]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/ata/libata-core.c
libata: kill ata_id_to_dma_mode()
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
6357357c
TH
457unsigned int ata_pack_xfermask(unsigned int pio_mask,
458 unsigned int mwdma_mask, unsigned int udma_mask)
cb95d562
TH
459{
460 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
461 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
462 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
463}
464
c0489e4e
TH
465/**
466 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
467 * @xfer_mask: xfer_mask to unpack
468 * @pio_mask: resulting pio_mask
469 * @mwdma_mask: resulting mwdma_mask
470 * @udma_mask: resulting udma_mask
471 *
472 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
473 * Any NULL distination masks will be ignored.
474 */
6357357c
TH
475void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
476 unsigned int *mwdma_mask, unsigned int *udma_mask)
c0489e4e
TH
477{
478 if (pio_mask)
479 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
480 if (mwdma_mask)
481 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
482 if (udma_mask)
483 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
484}
485
cb95d562 486static const struct ata_xfer_ent {
be9a50c8 487 int shift, bits;
cb95d562
TH
488 u8 base;
489} ata_xfer_tbl[] = {
70cd071e
TH
490 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
491 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
492 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
493 { -1, },
494};
495
496/**
497 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
498 * @xfer_mask: xfer_mask of interest
499 *
500 * Return matching XFER_* value for @xfer_mask. Only the highest
501 * bit of @xfer_mask is considered.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
70cd071e 507 * Matching XFER_* value, 0xff if no match found.
cb95d562 508 */
6357357c 509u8 ata_xfer_mask2mode(unsigned int xfer_mask)
cb95d562
TH
510{
511 int highbit = fls(xfer_mask) - 1;
512 const struct ata_xfer_ent *ent;
513
514 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
515 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
516 return ent->base + highbit - ent->shift;
70cd071e 517 return 0xff;
cb95d562
TH
518}
519
520/**
521 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
522 * @xfer_mode: XFER_* of interest
523 *
524 * Return matching xfer_mask for @xfer_mode.
525 *
526 * LOCKING:
527 * None.
528 *
529 * RETURNS:
530 * Matching xfer_mask, 0 if no match found.
531 */
6357357c 532unsigned int ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
533{
534 const struct ata_xfer_ent *ent;
535
536 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
537 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
538 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
539 & ~((1 << ent->shift) - 1);
cb95d562
TH
540 return 0;
541}
542
543/**
544 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
545 * @xfer_mode: XFER_* of interest
546 *
547 * Return matching xfer_shift for @xfer_mode.
548 *
549 * LOCKING:
550 * None.
551 *
552 * RETURNS:
553 * Matching xfer_shift, -1 if no match found.
554 */
6357357c 555int ata_xfer_mode2shift(unsigned int xfer_mode)
cb95d562
TH
556{
557 const struct ata_xfer_ent *ent;
558
559 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
560 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
561 return ent->shift;
562 return -1;
563}
564
1da177e4 565/**
1da7b0d0
TH
566 * ata_mode_string - convert xfer_mask to string
567 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
568 *
569 * Determine string which represents the highest speed
1da7b0d0 570 * (highest bit in @modemask).
1da177e4
LT
571 *
572 * LOCKING:
573 * None.
574 *
575 * RETURNS:
576 * Constant C string representing highest speed listed in
1da7b0d0 577 * @mode_mask, or the constant C string "<n/a>".
1da177e4 578 */
6357357c 579const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 580{
75f554bc
TH
581 static const char * const xfer_mode_str[] = {
582 "PIO0",
583 "PIO1",
584 "PIO2",
585 "PIO3",
586 "PIO4",
b352e57d
AC
587 "PIO5",
588 "PIO6",
75f554bc
TH
589 "MWDMA0",
590 "MWDMA1",
591 "MWDMA2",
b352e57d
AC
592 "MWDMA3",
593 "MWDMA4",
75f554bc
TH
594 "UDMA/16",
595 "UDMA/25",
596 "UDMA/33",
597 "UDMA/44",
598 "UDMA/66",
599 "UDMA/100",
600 "UDMA/133",
601 "UDMA7",
602 };
1da7b0d0 603 int highbit;
1da177e4 604
1da7b0d0
TH
605 highbit = fls(xfer_mask) - 1;
606 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
607 return xfer_mode_str[highbit];
1da177e4 608 return "<n/a>";
1da177e4
LT
609}
610
4c360c81
TH
611static const char *sata_spd_string(unsigned int spd)
612{
613 static const char * const spd_str[] = {
614 "1.5 Gbps",
615 "3.0 Gbps",
616 };
617
618 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
619 return "<unknown>";
620 return spd_str[spd - 1];
621}
622
3373efd8 623void ata_dev_disable(struct ata_device *dev)
0b8efb0a 624{
09d7f9b0 625 if (ata_dev_enabled(dev)) {
9af5c9c9 626 if (ata_msg_drv(dev->link->ap))
09d7f9b0 627 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 628 ata_acpi_on_disable(dev);
4ae72a1e
TH
629 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
630 ATA_DNXFER_QUIET);
0b8efb0a
TH
631 dev->class++;
632 }
633}
634
ca77329f
KCA
635static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
636{
637 struct ata_link *link = dev->link;
638 struct ata_port *ap = link->ap;
639 u32 scontrol;
640 unsigned int err_mask;
641 int rc;
642
643 /*
644 * disallow DIPM for drivers which haven't set
645 * ATA_FLAG_IPM. This is because when DIPM is enabled,
646 * phy ready will be set in the interrupt status on
647 * state changes, which will cause some drivers to
648 * think there are errors - additionally drivers will
649 * need to disable hot plug.
650 */
651 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
652 ap->pm_policy = NOT_AVAILABLE;
653 return -EINVAL;
654 }
655
656 /*
657 * For DIPM, we will only enable it for the
658 * min_power setting.
659 *
660 * Why? Because Disks are too stupid to know that
661 * If the host rejects a request to go to SLUMBER
662 * they should retry at PARTIAL, and instead it
663 * just would give up. So, for medium_power to
664 * work at all, we need to only allow HIPM.
665 */
666 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
667 if (rc)
668 return rc;
669
670 switch (policy) {
671 case MIN_POWER:
672 /* no restrictions on IPM transitions */
673 scontrol &= ~(0x3 << 8);
674 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
675 if (rc)
676 return rc;
677
678 /* enable DIPM */
679 if (dev->flags & ATA_DFLAG_DIPM)
680 err_mask = ata_dev_set_feature(dev,
681 SETFEATURES_SATA_ENABLE, SATA_DIPM);
682 break;
683 case MEDIUM_POWER:
684 /* allow IPM to PARTIAL */
685 scontrol &= ~(0x1 << 8);
686 scontrol |= (0x2 << 8);
687 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
688 if (rc)
689 return rc;
690
f5456b63
KCA
691 /*
692 * we don't have to disable DIPM since IPM flags
693 * disallow transitions to SLUMBER, which effectively
694 * disable DIPM if it does not support PARTIAL
695 */
ca77329f
KCA
696 break;
697 case NOT_AVAILABLE:
698 case MAX_PERFORMANCE:
699 /* disable all IPM transitions */
700 scontrol |= (0x3 << 8);
701 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
702 if (rc)
703 return rc;
704
f5456b63
KCA
705 /*
706 * we don't have to disable DIPM since IPM flags
707 * disallow all transitions which effectively
708 * disable DIPM anyway.
709 */
ca77329f
KCA
710 break;
711 }
712
713 /* FIXME: handle SET FEATURES failure */
714 (void) err_mask;
715
716 return 0;
717}
718
719/**
720 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
721 * @dev: device to enable power management
722 * @policy: the link power management policy
ca77329f
KCA
723 *
724 * Enable SATA Interface power management. This will enable
725 * Device Interface Power Management (DIPM) for min_power
726 * policy, and then call driver specific callbacks for
727 * enabling Host Initiated Power management.
728 *
729 * Locking: Caller.
730 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
731 */
732void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
733{
734 int rc = 0;
735 struct ata_port *ap = dev->link->ap;
736
737 /* set HIPM first, then DIPM */
738 if (ap->ops->enable_pm)
739 rc = ap->ops->enable_pm(ap, policy);
740 if (rc)
741 goto enable_pm_out;
742 rc = ata_dev_set_dipm(dev, policy);
743
744enable_pm_out:
745 if (rc)
746 ap->pm_policy = MAX_PERFORMANCE;
747 else
748 ap->pm_policy = policy;
749 return /* rc */; /* hopefully we can use 'rc' eventually */
750}
751
1992a5ed 752#ifdef CONFIG_PM
ca77329f
KCA
753/**
754 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 755 * @dev: device to disable power management
ca77329f
KCA
756 *
757 * Disable SATA Interface power management. This will disable
758 * Device Interface Power Management (DIPM) without changing
759 * policy, call driver specific callbacks for disabling Host
760 * Initiated Power management.
761 *
762 * Locking: Caller.
763 * Returns: void
764 */
765static void ata_dev_disable_pm(struct ata_device *dev)
766{
767 struct ata_port *ap = dev->link->ap;
768
769 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
770 if (ap->ops->disable_pm)
771 ap->ops->disable_pm(ap);
772}
1992a5ed 773#endif /* CONFIG_PM */
ca77329f
KCA
774
775void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
776{
777 ap->pm_policy = policy;
778 ap->link.eh_info.action |= ATA_EHI_LPM;
779 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
780 ata_port_schedule_eh(ap);
781}
782
1992a5ed 783#ifdef CONFIG_PM
ca77329f
KCA
784static void ata_lpm_enable(struct ata_host *host)
785{
786 struct ata_link *link;
787 struct ata_port *ap;
788 struct ata_device *dev;
789 int i;
790
791 for (i = 0; i < host->n_ports; i++) {
792 ap = host->ports[i];
793 ata_port_for_each_link(link, ap) {
794 ata_link_for_each_dev(dev, link)
795 ata_dev_disable_pm(dev);
796 }
797 }
798}
799
800static void ata_lpm_disable(struct ata_host *host)
801{
802 int i;
803
804 for (i = 0; i < host->n_ports; i++) {
805 struct ata_port *ap = host->ports[i];
806 ata_lpm_schedule(ap, ap->pm_policy);
807 }
808}
1992a5ed 809#endif /* CONFIG_PM */
ca77329f
KCA
810
811
1da177e4 812/**
0d5ff566 813 * ata_devchk - PATA device presence detection
1da177e4
LT
814 * @ap: ATA channel to examine
815 * @device: Device to examine (starting at zero)
816 *
817 * This technique was originally described in
818 * Hale Landis's ATADRVR (www.ata-atapi.com), and
819 * later found its way into the ATA/ATAPI spec.
820 *
821 * Write a pattern to the ATA shadow registers,
822 * and if a device is present, it will respond by
823 * correctly storing and echoing back the
824 * ATA shadow register contents.
825 *
826 * LOCKING:
827 * caller.
828 */
829
0d5ff566 830static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
831{
832 struct ata_ioports *ioaddr = &ap->ioaddr;
833 u8 nsect, lbal;
834
835 ap->ops->dev_select(ap, device);
836
0d5ff566
TH
837 iowrite8(0x55, ioaddr->nsect_addr);
838 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 839
0d5ff566
TH
840 iowrite8(0xaa, ioaddr->nsect_addr);
841 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 842
0d5ff566
TH
843 iowrite8(0x55, ioaddr->nsect_addr);
844 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 845
0d5ff566
TH
846 nsect = ioread8(ioaddr->nsect_addr);
847 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
848
849 if ((nsect == 0x55) && (lbal == 0xaa))
850 return 1; /* we found a device */
851
852 return 0; /* nothing found */
853}
854
1da177e4
LT
855/**
856 * ata_dev_classify - determine device type based on ATA-spec signature
857 * @tf: ATA taskfile register set for device to be identified
858 *
859 * Determine from taskfile register contents whether a device is
860 * ATA or ATAPI, as per "Signature and persistence" section
861 * of ATA/PI spec (volume 1, sect 5.14).
862 *
863 * LOCKING:
864 * None.
865 *
866 * RETURNS:
633273a3
TH
867 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
868 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 869 */
057ace5e 870unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
871{
872 /* Apple's open source Darwin code hints that some devices only
873 * put a proper signature into the LBA mid/high registers,
874 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
875 *
876 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
877 * signatures for ATA and ATAPI devices attached on SerialATA,
878 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
879 * spec has never mentioned about using different signatures
880 * for ATA/ATAPI devices. Then, Serial ATA II: Port
881 * Multiplier specification began to use 0x69/0x96 to identify
882 * port multpliers and 0x3c/0xc3 to identify SEMB device.
883 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
884 * 0x69/0x96 shortly and described them as reserved for
885 * SerialATA.
886 *
887 * We follow the current spec and consider that 0x69/0x96
888 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 889 */
633273a3 890 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
891 DPRINTK("found ATA device by sig\n");
892 return ATA_DEV_ATA;
893 }
894
633273a3 895 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
896 DPRINTK("found ATAPI device by sig\n");
897 return ATA_DEV_ATAPI;
898 }
899
633273a3
TH
900 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
901 DPRINTK("found PMP device by sig\n");
902 return ATA_DEV_PMP;
903 }
904
905 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 906 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
907 return ATA_DEV_SEMB_UNSUP; /* not yet */
908 }
909
1da177e4
LT
910 DPRINTK("unknown device\n");
911 return ATA_DEV_UNKNOWN;
912}
913
914/**
915 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
916 * @dev: ATA device to classify (starting at zero)
917 * @present: device seems present
b4dc7623 918 * @r_err: Value of error register on completion
1da177e4
LT
919 *
920 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
921 * an ATA/ATAPI-defined set of values is placed in the ATA
922 * shadow registers, indicating the results of device detection
923 * and diagnostics.
924 *
925 * Select the ATA device, and read the values from the ATA shadow
926 * registers. Then parse according to the Error register value,
927 * and the spec-defined values examined by ata_dev_classify().
928 *
929 * LOCKING:
930 * caller.
b4dc7623
TH
931 *
932 * RETURNS:
933 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 934 */
3f19859e
TH
935unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
936 u8 *r_err)
1da177e4 937{
3f19859e 938 struct ata_port *ap = dev->link->ap;
1da177e4
LT
939 struct ata_taskfile tf;
940 unsigned int class;
941 u8 err;
942
3f19859e 943 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
944
945 memset(&tf, 0, sizeof(tf));
946
1da177e4 947 ap->ops->tf_read(ap, &tf);
0169e284 948 err = tf.feature;
b4dc7623
TH
949 if (r_err)
950 *r_err = err;
1da177e4 951
93590859 952 /* see if device passed diags: if master then continue and warn later */
3f19859e 953 if (err == 0 && dev->devno == 0)
93590859 954 /* diagnostic fail : do nothing _YET_ */
3f19859e 955 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 956 else if (err == 1)
1da177e4 957 /* do nothing */ ;
3f19859e 958 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
959 /* do nothing */ ;
960 else
b4dc7623 961 return ATA_DEV_NONE;
1da177e4 962
b4dc7623 963 /* determine if device is ATA or ATAPI */
1da177e4 964 class = ata_dev_classify(&tf);
b4dc7623 965
d7fbee05
TH
966 if (class == ATA_DEV_UNKNOWN) {
967 /* If the device failed diagnostic, it's likely to
968 * have reported incorrect device signature too.
969 * Assume ATA device if the device seems present but
970 * device signature is invalid with diagnostic
971 * failure.
972 */
973 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
974 class = ATA_DEV_ATA;
975 else
976 class = ATA_DEV_NONE;
977 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
978 class = ATA_DEV_NONE;
979
b4dc7623 980 return class;
1da177e4
LT
981}
982
983/**
6a62a04d 984 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
985 * @id: IDENTIFY DEVICE results we will examine
986 * @s: string into which data is output
987 * @ofs: offset into identify device page
988 * @len: length of string to return. must be an even number.
989 *
990 * The strings in the IDENTIFY DEVICE page are broken up into
991 * 16-bit chunks. Run through the string, and output each
992 * 8-bit chunk linearly, regardless of platform.
993 *
994 * LOCKING:
995 * caller.
996 */
997
6a62a04d
TH
998void ata_id_string(const u16 *id, unsigned char *s,
999 unsigned int ofs, unsigned int len)
1da177e4
LT
1000{
1001 unsigned int c;
1002
1003 while (len > 0) {
1004 c = id[ofs] >> 8;
1005 *s = c;
1006 s++;
1007
1008 c = id[ofs] & 0xff;
1009 *s = c;
1010 s++;
1011
1012 ofs++;
1013 len -= 2;
1014 }
1015}
1016
0e949ff3 1017/**
6a62a04d 1018 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1019 * @id: IDENTIFY DEVICE results we will examine
1020 * @s: string into which data is output
1021 * @ofs: offset into identify device page
1022 * @len: length of string to return. must be an odd number.
1023 *
6a62a04d 1024 * This function is identical to ata_id_string except that it
0e949ff3
TH
1025 * trims trailing spaces and terminates the resulting string with
1026 * null. @len must be actual maximum length (even number) + 1.
1027 *
1028 * LOCKING:
1029 * caller.
1030 */
6a62a04d
TH
1031void ata_id_c_string(const u16 *id, unsigned char *s,
1032 unsigned int ofs, unsigned int len)
0e949ff3
TH
1033{
1034 unsigned char *p;
1035
1036 WARN_ON(!(len & 1));
1037
6a62a04d 1038 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1039
1040 p = s + strnlen(s, len - 1);
1041 while (p > s && p[-1] == ' ')
1042 p--;
1043 *p = '\0';
1044}
0baab86b 1045
db6f8759
TH
1046static u64 ata_id_n_sectors(const u16 *id)
1047{
1048 if (ata_id_has_lba(id)) {
1049 if (ata_id_has_lba48(id))
1050 return ata_id_u64(id, 100);
1051 else
1052 return ata_id_u32(id, 60);
1053 } else {
1054 if (ata_id_current_chs_valid(id))
1055 return ata_id_u32(id, 57);
1056 else
1057 return id[1] * id[3] * id[6];
1058 }
1059}
1060
1e999736
AC
1061static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1062{
1063 u64 sectors = 0;
1064
1065 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1066 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1067 sectors |= (tf->hob_lbal & 0xff) << 24;
1068 sectors |= (tf->lbah & 0xff) << 16;
1069 sectors |= (tf->lbam & 0xff) << 8;
1070 sectors |= (tf->lbal & 0xff);
1071
1072 return ++sectors;
1073}
1074
1075static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1076{
1077 u64 sectors = 0;
1078
1079 sectors |= (tf->device & 0x0f) << 24;
1080 sectors |= (tf->lbah & 0xff) << 16;
1081 sectors |= (tf->lbam & 0xff) << 8;
1082 sectors |= (tf->lbal & 0xff);
1083
1084 return ++sectors;
1085}
1086
1087/**
c728a914
TH
1088 * ata_read_native_max_address - Read native max address
1089 * @dev: target device
1090 * @max_sectors: out parameter for the result native max address
1e999736 1091 *
c728a914
TH
1092 * Perform an LBA48 or LBA28 native size query upon the device in
1093 * question.
1e999736 1094 *
c728a914
TH
1095 * RETURNS:
1096 * 0 on success, -EACCES if command is aborted by the drive.
1097 * -EIO on other errors.
1e999736 1098 */
c728a914 1099static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1100{
c728a914 1101 unsigned int err_mask;
1e999736 1102 struct ata_taskfile tf;
c728a914 1103 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1104
1105 ata_tf_init(dev, &tf);
1106
c728a914 1107 /* always clear all address registers */
1e999736 1108 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1109
c728a914
TH
1110 if (lba48) {
1111 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1112 tf.flags |= ATA_TFLAG_LBA48;
1113 } else
1114 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1115
1e999736 1116 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1117 tf.device |= ATA_LBA;
1118
2b789108 1119 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1120 if (err_mask) {
1121 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1122 "max address (err_mask=0x%x)\n", err_mask);
1123 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1124 return -EACCES;
1125 return -EIO;
1126 }
1e999736 1127
c728a914
TH
1128 if (lba48)
1129 *max_sectors = ata_tf_to_lba48(&tf);
1130 else
1131 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1132 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1133 (*max_sectors)--;
c728a914 1134 return 0;
1e999736
AC
1135}
1136
1137/**
c728a914
TH
1138 * ata_set_max_sectors - Set max sectors
1139 * @dev: target device
6b38d1d1 1140 * @new_sectors: new max sectors value to set for the device
1e999736 1141 *
c728a914
TH
1142 * Set max sectors of @dev to @new_sectors.
1143 *
1144 * RETURNS:
1145 * 0 on success, -EACCES if command is aborted or denied (due to
1146 * previous non-volatile SET_MAX) by the drive. -EIO on other
1147 * errors.
1e999736 1148 */
05027adc 1149static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1150{
c728a914 1151 unsigned int err_mask;
1e999736 1152 struct ata_taskfile tf;
c728a914 1153 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1154
1155 new_sectors--;
1156
1157 ata_tf_init(dev, &tf);
1158
1e999736 1159 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1160
1161 if (lba48) {
1162 tf.command = ATA_CMD_SET_MAX_EXT;
1163 tf.flags |= ATA_TFLAG_LBA48;
1164
1165 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1166 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1167 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1168 } else {
c728a914
TH
1169 tf.command = ATA_CMD_SET_MAX;
1170
1e582ba4
TH
1171 tf.device |= (new_sectors >> 24) & 0xf;
1172 }
1173
1e999736 1174 tf.protocol |= ATA_PROT_NODATA;
c728a914 1175 tf.device |= ATA_LBA;
1e999736
AC
1176
1177 tf.lbal = (new_sectors >> 0) & 0xff;
1178 tf.lbam = (new_sectors >> 8) & 0xff;
1179 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1180
2b789108 1181 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1182 if (err_mask) {
1183 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1184 "max address (err_mask=0x%x)\n", err_mask);
1185 if (err_mask == AC_ERR_DEV &&
1186 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1187 return -EACCES;
1188 return -EIO;
1189 }
1190
c728a914 1191 return 0;
1e999736
AC
1192}
1193
1194/**
1195 * ata_hpa_resize - Resize a device with an HPA set
1196 * @dev: Device to resize
1197 *
1198 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1199 * it if required to the full size of the media. The caller must check
1200 * the drive has the HPA feature set enabled.
05027adc
TH
1201 *
1202 * RETURNS:
1203 * 0 on success, -errno on failure.
1e999736 1204 */
05027adc 1205static int ata_hpa_resize(struct ata_device *dev)
1e999736 1206{
05027adc
TH
1207 struct ata_eh_context *ehc = &dev->link->eh_context;
1208 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1209 u64 sectors = ata_id_n_sectors(dev->id);
1210 u64 native_sectors;
c728a914 1211 int rc;
a617c09f 1212
05027adc
TH
1213 /* do we need to do it? */
1214 if (dev->class != ATA_DEV_ATA ||
1215 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1216 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1217 return 0;
1e999736 1218
05027adc
TH
1219 /* read native max address */
1220 rc = ata_read_native_max_address(dev, &native_sectors);
1221 if (rc) {
1222 /* If HPA isn't going to be unlocked, skip HPA
1223 * resizing from the next try.
1224 */
1225 if (!ata_ignore_hpa) {
1226 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1227 "broken, will skip HPA handling\n");
1228 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1229
1230 /* we can continue if device aborted the command */
1231 if (rc == -EACCES)
1232 rc = 0;
1e999736 1233 }
37301a55 1234
05027adc
TH
1235 return rc;
1236 }
1237
1238 /* nothing to do? */
1239 if (native_sectors <= sectors || !ata_ignore_hpa) {
1240 if (!print_info || native_sectors == sectors)
1241 return 0;
1242
1243 if (native_sectors > sectors)
1244 ata_dev_printk(dev, KERN_INFO,
1245 "HPA detected: current %llu, native %llu\n",
1246 (unsigned long long)sectors,
1247 (unsigned long long)native_sectors);
1248 else if (native_sectors < sectors)
1249 ata_dev_printk(dev, KERN_WARNING,
1250 "native sectors (%llu) is smaller than "
1251 "sectors (%llu)\n",
1252 (unsigned long long)native_sectors,
1253 (unsigned long long)sectors);
1254 return 0;
1255 }
1256
1257 /* let's unlock HPA */
1258 rc = ata_set_max_sectors(dev, native_sectors);
1259 if (rc == -EACCES) {
1260 /* if device aborted the command, skip HPA resizing */
1261 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1262 "(%llu -> %llu), skipping HPA handling\n",
1263 (unsigned long long)sectors,
1264 (unsigned long long)native_sectors);
1265 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1266 return 0;
1267 } else if (rc)
1268 return rc;
1269
1270 /* re-read IDENTIFY data */
1271 rc = ata_dev_reread_id(dev, 0);
1272 if (rc) {
1273 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1274 "data after HPA resizing\n");
1275 return rc;
1276 }
1277
1278 if (print_info) {
1279 u64 new_sectors = ata_id_n_sectors(dev->id);
1280 ata_dev_printk(dev, KERN_INFO,
1281 "HPA unlocked: %llu -> %llu, native %llu\n",
1282 (unsigned long long)sectors,
1283 (unsigned long long)new_sectors,
1284 (unsigned long long)native_sectors);
1285 }
1286
1287 return 0;
1e999736
AC
1288}
1289
0baab86b
EF
1290/**
1291 * ata_noop_dev_select - Select device 0/1 on ATA bus
1292 * @ap: ATA channel to manipulate
1293 * @device: ATA device (numbered from zero) to select
1294 *
1295 * This function performs no actual function.
1296 *
1297 * May be used as the dev_select() entry in ata_port_operations.
1298 *
1299 * LOCKING:
1300 * caller.
1301 */
2dcb407e 1302void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1303{
1304}
1305
0baab86b 1306
1da177e4
LT
1307/**
1308 * ata_std_dev_select - Select device 0/1 on ATA bus
1309 * @ap: ATA channel to manipulate
1310 * @device: ATA device (numbered from zero) to select
1311 *
1312 * Use the method defined in the ATA specification to
1313 * make either device 0, or device 1, active on the
0baab86b
EF
1314 * ATA channel. Works with both PIO and MMIO.
1315 *
1316 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1317 *
1318 * LOCKING:
1319 * caller.
1320 */
1321
2dcb407e 1322void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1323{
1324 u8 tmp;
1325
1326 if (device == 0)
1327 tmp = ATA_DEVICE_OBS;
1328 else
1329 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1330
0d5ff566 1331 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1332 ata_pause(ap); /* needed; also flushes, for mmio */
1333}
1334
1335/**
1336 * ata_dev_select - Select device 0/1 on ATA bus
1337 * @ap: ATA channel to manipulate
1338 * @device: ATA device (numbered from zero) to select
1339 * @wait: non-zero to wait for Status register BSY bit to clear
1340 * @can_sleep: non-zero if context allows sleeping
1341 *
1342 * Use the method defined in the ATA specification to
1343 * make either device 0, or device 1, active on the
1344 * ATA channel.
1345 *
1346 * This is a high-level version of ata_std_dev_select(),
1347 * which additionally provides the services of inserting
1348 * the proper pauses and status polling, where needed.
1349 *
1350 * LOCKING:
1351 * caller.
1352 */
1353
1354void ata_dev_select(struct ata_port *ap, unsigned int device,
1355 unsigned int wait, unsigned int can_sleep)
1356{
88574551 1357 if (ata_msg_probe(ap))
44877b4e
TH
1358 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1359 "device %u, wait %u\n", device, wait);
1da177e4
LT
1360
1361 if (wait)
1362 ata_wait_idle(ap);
1363
1364 ap->ops->dev_select(ap, device);
1365
1366 if (wait) {
9af5c9c9 1367 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1368 msleep(150);
1369 ata_wait_idle(ap);
1370 }
1371}
1372
1373/**
1374 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1375 * @id: IDENTIFY DEVICE page to dump
1da177e4 1376 *
0bd3300a
TH
1377 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1378 * page.
1da177e4
LT
1379 *
1380 * LOCKING:
1381 * caller.
