * LOCKING:
cca3974e 3049 * spin_lock_irqsave(host lock)
1fdffbce
JG
3050 */
3051
3052static inline void ata_tf_to_host(struct ata_port *ap,
3053 const struct ata_taskfile *tf)
3054{
3055 ap->ops->tf_load(ap, tf);
3056 ap->ops->exec_command(ap, tf);
3057}
3058
1da177e4
LT
3059/**
3060 * ata_busy_sleep - sleep until BSY clears, or timeout
3061 * @ap: port containing status register to be polled
3062 * @tmout_pat: impatience timeout
3063 * @tmout: overall timeout
3064 *
780a87f7
JG
3065 * Sleep until ATA Status register bit BSY clears,
3066 * or a timeout occurs.
3067 *
d1adc1bb
TH
3068 * LOCKING:
3069 * Kernel thread context (may sleep).
3070 *
3071 * RETURNS:
3072 * 0 on success, -errno otherwise.
1da177e4 3073 */
d1adc1bb
TH
3074int ata_busy_sleep(struct ata_port *ap,
3075 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3076{
3077 unsigned long timer_start, timeout;
3078 u8 status;
3079
3080 status = ata_busy_wait(ap, ATA_BUSY, 300);
3081 timer_start = jiffies;
3082 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3083 while (status != 0xff && (status & ATA_BUSY) &&
3084 time_before(jiffies, timeout)) {
1da177e4
LT
3085 msleep(50);
3086 status = ata_busy_wait(ap, ATA_BUSY, 3);
3087 }
3088
d1adc1bb 3089 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3090 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3091 "port is slow to respond, please be patient "
3092 "(Status 0x%x)\n", status);
1da177e4
LT
3093
3094 timeout = timer_start + tmout;
d1adc1bb
TH
3095 while (status != 0xff && (status & ATA_BUSY) &&
3096 time_before(jiffies, timeout)) {
1da177e4
LT
3097 msleep(50);
3098 status = ata_chk_status(ap);
3099 }
3100
d1adc1bb
TH
3101 if (status == 0xff)
3102 return -ENODEV;
3103
1da177e4 3104 if (status & ATA_BUSY) {
f15a1daf 3105 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3106 "(%lu secs, Status 0x%x)\n",
3107 tmout / HZ, status);
d1adc1bb 3108 return -EBUSY;
1da177e4
LT
3109 }
3110
3111 return 0;
3112}
3113
d4b2bab4
TH
3114/**
3115 * ata_wait_ready - sleep until BSY clears, or timeout
3116 * @ap: port containing status register to be polled
3117 * @deadline: deadline jiffies for the operation
3118 *
3119 * Sleep until ATA Status register bit BSY clears, or timeout
3120 * occurs.
3121 *
3122 * LOCKING:
3123 * Kernel thread context (may sleep).
3124 *
3125 * RETURNS:
3126 * 0 on success, -errno otherwise.
3127 */
3128int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3129{
3130 unsigned long start = jiffies;
3131 int warned = 0;
3132
3133 while (1) {
3134 u8 status = ata_chk_status(ap);
3135 unsigned long now = jiffies;
3136
3137 if (!(status & ATA_BUSY))
3138 return 0;
936fd732 3139 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3140 return -ENODEV;
3141 if (time_after(now, deadline))
3142 return -EBUSY;
3143
3144 if (!warned && time_after(now, start + 5 * HZ) &&
3145 (deadline - now > 3 * HZ)) {
3146 ata_port_printk(ap, KERN_WARNING,
3147 "port is slow to respond, please be patient "
3148 "(Status 0x%x)\n", status);
3149 warned = 1;
3150 }
3151
3152 msleep(50);
3153 }
3154}
3155
3156static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3157 unsigned long deadline)
1da177e4
LT
3158{
3159 struct ata_ioports *ioaddr = &ap->ioaddr;
3160 unsigned int dev0 = devmask & (1 << 0);
3161 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3162 int rc, ret = 0;
1da177e4
LT
3163
3164 /* if device 0 was found in ata_devchk, wait for its
3165 * BSY bit to clear
3166 */
d4b2bab4
TH
3167 if (dev0) {
3168 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3169 if (rc) {
3170 if (rc != -ENODEV)
3171 return rc;
3172 ret = rc;
3173 }
d4b2bab4 3174 }
1da177e4 3175
e141d999
TH
3176 /* if device 1 was found in ata_devchk, wait for register
3177 * access briefly, then wait for BSY to clear.
1da177e4 3178 */
e141d999
TH
3179 if (dev1) {
3180 int i;
1da177e4
LT
3181
3182 ap->ops->dev_select(ap, 1);
e141d999
TH
3183
3184 /* Wait for register access. Some ATAPI devices fail
3185 * to set nsect/lbal after reset, so don't waste too
3186 * much time on it. We're gonna wait for !BSY anyway.
3187 */
3188 for (i = 0; i < 2; i++) {
3189 u8 nsect, lbal;
3190
3191 nsect = ioread8(ioaddr->nsect_addr);
3192 lbal = ioread8(ioaddr->lbal_addr);
3193 if ((nsect == 1) && (lbal == 1))
3194 break;
3195 msleep(50); /* give drive a breather */
3196 }
3197
d4b2bab4 3198 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3199 if (rc) {
3200 if (rc != -ENODEV)
3201 return rc;
3202 ret = rc;
3203 }
d4b2bab4 3204 }
1da177e4
LT
3205
3206 /* is all this really necessary? */
3207 ap->ops->dev_select(ap, 0);
3208 if (dev1)
3209 ap->ops->dev_select(ap, 1);
3210 if (dev0)
3211 ap->ops->dev_select(ap, 0);
d4b2bab4 3212
9b89391c 3213 return ret;
1da177e4
LT
3214}
3215
d4b2bab4
TH
3216static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3217 unsigned long deadline)
1da177e4
LT
3218{
3219 struct ata_ioports *ioaddr = &ap->ioaddr;
681c80b5
AC
3220 struct ata_device *dev;
3221 int i = 0;
1da177e4 3222
44877b4e 3223 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3224
3225 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3226 iowrite8(ap->ctl, ioaddr->ctl_addr);
3227 udelay(20); /* FIXME: flush */
3228 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3229 udelay(20); /* FIXME: flush */
3230 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3231
681c80b5
AC
3232 /* If we issued an SRST then an ATA drive (not ATAPI)
3233 * may have changed configuration and be in PIO0 timing. If
3234 * we did a hard reset (or are coming from power on) this is
3235 * true for ATA or ATAPI. Until we've set a suitable controller
3236 * mode we should not touch the bus as we may be talking too fast.
3237 */
3238
3239 ata_link_for_each_dev(dev, &ap->link)
3240 dev->pio_mode = XFER_PIO_0;
3241
3242 /* If the controller has a pio mode setup function then use
3243 it to set the chipset to rights. Don't touch the DMA setup
3244 as that will be dealt with when revalidating */
3245 if (ap->ops->set_piomode) {
3246 ata_link_for_each_dev(dev, &ap->link)
3247 if (devmask & (1 << i++))
3248 ap->ops->set_piomode(ap, dev);
3249 }
3250
1da177e4
LT
3251 /* spec mandates ">= 2ms" before checking status.
3252 * We wait 150ms, because that was the magic delay used for
3253 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3254 * between when the ATA command register is written, and then
3255 * status is checked. Because waiting for "a while" before
3256 * checking status is fine, post SRST, we perform this magic
3257 * delay here as well.
09c7ad79
AC
3258 *
3259 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3260 */
3261 msleep(150);
3262
2e9edbf8 3263 /* Before we perform post reset processing we want to see if
298a41ca
TH
3264 * the bus shows 0xFF because the odd clown forgets the D7
3265 * pulldown resistor.
3266 */
d1adc1bb 3267 if (ata_check_status(ap) == 0xFF)
9b89391c 3268 return -ENODEV;
09c7ad79 3269
d4b2bab4 3270 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3271}
3272
3273/**
3274 * ata_bus_reset - reset host port and associated ATA channel
3275 * @ap: port to reset
3276 *
3277 * This is typically the first time we actually start issuing
3278 * commands to the ATA channel. We wait for BSY to clear, then
3279 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3280 * result. Determine what devices, if any, are on the channel
3281 * by looking at the device 0/1 error register. Look at the signature
3282 * stored in each device's taskfile registers, to determine if
3283 * the device is ATA or ATAPI.
3284 *
3285 * LOCKING:
0cba632b 3286 * PCI/etc. bus probe sem.
cca3974e 3287 * Obtains host lock.
1da177e4
LT
3288 *
3289 * SIDE EFFECTS:
198e0fed 3290 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3291 */
3292
3293void ata_bus_reset(struct ata_port *ap)
3294{
9af5c9c9 3295 struct ata_device *device = ap->link.device;
1da177e4
LT
3296 struct ata_ioports *ioaddr = &ap->ioaddr;
3297 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3298 u8 err;
aec5c3c1 3299 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3300 int rc;
1da177e4 3301
44877b4e 3302 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3303
3304 /* determine if device 0/1 are present */
3305 if (ap->flags & ATA_FLAG_SATA_RESET)
3306 dev0 = 1;
3307 else {
3308 dev0 = ata_devchk(ap, 0);
3309 if (slave_possible)
3310 dev1 = ata_devchk(ap, 1);
3311 }
3312
3313 if (dev0)
3314 devmask |= (1 << 0);
3315 if (dev1)
3316 devmask |= (1 << 1);
3317
3318 /* select device 0 again */
3319 ap->ops->dev_select(ap, 0);
3320
3321 /* issue bus reset */
9b89391c
TH
3322 if (ap->flags & ATA_FLAG_SRST) {
3323 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3324 if (rc && rc != -ENODEV)
aec5c3c1 3325 goto err_out;
9b89391c 3326 }
1da177e4
LT
3327
3328 /*
3329 * determine by signature whether we have ATA or ATAPI devices
3330 */
3f19859e 3331 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3332 if ((slave_possible) && (err != 0x81))
3f19859e 3333 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3334
1da177e4 3335 /* is double-select really necessary? */
9af5c9c9 3336 if (device[1].class != ATA_DEV_NONE)
1da177e4 3337 ap->ops->dev_select(ap, 1);
9af5c9c9 3338 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3339 ap->ops->dev_select(ap, 0);
3340
3341 /* if no devices were detected, disable this port */
9af5c9c9
TH
3342 if ((device[0].class == ATA_DEV_NONE) &&
3343 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3344 goto err_out;
3345
3346 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3347 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3348 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3349 }
3350
3351 DPRINTK("EXIT\n");
3352 return;
3353
3354err_out:
f15a1daf 3355 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3356 ata_port_disable(ap);
1da177e4
LT
3357
3358 DPRINTK("EXIT\n");
3359}
3360
d7bb4cc7 3361/**
936fd732
TH
3362 * sata_link_debounce - debounce SATA phy status
3363 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3364 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3365 * @deadline: deadline jiffies for the operation
d7bb4cc7 3366 *
936fd732 3367* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3368 * holding the same value where DET is not 1 for @duration polled
3369 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3370 * beginning of the stable state. Because DET gets stuck at 1 on
3371 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3372 * until timeout then returns 0 if DET is stable at 1.
3373 *
d4b2bab4
TH
3374 * @timeout is further limited by @deadline. The sooner of the
3375 * two is used.
3376 *
d7bb4cc7
TH
3377 * LOCKING:
3378 * Kernel thread context (may sleep)
3379 *
3380 * RETURNS:
3381 * 0 on success, -errno on failure.
3382 */
936fd732
TH
3383int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3384 unsigned long deadline)
7a7921e8 3385{
d7bb4cc7 3386 unsigned long interval_msec = params[0];
d4b2bab4
TH
3387 unsigned long duration = msecs_to_jiffies(params[1]);
3388 unsigned long last_jiffies, t;
d7bb4cc7
TH
3389 u32 last, cur;
3390 int rc;
3391
d4b2bab4
TH
3392 t = jiffies + msecs_to_jiffies(params[2]);
3393 if (time_before(t, deadline))
3394 deadline = t;
3395
936fd732 3396 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3397 return rc;
3398 cur &= 0xf;
3399
3400 last = cur;
3401 last_jiffies = jiffies;
3402
3403 while (1) {
3404 msleep(interval_msec);
936fd732 3405 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3406 return rc;
3407 cur &= 0xf;
3408
3409 /* DET stable? */
3410 if (cur == last) {
d4b2bab4 3411 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3412 continue;
3413 if (time_after(jiffies, last_jiffies + duration))
3414 return 0;
3415 continue;
3416 }
3417
3418 /* unstable, start over */
3419 last = cur;
3420 last_jiffies = jiffies;
3421
f1545154
TH
3422 /* Check deadline. If debouncing failed, return
3423 * -EPIPE to tell upper layer to lower link speed.
3424 */
d4b2bab4 3425 if (time_after(jiffies, deadline))
f1545154 3426 return -EPIPE;
d7bb4cc7
TH
3427 }
3428}
3429
3430/**
936fd732
TH
3431 * sata_link_resume - resume SATA link
3432 * @link: ATA link to resume SATA
d7bb4cc7 3433 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3434 * @deadline: deadline jiffies for the operation
d7bb4cc7 3435 *
936fd732 3436 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3437 *
3438 * LOCKING:
3439 * Kernel thread context (may sleep)
3440 *
3441 * RETURNS:
3442 * 0 on success, -errno on failure.
3443 */
936fd732
TH
3444int sata_link_resume(struct ata_link *link, const unsigned long *params,
3445 unsigned long deadline)
d7bb4cc7
TH
3446{
3447 u32 scontrol;
81952c54
TH
3448 int rc;
3449
936fd732 3450 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3451 return rc;
7a7921e8 3452
852ee16a 3453 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3454
936fd732 3455 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3456 return rc;
7a7921e8 3457
d7bb4cc7
TH
3458 /* Some PHYs react badly if SStatus is pounded immediately
3459 * after resuming. Delay 200ms before debouncing.
3460 */
3461 msleep(200);
7a7921e8 3462
936fd732 3463 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3464}
3465
f5914a46
TH
3466/**
3467 * ata_std_prereset - prepare for reset
cc0680a5 3468 * @link: ATA link to be reset
d4b2bab4 3469 * @deadline: deadline jiffies for the operation
f5914a46 3470 *
cc0680a5 3471 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3472 * prereset makes libata abort whole reset sequence and give up
3473 * that port, so prereset should be best-effort. It does its
3474 * best to prepare for reset sequence but if things go wrong, it
3475 * should just whine, not fail.
f5914a46
TH
3476 *
3477 * LOCKING:
3478 * Kernel thread context (may sleep)
3479 *
3480 * RETURNS:
3481 * 0 on success, -errno otherwise.
3482 */
cc0680a5 3483int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3484{
cc0680a5 3485 struct ata_port *ap = link->ap;
936fd732 3486 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3487 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3488 int rc;
3489
31daabda 3490 /* handle link resume */
28324304 3491 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3492 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3493 ehc->i.action |= ATA_EH_HARDRESET;
3494
633273a3
TH
3495 /* Some PMPs don't work with only SRST, force hardreset if PMP
3496 * is supported.
3497 */
3498 if (ap->flags & ATA_FLAG_PMP)
3499 ehc->i.action |= ATA_EH_HARDRESET;
3500
f5914a46
TH
3501 /* if we're about to do hardreset, nothing more to do */
3502 if (ehc->i.action & ATA_EH_HARDRESET)
3503 return 0;
3504
936fd732 3505 /* if SATA, resume link */
a16abc0b 3506 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3507 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3508 /* whine about phy resume failure but proceed */
3509 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3510 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3511 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3512 }
3513
3514 /* Wait for !BSY if the controller can wait for the first D2H
3515 * Reg FIS and we don't know that no device is attached.
3516 */
0c88758b 3517 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3518 rc = ata_wait_ready(ap, deadline);
6dffaf61 3519 if (rc && rc != -ENODEV) {
cc0680a5 3520 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3521 "(errno=%d), forcing hardreset\n", rc);
3522 ehc->i.action |= ATA_EH_HARDRESET;
3523 }
3524 }
f5914a46
TH
3525
3526 return 0;
3527}
3528
c2bd5804
TH
3529/**
3530 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3531 * @link: ATA link to reset
c2bd5804 3532 * @classes: resulting classes of attached devices
d4b2bab4 3533 * @deadline: deadline jiffies for the operation
c2bd5804 3534 *
52783c5d 3535 * Reset host port using ATA SRST.
c2bd5804
TH
3536 *
3537 * LOCKING:
3538 * Kernel thread context (may sleep)
3539 *
3540 * RETURNS:
3541 * 0 on success, -errno otherwise.
