]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/ata/libata-core.c
[PATCH] ata: Generic platform_device libata driver
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1
AL
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
1da177e4 203 *
2e9edbf8 204 * Examine the device configuration and tf->flags to calculate
8cbd6df1 205 * the proper read/write commands and protocol to use.
1da177e4
LT
206 *
207 * LOCKING:
208 * caller.
209 */
9a3dccc4 210int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 211{
8cbd6df1
AL
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
9a3dccc4 214 u8 cmd;
1da177e4 215
9a3dccc4 216 int index, fua, lba48, write;
2e9edbf8 217
9a3dccc4 218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 221
8cbd6df1
AL
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
9a3dccc4 224 index = dev->multi_count ? 0 : 8;
8d238e01
AC
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
0565c26d 228 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
229 } else {
230 tf->protocol = ATA_PROT_DMA;
9a3dccc4 231 index = 16;
8cbd6df1 232 }
1da177e4 233
9a3dccc4
TH
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
1da177e4
LT
240}
241
cb95d562
TH
242/**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260{
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264}
265
c0489e4e
TH
266/**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280{
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287}
288
cb95d562 289static const struct ata_xfer_ent {
be9a50c8 290 int shift, bits;
cb95d562
TH
291 u8 base;
292} ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297};
298
299/**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313{
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321}
322
323/**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336{
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343}
344
345/**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357static int ata_xfer_mode2shift(unsigned int xfer_mode)
358{
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365}
366
1da177e4 367/**
1da7b0d0
TH
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
370 *
371 * Determine string which represents the highest speed
1da7b0d0 372 * (highest bit in @modemask).
1da177e4
LT
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
1da7b0d0 379 * @mode_mask, or the constant C string "<n/a>".
1da177e4 380 */
1da7b0d0 381static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 382{
75f554bc
TH
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
b352e57d
AC
389 "PIO5",
390 "PIO6",
75f554bc
TH
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
b352e57d
AC
394 "MWDMA3",
395 "MWDMA4",
75f554bc
TH
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
1da7b0d0 405 int highbit;
1da177e4 406
1da7b0d0
TH
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
1da177e4 410 return "<n/a>";
1da177e4
LT
411}
412
4c360c81
TH
413static const char *sata_spd_string(unsigned int spd)
414{
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423}
424
3373efd8 425void ata_dev_disable(struct ata_device *dev)
0b8efb0a 426{
0dd4b21f 427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
429 dev->class++;
430 }
431}
432
1da177e4
LT
433/**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453{
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475}
476
477/**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497{
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519}
520
521/**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536{
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540}
541
542/**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
057ace5e 558unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
559{
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579}
580
581/**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
b4dc7623 585 * @r_err: Value of error register on completion
1da177e4
LT
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
b4dc7623
TH
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
601 */
602
b4dc7623
TH
603static unsigned int
604ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 605{
1da177e4
LT
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
1da177e4 614 ap->ops->tf_read(ap, &tf);
0169e284 615 err = tf.feature;
b4dc7623
TH
616 if (r_err)
617 *r_err = err;
1da177e4 618
93590859
AC
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
1da177e4
LT
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629
b4dc7623 630 /* determine if device is ATA or ATAPI */
1da177e4 631 class = ata_dev_classify(&tf);
b4dc7623 632
1da177e4 633 if (class == ATA_DEV_UNKNOWN)
b4dc7623 634 return ATA_DEV_NONE;
1da177e4 635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
636 return ATA_DEV_NONE;
637 return class;
1da177e4
LT
638}
639
640/**
6a62a04d 641 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
6a62a04d
TH
655void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
1da177e4
LT
657{
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672}
673
0e949ff3 674/**
6a62a04d 675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
6a62a04d 681 * This function is identical to ata_id_string except that it
0e949ff3
TH
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
6a62a04d
TH
688void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
0e949ff3
TH
690{
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
6a62a04d 695 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701}
0baab86b 702
2940740b
TH
703static u64 ata_id_n_sectors(const u16 *id)
704{
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716}
717
0baab86b
EF
718/**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
1da177e4
LT
730void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731{
732}
733
0baab86b 734
1da177e4
LT
735/**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
0baab86b
EF
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
745 *
746 * LOCKING:
747 * caller.
748 */
749
750void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751{
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765}
766
767/**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788{
88574551 789 if (ata_msg_probe(ap))
0dd4b21f 790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 791 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803}
804
805/**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 807 * @id: IDENTIFY DEVICE page to dump
1da177e4 808 *
0bd3300a
TH
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
1da177e4
LT
811 *
812 * LOCKING:
813 * caller.