1382 */
1383
0bd3300a 1384static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1385{
1386 DPRINTK("49==0x%04x "
1387 "53==0x%04x "
1388 "63==0x%04x "
1389 "64==0x%04x "
1390 "75==0x%04x \n",
0bd3300a
TH
1391 id[49],
1392 id[53],
1393 id[63],
1394 id[64],
1395 id[75]);
1da177e4
LT
1396 DPRINTK("80==0x%04x "
1397 "81==0x%04x "
1398 "82==0x%04x "
1399 "83==0x%04x "
1400 "84==0x%04x \n",
0bd3300a
TH
1401 id[80],
1402 id[81],
1403 id[82],
1404 id[83],
1405 id[84]);
1da177e4
LT
1406 DPRINTK("88==0x%04x "
1407 "93==0x%04x\n",
0bd3300a
TH
1408 id[88],
1409 id[93]);
1da177e4
LT
1410}
1411
cb95d562
TH
1412/**
1413 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1414 * @id: IDENTIFY data to compute xfer mask from
1415 *
1416 * Compute the xfermask for this device. This is not as trivial
1417 * as it seems if we must consider early devices correctly.
1418 *
1419 * FIXME: pre IDE drive timing (do we care ?).
1420 *
1421 * LOCKING:
1422 * None.
1423 *
1424 * RETURNS:
1425 * Computed xfermask
1426 */
6357357c 1427unsigned int ata_id_xfermask(const u16 *id)
cb95d562
TH
1428{
1429 unsigned int pio_mask, mwdma_mask, udma_mask;
1430
1431 /* Usual case. Word 53 indicates word 64 is valid */
1432 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1433 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1434 pio_mask <<= 3;
1435 pio_mask |= 0x7;
1436 } else {
1437 /* If word 64 isn't valid then Word 51 high byte holds
1438 * the PIO timing number for the maximum. Turn it into
1439 * a mask.
1440 */
7a0f1c8a 1441 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1442 if (mode < 5) /* Valid PIO range */
2dcb407e 1443 pio_mask = (2 << mode) - 1;
46767aeb
AC
1444 else
1445 pio_mask = 1;
cb95d562
TH
1446
1447 /* But wait.. there's more. Design your standards by
1448 * committee and you too can get a free iordy field to
1449 * process. However its the speeds not the modes that
1450 * are supported... Note drivers using the timing API
1451 * will get this right anyway
1452 */
1453 }
1454
1455 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1456
b352e57d
AC
1457 if (ata_id_is_cfa(id)) {
1458 /*
1459 * Process compact flash extended modes
1460 */
1461 int pio = id[163] & 0x7;
1462 int dma = (id[163] >> 3) & 7;
1463
1464 if (pio)
1465 pio_mask |= (1 << 5);
1466 if (pio > 1)
1467 pio_mask |= (1 << 6);
1468 if (dma)
1469 mwdma_mask |= (1 << 3);
1470 if (dma > 1)
1471 mwdma_mask |= (1 << 4);
1472 }
1473
fb21f0d0
TH
1474 udma_mask = 0;
1475 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1476 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1477
1478 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1479}
1480
86e45b6b
TH
1481/**
1482 * ata_port_queue_task - Queue port_task
1483 * @ap: The ata_port to queue port_task for
e2a7f77a 1484 * @fn: workqueue function to be scheduled
65f27f38 1485 * @data: data for @fn to use
e2a7f77a 1486 * @delay: delay time for workqueue function
86e45b6b
TH
1487 *
1488 * Schedule @fn(@data) for execution after @delay jiffies using
1489 * port_task. There is one port_task per port and it's the
1490 * user(low level driver)'s responsibility to make sure that only
1491 * one task is active at any given time.
1492 *
1493 * libata core layer takes care of synchronization between
1494 * port_task and EH. ata_port_queue_task() may be ignored for EH
1495 * synchronization.
1496 *
1497 * LOCKING:
1498 * Inherited from caller.
1499 */
65f27f38 1500void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1501 unsigned long delay)
1502{
65f27f38
DH
1503 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1504 ap->port_task_data = data;
86e45b6b 1505
45a66c1c
ON
1506 /* may fail if ata_port_flush_task() in progress */
1507 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1508}
1509
1510/**
1511 * ata_port_flush_task - Flush port_task
1512 * @ap: The ata_port to flush port_task for
1513 *
1514 * After this function completes, port_task is guranteed not to
1515 * be running or scheduled.
1516 *
1517 * LOCKING:
1518 * Kernel thread context (may sleep)
1519 */
1520void ata_port_flush_task(struct ata_port *ap)
1521{
86e45b6b
TH
1522 DPRINTK("ENTER\n");
1523
45a66c1c 1524 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1525
0dd4b21f
BP
1526 if (ata_msg_ctl(ap))
1527 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1528}
1529
7102d230 1530static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1531{
77853bf2 1532 struct completion *waiting = qc->private_data;
a2a7a662 1533
a2a7a662 1534 complete(waiting);
a2a7a662
TH
1535}
1536
1537/**
2432697b 1538 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1539 * @dev: Device to which the command is sent
1540 * @tf: Taskfile registers for the command and the result
d69cf37d 1541 * @cdb: CDB for packet command
a2a7a662 1542 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1543 * @sgl: sg list for the data buffer of the command
2432697b 1544 * @n_elem: Number of sg entries
2b789108 1545 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1546 *
1547 * Executes libata internal command with timeout. @tf contains
1548 * command on entry and result on return. Timeout and error
1549 * conditions are reported via return value. No recovery action
1550 * is taken after a command times out. It's caller's duty to
1551 * clean up after timeout.
1552 *
1553 * LOCKING:
1554 * None. Should be called with kernel context, might sleep.
551e8889
TH
1555 *
1556 * RETURNS:
1557 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1558 */
2432697b
TH
1559unsigned ata_exec_internal_sg(struct ata_device *dev,
1560 struct ata_taskfile *tf, const u8 *cdb,
87260216 1561 int dma_dir, struct scatterlist *sgl,
2b789108 1562 unsigned int n_elem, unsigned long timeout)
a2a7a662 1563{
9af5c9c9
TH
1564 struct ata_link *link = dev->link;
1565 struct ata_port *ap = link->ap;
a2a7a662
TH
1566 u8 command = tf->command;
1567 struct ata_queued_cmd *qc;
2ab7db1f 1568 unsigned int tag, preempted_tag;
dedaf2b0 1569 u32 preempted_sactive, preempted_qc_active;
da917d69 1570 int preempted_nr_active_links;
60be6b9a 1571 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1572 unsigned long flags;
77853bf2 1573 unsigned int err_mask;
d95a717f 1574 int rc;
a2a7a662 1575
ba6a1308 1576 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1577
e3180499 1578 /* no internal command while frozen */
b51e9e5d 1579 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1580 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1581 return AC_ERR_SYSTEM;
1582 }
1583
2ab7db1f 1584 /* initialize internal qc */
a2a7a662 1585
2ab7db1f
TH
1586 /* XXX: Tag 0 is used for drivers with legacy EH as some
1587 * drivers choke if any other tag is given. This breaks
1588 * ata_tag_internal() test for those drivers. Don't use new
1589 * EH stuff without converting to it.
1590 */
1591 if (ap->ops->error_handler)
1592 tag = ATA_TAG_INTERNAL;
1593 else
1594 tag = 0;
1595
6cec4a39 1596 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1597 BUG();
f69499f4 1598 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1599
1600 qc->tag = tag;
1601 qc->scsicmd = NULL;
1602 qc->ap = ap;
1603 qc->dev = dev;
1604 ata_qc_reinit(qc);
1605
9af5c9c9
TH
1606 preempted_tag = link->active_tag;
1607 preempted_sactive = link->sactive;
dedaf2b0 1608 preempted_qc_active = ap->qc_active;
da917d69 1609 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1610 link->active_tag = ATA_TAG_POISON;
1611 link->sactive = 0;
dedaf2b0 1612 ap->qc_active = 0;
da917d69 1613 ap->nr_active_links = 0;
2ab7db1f
TH
1614
1615 /* prepare & issue qc */
a2a7a662 1616 qc->tf = *tf;
d69cf37d
TH
1617 if (cdb)
1618 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
2432697b 1622 unsigned int i, buflen = 0;
87260216 1623 struct scatterlist *sg;
2432697b 1624
87260216
JA
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
2432697b 1627
87260216 1628 ata_sg_init(qc, sgl, n_elem);
49c80429 1629 qc->nbytes = buflen;
a2a7a662
TH
1630 }
1631
77853bf2 1632 qc->private_data = &wait;
a2a7a662
TH
1633 qc->complete_fn = ata_qc_complete_internal;
1634
8e0e694a 1635 ata_qc_issue(qc);
a2a7a662 1636
ba6a1308 1637 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1638
2b789108
TH
1639 if (!timeout)
1640 timeout = ata_probe_timeout * 1000 / HZ;
1641
1642 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1643
1644 ata_port_flush_task(ap);
41ade50c 1645
d95a717f 1646 if (!rc) {
ba6a1308 1647 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1648
1649 /* We're racing with irq here. If we lose, the
1650 * following test prevents us from completing the qc
d95a717f
TH
1651 * twice. If we win, the port is frozen and will be
1652 * cleaned up by ->post_internal_cmd().
a2a7a662 1653 */
77853bf2 1654 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1655 qc->err_mask |= AC_ERR_TIMEOUT;
1656
1657 if (ap->ops->error_handler)
1658 ata_port_freeze(ap);
1659 else
1660 ata_qc_complete(qc);
f15a1daf 1661
0dd4b21f
BP
1662 if (ata_msg_warn(ap))
1663 ata_dev_printk(dev, KERN_WARNING,
88574551 1664 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1665 }
1666
ba6a1308 1667 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1668 }
1669
d95a717f
TH
1670 /* do post_internal_cmd */
1671 if (ap->ops->post_internal_cmd)
1672 ap->ops->post_internal_cmd(qc);
1673
a51d644a
TH
1674 /* perform minimal error analysis */
1675 if (qc->flags & ATA_QCFLAG_FAILED) {
1676 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1677 qc->err_mask |= AC_ERR_DEV;
1678
1679 if (!qc->err_mask)
1680 qc->err_mask |= AC_ERR_OTHER;
1681
1682 if (qc->err_mask & ~AC_ERR_OTHER)
1683 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1684 }
1685
15869303 1686 /* finish up */
ba6a1308 1687 spin_lock_irqsave(ap->lock, flags);
15869303 1688
e61e0672 1689 *tf = qc->result_tf;
77853bf2
TH
1690 err_mask = qc->err_mask;
1691
1692 ata_qc_free(qc);
9af5c9c9
TH
1693 link->active_tag = preempted_tag;
1694 link->sactive = preempted_sactive;
dedaf2b0 1695 ap->qc_active = preempted_qc_active;
da917d69 1696 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1697
1f7dd3e9
TH
1698 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1699 * Until those drivers are fixed, we detect the condition
1700 * here, fail the command with AC_ERR_SYSTEM and reenable the
1701 * port.
1702 *
1703 * Note that this doesn't change any behavior as internal
1704 * command failure results in disabling the device in the
1705 * higher layer for LLDDs without new reset/EH callbacks.
1706 *
1707 * Kill the following code as soon as those drivers are fixed.
1708 */
198e0fed 1709 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1710 err_mask |= AC_ERR_SYSTEM;
1711 ata_port_probe(ap);
1712 }
1713
ba6a1308 1714 spin_unlock_irqrestore(ap->lock, flags);
15869303 1715
77853bf2 1716 return err_mask;
a2a7a662
TH
1717}
1718
2432697b 1719/**
33480a0e 1720 * ata_exec_internal - execute libata internal command
2432697b
TH
1721 * @dev: Device to which the command is sent
1722 * @tf: Taskfile registers for the command and the result
1723 * @cdb: CDB for packet command
1724 * @dma_dir: Data tranfer direction of the command
1725 * @buf: Data buffer of the command
1726 * @buflen: Length of data buffer
2b789108 1727 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1728 *
1729 * Wrapper around ata_exec_internal_sg() which takes simple
1730 * buffer instead of sg list.
1731 *
1732 * LOCKING:
1733 * None. Should be called with kernel context, might sleep.
1734 *
1735 * RETURNS:
1736 * Zero on success, AC_ERR_* mask on failure
1737 */
1738unsigned ata_exec_internal(struct ata_device *dev,
1739 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1740 int dma_dir, void *buf, unsigned int buflen,
1741 unsigned long timeout)
2432697b 1742{
33480a0e
TH
1743 struct scatterlist *psg = NULL, sg;
1744 unsigned int n_elem = 0;
2432697b 1745
33480a0e
TH
1746 if (dma_dir != DMA_NONE) {
1747 WARN_ON(!buf);
1748 sg_init_one(&sg, buf, buflen);
1749 psg = &sg;
1750 n_elem++;
1751 }
2432697b 1752
2b789108
TH
1753 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1754 timeout);
2432697b
TH
1755}
1756
977e6b9f
TH
1757/**
1758 * ata_do_simple_cmd - execute simple internal command
1759 * @dev: Device to which the command is sent
1760 * @cmd: Opcode to execute
1761 *
1762 * Execute a 'simple' command, that only consists of the opcode
1763 * 'cmd' itself, without filling any other registers
1764 *
1765 * LOCKING:
1766 * Kernel thread context (may sleep).
1767 *
1768 * RETURNS:
1769 * Zero on success, AC_ERR_* mask on failure
e58eb583 1770 */
77b08fb5 1771unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1772{
1773 struct ata_taskfile tf;
e58eb583
TH
1774
1775 ata_tf_init(dev, &tf);
1776
1777 tf.command = cmd;
1778 tf.flags |= ATA_TFLAG_DEVICE;
1779 tf.protocol = ATA_PROT_NODATA;
1780
2b789108 1781 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1782}
1783
1bc4ccff
AC
1784/**
1785 * ata_pio_need_iordy - check if iordy needed
1786 * @adev: ATA device
1787 *
1788 * Check if the current speed of the device requires IORDY. Used
1789 * by various controllers for chip configuration.
1790 */
a617c09f 1791
1bc4ccff
AC
1792unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1793{
432729f0
AC
1794 /* Controller doesn't support IORDY. Probably a pointless check
1795 as the caller should know this */
9af5c9c9 1796 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1797 return 0;
432729f0
AC
1798 /* PIO3 and higher it is mandatory */
1799 if (adev->pio_mode > XFER_PIO_2)
1800 return 1;
1801 /* We turn it on when possible */
1802 if (ata_id_has_iordy(adev->id))
1bc4ccff 1803 return 1;
432729f0
AC
1804 return 0;
1805}
2e9edbf8 1806
432729f0
AC
1807/**
1808 * ata_pio_mask_no_iordy - Return the non IORDY mask
1809 * @adev: ATA device
1810 *
1811 * Compute the highest mode possible if we are not using iordy. Return
1812 * -1 if no iordy mode is available.
1813 */
a617c09f 1814
432729f0
AC
1815static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1816{
1bc4ccff 1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1826 }
1827 }
432729f0 1828 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1829}
1830
1da177e4 1831/**
49016aca 1832 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1833 * @dev: target device
1834 * @p_class: pointer to class of the target device (may be changed)
bff04647 1835 * @flags: ATA_READID_* flags
fe635c7e 1836 * @id: buffer to read IDENTIFY data into
1da177e4 1837 *
49016aca
TH
1838 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1839 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1840 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1841 * for pre-ATA4 drives.
1da177e4 1842 *
50a99018 1843 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1844 * now we abort if we hit that case.
50a99018 1845 *
1da177e4 1846 * LOCKING:
49016aca
TH
1847 * Kernel thread context (may sleep)
1848 *
1849 * RETURNS:
1850 * 0 on success, -errno otherwise.
1da177e4 1851 */
a9beec95 1852int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1853 unsigned int flags, u16 *id)
1da177e4 1854{
9af5c9c9 1855 struct ata_port *ap = dev->link->ap;
49016aca 1856 unsigned int class = *p_class;
a0123703 1857 struct ata_taskfile tf;
49016aca
TH
1858 unsigned int err_mask = 0;
1859 const char *reason;
54936f8b 1860 int may_fallback = 1, tried_spinup = 0;
49016aca 1861 int rc;
1da177e4 1862
0dd4b21f 1863 if (ata_msg_ctl(ap))
44877b4e 1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1865
49016aca 1866 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1867 retry:
3373efd8 1868 ata_tf_init(dev, &tf);
a0123703 1869
49016aca
TH
1870 switch (class) {
1871 case ATA_DEV_ATA:
a0123703 1872 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1873 break;
1874 case ATA_DEV_ATAPI:
a0123703 1875 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1da177e4
LT
1881 }
1882
a0123703 1883 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1894
3373efd8 1895 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1896 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1897 if (err_mask) {
800b3996 1898 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1899 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1900 ap->print_id, dev->devno);
55a8e2c8
TH
1901 return -ENOENT;
1902 }
1903
54936f8b
TH
1904 /* Device or controller might have reported the wrong
1905 * device class. Give a shot at the other IDENTIFY if
1906 * the current one is aborted by the device.
1907 */
1908 if (may_fallback &&
1909 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1910 may_fallback = 0;
1911
1912 if (class == ATA_DEV_ATA)
1913 class = ATA_DEV_ATAPI;
1914 else
1915 class = ATA_DEV_ATA;
1916 goto retry;
1917 }
1918
49016aca
TH
1919 rc = -EIO;
1920 reason = "I/O error";
1da177e4
LT
1921 goto err_out;
1922 }
1923
54936f8b
TH
1924 /* Falling back doesn't make sense if ID data was read
1925 * successfully at least once.
1926 */
1927 may_fallback = 0;
1928
49016aca 1929 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1930
49016aca 1931 /* sanity check */
a4f5749b 1932 rc = -EINVAL;
6070068b 1933 reason = "device reports invalid type";
a4f5749b
TH
1934
1935 if (class == ATA_DEV_ATA) {
1936 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1937 goto err_out;
1938 } else {
1939 if (ata_id_is_ata(id))
1940 goto err_out;
49016aca
TH
1941 }
1942
169439c2
ML
1943 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1944 tried_spinup = 1;
1945 /*
1946 * Drive powered-up in standby mode, and requires a specific
1947 * SET_FEATURES spin-up subcommand before it will accept
1948 * anything other than the original IDENTIFY command.
1949 */
218f3d30 1950 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1951 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1952 rc = -EIO;
1953 reason = "SPINUP failed";
1954 goto err_out;
1955 }
1956 /*
1957 * If the drive initially returned incomplete IDENTIFY info,
1958 * we now must reissue the IDENTIFY command.
1959 */
1960 if (id[2] == 0x37c8)
1961 goto retry;
1962 }
1963
bff04647 1964 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1965 /*
1966 * The exact sequence expected by certain pre-ATA4 drives is:
1967 * SRST RESET
50a99018
AC
1968 * IDENTIFY (optional in early ATA)
1969 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1970 * anything else..
1971 * Some drives were very specific about that exact sequence.
50a99018
AC
1972 *
1973 * Note that ATA4 says lba is mandatory so the second check
1974 * shoud never trigger.
49016aca
TH
1975 */
1976 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1977 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1978 if (err_mask) {
1979 rc = -EIO;
1980 reason = "INIT_DEV_PARAMS failed";
1981 goto err_out;
1982 }
1983
1984 /* current CHS translation info (id[53-58]) might be
1985 * changed. reread the identify device info.
1986 */
bff04647 1987 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1988 goto retry;
1989 }
1990 }
1991
1992 *p_class = class;
fe635c7e 1993
49016aca
TH
1994 return 0;
1995
1996 err_out:
88574551 1997 if (ata_msg_warn(ap))
0dd4b21f 1998 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1999 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2000 return rc;
2001}
2002
3373efd8 2003static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2004{
9af5c9c9
TH
2005 struct ata_port *ap = dev->link->ap;
2006 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2007}
2008
a6e6ce8e
TH
2009static void ata_dev_config_ncq(struct ata_device *dev,
2010 char *desc, size_t desc_sz)
2011{
9af5c9c9 2012 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2013 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2014
2015 if (!ata_id_has_ncq(dev->id)) {
2016 desc[0] = '\0';
2017 return;
2018 }
75683fe7 2019 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2020 snprintf(desc, desc_sz, "NCQ (not used)");
2021 return;
2022 }
a6e6ce8e 2023 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2024 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2025 dev->flags |= ATA_DFLAG_NCQ;
2026 }
2027
2028 if (hdepth >= ddepth)
2029 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2030 else
2031 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2032}
2033
49016aca 2034/**
ffeae418 2035 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2036 * @dev: Target device to configure
2037 *
2038 * Configure @dev according to @dev->id. Generic and low-level
2039 * driver specific fixups are also applied.
49016aca
TH
2040 *
2041 * LOCKING:
ffeae418
TH
2042 * Kernel thread context (may sleep)
2043 *
2044 * RETURNS:
2045 * 0 on success, -errno otherwise
49016aca 2046 */
efdaedc4 2047int ata_dev_configure(struct ata_device *dev)
49016aca 2048{
9af5c9c9
TH
2049 struct ata_port *ap = dev->link->ap;
2050 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2051 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2052 const u16 *id = dev->id;
ff8854b2 2053 unsigned int xfer_mask;
b352e57d 2054 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2055 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2056 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2057 int rc;
49016aca 2058
0dd4b21f 2059 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2060 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2061 __FUNCTION__);
ffeae418 2062 return 0;
49016aca
TH
2063 }
2064
0dd4b21f 2065 if (ata_msg_probe(ap))
44877b4e 2066 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2067
75683fe7
TH
2068 /* set horkage */
2069 dev->horkage |= ata_dev_blacklisted(dev);
2070
6746544c
TH
2071 /* let ACPI work its magic */
2072 rc = ata_acpi_on_devcfg(dev);
2073 if (rc)
2074 return rc;
08573a86 2075
05027adc
TH
2076 /* massage HPA, do it early as it might change IDENTIFY data */
2077 rc = ata_hpa_resize(dev);
2078 if (rc)
2079 return rc;
2080
c39f5ebe 2081 /* print device capabilities */
0dd4b21f 2082 if (ata_msg_probe(ap))
88574551
TH
2083 ata_dev_printk(dev, KERN_DEBUG,
2084 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2085 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2086 __FUNCTION__,
f15a1daf
TH
2087 id[49], id[82], id[83], id[84],
2088 id[85], id[86], id[87], id[88]);
c39f5ebe 2089
208a9933 2090 /* initialize to-be-configured parameters */
ea1dd4e1 2091 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2092 dev->max_sectors = 0;
2093 dev->cdb_len = 0;
2094 dev->n_sectors = 0;
2095 dev->cylinders = 0;
2096 dev->heads = 0;
2097 dev->sectors = 0;
2098
1da177e4
LT
2099 /*
2100 * common ATA, ATAPI feature tests
2101 */
2102
ff8854b2 2103 /* find max transfer mode; for printk only */
1148c3a7 2104 xfer_mask = ata_id_xfermask(id);
1da177e4 2105
0dd4b21f
BP
2106 if (ata_msg_probe(ap))
2107 ata_dump_id(id);
1da177e4 2108
ef143d57
AL
2109 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2110 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2111 sizeof(fwrevbuf));
2112
2113 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2114 sizeof(modelbuf));
2115
1da177e4
LT
2116 /* ATA-specific feature tests */
2117 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2118 if (ata_id_is_cfa(id)) {
2119 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2120 ata_dev_printk(dev, KERN_WARNING,
2121 "supports DRM functions and may "
2122 "not be fully accessable.\n");
b352e57d 2123 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2124 } else {
2dcb407e 2125 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2126 /* Warn the user if the device has TPM extensions */
2127 if (ata_id_has_tpm(id))
2128 ata_dev_printk(dev, KERN_WARNING,
2129 "supports DRM functions and may "
2130 "not be fully accessable.\n");
2131 }
b352e57d 2132
1148c3a7 2133 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2134
3f64f565
EM
2135 if (dev->id[59] & 0x100)
2136 dev->multi_count = dev->id[59] & 0xff;
2137
1148c3a7 2138 if (ata_id_has_lba(id)) {
4c2d721a 2139 const char *lba_desc;
a6e6ce8e 2140 char ncq_desc[20];
8bf62ece 2141
4c2d721a
TH
2142 lba_desc = "LBA";
2143 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2144 if (ata_id_has_lba48(id)) {
8bf62ece 2145 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2146 lba_desc = "LBA48";
6fc49adb
TH
2147
2148 if (dev->n_sectors >= (1UL << 28) &&
2149 ata_id_has_flush_ext(id))
2150 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2151 }
8bf62ece 2152
a6e6ce8e
TH
2153 /* config NCQ */
2154 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2155
8bf62ece 2156 /* print device info to dmesg */
3f64f565
EM
2157 if (ata_msg_drv(ap) && print_info) {
2158 ata_dev_printk(dev, KERN_INFO,
2159 "%s: %s, %s, max %s\n",
2160 revbuf, modelbuf, fwrevbuf,
2161 ata_mode_string(xfer_mask));
2162 ata_dev_printk(dev, KERN_INFO,
2163 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2164 (unsigned long long)dev->n_sectors,
3f64f565
EM
2165 dev->multi_count, lba_desc, ncq_desc);
2166 }
ffeae418 2167 } else {
8bf62ece
AL
2168 /* CHS */
2169
2170 /* Default translation */
1148c3a7
TH
2171 dev->cylinders = id[1];
2172 dev->heads = id[3];
2173 dev->sectors = id[6];
8bf62ece 2174
1148c3a7 2175 if (ata_id_current_chs_valid(id)) {
8bf62ece 2176 /* Current CHS translation is valid. */
1148c3a7
TH
2177 dev->cylinders = id[54];
2178 dev->heads = id[55];
2179 dev->sectors = id[56];
8bf62ece
AL
2180 }
2181
2182 /* print device info to dmesg */
3f64f565 2183 if (ata_msg_drv(ap) && print_info) {
88574551 2184 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2185 "%s: %s, %s, max %s\n",
2186 revbuf, modelbuf, fwrevbuf,
2187 ata_mode_string(xfer_mask));
a84471fe 2188 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2189 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2190 (unsigned long long)dev->n_sectors,
2191 dev->multi_count, dev->cylinders,
2192 dev->heads, dev->sectors);
2193 }
07f6f7d0
AL
2194 }
2195
6e7846e9 2196 dev->cdb_len = 16;
1da177e4
LT
2197 }
2198
2199 /* ATAPI-specific feature tests */
2c13b7ce 2200 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2201 const char *cdb_intr_string = "";
2202 const char *atapi_an_string = "";
7d77b247 2203 u32 sntf;
08a556db 2204
1148c3a7 2205 rc = atapi_cdb_len(id);
1da177e4 2206 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2207 if (ata_msg_warn(ap))
88574551
TH
2208 ata_dev_printk(dev, KERN_WARNING,
2209 "unsupported CDB len\n");
ffeae418 2210 rc = -EINVAL;
1da177e4
LT
2211 goto err_out_nosup;
2212 }
6e7846e9 2213 dev->cdb_len = (unsigned int) rc;
1da177e4 2214
7d77b247
TH
2215 /* Enable ATAPI AN if both the host and device have
2216 * the support. If PMP is attached, SNTF is required
2217 * to enable ATAPI AN to discern between PHY status
2218 * changed notifications and ATAPI ANs.