3542 */
cc0680a5 3543int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3544 unsigned long deadline)
c2bd5804 3545{
cc0680a5 3546 struct ata_port *ap = link->ap;
c2bd5804 3547 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3548 unsigned int devmask = 0;
3549 int rc;
c2bd5804
TH
3550 u8 err;
3551
3552 DPRINTK("ENTER\n");
3553
936fd732 3554 if (ata_link_offline(link)) {
3a39746a
TH
3555 classes[0] = ATA_DEV_NONE;
3556 goto out;
3557 }
3558
c2bd5804
TH
3559 /* determine if device 0/1 are present */
3560 if (ata_devchk(ap, 0))
3561 devmask |= (1 << 0);
3562 if (slave_possible && ata_devchk(ap, 1))
3563 devmask |= (1 << 1);
3564
c2bd5804
TH
3565 /* select device 0 again */
3566 ap->ops->dev_select(ap, 0);
3567
3568 /* issue bus reset */
3569 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3570 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3571 /* if link is occupied, -ENODEV too is an error */
936fd732 3572 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3573 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3574 return rc;
c2bd5804
TH
3575 }
3576
3577 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3578 classes[0] = ata_dev_try_classify(&link->device[0],
3579 devmask & (1 << 0), &err);
c2bd5804 3580 if (slave_possible && err != 0x81)
3f19859e
TH
3581 classes[1] = ata_dev_try_classify(&link->device[1],
3582 devmask & (1 << 1), &err);
c2bd5804 3583
3a39746a 3584 out:
c2bd5804
TH
3585 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3586 return 0;
3587}
3588
3589/**
cc0680a5
TH
3590 * sata_link_hardreset - reset link via SATA phy reset
3591 * @link: link to reset
b6103f6d 3592 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3593 * @deadline: deadline jiffies for the operation
c2bd5804 3594 *
cc0680a5 3595 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3596 *
3597 * LOCKING:
3598 * Kernel thread context (may sleep)
3599 *
3600 * RETURNS:
3601 * 0 on success, -errno otherwise.
3602 */
cc0680a5 3603int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3604 unsigned long deadline)
c2bd5804 3605{
852ee16a 3606 u32 scontrol;
81952c54 3607 int rc;
852ee16a 3608
c2bd5804
TH
3609 DPRINTK("ENTER\n");
3610
936fd732 3611 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3612 /* SATA spec says nothing about how to reconfigure
3613 * spd. To be on the safe side, turn off phy during
3614 * reconfiguration. This works for at least ICH7 AHCI
3615 * and Sil3124.
3616 */
936fd732 3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3618 goto out;
81952c54 3619
a34b6fc0 3620 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3621
936fd732 3622 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3623 goto out;
1c3fae4d 3624
936fd732 3625 sata_set_spd(link);
1c3fae4d
TH
3626 }
3627
3628 /* issue phy wake/reset */
936fd732 3629 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3630 goto out;
81952c54 3631
852ee16a 3632 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3633
936fd732 3634 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3635 goto out;
c2bd5804 3636
1c3fae4d 3637 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3638 * 10.4.2 says at least 1 ms.
3639 */
3640 msleep(1);
3641
936fd732
TH
3642 /* bring link back */
3643 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3644 out:
3645 DPRINTK("EXIT, rc=%d\n", rc);
3646 return rc;
3647}
3648
3649/**
3650 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3651 * @link: link to reset
b6103f6d 3652 * @class: resulting class of attached device
d4b2bab4 3653 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3654 *
3655 * SATA phy-reset host port using DET bits of SControl register,
3656 * wait for !BSY and classify the attached device.
3657 *
3658 * LOCKING:
3659 * Kernel thread context (may sleep)
3660 *
3661 * RETURNS:
3662 * 0 on success, -errno otherwise.
3663 */
cc0680a5 3664int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3665 unsigned long deadline)
b6103f6d 3666{
cc0680a5 3667 struct ata_port *ap = link->ap;
936fd732 3668 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3669 int rc;
3670
3671 DPRINTK("ENTER\n");
3672
3673 /* do hardreset */
cc0680a5 3674 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3675 if (rc) {
cc0680a5 3676 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3677 "COMRESET failed (errno=%d)\n", rc);
3678 return rc;
3679 }
c2bd5804 3680
c2bd5804 3681 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3682 if (ata_link_offline(link)) {
c2bd5804
TH
3683 *class = ATA_DEV_NONE;
3684 DPRINTK("EXIT, link offline\n");
3685 return 0;
3686 }
3687
34fee227
TH
3688 /* wait a while before checking status, see SRST for more info */
3689 msleep(150);
3690
633273a3
TH
3691 /* If PMP is supported, we have to do follow-up SRST. Note
3692 * that some PMPs don't send D2H Reg FIS after hardreset at
3693 * all if the first port is empty. Wait for it just for a
3694 * second and request follow-up SRST.
3695 */
3696 if (ap->flags & ATA_FLAG_PMP) {
3697 ata_wait_ready(ap, jiffies + HZ);
3698 return -EAGAIN;
3699 }
3700
d4b2bab4 3701 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3702 /* link occupied, -ENODEV too is an error */
3703 if (rc) {
cc0680a5 3704 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3705 "COMRESET failed (errno=%d)\n", rc);
3706 return rc;
c2bd5804
TH
3707 }
3708
3a39746a
TH
3709 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3710
3f19859e 3711 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3712
3713 DPRINTK("EXIT, class=%u\n", *class);
3714 return 0;
3715}
3716
3717/**
3718 * ata_std_postreset - standard postreset callback
cc0680a5 3719 * @link: the target ata_link
c2bd5804
TH
3720 * @classes: classes of attached devices
3721 *
3722 * This function is invoked after a successful reset. Note that
3723 * the device might have been reset more than once using
3724 * different reset methods before postreset is invoked.
c2bd5804 3725 *
c2bd5804
TH
3726 * LOCKING:
3727 * Kernel thread context (may sleep)
3728 */
cc0680a5 3729void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3730{
cc0680a5 3731 struct ata_port *ap = link->ap;
dc2b3515
TH
3732 u32 serror;
3733
c2bd5804
TH
3734 DPRINTK("ENTER\n");
3735
c2bd5804 3736 /* print link status */
936fd732 3737 sata_print_link_status(link);
c2bd5804 3738
dc2b3515 3739 /* clear SError */
936fd732
TH
3740 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3741 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3742
c2bd5804
TH
3743 /* is double-select really necessary? */
3744 if (classes[0] != ATA_DEV_NONE)
3745 ap->ops->dev_select(ap, 1);
3746 if (classes[1] != ATA_DEV_NONE)
3747 ap->ops->dev_select(ap, 0);
3748
3a39746a
TH
3749 /* bail out if no device is present */
3750 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3751 DPRINTK("EXIT, no device\n");
3752 return;
3753 }
3754
3755 /* set up device control */
0d5ff566
TH
3756 if (ap->ioaddr.ctl_addr)
3757 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3758
3759 DPRINTK("EXIT\n");
3760}
3761
623a3128
TH
3762/**
3763 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3764 * @dev: device to compare against
3765 * @new_class: class of the new device
3766 * @new_id: IDENTIFY page of the new device
3767 *
3768 * Compare @new_class and @new_id against @dev and determine
3769 * whether @dev is the device indicated by @new_class and
3770 * @new_id.
3771 *
3772 * LOCKING:
3773 * None.
3774 *
3775 * RETURNS:
3776 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3777 */
3373efd8
TH
3778static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3779 const u16 *new_id)
623a3128
TH
3780{
3781 const u16 *old_id = dev->id;
a0cf733b
TH
3782 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3783 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3784
3785 if (dev->class != new_class) {
f15a1daf
TH
3786 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3787 dev->class, new_class);
623a3128
TH
3788 return 0;
3789 }
3790
a0cf733b
TH
3791 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3792 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3793 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3794 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3795
3796 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3797 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3798 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3799 return 0;
3800 }
3801
3802 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3803 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3804 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3805 return 0;
3806 }
3807
623a3128
TH
3808 return 1;
3809}
3810
3811/**
fe30911b 3812 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3813 * @dev: target ATA device
bff04647 3814 * @readid_flags: read ID flags
623a3128
TH
3815 *
3816 * Re-read IDENTIFY page and make sure @dev is still attached to
3817 * the port.
3818 *
3819 * LOCKING:
3820 * Kernel thread context (may sleep)
3821 *
3822 * RETURNS:
3823 * 0 on success, negative errno otherwise
3824 */
fe30911b 3825int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3826{
5eb45c02 3827 unsigned int class = dev->class;
9af5c9c9 3828 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3829 int rc;
3830
fe635c7e 3831 /* read ID data */
bff04647 3832 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3833 if (rc)
fe30911b 3834 return rc;
623a3128
TH
3835
3836 /* is the device still there? */
fe30911b
TH
3837 if (!ata_dev_same_device(dev, class, id))
3838 return -ENODEV;
623a3128 3839
fe635c7e 3840 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3841 return 0;
3842}
3843
3844/**
3845 * ata_dev_revalidate - Revalidate ATA device
3846 * @dev: device to revalidate
422c9daa 3847 * @new_class: new class code
fe30911b
TH
3848 * @readid_flags: read ID flags
3849 *
3850 * Re-read IDENTIFY page, make sure @dev is still attached to the
3851 * port and reconfigure it according to the new IDENTIFY page.
3852 *
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3855 *
3856 * RETURNS:
3857 * 0 on success, negative errno otherwise
3858 */
422c9daa
TH
3859int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3860 unsigned int readid_flags)
fe30911b 3861{
6ddcd3b0 3862 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3863 int rc;
3864
3865 if (!ata_dev_enabled(dev))
3866 return -ENODEV;
3867
422c9daa
TH
3868 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3869 if (ata_class_enabled(new_class) &&
3870 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3871 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3872 dev->class, new_class);
3873 rc = -ENODEV;
3874 goto fail;
3875 }
3876
fe30911b
TH
3877 /* re-read ID */
3878 rc = ata_dev_reread_id(dev, readid_flags);
3879 if (rc)
3880 goto fail;
623a3128
TH
3881
3882 /* configure device according to the new ID */
efdaedc4 3883 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3884 if (rc)
3885 goto fail;
3886
3887 /* verify n_sectors hasn't changed */
b54eebd6
TH
3888 if (dev->class == ATA_DEV_ATA && n_sectors &&
3889 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3890 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3891 "%llu != %llu\n",
3892 (unsigned long long)n_sectors,
3893 (unsigned long long)dev->n_sectors);
8270bec4
TH
3894
3895 /* restore original n_sectors */
3896 dev->n_sectors = n_sectors;
3897
6ddcd3b0
TH
3898 rc = -ENODEV;
3899 goto fail;
3900 }
3901
3902 return 0;
623a3128
TH
3903
3904 fail:
f15a1daf 3905 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3906 return rc;
3907}
3908
6919a0a6
AC
3909struct ata_blacklist_entry {
3910 const char *model_num;
3911 const char *model_rev;
3912 unsigned long horkage;
3913};
3914
3915static const struct ata_blacklist_entry ata_device_blacklist [] = {
3916 /* Devices with DMA related problems under Linux */
3917 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3918 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3919 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3920 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3921 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3922 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3923 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3924 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3925 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3926 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3927 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3928 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3929 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3930 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3931 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3932 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3933 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3934 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3935 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3936 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3937 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3938 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3939 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3940 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3941 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3942 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3943 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3944 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3945 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3946 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3947 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3948 { "IOMEGA ZIP 250 ATAPI Floppy",
3949 NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
3950 /* Odd clown on sil3726/4726 PMPs */
3951 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
3952 ATA_HORKAGE_SKIP_PM },
6919a0a6 3953
18d6e9d5 3954 /* Weird ATAPI devices */
40a1d531 3955 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3956
6919a0a6
AC
3957 /* Devices we expect to fail diagnostics */
3958
3959 /* Devices where NCQ should be avoided */
3960 /* NCQ is slow */
3961 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3962 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3963 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3964 /* NCQ is broken */
539cc7c7 3965 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3966 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
3967 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
3968 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 3969 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 3970
36e337d0
RH
3971 /* Blacklist entries taken from Silicon Image 3124/3132
3972 Windows driver .inf file - also several Linux problem reports */
3973 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3974 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3975 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3976 /* Drives which do spurious command completion */
3977 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3978 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 3979 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 3980 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3981 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 3982 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 3983 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 3984 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 3985 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 3986 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 3987 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
3988 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
3989 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 3990 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3991
16c55b03
TH
3992 /* devices which puke on READ_NATIVE_MAX */
3993 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3994 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3995 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3996 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 3997
93328e11
AC
3998 /* Devices which report 1 sector over size HPA */
3999 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4000 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4001
6919a0a6
AC
4002 /* End Marker */
4003 { }
1da177e4 4004};
2e9edbf8 4005
539cc7c7
JG
4006int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4007{
4008 const char *p;
4009 int len;
4010
4011 /*
4012 * check for trailing wildcard: *\0
4013 */
4014 p = strchr(patt, wildchar);
4015 if (p && ((*(p + 1)) == 0))
4016 len = p - patt;
4017 else
4018 len = strlen(name);
4019
4020 return strncmp(patt, name, len);
4021}
4022
75683fe7 4023static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4024{
8bfa79fc
TH
4025 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4026 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4027 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4028
8bfa79fc
TH
4029 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4030 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4031
6919a0a6 4032 while (ad->model_num) {
539cc7c7 4033 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4034 if (ad->model_rev == NULL)
4035 return ad->horkage;
539cc7c7 4036 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4037 return ad->horkage;
f4b15fef 4038 }
6919a0a6 4039 ad++;
f4b15fef 4040 }
1da177e4
LT
4041 return 0;
4042}
4043
6919a0a6
AC
4044static int ata_dma_blacklisted(const struct ata_device *dev)
4045{
4046 /* We don't support polling DMA.
4047 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4048 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4049 */
9af5c9c9 4050 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4051 (dev->flags & ATA_DFLAG_CDB_INTR))
4052 return 1;
75683fe7 4053 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4054}
4055
a6d5a51c
TH
4056/**
4057 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4058 * @dev: Device to compute xfermask for
4059 *
acf356b1
TH
4060 * Compute supported xfermask of @dev and store it in
4061 * dev->*_mask. This function is responsible for applying all
4062 * known limits including host controller limits, device
4063 * blacklist, etc...
a6d5a51c
TH
4064 *
4065 * LOCKING:
4066 * None.
a6d5a51c 4067 */
3373efd8 4068static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4069{
9af5c9c9
TH
4070 struct ata_link *link = dev->link;
4071 struct ata_port *ap = link->ap;
cca3974e 4072 struct ata_host *host = ap->host;
a6d5a51c 4073 unsigned long xfer_mask;
1da177e4 4074
37deecb5 4075 /* controller modes available */
565083e1
TH
4076 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4077 ap->mwdma_mask, ap->udma_mask);
4078
8343f889 4079 /* drive modes available */
37deecb5
TH
4080 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4081 dev->mwdma_mask, dev->udma_mask);
4082 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4083
b352e57d
AC
4084 /*
4085 * CFA Advanced TrueIDE timings are not allowed on a shared
4086 * cable
4087 */
4088 if (ata_dev_pair(dev)) {
4089 /* No PIO5 or PIO6 */
4090 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4091 /* No MWDMA3 or MWDMA 4 */
4092 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4093 }
4094
37deecb5
TH
4095 if (ata_dma_blacklisted(dev)) {
4096 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4097 ata_dev_printk(dev, KERN_WARNING,
4098 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4099 }
a6d5a51c 4100
14d66ab7
PV
4101 if ((host->flags & ATA_HOST_SIMPLEX) &&
4102 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4103 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4104 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4105 "other device, disabling DMA\n");
5444a6f4 4106 }
565083e1 4107
e424675f
JG
4108 if (ap->flags & ATA_FLAG_NO_IORDY)
4109 xfer_mask &= ata_pio_mask_no_iordy(dev);
4110
5444a6f4 4111 if (ap->ops->mode_filter)
a76b62ca 4112 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4113
8343f889
RH
4114 /* Apply cable rule here. Don't apply it early because when
4115 * we handle hot plug the cable type can itself change.
4116 * Check this last so that we know if the transfer rate was
4117 * solely limited by the cable.
4118 * Unknown or 80 wire cables reported host side are checked
4119 * drive side as well. Cases where we know a 40wire cable
4120 * is used safely for 80 are not checked here.
4121 */
4122 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4123 /* UDMA/44 or higher would be available */
4124 if((ap->cbl == ATA_CBL_PATA40) ||
4125 (ata_drive_40wire(dev->id) &&
4126 (ap->cbl == ATA_CBL_PATA_UNK ||
4127 ap->cbl == ATA_CBL_PATA80))) {
4128 ata_dev_printk(dev, KERN_WARNING,
4129 "limited to UDMA/33 due to 40-wire cable\n");
4130 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4131 }
4132
565083e1
TH
4133 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4134 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4135}
4136
1da177e4
LT
4137/**
4138 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4139 * @dev: Device to which command will be sent
4140 *
780a87f7
JG
4141 * Issue SET FEATURES - XFER MODE command to device @dev
4142 * on port @ap.
4143 *
1da177e4 4144 * LOCKING:
0cba632b 4145 * PCI/etc. bus probe sem.