814 */
815
0bd3300a 816static inline void ata_dump_id(const u16 *id)
1da177e4
LT
817{
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
0bd3300a
TH
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
1da177e4
LT
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
0bd3300a
TH
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
1da177e4
LT
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
0bd3300a
TH
840 id[88],
841 id[93]);
1da177e4
LT
842}
843
cb95d562
TH
844/**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859static unsigned int ata_id_xfermask(const u16 *id)
860{
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
46767aeb
AC
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
cb95d562
TH
878
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
884 */
885 }
886
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 888
b352e57d
AC
889 if (ata_id_is_cfa(id)) {
890 /*
891 * Process compact flash extended modes
892 */
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
895
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
904 }
905
fb21f0d0
TH
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
909
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
911}
912
86e45b6b
TH
913/**
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
86e45b6b
TH
919 *
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
924 *
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
928 *
929 * LOCKING:
930 * Inherited from caller.
931 */
932void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
934{
935 int rc;
936
b51e9e5d 937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
938 return;
939
940 PREPARE_WORK(&ap->port_task, fn, data);
941
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
946
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
949}
950
951/**
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
954 *
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
957 *
958 * LOCKING:
959 * Kernel thread context (may sleep)
960 */
961void ata_port_flush_task(struct ata_port *ap)
962{
963 unsigned long flags;
964
965 DPRINTK("ENTER\n");
966
ba6a1308 967 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 969 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
970
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
973
974 /*
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
978 */
979 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 980 if (ata_msg_ctl(ap))
88574551
TH
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
86e45b6b
TH
983 flush_workqueue(ata_wq);
984 }
985
ba6a1308 986 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 988 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 989
0dd4b21f
BP
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
992}
993
77853bf2 994void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 995{
77853bf2 996 struct completion *waiting = qc->private_data;
a2a7a662 997
a2a7a662 998 complete(waiting);
a2a7a662
TH
999}
1000
1001/**
1002 * ata_exec_internal - execute libata internal command
a2a7a662
TH
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
d69cf37d 1005 * @cdb: CDB for packet command
a2a7a662
TH
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1009 *
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1015 *
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
551e8889
TH
1018 *
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1021 */
3373efd8 1022unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1025{
3373efd8 1026 struct ata_port *ap = dev->ap;
a2a7a662
TH
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
2ab7db1f 1029 unsigned int tag, preempted_tag;
dedaf2b0 1030 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1031 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1032 unsigned long flags;
77853bf2 1033 unsigned int err_mask;
d95a717f 1034 int rc;
a2a7a662 1035
ba6a1308 1036 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1037
e3180499 1038 /* no internal command while frozen */
b51e9e5d 1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1040 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1041 return AC_ERR_SYSTEM;
1042 }
1043
2ab7db1f 1044 /* initialize internal qc */
a2a7a662 1045
2ab7db1f
TH
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1050 */
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1055
6cec4a39 1056 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1057 BUG();
f69499f4 1058 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1059
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1065
1066 preempted_tag = ap->active_tag;
dedaf2b0
TH
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
2ab7db1f 1069 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
2ab7db1f
TH
1072
1073 /* prepare & issue qc */
a2a7a662 1074 qc->tf = *tf;
d69cf37d
TH
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1082 }
1083
77853bf2 1084 qc->private_data = &wait;
a2a7a662
TH
1085 qc->complete_fn = ata_qc_complete_internal;
1086
8e0e694a 1087 ata_qc_issue(qc);
a2a7a662 1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1090
a8601e5f 1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1092
1093 ata_port_flush_task(ap);
41ade50c 1094
d95a717f 1095 if (!rc) {
ba6a1308 1096 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1097
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
d95a717f
TH
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
a2a7a662 1102 */
77853bf2 1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1105
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
f15a1daf 1110
0dd4b21f
BP
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
88574551 1113 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1114 }
1115
ba6a1308 1116 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1117 }
1118
d95a717f
TH
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1122
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1124 if (ata_msg_warn(ap))
88574551 1125 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1126 "zero err_mask for failed "
88574551 1127 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1128 qc->err_mask |= AC_ERR_OTHER;
1129 }
1130
15869303 1131 /* finish up */
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
15869303 1133
e61e0672 1134 *tf = qc->result_tf;
77853bf2
TH
1135 err_mask = qc->err_mask;
1136
1137 ata_qc_free(qc);
2ab7db1f 1138 ap->active_tag = preempted_tag;
dedaf2b0
TH
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
77853bf2 1141
1f7dd3e9
TH
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1146 *
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1150 *
1151 * Kill the following code as soon as those drivers are fixed.