9f45cbd3 2219 */
7d77b247
TH
2220 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2221 (!ap->nr_pmp_links ||
2222 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2223 unsigned int err_mask;
2224
9f45cbd3 2225 /* issue SET feature command to turn this on */
218f3d30
JG
2226 err_mask = ata_dev_set_feature(dev,
2227 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2228 if (err_mask)
9f45cbd3 2229 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2230 "failed to enable ATAPI AN "
2231 "(err_mask=0x%x)\n", err_mask);
2232 else {
9f45cbd3 2233 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2234 atapi_an_string = ", ATAPI AN";
2235 }
9f45cbd3
KCA
2236 }
2237
08a556db 2238 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2239 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2240 cdb_intr_string = ", CDB intr";
2241 }
312f7da2 2242
1da177e4 2243 /* print device info to dmesg */
5afc8142 2244 if (ata_msg_drv(ap) && print_info)
ef143d57 2245 ata_dev_printk(dev, KERN_INFO,
854c73a2 2246 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2247 modelbuf, fwrevbuf,
12436c30 2248 ata_mode_string(xfer_mask),
854c73a2 2249 cdb_intr_string, atapi_an_string);
1da177e4
LT
2250 }
2251
914ed354
TH
2252 /* determine max_sectors */
2253 dev->max_sectors = ATA_MAX_SECTORS;
2254 if (dev->flags & ATA_DFLAG_LBA48)
2255 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2256
ca77329f
KCA
2257 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2258 if (ata_id_has_hipm(dev->id))
2259 dev->flags |= ATA_DFLAG_HIPM;
2260 if (ata_id_has_dipm(dev->id))
2261 dev->flags |= ATA_DFLAG_DIPM;
2262 }
2263
93590859
AC
2264 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2265 /* Let the user know. We don't want to disallow opens for
2266 rescue purposes, or in case the vendor is just a blithering
2267 idiot */
2dcb407e 2268 if (print_info) {
93590859
AC
2269 ata_dev_printk(dev, KERN_WARNING,
2270"Drive reports diagnostics failure. This may indicate a drive\n");
2271 ata_dev_printk(dev, KERN_WARNING,
2272"fault or invalid emulation. Contact drive vendor for information.\n");
2273 }
2274 }
2275
4b2f3ede 2276 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2277 if (ata_dev_knobble(dev)) {
5afc8142 2278 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2279 ata_dev_printk(dev, KERN_INFO,
2280 "applying bridge limits\n");
5a529139 2281 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2282 dev->max_sectors = ATA_MAX_SECTORS;
2283 }
2284
f8d8e579 2285 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2286 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2287 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2288 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2289 }
f8d8e579 2290
75683fe7 2291 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2292 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2293 dev->max_sectors);
18d6e9d5 2294
ca77329f
KCA
2295 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2296 dev->horkage |= ATA_HORKAGE_IPM;
2297
2298 /* reset link pm_policy for this port to no pm */
2299 ap->pm_policy = MAX_PERFORMANCE;
2300 }
2301
4b2f3ede 2302 if (ap->ops->dev_config)
cd0d3bbc 2303 ap->ops->dev_config(dev);
4b2f3ede 2304
0dd4b21f
BP
2305 if (ata_msg_probe(ap))
2306 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2307 __FUNCTION__, ata_chk_status(ap));
ffeae418 2308 return 0;
1da177e4
LT
2309
2310err_out_nosup:
0dd4b21f 2311 if (ata_msg_probe(ap))
88574551
TH
2312 ata_dev_printk(dev, KERN_DEBUG,
2313 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2314 return rc;
1da177e4
LT
2315}
2316
be0d18df 2317/**
2e41e8e6 2318 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2319 * @ap: port
2320 *
2e41e8e6 2321 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2322 * detection.
2323 */
2324
2325int ata_cable_40wire(struct ata_port *ap)
2326{
2327 return ATA_CBL_PATA40;
2328}
2329
2330/**
2e41e8e6 2331 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2332 * @ap: port
2333 *
2e41e8e6 2334 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2335 * detection.
2336 */
2337
2338int ata_cable_80wire(struct ata_port *ap)
2339{
2340 return ATA_CBL_PATA80;
2341}
2342
2343/**
2344 * ata_cable_unknown - return unknown PATA cable.
2345 * @ap: port
2346 *
2347 * Helper method for drivers which have no PATA cable detection.
2348 */
2349
2350int ata_cable_unknown(struct ata_port *ap)
2351{
2352 return ATA_CBL_PATA_UNK;
2353}
2354
2355/**
2356 * ata_cable_sata - return SATA cable type
2357 * @ap: port
2358 *
2359 * Helper method for drivers which have SATA cables
2360 */
2361
2362int ata_cable_sata(struct ata_port *ap)
2363{
2364 return ATA_CBL_SATA;
2365}
2366
1da177e4
LT
2367/**
2368 * ata_bus_probe - Reset and probe ATA bus
2369 * @ap: Bus to probe
2370 *
0cba632b
JG
2371 * Master ATA bus probing function. Initiates a hardware-dependent
2372 * bus reset, then attempts to identify any devices found on
2373 * the bus.
2374 *
1da177e4 2375 * LOCKING:
0cba632b 2376 * PCI/etc. bus probe sem.
1da177e4
LT
2377 *
2378 * RETURNS:
96072e69 2379 * Zero on success, negative errno otherwise.
1da177e4
LT
2380 */
2381
80289167 2382int ata_bus_probe(struct ata_port *ap)
1da177e4 2383{
28ca5c57 2384 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2385 int tries[ATA_MAX_DEVICES];
f58229f8 2386 int rc;
e82cbdb9 2387 struct ata_device *dev;
1da177e4 2388
28ca5c57 2389 ata_port_probe(ap);
c19ba8af 2390
f58229f8
TH
2391 ata_link_for_each_dev(dev, &ap->link)
2392 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2393
2394 retry:
cdeab114
TH
2395 ata_link_for_each_dev(dev, &ap->link) {
2396 /* If we issue an SRST then an ATA drive (not ATAPI)
2397 * may change configuration and be in PIO0 timing. If
2398 * we do a hard reset (or are coming from power on)
2399 * this is true for ATA or ATAPI. Until we've set a
2400 * suitable controller mode we should not touch the
2401 * bus as we may be talking too fast.
2402 */
2403 dev->pio_mode = XFER_PIO_0;
2404
2405 /* If the controller has a pio mode setup function
2406 * then use it to set the chipset to rights. Don't
2407 * touch the DMA setup as that will be dealt with when
2408 * configuring devices.
2409 */
2410 if (ap->ops->set_piomode)
2411 ap->ops->set_piomode(ap, dev);
2412 }
2413
2044470c 2414 /* reset and determine device classes */
52783c5d 2415 ap->ops->phy_reset(ap);
2061a47a 2416
f58229f8 2417 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2418 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2419 dev->class != ATA_DEV_UNKNOWN)
2420 classes[dev->devno] = dev->class;
2421 else
2422 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2423
52783c5d 2424 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2425 }
1da177e4 2426
52783c5d 2427 ata_port_probe(ap);
2044470c 2428
f31f0cc2
JG
2429 /* read IDENTIFY page and configure devices. We have to do the identify
2430 specific sequence bass-ackwards so that PDIAG- is released by
2431 the slave device */
2432
f58229f8
TH
2433 ata_link_for_each_dev(dev, &ap->link) {
2434 if (tries[dev->devno])
2435 dev->class = classes[dev->devno];
ffeae418 2436
14d2bac1 2437 if (!ata_dev_enabled(dev))
ffeae418 2438 continue;
ffeae418 2439
bff04647
TH
2440 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2441 dev->id);
14d2bac1
TH
2442 if (rc)
2443 goto fail;
f31f0cc2
JG
2444 }
2445
be0d18df
AC
2446 /* Now ask for the cable type as PDIAG- should have been released */
2447 if (ap->ops->cable_detect)
2448 ap->cbl = ap->ops->cable_detect(ap);
2449
614fe29b
AC
2450 /* We may have SATA bridge glue hiding here irrespective of the
2451 reported cable types and sensed types */
2452 ata_link_for_each_dev(dev, &ap->link) {
2453 if (!ata_dev_enabled(dev))
2454 continue;
2455 /* SATA drives indicate we have a bridge. We don't know which
2456 end of the link the bridge is which is a problem */
2457 if (ata_id_is_sata(dev->id))
2458 ap->cbl = ATA_CBL_SATA;
2459 }
2460
f31f0cc2
JG
2461 /* After the identify sequence we can now set up the devices. We do
2462 this in the normal order so that the user doesn't get confused */
2463
f58229f8 2464 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2465 if (!ata_dev_enabled(dev))
2466 continue;
14d2bac1 2467
9af5c9c9 2468 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2469 rc = ata_dev_configure(dev);
9af5c9c9 2470 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2471 if (rc)
2472 goto fail;
1da177e4
LT
2473 }
2474
e82cbdb9 2475 /* configure transfer mode */
0260731f 2476 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2477 if (rc)
51713d35 2478 goto fail;
1da177e4 2479
f58229f8
TH
2480 ata_link_for_each_dev(dev, &ap->link)
2481 if (ata_dev_enabled(dev))
e82cbdb9 2482 return 0;
1da177e4 2483
e82cbdb9
TH
2484 /* no device present, disable port */
2485 ata_port_disable(ap);
96072e69 2486 return -ENODEV;
14d2bac1
TH
2487
2488 fail:
4ae72a1e
TH
2489 tries[dev->devno]--;
2490
14d2bac1
TH
2491 switch (rc) {
2492 case -EINVAL:
4ae72a1e 2493 /* eeek, something went very wrong, give up */
14d2bac1
TH
2494 tries[dev->devno] = 0;
2495 break;
4ae72a1e
TH
2496
2497 case -ENODEV:
2498 /* give it just one more chance */
2499 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2500 case -EIO:
4ae72a1e
TH
2501 if (tries[dev->devno] == 1) {
2502 /* This is the last chance, better to slow
2503 * down than lose it.
2504 */
936fd732 2505 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2506 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2507 }
14d2bac1
TH
2508 }
2509
4ae72a1e 2510 if (!tries[dev->devno])
3373efd8 2511 ata_dev_disable(dev);
ec573755 2512
14d2bac1 2513 goto retry;
1da177e4
LT
2514}
2515
2516/**
0cba632b
JG
2517 * ata_port_probe - Mark port as enabled
2518 * @ap: Port for which we indicate enablement
1da177e4 2519 *
0cba632b
JG
2520 * Modify @ap data structure such that the system
2521 * thinks that the entire port is enabled.
2522 *
cca3974e 2523 * LOCKING: host lock, or some other form of
0cba632b 2524 * serialization.
1da177e4
LT
2525 */
2526
2527void ata_port_probe(struct ata_port *ap)
2528{
198e0fed 2529 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2530}
2531
3be680b7
TH
2532/**
2533 * sata_print_link_status - Print SATA link status
936fd732 2534 * @link: SATA link to printk link status about
3be680b7
TH
2535 *
2536 * This function prints link speed and status of a SATA link.
2537 *
2538 * LOCKING:
2539 * None.
2540 */
936fd732 2541void sata_print_link_status(struct ata_link *link)
3be680b7 2542{
6d5f9732 2543 u32 sstatus, scontrol, tmp;
3be680b7 2544
936fd732 2545 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2546 return;
936fd732 2547 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2548
936fd732 2549 if (ata_link_online(link)) {
3be680b7 2550 tmp = (sstatus >> 4) & 0xf;
936fd732 2551 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2552 "SATA link up %s (SStatus %X SControl %X)\n",
2553 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2554 } else {
936fd732 2555 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2556 "SATA link down (SStatus %X SControl %X)\n",
2557 sstatus, scontrol);
3be680b7
TH
2558 }
2559}
2560
ebdfca6e
AC
2561/**
2562 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2563 * @adev: device
2564 *
2565 * Obtain the other device on the same cable, or if none is
2566 * present NULL is returned
2567 */
2e9edbf8 2568
3373efd8 2569struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2570{
9af5c9c9
TH
2571 struct ata_link *link = adev->link;
2572 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2573 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2574 return NULL;
2575 return pair;
2576}
2577
1da177e4 2578/**
780a87f7
JG
2579 * ata_port_disable - Disable port.
2580 * @ap: Port to be disabled.
1da177e4 2581 *
780a87f7
JG
2582 * Modify @ap data structure such that the system
2583 * thinks that the entire port is disabled, and should
2584 * never attempt to probe or communicate with devices
2585 * on this port.
2586 *
cca3974e 2587 * LOCKING: host lock, or some other form of
780a87f7 2588 * serialization.
1da177e4
LT
2589 */
2590
2591void ata_port_disable(struct ata_port *ap)
2592{
9af5c9c9
TH
2593 ap->link.device[0].class = ATA_DEV_NONE;
2594 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2595 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2596}
2597
1c3fae4d 2598/**
3c567b7d 2599 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2600 * @link: Link to adjust SATA spd limit for
1c3fae4d 2601 *
936fd732 2602 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2603 * function only adjusts the limit. The change must be applied
3c567b7d 2604 * using sata_set_spd().
1c3fae4d
TH
2605 *
2606 * LOCKING:
2607 * Inherited from caller.
2608 *
2609 * RETURNS:
2610 * 0 on success, negative errno on failure
2611 */
936fd732 2612int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2613{
81952c54
TH
2614 u32 sstatus, spd, mask;
2615 int rc, highbit;
1c3fae4d 2616
936fd732 2617 if (!sata_scr_valid(link))
008a7896
TH
2618 return -EOPNOTSUPP;
2619
2620 /* If SCR can be read, use it to determine the current SPD.
936fd732 2621 * If not, use cached value in link->sata_spd.
008a7896 2622 */
936fd732 2623 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2624 if (rc == 0)
2625 spd = (sstatus >> 4) & 0xf;
2626 else
936fd732 2627 spd = link->sata_spd;
1c3fae4d 2628
936fd732 2629 mask = link->sata_spd_limit;
1c3fae4d
TH
2630 if (mask <= 1)
2631 return -EINVAL;
008a7896
TH
2632
2633 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2634 highbit = fls(mask) - 1;
2635 mask &= ~(1 << highbit);
2636
008a7896
TH
2637 /* Mask off all speeds higher than or equal to the current
2638 * one. Force 1.5Gbps if current SPD is not available.
2639 */
2640 if (spd > 1)
2641 mask &= (1 << (spd - 1)) - 1;
2642 else
2643 mask &= 1;
2644
2645 /* were we already at the bottom? */
1c3fae4d
TH
2646 if (!mask)
2647 return -EINVAL;
2648
936fd732 2649 link->sata_spd_limit = mask;
1c3fae4d 2650
936fd732 2651 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2652 sata_spd_string(fls(mask)));
1c3fae4d
TH
2653
2654 return 0;
2655}
2656
936fd732 2657static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2658{
5270222f
TH
2659 struct ata_link *host_link = &link->ap->link;
2660 u32 limit, target, spd;
1c3fae4d 2661
5270222f
TH
2662 limit = link->sata_spd_limit;
2663
2664 /* Don't configure downstream link faster than upstream link.
2665 * It doesn't speed up anything and some PMPs choke on such
2666 * configuration.
2667 */
2668 if (!ata_is_host_link(link) && host_link->sata_spd)
2669 limit &= (1 << host_link->sata_spd) - 1;
2670
2671 if (limit == UINT_MAX)
2672 target = 0;
1c3fae4d 2673 else
5270222f 2674 target = fls(limit);
1c3fae4d
TH
2675
2676 spd = (*scontrol >> 4) & 0xf;
5270222f 2677 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2678
5270222f 2679 return spd != target;
1c3fae4d
TH
2680}
2681
2682/**
3c567b7d 2683 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2684 * @link: Link in question
1c3fae4d
TH
2685 *
2686 * Test whether the spd limit in SControl matches
936fd732 2687 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2688 * whether hardreset is necessary to apply SATA spd
2689 * configuration.
2690 *
2691 * LOCKING:
2692 * Inherited from caller.
2693 *
2694 * RETURNS:
2695 * 1 if SATA spd configuration is needed, 0 otherwise.
2696 */
936fd732 2697int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2698{
2699 u32 scontrol;
2700
936fd732 2701 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2702 return 1;
1c3fae4d 2703
936fd732 2704 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2705}
2706
2707/**
3c567b7d 2708 * sata_set_spd - set SATA spd according to spd limit
936fd732 2709 * @link: Link to set SATA spd for
1c3fae4d 2710 *
936fd732 2711 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2712 *
2713 * LOCKING:
2714 * Inherited from caller.
2715 *
2716 * RETURNS:
2717 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2718 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2719 */
936fd732 2720int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2721{
2722 u32 scontrol;
81952c54 2723 int rc;
1c3fae4d 2724
936fd732 2725 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2726 return rc;
1c3fae4d 2727
936fd732 2728 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2729 return 0;
2730
936fd732 2731 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2732 return rc;
2733
1c3fae4d
TH
2734 return 1;
2735}
2736
452503f9
AC
2737/*
2738 * This mode timing computation functionality is ported over from
2739 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2740 */
2741/*
b352e57d 2742 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2743 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2744 * for UDMA6, which is currently supported only by Maxtor drives.
2745 *
2746 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2747 */
2748
2749static const struct ata_timing ata_timing[] = {
70cd071e
TH
2750/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2751 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2752 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2753 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2754 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2755 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2756 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2757 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
452503f9 2758
70cd071e
TH
2759 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2760 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2761 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
452503f9 2762
70cd071e
TH
2763 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2764 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2765 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
b352e57d 2766 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
70cd071e 2767 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
452503f9
AC
2768
2769/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
70cd071e
TH
2770 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2771 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2772 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2773 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2774 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2775 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2776 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2777
2778 { 0xFF }
2779};
2780
2dcb407e
JG
2781#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2782#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2783
2784static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2785{
2786 q->setup = EZ(t->setup * 1000, T);
2787 q->act8b = EZ(t->act8b * 1000, T);
2788 q->rec8b = EZ(t->rec8b * 1000, T);
2789 q->cyc8b = EZ(t->cyc8b * 1000, T);
2790 q->active = EZ(t->active * 1000, T);
2791 q->recover = EZ(t->recover * 1000, T);
2792 q->cycle = EZ(t->cycle * 1000, T);
2793 q->udma = EZ(t->udma * 1000, UT);
2794}
2795
2796void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2797 struct ata_timing *m, unsigned int what)
2798{
2799 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2800 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2801 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2802 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2803 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2804 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2805 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2806 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2807}
2808
6357357c 2809const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2810{
70cd071e
TH
2811 const struct ata_timing *t = ata_timing;
2812
2813 while (xfer_mode > t->mode)
2814 t++;
452503f9 2815
70cd071e
TH
2816 if (xfer_mode == t->mode)
2817 return t;
2818 return NULL;
452503f9
AC
2819}
2820
2821int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2822 struct ata_timing *t, int T, int UT)
2823{
2824 const struct ata_timing *s;
2825 struct ata_timing p;
2826
2827 /*
2e9edbf8 2828 * Find the mode.
75b1f2f8 2829 */
452503f9
AC
2830
2831 if (!(s = ata_timing_find_mode(speed)))
2832 return -EINVAL;
2833
75b1f2f8
AL
2834 memcpy(t, s, sizeof(*s));
2835
452503f9
AC
2836 /*
2837 * If the drive is an EIDE drive, it can tell us it needs extended
2838 * PIO/MW_DMA cycle timing.
2839 */
2840
2841 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2842 memset(&p, 0, sizeof(p));
2dcb407e 2843 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2844 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2845 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2846 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2847 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2848 }
2849 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2850 }
2851
2852 /*
2853 * Convert the timing to bus clock counts.
2854 */
2855
75b1f2f8 2856 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2857
2858 /*
c893a3ae
RD
2859 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2860 * S.M.A.R.T * and some other commands. We have to ensure that the
2861 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2862 */
2863
fd3367af 2864 if (speed > XFER_PIO_6) {
452503f9
AC
2865 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2866 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2867 }
2868
2869 /*
c893a3ae 2870 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2871 */
2872
2873 if (t->act8b + t->rec8b < t->cyc8b) {
2874 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2875 t->rec8b = t->cyc8b - t->act8b;
2876 }
2877
2878 if (t->active + t->recover < t->cycle) {
2879 t->active += (t->cycle - (t->active + t->recover)) / 2;
2880 t->recover = t->cycle - t->active;
2881 }
a617c09f 2882
4f701d1e
AC
2883 /* In a few cases quantisation may produce enough errors to
2884 leave t->cycle too low for the sum of active and recovery
2885 if so we must correct this */
2886 if (t->active + t->recover > t->cycle)
2887 t->cycle = t->active + t->recover;
452503f9
AC
2888
2889 return 0;
2890}
2891
cf176e1a
TH
2892/**
2893 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2894 * @dev: Device to adjust xfer masks
458337db 2895 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2896 *
2897 * Adjust xfer masks of @dev downward. Note that this function
2898 * does not apply the change. Invoking ata_set_mode() afterwards
2899 * will apply the limit.
2900 *
2901 * LOCKING:
2902 * Inherited from caller.
2903 *
2904 * RETURNS:
2905 * 0 on success, negative errno on failure
2906 */
458337db 2907int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2908{
458337db
TH
2909 char buf[32];
2910 unsigned int orig_mask, xfer_mask;
2911 unsigned int pio_mask, mwdma_mask, udma_mask;
2912 int quiet, highbit;
cf176e1a 2913
458337db
TH
2914 quiet = !!(sel & ATA_DNXFER_QUIET);
2915 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2916
458337db
TH
2917 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2918 dev->mwdma_mask,
2919 dev->udma_mask);
2920 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2921
458337db
TH
2922 switch (sel) {
2923 case ATA_DNXFER_PIO:
2924 highbit = fls(pio_mask) - 1;
2925 pio_mask &= ~(1 << highbit);
2926 break;
2927
2928 case ATA_DNXFER_DMA:
2929 if (udma_mask) {
2930 highbit = fls(udma_mask) - 1;
2931 udma_mask &= ~(1 << highbit);
2932 if (!udma_mask)
2933 return -ENOENT;
2934 } else if (mwdma_mask) {
2935 highbit = fls(mwdma_mask) - 1;
2936 mwdma_mask &= ~(1 << highbit);
2937 if (!mwdma_mask)
2938 return -ENOENT;
2939 }
2940 break;
2941
2942 case ATA_DNXFER_40C:
2943 udma_mask &= ATA_UDMA_MASK_40C;
2944 break;
2945
2946 case ATA_DNXFER_FORCE_PIO0:
2947 pio_mask &= 1;
2948 case ATA_DNXFER_FORCE_PIO:
2949 mwdma_mask = 0;
2950 udma_mask = 0;
2951 break;
2952
458337db
TH
2953 default:
2954 BUG();
2955 }
2956
2957 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2958
2959 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2960 return -ENOENT;
2961
2962 if (!quiet) {
2963 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2964 snprintf(buf, sizeof(buf), "%s:%s",
2965 ata_mode_string(xfer_mask),
2966 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2967 else
2968 snprintf(buf, sizeof(buf), "%s",
2969 ata_mode_string(xfer_mask));
2970
2971 ata_dev_printk(dev, KERN_WARNING,
2972 "limiting speed to %s\n", buf);
2973 }
cf176e1a
TH
2974
2975 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2976 &dev->udma_mask);
2977
cf176e1a 2978 return 0;
cf176e1a
TH
2979}
2980
3373efd8 2981static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2982{
9af5c9c9 2983 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2984 unsigned int err_mask;
2985 int rc;
1da177e4 2986
e8384607 2987 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2988 if (dev->xfer_shift == ATA_SHIFT_PIO)
2989 dev->flags |= ATA_DFLAG_PIO;
2990
3373efd8 2991 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 2992
11750a40
AC
2993 /* Old CFA may refuse this command, which is just fine */
2994 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
2995 err_mask &= ~AC_ERR_DEV;
2996
0bc2a79a
AC
2997 /* Some very old devices and some bad newer ones fail any kind of
2998 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2999 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3000 dev->pio_mode <= XFER_PIO_2)
3001 err_mask &= ~AC_ERR_DEV;
2dcb407e 3002
3acaf94b
AC
3003 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3004 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3005 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3006 dev->dma_mode == XFER_MW_DMA_0 &&
3007 (dev->id[63] >> 8) & 1)
3008 err_mask &= ~AC_ERR_DEV;
3009
83206a29 3010 if (err_mask) {
f15a1daf
TH
3011 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3012 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3013 return -EIO;
3014 }
1da177e4 3015
baa1e78a 3016 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3017 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3018 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3019 if (rc)
83206a29 3020 return rc;
48a8a14f 3021
23e71c3d
TH
3022 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3023 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3024
f15a1daf
TH
3025 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3026 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3027 return 0;
1da177e4
LT
3028}
3029
1da177e4 3030/**
04351821 3031 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3032 * @link: link on which timings will be programmed
e82cbdb9 3033 * @r_failed_dev: out paramter for failed device
1da177e4 3034 *
04351821
AC
3035 * Standard implementation of the function used to tune and set
3036 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3037 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3038 * returned in @r_failed_dev.
780a87f7 3039 *
1da177e4 3040 * LOCKING:
0cba632b 3041 * PCI/etc. bus probe sem.
e82cbdb9
TH
3042 *
3043 * RETURNS:
3044 * 0 on success, negative errno otherwise
1da177e4 3045 */
04351821 3046
0260731f 3047int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3048{
0260731f 3049 struct ata_port *ap = link->ap;
e8e0619f 3050 struct ata_device *dev;
f58229f8 3051 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3052
a6d5a51c 3053 /* step 1: calculate xfer_mask */
f58229f8 3054 ata_link_for_each_dev(dev, link) {
acf356b1 3055 unsigned int pio_mask, dma_mask;
b3a70601 3056 unsigned int mode_mask;
a6d5a51c 3057
e1211e3f 3058 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3059 continue;
3060
b3a70601
AC
3061 mode_mask = ATA_DMA_MASK_ATA;
3062 if (dev->class == ATA_DEV_ATAPI)
3063 mode_mask = ATA_DMA_MASK_ATAPI;
3064 else if (ata_id_is_cfa(dev->id))
3065 mode_mask = ATA_DMA_MASK_CFA;
3066
3373efd8 3067 ata_dev_xfermask(dev);
1da177e4 3068
acf356b1
TH
3069 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3070 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3071
3072 if (libata_dma_mask & mode_mask)
3073 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3074 else
3075 dma_mask = 0;
3076
acf356b1
TH
3077 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3078 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3079
4f65977d 3080 found = 1;
70cd071e 3081 if (dev->dma_mode != 0xff)
5444a6f4 3082 used_dma = 1;
a6d5a51c 3083 }
4f65977d 3084 if (!found)
e82cbdb9 3085 goto out;
a6d5a51c
TH
3086
3087 /* step 2: always set host PIO timings */
f58229f8 3088 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3089 if (!ata_dev_enabled(dev))
3090 continue;
3091
70cd071e 3092 if (dev->pio_mode == 0xff) {
f15a1daf 3093 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3094 rc = -EINVAL;
e82cbdb9 3095 goto out;
e8e0619f
TH
3096 }
3097
3098 dev->xfer_mode = dev->pio_mode;
3099 dev->xfer_shift = ATA_SHIFT_PIO;
3100 if (ap->ops->set_piomode)
3101 ap->ops->set_piomode(ap, dev);
3102 }
1da177e4 3103
a6d5a51c 3104 /* step 3: set host DMA timings */
f58229f8 3105 ata_link_for_each_dev(dev, link) {
70cd071e 3106 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
e8e0619f
TH
3107 continue;
3108
3109 dev->xfer_mode = dev->dma_mode;
3110 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3111 if (ap->ops->set_dmamode)
3112 ap->ops->set_dmamode(ap, dev);
3113 }
1da177e4
LT
3114
3115 /* step 4: update devices' xfer mode */
f58229f8 3116 ata_link_for_each_dev(dev, link) {
18d90deb 3117 /* don't update suspended devices' xfer mode */
9666f400 3118 if (!ata_dev_enabled(dev))
83206a29
TH
3119 continue;
3120
3373efd8 3121 rc = ata_dev_set_mode(dev);
5bbc53f4 3122 if (rc)
e82cbdb9 3123 goto out;
83206a29 3124 }
1da177e4 3125
e8e0619f
TH
3126 /* Record simplex status. If we selected DMA then the other
3127 * host channels are not permitted to do so.
5444a6f4 3128 */
cca3974e 3129 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3130 ap->host->simplex_claimed = ap;
5444a6f4 3131
e82cbdb9
TH
3132 out:
3133 if (rc)
3134 *r_failed_dev = dev;
3135 return rc;
1da177e4
LT
3136}
3137
1fdffbce
JG
3138/**
3139 * ata_tf_to_host - issue ATA taskfile to host controller
3140 * @ap: port to which command is being issued
3141 * @tf: ATA taskfile register set
3142 *
3143 * Issues ATA taskfile register set to ATA host controller,
3144 * with proper synchronization with interrupt handler and
3145 * other threads.