83206a29
TH
4146 *
4147 * RETURNS:
4148 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4149 */
4150
3373efd8 4151static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4152{
a0123703 4153 struct ata_taskfile tf;
83206a29 4154 unsigned int err_mask;
1da177e4
LT
4155
4156 /* set up set-features taskfile */
4157 DPRINTK("set features - xfer mode\n");
4158
464cf177
TH
4159 /* Some controllers and ATAPI devices show flaky interrupt
4160 * behavior after setting xfer mode. Use polling instead.
4161 */
3373efd8 4162 ata_tf_init(dev, &tf);
a0123703
TH
4163 tf.command = ATA_CMD_SET_FEATURES;
4164 tf.feature = SETFEATURES_XFER;
464cf177 4165 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4166 tf.protocol = ATA_PROT_NODATA;
4167 tf.nsect = dev->xfer_mode;
1da177e4 4168
2b789108 4169 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4170
4171 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4172 return err_mask;
4173}
4174
4175/**
4176 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4177 * @dev: Device to which command will be sent
4178 * @enable: Whether to enable or disable the feature
4179 *
4180 * Issue SET FEATURES - SATA FEATURES command to device @dev
4181 * on port @ap with sector count set to indicate Asynchronous
4182 * Notification feature
4183 *
4184 * LOCKING:
4185 * PCI/etc. bus probe sem.
4186 *
4187 * RETURNS:
4188 * 0 on success, AC_ERR_* mask otherwise.
4189 */
4190static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4191{
4192 struct ata_taskfile tf;
4193 unsigned int err_mask;
4194
4195 /* set up set-features taskfile */
4196 DPRINTK("set features - SATA features\n");
4197
4198 ata_tf_init(dev, &tf);
4199 tf.command = ATA_CMD_SET_FEATURES;
4200 tf.feature = enable;
4201 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4202 tf.protocol = ATA_PROT_NODATA;
4203 tf.nsect = SATA_AN;
4204
2b789108 4205 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4206
83206a29
TH
4207 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4208 return err_mask;
1da177e4
LT
4209}
4210
8bf62ece
AL
4211/**
4212 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4213 * @dev: Device to which command will be sent
e2a7f77a
RD
4214 * @heads: Number of heads (taskfile parameter)
4215 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4216 *
4217 * LOCKING:
6aff8f1f
TH
4218 * Kernel thread context (may sleep)
4219 *
4220 * RETURNS:
4221 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4222 */
3373efd8
TH
4223static unsigned int ata_dev_init_params(struct ata_device *dev,
4224 u16 heads, u16 sectors)
8bf62ece 4225{
a0123703 4226 struct ata_taskfile tf;
6aff8f1f 4227 unsigned int err_mask;
8bf62ece
AL
4228
4229 /* Number of sectors per track 1-255. Number of heads 1-16 */
4230 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4231 return AC_ERR_INVALID;
8bf62ece
AL
4232
4233 /* set up init dev params taskfile */
4234 DPRINTK("init dev params \n");
4235
3373efd8 4236 ata_tf_init(dev, &tf);
a0123703
TH
4237 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4238 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4239 tf.protocol = ATA_PROT_NODATA;
4240 tf.nsect = sectors;
4241 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4242
2b789108 4243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4244 /* A clean abort indicates an original or just out of spec drive
4245 and we should continue as we issue the setup based on the
4246 drive reported working geometry */
4247 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4248 err_mask = 0;
8bf62ece 4249
6aff8f1f
TH
4250 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4251 return err_mask;
8bf62ece
AL
4252}
4253
1da177e4 4254/**
0cba632b
JG
4255 * ata_sg_clean - Unmap DMA memory associated with command
4256 * @qc: Command containing DMA memory to be released
4257 *
4258 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4259 *
4260 * LOCKING:
cca3974e 4261 * spin_lock_irqsave(host lock)
1da177e4 4262 */
70e6ad0c 4263void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4264{
4265 struct ata_port *ap = qc->ap;
cedc9a47 4266 struct scatterlist *sg = qc->__sg;
1da177e4 4267 int dir = qc->dma_dir;
cedc9a47 4268 void *pad_buf = NULL;
1da177e4 4269
a4631474
TH
4270 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4271 WARN_ON(sg == NULL);
1da177e4
LT
4272
4273 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4274 WARN_ON(qc->n_elem > 1);
1da177e4 4275
2c13b7ce 4276 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4277
cedc9a47
JG
4278 /* if we padded the buffer out to 32-bit bound, and data
4279 * xfer direction is from-device, we must copy from the
4280 * pad buffer back into the supplied buffer
4281 */
4282 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4283 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4284
4285 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4286 if (qc->n_elem)
2f1f610b 4287 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4288 /* restore last sg */
4289 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4290 if (pad_buf) {
4291 struct scatterlist *psg = &qc->pad_sgent;
4292 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4293 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4294 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4295 }
4296 } else {
2e242fa9 4297 if (qc->n_elem)
2f1f610b 4298 dma_unmap_single(ap->dev,
e1410f2d
JG
4299 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4300 dir);
cedc9a47
JG
4301 /* restore sg */
4302 sg->length += qc->pad_len;
4303 if (pad_buf)
4304 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4305 pad_buf, qc->pad_len);
4306 }
1da177e4
LT
4307
4308 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4309 qc->__sg = NULL;
1da177e4
LT
4310}
4311
4312/**
4313 * ata_fill_sg - Fill PCI IDE PRD table
4314 * @qc: Metadata associated with taskfile to be transferred
4315 *
780a87f7
JG
4316 * Fill PCI IDE PRD (scatter-gather) table with segments
4317 * associated with the current disk command.
4318 *
1da177e4 4319 * LOCKING:
cca3974e 4320 * spin_lock_irqsave(host lock)
1da177e4
LT
4321 *
4322 */
4323static void ata_fill_sg(struct ata_queued_cmd *qc)
4324{
1da177e4 4325 struct ata_port *ap = qc->ap;
cedc9a47
JG
4326 struct scatterlist *sg;
4327 unsigned int idx;
1da177e4 4328
a4631474 4329 WARN_ON(qc->__sg == NULL);
f131883e 4330 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4331
4332 idx = 0;
cedc9a47 4333 ata_for_each_sg(sg, qc) {
1da177e4
LT
4334 u32 addr, offset;
4335 u32 sg_len, len;
4336
4337 /* determine if physical DMA addr spans 64K boundary.
4338 * Note h/w doesn't support 64-bit, so we unconditionally
4339 * truncate dma_addr_t to u32.
4340 */
4341 addr = (u32) sg_dma_address(sg);
4342 sg_len = sg_dma_len(sg);
4343
4344 while (sg_len) {
4345 offset = addr & 0xffff;
4346 len = sg_len;
4347 if ((offset + sg_len) > 0x10000)
4348 len = 0x10000 - offset;
4349
4350 ap->prd[idx].addr = cpu_to_le32(addr);
4351 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4352 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4353
4354 idx++;
4355 sg_len -= len;
4356 addr += len;
4357 }
4358 }
4359
4360 if (idx)
4361 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4362}
b9a4197e 4363
d26fc955
AC
4364/**
4365 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4366 * @qc: Metadata associated with taskfile to be transferred
4367 *
4368 * Fill PCI IDE PRD (scatter-gather) table with segments
4369 * associated with the current disk command. Perform the fill
4370 * so that we avoid writing any length 64K records for
4371 * controllers that don't follow the spec.
4372 *
4373 * LOCKING:
4374 * spin_lock_irqsave(host lock)
4375 *
4376 */
4377static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4378{
4379 struct ata_port *ap = qc->ap;
4380 struct scatterlist *sg;
4381 unsigned int idx;
4382
4383 WARN_ON(qc->__sg == NULL);
4384 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4385
4386 idx = 0;
4387 ata_for_each_sg(sg, qc) {
4388 u32 addr, offset;
4389 u32 sg_len, len, blen;
4390
4391 /* determine if physical DMA addr spans 64K boundary.
4392 * Note h/w doesn't support 64-bit, so we unconditionally
4393 * truncate dma_addr_t to u32.
4394 */
4395 addr = (u32) sg_dma_address(sg);
4396 sg_len = sg_dma_len(sg);
4397
4398 while (sg_len) {
4399 offset = addr & 0xffff;
4400 len = sg_len;
4401 if ((offset + sg_len) > 0x10000)
4402 len = 0x10000 - offset;
4403
4404 blen = len & 0xffff;
4405 ap->prd[idx].addr = cpu_to_le32(addr);
4406 if (blen == 0) {
4407 /* Some PATA chipsets like the CS5530 can't
4408 cope with 0x0000 meaning 64K as the spec says */
4409 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4410 blen = 0x8000;
4411 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4412 }
4413 ap->prd[idx].flags_len = cpu_to_le32(blen);
4414 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4415
4416 idx++;
4417 sg_len -= len;
4418 addr += len;
4419 }
4420 }
4421
4422 if (idx)
4423 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4424}
4425
1da177e4
LT
4426/**
4427 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4428 * @qc: Metadata associated with taskfile to check
4429 *
780a87f7
JG
4430 * Allow low-level driver to filter ATA PACKET commands, returning
4431 * a status indicating whether or not it is OK to use DMA for the
4432 * supplied PACKET command.
4433 *
1da177e4 4434 * LOCKING:
cca3974e 4435 * spin_lock_irqsave(host lock)
0cba632b 4436 *
1da177e4
LT
4437 * RETURNS: 0 when ATAPI DMA can be used
4438 * nonzero otherwise
4439 */
4440int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4441{
4442 struct ata_port *ap = qc->ap;
b9a4197e
TH
4443
4444 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4445 * few ATAPI devices choke on such DMA requests.
4446 */
4447 if (unlikely(qc->nbytes & 15))
4448 return 1;
6f23a31d 4449
1da177e4 4450 if (ap->ops->check_atapi_dma)
b9a4197e 4451 return ap->ops->check_atapi_dma(qc);
1da177e4 4452
b9a4197e 4453 return 0;
1da177e4 4454}
b9a4197e 4455
31cc23b3
TH
4456/**
4457 * ata_std_qc_defer - Check whether a qc needs to be deferred
4458 * @qc: ATA command in question
4459 *
4460 * Non-NCQ commands cannot run with any other command, NCQ or
4461 * not. As upper layer only knows the queue depth, we are
4462 * responsible for maintaining exclusion. This function checks
4463 * whether a new command @qc can be issued.
4464 *
4465 * LOCKING:
4466 * spin_lock_irqsave(host lock)
4467 *
4468 * RETURNS:
4469 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4470 */
4471int ata_std_qc_defer(struct ata_queued_cmd *qc)
4472{
4473 struct ata_link *link = qc->dev->link;
4474
4475 if (qc->tf.protocol == ATA_PROT_NCQ) {
4476 if (!ata_tag_valid(link->active_tag))
4477 return 0;
4478 } else {
4479 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4480 return 0;
4481 }
4482
4483 return ATA_DEFER_LINK;
4484}
4485
1da177e4
LT
4486/**
4487 * ata_qc_prep - Prepare taskfile for submission
4488 * @qc: Metadata associated with taskfile to be prepared
4489 *
780a87f7
JG
4490 * Prepare ATA taskfile for submission.
4491 *
1da177e4 4492 * LOCKING:
cca3974e 4493 * spin_lock_irqsave(host lock)
1da177e4
LT
4494 */
4495void ata_qc_prep(struct ata_queued_cmd *qc)
4496{
4497 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4498 return;
4499
4500 ata_fill_sg(qc);
4501}
4502
d26fc955
AC
4503/**
4504 * ata_dumb_qc_prep - Prepare taskfile for submission
4505 * @qc: Metadata associated with taskfile to be prepared
4506 *
4507 * Prepare ATA taskfile for submission.
4508 *
4509 * LOCKING:
4510 * spin_lock_irqsave(host lock)
4511 */
4512void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4513{
4514 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4515 return;
4516
4517 ata_fill_sg_dumb(qc);
4518}
4519
e46834cd
BK
4520void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4521
0cba632b
JG
4522/**
4523 * ata_sg_init_one - Associate command with memory buffer
4524 * @qc: Command to be associated
4525 * @buf: Memory buffer
4526 * @buflen: Length of memory buffer, in bytes.
4527 *
4528 * Initialize the data-related elements of queued_cmd @qc
4529 * to point to a single memory buffer, @buf of byte length @buflen.
4530 *
4531 * LOCKING:
cca3974e 4532 * spin_lock_irqsave(host lock)
0cba632b
JG
4533 */
4534
1da177e4
LT
4535void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4536{
1da177e4
LT
4537 qc->flags |= ATA_QCFLAG_SINGLE;
4538
cedc9a47 4539 qc->__sg = &qc->sgent;
1da177e4 4540 qc->n_elem = 1;
cedc9a47 4541 qc->orig_n_elem = 1;
1da177e4 4542 qc->buf_virt = buf;
233277ca 4543 qc->nbytes = buflen;
1da177e4 4544
61c0596c 4545 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4546}
4547
0cba632b
JG
4548/**
4549 * ata_sg_init - Associate command with scatter-gather table.
4550 * @qc: Command to be associated
4551 * @sg: Scatter-gather table.
4552 * @n_elem: Number of elements in s/g table.
4553 *
4554 * Initialize the data-related elements of queued_cmd @qc
4555 * to point to a scatter-gather table @sg, containing @n_elem
4556 * elements.
4557 *
4558 * LOCKING:
cca3974e 4559 * spin_lock_irqsave(host lock)
0cba632b
JG
4560 */
4561
1da177e4
LT
4562void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4563 unsigned int n_elem)
4564{
4565 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4566 qc->__sg = sg;
1da177e4 4567 qc->n_elem = n_elem;
cedc9a47 4568 qc->orig_n_elem = n_elem;
1da177e4
LT
4569}
4570
4571/**
0cba632b
JG
4572 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4573 * @qc: Command with memory buffer to be mapped.
4574 *
4575 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4576 *
4577 * LOCKING:
cca3974e 4578 * spin_lock_irqsave(host lock)
1da177e4
LT
4579 *
4580 * RETURNS:
0cba632b 4581 * Zero on success, negative on error.
1da177e4
LT
4582 */
4583
4584static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4585{
4586 struct ata_port *ap = qc->ap;
4587 int dir = qc->dma_dir;
cedc9a47 4588 struct scatterlist *sg = qc->__sg;
1da177e4 4589 dma_addr_t dma_address;
2e242fa9 4590 int trim_sg = 0;
1da177e4 4591
cedc9a47
JG
4592 /* we must lengthen transfers to end on a 32-bit boundary */
4593 qc->pad_len = sg->length & 3;
4594 if (qc->pad_len) {
4595 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4596 struct scatterlist *psg = &qc->pad_sgent;
4597
a4631474 4598 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4599
4600 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4601
4602 if (qc->tf.flags & ATA_TFLAG_WRITE)
4603 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4604 qc->pad_len);
4605
4606 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4607 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4608 /* trim sg */
4609 sg->length -= qc->pad_len;
2e242fa9
TH
4610 if (sg->length == 0)
4611 trim_sg = 1;
cedc9a47
JG
4612
4613 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4614 sg->length, qc->pad_len);
4615 }
4616
2e242fa9
TH
4617 if (trim_sg) {
4618 qc->n_elem--;
e1410f2d
JG
4619 goto skip_map;
4620 }
4621
2f1f610b 4622 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4623 sg->length, dir);
537a95d9
TH
4624 if (dma_mapping_error(dma_address)) {
4625 /* restore sg */
4626 sg->length += qc->pad_len;
1da177e4 4627 return -1;
537a95d9 4628 }
1da177e4
LT
4629
4630 sg_dma_address(sg) = dma_address;
32529e01 4631 sg_dma_len(sg) = sg->length;
1da177e4 4632
2e242fa9 4633skip_map:
1da177e4
LT
4634 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4635 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4636
4637 return 0;
4638}
4639
4640/**
0cba632b
JG
4641 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4642 * @qc: Command with scatter-gather table to be mapped.
4643 *
4644 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4645 *
4646 * LOCKING:
cca3974e 4647 * spin_lock_irqsave(host lock)
1da177e4
LT
4648 *
4649 * RETURNS:
0cba632b 4650 * Zero on success, negative on error.
1da177e4
LT
4651 *
4652 */
4653
4654static int ata_sg_setup(struct ata_queued_cmd *qc)
4655{
4656 struct ata_port *ap = qc->ap;
cedc9a47
JG
4657 struct scatterlist *sg = qc->__sg;
4658 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4659 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4660
44877b4e 4661 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4662 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4663
cedc9a47
JG
4664 /* we must lengthen transfers to end on a 32-bit boundary */
4665 qc->pad_len = lsg->length & 3;
4666 if (qc->pad_len) {
4667 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4668 struct scatterlist *psg = &qc->pad_sgent;
4669 unsigned int offset;
4670
a4631474 4671 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4672
4673 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4674
4675 /*
4676 * psg->page/offset are used to copy to-be-written
4677 * data in this function or read data in ata_sg_clean.