1152 */
198e0fed 1153 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1156 }
1157
ba6a1308 1158 spin_unlock_irqrestore(ap->lock, flags);
15869303 1159
77853bf2 1160 return err_mask;
a2a7a662
TH
1161}
1162
977e6b9f
TH
1163/**
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1167 *
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1170 *
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1173 *
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
e58eb583 1176 */
77b08fb5 1177unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1178{
1179 struct ata_taskfile tf;
e58eb583
TH
1180
1181 ata_tf_init(dev, &tf);
1182
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1186
977e6b9f 1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1188}
1189
1bc4ccff
AC
1190/**
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1193 *
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1196 */
1197
1198unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1199{
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1202
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
2e9edbf8 1207
1bc4ccff
AC
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1209
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1218 }
1219 }
1220 return 0;
1221}
1222
1da177e4 1223/**
49016aca 1224 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
fe635c7e 1228 * @id: buffer to read IDENTIFY data into
1da177e4 1229 *
49016aca
TH
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1da177e4
LT
1234 *
1235 * LOCKING:
49016aca
TH
1236 * Kernel thread context (may sleep)
1237 *
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1da177e4 1240 */
a9beec95
TH
1241int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1da177e4 1243{
3373efd8 1244 struct ata_port *ap = dev->ap;
49016aca 1245 unsigned int class = *p_class;
a0123703 1246 struct ata_taskfile tf;
49016aca
TH
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1da177e4 1250
0dd4b21f 1251 if (ata_msg_ctl(ap))
88574551
TH
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1da177e4 1254
49016aca 1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1256
49016aca 1257 retry:
3373efd8 1258 ata_tf_init(dev, &tf);
a0123703 1259
49016aca
TH
1260 switch (class) {
1261 case ATA_DEV_ATA:
a0123703 1262 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1263 break;
1264 case ATA_DEV_ATAPI:
a0123703 1265 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1da177e4
LT
1271 }
1272
a0123703 1273 tf.protocol = ATA_PROT_PIO;
1da177e4 1274
3373efd8 1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1276 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1277 if (err_mask) {
49016aca
TH
1278 rc = -EIO;
1279 reason = "I/O error";
1da177e4
LT
1280 goto err_out;
1281 }
1282
49016aca 1283 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1284
49016aca 1285 /* sanity check */
a4f5749b
TH
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1288
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
49016aca
TH
1295 }
1296
1297 if (post_reset && class == ATA_DEV_ATA) {
1298 /*
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1305 */
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1312 }
1313
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1316 */
1317 post_reset = 0;
1318 goto retry;
1319 }
1320 }
1321
1322 *p_class = class;
fe635c7e 1323
49016aca
TH
1324 return 0;
1325
1326 err_out:
88574551 1327 if (ata_msg_warn(ap))
0dd4b21f 1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1330 return rc;
1331}
1332
3373efd8 1333static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1334{
3373efd8 1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1336}
1337
a6e6ce8e
TH
1338static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1340{
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1343
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1347 }
6919a0a6
AC
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1350 return;
1351 }
a6e6ce8e 1352 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1354 dev->flags |= ATA_DFLAG_NCQ;
1355 }
1356
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1359 else
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1361}
1362
e6d902a3
BK
1363static void ata_set_port_max_cmd_len(struct ata_port *ap)
1364{
1365 int i;
1366
cca3974e
JG
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1369
e6d902a3 1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1371 len = max(len, ap->device[i].cdb_len);
1372
1373 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1374 }
1375}
1376
49016aca 1377/**
ffeae418 1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1379 * @dev: Target device to configure
4c2d721a 1380 * @print_info: Enable device info printout
ffeae418
TH
1381 *
1382 * Configure @dev according to @dev->id. Generic and low-level
1383 * driver specific fixups are also applied.
49016aca
TH
1384 *
1385 * LOCKING:
ffeae418
TH
1386 * Kernel thread context (may sleep)
1387 *
1388 * RETURNS:
1389 * 0 on success, -errno otherwise
49016aca 1390 */
a9beec95 1391int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1392{
3373efd8 1393 struct ata_port *ap = dev->ap;
1148c3a7 1394 const u16 *id = dev->id;
ff8854b2 1395 unsigned int xfer_mask;
b352e57d 1396 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1397 int rc;
49016aca 1398
0dd4b21f 1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
ffeae418 1403 return 0;
49016aca
TH
1404 }
1405
0dd4b21f 1406 if (ata_msg_probe(ap))
88574551
TH
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1da177e4 1409