3146 *
3147 * LOCKING:
cca3974e 3148 * spin_lock_irqsave(host lock)
1fdffbce
JG
3149 */
3150
3151static inline void ata_tf_to_host(struct ata_port *ap,
3152 const struct ata_taskfile *tf)
3153{
3154 ap->ops->tf_load(ap, tf);
3155 ap->ops->exec_command(ap, tf);
3156}
3157
1da177e4
LT
3158/**
3159 * ata_busy_sleep - sleep until BSY clears, or timeout
3160 * @ap: port containing status register to be polled
3161 * @tmout_pat: impatience timeout
3162 * @tmout: overall timeout
3163 *
780a87f7
JG
3164 * Sleep until ATA Status register bit BSY clears,
3165 * or a timeout occurs.
3166 *
d1adc1bb
TH
3167 * LOCKING:
3168 * Kernel thread context (may sleep).
3169 *
3170 * RETURNS:
3171 * 0 on success, -errno otherwise.
1da177e4 3172 */
d1adc1bb
TH
3173int ata_busy_sleep(struct ata_port *ap,
3174 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3175{
3176 unsigned long timer_start, timeout;
3177 u8 status;
3178
3179 status = ata_busy_wait(ap, ATA_BUSY, 300);
3180 timer_start = jiffies;
3181 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3182 while (status != 0xff && (status & ATA_BUSY) &&
3183 time_before(jiffies, timeout)) {
1da177e4
LT
3184 msleep(50);
3185 status = ata_busy_wait(ap, ATA_BUSY, 3);
3186 }
3187
d1adc1bb 3188 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3189 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3190 "port is slow to respond, please be patient "
3191 "(Status 0x%x)\n", status);
1da177e4
LT
3192
3193 timeout = timer_start + tmout;
d1adc1bb
TH
3194 while (status != 0xff && (status & ATA_BUSY) &&
3195 time_before(jiffies, timeout)) {
1da177e4
LT
3196 msleep(50);
3197 status = ata_chk_status(ap);
3198 }
3199
d1adc1bb
TH
3200 if (status == 0xff)
3201 return -ENODEV;
3202
1da177e4 3203 if (status & ATA_BUSY) {
f15a1daf 3204 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3205 "(%lu secs, Status 0x%x)\n",
3206 tmout / HZ, status);
d1adc1bb 3207 return -EBUSY;
1da177e4
LT
3208 }
3209
3210 return 0;
3211}
3212
88ff6eaf
TH
3213/**
3214 * ata_wait_after_reset - wait before checking status after reset
3215 * @ap: port containing status register to be polled
3216 * @deadline: deadline jiffies for the operation
3217 *
3218 * After reset, we need to pause a while before reading status.
3219 * Also, certain combination of controller and device report 0xff
3220 * for some duration (e.g. until SATA PHY is up and running)
3221 * which is interpreted as empty port in ATA world. This
3222 * function also waits for such devices to get out of 0xff
3223 * status.
3224 *
3225 * LOCKING:
3226 * Kernel thread context (may sleep).
3227 */
3228void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3229{
3230 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3231
3232 if (time_before(until, deadline))
3233 deadline = until;
3234
3235 /* Spec mandates ">= 2ms" before checking status. We wait
3236 * 150ms, because that was the magic delay used for ATAPI
3237 * devices in Hale Landis's ATADRVR, for the period of time
3238 * between when the ATA command register is written, and then
3239 * status is checked. Because waiting for "a while" before
3240 * checking status is fine, post SRST, we perform this magic
3241 * delay here as well.
3242 *
3243 * Old drivers/ide uses the 2mS rule and then waits for ready.
3244 */
3245 msleep(150);
3246
3247 /* Wait for 0xff to clear. Some SATA devices take a long time
3248 * to clear 0xff after reset. For example, HHD424020F7SV00
3249 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3250 * than that.
1974e201
TH
3251 *
3252 * Note that some PATA controllers (pata_ali) explode if
3253 * status register is read more than once when there's no
3254 * device attached.
88ff6eaf 3255 */
1974e201
TH
3256 if (ap->flags & ATA_FLAG_SATA) {
3257 while (1) {
3258 u8 status = ata_chk_status(ap);
88ff6eaf 3259
1974e201
TH
3260 if (status != 0xff || time_after(jiffies, deadline))
3261 return;
88ff6eaf 3262
1974e201
TH
3263 msleep(50);
3264 }
88ff6eaf
TH
3265 }
3266}
3267
d4b2bab4
TH
3268/**
3269 * ata_wait_ready - sleep until BSY clears, or timeout
3270 * @ap: port containing status register to be polled
3271 * @deadline: deadline jiffies for the operation
3272 *
3273 * Sleep until ATA Status register bit BSY clears, or timeout
3274 * occurs.
3275 *
3276 * LOCKING:
3277 * Kernel thread context (may sleep).
3278 *
3279 * RETURNS:
3280 * 0 on success, -errno otherwise.
3281 */
3282int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3283{
3284 unsigned long start = jiffies;
3285 int warned = 0;
3286
3287 while (1) {
3288 u8 status = ata_chk_status(ap);
3289 unsigned long now = jiffies;
3290
3291 if (!(status & ATA_BUSY))
3292 return 0;
936fd732 3293 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3294 return -ENODEV;
3295 if (time_after(now, deadline))
3296 return -EBUSY;
3297
3298 if (!warned && time_after(now, start + 5 * HZ) &&
3299 (deadline - now > 3 * HZ)) {
3300 ata_port_printk(ap, KERN_WARNING,
3301 "port is slow to respond, please be patient "
3302 "(Status 0x%x)\n", status);
3303 warned = 1;
3304 }
3305
3306 msleep(50);
3307 }
3308}
3309
3310static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3311 unsigned long deadline)
1da177e4
LT
3312{
3313 struct ata_ioports *ioaddr = &ap->ioaddr;
3314 unsigned int dev0 = devmask & (1 << 0);
3315 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3316 int rc, ret = 0;
1da177e4
LT
3317
3318 /* if device 0 was found in ata_devchk, wait for its
3319 * BSY bit to clear
3320 */
d4b2bab4
TH
3321 if (dev0) {
3322 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3323 if (rc) {
3324 if (rc != -ENODEV)
3325 return rc;
3326 ret = rc;
3327 }
d4b2bab4 3328 }
1da177e4 3329
e141d999
TH
3330 /* if device 1 was found in ata_devchk, wait for register
3331 * access briefly, then wait for BSY to clear.
1da177e4 3332 */
e141d999
TH
3333 if (dev1) {
3334 int i;
1da177e4
LT
3335
3336 ap->ops->dev_select(ap, 1);
e141d999
TH
3337
3338 /* Wait for register access. Some ATAPI devices fail
3339 * to set nsect/lbal after reset, so don't waste too
3340 * much time on it. We're gonna wait for !BSY anyway.
3341 */
3342 for (i = 0; i < 2; i++) {
3343 u8 nsect, lbal;
3344
3345 nsect = ioread8(ioaddr->nsect_addr);
3346 lbal = ioread8(ioaddr->lbal_addr);
3347 if ((nsect == 1) && (lbal == 1))
3348 break;
3349 msleep(50); /* give drive a breather */
3350 }
3351
d4b2bab4 3352 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3353 if (rc) {
3354 if (rc != -ENODEV)
3355 return rc;
3356 ret = rc;
3357 }
d4b2bab4 3358 }
1da177e4
LT
3359
3360 /* is all this really necessary? */
3361 ap->ops->dev_select(ap, 0);
3362 if (dev1)
3363 ap->ops->dev_select(ap, 1);
3364 if (dev0)
3365 ap->ops->dev_select(ap, 0);
d4b2bab4 3366
9b89391c 3367 return ret;
1da177e4
LT
3368}
3369
d4b2bab4
TH
3370static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3371 unsigned long deadline)
1da177e4
LT
3372{
3373 struct ata_ioports *ioaddr = &ap->ioaddr;
3374
44877b4e 3375 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3376
3377 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3378 iowrite8(ap->ctl, ioaddr->ctl_addr);
3379 udelay(20); /* FIXME: flush */
3380 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3381 udelay(20); /* FIXME: flush */
3382 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3383
88ff6eaf
TH
3384 /* wait a while before checking status */
3385 ata_wait_after_reset(ap, deadline);
1da177e4 3386
2e9edbf8 3387 /* Before we perform post reset processing we want to see if
298a41ca
TH
3388 * the bus shows 0xFF because the odd clown forgets the D7
3389 * pulldown resistor.
3390 */
150981b0 3391 if (ata_chk_status(ap) == 0xFF)
9b89391c 3392 return -ENODEV;
09c7ad79 3393
d4b2bab4 3394 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3395}
3396
3397/**
3398 * ata_bus_reset - reset host port and associated ATA channel
3399 * @ap: port to reset
3400 *
3401 * This is typically the first time we actually start issuing
3402 * commands to the ATA channel. We wait for BSY to clear, then
3403 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3404 * result. Determine what devices, if any, are on the channel
3405 * by looking at the device 0/1 error register. Look at the signature
3406 * stored in each device's taskfile registers, to determine if
3407 * the device is ATA or ATAPI.
3408 *
3409 * LOCKING:
0cba632b 3410 * PCI/etc. bus probe sem.
cca3974e 3411 * Obtains host lock.
1da177e4
LT
3412 *
3413 * SIDE EFFECTS:
198e0fed 3414 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3415 */
3416
3417void ata_bus_reset(struct ata_port *ap)
3418{
9af5c9c9 3419 struct ata_device *device = ap->link.device;
1da177e4
LT
3420 struct ata_ioports *ioaddr = &ap->ioaddr;
3421 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3422 u8 err;
aec5c3c1 3423 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3424 int rc;
1da177e4 3425
44877b4e 3426 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3427
3428 /* determine if device 0/1 are present */
3429 if (ap->flags & ATA_FLAG_SATA_RESET)
3430 dev0 = 1;
3431 else {
3432 dev0 = ata_devchk(ap, 0);
3433 if (slave_possible)
3434 dev1 = ata_devchk(ap, 1);
3435 }
3436
3437 if (dev0)
3438 devmask |= (1 << 0);
3439 if (dev1)
3440 devmask |= (1 << 1);
3441
3442 /* select device 0 again */
3443 ap->ops->dev_select(ap, 0);
3444
3445 /* issue bus reset */
9b89391c
TH
3446 if (ap->flags & ATA_FLAG_SRST) {
3447 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3448 if (rc && rc != -ENODEV)
aec5c3c1 3449 goto err_out;
9b89391c 3450 }
1da177e4
LT
3451
3452 /*
3453 * determine by signature whether we have ATA or ATAPI devices
3454 */
3f19859e 3455 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3456 if ((slave_possible) && (err != 0x81))
3f19859e 3457 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3458
1da177e4 3459 /* is double-select really necessary? */
9af5c9c9 3460 if (device[1].class != ATA_DEV_NONE)
1da177e4 3461 ap->ops->dev_select(ap, 1);
9af5c9c9 3462 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3463 ap->ops->dev_select(ap, 0);
3464
3465 /* if no devices were detected, disable this port */
9af5c9c9
TH
3466 if ((device[0].class == ATA_DEV_NONE) &&
3467 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3468 goto err_out;
3469
3470 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3471 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3472 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3473 }
3474
3475 DPRINTK("EXIT\n");
3476 return;
3477
3478err_out:
f15a1daf 3479 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3480 ata_port_disable(ap);
1da177e4
LT
3481
3482 DPRINTK("EXIT\n");
3483}
3484
d7bb4cc7 3485/**
936fd732
TH
3486 * sata_link_debounce - debounce SATA phy status
3487 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3488 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3489 * @deadline: deadline jiffies for the operation
d7bb4cc7 3490 *
936fd732 3491* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3492 * holding the same value where DET is not 1 for @duration polled
3493 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3494 * beginning of the stable state. Because DET gets stuck at 1 on
3495 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3496 * until timeout then returns 0 if DET is stable at 1.
3497 *
d4b2bab4
TH
3498 * @timeout is further limited by @deadline. The sooner of the
3499 * two is used.
3500 *
d7bb4cc7
TH
3501 * LOCKING:
3502 * Kernel thread context (may sleep)
3503 *
3504 * RETURNS:
3505 * 0 on success, -errno on failure.
3506 */
936fd732
TH
3507int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3508 unsigned long deadline)
7a7921e8 3509{
d7bb4cc7 3510 unsigned long interval_msec = params[0];
d4b2bab4
TH
3511 unsigned long duration = msecs_to_jiffies(params[1]);
3512 unsigned long last_jiffies, t;
d7bb4cc7
TH
3513 u32 last, cur;
3514 int rc;
3515
d4b2bab4
TH
3516 t = jiffies + msecs_to_jiffies(params[2]);
3517 if (time_before(t, deadline))
3518 deadline = t;
3519
936fd732 3520 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3521 return rc;
3522 cur &= 0xf;
3523
3524 last = cur;
3525 last_jiffies = jiffies;
3526
3527 while (1) {
3528 msleep(interval_msec);
936fd732 3529 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3530 return rc;
3531 cur &= 0xf;
3532
3533 /* DET stable? */
3534 if (cur == last) {
d4b2bab4 3535 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3536 continue;
3537 if (time_after(jiffies, last_jiffies + duration))
3538 return 0;
3539 continue;
3540 }
3541
3542 /* unstable, start over */
3543 last = cur;
3544 last_jiffies = jiffies;
3545
f1545154
TH
3546 /* Check deadline. If debouncing failed, return
3547 * -EPIPE to tell upper layer to lower link speed.
3548 */
d4b2bab4 3549 if (time_after(jiffies, deadline))
f1545154 3550 return -EPIPE;
d7bb4cc7
TH
3551 }
3552}
3553
3554/**
936fd732
TH
3555 * sata_link_resume - resume SATA link
3556 * @link: ATA link to resume SATA
d7bb4cc7 3557 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3558 * @deadline: deadline jiffies for the operation
d7bb4cc7 3559 *
936fd732 3560 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3561 *
3562 * LOCKING:
3563 * Kernel thread context (may sleep)
3564 *
3565 * RETURNS:
3566 * 0 on success, -errno on failure.
3567 */
936fd732
TH
3568int sata_link_resume(struct ata_link *link, const unsigned long *params,
3569 unsigned long deadline)
d7bb4cc7
TH
3570{
3571 u32 scontrol;
81952c54
TH
3572 int rc;
3573
936fd732 3574 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3575 return rc;
7a7921e8 3576
852ee16a 3577 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3578
936fd732 3579 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3580 return rc;
7a7921e8 3581
d7bb4cc7
TH
3582 /* Some PHYs react badly if SStatus is pounded immediately
3583 * after resuming. Delay 200ms before debouncing.
3584 */
3585 msleep(200);
7a7921e8 3586
936fd732 3587 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3588}
3589
f5914a46
TH
3590/**
3591 * ata_std_prereset - prepare for reset
cc0680a5 3592 * @link: ATA link to be reset
d4b2bab4 3593 * @deadline: deadline jiffies for the operation
f5914a46 3594 *
cc0680a5 3595 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3596 * prereset makes libata abort whole reset sequence and give up
3597 * that port, so prereset should be best-effort. It does its
3598 * best to prepare for reset sequence but if things go wrong, it
3599 * should just whine, not fail.
f5914a46
TH
3600 *
3601 * LOCKING:
3602 * Kernel thread context (may sleep)
3603 *
3604 * RETURNS:
3605 * 0 on success, -errno otherwise.
3606 */
cc0680a5 3607int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3608{
cc0680a5 3609 struct ata_port *ap = link->ap;
936fd732 3610 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3611 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3612 int rc;
3613
31daabda 3614 /* handle link resume */
28324304 3615 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3616 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3617 ehc->i.action |= ATA_EH_HARDRESET;
3618
633273a3
TH
3619 /* Some PMPs don't work with only SRST, force hardreset if PMP
3620 * is supported.
3621 */
3622 if (ap->flags & ATA_FLAG_PMP)
3623 ehc->i.action |= ATA_EH_HARDRESET;
3624
f5914a46
TH
3625 /* if we're about to do hardreset, nothing more to do */
3626 if (ehc->i.action & ATA_EH_HARDRESET)
3627 return 0;
3628
936fd732 3629 /* if SATA, resume link */
a16abc0b 3630 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3631 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3632 /* whine about phy resume failure but proceed */
3633 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3634 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3635 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3636 }
3637
3638 /* Wait for !BSY if the controller can wait for the first D2H
3639 * Reg FIS and we don't know that no device is attached.
3640 */
0c88758b 3641 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3642 rc = ata_wait_ready(ap, deadline);
6dffaf61 3643 if (rc && rc != -ENODEV) {
cc0680a5 3644 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3645 "(errno=%d), forcing hardreset\n", rc);
3646 ehc->i.action |= ATA_EH_HARDRESET;
3647 }
3648 }
f5914a46
TH
3649
3650 return 0;
3651}
3652
c2bd5804
TH
3653/**
3654 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3655 * @link: ATA link to reset
c2bd5804 3656 * @classes: resulting classes of attached devices
d4b2bab4 3657 * @deadline: deadline jiffies for the operation
c2bd5804 3658 *
52783c5d 3659 * Reset host port using ATA SRST.
c2bd5804
TH
3660 *
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3663 *
3664 * RETURNS:
3665 * 0 on success, -errno otherwise.
3666 */
cc0680a5 3667int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3668 unsigned long deadline)
c2bd5804 3669{
cc0680a5 3670 struct ata_port *ap = link->ap;
c2bd5804 3671 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3672 unsigned int devmask = 0;
3673 int rc;
c2bd5804
TH
3674 u8 err;
3675
3676 DPRINTK("ENTER\n");
3677
936fd732 3678 if (ata_link_offline(link)) {
3a39746a
TH
3679 classes[0] = ATA_DEV_NONE;
3680 goto out;
3681 }
3682
c2bd5804
TH
3683 /* determine if device 0/1 are present */
3684 if (ata_devchk(ap, 0))
3685 devmask |= (1 << 0);
3686 if (slave_possible && ata_devchk(ap, 1))
3687 devmask |= (1 << 1);
3688
c2bd5804
TH
3689 /* select device 0 again */
3690 ap->ops->dev_select(ap, 0);
3691
3692 /* issue bus reset */
3693 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3694 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3695 /* if link is occupied, -ENODEV too is an error */
936fd732 3696 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3697 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3698 return rc;
c2bd5804
TH
3699 }
3700
3701 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3702 classes[0] = ata_dev_try_classify(&link->device[0],
3703 devmask & (1 << 0), &err);
c2bd5804 3704 if (slave_possible && err != 0x81)
3f19859e
TH
3705 classes[1] = ata_dev_try_classify(&link->device[1],
3706 devmask & (1 << 1), &err);
c2bd5804 3707
3a39746a 3708 out:
c2bd5804
TH
3709 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3710 return 0;
3711}
3712
3713/**
cc0680a5
TH
3714 * sata_link_hardreset - reset link via SATA phy reset
3715 * @link: link to reset
b6103f6d 3716 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3717 * @deadline: deadline jiffies for the operation
c2bd5804 3718 *
cc0680a5 3719 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3720 *
3721 * LOCKING:
3722 * Kernel thread context (may sleep)
3723 *
3724 * RETURNS:
3725 * 0 on success, -errno otherwise.
3726 */
cc0680a5 3727int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3728 unsigned long deadline)
c2bd5804 3729{
852ee16a 3730 u32 scontrol;
81952c54 3731 int rc;
852ee16a 3732
c2bd5804
TH
3733 DPRINTK("ENTER\n");
3734
936fd732 3735 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3736 /* SATA spec says nothing about how to reconfigure
3737 * spd. To be on the safe side, turn off phy during
3738 * reconfiguration. This works for at least ICH7 AHCI
3739 * and Sil3124.
3740 */
936fd732 3741 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3742 goto out;
81952c54 3743
a34b6fc0 3744 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3745
936fd732 3746 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3747 goto out;
1c3fae4d 3748
936fd732 3749 sata_set_spd(link);
1c3fae4d
TH
3750 }
3751
3752 /* issue phy wake/reset */
936fd732 3753 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3754 goto out;
81952c54 3755
852ee16a 3756 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3757
936fd732 3758 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3759 goto out;
c2bd5804 3760
1c3fae4d 3761 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3762 * 10.4.2 says at least 1 ms.
3763 */
3764 msleep(1);
3765
936fd732
TH
3766 /* bring link back */
3767 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3768 out:
3769 DPRINTK("EXIT, rc=%d\n", rc);
3770 return rc;
3771}
3772
3773/**
3774 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3775 * @link: link to reset
b6103f6d 3776 * @class: resulting class of attached device
d4b2bab4 3777 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3778 *
3779 * SATA phy-reset host port using DET bits of SControl register,
3780 * wait for !BSY and classify the attached device.
3781 *
3782 * LOCKING:
3783 * Kernel thread context (may sleep)
3784 *
3785 * RETURNS:
3786 * 0 on success, -errno otherwise.
3787 */
cc0680a5 3788int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3789 unsigned long deadline)
b6103f6d 3790{
cc0680a5 3791 struct ata_port *ap = link->ap;
936fd732 3792 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3793 int rc;
3794
3795 DPRINTK("ENTER\n");
3796
3797 /* do hardreset */
cc0680a5 3798 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3799 if (rc) {
cc0680a5 3800 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3801 "COMRESET failed (errno=%d)\n", rc);
3802 return rc;
3803 }
c2bd5804 3804
c2bd5804 3805 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3806 if (ata_link_offline(link)) {
c2bd5804
TH
3807 *class = ATA_DEV_NONE;
3808 DPRINTK("EXIT, link offline\n");
3809 return 0;
3810 }
3811
88ff6eaf
TH
3812 /* wait a while before checking status */
3813 ata_wait_after_reset(ap, deadline);
34fee227 3814
633273a3
TH
3815 /* If PMP is supported, we have to do follow-up SRST. Note
3816 * that some PMPs don't send D2H Reg FIS after hardreset at
3817 * all if the first port is empty. Wait for it just for a
3818 * second and request follow-up SRST.
3819 */
3820 if (ap->flags & ATA_FLAG_PMP) {
3821 ata_wait_ready(ap, jiffies + HZ);
3822 return -EAGAIN;
3823 }
3824
d4b2bab4 3825 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3826 /* link occupied, -ENODEV too is an error */
3827 if (rc) {
cc0680a5 3828 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3829 "COMRESET failed (errno=%d)\n", rc);
3830 return rc;
c2bd5804
TH
3831 }
3832
3a39746a
TH
3833 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3834
3f19859e 3835 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3836
3837 DPRINTK("EXIT, class=%u\n", *class);
3838 return 0;
3839}
3840
3841/**
3842 * ata_std_postreset - standard postreset callback
cc0680a5 3843 * @link: the target ata_link
c2bd5804
TH
3844 * @classes: classes of attached devices
3845 *
3846 * This function is invoked after a successful reset. Note that
3847 * the device might have been reset more than once using
3848 * different reset methods before postreset is invoked.
c2bd5804 3849 *
c2bd5804
TH
3850 * LOCKING:
3851 * Kernel thread context (may sleep)
3852 */
cc0680a5 3853void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3854{
cc0680a5 3855 struct ata_port *ap = link->ap;
dc2b3515
TH
3856 u32 serror;
3857
c2bd5804
TH
3858 DPRINTK("ENTER\n");
3859
c2bd5804 3860 /* print link status */
936fd732 3861 sata_print_link_status(link);
c2bd5804 3862
dc2b3515 3863 /* clear SError */
936fd732
TH
3864 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3865 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3866 link->eh_info.serror = 0;
dc2b3515 3867
c2bd5804
TH
3868 /* is double-select really necessary? */
3869 if (classes[0] != ATA_DEV_NONE)
3870 ap->ops->dev_select(ap, 1);
3871 if (classes[1] != ATA_DEV_NONE)
3872 ap->ops->dev_select(ap, 0);
3873
3a39746a
TH
3874 /* bail out if no device is present */
3875 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3876 DPRINTK("EXIT, no device\n");
3877 return;
3878 }
3879
3880 /* set up device control */
0d5ff566
TH
3881 if (ap->ioaddr.ctl_addr)
3882 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3883
3884 DPRINTK("EXIT\n");
3885}
3886
623a3128
TH
3887/**
3888 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3889 * @dev: device to compare against
3890 * @new_class: class of the new device
3891 * @new_id: IDENTIFY page of the new device
3892 *
3893 * Compare @new_class and @new_id against @dev and determine
3894 * whether @dev is the device indicated by @new_class and
3895 * @new_id.
3896 *
3897 * LOCKING:
3898 * None.
3899 *
3900 * RETURNS:
3901 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3902 */
3373efd8
TH
3903static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3904 const u16 *new_id)
623a3128
TH
3905{
3906 const u16 *old_id = dev->id;
a0cf733b
TH
3907 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3908 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3909
3910 if (dev->class != new_class) {
f15a1daf
TH
3911 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3912 dev->class, new_class);
623a3128
TH
3913 return 0;
3914 }
3915
a0cf733b
TH
3916 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3917 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3918 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3919 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3920
3921 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3922 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3923 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3924 return 0;
3925 }
3926
3927 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3928 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3929 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3930 return 0;
3931 }
3932
623a3128
TH
3933 return 1;
3934}
3935
3936/**
fe30911b 3937 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3938 * @dev: target ATA device
bff04647 3939 * @readid_flags: read ID flags
623a3128
TH
3940 *
3941 * Re-read IDENTIFY page and make sure @dev is still attached to
3942 * the port.
3943 *
3944 * LOCKING:
3945 * Kernel thread context (may sleep)
3946 *
3947 * RETURNS:
3948 * 0 on success, negative errno otherwise
3949 */
fe30911b 3950int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3951{
5eb45c02 3952 unsigned int class = dev->class;
9af5c9c9 3953 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3954 int rc;
3955
fe635c7e 3956 /* read ID data */
bff04647 3957 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3958 if (rc)
fe30911b 3959 return rc;
623a3128
TH
3960
3961 /* is the device still there? */
fe30911b
TH
3962 if (!ata_dev_same_device(dev, class, id))
3963 return -ENODEV;
623a3128 3964
fe635c7e 3965 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3966 return 0;
3967}
3968
3969/**
3970 * ata_dev_revalidate - Revalidate ATA device
3971 * @dev: device to revalidate
422c9daa 3972 * @new_class: new class code
fe30911b
TH
3973 * @readid_flags: read ID flags
3974 *
3975 * Re-read IDENTIFY page, make sure @dev is still attached to the
3976 * port and reconfigure it according to the new IDENTIFY page.