4678 */
4679 offset = lsg->offset + lsg->length - qc->pad_len;
4680 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4681 psg->offset = offset_in_page(offset);
4682
4683 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4684 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4685 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4686 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4687 }
4688
4689 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4690 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4691 /* trim last sg */
4692 lsg->length -= qc->pad_len;
e1410f2d
JG
4693 if (lsg->length == 0)
4694 trim_sg = 1;
cedc9a47
JG
4695
4696 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4697 qc->n_elem - 1, lsg->length, qc->pad_len);
4698 }
4699
e1410f2d
JG
4700 pre_n_elem = qc->n_elem;
4701 if (trim_sg && pre_n_elem)
4702 pre_n_elem--;
4703
4704 if (!pre_n_elem) {
4705 n_elem = 0;
4706 goto skip_map;
4707 }
4708
1da177e4 4709 dir = qc->dma_dir;
2f1f610b 4710 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4711 if (n_elem < 1) {
4712 /* restore last sg */
4713 lsg->length += qc->pad_len;
1da177e4 4714 return -1;
537a95d9 4715 }
1da177e4
LT
4716
4717 DPRINTK("%d sg elements mapped\n", n_elem);
4718
e1410f2d 4719skip_map:
1da177e4
LT
4720 qc->n_elem = n_elem;
4721
4722 return 0;
4723}
4724
0baab86b 4725/**
c893a3ae 4726 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4727 * @buf: Buffer to swap
4728 * @buf_words: Number of 16-bit words in buffer.
4729 *
4730 * Swap halves of 16-bit words if needed to convert from
4731 * little-endian byte order to native cpu byte order, or
4732 * vice-versa.
4733 *
4734 * LOCKING:
6f0ef4fa 4735 * Inherited from caller.
0baab86b 4736 */
1da177e4
LT
4737void swap_buf_le16(u16 *buf, unsigned int buf_words)
4738{
4739#ifdef __BIG_ENDIAN
4740 unsigned int i;
4741
4742 for (i = 0; i < buf_words; i++)
4743 buf[i] = le16_to_cpu(buf[i]);
4744#endif /* __BIG_ENDIAN */
4745}
4746
6ae4cfb5 4747/**
0d5ff566 4748 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4749 * @adev: device to target
6ae4cfb5
AL
4750 * @buf: data buffer
4751 * @buflen: buffer length
344babaa 4752 * @write_data: read/write
6ae4cfb5
AL
4753 *
4754 * Transfer data from/to the device data register by PIO.
4755 *
4756 * LOCKING:
4757 * Inherited from caller.
6ae4cfb5 4758 */
0d5ff566
TH
4759void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4760 unsigned int buflen, int write_data)
1da177e4 4761{
9af5c9c9 4762 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4763 unsigned int words = buflen >> 1;
1da177e4 4764
6ae4cfb5 4765 /* Transfer multiple of 2 bytes */
1da177e4 4766 if (write_data)
0d5ff566 4767 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4768 else
0d5ff566 4769 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4770
4771 /* Transfer trailing 1 byte, if any. */
4772 if (unlikely(buflen & 0x01)) {
4773 u16 align_buf[1] = { 0 };
4774 unsigned char *trailing_buf = buf + buflen - 1;
4775
4776 if (write_data) {
4777 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4778 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4779 } else {
0d5ff566 4780 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4781 memcpy(trailing_buf, align_buf, 1);
4782 }
4783 }
1da177e4
LT
4784}
4785
75e99585 4786/**
0d5ff566 4787 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4788 * @adev: device to target
4789 * @buf: data buffer
4790 * @buflen: buffer length
4791 * @write_data: read/write
4792 *
88574551 4793 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4794 * transfer with interrupts disabled.
4795 *
4796 * LOCKING:
4797 * Inherited from caller.
4798 */
0d5ff566
TH
4799void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4800 unsigned int buflen, int write_data)
75e99585
AC
4801{
4802 unsigned long flags;
4803 local_irq_save(flags);
0d5ff566 4804 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4805 local_irq_restore(flags);
4806}
4807
4808
6ae4cfb5 4809/**
5a5dbd18 4810 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4811 * @qc: Command on going
4812 *
5a5dbd18 4813 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4814 *
4815 * LOCKING:
4816 * Inherited from caller.
4817 */
4818
1da177e4
LT
4819static void ata_pio_sector(struct ata_queued_cmd *qc)
4820{
4821 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4822 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4823 struct ata_port *ap = qc->ap;
4824 struct page *page;
4825 unsigned int offset;
4826 unsigned char *buf;
4827
5a5dbd18 4828 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4829 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4830
4831 page = sg[qc->cursg].page;
726f0785 4832 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4833
4834 /* get the current page and offset */
4835 page = nth_page(page, (offset >> PAGE_SHIFT));
4836 offset %= PAGE_SIZE;
4837
1da177e4
LT
4838 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4839
91b8b313
AL
4840 if (PageHighMem(page)) {
4841 unsigned long flags;
4842
a6b2c5d4 4843 /* FIXME: use a bounce buffer */
91b8b313
AL
4844 local_irq_save(flags);
4845 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4846
91b8b313 4847 /* do the actual data transfer */
5a5dbd18 4848 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4849
91b8b313
AL
4850 kunmap_atomic(buf, KM_IRQ0);
4851 local_irq_restore(flags);
4852 } else {
4853 buf = page_address(page);
5a5dbd18 4854 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4855 }
1da177e4 4856
5a5dbd18
ML
4857 qc->curbytes += qc->sect_size;
4858 qc->cursg_ofs += qc->sect_size;
1da177e4 4859
726f0785 4860 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4861 qc->cursg++;
4862 qc->cursg_ofs = 0;
4863 }
1da177e4 4864}
1da177e4 4865
07f6f7d0 4866/**
5a5dbd18 4867 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4868 * @qc: Command on going
4869 *
5a5dbd18 4870 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4871 * ATA device for the DRQ request.
4872 *
4873 * LOCKING:
4874 * Inherited from caller.
4875 */
1da177e4 4876
07f6f7d0
AL
4877static void ata_pio_sectors(struct ata_queued_cmd *qc)
4878{
4879 if (is_multi_taskfile(&qc->tf)) {
4880 /* READ/WRITE MULTIPLE */
4881 unsigned int nsect;
4882
587005de 4883 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4884
5a5dbd18 4885 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4886 qc->dev->multi_count);
07f6f7d0
AL
4887 while (nsect--)
4888 ata_pio_sector(qc);
4889 } else
4890 ata_pio_sector(qc);
4cc980b3
AL
4891
4892 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4893}
4894
c71c1857
AL
4895/**
4896 * atapi_send_cdb - Write CDB bytes to hardware
4897 * @ap: Port to which ATAPI device is attached.
4898 * @qc: Taskfile currently active
4899 *
4900 * When device has indicated its readiness to accept
4901 * a CDB, this function is called. Send the CDB.
4902 *
4903 * LOCKING:
4904 * caller.
4905 */
4906
4907static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4908{
4909 /* send SCSI cdb */
4910 DPRINTK("send cdb\n");
db024d53 4911 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4912
a6b2c5d4 4913 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4914 ata_altstatus(ap); /* flush */
4915
4916 switch (qc->tf.protocol) {
4917 case ATA_PROT_ATAPI:
4918 ap->hsm_task_state = HSM_ST;
4919 break;
4920 case ATA_PROT_ATAPI_NODATA:
4921 ap->hsm_task_state = HSM_ST_LAST;
4922 break;
4923 case ATA_PROT_ATAPI_DMA:
4924 ap->hsm_task_state = HSM_ST_LAST;
4925 /* initiate bmdma */
4926 ap->ops->bmdma_start(qc);
4927 break;
4928 }
1da177e4
LT
4929}
4930
6ae4cfb5
AL
4931/**
4932 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4933 * @qc: Command on going
4934 * @bytes: number of bytes
4935 *
4936 * Transfer Transfer data from/to the ATAPI device.
4937 *
4938 * LOCKING:
4939 * Inherited from caller.
4940 *
4941 */
4942
1da177e4
LT
4943static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4944{
4945 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4946 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4947 struct ata_port *ap = qc->ap;
4948 struct page *page;
4949 unsigned char *buf;
4950 unsigned int offset, count;
4951
563a6e1f 4952 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4953 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4954
4955next_sg:
563a6e1f 4956 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4957 /*
563a6e1f
AL
4958 * The end of qc->sg is reached and the device expects
4959 * more data to transfer. In order not to overrun qc->sg
4960 * and fulfill length specified in the byte count register,
4961 * - for read case, discard trailing data from the device
4962 * - for write case, padding zero data to the device
4963 */
4964 u16 pad_buf[1] = { 0 };
4965 unsigned int words = bytes >> 1;
4966 unsigned int i;
4967
4968 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4969 ata_dev_printk(qc->dev, KERN_WARNING,
4970 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4971
4972 for (i = 0; i < words; i++)
a6b2c5d4 4973 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4974
14be71f4 4975 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4976 return;
4977 }
4978
cedc9a47 4979 sg = &qc->__sg[qc->cursg];
1da177e4 4980
1da177e4
LT
4981 page = sg->page;
4982 offset = sg->offset + qc->cursg_ofs;
4983
4984 /* get the current page and offset */
4985 page = nth_page(page, (offset >> PAGE_SHIFT));
4986 offset %= PAGE_SIZE;
4987
6952df03 4988 /* don't overrun current sg */
32529e01 4989 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4990
4991 /* don't cross page boundaries */
4992 count = min(count, (unsigned int)PAGE_SIZE - offset);
4993
7282aa4b
AL
4994 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4995
91b8b313
AL
4996 if (PageHighMem(page)) {
4997 unsigned long flags;
4998
a6b2c5d4 4999 /* FIXME: use bounce buffer */
91b8b313
AL
5000 local_irq_save(flags);
5001 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5002
91b8b313 5003 /* do the actual data transfer */
a6b2c5d4 5004 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5005
91b8b313
AL
5006 kunmap_atomic(buf, KM_IRQ0);
5007 local_irq_restore(flags);
5008 } else {
5009 buf = page_address(page);
a6b2c5d4 5010 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5011 }
1da177e4
LT
5012
5013 bytes -= count;
5014 qc->curbytes += count;
5015 qc->cursg_ofs += count;
5016
32529e01 5017 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
5018 qc->cursg++;
5019 qc->cursg_ofs = 0;
5020 }
5021
563a6e1f 5022 if (bytes)
1da177e4 5023 goto next_sg;
1da177e4
LT
5024}
5025
6ae4cfb5
AL
5026/**
5027 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5028 * @qc: Command on going
5029 *
5030 * Transfer Transfer data from/to the ATAPI device.
5031 *
5032 * LOCKING:
5033 * Inherited from caller.
6ae4cfb5
AL
5034 */
5035
1da177e4
LT
5036static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5037{
5038 struct ata_port *ap = qc->ap;
5039 struct ata_device *dev = qc->dev;
5040 unsigned int ireason, bc_lo, bc_hi, bytes;
5041 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5042
eec4c3f3
AL
5043 /* Abuse qc->result_tf for temp storage of intermediate TF
5044 * here to save some kernel stack usage.
5045 * For normal completion, qc->result_tf is not relevant. For
5046 * error, qc->result_tf is later overwritten by ata_qc_complete().
5047 * So, the correctness of qc->result_tf is not affected.
5048 */
5049 ap->ops->tf_read(ap, &qc->result_tf);
5050 ireason = qc->result_tf.nsect;
5051 bc_lo = qc->result_tf.lbam;
5052 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5053 bytes = (bc_hi << 8) | bc_lo;
5054
5055 /* shall be cleared to zero, indicating xfer of data */
5056 if (ireason & (1 << 0))
5057 goto err_out;
5058
5059 /* make sure transfer direction matches expected */
5060 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5061 if (do_write != i_write)
5062 goto err_out;
5063
44877b4e 5064 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5065
1da177e4 5066 __atapi_pio_bytes(qc, bytes);
4cc980b3 5067 ata_altstatus(ap); /* flush */
1da177e4
LT
5068
5069 return;
5070
5071err_out:
f15a1daf 5072 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5073 qc->err_mask |= AC_ERR_HSM;
14be71f4 5074 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5075}
5076
5077/**
c234fb00
AL
5078 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5079 * @ap: the target ata_port
5080 * @qc: qc on going
1da177e4 5081 *
c234fb00
AL
5082 * RETURNS:
5083 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5084 */
c234fb00
AL
5085
5086static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5087{
c234fb00
AL
5088 if (qc->tf.flags & ATA_TFLAG_POLLING)
5089 return 1;
1da177e4 5090
c234fb00
AL
5091 if (ap->hsm_task_state == HSM_ST_FIRST) {
5092 if (qc->tf.protocol == ATA_PROT_PIO &&
5093 (qc->tf.flags & ATA_TFLAG_WRITE))
5094 return 1;
1da177e4 5095
c234fb00
AL
5096 if (is_atapi_taskfile(&qc->tf) &&
5097 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5098 return 1;
fe79e683
AL
5099 }
5100
c234fb00
AL
5101 return 0;
5102}
1da177e4 5103
c17ea20d
TH
5104/**
5105 * ata_hsm_qc_complete - finish a qc running on standard HSM
5106 * @qc: Command to complete
5107 * @in_wq: 1 if called from workqueue, 0 otherwise
5108 *
5109 * Finish @qc which is running on standard HSM.
5110 *
5111 * LOCKING:
cca3974e 5112 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5113 * Otherwise, none on entry and grabs host lock.
5114 */
5115static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5116{
5117 struct ata_port *ap = qc->ap;
5118 unsigned long flags;
5119
5120 if (ap->ops->error_handler) {
5121 if (in_wq) {
ba6a1308 5122 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5123
cca3974e
JG
5124 /* EH might have kicked in while host lock is
5125 * released.
c17ea20d
TH
5126 */
5127 qc = ata_qc_from_tag(ap, qc->tag);
5128 if (qc) {
5129 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5130 ap->ops->irq_on(ap);
c17ea20d
TH
5131 ata_qc_complete(qc);
5132 } else
5133 ata_port_freeze(ap);
5134 }
5135
ba6a1308 5136 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5137 } else {
5138 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5139 ata_qc_complete(qc);
5140 else
5141 ata_port_freeze(ap);
5142 }
5143 } else {
5144 if (in_wq) {
ba6a1308 5145 spin_lock_irqsave(ap->lock, flags);
83625006 5146 ap->ops->irq_on(ap);
c17ea20d 5147 ata_qc_complete(qc);
ba6a1308 5148 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5149 } else
5150 ata_qc_complete(qc);
5151 }
5152}
5153
bb5cb290
AL
5154/**
5155 * ata_hsm_move - move the HSM to the next state.
5156 * @ap: the target ata_port
5157 * @qc: qc on going
5158 * @status: current device status
5159 * @in_wq: 1 if called from workqueue, 0 otherwise
5160 *
5161 * RETURNS:
5162 * 1 when poll next status needed, 0 otherwise.
5163 */
9a1004d0
TH
5164int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5165 u8 status, int in_wq)
e2cec771 5166{
bb5cb290
AL
5167 unsigned long flags = 0;
5168 int poll_next;
5169
6912ccd5
AL
5170 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5171
bb5cb290
AL
5172 /* Make sure ata_qc_issue_prot() does not throw things
5173 * like DMA polling into the workqueue. Notice that
5174 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5175 */
c234fb00 5176 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5177
e2cec771 5178fsm_start:
999bb6f4 5179 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5180 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5181
e2cec771
AL
5182 switch (ap->hsm_task_state) {
5183 case HSM_ST_FIRST:
bb5cb290
AL
5184 /* Send first data block or PACKET CDB */
5185
5186 /* If polling, we will stay in the work queue after
5187 * sending the data. Otherwise, interrupt handler
5188 * takes over after sending the data.
5189 */
5190 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5191
e2cec771 5192 /* check device status */
3655d1d3
AL
5193 if (unlikely((status & ATA_DRQ) == 0)) {
5194 /* handle BSY=0, DRQ=0 as error */
5195 if (likely(status & (ATA_ERR | ATA_DF)))
5196 /* device stops HSM for abort/error */
5197 qc->err_mask |= AC_ERR_DEV;
5198 else
5199 /* HSM violation. Let EH handle this */
5200 qc->err_mask |= AC_ERR_HSM;
5201
14be71f4 5202 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5203 goto fsm_start;
1da177e4
LT
5204 }
5205
71601958
AL
5206 /* Device should not ask for data transfer (DRQ=1)
5207 * when it finds something wrong.
eee6c32f
AL
5208 * We ignore DRQ here and stop the HSM by
5209 * changing hsm_task_state to HSM_ST_ERR and
5210 * let the EH abort the command or reset the device.
71601958
AL
5211 */
5212 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5213 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5214 "error, dev_stat 0x%X\n", status);
3655d1d3 5215 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5216 ap->hsm_task_state = HSM_ST_ERR;
5217 goto fsm_start;
71601958 5218 }
1da177e4 5219
bb5cb290
AL
5220 /* Send the CDB (atapi) or the first data block (ata pio out).