c39f5ebe 1410 /* print device capabilities */
0dd4b21f 1411 if (ata_msg_probe(ap))
88574551
TH
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1415 __FUNCTION__,
f15a1daf
TH
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
c39f5ebe 1418
208a9933 1419 /* initialize to-be-configured parameters */
ea1dd4e1 1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1421 dev->max_sectors = 0;
1422 dev->cdb_len = 0;
1423 dev->n_sectors = 0;
1424 dev->cylinders = 0;
1425 dev->heads = 0;
1426 dev->sectors = 0;
1427
1da177e4
LT
1428 /*
1429 * common ATA, ATAPI feature tests
1430 */
1431
ff8854b2 1432 /* find max transfer mode; for printk only */
1148c3a7 1433 xfer_mask = ata_id_xfermask(id);
1da177e4 1434
0dd4b21f
BP
1435 if (ata_msg_probe(ap))
1436 ata_dump_id(id);
1da177e4
LT
1437
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1445 }
1446 else
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1448
1148c3a7 1449 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1450
1148c3a7 1451 if (ata_id_has_lba(id)) {
4c2d721a 1452 const char *lba_desc;
a6e6ce8e 1453 char ncq_desc[20];
8bf62ece 1454
4c2d721a
TH
1455 lba_desc = "LBA";
1456 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1457 if (ata_id_has_lba48(id)) {
8bf62ece 1458 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1459 lba_desc = "LBA48";
1460 }
8bf62ece 1461
a6e6ce8e
TH
1462 /* config NCQ */
1463 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1464
8bf62ece 1465 /* print device info to dmesg */
5afc8142 1466 if (ata_msg_drv(ap) && print_info)
b352e57d 1467 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1468 "max %s, %Lu sectors: %s %s\n",
b352e57d 1469 revbuf,
f15a1daf
TH
1470 ata_mode_string(xfer_mask),
1471 (unsigned long long)dev->n_sectors,
a6e6ce8e 1472 lba_desc, ncq_desc);
ffeae418 1473 } else {
8bf62ece
AL
1474 /* CHS */
1475
1476 /* Default translation */
1148c3a7
TH
1477 dev->cylinders = id[1];
1478 dev->heads = id[3];
1479 dev->sectors = id[6];
8bf62ece 1480
1148c3a7 1481 if (ata_id_current_chs_valid(id)) {
8bf62ece 1482 /* Current CHS translation is valid. */
1148c3a7
TH
1483 dev->cylinders = id[54];
1484 dev->heads = id[55];
1485 dev->sectors = id[56];
8bf62ece
AL
1486 }
1487
1488 /* print device info to dmesg */
5afc8142 1489 if (ata_msg_drv(ap) && print_info)
b352e57d 1490 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1491 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1492 revbuf,
f15a1daf
TH
1493 ata_mode_string(xfer_mask),
1494 (unsigned long long)dev->n_sectors,
88574551
TH
1495 dev->cylinders, dev->heads,
1496 dev->sectors);
1da177e4
LT
1497 }
1498
07f6f7d0
AL
1499 if (dev->id[59] & 0x100) {
1500 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1501 if (ata_msg_drv(ap) && print_info)
88574551
TH
1502 ata_dev_printk(dev, KERN_INFO,
1503 "ata%u: dev %u multi count %u\n",
1504 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1505 }
1506
6e7846e9 1507 dev->cdb_len = 16;
1da177e4
LT
1508 }
1509
1510 /* ATAPI-specific feature tests */
2c13b7ce 1511 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1512 char *cdb_intr_string = "";
1513
1148c3a7 1514 rc = atapi_cdb_len(id);
1da177e4 1515 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1516 if (ata_msg_warn(ap))
88574551
TH
1517 ata_dev_printk(dev, KERN_WARNING,
1518 "unsupported CDB len\n");
ffeae418 1519 rc = -EINVAL;
1da177e4
LT
1520 goto err_out_nosup;
1521 }
6e7846e9 1522 dev->cdb_len = (unsigned int) rc;
1da177e4 1523
08a556db 1524 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1525 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1526 cdb_intr_string = ", CDB intr";
1527 }
312f7da2 1528
1da177e4 1529 /* print device info to dmesg */
5afc8142 1530 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1531 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1532 ata_mode_string(xfer_mask),
1533 cdb_intr_string);
1da177e4
LT
1534 }
1535
93590859
AC
1536 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1537 /* Let the user know. We don't want to disallow opens for
1538 rescue purposes, or in case the vendor is just a blithering
1539 idiot */
1540 if (print_info) {
1541 ata_dev_printk(dev, KERN_WARNING,
1542"Drive reports diagnostics failure. This may indicate a drive\n");
1543 ata_dev_printk(dev, KERN_WARNING,
1544"fault or invalid emulation. Contact drive vendor for information.\n");
1545 }
1546 }
1547
e6d902a3 1548 ata_set_port_max_cmd_len(ap);
6e7846e9 1549
4b2f3ede 1550 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1551 if (ata_dev_knobble(dev)) {
5afc8142 1552 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1553 ata_dev_printk(dev, KERN_INFO,
1554 "applying bridge limits\n");
5a529139 1555 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1556 dev->max_sectors = ATA_MAX_SECTORS;
1557 }
1558
1559 if (ap->ops->dev_config)
1560 ap->ops->dev_config(ap, dev);
1561
0dd4b21f
BP
1562 if (ata_msg_probe(ap))
1563 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1564 __FUNCTION__, ata_chk_status(ap));
ffeae418 1565 return 0;
1da177e4
LT
1566
1567err_out_nosup:
0dd4b21f 1568 if (ata_msg_probe(ap))
88574551
TH
1569 ata_dev_printk(dev, KERN_DEBUG,
1570 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1571 return rc;
1da177e4
LT
1572}
1573
1574/**
1575 * ata_bus_probe - Reset and probe ATA bus
1576 * @ap: Bus to probe
1577 *
0cba632b
JG
1578 * Master ATA bus probing function. Initiates a hardware-dependent
1579 * bus reset, then attempts to identify any devices found on
1580 * the bus.