3977 *
3978 * LOCKING:
3979 * Kernel thread context (may sleep)
3980 *
3981 * RETURNS:
3982 * 0 on success, negative errno otherwise
3983 */
422c9daa
TH
3984int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3985 unsigned int readid_flags)
fe30911b 3986{
6ddcd3b0 3987 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3988 int rc;
3989
3990 if (!ata_dev_enabled(dev))
3991 return -ENODEV;
3992
422c9daa
TH
3993 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3994 if (ata_class_enabled(new_class) &&
3995 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3996 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3997 dev->class, new_class);
3998 rc = -ENODEV;
3999 goto fail;
4000 }
4001
fe30911b
TH
4002 /* re-read ID */
4003 rc = ata_dev_reread_id(dev, readid_flags);
4004 if (rc)
4005 goto fail;
623a3128
TH
4006
4007 /* configure device according to the new ID */
efdaedc4 4008 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4009 if (rc)
4010 goto fail;
4011
4012 /* verify n_sectors hasn't changed */
b54eebd6
TH
4013 if (dev->class == ATA_DEV_ATA && n_sectors &&
4014 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4015 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4016 "%llu != %llu\n",
4017 (unsigned long long)n_sectors,
4018 (unsigned long long)dev->n_sectors);
8270bec4
TH
4019
4020 /* restore original n_sectors */
4021 dev->n_sectors = n_sectors;
4022
6ddcd3b0
TH
4023 rc = -ENODEV;
4024 goto fail;
4025 }
4026
4027 return 0;
623a3128
TH
4028
4029 fail:
f15a1daf 4030 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4031 return rc;
4032}
4033
6919a0a6
AC
4034struct ata_blacklist_entry {
4035 const char *model_num;
4036 const char *model_rev;
4037 unsigned long horkage;
4038};
4039
4040static const struct ata_blacklist_entry ata_device_blacklist [] = {
4041 /* Devices with DMA related problems under Linux */
4042 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4043 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4044 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4045 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4046 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4047 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4048 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4049 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4050 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4051 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4052 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4053 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4054 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4055 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4056 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4057 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4058 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4059 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4060 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4061 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4062 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4063 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4064 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4065 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4066 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4067 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4068 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4069 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4070 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4071 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4072 /* Odd clown on sil3726/4726 PMPs */
4073 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4074 ATA_HORKAGE_SKIP_PM },
6919a0a6 4075
18d6e9d5 4076 /* Weird ATAPI devices */
40a1d531 4077 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4078
6919a0a6
AC
4079 /* Devices we expect to fail diagnostics */
4080
4081 /* Devices where NCQ should be avoided */
4082 /* NCQ is slow */
2dcb407e 4083 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4084 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4085 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4086 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4087 /* NCQ is broken */
539cc7c7 4088 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4089 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4090 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4091 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4092 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4093 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4094
36e337d0
RH
4095 /* Blacklist entries taken from Silicon Image 3124/3132
4096 Windows driver .inf file - also several Linux problem reports */
4097 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4098 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4099 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4100
16c55b03
TH
4101 /* devices which puke on READ_NATIVE_MAX */
4102 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4103 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4104 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4105 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4106
93328e11
AC
4107 /* Devices which report 1 sector over size HPA */
4108 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4109 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4110
6bbfd53d
AC
4111 /* Devices which get the IVB wrong */
4112 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4113 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4114 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4115 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4116 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4117
6919a0a6
AC
4118 /* End Marker */
4119 { }
1da177e4 4120};
2e9edbf8 4121
741b7763 4122static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4123{
4124 const char *p;
4125 int len;
4126
4127 /*
4128 * check for trailing wildcard: *\0
4129 */
4130 p = strchr(patt, wildchar);
4131 if (p && ((*(p + 1)) == 0))
4132 len = p - patt;
317b50b8 4133 else {
539cc7c7 4134 len = strlen(name);
317b50b8
AP
4135 if (!len) {
4136 if (!*patt)
4137 return 0;
4138 return -1;
4139 }
4140 }
539cc7c7
JG
4141
4142 return strncmp(patt, name, len);
4143}
4144
75683fe7 4145static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4146{
8bfa79fc
TH
4147 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4148 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4149 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4150
8bfa79fc
TH
4151 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4152 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4153
6919a0a6 4154 while (ad->model_num) {
539cc7c7 4155 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4156 if (ad->model_rev == NULL)
4157 return ad->horkage;
539cc7c7 4158 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4159 return ad->horkage;
f4b15fef 4160 }
6919a0a6 4161 ad++;
f4b15fef 4162 }
1da177e4
LT
4163 return 0;
4164}
4165
6919a0a6
AC
4166static int ata_dma_blacklisted(const struct ata_device *dev)
4167{
4168 /* We don't support polling DMA.
4169 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4170 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4171 */
9af5c9c9 4172 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4173 (dev->flags & ATA_DFLAG_CDB_INTR))
4174 return 1;
75683fe7 4175 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4176}
4177
6bbfd53d
AC
4178/**
4179 * ata_is_40wire - check drive side detection
4180 * @dev: device
4181 *
4182 * Perform drive side detection decoding, allowing for device vendors
4183 * who can't follow the documentation.
4184 */
4185
4186static int ata_is_40wire(struct ata_device *dev)
4187{
4188 if (dev->horkage & ATA_HORKAGE_IVB)
4189 return ata_drive_40wire_relaxed(dev->id);
4190 return ata_drive_40wire(dev->id);
4191}
4192
a6d5a51c
TH
4193/**
4194 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4195 * @dev: Device to compute xfermask for
4196 *
acf356b1
TH
4197 * Compute supported xfermask of @dev and store it in
4198 * dev->*_mask. This function is responsible for applying all
4199 * known limits including host controller limits, device
4200 * blacklist, etc...
a6d5a51c
TH
4201 *
4202 * LOCKING:
4203 * None.
a6d5a51c 4204 */
3373efd8 4205static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4206{
9af5c9c9
TH
4207 struct ata_link *link = dev->link;
4208 struct ata_port *ap = link->ap;
cca3974e 4209 struct ata_host *host = ap->host;
a6d5a51c 4210 unsigned long xfer_mask;
1da177e4 4211
37deecb5 4212 /* controller modes available */
565083e1
TH
4213 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4214 ap->mwdma_mask, ap->udma_mask);
4215
8343f889 4216 /* drive modes available */
37deecb5
TH
4217 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4218 dev->mwdma_mask, dev->udma_mask);
4219 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4220
b352e57d
AC
4221 /*
4222 * CFA Advanced TrueIDE timings are not allowed on a shared
4223 * cable
4224 */
4225 if (ata_dev_pair(dev)) {
4226 /* No PIO5 or PIO6 */
4227 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4228 /* No MWDMA3 or MWDMA 4 */
4229 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4230 }
4231
37deecb5
TH
4232 if (ata_dma_blacklisted(dev)) {
4233 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4234 ata_dev_printk(dev, KERN_WARNING,
4235 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4236 }
a6d5a51c 4237
14d66ab7 4238 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4239 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4240 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4241 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4242 "other device, disabling DMA\n");
5444a6f4 4243 }
565083e1 4244
e424675f
JG
4245 if (ap->flags & ATA_FLAG_NO_IORDY)
4246 xfer_mask &= ata_pio_mask_no_iordy(dev);
4247
5444a6f4 4248 if (ap->ops->mode_filter)
a76b62ca 4249 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4250
8343f889
RH
4251 /* Apply cable rule here. Don't apply it early because when
4252 * we handle hot plug the cable type can itself change.
4253 * Check this last so that we know if the transfer rate was
4254 * solely limited by the cable.
4255 * Unknown or 80 wire cables reported host side are checked
4256 * drive side as well. Cases where we know a 40wire cable
4257 * is used safely for 80 are not checked here.
4258 */
4259 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4260 /* UDMA/44 or higher would be available */
2dcb407e 4261 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4262 (ata_is_40wire(dev) &&
2dcb407e
JG
4263 (ap->cbl == ATA_CBL_PATA_UNK ||
4264 ap->cbl == ATA_CBL_PATA80))) {
4265 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4266 "limited to UDMA/33 due to 40-wire cable\n");
4267 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4268 }
4269
565083e1
TH
4270 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4271 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4272}
4273
1da177e4
LT
4274/**
4275 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4276 * @dev: Device to which command will be sent
4277 *
780a87f7
JG
4278 * Issue SET FEATURES - XFER MODE command to device @dev
4279 * on port @ap.
4280 *
1da177e4 4281 * LOCKING:
0cba632b 4282 * PCI/etc. bus probe sem.
83206a29
TH
4283 *
4284 * RETURNS:
4285 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4286 */
4287
3373efd8 4288static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4289{
a0123703 4290 struct ata_taskfile tf;
83206a29 4291 unsigned int err_mask;
1da177e4
LT
4292
4293 /* set up set-features taskfile */
4294 DPRINTK("set features - xfer mode\n");
4295
464cf177
TH
4296 /* Some controllers and ATAPI devices show flaky interrupt
4297 * behavior after setting xfer mode. Use polling instead.
4298 */
3373efd8 4299 ata_tf_init(dev, &tf);
a0123703
TH
4300 tf.command = ATA_CMD_SET_FEATURES;
4301 tf.feature = SETFEATURES_XFER;
464cf177 4302 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4303 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4304 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4305 if (ata_pio_need_iordy(dev))
4306 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4307 /* If the device has IORDY and the controller does not - turn it off */
4308 else if (ata_id_has_iordy(dev->id))
11b7becc 4309 tf.nsect = 0x01;
b9f8ab2d
AC
4310 else /* In the ancient relic department - skip all of this */
4311 return 0;
1da177e4 4312
2b789108 4313 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4314
4315 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4316 return err_mask;
4317}
9f45cbd3 4318/**
218f3d30 4319 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4320 * @dev: Device to which command will be sent
4321 * @enable: Whether to enable or disable the feature
218f3d30 4322 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4323 *
4324 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4325 * on port @ap with sector count
9f45cbd3
KCA
4326 *
4327 * LOCKING:
4328 * PCI/etc. bus probe sem.
4329 *
4330 * RETURNS:
4331 * 0 on success, AC_ERR_* mask otherwise.
4332 */
218f3d30
JG
4333static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4334 u8 feature)
9f45cbd3
KCA
4335{
4336 struct ata_taskfile tf;
4337 unsigned int err_mask;
4338
4339 /* set up set-features taskfile */
4340 DPRINTK("set features - SATA features\n");
4341
4342 ata_tf_init(dev, &tf);
4343 tf.command = ATA_CMD_SET_FEATURES;
4344 tf.feature = enable;
4345 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4346 tf.protocol = ATA_PROT_NODATA;
218f3d30 4347 tf.nsect = feature;
9f45cbd3 4348
2b789108 4349 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4350
83206a29
TH
4351 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4352 return err_mask;
1da177e4
LT
4353}
4354
8bf62ece
AL
4355/**
4356 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4357 * @dev: Device to which command will be sent
e2a7f77a
RD
4358 * @heads: Number of heads (taskfile parameter)
4359 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4360 *
4361 * LOCKING:
6aff8f1f
TH
4362 * Kernel thread context (may sleep)
4363 *
4364 * RETURNS:
4365 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4366 */
3373efd8
TH
4367static unsigned int ata_dev_init_params(struct ata_device *dev,
4368 u16 heads, u16 sectors)
8bf62ece 4369{
a0123703 4370 struct ata_taskfile tf;
6aff8f1f 4371 unsigned int err_mask;
8bf62ece
AL
4372
4373 /* Number of sectors per track 1-255. Number of heads 1-16 */
4374 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4375 return AC_ERR_INVALID;
8bf62ece
AL
4376
4377 /* set up init dev params taskfile */
4378 DPRINTK("init dev params \n");
4379
3373efd8 4380 ata_tf_init(dev, &tf);
a0123703
TH
4381 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4382 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4383 tf.protocol = ATA_PROT_NODATA;
4384 tf.nsect = sectors;
4385 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4386
2b789108 4387 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4388 /* A clean abort indicates an original or just out of spec drive
4389 and we should continue as we issue the setup based on the
4390 drive reported working geometry */
4391 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4392 err_mask = 0;
8bf62ece 4393
6aff8f1f
TH
4394 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4395 return err_mask;
8bf62ece
AL
4396}
4397
1da177e4 4398/**
0cba632b
JG
4399 * ata_sg_clean - Unmap DMA memory associated with command
4400 * @qc: Command containing DMA memory to be released
4401 *
4402 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4403 *
4404 * LOCKING:
cca3974e 4405 * spin_lock_irqsave(host lock)
1da177e4 4406 */
70e6ad0c 4407void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4408{
4409 struct ata_port *ap = qc->ap;
cedc9a47 4410 struct scatterlist *sg = qc->__sg;
1da177e4 4411 int dir = qc->dma_dir;
cedc9a47 4412 void *pad_buf = NULL;
1da177e4 4413
a4631474
TH
4414 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4415 WARN_ON(sg == NULL);
1da177e4
LT
4416
4417 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4418 WARN_ON(qc->n_elem > 1);
1da177e4 4419
2c13b7ce 4420 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4421
cedc9a47
JG
4422 /* if we padded the buffer out to 32-bit bound, and data
4423 * xfer direction is from-device, we must copy from the
4424 * pad buffer back into the supplied buffer
4425 */
4426 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4427 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4428
4429 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4430 if (qc->n_elem)
2f1f610b 4431 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4432 /* restore last sg */
87260216 4433 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4434 if (pad_buf) {
4435 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4436 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4437 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4438 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4439 }
4440 } else {
2e242fa9 4441 if (qc->n_elem)
2f1f610b 4442 dma_unmap_single(ap->dev,
e1410f2d
JG
4443 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4444 dir);
cedc9a47
JG
4445 /* restore sg */
4446 sg->length += qc->pad_len;
4447 if (pad_buf)
4448 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4449 pad_buf, qc->pad_len);
4450 }
1da177e4
LT
4451
4452 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4453 qc->__sg = NULL;
1da177e4
LT
4454}
4455
4456/**
4457 * ata_fill_sg - Fill PCI IDE PRD table
4458 * @qc: Metadata associated with taskfile to be transferred
4459 *
780a87f7
JG
4460 * Fill PCI IDE PRD (scatter-gather) table with segments
4461 * associated with the current disk command.
4462 *
1da177e4 4463 * LOCKING:
cca3974e 4464 * spin_lock_irqsave(host lock)
1da177e4
LT
4465 *
4466 */
4467static void ata_fill_sg(struct ata_queued_cmd *qc)
4468{
1da177e4 4469 struct ata_port *ap = qc->ap;
cedc9a47
JG
4470 struct scatterlist *sg;
4471 unsigned int idx;
1da177e4 4472
a4631474 4473 WARN_ON(qc->__sg == NULL);
f131883e 4474 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4475
4476 idx = 0;
cedc9a47 4477 ata_for_each_sg(sg, qc) {
1da177e4
LT
4478 u32 addr, offset;
4479 u32 sg_len, len;
4480
4481 /* determine if physical DMA addr spans 64K boundary.
4482 * Note h/w doesn't support 64-bit, so we unconditionally
4483 * truncate dma_addr_t to u32.
4484 */
4485 addr = (u32) sg_dma_address(sg);
4486 sg_len = sg_dma_len(sg);
4487
4488 while (sg_len) {
4489 offset = addr & 0xffff;
4490 len = sg_len;
4491 if ((offset + sg_len) > 0x10000)
4492 len = 0x10000 - offset;
4493
4494 ap->prd[idx].addr = cpu_to_le32(addr);
4495 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4496 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4497
4498 idx++;
4499 sg_len -= len;
4500 addr += len;
4501 }
4502 }
4503
4504 if (idx)
4505 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4506}
b9a4197e 4507
d26fc955
AC
4508/**
4509 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4510 * @qc: Metadata associated with taskfile to be transferred
4511 *
4512 * Fill PCI IDE PRD (scatter-gather) table with segments
4513 * associated with the current disk command. Perform the fill
4514 * so that we avoid writing any length 64K records for
4515 * controllers that don't follow the spec.
4516 *
4517 * LOCKING:
4518 * spin_lock_irqsave(host lock)
4519 *
4520 */
4521static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4522{
4523 struct ata_port *ap = qc->ap;
4524 struct scatterlist *sg;
4525 unsigned int idx;
4526
4527 WARN_ON(qc->__sg == NULL);
4528 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4529
4530 idx = 0;
4531 ata_for_each_sg(sg, qc) {
4532 u32 addr, offset;
4533 u32 sg_len, len, blen;
4534
2dcb407e 4535 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4536 * Note h/w doesn't support 64-bit, so we unconditionally
4537 * truncate dma_addr_t to u32.
4538 */
4539 addr = (u32) sg_dma_address(sg);
4540 sg_len = sg_dma_len(sg);
4541
4542 while (sg_len) {
4543 offset = addr & 0xffff;
4544 len = sg_len;
4545 if ((offset + sg_len) > 0x10000)
4546 len = 0x10000 - offset;
4547
4548 blen = len & 0xffff;
4549 ap->prd[idx].addr = cpu_to_le32(addr);
4550 if (blen == 0) {
4551 /* Some PATA chipsets like the CS5530 can't
4552 cope with 0x0000 meaning 64K as the spec says */
4553 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4554 blen = 0x8000;
4555 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4556 }
4557 ap->prd[idx].flags_len = cpu_to_le32(blen);
4558 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4559
4560 idx++;
4561 sg_len -= len;
4562 addr += len;
4563 }
4564 }
4565
4566 if (idx)
4567 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4568}
4569
1da177e4
LT
4570/**
4571 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4572 * @qc: Metadata associated with taskfile to check
4573 *
780a87f7
JG
4574 * Allow low-level driver to filter ATA PACKET commands, returning
4575 * a status indicating whether or not it is OK to use DMA for the
4576 * supplied PACKET command.
4577 *
1da177e4 4578 * LOCKING:
cca3974e 4579 * spin_lock_irqsave(host lock)
0cba632b 4580 *
1da177e4
LT
4581 * RETURNS: 0 when ATAPI DMA can be used
4582 * nonzero otherwise
4583 */
4584int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4585{
4586 struct ata_port *ap = qc->ap;
b9a4197e
TH
4587
4588 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4589 * few ATAPI devices choke on such DMA requests.
4590 */
4591 if (unlikely(qc->nbytes & 15))
4592 return 1;
6f23a31d 4593
1da177e4 4594 if (ap->ops->check_atapi_dma)
b9a4197e 4595 return ap->ops->check_atapi_dma(qc);
1da177e4 4596
b9a4197e 4597 return 0;
1da177e4 4598}
b9a4197e 4599
140b5e59
TH
4600/**
4601 * atapi_qc_may_overflow - Check whether data transfer may overflow
4602 * @qc: ATA command in question
4603 *
4604 * ATAPI commands which transfer variable length data to host
4605 * might overflow due to application error or hardare bug. This
4606 * function checks whether overflow should be drained and ignored
4607 * for @qc.
4608 *
4609 * LOCKING:
4610 * None.
4611 *
4612 * RETURNS:
4613 * 1 if @qc may overflow; otherwise, 0.
4614 */
4615static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4616{
4617 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4618 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4619 return 0;
4620
4621 if (qc->tf.flags & ATA_TFLAG_WRITE)
4622 return 0;
4623
4624 switch (qc->cdb[0]) {
4625 case READ_10:
4626 case READ_12:
4627 case WRITE_10:
4628 case WRITE_12:
4629 case GPCMD_READ_CD:
4630 case GPCMD_READ_CD_MSF:
4631 return 0;
4632 }
4633
4634 return 1;
4635}
4636
31cc23b3
TH
4637/**
4638 * ata_std_qc_defer - Check whether a qc needs to be deferred
4639 * @qc: ATA command in question
4640 *
4641 * Non-NCQ commands cannot run with any other command, NCQ or
4642 * not. As upper layer only knows the queue depth, we are
4643 * responsible for maintaining exclusion. This function checks
4644 * whether a new command @qc can be issued.
4645 *
4646 * LOCKING:
4647 * spin_lock_irqsave(host lock)
4648 *
4649 * RETURNS:
4650 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4651 */
4652int ata_std_qc_defer(struct ata_queued_cmd *qc)
4653{
4654 struct ata_link *link = qc->dev->link;
4655
4656 if (qc->tf.protocol == ATA_PROT_NCQ) {
4657 if (!ata_tag_valid(link->active_tag))
4658 return 0;
4659 } else {
4660 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4661 return 0;
4662 }
4663
4664 return ATA_DEFER_LINK;
4665}
4666
1da177e4
LT
4667/**
4668 * ata_qc_prep - Prepare taskfile for submission
4669 * @qc: Metadata associated with taskfile to be prepared
4670 *
780a87f7
JG
4671 * Prepare ATA taskfile for submission.
4672 *
1da177e4 4673 * LOCKING:
cca3974e 4674 * spin_lock_irqsave(host lock)
1da177e4
LT
4675 */
4676void ata_qc_prep(struct ata_queued_cmd *qc)
4677{
4678 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4679 return;
4680
4681 ata_fill_sg(qc);
4682}
4683
d26fc955
AC
4684/**
4685 * ata_dumb_qc_prep - Prepare taskfile for submission
4686 * @qc: Metadata associated with taskfile to be prepared
4687 *
4688 * Prepare ATA taskfile for submission.
4689 *
4690 * LOCKING:
4691 * spin_lock_irqsave(host lock)
4692 */
4693void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4694{
4695 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4696 return;
4697
4698 ata_fill_sg_dumb(qc);
4699}
4700
e46834cd
BK
4701void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4702
0cba632b
JG
4703/**
4704 * ata_sg_init_one - Associate command with memory buffer
4705 * @qc: Command to be associated
4706 * @buf: Memory buffer
4707 * @buflen: Length of memory buffer, in bytes.
4708 *
4709 * Initialize the data-related elements of queued_cmd @qc
4710 * to point to a single memory buffer, @buf of byte length @buflen.
4711 *
4712 * LOCKING:
cca3974e 4713 * spin_lock_irqsave(host lock)
0cba632b
JG
4714 */
4715
1da177e4
LT
4716void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4717{
1da177e4
LT
4718 qc->flags |= ATA_QCFLAG_SINGLE;
4719
cedc9a47 4720 qc->__sg = &qc->sgent;
1da177e4 4721 qc->n_elem = 1;
cedc9a47 4722 qc->orig_n_elem = 1;
1da177e4 4723 qc->buf_virt = buf;
233277ca 4724 qc->nbytes = buflen;
87260216 4725 qc->cursg = qc->__sg;
1da177e4 4726
61c0596c 4727 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4728}
4729
0cba632b
JG
4730/**
4731 * ata_sg_init - Associate command with scatter-gather table.
4732 * @qc: Command to be associated
4733 * @sg: Scatter-gather table.
4734 * @n_elem: Number of elements in s/g table.
4735 *
4736 * Initialize the data-related elements of queued_cmd @qc
4737 * to point to a scatter-gather table @sg, containing @n_elem
4738 * elements.
4739 *
4740 * LOCKING:
cca3974e 4741 * spin_lock_irqsave(host lock)
0cba632b
JG
4742 */
4743
1da177e4
LT
4744void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4745 unsigned int n_elem)
4746{
4747 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4748 qc->__sg = sg;
1da177e4 4749 qc->n_elem = n_elem;
cedc9a47 4750 qc->orig_n_elem = n_elem;
87260216 4751 qc->cursg = qc->__sg;
1da177e4
LT
4752}
4753
4754/**
0cba632b
JG
4755 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4756 * @qc: Command with memory buffer to be mapped.
4757 *
4758 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4759 *
4760 * LOCKING:
cca3974e 4761 * spin_lock_irqsave(host lock)
1da177e4
LT
4762 *
4763 * RETURNS:
0cba632b 4764 * Zero on success, negative on error.
1da177e4
LT
4765 */
4766
4767static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4768{
4769 struct ata_port *ap = qc->ap;
4770 int dir = qc->dma_dir;
cedc9a47 4771 struct scatterlist *sg = qc->__sg;
1da177e4 4772 dma_addr_t dma_address;
2e242fa9 4773 int trim_sg = 0;
1da177e4 4774
cedc9a47
JG
4775 /* we must lengthen transfers to end on a 32-bit boundary */
4776 qc->pad_len = sg->length & 3;
4777 if (qc->pad_len) {
4778 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4779 struct scatterlist *psg = &qc->pad_sgent;
4780
a4631474 4781 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4782
4783 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4784
4785 if (qc->tf.flags & ATA_TFLAG_WRITE)
4786 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4787 qc->pad_len);
4788
4789 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4790 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4791 /* trim sg */
4792 sg->length -= qc->pad_len;
2e242fa9
TH
4793 if (sg->length == 0)
4794 trim_sg = 1;
cedc9a47
JG
4795
4796 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4797 sg->length, qc->pad_len);
4798 }
4799
2e242fa9
TH
4800 if (trim_sg) {
4801 qc->n_elem--;
e1410f2d
JG
4802 goto skip_map;
4803 }
4804
2f1f610b 4805 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4806 sg->length, dir);
537a95d9
TH
4807 if (dma_mapping_error(dma_address)) {
4808 /* restore sg */
4809 sg->length += qc->pad_len;
1da177e4 4810 return -1;
537a95d9 4811 }
1da177e4
LT
4812
4813 sg_dma_address(sg) = dma_address;
32529e01 4814 sg_dma_len(sg) = sg->length;
1da177e4 4815
2e242fa9 4816skip_map:
1da177e4
LT
4817 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4818 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4819
4820 return 0;
4821}
4822
4823/**
0cba632b
JG
4824 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4825 * @qc: Command with scatter-gather table to be mapped.
4826 *
4827 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4828 *
4829 * LOCKING:
cca3974e 4830 * spin_lock_irqsave(host lock)
1da177e4
LT
4831 *
4832 * RETURNS:
0cba632b 4833 * Zero on success, negative on error.
1da177e4
LT
4834 *
4835 */
4836
4837static int ata_sg_setup(struct ata_queued_cmd *qc)
4838{
4839 struct ata_port *ap = qc->ap;
cedc9a47 4840 struct scatterlist *sg = qc->__sg;
87260216 4841 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4842 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4843
44877b4e 4844 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4845 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4846
cedc9a47
JG
4847 /* we must lengthen transfers to end on a 32-bit boundary */
4848 qc->pad_len = lsg->length & 3;
4849 if (qc->pad_len) {
4850 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4851 struct scatterlist *psg = &qc->pad_sgent;
4852 unsigned int offset;
4853
a4631474 4854 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4855
4856 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4857
4858 /*
4859 * psg->page/offset are used to copy to-be-written
4860 * data in this function or read data in ata_sg_clean.
4861 */
4862 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4863 sg_init_table(psg, 1);
642f1490
JA
4864 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4865 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4866
4867 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4868 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4869 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4870 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4871 }
4872
4873 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4874 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4875 /* trim last sg */
4876 lsg->length -= qc->pad_len;
e1410f2d
JG
4877 if (lsg->length == 0)
4878 trim_sg = 1;
cedc9a47
JG
4879
4880 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4881 qc->n_elem - 1, lsg->length, qc->pad_len);
4882 }
4883
e1410f2d
JG
4884 pre_n_elem = qc->n_elem;
4885 if (trim_sg && pre_n_elem)
4886 pre_n_elem--;
4887
4888 if (!pre_n_elem) {
4889 n_elem = 0;
4890 goto skip_map;
4891 }
4892
1da177e4 4893 dir = qc->dma_dir;
2f1f610b 4894 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4895 if (n_elem < 1) {
4896 /* restore last sg */
4897 lsg->length += qc->pad_len;
1da177e4 4898 return -1;
537a95d9 4899 }
1da177e4
LT
4900
4901 DPRINTK("%d sg elements mapped\n", n_elem);
4902
e1410f2d 4903skip_map:
1da177e4
LT
4904 qc->n_elem = n_elem;
4905
4906 return 0;
4907}
4908
0baab86b 4909/**
c893a3ae 4910 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4911 * @buf: Buffer to swap
4912 * @buf_words: Number of 16-bit words in buffer.
4913 *
4914 * Swap halves of 16-bit words if needed to convert from
4915 * little-endian byte order to native cpu byte order, or
4916 * vice-versa.
4917 *
4918 * LOCKING:
6f0ef4fa 4919 * Inherited from caller.
0baab86b 4920 */
1da177e4
LT
4921void swap_buf_le16(u16 *buf, unsigned int buf_words)
4922{
4923#ifdef __BIG_ENDIAN
4924 unsigned int i;
4925
4926 for (i = 0; i < buf_words; i++)
4927 buf[i] = le16_to_cpu(buf[i]);
4928#endif /* __BIG_ENDIAN */
4929}
4930
6ae4cfb5 4931/**
0d5ff566 4932 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4933 * @adev: device to target
6ae4cfb5
AL
4934 * @buf: data buffer
4935 * @buflen: buffer length
344babaa 4936 * @write_data: read/write
6ae4cfb5
AL
4937 *
4938 * Transfer data from/to the device data register by PIO.
4939 *
4940 * LOCKING:
4941 * Inherited from caller.
6ae4cfb5 4942 */
0d5ff566
TH
4943void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4944 unsigned int buflen, int write_data)
1da177e4 4945{
9af5c9c9 4946 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4947 unsigned int words = buflen >> 1;
1da177e4 4948
6ae4cfb5 4949 /* Transfer multiple of 2 bytes */
1da177e4 4950 if (write_data)
0d5ff566 4951 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4952 else
0d5ff566 4953 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4954
4955 /* Transfer trailing 1 byte, if any. */
4956 if (unlikely(buflen & 0x01)) {
4957 u16 align_buf[1] = { 0 };
4958 unsigned char *trailing_buf = buf + buflen - 1;
4959
4960 if (write_data) {
4961 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4962 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4963 } else {
0d5ff566 4964 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4965 memcpy(trailing_buf, align_buf, 1);
4966 }
4967 }
1da177e4
LT
4968}
4969
75e99585 4970/**
0d5ff566 4971 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4972 * @adev: device to target
4973 * @buf: data buffer
4974 * @buflen: buffer length
4975 * @write_data: read/write
4976 *
88574551 4977 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4978 * transfer with interrupts disabled.