5221 * During the state transition, interrupt handler shouldn't
5222 * be invoked before the data transfer is complete and
5223 * hsm_task_state is changed. Hence, the following locking.
5224 */
5225 if (in_wq)
ba6a1308 5226 spin_lock_irqsave(ap->lock, flags);
1da177e4 5227
bb5cb290
AL
5228 if (qc->tf.protocol == ATA_PROT_PIO) {
5229 /* PIO data out protocol.
5230 * send first data block.
5231 */
0565c26d 5232
bb5cb290
AL
5233 /* ata_pio_sectors() might change the state
5234 * to HSM_ST_LAST. so, the state is changed here
5235 * before ata_pio_sectors().
5236 */
5237 ap->hsm_task_state = HSM_ST;
5238 ata_pio_sectors(qc);
bb5cb290
AL
5239 } else
5240 /* send CDB */
5241 atapi_send_cdb(ap, qc);
5242
5243 if (in_wq)
ba6a1308 5244 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5245
5246 /* if polling, ata_pio_task() handles the rest.
5247 * otherwise, interrupt handler takes over from here.
5248 */
e2cec771 5249 break;
1c848984 5250
e2cec771
AL
5251 case HSM_ST:
5252 /* complete command or read/write the data register */
5253 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5254 /* ATAPI PIO protocol */
5255 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5256 /* No more data to transfer or device error.
5257 * Device error will be tagged in HSM_ST_LAST.
5258 */
e2cec771
AL
5259 ap->hsm_task_state = HSM_ST_LAST;
5260 goto fsm_start;
5261 }
1da177e4 5262
71601958
AL
5263 /* Device should not ask for data transfer (DRQ=1)
5264 * when it finds something wrong.
eee6c32f
AL
5265 * We ignore DRQ here and stop the HSM by
5266 * changing hsm_task_state to HSM_ST_ERR and
5267 * let the EH abort the command or reset the device.
71601958
AL
5268 */
5269 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5270 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5271 "device error, dev_stat 0x%X\n",
5272 status);
3655d1d3 5273 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5274 ap->hsm_task_state = HSM_ST_ERR;
5275 goto fsm_start;
71601958 5276 }
1da177e4 5277
e2cec771 5278 atapi_pio_bytes(qc);
7fb6ec28 5279
e2cec771
AL
5280 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5281 /* bad ireason reported by device */
5282 goto fsm_start;
1da177e4 5283
e2cec771
AL
5284 } else {
5285 /* ATA PIO protocol */
5286 if (unlikely((status & ATA_DRQ) == 0)) {
5287 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5288 if (likely(status & (ATA_ERR | ATA_DF)))
5289 /* device stops HSM for abort/error */
5290 qc->err_mask |= AC_ERR_DEV;
5291 else
55a8e2c8
TH
5292 /* HSM violation. Let EH handle this.
5293 * Phantom devices also trigger this
5294 * condition. Mark hint.
5295 */
5296 qc->err_mask |= AC_ERR_HSM |
5297 AC_ERR_NODEV_HINT;
3655d1d3 5298
e2cec771
AL
5299 ap->hsm_task_state = HSM_ST_ERR;
5300 goto fsm_start;
5301 }
1da177e4 5302
eee6c32f
AL
5303 /* For PIO reads, some devices may ask for
5304 * data transfer (DRQ=1) alone with ERR=1.
5305 * We respect DRQ here and transfer one
5306 * block of junk data before changing the
5307 * hsm_task_state to HSM_ST_ERR.
5308 *
5309 * For PIO writes, ERR=1 DRQ=1 doesn't make
5310 * sense since the data block has been
5311 * transferred to the device.
71601958
AL
5312 */
5313 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5314 /* data might be corrputed */
5315 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5316
5317 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5318 ata_pio_sectors(qc);
eee6c32f
AL
5319 status = ata_wait_idle(ap);
5320 }
5321
3655d1d3
AL
5322 if (status & (ATA_BUSY | ATA_DRQ))
5323 qc->err_mask |= AC_ERR_HSM;
5324
eee6c32f
AL
5325 /* ata_pio_sectors() might change the
5326 * state to HSM_ST_LAST. so, the state
5327 * is changed after ata_pio_sectors().
5328 */
5329 ap->hsm_task_state = HSM_ST_ERR;
5330 goto fsm_start;
71601958
AL
5331 }
5332
e2cec771
AL
5333 ata_pio_sectors(qc);
5334
5335 if (ap->hsm_task_state == HSM_ST_LAST &&
5336 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5337 /* all data read */
52a32205 5338 status = ata_wait_idle(ap);
e2cec771
AL
5339 goto fsm_start;
5340 }
5341 }
5342
bb5cb290 5343 poll_next = 1;
1da177e4
LT
5344 break;
5345
14be71f4 5346 case HSM_ST_LAST:
6912ccd5
AL
5347 if (unlikely(!ata_ok(status))) {
5348 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5349 ap->hsm_task_state = HSM_ST_ERR;
5350 goto fsm_start;
5351 }
5352
5353 /* no more data to transfer */
4332a771 5354 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5355 ap->print_id, qc->dev->devno, status);
e2cec771 5356
6912ccd5
AL
5357 WARN_ON(qc->err_mask);
5358
e2cec771 5359 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5360
e2cec771 5361 /* complete taskfile transaction */
c17ea20d 5362 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5363
5364 poll_next = 0;
1da177e4
LT
5365 break;
5366
14be71f4 5367 case HSM_ST_ERR:
e2cec771
AL
5368 /* make sure qc->err_mask is available to
5369 * know what's wrong and recover
5370 */
5371 WARN_ON(qc->err_mask == 0);
5372
5373 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5374
999bb6f4 5375 /* complete taskfile transaction */
c17ea20d 5376 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5377
5378 poll_next = 0;
e2cec771
AL
5379 break;
5380 default:
bb5cb290 5381 poll_next = 0;
6912ccd5 5382 BUG();
1da177e4
LT
5383 }
5384
bb5cb290 5385 return poll_next;
1da177e4
LT
5386}
5387
65f27f38 5388static void ata_pio_task(struct work_struct *work)
8061f5f0 5389{
65f27f38
DH
5390 struct ata_port *ap =
5391 container_of(work, struct ata_port, port_task.work);
5392 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5393 u8 status;
a1af3734 5394 int poll_next;
8061f5f0 5395
7fb6ec28 5396fsm_start:
a1af3734 5397 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5398
a1af3734
AL
5399 /*
5400 * This is purely heuristic. This is a fast path.
5401 * Sometimes when we enter, BSY will be cleared in
5402 * a chk-status or two. If not, the drive is probably seeking
5403 * or something. Snooze for a couple msecs, then
5404 * chk-status again. If still busy, queue delayed work.
5405 */
5406 status = ata_busy_wait(ap, ATA_BUSY, 5);
5407 if (status & ATA_BUSY) {
5408 msleep(2);
5409 status = ata_busy_wait(ap, ATA_BUSY, 10);
5410 if (status & ATA_BUSY) {
31ce6dae 5411 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5412 return;
5413 }
8061f5f0
TH
5414 }
5415
a1af3734
AL
5416 /* move the HSM */
5417 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5418
a1af3734
AL
5419 /* another command or interrupt handler
5420 * may be running at this point.
5421 */
5422 if (poll_next)
7fb6ec28 5423 goto fsm_start;
8061f5f0
TH
5424}
5425
1da177e4
LT
5426/**
5427 * ata_qc_new - Request an available ATA command, for queueing
5428 * @ap: Port associated with device @dev
5429 * @dev: Device from whom we request an available command structure
5430 *
5431 * LOCKING:
0cba632b 5432 * None.
1da177e4
LT
5433 */
5434
5435static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5436{
5437 struct ata_queued_cmd *qc = NULL;
5438 unsigned int i;
5439
e3180499 5440 /* no command while frozen */
b51e9e5d 5441 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5442 return NULL;
5443
2ab7db1f
TH
5444 /* the last tag is reserved for internal command. */
5445 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5446 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5447 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5448 break;
5449 }
5450
5451 if (qc)
5452 qc->tag = i;
5453
5454 return qc;
5455}
5456
5457/**
5458 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5459 * @dev: Device from whom we request an available command structure
5460 *
5461 * LOCKING:
0cba632b 5462 * None.
1da177e4
LT
5463 */
5464
3373efd8 5465struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5466{
9af5c9c9 5467 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5468 struct ata_queued_cmd *qc;
5469
5470 qc = ata_qc_new(ap);
5471 if (qc) {
1da177e4
LT
5472 qc->scsicmd = NULL;
5473 qc->ap = ap;
5474 qc->dev = dev;
1da177e4 5475
2c13b7ce 5476 ata_qc_reinit(qc);
1da177e4
LT
5477 }
5478
5479 return qc;
5480}
5481
1da177e4
LT
5482/**
5483 * ata_qc_free - free unused ata_queued_cmd
5484 * @qc: Command to complete
5485 *
5486 * Designed to free unused ata_queued_cmd object
5487 * in case something prevents using it.
5488 *
5489 * LOCKING:
cca3974e 5490 * spin_lock_irqsave(host lock)
1da177e4
LT
5491 */
5492void ata_qc_free(struct ata_queued_cmd *qc)
5493{
4ba946e9
TH
5494 struct ata_port *ap = qc->ap;
5495 unsigned int tag;
5496
a4631474 5497 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5498
4ba946e9
TH
5499 qc->flags = 0;
5500 tag = qc->tag;
5501 if (likely(ata_tag_valid(tag))) {
4ba946e9 5502 qc->tag = ATA_TAG_POISON;
6cec4a39 5503 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5504 }
1da177e4
LT
5505}
5506
76014427 5507void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5508{
dedaf2b0 5509 struct ata_port *ap = qc->ap;
9af5c9c9 5510 struct ata_link *link = qc->dev->link;
dedaf2b0 5511
a4631474
TH
5512 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5513 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5514
5515 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5516 ata_sg_clean(qc);
5517
7401abf2 5518 /* command should be marked inactive atomically with qc completion */
da917d69 5519 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5520 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5521 if (!link->sactive)
5522 ap->nr_active_links--;
5523 } else {
9af5c9c9 5524 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5525 ap->nr_active_links--;
5526 }
5527
5528 /* clear exclusive status */
5529 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5530 ap->excl_link == link))
5531 ap->excl_link = NULL;
7401abf2 5532
3f3791d3
AL
5533 /* atapi: mark qc as inactive to prevent the interrupt handler
5534 * from completing the command twice later, before the error handler
5535 * is called. (when rc != 0 and atapi request sense is needed)
5536 */
5537 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5538 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5539
1da177e4 5540 /* call completion callback */
77853bf2 5541 qc->complete_fn(qc);
1da177e4
LT
5542}
5543
39599a53
TH
5544static void fill_result_tf(struct ata_queued_cmd *qc)
5545{
5546 struct ata_port *ap = qc->ap;
5547
39599a53 5548 qc->result_tf.flags = qc->tf.flags;
4742d54f 5549 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5550}
5551
f686bcb8
TH
5552/**
5553 * ata_qc_complete - Complete an active ATA command
5554 * @qc: Command to complete
5555 * @err_mask: ATA Status register contents
5556 *
5557 * Indicate to the mid and upper layers that an ATA
5558 * command has completed, with either an ok or not-ok status.
5559 *
5560 * LOCKING:
cca3974e 5561 * spin_lock_irqsave(host lock)
f686bcb8
TH
5562 */
5563void ata_qc_complete(struct ata_queued_cmd *qc)
5564{
5565 struct ata_port *ap = qc->ap;
5566
5567 /* XXX: New EH and old EH use different mechanisms to
5568 * synchronize EH with regular execution path.
5569 *
5570 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5571 * Normal execution path is responsible for not accessing a
5572 * failed qc. libata core enforces the rule by returning NULL
5573 * from ata_qc_from_tag() for failed qcs.
5574 *
5575 * Old EH depends on ata_qc_complete() nullifying completion
5576 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5577 * not synchronize with interrupt handler. Only PIO task is
5578 * taken care of.
5579 */
5580 if (ap->ops->error_handler) {
b51e9e5d 5581 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5582
5583 if (unlikely(qc->err_mask))
5584 qc->flags |= ATA_QCFLAG_FAILED;
5585
5586 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5587 if (!ata_tag_internal(qc->tag)) {
5588 /* always fill result TF for failed qc */
39599a53 5589 fill_result_tf(qc);
f686bcb8
TH
5590 ata_qc_schedule_eh(qc);
5591 return;
5592 }
5593 }
5594
5595 /* read result TF if requested */
5596 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5597 fill_result_tf(qc);
f686bcb8
TH
5598
5599 __ata_qc_complete(qc);
5600 } else {
5601 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5602 return;
5603
5604 /* read result TF if failed or requested */
5605 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5606 fill_result_tf(qc);
f686bcb8
TH
5607
5608 __ata_qc_complete(qc);
5609 }
5610}
5611
dedaf2b0
TH
5612/**
5613 * ata_qc_complete_multiple - Complete multiple qcs successfully
5614 * @ap: port in question
5615 * @qc_active: new qc_active mask
5616 * @finish_qc: LLDD callback invoked before completing a qc
5617 *
5618 * Complete in-flight commands. This functions is meant to be
5619 * called from low-level driver's interrupt routine to complete
5620 * requests normally. ap->qc_active and @qc_active is compared
5621 * and commands are completed accordingly.
5622 *
5623 * LOCKING:
cca3974e 5624 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5625 *
5626 * RETURNS:
5627 * Number of completed commands on success, -errno otherwise.
5628 */
5629int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5630 void (*finish_qc)(struct ata_queued_cmd *))
5631{
5632 int nr_done = 0;
5633 u32 done_mask;
5634 int i;
5635
5636 done_mask = ap->qc_active ^ qc_active;
5637
5638 if (unlikely(done_mask & qc_active)) {
5639 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5640 "(%08x->%08x)\n", ap->qc_active, qc_active);
5641 return -EINVAL;
5642 }
5643
5644 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5645 struct ata_queued_cmd *qc;
5646
5647 if (!(done_mask & (1 << i)))
5648 continue;
5649
5650 if ((qc = ata_qc_from_tag(ap, i))) {
5651 if (finish_qc)
5652 finish_qc(qc);
5653 ata_qc_complete(qc);
5654 nr_done++;
5655 }
5656 }
5657
5658 return nr_done;
5659}
5660
1da177e4
LT
5661static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5662{
5663 struct ata_port *ap = qc->ap;
5664
5665 switch (qc->tf.protocol) {
3dc1d881 5666 case ATA_PROT_NCQ:
1da177e4
LT
5667 case ATA_PROT_DMA:
5668 case ATA_PROT_ATAPI_DMA:
5669 return 1;
5670
5671 case ATA_PROT_ATAPI:
5672 case ATA_PROT_PIO:
1da177e4
LT
5673 if (ap->flags & ATA_FLAG_PIO_DMA)
5674 return 1;
5675
5676 /* fall through */
5677
5678 default:
5679 return 0;
5680 }
5681
5682 /* never reached */
5683}
5684
5685/**
5686 * ata_qc_issue - issue taskfile to device
5687 * @qc: command to issue to device
5688 *
5689 * Prepare an ATA command to submission to device.
5690 * This includes mapping the data into a DMA-able
5691 * area, filling in the S/G table, and finally
5692 * writing the taskfile to hardware, starting the command.
5693 *
5694 * LOCKING:
cca3974e 5695 * spin_lock_irqsave(host lock)
1da177e4 5696 */
8e0e694a 5697void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5698{
5699 struct ata_port *ap = qc->ap;
9af5c9c9 5700 struct ata_link *link = qc->dev->link;
1da177e4 5701
dedaf2b0
TH
5702 /* Make sure only one non-NCQ command is outstanding. The
5703 * check is skipped for old EH because it reuses active qc to
5704 * request ATAPI sense.
5705 */
9af5c9c9 5706 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5707
5708 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5709 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5710
5711 if (!link->sactive)
5712 ap->nr_active_links++;
9af5c9c9 5713 link->sactive |= 1 << qc->tag;
dedaf2b0 5714 } else {
9af5c9c9 5715 WARN_ON(link->sactive);
da917d69
TH
5716
5717 ap->nr_active_links++;
9af5c9c9 5718 link->active_tag = qc->tag;
dedaf2b0
TH
5719 }
5720
e4a70e76 5721 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5722 ap->qc_active |= 1 << qc->tag;
e4a70e76 5723
1da177e4
LT
5724 if (ata_should_dma_map(qc)) {
5725 if (qc->flags & ATA_QCFLAG_SG) {
5726 if (ata_sg_setup(qc))
8e436af9 5727 goto sg_err;
1da177e4
LT
5728 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5729 if (ata_sg_setup_one(qc))
8e436af9 5730 goto sg_err;
1da177e4
LT
5731 }
5732 } else {
5733 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5734 }
5735
5736 ap->ops->qc_prep(qc);
5737
8e0e694a
TH
5738 qc->err_mask |= ap->ops->qc_issue(qc);
5739 if (unlikely(qc->err_mask))
5740 goto err;
5741 return;
1da177e4 5742
8e436af9
TH
5743sg_err:
5744 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5745 qc->err_mask |= AC_ERR_SYSTEM;
5746err:
5747 ata_qc_complete(qc);
1da177e4
LT
5748}
5749
5750/**
5751 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5752 * @qc: command to issue to device
5753 *
5754 * Using various libata functions and hooks, this function
5755 * starts an ATA command. ATA commands are grouped into
5756 * classes called "protocols", and issuing each type of protocol
5757 * is slightly different.