1581 *
1da177e4 1582 * LOCKING:
0cba632b 1583 * PCI/etc. bus probe sem.
1da177e4
LT
1584 *
1585 * RETURNS:
96072e69 1586 * Zero on success, negative errno otherwise.
1da177e4
LT
1587 */
1588
80289167 1589int ata_bus_probe(struct ata_port *ap)
1da177e4 1590{
28ca5c57 1591 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1592 int tries[ATA_MAX_DEVICES];
1593 int i, rc, down_xfermask;
e82cbdb9 1594 struct ata_device *dev;
1da177e4 1595
28ca5c57 1596 ata_port_probe(ap);
c19ba8af 1597
14d2bac1
TH
1598 for (i = 0; i < ATA_MAX_DEVICES; i++)
1599 tries[i] = ATA_PROBE_MAX_TRIES;
1600
1601 retry:
1602 down_xfermask = 0;
1603
2044470c 1604 /* reset and determine device classes */
52783c5d 1605 ap->ops->phy_reset(ap);
2061a47a 1606
52783c5d
TH
1607 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1608 dev = &ap->device[i];
c19ba8af 1609
52783c5d
TH
1610 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1611 dev->class != ATA_DEV_UNKNOWN)
1612 classes[dev->devno] = dev->class;
1613 else
1614 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1615
52783c5d 1616 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1617 }
1da177e4 1618
52783c5d 1619 ata_port_probe(ap);
2044470c 1620
b6079ca4
AC
1621 /* after the reset the device state is PIO 0 and the controller
1622 state is undefined. Record the mode */
1623
1624 for (i = 0; i < ATA_MAX_DEVICES; i++)
1625 ap->device[i].pio_mode = XFER_PIO_0;
1626
28ca5c57 1627 /* read IDENTIFY page and configure devices */
1da177e4 1628 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1629 dev = &ap->device[i];
28ca5c57 1630
ec573755
TH
1631 if (tries[i])
1632 dev->class = classes[i];
ffeae418 1633
14d2bac1 1634 if (!ata_dev_enabled(dev))
ffeae418 1635 continue;
ffeae418 1636
3373efd8 1637 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1638 if (rc)
1639 goto fail;
1640
3373efd8 1641 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1642 if (rc)
1643 goto fail;
1da177e4
LT
1644 }
1645
e82cbdb9 1646 /* configure transfer mode */
3adcebb2 1647 rc = ata_set_mode(ap, &dev);
51713d35
TH
1648 if (rc) {
1649 down_xfermask = 1;
1650 goto fail;
e82cbdb9 1651 }
1da177e4 1652
e82cbdb9
TH
1653 for (i = 0; i < ATA_MAX_DEVICES; i++)
1654 if (ata_dev_enabled(&ap->device[i]))
1655 return 0;
1da177e4 1656
e82cbdb9
TH
1657 /* no device present, disable port */
1658 ata_port_disable(ap);
1da177e4 1659 ap->ops->port_disable(ap);
96072e69 1660 return -ENODEV;
14d2bac1
TH
1661
1662 fail:
1663 switch (rc) {
1664 case -EINVAL:
1665 case -ENODEV:
1666 tries[dev->devno] = 0;
1667 break;
1668 case -EIO:
3c567b7d 1669 sata_down_spd_limit(ap);
14d2bac1
TH
1670 /* fall through */
1671 default:
1672 tries[dev->devno]--;
1673 if (down_xfermask &&
3373efd8 1674 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1675 tries[dev->devno] = 0;
1676 }
1677
ec573755 1678 if (!tries[dev->devno]) {
3373efd8
TH
1679 ata_down_xfermask_limit(dev, 1);
1680 ata_dev_disable(dev);
ec573755
TH
1681 }
1682
14d2bac1 1683 goto retry;
1da177e4
LT
1684}
1685
1686/**
0cba632b
JG
1687 * ata_port_probe - Mark port as enabled
1688 * @ap: Port for which we indicate enablement
1da177e4 1689 *
0cba632b
JG
1690 * Modify @ap data structure such that the system
1691 * thinks that the entire port is enabled.
1692 *
cca3974e 1693 * LOCKING: host lock, or some other form of
0cba632b 1694 * serialization.
1da177e4
LT
1695 */
1696
1697void ata_port_probe(struct ata_port *ap)
1698{
198e0fed 1699 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1700}
1701
3be680b7
TH
1702/**
1703 * sata_print_link_status - Print SATA link status
1704 * @ap: SATA port to printk link status about
1705 *
1706 * This function prints link speed and status of a SATA link.
1707 *
1708 * LOCKING:
1709 * None.