4979 *
4980 * LOCKING:
4981 * Inherited from caller.
4982 */
0d5ff566
TH
4983void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4984 unsigned int buflen, int write_data)
75e99585
AC
4985{
4986 unsigned long flags;
4987 local_irq_save(flags);
0d5ff566 4988 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4989 local_irq_restore(flags);
4990}
4991
4992
6ae4cfb5 4993/**
5a5dbd18 4994 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4995 * @qc: Command on going
4996 *
5a5dbd18 4997 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4998 *
4999 * LOCKING:
5000 * Inherited from caller.
5001 */
5002
1da177e4
LT
5003static void ata_pio_sector(struct ata_queued_cmd *qc)
5004{
5005 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5006 struct ata_port *ap = qc->ap;
5007 struct page *page;
5008 unsigned int offset;
5009 unsigned char *buf;
5010
5a5dbd18 5011 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5012 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5013
45711f1a 5014 page = sg_page(qc->cursg);
87260216 5015 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5016
5017 /* get the current page and offset */
5018 page = nth_page(page, (offset >> PAGE_SHIFT));
5019 offset %= PAGE_SIZE;
5020
1da177e4
LT
5021 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5022
91b8b313
AL
5023 if (PageHighMem(page)) {
5024 unsigned long flags;
5025
a6b2c5d4 5026 /* FIXME: use a bounce buffer */
91b8b313
AL
5027 local_irq_save(flags);
5028 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5029
91b8b313 5030 /* do the actual data transfer */
5a5dbd18 5031 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5032
91b8b313
AL
5033 kunmap_atomic(buf, KM_IRQ0);
5034 local_irq_restore(flags);
5035 } else {
5036 buf = page_address(page);
5a5dbd18 5037 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5038 }
1da177e4 5039
5a5dbd18
ML
5040 qc->curbytes += qc->sect_size;
5041 qc->cursg_ofs += qc->sect_size;
1da177e4 5042
87260216
JA
5043 if (qc->cursg_ofs == qc->cursg->length) {
5044 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5045 qc->cursg_ofs = 0;
5046 }
1da177e4 5047}
1da177e4 5048
07f6f7d0 5049/**
5a5dbd18 5050 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5051 * @qc: Command on going
5052 *
5a5dbd18 5053 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5054 * ATA device for the DRQ request.
5055 *
5056 * LOCKING:
5057 * Inherited from caller.
5058 */
1da177e4 5059
07f6f7d0
AL
5060static void ata_pio_sectors(struct ata_queued_cmd *qc)
5061{
5062 if (is_multi_taskfile(&qc->tf)) {
5063 /* READ/WRITE MULTIPLE */
5064 unsigned int nsect;
5065
587005de 5066 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5067
5a5dbd18 5068 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5069 qc->dev->multi_count);
07f6f7d0
AL
5070 while (nsect--)
5071 ata_pio_sector(qc);
5072 } else
5073 ata_pio_sector(qc);
4cc980b3
AL
5074
5075 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5076}
5077
c71c1857
AL
5078/**
5079 * atapi_send_cdb - Write CDB bytes to hardware
5080 * @ap: Port to which ATAPI device is attached.
5081 * @qc: Taskfile currently active
5082 *
5083 * When device has indicated its readiness to accept
5084 * a CDB, this function is called. Send the CDB.
5085 *
5086 * LOCKING:
5087 * caller.
5088 */
5089
5090static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5091{
5092 /* send SCSI cdb */
5093 DPRINTK("send cdb\n");
db024d53 5094 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5095
a6b2c5d4 5096 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5097 ata_altstatus(ap); /* flush */
5098
5099 switch (qc->tf.protocol) {
5100 case ATA_PROT_ATAPI:
5101 ap->hsm_task_state = HSM_ST;
5102 break;
5103 case ATA_PROT_ATAPI_NODATA:
5104 ap->hsm_task_state = HSM_ST_LAST;
5105 break;
5106 case ATA_PROT_ATAPI_DMA:
5107 ap->hsm_task_state = HSM_ST_LAST;
5108 /* initiate bmdma */
5109 ap->ops->bmdma_start(qc);
5110 break;
5111 }
1da177e4
LT
5112}
5113
6ae4cfb5
AL
5114/**
5115 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5116 * @qc: Command on going
5117 * @bytes: number of bytes
5118 *
5119 * Transfer Transfer data from/to the ATAPI device.
5120 *
5121 * LOCKING:
5122 * Inherited from caller.
5123 *
5124 */
140b5e59 5125static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5126{
5127 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5128 struct ata_port *ap = qc->ap;
140b5e59
TH
5129 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5130 struct scatterlist *sg;
1da177e4
LT
5131 struct page *page;
5132 unsigned char *buf;
5133 unsigned int offset, count;
1da177e4
LT
5134
5135next_sg:
140b5e59
TH
5136 sg = qc->cursg;
5137 if (unlikely(!sg)) {
7fb6ec28 5138 /*
563a6e1f
AL
5139 * The end of qc->sg is reached and the device expects
5140 * more data to transfer. In order not to overrun qc->sg
5141 * and fulfill length specified in the byte count register,
5142 * - for read case, discard trailing data from the device
5143 * - for write case, padding zero data to the device
5144 */
5145 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5146 unsigned int i;
5147
140b5e59
TH
5148 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5149 ata_ehi_push_desc(ehi, "too much trailing data "
5150 "buf=%u cur=%u bytes=%u",
5151 qc->nbytes, qc->curbytes, bytes);
5152 return -1;
5153 }
5154
5155 /* overflow is exptected for misc ATAPI commands */
5156 if (bytes && !atapi_qc_may_overflow(qc))
5157 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5158 "trailing data (cdb=%02x nbytes=%u)\n",
5159 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5160
140b5e59 5161 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5162 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5163
140b5e59 5164 qc->curbytes += bytes;
563a6e1f 5165
140b5e59
TH
5166 return 0;
5167 }
1da177e4 5168
45711f1a 5169 page = sg_page(sg);
1da177e4
LT
5170 offset = sg->offset + qc->cursg_ofs;
5171
5172 /* get the current page and offset */
5173 page = nth_page(page, (offset >> PAGE_SHIFT));
5174 offset %= PAGE_SIZE;
5175
6952df03 5176 /* don't overrun current sg */
32529e01 5177 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5178
5179 /* don't cross page boundaries */
5180 count = min(count, (unsigned int)PAGE_SIZE - offset);
5181
7282aa4b
AL
5182 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5183
91b8b313
AL
5184 if (PageHighMem(page)) {
5185 unsigned long flags;
5186
a6b2c5d4 5187 /* FIXME: use bounce buffer */
91b8b313
AL
5188 local_irq_save(flags);
5189 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5190
91b8b313 5191 /* do the actual data transfer */
a6b2c5d4 5192 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5193
91b8b313
AL
5194 kunmap_atomic(buf, KM_IRQ0);
5195 local_irq_restore(flags);
5196 } else {
5197 buf = page_address(page);
a6b2c5d4 5198 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5199 }
1da177e4
LT
5200
5201 bytes -= count;
140b5e59
TH
5202 if ((count & 1) && bytes)
5203 bytes--;
1da177e4
LT
5204 qc->curbytes += count;
5205 qc->cursg_ofs += count;
5206
32529e01 5207 if (qc->cursg_ofs == sg->length) {
87260216 5208 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5209 qc->cursg_ofs = 0;
5210 }
5211
563a6e1f 5212 if (bytes)
1da177e4 5213 goto next_sg;
140b5e59
TH
5214
5215 return 0;
1da177e4
LT
5216}
5217
6ae4cfb5
AL
5218/**
5219 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5220 * @qc: Command on going
5221 *
5222 * Transfer Transfer data from/to the ATAPI device.
5223 *
5224 * LOCKING:
5225 * Inherited from caller.
6ae4cfb5
AL
5226 */
5227
1da177e4
LT
5228static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5229{
5230 struct ata_port *ap = qc->ap;
5231 struct ata_device *dev = qc->dev;
5232 unsigned int ireason, bc_lo, bc_hi, bytes;
5233 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5234
eec4c3f3
AL
5235 /* Abuse qc->result_tf for temp storage of intermediate TF
5236 * here to save some kernel stack usage.
5237 * For normal completion, qc->result_tf is not relevant. For
5238 * error, qc->result_tf is later overwritten by ata_qc_complete().
5239 * So, the correctness of qc->result_tf is not affected.
5240 */
5241 ap->ops->tf_read(ap, &qc->result_tf);
5242 ireason = qc->result_tf.nsect;
5243 bc_lo = qc->result_tf.lbam;
5244 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5245 bytes = (bc_hi << 8) | bc_lo;
5246
5247 /* shall be cleared to zero, indicating xfer of data */
5248 if (ireason & (1 << 0))
5249 goto err_out;
5250
5251 /* make sure transfer direction matches expected */
5252 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5253 if (do_write != i_write)
5254 goto err_out;
5255
44877b4e 5256 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5257
140b5e59
TH
5258 if (__atapi_pio_bytes(qc, bytes))
5259 goto err_out;
4cc980b3 5260 ata_altstatus(ap); /* flush */
1da177e4
LT
5261
5262 return;
5263
5264err_out:
f15a1daf 5265 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5266 qc->err_mask |= AC_ERR_HSM;
14be71f4 5267 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5268}
5269
5270/**
c234fb00
AL
5271 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5272 * @ap: the target ata_port
5273 * @qc: qc on going
1da177e4 5274 *
c234fb00
AL
5275 * RETURNS:
5276 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5277 */
c234fb00
AL
5278
5279static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5280{
c234fb00
AL
5281 if (qc->tf.flags & ATA_TFLAG_POLLING)
5282 return 1;
1da177e4 5283
c234fb00
AL
5284 if (ap->hsm_task_state == HSM_ST_FIRST) {
5285 if (qc->tf.protocol == ATA_PROT_PIO &&
5286 (qc->tf.flags & ATA_TFLAG_WRITE))
5287 return 1;
1da177e4 5288
405e66b3 5289 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5290 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5291 return 1;
fe79e683
AL
5292 }
5293
c234fb00
AL
5294 return 0;
5295}
1da177e4 5296
c17ea20d
TH
5297/**
5298 * ata_hsm_qc_complete - finish a qc running on standard HSM
5299 * @qc: Command to complete
5300 * @in_wq: 1 if called from workqueue, 0 otherwise
5301 *
5302 * Finish @qc which is running on standard HSM.
5303 *
5304 * LOCKING:
cca3974e 5305 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5306 * Otherwise, none on entry and grabs host lock.
5307 */
5308static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5309{
5310 struct ata_port *ap = qc->ap;
5311 unsigned long flags;
5312
5313 if (ap->ops->error_handler) {
5314 if (in_wq) {
ba6a1308 5315 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5316
cca3974e
JG
5317 /* EH might have kicked in while host lock is
5318 * released.
c17ea20d
TH
5319 */
5320 qc = ata_qc_from_tag(ap, qc->tag);
5321 if (qc) {
5322 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5323 ap->ops->irq_on(ap);
c17ea20d
TH
5324 ata_qc_complete(qc);
5325 } else
5326 ata_port_freeze(ap);
5327 }
5328
ba6a1308 5329 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5330 } else {
5331 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5332 ata_qc_complete(qc);
5333 else
5334 ata_port_freeze(ap);
5335 }
5336 } else {
5337 if (in_wq) {
ba6a1308 5338 spin_lock_irqsave(ap->lock, flags);
83625006 5339 ap->ops->irq_on(ap);
c17ea20d 5340 ata_qc_complete(qc);
ba6a1308 5341 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5342 } else
5343 ata_qc_complete(qc);
5344 }
5345}
5346
bb5cb290
AL
5347/**
5348 * ata_hsm_move - move the HSM to the next state.
5349 * @ap: the target ata_port
5350 * @qc: qc on going
5351 * @status: current device status
5352 * @in_wq: 1 if called from workqueue, 0 otherwise
5353 *
5354 * RETURNS:
5355 * 1 when poll next status needed, 0 otherwise.
5356 */
9a1004d0
TH
5357int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5358 u8 status, int in_wq)
e2cec771 5359{
bb5cb290
AL
5360 unsigned long flags = 0;
5361 int poll_next;
5362
6912ccd5
AL
5363 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5364
bb5cb290
AL
5365 /* Make sure ata_qc_issue_prot() does not throw things
5366 * like DMA polling into the workqueue. Notice that
5367 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5368 */
c234fb00 5369 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5370
e2cec771 5371fsm_start:
999bb6f4 5372 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5373 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5374
e2cec771
AL
5375 switch (ap->hsm_task_state) {
5376 case HSM_ST_FIRST:
bb5cb290
AL
5377 /* Send first data block or PACKET CDB */
5378
5379 /* If polling, we will stay in the work queue after
5380 * sending the data. Otherwise, interrupt handler
5381 * takes over after sending the data.
5382 */
5383 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5384
e2cec771 5385 /* check device status */
3655d1d3
AL
5386 if (unlikely((status & ATA_DRQ) == 0)) {
5387 /* handle BSY=0, DRQ=0 as error */
5388 if (likely(status & (ATA_ERR | ATA_DF)))
5389 /* device stops HSM for abort/error */
5390 qc->err_mask |= AC_ERR_DEV;
5391 else
5392 /* HSM violation. Let EH handle this */
5393 qc->err_mask |= AC_ERR_HSM;
5394
14be71f4 5395 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5396 goto fsm_start;
1da177e4
LT
5397 }
5398
71601958
AL
5399 /* Device should not ask for data transfer (DRQ=1)
5400 * when it finds something wrong.
eee6c32f
AL
5401 * We ignore DRQ here and stop the HSM by
5402 * changing hsm_task_state to HSM_ST_ERR and
5403 * let the EH abort the command or reset the device.
71601958
AL
5404 */
5405 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5406 /* Some ATAPI tape drives forget to clear the ERR bit
5407 * when doing the next command (mostly request sense).
5408 * We ignore ERR here to workaround and proceed sending
5409 * the CDB.
5410 */
5411 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5412 ata_port_printk(ap, KERN_WARNING,
5413 "DRQ=1 with device error, "
5414 "dev_stat 0x%X\n", status);
5415 qc->err_mask |= AC_ERR_HSM;
5416 ap->hsm_task_state = HSM_ST_ERR;
5417 goto fsm_start;
5418 }
71601958 5419 }
1da177e4 5420
bb5cb290
AL
5421 /* Send the CDB (atapi) or the first data block (ata pio out).
5422 * During the state transition, interrupt handler shouldn't
5423 * be invoked before the data transfer is complete and
5424 * hsm_task_state is changed. Hence, the following locking.
5425 */
5426 if (in_wq)
ba6a1308 5427 spin_lock_irqsave(ap->lock, flags);
1da177e4 5428
bb5cb290
AL
5429 if (qc->tf.protocol == ATA_PROT_PIO) {
5430 /* PIO data out protocol.
5431 * send first data block.
5432 */
0565c26d 5433
bb5cb290
AL
5434 /* ata_pio_sectors() might change the state
5435 * to HSM_ST_LAST. so, the state is changed here
5436 * before ata_pio_sectors().
5437 */
5438 ap->hsm_task_state = HSM_ST;
5439 ata_pio_sectors(qc);
bb5cb290
AL
5440 } else
5441 /* send CDB */
5442 atapi_send_cdb(ap, qc);
5443
5444 if (in_wq)
ba6a1308 5445 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5446
5447 /* if polling, ata_pio_task() handles the rest.
5448 * otherwise, interrupt handler takes over from here.
5449 */
e2cec771 5450 break;
1c848984 5451
e2cec771
AL
5452 case HSM_ST:
5453 /* complete command or read/write the data register */
5454 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5455 /* ATAPI PIO protocol */
5456 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5457 /* No more data to transfer or device error.
5458 * Device error will be tagged in HSM_ST_LAST.
5459 */
e2cec771
AL
5460 ap->hsm_task_state = HSM_ST_LAST;
5461 goto fsm_start;
5462 }
1da177e4 5463
71601958
AL
5464 /* Device should not ask for data transfer (DRQ=1)
5465 * when it finds something wrong.
eee6c32f
AL
5466 * We ignore DRQ here and stop the HSM by
5467 * changing hsm_task_state to HSM_ST_ERR and
5468 * let the EH abort the command or reset the device.
71601958
AL
5469 */
5470 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5471 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5472 "device error, dev_stat 0x%X\n",
5473 status);
3655d1d3 5474 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5475 ap->hsm_task_state = HSM_ST_ERR;
5476 goto fsm_start;
71601958 5477 }
1da177e4 5478
e2cec771 5479 atapi_pio_bytes(qc);
7fb6ec28 5480
e2cec771
AL
5481 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5482 /* bad ireason reported by device */
5483 goto fsm_start;
1da177e4 5484
e2cec771
AL
5485 } else {
5486 /* ATA PIO protocol */
5487 if (unlikely((status & ATA_DRQ) == 0)) {
5488 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5489 if (likely(status & (ATA_ERR | ATA_DF)))
5490 /* device stops HSM for abort/error */
5491 qc->err_mask |= AC_ERR_DEV;
5492 else
55a8e2c8
TH
5493 /* HSM violation. Let EH handle this.
5494 * Phantom devices also trigger this
5495 * condition. Mark hint.
5496 */
5497 qc->err_mask |= AC_ERR_HSM |
5498 AC_ERR_NODEV_HINT;
3655d1d3 5499
e2cec771
AL
5500 ap->hsm_task_state = HSM_ST_ERR;
5501 goto fsm_start;
5502 }
1da177e4 5503
eee6c32f
AL
5504 /* For PIO reads, some devices may ask for
5505 * data transfer (DRQ=1) alone with ERR=1.
5506 * We respect DRQ here and transfer one
5507 * block of junk data before changing the
5508 * hsm_task_state to HSM_ST_ERR.
5509 *
5510 * For PIO writes, ERR=1 DRQ=1 doesn't make
5511 * sense since the data block has been
5512 * transferred to the device.
71601958
AL
5513 */
5514 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5515 /* data might be corrputed */
5516 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5517
5518 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5519 ata_pio_sectors(qc);
eee6c32f
AL
5520 status = ata_wait_idle(ap);
5521 }
5522
3655d1d3
AL
5523 if (status & (ATA_BUSY | ATA_DRQ))
5524 qc->err_mask |= AC_ERR_HSM;
5525
eee6c32f
AL
5526 /* ata_pio_sectors() might change the
5527 * state to HSM_ST_LAST. so, the state
5528 * is changed after ata_pio_sectors().
5529 */
5530 ap->hsm_task_state = HSM_ST_ERR;
5531 goto fsm_start;
71601958
AL
5532 }
5533
e2cec771
AL
5534 ata_pio_sectors(qc);
5535
5536 if (ap->hsm_task_state == HSM_ST_LAST &&
5537 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5538 /* all data read */
52a32205 5539 status = ata_wait_idle(ap);
e2cec771
AL
5540 goto fsm_start;
5541 }
5542 }
5543
bb5cb290 5544 poll_next = 1;
1da177e4
LT
5545 break;
5546
14be71f4 5547 case HSM_ST_LAST:
6912ccd5
AL
5548 if (unlikely(!ata_ok(status))) {
5549 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5550 ap->hsm_task_state = HSM_ST_ERR;
5551 goto fsm_start;
5552 }
5553
5554 /* no more data to transfer */
4332a771 5555 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5556 ap->print_id, qc->dev->devno, status);
e2cec771 5557
6912ccd5
AL
5558 WARN_ON(qc->err_mask);
5559
e2cec771 5560 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5561
e2cec771 5562 /* complete taskfile transaction */
c17ea20d 5563 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5564
5565 poll_next = 0;
1da177e4
LT
5566 break;
5567
14be71f4 5568 case HSM_ST_ERR:
e2cec771
AL
5569 /* make sure qc->err_mask is available to
5570 * know what's wrong and recover
5571 */
5572 WARN_ON(qc->err_mask == 0);
5573
5574 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5575
999bb6f4 5576 /* complete taskfile transaction */
c17ea20d 5577 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5578
5579 poll_next = 0;
e2cec771
AL
5580 break;
5581 default:
bb5cb290 5582 poll_next = 0;
6912ccd5 5583 BUG();
1da177e4
LT
5584 }
5585
bb5cb290 5586 return poll_next;
1da177e4
LT
5587}
5588
65f27f38 5589static void ata_pio_task(struct work_struct *work)
8061f5f0 5590{
65f27f38
DH
5591 struct ata_port *ap =
5592 container_of(work, struct ata_port, port_task.work);
5593 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5594 u8 status;
a1af3734 5595 int poll_next;
8061f5f0 5596
7fb6ec28 5597fsm_start:
a1af3734 5598 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5599
a1af3734
AL
5600 /*
5601 * This is purely heuristic. This is a fast path.
5602 * Sometimes when we enter, BSY will be cleared in
5603 * a chk-status or two. If not, the drive is probably seeking
5604 * or something. Snooze for a couple msecs, then
5605 * chk-status again. If still busy, queue delayed work.
5606 */
5607 status = ata_busy_wait(ap, ATA_BUSY, 5);
5608 if (status & ATA_BUSY) {
5609 msleep(2);
5610 status = ata_busy_wait(ap, ATA_BUSY, 10);
5611 if (status & ATA_BUSY) {
31ce6dae 5612 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5613 return;
5614 }
8061f5f0
TH
5615 }
5616
a1af3734
AL
5617 /* move the HSM */
5618 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5619
a1af3734
AL
5620 /* another command or interrupt handler
5621 * may be running at this point.
5622 */
5623 if (poll_next)
7fb6ec28 5624 goto fsm_start;
8061f5f0
TH
5625}
5626
1da177e4
LT
5627/**
5628 * ata_qc_new - Request an available ATA command, for queueing
5629 * @ap: Port associated with device @dev
5630 * @dev: Device from whom we request an available command structure
5631 *
5632 * LOCKING:
0cba632b 5633 * None.
1da177e4
LT
5634 */
5635
5636static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5637{
5638 struct ata_queued_cmd *qc = NULL;
5639 unsigned int i;
5640
e3180499 5641 /* no command while frozen */
b51e9e5d 5642 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5643 return NULL;
5644
2ab7db1f
TH
5645 /* the last tag is reserved for internal command. */
5646 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5647 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5648 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5649 break;
5650 }
5651
5652 if (qc)
5653 qc->tag = i;
5654
5655 return qc;
5656}
5657
5658/**
5659 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5660 * @dev: Device from whom we request an available command structure
5661 *
5662 * LOCKING:
0cba632b 5663 * None.
1da177e4
LT
5664 */
5665
3373efd8 5666struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5667{
9af5c9c9 5668 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5669 struct ata_queued_cmd *qc;
5670
5671 qc = ata_qc_new(ap);
5672 if (qc) {
1da177e4
LT
5673 qc->scsicmd = NULL;
5674 qc->ap = ap;
5675 qc->dev = dev;
1da177e4 5676
2c13b7ce 5677 ata_qc_reinit(qc);
1da177e4
LT
5678 }
5679
5680 return qc;
5681}
5682
1da177e4
LT
5683/**
5684 * ata_qc_free - free unused ata_queued_cmd
5685 * @qc: Command to complete
5686 *
5687 * Designed to free unused ata_queued_cmd object
5688 * in case something prevents using it.
5689 *
5690 * LOCKING:
cca3974e 5691 * spin_lock_irqsave(host lock)
1da177e4
LT
5692 */
5693void ata_qc_free(struct ata_queued_cmd *qc)
5694{
4ba946e9
TH
5695 struct ata_port *ap = qc->ap;
5696 unsigned int tag;
5697
a4631474 5698 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5699
4ba946e9
TH
5700 qc->flags = 0;
5701 tag = qc->tag;
5702 if (likely(ata_tag_valid(tag))) {
4ba946e9 5703 qc->tag = ATA_TAG_POISON;
6cec4a39 5704 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5705 }
1da177e4
LT
5706}
5707
76014427 5708void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5709{
dedaf2b0 5710 struct ata_port *ap = qc->ap;
9af5c9c9 5711 struct ata_link *link = qc->dev->link;
dedaf2b0 5712
a4631474
TH
5713 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5714 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5715
5716 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5717 ata_sg_clean(qc);
5718
7401abf2 5719 /* command should be marked inactive atomically with qc completion */
da917d69 5720 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5721 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5722 if (!link->sactive)
5723 ap->nr_active_links--;
5724 } else {
9af5c9c9 5725 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5726 ap->nr_active_links--;
5727 }
5728
5729 /* clear exclusive status */
5730 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5731 ap->excl_link == link))
5732 ap->excl_link = NULL;
7401abf2 5733
3f3791d3
AL
5734 /* atapi: mark qc as inactive to prevent the interrupt handler
5735 * from completing the command twice later, before the error handler
5736 * is called. (when rc != 0 and atapi request sense is needed)
5737 */
5738 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5739 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5740
1da177e4 5741 /* call completion callback */
77853bf2 5742 qc->complete_fn(qc);
1da177e4
LT
5743}
5744
39599a53
TH
5745static void fill_result_tf(struct ata_queued_cmd *qc)
5746{
5747 struct ata_port *ap = qc->ap;
5748
39599a53 5749 qc->result_tf.flags = qc->tf.flags;
4742d54f 5750 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5751}
5752
00115e0f
TH
5753static void ata_verify_xfer(struct ata_queued_cmd *qc)
5754{
5755 struct ata_device *dev = qc->dev;
5756
5757 if (ata_tag_internal(qc->tag))
5758 return;
5759
5760 if (ata_is_nodata(qc->tf.protocol))
5761 return;
5762
5763 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5764 return;
5765
5766 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5767}
5768
f686bcb8
TH
5769/**
5770 * ata_qc_complete - Complete an active ATA command
5771 * @qc: Command to complete
5772 * @err_mask: ATA Status register contents
5773 *
5774 * Indicate to the mid and upper layers that an ATA
5775 * command has completed, with either an ok or not-ok status.
5776 *
5777 * LOCKING:
cca3974e 5778 * spin_lock_irqsave(host lock)
f686bcb8
TH
5779 */
5780void ata_qc_complete(struct ata_queued_cmd *qc)
5781{
5782 struct ata_port *ap = qc->ap;
5783
5784 /* XXX: New EH and old EH use different mechanisms to
5785 * synchronize EH with regular execution path.
5786 *
5787 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5788 * Normal execution path is responsible for not accessing a
5789 * failed qc. libata core enforces the rule by returning NULL
5790 * from ata_qc_from_tag() for failed qcs.
5791 *
5792 * Old EH depends on ata_qc_complete() nullifying completion
5793 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5794 * not synchronize with interrupt handler. Only PIO task is
5795 * taken care of.
5796 */
5797 if (ap->ops->error_handler) {
4dbfa39b
TH
5798 struct ata_device *dev = qc->dev;
5799 struct ata_eh_info *ehi = &dev->link->eh_info;
5800
b51e9e5d 5801 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5802
5803 if (unlikely(qc->err_mask))
5804 qc->flags |= ATA_QCFLAG_FAILED;
5805
5806 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5807 if (!ata_tag_internal(qc->tag)) {
5808 /* always fill result TF for failed qc */
39599a53 5809 fill_result_tf(qc);
f686bcb8
TH
5810 ata_qc_schedule_eh(qc);
5811 return;
5812 }
5813 }
5814
5815 /* read result TF if requested */
5816 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5817 fill_result_tf(qc);
f686bcb8 5818
4dbfa39b
TH
5819 /* Some commands need post-processing after successful
5820 * completion.