5758 *
0baab86b
EF
5759 * May be used as the qc_issue() entry in ata_port_operations.
5760 *
1da177e4 5761 * LOCKING:
cca3974e 5762 * spin_lock_irqsave(host lock)
1da177e4
LT
5763 *
5764 * RETURNS:
9a3d9eb0 5765 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5766 */
5767
9a3d9eb0 5768unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5769{
5770 struct ata_port *ap = qc->ap;
5771
e50362ec
AL
5772 /* Use polling pio if the LLD doesn't handle
5773 * interrupt driven pio and atapi CDB interrupt.
5774 */
5775 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5776 switch (qc->tf.protocol) {
5777 case ATA_PROT_PIO:
e3472cbe 5778 case ATA_PROT_NODATA:
e50362ec
AL
5779 case ATA_PROT_ATAPI:
5780 case ATA_PROT_ATAPI_NODATA:
5781 qc->tf.flags |= ATA_TFLAG_POLLING;
5782 break;
5783 case ATA_PROT_ATAPI_DMA:
5784 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5785 /* see ata_dma_blacklisted() */
e50362ec
AL
5786 BUG();
5787 break;
5788 default:
5789 break;
5790 }
5791 }
5792
312f7da2 5793 /* select the device */
1da177e4
LT
5794 ata_dev_select(ap, qc->dev->devno, 1, 0);
5795
312f7da2 5796 /* start the command */
1da177e4
LT
5797 switch (qc->tf.protocol) {
5798 case ATA_PROT_NODATA:
312f7da2
AL
5799 if (qc->tf.flags & ATA_TFLAG_POLLING)
5800 ata_qc_set_polling(qc);
5801
e5338254 5802 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5803 ap->hsm_task_state = HSM_ST_LAST;
5804
5805 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5806 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5807
1da177e4
LT
5808 break;
5809
5810 case ATA_PROT_DMA:
587005de 5811 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5812
1da177e4
LT
5813 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5814 ap->ops->bmdma_setup(qc); /* set up bmdma */
5815 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5816 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5817 break;
5818
312f7da2
AL
5819 case ATA_PROT_PIO:
5820 if (qc->tf.flags & ATA_TFLAG_POLLING)
5821 ata_qc_set_polling(qc);
1da177e4 5822
e5338254 5823 ata_tf_to_host(ap, &qc->tf);
312f7da2 5824
54f00389
AL
5825 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5826 /* PIO data out protocol */
5827 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5828 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5829
5830 /* always send first data block using
e27486db 5831 * the ata_pio_task() codepath.
54f00389 5832 */
312f7da2 5833 } else {
54f00389
AL
5834 /* PIO data in protocol */
5835 ap->hsm_task_state = HSM_ST;
5836
5837 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5838 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5839
5840 /* if polling, ata_pio_task() handles the rest.
5841 * otherwise, interrupt handler takes over from here.
5842 */
312f7da2
AL
5843 }
5844
1da177e4
LT
5845 break;
5846
1da177e4 5847 case ATA_PROT_ATAPI:
1da177e4 5848 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5849 if (qc->tf.flags & ATA_TFLAG_POLLING)
5850 ata_qc_set_polling(qc);
5851
e5338254 5852 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5853
312f7da2
AL
5854 ap->hsm_task_state = HSM_ST_FIRST;
5855
5856 /* send cdb by polling if no cdb interrupt */
5857 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5858 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5859 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5860 break;
5861
5862 case ATA_PROT_ATAPI_DMA:
587005de 5863 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5864
1da177e4
LT
5865 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5866 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5867 ap->hsm_task_state = HSM_ST_FIRST;
5868
5869 /* send cdb by polling if no cdb interrupt */
5870 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5871 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5872 break;
5873
5874 default:
5875 WARN_ON(1);
9a3d9eb0 5876 return AC_ERR_SYSTEM;
1da177e4
LT
5877 }
5878
5879 return 0;
5880}
5881
1da177e4
LT
5882/**
5883 * ata_host_intr - Handle host interrupt for given (port, task)
5884 * @ap: Port on which interrupt arrived (possibly...)
5885 * @qc: Taskfile currently active in engine
5886 *
5887 * Handle host interrupt for given queued command. Currently,
5888 * only DMA interrupts are handled. All other commands are
5889 * handled via polling with interrupts disabled (nIEN bit).
5890 *
5891 * LOCKING:
cca3974e 5892 * spin_lock_irqsave(host lock)
1da177e4
LT
5893 *
5894 * RETURNS:
5895 * One if interrupt was handled, zero if not (shared irq).
5896 */
5897
5898inline unsigned int ata_host_intr (struct ata_port *ap,
5899 struct ata_queued_cmd *qc)
5900{
9af5c9c9 5901 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5902 u8 status, host_stat = 0;
1da177e4 5903
312f7da2 5904 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5905 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5906
312f7da2
AL
5907 /* Check whether we are expecting interrupt in this state */
5908 switch (ap->hsm_task_state) {
5909 case HSM_ST_FIRST:
6912ccd5
AL
5910 /* Some pre-ATAPI-4 devices assert INTRQ
5911 * at this state when ready to receive CDB.
5912 */
1da177e4 5913
312f7da2
AL
5914 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5915 * The flag was turned on only for atapi devices.
5916 * No need to check is_atapi_taskfile(&qc->tf) again.
5917 */
5918 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5919 goto idle_irq;
1da177e4 5920 break;
312f7da2
AL
5921 case HSM_ST_LAST:
5922 if (qc->tf.protocol == ATA_PROT_DMA ||
5923 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5924 /* check status of DMA engine */
5925 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5926 VPRINTK("ata%u: host_stat 0x%X\n",
5927 ap->print_id, host_stat);
312f7da2
AL
5928
5929 /* if it's not our irq... */
5930 if (!(host_stat & ATA_DMA_INTR))
5931 goto idle_irq;
5932
5933 /* before we do anything else, clear DMA-Start bit */
5934 ap->ops->bmdma_stop(qc);
a4f16610
AL
5935
5936 if (unlikely(host_stat & ATA_DMA_ERR)) {
5937 /* error when transfering data to/from memory */
5938 qc->err_mask |= AC_ERR_HOST_BUS;
5939 ap->hsm_task_state = HSM_ST_ERR;
5940 }
312f7da2
AL
5941 }
5942 break;
5943 case HSM_ST:
5944 break;
1da177e4
LT
5945 default:
5946 goto idle_irq;
5947 }
5948
312f7da2
AL
5949 /* check altstatus */
5950 status = ata_altstatus(ap);
5951 if (status & ATA_BUSY)
5952 goto idle_irq;
1da177e4 5953
312f7da2
AL
5954 /* check main status, clearing INTRQ */
5955 status = ata_chk_status(ap);
5956 if (unlikely(status & ATA_BUSY))
5957 goto idle_irq;
1da177e4 5958
312f7da2
AL
5959 /* ack bmdma irq events */
5960 ap->ops->irq_clear(ap);
1da177e4 5961
bb5cb290 5962 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5963
5964 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5965 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5966 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5967
1da177e4
LT
5968 return 1; /* irq handled */
5969
5970idle_irq:
5971 ap->stats.idle_irq++;
5972
5973#ifdef ATA_IRQ_TRAP
5974 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5975 ata_chk_status(ap);
5976 ap->ops->irq_clear(ap);
f15a1daf 5977 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5978 return 1;
1da177e4
LT
5979 }
5980#endif
5981 return 0; /* irq not handled */
5982}
5983
5984/**
5985 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5986 * @irq: irq line (unused)
cca3974e 5987 * @dev_instance: pointer to our ata_host information structure
1da177e4 5988 *
0cba632b
JG
5989 * Default interrupt handler for PCI IDE devices. Calls
5990 * ata_host_intr() for each port that is not disabled.
5991 *
1da177e4 5992 * LOCKING:
cca3974e 5993 * Obtains host lock during operation.
1da177e4
LT
5994 *
5995 * RETURNS:
0cba632b 5996 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5997 */
5998
7d12e780 5999irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 6000{
cca3974e 6001 struct ata_host *host = dev_instance;
1da177e4
LT
6002 unsigned int i;
6003 unsigned int handled = 0;
6004 unsigned long flags;
6005
6006 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6007 spin_lock_irqsave(&host->lock, flags);
1da177e4 6008
cca3974e 6009 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6010 struct ata_port *ap;
6011
cca3974e 6012 ap = host->ports[i];
c1389503 6013 if (ap &&
029f5468 6014 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6015 struct ata_queued_cmd *qc;
6016
9af5c9c9 6017 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6018 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6019 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6020 handled |= ata_host_intr(ap, qc);
6021 }
6022 }
6023
cca3974e 6024 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6025
6026 return IRQ_RETVAL(handled);
6027}
6028
34bf2170
TH
6029/**
6030 * sata_scr_valid - test whether SCRs are accessible
936fd732 6031 * @link: ATA link to test SCR accessibility for
34bf2170 6032 *
936fd732 6033 * Test whether SCRs are accessible for @link.
34bf2170
TH
6034 *
6035 * LOCKING:
6036 * None.
6037 *
6038 * RETURNS:
6039 * 1 if SCRs are accessible, 0 otherwise.
6040 */
936fd732 6041int sata_scr_valid(struct ata_link *link)
34bf2170 6042{
936fd732
TH
6043 struct ata_port *ap = link->ap;
6044
a16abc0b 6045 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6046}
6047
6048/**
6049 * sata_scr_read - read SCR register of the specified port
936fd732 6050 * @link: ATA link to read SCR for
34bf2170
TH
6051 * @reg: SCR to read
6052 * @val: Place to store read value
6053 *
936fd732 6054 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6055 * guaranteed to succeed if @link is ap->link, the cable type of
6056 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6057 *
6058 * LOCKING:
633273a3 6059 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6060 *
6061 * RETURNS:
6062 * 0 on success, negative errno on failure.
6063 */
936fd732 6064int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6065{
633273a3
TH
6066 if (ata_is_host_link(link)) {
6067 struct ata_port *ap = link->ap;
936fd732 6068
633273a3
TH
6069 if (sata_scr_valid(link))
6070 return ap->ops->scr_read(ap, reg, val);
6071 return -EOPNOTSUPP;
6072 }
6073
6074 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6075}
6076
6077/**
6078 * sata_scr_write - write SCR register of the specified port
936fd732 6079 * @link: ATA link to write SCR for
34bf2170
TH
6080 * @reg: SCR to write
6081 * @val: value to write
6082 *
936fd732 6083 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6084 * guaranteed to succeed if @link is ap->link, the cable type of
6085 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6086 *
6087 * LOCKING:
633273a3 6088 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6089 *
6090 * RETURNS:
6091 * 0 on success, negative errno on failure.
6092 */
936fd732 6093int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6094{
633273a3
TH
6095 if (ata_is_host_link(link)) {
6096 struct ata_port *ap = link->ap;
6097
6098 if (sata_scr_valid(link))
6099 return ap->ops->scr_write(ap, reg, val);
6100 return -EOPNOTSUPP;
6101 }
936fd732 6102
633273a3 6103 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6104}
6105
6106/**
6107 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6108 * @link: ATA link to write SCR for
34bf2170
TH
6109 * @reg: SCR to write
6110 * @val: value to write
6111 *
6112 * This function is identical to sata_scr_write() except that this
6113 * function performs flush after writing to the register.
6114 *
6115 * LOCKING:
633273a3 6116 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6117 *
6118 * RETURNS:
6119 * 0 on success, negative errno on failure.
6120 */
936fd732 6121int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6122{
633273a3
TH
6123 if (ata_is_host_link(link)) {
6124 struct ata_port *ap = link->ap;
6125 int rc;
da3dbb17 6126
633273a3
TH
6127 if (sata_scr_valid(link)) {
6128 rc = ap->ops->scr_write(ap, reg, val);
6129 if (rc == 0)
6130 rc = ap->ops->scr_read(ap, reg, &val);
6131 return rc;
6132 }
6133 return -EOPNOTSUPP;
34bf2170 6134 }
633273a3
TH
6135
6136 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6137}
6138
6139/**
936fd732
TH
6140 * ata_link_online - test whether the given link is online
6141 * @link: ATA link to test
34bf2170 6142 *
936fd732
TH
6143 * Test whether @link is online. Note that this function returns
6144 * 0 if online status of @link cannot be obtained, so
6145 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6146 *
6147 * LOCKING:
6148 * None.
6149 *
6150 * RETURNS:
6151 * 1 if the port online status is available and online.
6152 */
936fd732 6153int ata_link_online(struct ata_link *link)
34bf2170
TH
6154{
6155 u32 sstatus;
6156
936fd732
TH
6157 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6158 (sstatus & 0xf) == 0x3)
34bf2170
TH
6159 return 1;
6160 return 0;
6161}
6162
6163/**
936fd732
TH
6164 * ata_link_offline - test whether the given link is offline
6165 * @link: ATA link to test
34bf2170 6166 *
936fd732
TH
6167 * Test whether @link is offline. Note that this function
6168 * returns 0 if offline status of @link cannot be obtained, so
6169 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6170 *
6171 * LOCKING:
6172 * None.
6173 *
6174 * RETURNS:
6175 * 1 if the port offline status is available and offline.
6176 */
936fd732 6177int ata_link_offline(struct ata_link *link)
34bf2170
TH
6178{
6179 u32 sstatus;
6180
936fd732
TH
6181 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6182 (sstatus & 0xf) != 0x3)
34bf2170
TH
6183 return 1;
6184 return 0;
6185}
0baab86b 6186
77b08fb5 6187int ata_flush_cache(struct ata_device *dev)
9b847548 6188{
977e6b9f 6189 unsigned int err_mask;
9b847548
JA
6190 u8 cmd;
6191
6192 if (!ata_try_flush_cache(dev))
6193 return 0;
6194
6fc49adb 6195 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6196 cmd = ATA_CMD_FLUSH_EXT;
6197 else
6198 cmd = ATA_CMD_FLUSH;
6199
4f34337b
AC
6200 /* This is wrong. On a failed flush we get back the LBA of the lost
6201 sector and we should (assuming it wasn't aborted as unknown) issue
6202 a further flush command to continue the writeback until it
6203 does not error */
977e6b9f
TH
6204 err_mask = ata_do_simple_cmd(dev, cmd);
6205 if (err_mask) {
6206 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6207 return -EIO;
6208 }
6209
6210 return 0;
9b847548
JA
6211}
6212
6ffa01d8 6213#ifdef CONFIG_PM
cca3974e
JG
6214static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6215 unsigned int action, unsigned int ehi_flags,
6216 int wait)
500530f6
TH
6217{
6218 unsigned long flags;
6219 int i, rc;
6220
cca3974e
JG
6221 for (i = 0; i < host->n_ports; i++) {
6222 struct ata_port *ap = host->ports[i];
e3667ebf 6223 struct ata_link *link;
500530f6
TH
6224
6225 /* Previous resume operation might still be in
6226 * progress. Wait for PM_PENDING to clear.
6227 */
6228 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6229 ata_port_wait_eh(ap);
6230 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6231 }
6232
6233 /* request PM ops to EH */
6234 spin_lock_irqsave(ap->lock, flags);
6235
6236 ap->pm_mesg = mesg;
6237 if (wait) {
6238 rc = 0;
6239 ap->pm_result = &rc;
6240 }
6241
6242 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6243 __ata_port_for_each_link(link, ap) {
6244 link->eh_info.action |= action;
6245 link->eh_info.flags |= ehi_flags;
6246 }
500530f6
TH
6247
6248 ata_port_schedule_eh(ap);
6249
6250 spin_unlock_irqrestore(ap->lock, flags);
6251
6252 /* wait and check result */
6253 if (wait) {
6254 ata_port_wait_eh(ap);
6255 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6256 if (rc)
6257 return rc;
6258 }
6259 }
6260
6261 return 0;
6262}
6263
6264/**
cca3974e
JG
6265 * ata_host_suspend - suspend host
6266 * @host: host to suspend
500530f6
TH
6267 * @mesg: PM message
6268 *
cca3974e 6269 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6270 * function requests EH to perform PM operations and waits for EH
6271 * to finish.
6272 *
6273 * LOCKING:
6274 * Kernel thread context (may sleep).
6275 *
6276 * RETURNS:
6277 * 0 on success, -errno on failure.