1710 */
1711static void sata_print_link_status(struct ata_port *ap)
1712{
6d5f9732 1713 u32 sstatus, scontrol, tmp;
3be680b7 1714
81952c54 1715 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1716 return;
81952c54 1717 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1718
81952c54 1719 if (ata_port_online(ap)) {
3be680b7 1720 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1721 ata_port_printk(ap, KERN_INFO,
1722 "SATA link up %s (SStatus %X SControl %X)\n",
1723 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1724 } else {
f15a1daf
TH
1725 ata_port_printk(ap, KERN_INFO,
1726 "SATA link down (SStatus %X SControl %X)\n",
1727 sstatus, scontrol);
3be680b7
TH
1728 }
1729}
1730
1da177e4 1731/**
780a87f7
JG
1732 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1733 * @ap: SATA port associated with target SATA PHY.
1da177e4 1734 *
780a87f7
JG
1735 * This function issues commands to standard SATA Sxxx
1736 * PHY registers, to wake up the phy (and device), and
1737 * clear any reset condition.
1da177e4
LT
1738 *
1739 * LOCKING:
0cba632b 1740 * PCI/etc. bus probe sem.
1da177e4
LT
1741 *
1742 */
1743void __sata_phy_reset(struct ata_port *ap)
1744{
1745 u32 sstatus;
1746 unsigned long timeout = jiffies + (HZ * 5);
1747
1748 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1749 /* issue phy wake/reset */
81952c54 1750 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1751 /* Couldn't find anything in SATA I/II specs, but
1752 * AHCI-1.1 10.4.2 says at least 1 ms. */
1753 mdelay(1);
1da177e4 1754 }
81952c54
TH
1755 /* phy wake/clear reset */
1756 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1757
1758 /* wait for phy to become ready, if necessary */
1759 do {
1760 msleep(200);
81952c54 1761 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1762 if ((sstatus & 0xf) != 1)
1763 break;
1764 } while (time_before(jiffies, timeout));
1765
3be680b7
TH
1766 /* print link status */
1767 sata_print_link_status(ap);
656563e3 1768
3be680b7 1769 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1770 if (!ata_port_offline(ap))
1da177e4 1771 ata_port_probe(ap);
3be680b7 1772 else
1da177e4 1773 ata_port_disable(ap);
1da177e4 1774
198e0fed 1775 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1776 return;
1777
1778 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1779 ata_port_disable(ap);
1780 return;
1781 }
1782
1783 ap->cbl = ATA_CBL_SATA;
1784}
1785
1786/**
780a87f7
JG
1787 * sata_phy_reset - Reset SATA bus.
1788 * @ap: SATA port associated with target SATA PHY.
1da177e4 1789 *
780a87f7
JG
1790 * This function resets the SATA bus, and then probes
1791 * the bus for devices.
1da177e4
LT
1792 *
1793 * LOCKING:
0cba632b 1794 * PCI/etc. bus probe sem.
1da177e4
LT
1795 *
1796 */
1797void sata_phy_reset(struct ata_port *ap)
1798{
1799 __sata_phy_reset(ap);
198e0fed 1800 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1801 return;
1802 ata_bus_reset(ap);
1803}
1804
ebdfca6e
AC
1805/**
1806 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1807 * @adev: device
1808 *
1809 * Obtain the other device on the same cable, or if none is
1810 * present NULL is returned
1811 */
2e9edbf8 1812
3373efd8 1813struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1814{
3373efd8 1815 struct ata_port *ap = adev->ap;
ebdfca6e 1816 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1817 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1818 return NULL;
1819 return pair;
1820}
1821
1da177e4 1822/**
780a87f7
JG
1823 * ata_port_disable - Disable port.
1824 * @ap: Port to be disabled.
1da177e4 1825 *
780a87f7
JG
1826 * Modify @ap data structure such that the system
1827 * thinks that the entire port is disabled, and should
1828 * never attempt to probe or communicate with devices
1829 * on this port.
1830 *
cca3974e 1831 * LOCKING: host lock, or some other form of
780a87f7 1832 * serialization.
1da177e4
LT
1833 */
1834
1835void ata_port_disable(struct ata_port *ap)
1836{
1837 ap->device[0].class = ATA_DEV_NONE;
1838 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1839 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1840}
1841
1c3fae4d 1842/**
3c567b7d 1843 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1844 * @ap: Port to adjust SATA spd limit for
1845 *
1846 * Adjust SATA spd limit of @ap downward. Note that this
1847 * function only adjusts the limit. The change must be applied
3c567b7d 1848 * using sata_set_spd().
1c3fae4d
TH
1849 *
1850 * LOCKING:
1851 * Inherited from caller.