5821 */
5822 switch (qc->tf.command) {
5823 case ATA_CMD_SET_FEATURES:
5824 if (qc->tf.feature != SETFEATURES_WC_ON &&
5825 qc->tf.feature != SETFEATURES_WC_OFF)
5826 break;
5827 /* fall through */
5828 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5829 case ATA_CMD_SET_MULTI: /* multi_count changed */
5830 /* revalidate device */
5831 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5832 ata_port_schedule_eh(ap);
5833 break;
054a5fba
TH
5834
5835 case ATA_CMD_SLEEP:
5836 dev->flags |= ATA_DFLAG_SLEEPING;
5837 break;
4dbfa39b
TH
5838 }
5839
00115e0f
TH
5840 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5841 ata_verify_xfer(qc);
5842
f686bcb8
TH
5843 __ata_qc_complete(qc);
5844 } else {
5845 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5846 return;
5847
5848 /* read result TF if failed or requested */
5849 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5850 fill_result_tf(qc);
f686bcb8
TH
5851
5852 __ata_qc_complete(qc);
5853 }
5854}
5855
dedaf2b0
TH
5856/**
5857 * ata_qc_complete_multiple - Complete multiple qcs successfully
5858 * @ap: port in question
5859 * @qc_active: new qc_active mask
5860 * @finish_qc: LLDD callback invoked before completing a qc
5861 *
5862 * Complete in-flight commands. This functions is meant to be
5863 * called from low-level driver's interrupt routine to complete
5864 * requests normally. ap->qc_active and @qc_active is compared
5865 * and commands are completed accordingly.
5866 *
5867 * LOCKING:
cca3974e 5868 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5869 *
5870 * RETURNS:
5871 * Number of completed commands on success, -errno otherwise.
5872 */
5873int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5874 void (*finish_qc)(struct ata_queued_cmd *))
5875{
5876 int nr_done = 0;
5877 u32 done_mask;
5878 int i;
5879
5880 done_mask = ap->qc_active ^ qc_active;
5881
5882 if (unlikely(done_mask & qc_active)) {
5883 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5884 "(%08x->%08x)\n", ap->qc_active, qc_active);
5885 return -EINVAL;
5886 }
5887
5888 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5889 struct ata_queued_cmd *qc;
5890
5891 if (!(done_mask & (1 << i)))
5892 continue;
5893
5894 if ((qc = ata_qc_from_tag(ap, i))) {
5895 if (finish_qc)
5896 finish_qc(qc);
5897 ata_qc_complete(qc);
5898 nr_done++;
5899 }
5900 }
5901
5902 return nr_done;
5903}
5904
1da177e4
LT
5905/**
5906 * ata_qc_issue - issue taskfile to device
5907 * @qc: command to issue to device
5908 *
5909 * Prepare an ATA command to submission to device.
5910 * This includes mapping the data into a DMA-able
5911 * area, filling in the S/G table, and finally
5912 * writing the taskfile to hardware, starting the command.
5913 *
5914 * LOCKING:
cca3974e 5915 * spin_lock_irqsave(host lock)
1da177e4 5916 */
8e0e694a 5917void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5918{
5919 struct ata_port *ap = qc->ap;
9af5c9c9 5920 struct ata_link *link = qc->dev->link;
405e66b3 5921 u8 prot = qc->tf.protocol;
1da177e4 5922
dedaf2b0
TH
5923 /* Make sure only one non-NCQ command is outstanding. The
5924 * check is skipped for old EH because it reuses active qc to
5925 * request ATAPI sense.
5926 */
9af5c9c9 5927 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5928
405e66b3 5929 if (prot == ATA_PROT_NCQ) {
9af5c9c9 5930 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5931
5932 if (!link->sactive)
5933 ap->nr_active_links++;
9af5c9c9 5934 link->sactive |= 1 << qc->tag;
dedaf2b0 5935 } else {
9af5c9c9 5936 WARN_ON(link->sactive);
da917d69
TH
5937
5938 ap->nr_active_links++;
9af5c9c9 5939 link->active_tag = qc->tag;
dedaf2b0
TH
5940 }
5941
e4a70e76 5942 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5943 ap->qc_active |= 1 << qc->tag;
e4a70e76 5944
405e66b3
TH
5945 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5946 (ap->flags & ATA_FLAG_PIO_DMA))) {
1da177e4
LT
5947 if (qc->flags & ATA_QCFLAG_SG) {
5948 if (ata_sg_setup(qc))
8e436af9 5949 goto sg_err;
1da177e4
LT
5950 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5951 if (ata_sg_setup_one(qc))
8e436af9 5952 goto sg_err;
1da177e4
LT
5953 }
5954 } else {
5955 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5956 }
5957
054a5fba
TH
5958 /* if device is sleeping, schedule softreset and abort the link */
5959 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5960 link->eh_info.action |= ATA_EH_SOFTRESET;
5961 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5962 ata_link_abort(link);
5963 return;
5964 }
5965
1da177e4
LT
5966 ap->ops->qc_prep(qc);
5967
8e0e694a
TH
5968 qc->err_mask |= ap->ops->qc_issue(qc);
5969 if (unlikely(qc->err_mask))
5970 goto err;
5971 return;
1da177e4 5972
8e436af9
TH
5973sg_err:
5974 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5975 qc->err_mask |= AC_ERR_SYSTEM;
5976err:
5977 ata_qc_complete(qc);
1da177e4
LT
5978}
5979
5980/**
5981 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5982 * @qc: command to issue to device
5983 *
5984 * Using various libata functions and hooks, this function
5985 * starts an ATA command. ATA commands are grouped into
5986 * classes called "protocols", and issuing each type of protocol
5987 * is slightly different.
5988 *
0baab86b
EF
5989 * May be used as the qc_issue() entry in ata_port_operations.
5990 *
1da177e4 5991 * LOCKING:
cca3974e 5992 * spin_lock_irqsave(host lock)
1da177e4
LT
5993 *
5994 * RETURNS:
9a3d9eb0 5995 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5996 */
5997
9a3d9eb0 5998unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5999{
6000 struct ata_port *ap = qc->ap;
6001
e50362ec
AL
6002 /* Use polling pio if the LLD doesn't handle
6003 * interrupt driven pio and atapi CDB interrupt.
6004 */
6005 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6006 switch (qc->tf.protocol) {
6007 case ATA_PROT_PIO:
e3472cbe 6008 case ATA_PROT_NODATA:
e50362ec
AL
6009 case ATA_PROT_ATAPI:
6010 case ATA_PROT_ATAPI_NODATA:
6011 qc->tf.flags |= ATA_TFLAG_POLLING;
6012 break;
6013 case ATA_PROT_ATAPI_DMA:
6014 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6015 /* see ata_dma_blacklisted() */
e50362ec
AL
6016 BUG();
6017 break;
6018 default:
6019 break;
6020 }
6021 }
6022
312f7da2 6023 /* select the device */
1da177e4
LT
6024 ata_dev_select(ap, qc->dev->devno, 1, 0);
6025
312f7da2 6026 /* start the command */
1da177e4
LT
6027 switch (qc->tf.protocol) {
6028 case ATA_PROT_NODATA:
312f7da2
AL
6029 if (qc->tf.flags & ATA_TFLAG_POLLING)
6030 ata_qc_set_polling(qc);
6031
e5338254 6032 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6033 ap->hsm_task_state = HSM_ST_LAST;
6034
6035 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6036 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6037
1da177e4
LT
6038 break;
6039
6040 case ATA_PROT_DMA:
587005de 6041 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6042
1da177e4
LT
6043 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6044 ap->ops->bmdma_setup(qc); /* set up bmdma */
6045 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6046 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6047 break;
6048
312f7da2
AL
6049 case ATA_PROT_PIO:
6050 if (qc->tf.flags & ATA_TFLAG_POLLING)
6051 ata_qc_set_polling(qc);
1da177e4 6052
e5338254 6053 ata_tf_to_host(ap, &qc->tf);
312f7da2 6054
54f00389
AL
6055 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6056 /* PIO data out protocol */
6057 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6058 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6059
6060 /* always send first data block using
e27486db 6061 * the ata_pio_task() codepath.
54f00389 6062 */
312f7da2 6063 } else {
54f00389
AL
6064 /* PIO data in protocol */
6065 ap->hsm_task_state = HSM_ST;
6066
6067 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6068 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6069
6070 /* if polling, ata_pio_task() handles the rest.
6071 * otherwise, interrupt handler takes over from here.
6072 */
312f7da2
AL
6073 }
6074
1da177e4
LT
6075 break;
6076
1da177e4 6077 case ATA_PROT_ATAPI:
1da177e4 6078 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6079 if (qc->tf.flags & ATA_TFLAG_POLLING)
6080 ata_qc_set_polling(qc);
6081
e5338254 6082 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6083
312f7da2
AL
6084 ap->hsm_task_state = HSM_ST_FIRST;
6085
6086 /* send cdb by polling if no cdb interrupt */
6087 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6088 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6089 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6090 break;
6091
6092 case ATA_PROT_ATAPI_DMA:
587005de 6093 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6094
1da177e4
LT
6095 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6096 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6097 ap->hsm_task_state = HSM_ST_FIRST;
6098
6099 /* send cdb by polling if no cdb interrupt */
6100 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6101 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6102 break;
6103
6104 default:
6105 WARN_ON(1);
9a3d9eb0 6106 return AC_ERR_SYSTEM;
1da177e4
LT
6107 }
6108
6109 return 0;
6110}
6111
1da177e4
LT
6112/**
6113 * ata_host_intr - Handle host interrupt for given (port, task)
6114 * @ap: Port on which interrupt arrived (possibly...)
6115 * @qc: Taskfile currently active in engine
6116 *
6117 * Handle host interrupt for given queued command. Currently,
6118 * only DMA interrupts are handled. All other commands are
6119 * handled via polling with interrupts disabled (nIEN bit).
6120 *
6121 * LOCKING:
cca3974e 6122 * spin_lock_irqsave(host lock)
1da177e4
LT
6123 *
6124 * RETURNS:
6125 * One if interrupt was handled, zero if not (shared irq).
6126 */
6127
2dcb407e
JG
6128inline unsigned int ata_host_intr(struct ata_port *ap,
6129 struct ata_queued_cmd *qc)
1da177e4 6130{
9af5c9c9 6131 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6132 u8 status, host_stat = 0;
1da177e4 6133
312f7da2 6134 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6135 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6136
312f7da2
AL
6137 /* Check whether we are expecting interrupt in this state */
6138 switch (ap->hsm_task_state) {
6139 case HSM_ST_FIRST:
6912ccd5
AL
6140 /* Some pre-ATAPI-4 devices assert INTRQ
6141 * at this state when ready to receive CDB.
6142 */
1da177e4 6143
312f7da2 6144 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6145 * The flag was turned on only for atapi devices. No
6146 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6147 */
6148 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6149 goto idle_irq;
1da177e4 6150 break;
312f7da2
AL
6151 case HSM_ST_LAST:
6152 if (qc->tf.protocol == ATA_PROT_DMA ||
6153 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6154 /* check status of DMA engine */
6155 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6156 VPRINTK("ata%u: host_stat 0x%X\n",
6157 ap->print_id, host_stat);
312f7da2
AL
6158
6159 /* if it's not our irq... */
6160 if (!(host_stat & ATA_DMA_INTR))
6161 goto idle_irq;
6162
6163 /* before we do anything else, clear DMA-Start bit */
6164 ap->ops->bmdma_stop(qc);
a4f16610
AL
6165
6166 if (unlikely(host_stat & ATA_DMA_ERR)) {
6167 /* error when transfering data to/from memory */
6168 qc->err_mask |= AC_ERR_HOST_BUS;
6169 ap->hsm_task_state = HSM_ST_ERR;
6170 }
312f7da2
AL
6171 }
6172 break;
6173 case HSM_ST:
6174 break;
1da177e4
LT
6175 default:
6176 goto idle_irq;
6177 }
6178
312f7da2
AL
6179 /* check altstatus */
6180 status = ata_altstatus(ap);
6181 if (status & ATA_BUSY)
6182 goto idle_irq;
1da177e4 6183
312f7da2
AL
6184 /* check main status, clearing INTRQ */
6185 status = ata_chk_status(ap);
6186 if (unlikely(status & ATA_BUSY))
6187 goto idle_irq;
1da177e4 6188
312f7da2
AL
6189 /* ack bmdma irq events */
6190 ap->ops->irq_clear(ap);
1da177e4 6191
bb5cb290 6192 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6193
6194 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6195 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6196 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6197
1da177e4
LT
6198 return 1; /* irq handled */
6199
6200idle_irq:
6201 ap->stats.idle_irq++;
6202
6203#ifdef ATA_IRQ_TRAP
6204 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6205 ata_chk_status(ap);
6206 ap->ops->irq_clear(ap);
f15a1daf 6207 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6208 return 1;
1da177e4
LT
6209 }
6210#endif
6211 return 0; /* irq not handled */
6212}
6213
6214/**
6215 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6216 * @irq: irq line (unused)
cca3974e 6217 * @dev_instance: pointer to our ata_host information structure
1da177e4 6218 *
0cba632b
JG
6219 * Default interrupt handler for PCI IDE devices. Calls
6220 * ata_host_intr() for each port that is not disabled.
6221 *
1da177e4 6222 * LOCKING:
cca3974e 6223 * Obtains host lock during operation.
1da177e4
LT
6224 *
6225 * RETURNS:
0cba632b 6226 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6227 */
6228
2dcb407e 6229irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6230{
cca3974e 6231 struct ata_host *host = dev_instance;
1da177e4
LT
6232 unsigned int i;
6233 unsigned int handled = 0;
6234 unsigned long flags;
6235
6236 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6237 spin_lock_irqsave(&host->lock, flags);
1da177e4 6238
cca3974e 6239 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6240 struct ata_port *ap;
6241
cca3974e 6242 ap = host->ports[i];
c1389503 6243 if (ap &&
029f5468 6244 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6245 struct ata_queued_cmd *qc;
6246
9af5c9c9 6247 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6248 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6249 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6250 handled |= ata_host_intr(ap, qc);
6251 }
6252 }
6253
cca3974e 6254 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6255
6256 return IRQ_RETVAL(handled);
6257}
6258
34bf2170
TH
6259/**
6260 * sata_scr_valid - test whether SCRs are accessible
936fd732 6261 * @link: ATA link to test SCR accessibility for
34bf2170 6262 *
936fd732 6263 * Test whether SCRs are accessible for @link.
34bf2170
TH
6264 *
6265 * LOCKING:
6266 * None.
6267 *
6268 * RETURNS:
6269 * 1 if SCRs are accessible, 0 otherwise.
6270 */
936fd732 6271int sata_scr_valid(struct ata_link *link)
34bf2170 6272{
936fd732
TH
6273 struct ata_port *ap = link->ap;
6274
a16abc0b 6275 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6276}
6277
6278/**
6279 * sata_scr_read - read SCR register of the specified port
936fd732 6280 * @link: ATA link to read SCR for
34bf2170
TH
6281 * @reg: SCR to read
6282 * @val: Place to store read value
6283 *
936fd732 6284 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6285 * guaranteed to succeed if @link is ap->link, the cable type of
6286 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6287 *
6288 * LOCKING:
633273a3 6289 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6290 *
6291 * RETURNS:
6292 * 0 on success, negative errno on failure.
6293 */
936fd732 6294int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6295{
633273a3
TH
6296 if (ata_is_host_link(link)) {
6297 struct ata_port *ap = link->ap;
936fd732 6298
633273a3
TH
6299 if (sata_scr_valid(link))
6300 return ap->ops->scr_read(ap, reg, val);
6301 return -EOPNOTSUPP;
6302 }
6303
6304 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6305}
6306
6307/**
6308 * sata_scr_write - write SCR register of the specified port
936fd732 6309 * @link: ATA link to write SCR for
34bf2170
TH
6310 * @reg: SCR to write
6311 * @val: value to write
6312 *
936fd732 6313 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6314 * guaranteed to succeed if @link is ap->link, the cable type of
6315 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6316 *
6317 * LOCKING:
633273a3 6318 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6319 *
6320 * RETURNS:
6321 * 0 on success, negative errno on failure.
6322 */
936fd732 6323int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6324{
633273a3
TH
6325 if (ata_is_host_link(link)) {
6326 struct ata_port *ap = link->ap;
6327
6328 if (sata_scr_valid(link))
6329 return ap->ops->scr_write(ap, reg, val);
6330 return -EOPNOTSUPP;
6331 }
936fd732 6332
633273a3 6333 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6334}
6335
6336/**
6337 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6338 * @link: ATA link to write SCR for
34bf2170
TH
6339 * @reg: SCR to write
6340 * @val: value to write
6341 *
6342 * This function is identical to sata_scr_write() except that this
6343 * function performs flush after writing to the register.
6344 *
6345 * LOCKING:
633273a3 6346 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6347 *
6348 * RETURNS:
6349 * 0 on success, negative errno on failure.
6350 */
936fd732 6351int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6352{
633273a3
TH
6353 if (ata_is_host_link(link)) {
6354 struct ata_port *ap = link->ap;
6355 int rc;
da3dbb17 6356
633273a3
TH
6357 if (sata_scr_valid(link)) {
6358 rc = ap->ops->scr_write(ap, reg, val);
6359 if (rc == 0)
6360 rc = ap->ops->scr_read(ap, reg, &val);
6361 return rc;
6362 }
6363 return -EOPNOTSUPP;
34bf2170 6364 }
633273a3
TH
6365
6366 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6367}
6368
6369/**
936fd732
TH
6370 * ata_link_online - test whether the given link is online
6371 * @link: ATA link to test
34bf2170 6372 *
936fd732
TH
6373 * Test whether @link is online. Note that this function returns
6374 * 0 if online status of @link cannot be obtained, so
6375 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6376 *
6377 * LOCKING:
6378 * None.
6379 *
6380 * RETURNS:
6381 * 1 if the port online status is available and online.
6382 */
936fd732 6383int ata_link_online(struct ata_link *link)
34bf2170
TH
6384{
6385 u32 sstatus;
6386
936fd732
TH
6387 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6388 (sstatus & 0xf) == 0x3)
34bf2170
TH
6389 return 1;
6390 return 0;
6391}
6392
6393/**
936fd732
TH
6394 * ata_link_offline - test whether the given link is offline
6395 * @link: ATA link to test
34bf2170 6396 *
936fd732
TH
6397 * Test whether @link is offline. Note that this function
6398 * returns 0 if offline status of @link cannot be obtained, so
6399 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6400 *
6401 * LOCKING:
6402 * None.
6403 *
6404 * RETURNS:
6405 * 1 if the port offline status is available and offline.
6406 */
936fd732 6407int ata_link_offline(struct ata_link *link)
34bf2170
TH
6408{
6409 u32 sstatus;
6410
936fd732
TH
6411 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6412 (sstatus & 0xf) != 0x3)
34bf2170
TH
6413 return 1;
6414 return 0;
6415}
0baab86b 6416
77b08fb5 6417int ata_flush_cache(struct ata_device *dev)
9b847548 6418{
977e6b9f 6419 unsigned int err_mask;
9b847548
JA
6420 u8 cmd;
6421
6422 if (!ata_try_flush_cache(dev))
6423 return 0;
6424
6fc49adb 6425 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6426 cmd = ATA_CMD_FLUSH_EXT;
6427 else
6428 cmd = ATA_CMD_FLUSH;
6429
4f34337b
AC
6430 /* This is wrong. On a failed flush we get back the LBA of the lost
6431 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6432 a further flush command to continue the writeback until it
4f34337b 6433 does not error */
977e6b9f
TH
6434 err_mask = ata_do_simple_cmd(dev, cmd);
6435 if (err_mask) {
6436 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6437 return -EIO;
6438 }
6439
6440 return 0;
9b847548
JA
6441}
6442
6ffa01d8 6443#ifdef CONFIG_PM
cca3974e
JG
6444static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6445 unsigned int action, unsigned int ehi_flags,
6446 int wait)
500530f6
TH
6447{
6448 unsigned long flags;
6449 int i, rc;
6450
cca3974e
JG
6451 for (i = 0; i < host->n_ports; i++) {
6452 struct ata_port *ap = host->ports[i];
e3667ebf 6453 struct ata_link *link;
500530f6
TH
6454
6455 /* Previous resume operation might still be in
6456 * progress. Wait for PM_PENDING to clear.
6457 */
6458 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6459 ata_port_wait_eh(ap);
6460 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6461 }
6462
6463 /* request PM ops to EH */
6464 spin_lock_irqsave(ap->lock, flags);
6465
6466 ap->pm_mesg = mesg;
6467 if (wait) {
6468 rc = 0;
6469 ap->pm_result = &rc;
6470 }
6471
6472 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6473 __ata_port_for_each_link(link, ap) {
6474 link->eh_info.action |= action;
6475 link->eh_info.flags |= ehi_flags;
6476 }
500530f6
TH
6477
6478 ata_port_schedule_eh(ap);
6479
6480 spin_unlock_irqrestore(ap->lock, flags);
6481
6482 /* wait and check result */
6483 if (wait) {
6484 ata_port_wait_eh(ap);
6485 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6486 if (rc)
6487 return rc;
6488 }
6489 }
6490
6491 return 0;
6492}
6493
6494/**
cca3974e
JG
6495 * ata_host_suspend - suspend host
6496 * @host: host to suspend
500530f6
TH
6497 * @mesg: PM message
6498 *
cca3974e 6499 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6500 * function requests EH to perform PM operations and waits for EH
6501 * to finish.
6502 *
6503 * LOCKING:
6504 * Kernel thread context (may sleep).
6505 *
6506 * RETURNS:
6507 * 0 on success, -errno on failure.
6508 */
cca3974e 6509int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6510{
9666f400 6511 int rc;
500530f6 6512
ca77329f
KCA
6513 /*
6514 * disable link pm on all ports before requesting
6515 * any pm activity
6516 */
6517 ata_lpm_enable(host);
6518
cca3974e 6519 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6520 if (rc == 0)
6521 host->dev->power.power_state = mesg;
500530f6
TH
6522 return rc;
6523}
6524
6525/**
cca3974e
JG
6526 * ata_host_resume - resume host
6527 * @host: host to resume
500530f6 6528 *
cca3974e 6529 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6530 * function requests EH to perform PM operations and returns.
6531 * Note that all resume operations are performed parallely.
6532 *
6533 * LOCKING:
6534 * Kernel thread context (may sleep).
6535 */
cca3974e 6536void ata_host_resume(struct ata_host *host)
500530f6 6537{
cca3974e
JG
6538 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6539 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6540 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6541
6542 /* reenable link pm */
6543 ata_lpm_disable(host);
500530f6 6544}
6ffa01d8 6545#endif
500530f6 6546
c893a3ae
RD
6547/**
6548 * ata_port_start - Set port up for dma.
6549 * @ap: Port to initialize
6550 *
6551 * Called just after data structures for each port are
6552 * initialized. Allocates space for PRD table.
6553 *
6554 * May be used as the port_start() entry in ata_port_operations.
6555 *
6556 * LOCKING:
6557 * Inherited from caller.
6558 */
f0d36efd 6559int ata_port_start(struct ata_port *ap)
1da177e4 6560{
2f1f610b 6561 struct device *dev = ap->dev;
6037d6bb 6562 int rc;
1da177e4 6563
f0d36efd
TH
6564 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6565 GFP_KERNEL);
1da177e4
LT
6566 if (!ap->prd)
6567 return -ENOMEM;
6568
6037d6bb 6569 rc = ata_pad_alloc(ap, dev);
f0d36efd 6570 if (rc)
6037d6bb 6571 return rc;
1da177e4 6572
f0d36efd
TH
6573 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6574 (unsigned long long)ap->prd_dma);
1da177e4
LT
6575 return 0;
6576}
6577
3ef3b43d
TH
6578/**
6579 * ata_dev_init - Initialize an ata_device structure
6580 * @dev: Device structure to initialize
6581 *
6582 * Initialize @dev in preparation for probing.
6583 *
6584 * LOCKING:
6585 * Inherited from caller.
6586 */
6587void ata_dev_init(struct ata_device *dev)
6588{
9af5c9c9
TH
6589 struct ata_link *link = dev->link;
6590 struct ata_port *ap = link->ap;
72fa4b74
TH
6591 unsigned long flags;
6592
5a04bf4b 6593 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6594 link->sata_spd_limit = link->hw_sata_spd_limit;
6595 link->sata_spd = 0;
5a04bf4b 6596
72fa4b74
TH
6597 /* High bits of dev->flags are used to record warm plug
6598 * requests which occur asynchronously. Synchronize using
cca3974e 6599 * host lock.
72fa4b74 6600 */
ba6a1308 6601 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6602 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6603 dev->horkage = 0;
ba6a1308 6604 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6605
72fa4b74
TH
6606 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6607 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6608 dev->pio_mask = UINT_MAX;
6609 dev->mwdma_mask = UINT_MAX;
6610 dev->udma_mask = UINT_MAX;
6611}
6612
4fb37a25
TH
6613/**
6614 * ata_link_init - Initialize an ata_link structure
6615 * @ap: ATA port link is attached to
6616 * @link: Link structure to initialize
8989805d 6617 * @pmp: Port multiplier port number
4fb37a25
TH
6618 *
6619 * Initialize @link.
6620 *
6621 * LOCKING:
6622 * Kernel thread context (may sleep)
6623 */
fb7fd614 6624void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6625{
6626 int i;
6627
6628 /* clear everything except for devices */
6629 memset(link, 0, offsetof(struct ata_link, device[0]));
6630
6631 link->ap = ap;
8989805d 6632 link->pmp = pmp;
4fb37a25
TH
6633 link->active_tag = ATA_TAG_POISON;
6634 link->hw_sata_spd_limit = UINT_MAX;
6635
6636 /* can't use iterator, ap isn't initialized yet */
6637 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6638 struct ata_device *dev = &link->device[i];
6639
6640 dev->link = link;
6641 dev->devno = dev - link->device;
6642 ata_dev_init(dev);
6643 }
6644}
6645
6646/**
6647 * sata_link_init_spd - Initialize link->sata_spd_limit
6648 * @link: Link to configure sata_spd_limit for
6649 *
6650 * Initialize @link->[hw_]sata_spd_limit to the currently
6651 * configured value.
6652 *
6653 * LOCKING:
6654 * Kernel thread context (may sleep).
6655 *
6656 * RETURNS:
6657 * 0 on success, -errno on failure.
6658 */
fb7fd614 6659int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6660{
6661 u32 scontrol, spd;
6662 int rc;
6663
6664 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6665 if (rc)
6666 return rc;
6667
6668 spd = (scontrol >> 4) & 0xf;
6669 if (spd)
6670 link->hw_sata_spd_limit &= (1 << spd) - 1;
6671
6672 link->sata_spd_limit = link->hw_sata_spd_limit;
6673
6674 return 0;
6675}
6676
1da177e4 6677/**
f3187195
TH
6678 * ata_port_alloc - allocate and initialize basic ATA port resources
6679 * @host: ATA host this allocated port belongs to
1da177e4 6680 *
f3187195
TH
6681 * Allocate and initialize basic ATA port resources.
6682 *
6683 * RETURNS:
6684 * Allocate ATA port on success, NULL on failure.
0cba632b 6685 *
1da177e4 6686 * LOCKING:
f3187195 6687 * Inherited from calling layer (may sleep).
1da177e4 6688 */
f3187195 6689struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6690{
f3187195 6691 struct ata_port *ap;
1da177e4 6692
f3187195
TH
6693 DPRINTK("ENTER\n");
6694
6695 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6696 if (!ap)
6697 return NULL;
6698
f4d6d004 6699 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6700 ap->lock = &host->lock;
198e0fed 6701 ap->flags = ATA_FLAG_DISABLED;
f3187195 6702 ap->print_id = -1;
1da177e4 6703 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6704 ap->host = host;
f3187195 6705 ap->dev = host->dev;
1da177e4 6706 ap->last_ctl = 0xFF;
bd5d825c
BP
6707
6708#if defined(ATA_VERBOSE_DEBUG)
6709 /* turn on all debugging levels */
6710 ap->msg_enable = 0x00FF;
6711#elif defined(ATA_DEBUG)
6712 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6713#else
0dd4b21f 6714 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6715#endif
1da177e4 6716
65f27f38
DH
6717 INIT_DELAYED_WORK(&ap->port_task, NULL);
6718 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6719 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6720 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6721 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6722 init_timer_deferrable(&ap->fastdrain_timer);
6723 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6724 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6725
838df628 6726 ap->cbl = ATA_CBL_NONE;
838df628 6727
8989805d 6728 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6729
6730#ifdef ATA_IRQ_TRAP
6731 ap->stats.unhandled_irq = 1;
6732 ap->stats.idle_irq = 1;
6733#endif
1da177e4 6734 return ap;
1da177e4
LT
6735}
6736
f0d36efd
TH
6737static void ata_host_release(struct device *gendev, void *res)
6738{
6739 struct ata_host *host = dev_get_drvdata(gendev);
6740 int i;
6741
1aa506e4
TH
6742 for (i = 0; i < host->n_ports; i++) {
6743 struct ata_port *ap = host->ports[i];
6744
4911487a
TH
6745 if (!ap)
6746 continue;
6747
6748 if (ap->scsi_host)
1aa506e4
TH
6749 scsi_host_put(ap->scsi_host);
6750
633273a3 6751 kfree(ap->pmp_link);
4911487a 6752 kfree(ap);
1aa506e4
TH
6753 host->ports[i] = NULL;
6754 }
6755
1aa56cca 6756 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6757}
6758
f3187195
TH
6759/**
6760 * ata_host_alloc - allocate and init basic ATA host resources
6761 * @dev: generic device this host is associated with
6762 * @max_ports: maximum number of ATA ports associated with this host
6763 *
6764 * Allocate and initialize basic ATA host resources. LLD calls
6765 * this function to allocate a host, initializes it fully and
6766 * attaches it using ata_host_register().