6278 */
cca3974e 6279int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6280{
9666f400 6281 int rc;
500530f6 6282
cca3974e 6283 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6284 if (rc == 0)
6285 host->dev->power.power_state = mesg;
500530f6
TH
6286 return rc;
6287}
6288
6289/**
cca3974e
JG
6290 * ata_host_resume - resume host
6291 * @host: host to resume
500530f6 6292 *
cca3974e 6293 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6294 * function requests EH to perform PM operations and returns.
6295 * Note that all resume operations are performed parallely.
6296 *
6297 * LOCKING:
6298 * Kernel thread context (may sleep).
6299 */
cca3974e 6300void ata_host_resume(struct ata_host *host)
500530f6 6301{
cca3974e
JG
6302 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6303 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6304 host->dev->power.power_state = PMSG_ON;
500530f6 6305}
6ffa01d8 6306#endif
500530f6 6307
c893a3ae
RD
6308/**
6309 * ata_port_start - Set port up for dma.
6310 * @ap: Port to initialize
6311 *
6312 * Called just after data structures for each port are
6313 * initialized. Allocates space for PRD table.
6314 *
6315 * May be used as the port_start() entry in ata_port_operations.
6316 *
6317 * LOCKING:
6318 * Inherited from caller.
6319 */
f0d36efd 6320int ata_port_start(struct ata_port *ap)
1da177e4 6321{
2f1f610b 6322 struct device *dev = ap->dev;
6037d6bb 6323 int rc;
1da177e4 6324
f0d36efd
TH
6325 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6326 GFP_KERNEL);
1da177e4
LT
6327 if (!ap->prd)
6328 return -ENOMEM;
6329
6037d6bb 6330 rc = ata_pad_alloc(ap, dev);
f0d36efd 6331 if (rc)
6037d6bb 6332 return rc;
1da177e4 6333
f0d36efd
TH
6334 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6335 (unsigned long long)ap->prd_dma);
1da177e4
LT
6336 return 0;
6337}
6338
3ef3b43d
TH
6339/**
6340 * ata_dev_init - Initialize an ata_device structure
6341 * @dev: Device structure to initialize
6342 *
6343 * Initialize @dev in preparation for probing.
6344 *
6345 * LOCKING:
6346 * Inherited from caller.
6347 */
6348void ata_dev_init(struct ata_device *dev)
6349{
9af5c9c9
TH
6350 struct ata_link *link = dev->link;
6351 struct ata_port *ap = link->ap;
72fa4b74
TH
6352 unsigned long flags;
6353
5a04bf4b 6354 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6355 link->sata_spd_limit = link->hw_sata_spd_limit;
6356 link->sata_spd = 0;
5a04bf4b 6357
72fa4b74
TH
6358 /* High bits of dev->flags are used to record warm plug
6359 * requests which occur asynchronously. Synchronize using
cca3974e 6360 * host lock.
72fa4b74 6361 */
ba6a1308 6362 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6363 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6364 dev->horkage = 0;
ba6a1308 6365 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6366
72fa4b74
TH
6367 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6368 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6369 dev->pio_mask = UINT_MAX;
6370 dev->mwdma_mask = UINT_MAX;
6371 dev->udma_mask = UINT_MAX;
6372}
6373
4fb37a25
TH
6374/**
6375 * ata_link_init - Initialize an ata_link structure
6376 * @ap: ATA port link is attached to
6377 * @link: Link structure to initialize
8989805d 6378 * @pmp: Port multiplier port number
4fb37a25
TH
6379 *
6380 * Initialize @link.
6381 *
6382 * LOCKING:
6383 * Kernel thread context (may sleep)
6384 */
fb7fd614 6385void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6386{
6387 int i;
6388
6389 /* clear everything except for devices */
6390 memset(link, 0, offsetof(struct ata_link, device[0]));
6391
6392 link->ap = ap;
8989805d 6393 link->pmp = pmp;
4fb37a25
TH
6394 link->active_tag = ATA_TAG_POISON;
6395 link->hw_sata_spd_limit = UINT_MAX;
6396
6397 /* can't use iterator, ap isn't initialized yet */
6398 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6399 struct ata_device *dev = &link->device[i];
6400
6401 dev->link = link;
6402 dev->devno = dev - link->device;
6403 ata_dev_init(dev);
6404 }
6405}
6406
6407/**
6408 * sata_link_init_spd - Initialize link->sata_spd_limit
6409 * @link: Link to configure sata_spd_limit for
6410 *
6411 * Initialize @link->[hw_]sata_spd_limit to the currently
6412 * configured value.
6413 *
6414 * LOCKING:
6415 * Kernel thread context (may sleep).
6416 *
6417 * RETURNS:
6418 * 0 on success, -errno on failure.
6419 */
fb7fd614 6420int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6421{
6422 u32 scontrol, spd;
6423 int rc;
6424
6425 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6426 if (rc)
6427 return rc;
6428
6429 spd = (scontrol >> 4) & 0xf;
6430 if (spd)
6431 link->hw_sata_spd_limit &= (1 << spd) - 1;
6432
6433 link->sata_spd_limit = link->hw_sata_spd_limit;
6434
6435 return 0;
6436}
6437
1da177e4 6438/**
f3187195
TH
6439 * ata_port_alloc - allocate and initialize basic ATA port resources
6440 * @host: ATA host this allocated port belongs to
1da177e4 6441 *
f3187195
TH
6442 * Allocate and initialize basic ATA port resources.
6443 *
6444 * RETURNS:
6445 * Allocate ATA port on success, NULL on failure.
0cba632b 6446 *
1da177e4 6447 * LOCKING:
f3187195 6448 * Inherited from calling layer (may sleep).
1da177e4 6449 */
f3187195 6450struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6451{
f3187195 6452 struct ata_port *ap;
1da177e4 6453
f3187195
TH
6454 DPRINTK("ENTER\n");
6455
6456 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6457 if (!ap)
6458 return NULL;
6459
f4d6d004 6460 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6461 ap->lock = &host->lock;
198e0fed 6462 ap->flags = ATA_FLAG_DISABLED;
f3187195 6463 ap->print_id = -1;
1da177e4 6464 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6465 ap->host = host;
f3187195 6466 ap->dev = host->dev;
1da177e4 6467 ap->last_ctl = 0xFF;
bd5d825c
BP
6468
6469#if defined(ATA_VERBOSE_DEBUG)
6470 /* turn on all debugging levels */
6471 ap->msg_enable = 0x00FF;
6472#elif defined(ATA_DEBUG)
6473 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6474#else
0dd4b21f 6475 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6476#endif
1da177e4 6477
65f27f38
DH
6478 INIT_DELAYED_WORK(&ap->port_task, NULL);
6479 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6480 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6481 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6482 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6483 init_timer_deferrable(&ap->fastdrain_timer);
6484 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6485 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6486
838df628 6487 ap->cbl = ATA_CBL_NONE;
838df628 6488
8989805d 6489 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6490
6491#ifdef ATA_IRQ_TRAP
6492 ap->stats.unhandled_irq = 1;
6493 ap->stats.idle_irq = 1;
6494#endif
1da177e4 6495 return ap;
1da177e4
LT
6496}
6497
f0d36efd
TH
6498static void ata_host_release(struct device *gendev, void *res)
6499{
6500 struct ata_host *host = dev_get_drvdata(gendev);
6501 int i;
6502
6503 for (i = 0; i < host->n_ports; i++) {
6504 struct ata_port *ap = host->ports[i];
6505
ecef7253
TH
6506 if (!ap)
6507 continue;
6508
6509 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6510 ap->ops->port_stop(ap);
f0d36efd
TH
6511 }
6512
ecef7253 6513 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6514 host->ops->host_stop(host);
1aa56cca 6515
1aa506e4
TH
6516 for (i = 0; i < host->n_ports; i++) {
6517 struct ata_port *ap = host->ports[i];
6518
4911487a
TH
6519 if (!ap)
6520 continue;
6521
6522 if (ap->scsi_host)
1aa506e4
TH
6523 scsi_host_put(ap->scsi_host);
6524
633273a3 6525 kfree(ap->pmp_link);
4911487a 6526 kfree(ap);
1aa506e4
TH
6527 host->ports[i] = NULL;
6528 }
6529
1aa56cca 6530 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6531}
6532
f3187195
TH
6533/**
6534 * ata_host_alloc - allocate and init basic ATA host resources
6535 * @dev: generic device this host is associated with
6536 * @max_ports: maximum number of ATA ports associated with this host
6537 *
6538 * Allocate and initialize basic ATA host resources. LLD calls
6539 * this function to allocate a host, initializes it fully and
6540 * attaches it using ata_host_register().
6541 *
6542 * @max_ports ports are allocated and host->n_ports is
6543 * initialized to @max_ports. The caller is allowed to decrease
6544 * host->n_ports before calling ata_host_register(). The unused
6545 * ports will be automatically freed on registration.
6546 *
6547 * RETURNS:
6548 * Allocate ATA host on success, NULL on failure.
6549 *
6550 * LOCKING:
6551 * Inherited from calling layer (may sleep).
6552 */
6553struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6554{
6555 struct ata_host *host;
6556 size_t sz;
6557 int i;
6558
6559 DPRINTK("ENTER\n");
6560
6561 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6562 return NULL;
6563
6564 /* alloc a container for our list of ATA ports (buses) */
6565 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6566 /* alloc a container for our list of ATA ports (buses) */
6567 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6568 if (!host)
6569 goto err_out;
6570
6571 devres_add(dev, host);
6572 dev_set_drvdata(dev, host);
6573
6574 spin_lock_init(&host->lock);
6575 host->dev = dev;
6576 host->n_ports = max_ports;
6577
6578 /* allocate ports bound to this host */
6579 for (i = 0; i < max_ports; i++) {
6580 struct ata_port *ap;
6581
6582 ap = ata_port_alloc(host);
6583 if (!ap)
6584 goto err_out;
6585
6586 ap->port_no = i;
6587 host->ports[i] = ap;
6588 }
6589
6590 devres_remove_group(dev, NULL);
6591 return host;
6592
6593 err_out:
6594 devres_release_group(dev, NULL);
6595 return NULL;
6596}
6597
f5cda257
TH
6598/**
6599 * ata_host_alloc_pinfo - alloc host and init with port_info array
6600 * @dev: generic device this host is associated with
6601 * @ppi: array of ATA port_info to initialize host with
6602 * @n_ports: number of ATA ports attached to this host
6603 *
6604 * Allocate ATA host and initialize with info from @ppi. If NULL
6605 * terminated, @ppi may contain fewer entries than @n_ports. The
6606 * last entry will be used for the remaining ports.
6607 *
6608 * RETURNS:
6609 * Allocate ATA host on success, NULL on failure.
6610 *
6611 * LOCKING:
6612 * Inherited from calling layer (may sleep).
6613 */
6614struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6615 const struct ata_port_info * const * ppi,
6616 int n_ports)
6617{
6618 const struct ata_port_info *pi;
6619 struct ata_host *host;
6620 int i, j;
6621
6622 host = ata_host_alloc(dev, n_ports);
6623 if (!host)
6624 return NULL;
6625
6626 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6627 struct ata_port *ap = host->ports[i];
6628
6629 if (ppi[j])
6630 pi = ppi[j++];
6631
6632 ap->pio_mask = pi->pio_mask;
6633 ap->mwdma_mask = pi->mwdma_mask;
6634 ap->udma_mask = pi->udma_mask;
6635 ap->flags |= pi->flags;
0c88758b 6636 ap->link.flags |= pi->link_flags;
f5cda257
TH
6637 ap->ops = pi->port_ops;
6638
6639 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6640 host->ops = pi->port_ops;
6641 if (!host->private_data && pi->private_data)
6642 host->private_data = pi->private_data;
6643 }
6644
6645 return host;
6646}
6647
ecef7253
TH
6648/**
6649 * ata_host_start - start and freeze ports of an ATA host
6650 * @host: ATA host to start ports for
6651 *
6652 * Start and then freeze ports of @host. Started status is
6653 * recorded in host->flags, so this function can be called
6654 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6655 * once. If host->ops isn't initialized yet, its set to the
6656 * first non-dummy port ops.
ecef7253
TH
6657 *
6658 * LOCKING:
6659 * Inherited from calling layer (may sleep).
6660 *
6661 * RETURNS:
6662 * 0 if all ports are started successfully, -errno otherwise.
6663 */
6664int ata_host_start(struct ata_host *host)
6665{
6666 int i, rc;
6667
6668 if (host->flags & ATA_HOST_STARTED)
6669 return 0;
6670
6671 for (i = 0; i < host->n_ports; i++) {
6672 struct ata_port *ap = host->ports[i];
6673
f3187195
TH
6674 if (!host->ops && !ata_port_is_dummy(ap))
6675 host->ops = ap->ops;
6676
ecef7253
TH
6677 if (ap->ops->port_start) {
6678 rc = ap->ops->port_start(ap);
6679 if (rc) {
6680 ata_port_printk(ap, KERN_ERR, "failed to "
6681 "start port (errno=%d)\n", rc);
6682 goto err_out;
6683 }
6684 }
6685
6686 ata_eh_freeze_port(ap);
6687 }
6688
6689 host->flags |= ATA_HOST_STARTED;
6690 return 0;
6691
6692 err_out:
6693 while (--i >= 0) {
6694 struct ata_port *ap = host->ports[i];
6695
6696 if (ap->ops->port_stop)
6697 ap->ops->port_stop(ap);
6698 }
6699 return rc;
6700}
6701
b03732f0 6702/**
cca3974e
JG
6703 * ata_sas_host_init - Initialize a host struct
6704 * @host: host to initialize
6705 * @dev: device host is attached to
6706 * @flags: host flags
6707 * @ops: port_ops
b03732f0
BK
6708 *
6709 * LOCKING:
6710 * PCI/etc. bus probe sem.
6711 *
6712 */
f3187195 6713/* KILLME - the only user left is ipr */
cca3974e
JG
6714void ata_host_init(struct ata_host *host, struct device *dev,
6715 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6716{
cca3974e
JG
6717 spin_lock_init(&host->lock);
6718 host->dev = dev;
6719 host->flags = flags;
6720 host->ops = ops;
b03732f0
BK
6721}
6722
f3187195
TH
6723/**
6724 * ata_host_register - register initialized ATA host
6725 * @host: ATA host to register
6726 * @sht: template for SCSI host
6727 *
6728 * Register initialized ATA host. @host is allocated using
6729 * ata_host_alloc() and fully initialized by LLD. This function
6730 * starts ports, registers @host with ATA and SCSI layers and
6731 * probe registered devices.
6732 *
6733 * LOCKING:
6734 * Inherited from calling layer (may sleep).
6735 *
6736 * RETURNS:
6737 * 0 on success, -errno otherwise.
6738 */
6739int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6740{
6741 int i, rc;
6742
6743 /* host must have been started */
6744 if (!(host->flags & ATA_HOST_STARTED)) {
6745 dev_printk(KERN_ERR, host->dev,
6746 "BUG: trying to register unstarted host\n");
6747 WARN_ON(1);
6748 return -EINVAL;
6749 }
6750
6751 /* Blow away unused ports. This happens when LLD can't
6752 * determine the exact number of ports to allocate at
6753 * allocation time.
6754 */
6755 for (i = host->n_ports; host->ports[i]; i++)
6756 kfree(host->ports[i]);
6757
6758 /* give ports names and add SCSI hosts */
6759 for (i = 0; i < host->n_ports; i++)
6760 host->ports[i]->print_id = ata_print_id++;
6761
6762 rc = ata_scsi_add_hosts(host, sht);
6763 if (rc)
6764 return rc;
6765
fafbae87
TH
6766 /* associate with ACPI nodes */
6767 ata_acpi_associate(host);
6768
f3187195
TH
6769 /* set cable, sata_spd_limit and report */
6770 for (i = 0; i < host->n_ports; i++) {
6771 struct ata_port *ap = host->ports[i];
f3187195
TH
6772 unsigned long xfer_mask;
6773
6774 /* set SATA cable type if still unset */
6775 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6776 ap->cbl = ATA_CBL_SATA;
6777
6778 /* init sata_spd_limit to the current value */
4fb37a25 6779 sata_link_init_spd(&ap->link);
f3187195 6780
cbcdd875 6781 /* print per-port info to dmesg */
f3187195
TH
6782 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6783 ap->udma_mask);
6784
abf6e8ed 6785 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6786 ata_port_printk(ap, KERN_INFO,
6787 "%cATA max %s %s\n",
a16abc0b 6788 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6789 ata_mode_string(xfer_mask),
cbcdd875 6790 ap->link.eh_info.desc);
abf6e8ed
TH
6791 ata_ehi_clear_desc(&ap->link.eh_info);
6792 } else
f3187195
TH
6793 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6794 }
6795
6796 /* perform each probe synchronously */
6797 DPRINTK("probe begin\n");
6798 for (i = 0; i < host->n_ports; i++) {
6799 struct ata_port *ap = host->ports[i];
6800 int rc;
6801
6802 /* probe */
6803 if (ap->ops->error_handler) {
9af5c9c9 6804 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6805 unsigned long flags;
6806
6807 ata_port_probe(ap);
6808
6809 /* kick EH for boot probing */
6810 spin_lock_irqsave(ap->lock, flags);
6811
f58229f8
TH
6812 ehi->probe_mask =
6813 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6814 ehi->action |= ATA_EH_SOFTRESET;
6815 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6816
f4d6d004 6817 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6818 ap->pflags |= ATA_PFLAG_LOADING;
6819 ata_port_schedule_eh(ap);
6820
6821 spin_unlock_irqrestore(ap->lock, flags);
6822
6823 /* wait for EH to finish */
6824 ata_port_wait_eh(ap);
6825 } else {
6826 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6827 rc = ata_bus_probe(ap);
6828 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6829
6830 if (rc) {
6831 /* FIXME: do something useful here?