1852 *
1853 * RETURNS:
1854 * 0 on success, negative errno on failure
1855 */
3c567b7d 1856int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1857{
81952c54
TH
1858 u32 sstatus, spd, mask;
1859 int rc, highbit;
1c3fae4d 1860
81952c54
TH
1861 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1862 if (rc)
1863 return rc;
1c3fae4d
TH
1864
1865 mask = ap->sata_spd_limit;
1866 if (mask <= 1)
1867 return -EINVAL;
1868 highbit = fls(mask) - 1;
1869 mask &= ~(1 << highbit);
1870
81952c54 1871 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1872 if (spd <= 1)
1873 return -EINVAL;
1874 spd--;
1875 mask &= (1 << spd) - 1;
1876 if (!mask)
1877 return -EINVAL;
1878
1879 ap->sata_spd_limit = mask;
1880
f15a1daf
TH
1881 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1882 sata_spd_string(fls(mask)));
1c3fae4d
TH
1883
1884 return 0;
1885}
1886
3c567b7d 1887static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1888{
1889 u32 spd, limit;
1890
1891 if (ap->sata_spd_limit == UINT_MAX)
1892 limit = 0;
1893 else
1894 limit = fls(ap->sata_spd_limit);
1895
1896 spd = (*scontrol >> 4) & 0xf;
1897 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1898
1899 return spd != limit;
1900}
1901
1902/**
3c567b7d 1903 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1904 * @ap: Port in question
1905 *
1906 * Test whether the spd limit in SControl matches
1907 * @ap->sata_spd_limit. This function is used to determine
1908 * whether hardreset is necessary to apply SATA spd
1909 * configuration.
1910 *
1911 * LOCKING:
1912 * Inherited from caller.
1913 *
1914 * RETURNS:
1915 * 1 if SATA spd configuration is needed, 0 otherwise.
1916 */
3c567b7d 1917int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1918{
1919 u32 scontrol;
1920
81952c54 1921 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1922 return 0;
1923
3c567b7d 1924 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1925}
1926
1927/**
3c567b7d 1928 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1929 * @ap: Port to set SATA spd for
1930 *
1931 * Set SATA spd of @ap according to sata_spd_limit.
1932 *
1933 * LOCKING:
1934 * Inherited from caller.
1935 *
1936 * RETURNS:
1937 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1938 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1939 */
3c567b7d 1940int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1941{
1942 u32 scontrol;
81952c54 1943 int rc;
1c3fae4d 1944
81952c54
TH
1945 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1946 return rc;
1c3fae4d 1947
3c567b7d 1948 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1949 return 0;
1950
81952c54
TH
1951 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1952 return rc;
1953
1c3fae4d
TH
1954 return 1;
1955}
1956
452503f9
AC
1957/*
1958 * This mode timing computation functionality is ported over from
1959 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1960 */
1961/*
b352e57d 1962 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 1963 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
1964 * for UDMA6, which is currently supported only by Maxtor drives.
1965 *
1966 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
1967 */
1968
1969static const struct ata_timing ata_timing[] = {
1970
1971 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1972 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1973 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1974 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1975
b352e57d
AC
1976 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1977 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
1978 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1979 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1980 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1981
1982/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1983
452503f9
AC
1984 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1985 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1986 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1987
452503f9
AC
1988 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1989 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1990 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1991
b352e57d
AC
1992 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1993 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
1994 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1995 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1996
1997 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1998 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1999 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2000
2001/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2002
2003 { 0xFF }
2004};
2005
2006#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2007#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2008
2009static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2010{
2011 q->setup = EZ(t->setup * 1000, T);
2012 q->act8b = EZ(t->act8b * 1000, T);
2013 q->rec8b = EZ(t->rec8b * 1000, T);
2014 q->cyc8b = EZ(t->cyc8b * 1000, T);
2015 q->active = EZ(t->active * 1000, T);
2016 q->recover = EZ(t->recover * 1000, T);
2017 q->cycle = EZ(t->cycle * 1000, T);
2018 q->udma = EZ(t->udma * 1000, UT);
2019}
2020
2021void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2022 struct ata_timing *m, unsigned int what)
2023{
2024 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2025 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2026 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2027 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2028 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2029 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2030 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2031 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2032}
2033
2034static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2035{
2036 const struct ata_timing *t;
2037
2038 for (t = ata_timing; t->mode != speed; t++)
91190758 2039 if (t->mode == 0xFF)
452503f9 2040 return NULL;
2e9edbf8 2041 return t;
452503f9
AC
2042}
2043
2044int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2045 struct ata_timing *t, int T, int UT)
2046{
2047 const struct ata_timing *s;
2048 struct ata_timing p;
2049
2050 /*
2e9edbf8 2051 * Find the mode.
75b1f2f8 2052 */
452503f9
AC
2053
2054 if (!(s = ata_timing_find_mode(speed)))
2055 return -EINVAL;
2056
75b1f2f8
AL
2057 memcpy(t, s, sizeof(*s));
2058
452503f9
AC
2059 /*
2060 * If the drive is an EIDE drive, it can tell us it needs extended
2061 * PIO/MW_DMA cycle timing.