6767 *
6768 * @max_ports ports are allocated and host->n_ports is
6769 * initialized to @max_ports. The caller is allowed to decrease
6770 * host->n_ports before calling ata_host_register(). The unused
6771 * ports will be automatically freed on registration.
6772 *
6773 * RETURNS:
6774 * Allocate ATA host on success, NULL on failure.
6775 *
6776 * LOCKING:
6777 * Inherited from calling layer (may sleep).
6778 */
6779struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6780{
6781 struct ata_host *host;
6782 size_t sz;
6783 int i;
6784
6785 DPRINTK("ENTER\n");
6786
6787 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6788 return NULL;
6789
6790 /* alloc a container for our list of ATA ports (buses) */
6791 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6792 /* alloc a container for our list of ATA ports (buses) */
6793 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6794 if (!host)
6795 goto err_out;
6796
6797 devres_add(dev, host);
6798 dev_set_drvdata(dev, host);
6799
6800 spin_lock_init(&host->lock);
6801 host->dev = dev;
6802 host->n_ports = max_ports;
6803
6804 /* allocate ports bound to this host */
6805 for (i = 0; i < max_ports; i++) {
6806 struct ata_port *ap;
6807
6808 ap = ata_port_alloc(host);
6809 if (!ap)
6810 goto err_out;
6811
6812 ap->port_no = i;
6813 host->ports[i] = ap;
6814 }
6815
6816 devres_remove_group(dev, NULL);
6817 return host;
6818
6819 err_out:
6820 devres_release_group(dev, NULL);
6821 return NULL;
6822}
6823
f5cda257
TH
6824/**
6825 * ata_host_alloc_pinfo - alloc host and init with port_info array
6826 * @dev: generic device this host is associated with
6827 * @ppi: array of ATA port_info to initialize host with
6828 * @n_ports: number of ATA ports attached to this host
6829 *
6830 * Allocate ATA host and initialize with info from @ppi. If NULL
6831 * terminated, @ppi may contain fewer entries than @n_ports. The
6832 * last entry will be used for the remaining ports.
6833 *
6834 * RETURNS:
6835 * Allocate ATA host on success, NULL on failure.
6836 *
6837 * LOCKING:
6838 * Inherited from calling layer (may sleep).
6839 */
6840struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6841 const struct ata_port_info * const * ppi,
6842 int n_ports)
6843{
6844 const struct ata_port_info *pi;
6845 struct ata_host *host;
6846 int i, j;
6847
6848 host = ata_host_alloc(dev, n_ports);
6849 if (!host)
6850 return NULL;
6851
6852 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6853 struct ata_port *ap = host->ports[i];
6854
6855 if (ppi[j])
6856 pi = ppi[j++];
6857
6858 ap->pio_mask = pi->pio_mask;
6859 ap->mwdma_mask = pi->mwdma_mask;
6860 ap->udma_mask = pi->udma_mask;
6861 ap->flags |= pi->flags;
0c88758b 6862 ap->link.flags |= pi->link_flags;
f5cda257
TH
6863 ap->ops = pi->port_ops;
6864
6865 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6866 host->ops = pi->port_ops;
6867 if (!host->private_data && pi->private_data)
6868 host->private_data = pi->private_data;
6869 }
6870
6871 return host;
6872}
6873
32ebbc0c
TH
6874static void ata_host_stop(struct device *gendev, void *res)
6875{
6876 struct ata_host *host = dev_get_drvdata(gendev);
6877 int i;
6878
6879 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6880
6881 for (i = 0; i < host->n_ports; i++) {
6882 struct ata_port *ap = host->ports[i];
6883
6884 if (ap->ops->port_stop)
6885 ap->ops->port_stop(ap);
6886 }
6887
6888 if (host->ops->host_stop)
6889 host->ops->host_stop(host);
6890}
6891
ecef7253
TH
6892/**
6893 * ata_host_start - start and freeze ports of an ATA host
6894 * @host: ATA host to start ports for
6895 *
6896 * Start and then freeze ports of @host. Started status is
6897 * recorded in host->flags, so this function can be called
6898 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6899 * once. If host->ops isn't initialized yet, its set to the
6900 * first non-dummy port ops.
ecef7253
TH
6901 *
6902 * LOCKING:
6903 * Inherited from calling layer (may sleep).
6904 *
6905 * RETURNS:
6906 * 0 if all ports are started successfully, -errno otherwise.
6907 */
6908int ata_host_start(struct ata_host *host)
6909{
32ebbc0c
TH
6910 int have_stop = 0;
6911 void *start_dr = NULL;
ecef7253
TH
6912 int i, rc;
6913
6914 if (host->flags & ATA_HOST_STARTED)
6915 return 0;
6916
6917 for (i = 0; i < host->n_ports; i++) {
6918 struct ata_port *ap = host->ports[i];
6919
f3187195
TH
6920 if (!host->ops && !ata_port_is_dummy(ap))
6921 host->ops = ap->ops;
6922
32ebbc0c
TH
6923 if (ap->ops->port_stop)
6924 have_stop = 1;
6925 }
6926
6927 if (host->ops->host_stop)
6928 have_stop = 1;
6929
6930 if (have_stop) {
6931 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6932 if (!start_dr)
6933 return -ENOMEM;
6934 }
6935
6936 for (i = 0; i < host->n_ports; i++) {
6937 struct ata_port *ap = host->ports[i];
6938
ecef7253
TH
6939 if (ap->ops->port_start) {
6940 rc = ap->ops->port_start(ap);
6941 if (rc) {
0f9fe9b7 6942 if (rc != -ENODEV)
0f757743
AM
6943 dev_printk(KERN_ERR, host->dev,
6944 "failed to start port %d "
6945 "(errno=%d)\n", i, rc);
ecef7253
TH
6946 goto err_out;
6947 }
6948 }
ecef7253
TH
6949 ata_eh_freeze_port(ap);
6950 }
6951
32ebbc0c
TH
6952 if (start_dr)
6953 devres_add(host->dev, start_dr);
ecef7253
TH
6954 host->flags |= ATA_HOST_STARTED;
6955 return 0;
6956
6957 err_out:
6958 while (--i >= 0) {
6959 struct ata_port *ap = host->ports[i];
6960
6961 if (ap->ops->port_stop)
6962 ap->ops->port_stop(ap);
6963 }
32ebbc0c 6964 devres_free(start_dr);
ecef7253
TH
6965 return rc;
6966}
6967
b03732f0 6968/**
cca3974e
JG
6969 * ata_sas_host_init - Initialize a host struct
6970 * @host: host to initialize
6971 * @dev: device host is attached to
6972 * @flags: host flags
6973 * @ops: port_ops
b03732f0
BK
6974 *
6975 * LOCKING:
6976 * PCI/etc. bus probe sem.
6977 *
6978 */
f3187195 6979/* KILLME - the only user left is ipr */
cca3974e
JG
6980void ata_host_init(struct ata_host *host, struct device *dev,
6981 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6982{
cca3974e
JG
6983 spin_lock_init(&host->lock);
6984 host->dev = dev;
6985 host->flags = flags;
6986 host->ops = ops;
b03732f0
BK
6987}
6988
f3187195
TH
6989/**
6990 * ata_host_register - register initialized ATA host
6991 * @host: ATA host to register
6992 * @sht: template for SCSI host
6993 *
6994 * Register initialized ATA host. @host is allocated using
6995 * ata_host_alloc() and fully initialized by LLD. This function
6996 * starts ports, registers @host with ATA and SCSI layers and
6997 * probe registered devices.
6998 *
6999 * LOCKING:
7000 * Inherited from calling layer (may sleep).
7001 *
7002 * RETURNS:
7003 * 0 on success, -errno otherwise.
7004 */
7005int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7006{
7007 int i, rc;
7008
7009 /* host must have been started */
7010 if (!(host->flags & ATA_HOST_STARTED)) {
7011 dev_printk(KERN_ERR, host->dev,
7012 "BUG: trying to register unstarted host\n");
7013 WARN_ON(1);
7014 return -EINVAL;
7015 }
7016
7017 /* Blow away unused ports. This happens when LLD can't
7018 * determine the exact number of ports to allocate at
7019 * allocation time.
7020 */
7021 for (i = host->n_ports; host->ports[i]; i++)
7022 kfree(host->ports[i]);
7023
7024 /* give ports names and add SCSI hosts */
7025 for (i = 0; i < host->n_ports; i++)
7026 host->ports[i]->print_id = ata_print_id++;
7027
7028 rc = ata_scsi_add_hosts(host, sht);
7029 if (rc)
7030 return rc;
7031
fafbae87
TH
7032 /* associate with ACPI nodes */
7033 ata_acpi_associate(host);
7034
f3187195
TH
7035 /* set cable, sata_spd_limit and report */
7036 for (i = 0; i < host->n_ports; i++) {
7037 struct ata_port *ap = host->ports[i];
f3187195
TH
7038 unsigned long xfer_mask;
7039
7040 /* set SATA cable type if still unset */
7041 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7042 ap->cbl = ATA_CBL_SATA;
7043
7044 /* init sata_spd_limit to the current value */
4fb37a25 7045 sata_link_init_spd(&ap->link);
f3187195 7046
cbcdd875 7047 /* print per-port info to dmesg */
f3187195
TH
7048 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7049 ap->udma_mask);
7050
abf6e8ed 7051 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7052 ata_port_printk(ap, KERN_INFO,
7053 "%cATA max %s %s\n",
a16abc0b 7054 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7055 ata_mode_string(xfer_mask),
cbcdd875 7056 ap->link.eh_info.desc);
abf6e8ed
TH
7057 ata_ehi_clear_desc(&ap->link.eh_info);
7058 } else
f3187195
TH
7059 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7060 }
7061
7062 /* perform each probe synchronously */
7063 DPRINTK("probe begin\n");
7064 for (i = 0; i < host->n_ports; i++) {
7065 struct ata_port *ap = host->ports[i];
7066 int rc;
7067
7068 /* probe */
7069 if (ap->ops->error_handler) {
9af5c9c9 7070 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7071 unsigned long flags;
7072
7073 ata_port_probe(ap);
7074
7075 /* kick EH for boot probing */
7076 spin_lock_irqsave(ap->lock, flags);
7077
f58229f8
TH
7078 ehi->probe_mask =
7079 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7080 ehi->action |= ATA_EH_SOFTRESET;
7081 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7082
f4d6d004 7083 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7084 ap->pflags |= ATA_PFLAG_LOADING;
7085 ata_port_schedule_eh(ap);
7086
7087 spin_unlock_irqrestore(ap->lock, flags);
7088
7089 /* wait for EH to finish */
7090 ata_port_wait_eh(ap);
7091 } else {
7092 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7093 rc = ata_bus_probe(ap);
7094 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7095
7096 if (rc) {
7097 /* FIXME: do something useful here?
7098 * Current libata behavior will
7099 * tear down everything when
7100 * the module is removed
7101 * or the h/w is unplugged.
7102 */
7103 }
7104 }
7105 }
7106
7107 /* probes are done, now scan each port's disk(s) */
7108 DPRINTK("host probe begin\n");
7109 for (i = 0; i < host->n_ports; i++) {
7110 struct ata_port *ap = host->ports[i];
7111
1ae46317 7112 ata_scsi_scan_host(ap, 1);
ca77329f 7113 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7114 }
7115
7116 return 0;
7117}
7118
f5cda257
TH
7119/**
7120 * ata_host_activate - start host, request IRQ and register it
7121 * @host: target ATA host
7122 * @irq: IRQ to request
7123 * @irq_handler: irq_handler used when requesting IRQ
7124 * @irq_flags: irq_flags used when requesting IRQ
7125 * @sht: scsi_host_template to use when registering the host
7126 *
7127 * After allocating an ATA host and initializing it, most libata
7128 * LLDs perform three steps to activate the host - start host,
7129 * request IRQ and register it. This helper takes necessasry
7130 * arguments and performs the three steps in one go.
7131 *
3d46b2e2
PM
7132 * An invalid IRQ skips the IRQ registration and expects the host to
7133 * have set polling mode on the port. In this case, @irq_handler
7134 * should be NULL.
7135 *
f5cda257
TH
7136 * LOCKING:
7137 * Inherited from calling layer (may sleep).
7138 *
7139 * RETURNS:
7140 * 0 on success, -errno otherwise.
7141 */
7142int ata_host_activate(struct ata_host *host, int irq,
7143 irq_handler_t irq_handler, unsigned long irq_flags,
7144 struct scsi_host_template *sht)
7145{
cbcdd875 7146 int i, rc;
f5cda257
TH
7147
7148 rc = ata_host_start(host);
7149 if (rc)
7150 return rc;
7151
3d46b2e2
PM
7152 /* Special case for polling mode */
7153 if (!irq) {
7154 WARN_ON(irq_handler);
7155 return ata_host_register(host, sht);
7156 }
7157
f5cda257
TH
7158 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7159 dev_driver_string(host->dev), host);
7160 if (rc)
7161 return rc;
7162
cbcdd875
TH
7163 for (i = 0; i < host->n_ports; i++)
7164 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7165
f5cda257
TH
7166 rc = ata_host_register(host, sht);
7167 /* if failed, just free the IRQ and leave ports alone */
7168 if (rc)
7169 devm_free_irq(host->dev, irq, host);
7170
7171 return rc;
7172}
7173
720ba126
TH
7174/**
7175 * ata_port_detach - Detach ATA port in prepration of device removal
7176 * @ap: ATA port to be detached
7177 *
7178 * Detach all ATA devices and the associated SCSI devices of @ap;
7179 * then, remove the associated SCSI host. @ap is guaranteed to
7180 * be quiescent on return from this function.
7181 *
7182 * LOCKING:
7183 * Kernel thread context (may sleep).
7184 */
741b7763 7185static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7186{
7187 unsigned long flags;
41bda9c9 7188 struct ata_link *link;
f58229f8 7189 struct ata_device *dev;
720ba126
TH
7190
7191 if (!ap->ops->error_handler)
c3cf30a9 7192 goto skip_eh;
720ba126
TH
7193
7194 /* tell EH we're leaving & flush EH */
ba6a1308 7195 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7196 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7197 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7198
7199 ata_port_wait_eh(ap);
7200
7f9ad9b8
TH
7201 /* EH is now guaranteed to see UNLOADING - EH context belongs
7202 * to us. Disable all existing devices.
720ba126 7203 */
41bda9c9
TH
7204 ata_port_for_each_link(link, ap) {
7205 ata_link_for_each_dev(dev, link)
7206 ata_dev_disable(dev);
7207 }
720ba126 7208
720ba126
TH
7209 /* Final freeze & EH. All in-flight commands are aborted. EH
7210 * will be skipped and retrials will be terminated with bad
7211 * target.
7212 */
ba6a1308 7213 spin_lock_irqsave(ap->lock, flags);
720ba126 7214 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7215 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7216
7217 ata_port_wait_eh(ap);
45a66c1c 7218 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7219
c3cf30a9 7220 skip_eh:
720ba126 7221 /* remove the associated SCSI host */
cca3974e 7222 scsi_remove_host(ap->scsi_host);
720ba126
TH
7223}
7224
0529c159
TH
7225/**
7226 * ata_host_detach - Detach all ports of an ATA host
7227 * @host: Host to detach
7228 *
7229 * Detach all ports of @host.
7230 *
7231 * LOCKING:
7232 * Kernel thread context (may sleep).
7233 */
7234void ata_host_detach(struct ata_host *host)
7235{
7236 int i;
7237
7238 for (i = 0; i < host->n_ports; i++)
7239 ata_port_detach(host->ports[i]);
562f0c2d
TH
7240
7241 /* the host is dead now, dissociate ACPI */
7242 ata_acpi_dissociate(host);
0529c159
TH
7243}
7244
1da177e4
LT
7245/**
7246 * ata_std_ports - initialize ioaddr with standard port offsets.
7247 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7248 *
7249 * Utility function which initializes data_addr, error_addr,
7250 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7251 * device_addr, status_addr, and command_addr to standard offsets
7252 * relative to cmd_addr.
7253 *
7254 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7255 */
0baab86b 7256
1da177e4
LT
7257void ata_std_ports(struct ata_ioports *ioaddr)
7258{
7259 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7260 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7261 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7262 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7263 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7264 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7265 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7266 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7267 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7268 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7269}
7270
0baab86b 7271
374b1873
JG
7272#ifdef CONFIG_PCI
7273
1da177e4
LT
7274/**
7275 * ata_pci_remove_one - PCI layer callback for device removal
7276 * @pdev: PCI device that was removed
7277 *
b878ca5d
TH
7278 * PCI layer indicates to libata via this hook that hot-unplug or
7279 * module unload event has occurred. Detach all ports. Resource
7280 * release is handled via devres.
1da177e4
LT
7281 *
7282 * LOCKING:
7283 * Inherited from PCI layer (may sleep).
7284 */
f0d36efd 7285void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7286{
2855568b 7287 struct device *dev = &pdev->dev;
cca3974e 7288 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7289
b878ca5d 7290 ata_host_detach(host);
1da177e4
LT
7291}
7292
7293/* move to PCI subsystem */
057ace5e 7294int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7295{
7296 unsigned long tmp = 0;
7297
7298 switch (bits->width) {
7299 case 1: {
7300 u8 tmp8 = 0;
7301 pci_read_config_byte(pdev, bits->reg, &tmp8);
7302 tmp = tmp8;
7303 break;
7304 }
7305 case 2: {
7306 u16 tmp16 = 0;
7307 pci_read_config_word(pdev, bits->reg, &tmp16);
7308 tmp = tmp16;
7309 break;
7310 }
7311 case 4: {
7312 u32 tmp32 = 0;
7313 pci_read_config_dword(pdev, bits->reg, &tmp32);
7314 tmp = tmp32;
7315 break;
7316 }
7317
7318 default:
7319 return -EINVAL;
7320 }
7321
7322 tmp &= bits->mask;
7323
7324 return (tmp == bits->val) ? 1 : 0;
7325}
9b847548 7326
6ffa01d8 7327#ifdef CONFIG_PM
3c5100c1 7328void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7329{
7330 pci_save_state(pdev);
4c90d971 7331 pci_disable_device(pdev);
500530f6 7332
4c90d971 7333 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7334 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7335}
7336
553c4aa6 7337int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7338{
553c4aa6
TH
7339 int rc;
7340
9b847548
JA
7341 pci_set_power_state(pdev, PCI_D0);
7342 pci_restore_state(pdev);
553c4aa6 7343
b878ca5d 7344 rc = pcim_enable_device(pdev);
553c4aa6
TH
7345 if (rc) {
7346 dev_printk(KERN_ERR, &pdev->dev,
7347 "failed to enable device after resume (%d)\n", rc);
7348 return rc;
7349 }
7350
9b847548 7351 pci_set_master(pdev);
553c4aa6 7352 return 0;
500530f6
TH
7353}
7354
3c5100c1 7355int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7356{
cca3974e 7357 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7358 int rc = 0;
7359
cca3974e 7360 rc = ata_host_suspend(host, mesg);
500530f6
TH
7361 if (rc)
7362 return rc;
7363
3c5100c1 7364 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7365
7366 return 0;
7367}
7368
7369int ata_pci_device_resume(struct pci_dev *pdev)
7370{
cca3974e 7371 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7372 int rc;
500530f6 7373
553c4aa6
TH
7374 rc = ata_pci_device_do_resume(pdev);
7375 if (rc == 0)
7376 ata_host_resume(host);
7377 return rc;
9b847548 7378}
6ffa01d8
TH
7379#endif /* CONFIG_PM */
7380
1da177e4
LT
7381#endif /* CONFIG_PCI */
7382
7383
1da177e4
LT
7384static int __init ata_init(void)
7385{
a8601e5f 7386 ata_probe_timeout *= HZ;
1da177e4
LT
7387 ata_wq = create_workqueue("ata");
7388 if (!ata_wq)
7389 return -ENOMEM;
7390
453b07ac
TH
7391 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7392 if (!ata_aux_wq) {
7393 destroy_workqueue(ata_wq);
7394 return -ENOMEM;
7395 }
7396
1da177e4
LT
7397 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7398 return 0;
7399}
7400
7401static void __exit ata_exit(void)
7402{
7403 destroy_workqueue(ata_wq);
453b07ac 7404 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7405}
7406
a4625085 7407subsys_initcall(ata_init);
1da177e4
LT
7408module_exit(ata_exit);
7409
67846b30 7410static unsigned long ratelimit_time;
34af946a 7411static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7412
7413int ata_ratelimit(void)
7414{
7415 int rc;
7416 unsigned long flags;
7417
7418 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7419
7420 if (time_after(jiffies, ratelimit_time)) {
7421 rc = 1;
7422 ratelimit_time = jiffies + (HZ/5);
7423 } else
7424 rc = 0;
7425
7426 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7427
7428 return rc;
7429}
7430
c22daff4
TH
7431/**
7432 * ata_wait_register - wait until register value changes
7433 * @reg: IO-mapped register
7434 * @mask: Mask to apply to read register value
7435 * @val: Wait condition
7436 * @interval_msec: polling interval in milliseconds
7437 * @timeout_msec: timeout in milliseconds
7438 *
7439 * Waiting for some bits of register to change is a common
7440 * operation for ATA controllers. This function reads 32bit LE
7441 * IO-mapped register @reg and tests for the following condition.
7442 *
7443 * (*@reg & mask) != val
7444 *
7445 * If the condition is met, it returns; otherwise, the process is
7446 * repeated after @interval_msec until timeout.
7447 *
7448 * LOCKING:
7449 * Kernel thread context (may sleep)
7450 *
7451 * RETURNS:
7452 * The final register value.
7453 */
7454u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7455 unsigned long interval_msec,
7456 unsigned long timeout_msec)
7457{
7458 unsigned long timeout;
7459 u32 tmp;
7460
7461 tmp = ioread32(reg);
7462
7463 /* Calculate timeout _after_ the first read to make sure
7464 * preceding writes reach the controller before starting to
7465 * eat away the timeout.
7466 */
7467 timeout = jiffies + (timeout_msec * HZ) / 1000;
7468
7469 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7470 msleep(interval_msec);
7471 tmp = ioread32(reg);
7472 }
7473
7474 return tmp;
7475}
7476
dd5b06c4
TH
7477/*
7478 * Dummy port_ops
7479 */
7480static void ata_dummy_noret(struct ata_port *ap) { }
7481static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7482static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7483
7484static u8 ata_dummy_check_status(struct ata_port *ap)
7485{
7486 return ATA_DRDY;
7487}
7488
7489static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7490{
7491 return AC_ERR_SYSTEM;
7492}
7493
7494const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7495 .check_status = ata_dummy_check_status,
7496 .check_altstatus = ata_dummy_check_status,
7497 .dev_select = ata_noop_dev_select,
7498 .qc_prep = ata_noop_qc_prep,
7499 .qc_issue = ata_dummy_qc_issue,
7500 .freeze = ata_dummy_noret,
7501 .thaw = ata_dummy_noret,
7502 .error_handler = ata_dummy_noret,
7503 .post_internal_cmd = ata_dummy_qc_noret,
7504 .irq_clear = ata_dummy_noret,
7505 .port_start = ata_dummy_ret0,
7506 .port_stop = ata_dummy_noret,
7507};
7508
21b0ad4f
TH
7509const struct ata_port_info ata_dummy_port_info = {
7510 .port_ops = &ata_dummy_port_ops,
7511};
7512
1da177e4
LT
7513/*
7514 * libata is essentially a library of internal helper functions for
7515 * low-level ATA host controller drivers. As such, the API/ABI is
7516 * likely to change as new drivers are added and updated.
7517 * Do not depend on ABI/API stability.
7518 */
e9c83914
TH
7519EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7520EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7521EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7522EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7523EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7524EXPORT_SYMBOL_GPL(ata_std_bios_param);
7525EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7526EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7527EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7528EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7529EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7530EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7531EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7532EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7533EXPORT_SYMBOL_GPL(ata_sg_init);
7534EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7535EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7536EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7537EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7538EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7539EXPORT_SYMBOL_GPL(ata_tf_load);
7540EXPORT_SYMBOL_GPL(ata_tf_read);
7541EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7542EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7543EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7544EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7545EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
7546EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7547EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7548EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7549EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7550EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7551EXPORT_SYMBOL_GPL(ata_mode_string);
7552EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4
LT
7553EXPORT_SYMBOL_GPL(ata_check_status);
7554EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7555EXPORT_SYMBOL_GPL(ata_exec_command);
7556EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7557EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7558EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7559EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7560EXPORT_SYMBOL_GPL(ata_data_xfer);
7561EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7562EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7563EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7564EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7565EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7566EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7567EXPORT_SYMBOL_GPL(ata_bmdma_start);
7568EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7569EXPORT_SYMBOL_GPL(ata_bmdma_status);
7570EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7571EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7572EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7573EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7574EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7575EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7576EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7577EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7578EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7579EXPORT_SYMBOL_GPL(sata_link_debounce);
7580EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7581EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7582EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7583EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7584EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7585EXPORT_SYMBOL_GPL(sata_std_hardreset);
7586EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7587EXPORT_SYMBOL_GPL(ata_dev_classify);
7588EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7589EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7590EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7591EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7592EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7593EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7594EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7595EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7596EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7597EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7598EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7599EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7600EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7601EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7602EXPORT_SYMBOL_GPL(sata_scr_valid);
7603EXPORT_SYMBOL_GPL(sata_scr_read);
7604EXPORT_SYMBOL_GPL(sata_scr_write);
7605EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7606EXPORT_SYMBOL_GPL(ata_link_online);
7607EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7608#ifdef CONFIG_PM
cca3974e
JG
7609EXPORT_SYMBOL_GPL(ata_host_suspend);
7610EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7611#endif /* CONFIG_PM */
6a62a04d
TH
7612EXPORT_SYMBOL_GPL(ata_id_string);
7613EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
7614EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7615
1bc4ccff 7616EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 7617EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
7618EXPORT_SYMBOL_GPL(ata_timing_compute);
7619EXPORT_SYMBOL_GPL(ata_timing_merge);
7620
1da177e4
LT
7621#ifdef CONFIG_PCI
7622EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7623EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7624EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7625EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7626EXPORT_SYMBOL_GPL(ata_pci_init_one);
7627EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7628#ifdef CONFIG_PM
500530f6
TH
7629EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7630EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7631EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7632EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7633#endif /* CONFIG_PM */
67951ade
AC
7634EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7635EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7636#endif /* CONFIG_PCI */
9b847548 7637
31f88384 7638EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7639EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7640EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7641EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7642EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7643
b64bbc39
TH
7644EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7645EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7646EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7647EXPORT_SYMBOL_GPL(ata_port_desc);
7648#ifdef CONFIG_PCI
7649EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7650#endif /* CONFIG_PCI */
7b70fc03 7651EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7652EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7653EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7654EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7655EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7656EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7657EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7658EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7659EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7660EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7661EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7662EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7663
7664EXPORT_SYMBOL_GPL(ata_cable_40wire);
7665EXPORT_SYMBOL_GPL(ata_cable_80wire);
7666EXPORT_SYMBOL_GPL(ata_cable_unknown);
7667EXPORT_SYMBOL_GPL(ata_cable_sata);