6832 * Current libata behavior will
6833 * tear down everything when
6834 * the module is removed
6835 * or the h/w is unplugged.
6836 */
6837 }
6838 }
6839 }
6840
6841 /* probes are done, now scan each port's disk(s) */
6842 DPRINTK("host probe begin\n");
6843 for (i = 0; i < host->n_ports; i++) {
6844 struct ata_port *ap = host->ports[i];
6845
1ae46317 6846 ata_scsi_scan_host(ap, 1);
f3187195
TH
6847 }
6848
6849 return 0;
6850}
6851
f5cda257
TH
6852/**
6853 * ata_host_activate - start host, request IRQ and register it
6854 * @host: target ATA host
6855 * @irq: IRQ to request
6856 * @irq_handler: irq_handler used when requesting IRQ
6857 * @irq_flags: irq_flags used when requesting IRQ
6858 * @sht: scsi_host_template to use when registering the host
6859 *
6860 * After allocating an ATA host and initializing it, most libata
6861 * LLDs perform three steps to activate the host - start host,
6862 * request IRQ and register it. This helper takes necessasry
6863 * arguments and performs the three steps in one go.
6864 *
6865 * LOCKING:
6866 * Inherited from calling layer (may sleep).
6867 *
6868 * RETURNS:
6869 * 0 on success, -errno otherwise.
6870 */
6871int ata_host_activate(struct ata_host *host, int irq,
6872 irq_handler_t irq_handler, unsigned long irq_flags,
6873 struct scsi_host_template *sht)
6874{
cbcdd875 6875 int i, rc;
f5cda257
TH
6876
6877 rc = ata_host_start(host);
6878 if (rc)
6879 return rc;
6880
6881 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6882 dev_driver_string(host->dev), host);
6883 if (rc)
6884 return rc;
6885
cbcdd875
TH
6886 for (i = 0; i < host->n_ports; i++)
6887 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6888
f5cda257
TH
6889 rc = ata_host_register(host, sht);
6890 /* if failed, just free the IRQ and leave ports alone */
6891 if (rc)
6892 devm_free_irq(host->dev, irq, host);
6893
6894 return rc;
6895}
6896
720ba126
TH
6897/**
6898 * ata_port_detach - Detach ATA port in prepration of device removal
6899 * @ap: ATA port to be detached
6900 *
6901 * Detach all ATA devices and the associated SCSI devices of @ap;
6902 * then, remove the associated SCSI host. @ap is guaranteed to
6903 * be quiescent on return from this function.
6904 *
6905 * LOCKING:
6906 * Kernel thread context (may sleep).
6907 */
6908void ata_port_detach(struct ata_port *ap)
6909{
6910 unsigned long flags;
41bda9c9 6911 struct ata_link *link;
f58229f8 6912 struct ata_device *dev;
720ba126
TH
6913
6914 if (!ap->ops->error_handler)
c3cf30a9 6915 goto skip_eh;
720ba126
TH
6916
6917 /* tell EH we're leaving & flush EH */
ba6a1308 6918 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6919 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6920 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6921
6922 ata_port_wait_eh(ap);
6923
6924 /* EH is now guaranteed to see UNLOADING, so no new device
6925 * will be attached. Disable all existing devices.
6926 */
ba6a1308 6927 spin_lock_irqsave(ap->lock, flags);
720ba126 6928
41bda9c9
TH
6929 ata_port_for_each_link(link, ap) {
6930 ata_link_for_each_dev(dev, link)
6931 ata_dev_disable(dev);
6932 }
720ba126 6933
ba6a1308 6934 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6935
6936 /* Final freeze & EH. All in-flight commands are aborted. EH
6937 * will be skipped and retrials will be terminated with bad
6938 * target.
6939 */
ba6a1308 6940 spin_lock_irqsave(ap->lock, flags);
720ba126 6941 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6942 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6943
6944 ata_port_wait_eh(ap);
45a66c1c 6945 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6946
c3cf30a9 6947 skip_eh:
720ba126 6948 /* remove the associated SCSI host */
cca3974e 6949 scsi_remove_host(ap->scsi_host);
720ba126
TH
6950}
6951
0529c159
TH
6952/**
6953 * ata_host_detach - Detach all ports of an ATA host
6954 * @host: Host to detach
6955 *
6956 * Detach all ports of @host.
6957 *
6958 * LOCKING:
6959 * Kernel thread context (may sleep).
6960 */
6961void ata_host_detach(struct ata_host *host)
6962{
6963 int i;
6964
6965 for (i = 0; i < host->n_ports; i++)
6966 ata_port_detach(host->ports[i]);
6967}
6968
1da177e4
LT
6969/**
6970 * ata_std_ports - initialize ioaddr with standard port offsets.
6971 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6972 *
6973 * Utility function which initializes data_addr, error_addr,
6974 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6975 * device_addr, status_addr, and command_addr to standard offsets
6976 * relative to cmd_addr.
6977 *
6978 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6979 */
0baab86b 6980
1da177e4
LT
6981void ata_std_ports(struct ata_ioports *ioaddr)
6982{
6983 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6984 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6985 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6986 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6987 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6988 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6989 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6990 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6991 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6992 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6993}
6994
0baab86b 6995
374b1873
JG
6996#ifdef CONFIG_PCI
6997
1da177e4
LT
6998/**
6999 * ata_pci_remove_one - PCI layer callback for device removal
7000 * @pdev: PCI device that was removed
7001 *
b878ca5d
TH
7002 * PCI layer indicates to libata via this hook that hot-unplug or
7003 * module unload event has occurred. Detach all ports. Resource
7004 * release is handled via devres.
1da177e4
LT
7005 *
7006 * LOCKING:
7007 * Inherited from PCI layer (may sleep).
7008 */
f0d36efd 7009void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7010{
2855568b 7011 struct device *dev = &pdev->dev;
cca3974e 7012 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7013
b878ca5d 7014 ata_host_detach(host);
1da177e4
LT
7015}
7016
7017/* move to PCI subsystem */
057ace5e 7018int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7019{
7020 unsigned long tmp = 0;
7021
7022 switch (bits->width) {
7023 case 1: {
7024 u8 tmp8 = 0;
7025 pci_read_config_byte(pdev, bits->reg, &tmp8);
7026 tmp = tmp8;
7027 break;
7028 }
7029 case 2: {
7030 u16 tmp16 = 0;
7031 pci_read_config_word(pdev, bits->reg, &tmp16);
7032 tmp = tmp16;
7033 break;
7034 }
7035 case 4: {
7036 u32 tmp32 = 0;
7037 pci_read_config_dword(pdev, bits->reg, &tmp32);
7038 tmp = tmp32;
7039 break;
7040 }
7041
7042 default:
7043 return -EINVAL;
7044 }
7045
7046 tmp &= bits->mask;
7047
7048 return (tmp == bits->val) ? 1 : 0;
7049}
9b847548 7050
6ffa01d8 7051#ifdef CONFIG_PM
3c5100c1 7052void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7053{
7054 pci_save_state(pdev);
4c90d971 7055 pci_disable_device(pdev);
500530f6 7056
4c90d971 7057 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7058 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7059}
7060
553c4aa6 7061int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7062{
553c4aa6
TH
7063 int rc;
7064
9b847548
JA
7065 pci_set_power_state(pdev, PCI_D0);
7066 pci_restore_state(pdev);
553c4aa6 7067
b878ca5d 7068 rc = pcim_enable_device(pdev);
553c4aa6
TH
7069 if (rc) {
7070 dev_printk(KERN_ERR, &pdev->dev,
7071 "failed to enable device after resume (%d)\n", rc);
7072 return rc;
7073 }
7074
9b847548 7075 pci_set_master(pdev);
553c4aa6 7076 return 0;
500530f6
TH
7077}
7078
3c5100c1 7079int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7080{
cca3974e 7081 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7082 int rc = 0;
7083
cca3974e 7084 rc = ata_host_suspend(host, mesg);
500530f6
TH
7085 if (rc)
7086 return rc;
7087
3c5100c1 7088 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7089
7090 return 0;
7091}
7092
7093int ata_pci_device_resume(struct pci_dev *pdev)
7094{
cca3974e 7095 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7096 int rc;
500530f6 7097
553c4aa6
TH
7098 rc = ata_pci_device_do_resume(pdev);
7099 if (rc == 0)
7100 ata_host_resume(host);
7101 return rc;
9b847548 7102}
6ffa01d8
TH
7103#endif /* CONFIG_PM */
7104
1da177e4
LT
7105#endif /* CONFIG_PCI */
7106
7107
1da177e4
LT
7108static int __init ata_init(void)
7109{
a8601e5f 7110 ata_probe_timeout *= HZ;
1da177e4
LT
7111 ata_wq = create_workqueue("ata");
7112 if (!ata_wq)
7113 return -ENOMEM;
7114
453b07ac
TH
7115 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7116 if (!ata_aux_wq) {
7117 destroy_workqueue(ata_wq);
7118 return -ENOMEM;
7119 }
7120
1da177e4
LT
7121 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7122 return 0;
7123}
7124
7125static void __exit ata_exit(void)
7126{
7127 destroy_workqueue(ata_wq);
453b07ac 7128 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7129}
7130
a4625085 7131subsys_initcall(ata_init);
1da177e4
LT
7132module_exit(ata_exit);
7133
67846b30 7134static unsigned long ratelimit_time;
34af946a 7135static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7136
7137int ata_ratelimit(void)
7138{
7139 int rc;
7140 unsigned long flags;
7141
7142 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7143
7144 if (time_after(jiffies, ratelimit_time)) {
7145 rc = 1;
7146 ratelimit_time = jiffies + (HZ/5);
7147 } else
7148 rc = 0;
7149
7150 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7151
7152 return rc;
7153}
7154
c22daff4
TH
7155/**
7156 * ata_wait_register - wait until register value changes
7157 * @reg: IO-mapped register
7158 * @mask: Mask to apply to read register value
7159 * @val: Wait condition
7160 * @interval_msec: polling interval in milliseconds
7161 * @timeout_msec: timeout in milliseconds
7162 *
7163 * Waiting for some bits of register to change is a common
7164 * operation for ATA controllers. This function reads 32bit LE
7165 * IO-mapped register @reg and tests for the following condition.
7166 *
7167 * (*@reg & mask) != val
7168 *
7169 * If the condition is met, it returns; otherwise, the process is
7170 * repeated after @interval_msec until timeout.
7171 *
7172 * LOCKING:
7173 * Kernel thread context (may sleep)
7174 *
7175 * RETURNS:
7176 * The final register value.
7177 */
7178u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7179 unsigned long interval_msec,
7180 unsigned long timeout_msec)
7181{
7182 unsigned long timeout;
7183 u32 tmp;
7184
7185 tmp = ioread32(reg);
7186
7187 /* Calculate timeout _after_ the first read to make sure
7188 * preceding writes reach the controller before starting to
7189 * eat away the timeout.
7190 */
7191 timeout = jiffies + (timeout_msec * HZ) / 1000;
7192
7193 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7194 msleep(interval_msec);
7195 tmp = ioread32(reg);
7196 }
7197
7198 return tmp;
7199}
7200
dd5b06c4
TH
7201/*
7202 * Dummy port_ops
7203 */
7204static void ata_dummy_noret(struct ata_port *ap) { }
7205static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7206static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7207
7208static u8 ata_dummy_check_status(struct ata_port *ap)
7209{
7210 return ATA_DRDY;
7211}
7212
7213static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7214{
7215 return AC_ERR_SYSTEM;
7216}
7217
7218const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7219 .check_status = ata_dummy_check_status,
7220 .check_altstatus = ata_dummy_check_status,
7221 .dev_select = ata_noop_dev_select,
7222 .qc_prep = ata_noop_qc_prep,
7223 .qc_issue = ata_dummy_qc_issue,
7224 .freeze = ata_dummy_noret,
7225 .thaw = ata_dummy_noret,
7226 .error_handler = ata_dummy_noret,
7227 .post_internal_cmd = ata_dummy_qc_noret,
7228 .irq_clear = ata_dummy_noret,
7229 .port_start = ata_dummy_ret0,
7230 .port_stop = ata_dummy_noret,
7231};
7232
21b0ad4f
TH
7233const struct ata_port_info ata_dummy_port_info = {
7234 .port_ops = &ata_dummy_port_ops,
7235};
7236
1da177e4
LT
7237/*
7238 * libata is essentially a library of internal helper functions for
7239 * low-level ATA host controller drivers. As such, the API/ABI is
7240 * likely to change as new drivers are added and updated.
7241 * Do not depend on ABI/API stability.
7242 */
7243
e9c83914
TH
7244EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7245EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7246EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7247EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7248EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7249EXPORT_SYMBOL_GPL(ata_std_bios_param);
7250EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7251EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7252EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7253EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7254EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7255EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7256EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7257EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7258EXPORT_SYMBOL_GPL(ata_sg_init);
7259EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7260EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7261EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7262EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7263EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7264EXPORT_SYMBOL_GPL(ata_tf_load);
7265EXPORT_SYMBOL_GPL(ata_tf_read);
7266EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7267EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7268EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7269EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7270EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7271EXPORT_SYMBOL_GPL(ata_check_status);
7272EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7273EXPORT_SYMBOL_GPL(ata_exec_command);
7274EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7275EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7276EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7277EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7278EXPORT_SYMBOL_GPL(ata_data_xfer);
7279EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7280EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7281EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7282EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7283EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7284EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7285EXPORT_SYMBOL_GPL(ata_bmdma_start);
7286EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7287EXPORT_SYMBOL_GPL(ata_bmdma_status);
7288EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7289EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7290EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7291EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7292EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7293EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7294EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7295EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7296EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7297EXPORT_SYMBOL_GPL(sata_link_debounce);
7298EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7299EXPORT_SYMBOL_GPL(sata_phy_reset);
7300EXPORT_SYMBOL_GPL(__sata_phy_reset);
7301EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7302EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7303EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7304EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7305EXPORT_SYMBOL_GPL(sata_std_hardreset);
7306EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7307EXPORT_SYMBOL_GPL(ata_dev_classify);
7308EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7309EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7310EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7311EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7312EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7313EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7314EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7315EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7316EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7317EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7318EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7319EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7320EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7321EXPORT_SYMBOL_GPL(sata_scr_valid);
7322EXPORT_SYMBOL_GPL(sata_scr_read);
7323EXPORT_SYMBOL_GPL(sata_scr_write);
7324EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7325EXPORT_SYMBOL_GPL(ata_link_online);
7326EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7327#ifdef CONFIG_PM
cca3974e
JG
7328EXPORT_SYMBOL_GPL(ata_host_suspend);
7329EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7330#endif /* CONFIG_PM */
6a62a04d
TH
7331EXPORT_SYMBOL_GPL(ata_id_string);
7332EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7333EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7334EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7335
1bc4ccff 7336EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7337EXPORT_SYMBOL_GPL(ata_timing_compute);
7338EXPORT_SYMBOL_GPL(ata_timing_merge);
7339
1da177e4
LT
7340#ifdef CONFIG_PCI
7341EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7342EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7343EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7344EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7345EXPORT_SYMBOL_GPL(ata_pci_init_one);
7346EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7347#ifdef CONFIG_PM
500530f6
TH
7348EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7349EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7350EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7351EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7352#endif /* CONFIG_PM */
67951ade
AC
7353EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7354EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7355#endif /* CONFIG_PCI */
9b847548 7356
31f88384 7357EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7358EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7359EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7360EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7361EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7362
b64bbc39
TH
7363EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7364EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7365EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7366EXPORT_SYMBOL_GPL(ata_port_desc);
7367#ifdef CONFIG_PCI
7368EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7369#endif /* CONFIG_PCI */
ece1d636 7370EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7371EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7372EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7373EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7374EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7375EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7376EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7377EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7378EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7379EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7380EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7381EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7382EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7383
7384EXPORT_SYMBOL_GPL(ata_cable_40wire);
7385EXPORT_SYMBOL_GPL(ata_cable_80wire);
7386EXPORT_SYMBOL_GPL(ata_cable_unknown);
7387EXPORT_SYMBOL_GPL(ata_cable_sata);