2062 */
2063
2064 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2065 memset(&p, 0, sizeof(p));
2066 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2067 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2068 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2069 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2070 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2071 }
2072 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2073 }
2074
2075 /*
2076 * Convert the timing to bus clock counts.
2077 */
2078
75b1f2f8 2079 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2080
2081 /*
c893a3ae
RD
2082 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2083 * S.M.A.R.T * and some other commands. We have to ensure that the
2084 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2085 */
2086
2087 if (speed > XFER_PIO_4) {
2088 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2089 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2090 }
2091
2092 /*
c893a3ae 2093 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2094 */
2095
2096 if (t->act8b + t->rec8b < t->cyc8b) {
2097 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2098 t->rec8b = t->cyc8b - t->act8b;
2099 }
2100
2101 if (t->active + t->recover < t->cycle) {
2102 t->active += (t->cycle - (t->active + t->recover)) / 2;
2103 t->recover = t->cycle - t->active;
2104 }
2105
2106 return 0;
2107}
2108
cf176e1a
TH
2109/**
2110 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2111 * @dev: Device to adjust xfer masks
2112 * @force_pio0: Force PIO0
2113 *
2114 * Adjust xfer masks of @dev downward. Note that this function
2115 * does not apply the change. Invoking ata_set_mode() afterwards
2116 * will apply the limit.
2117 *
2118 * LOCKING:
2119 * Inherited from caller.
2120 *
2121 * RETURNS:
2122 * 0 on success, negative errno on failure
2123 */
3373efd8 2124int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2125{
2126 unsigned long xfer_mask;
2127 int highbit;
2128
2129 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2130 dev->udma_mask);
2131
2132 if (!xfer_mask)
2133 goto fail;
2134 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2135 if (xfer_mask & ATA_MASK_UDMA)
2136 xfer_mask &= ~ATA_MASK_MWDMA;
2137
2138 highbit = fls(xfer_mask) - 1;
2139 xfer_mask &= ~(1 << highbit);
2140 if (force_pio0)
2141 xfer_mask &= 1 << ATA_SHIFT_PIO;
2142 if (!xfer_mask)
2143 goto fail;
2144
2145 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2146 &dev->udma_mask);
2147
f15a1daf
TH
2148 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2149 ata_mode_string(xfer_mask));
cf176e1a
TH
2150
2151 return 0;
2152
2153 fail:
2154 return -EINVAL;
2155}
2156
3373efd8 2157static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2158{
83206a29
TH
2159 unsigned int err_mask;
2160 int rc;
1da177e4 2161
e8384607 2162 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2163 if (dev->xfer_shift == ATA_SHIFT_PIO)
2164 dev->flags |= ATA_DFLAG_PIO;
2165
3373efd8 2166 err_mask = ata_dev_set_xfermode(dev);
83206a29 2167 if (err_mask) {
f15a1daf
TH
2168 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2169 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2170 return -EIO;
2171 }
1da177e4 2172
3373efd8 2173 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2174 if (rc)
83206a29 2175 return rc;
48a8a14f 2176
23e71c3d
TH
2177 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2178 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2179
f15a1daf
TH
2180 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2181 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2182 return 0;
1da177e4
LT
2183}
2184
1da177e4
LT
2185/**
2186 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2187 * @ap: port on which timings will be programmed
e82cbdb9 2188 * @r_failed_dev: out paramter for failed device
1da177e4 2189 *
e82cbdb9
TH
2190 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2191 * ata_set_mode() fails, pointer to the failing device is
2192 * returned in @r_failed_dev.
780a87f7 2193 *
1da177e4 2194 * LOCKING:
0cba632b 2195 * PCI/etc. bus probe sem.
e82cbdb9
TH
2196 *
2197 * RETURNS:
2198 * 0 on success, negative errno otherwise
1da177e4 2199 */
1ad8e7f9 2200int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2201{
e8e0619f 2202 struct ata_device *dev;
e82cbdb9 2203 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2204
3adcebb2
TH
2205 /* has private set_mode? */
2206 if (ap->ops->set_mode) {
2207 /* FIXME: make ->set_mode handle no device case and
2208 * return error code and failing device on failure.
2209 */
2210 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2211 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2212 ap->ops->set_mode(ap);
2213 break;
2214 }
2215 }
2216 return 0;
2217 }
2218
a6d5a51c
TH
2219 /* step 1: calculate xfer_mask */
2220 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2221 unsigned int pio_mask, dma_mask;
a6d5a51c 2222
e8e0619f
TH
2223 dev = &ap->device[i];
2224
e1211e3f 2225 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2226 continue;
2227
3373efd8 2228 ata_dev_xfermask(dev);
1da177e4 2229
acf356b1
TH
2230 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2231 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2232 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2233 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2234
4f65977d 2235 found = 1;
5444a6f4
AC
2236 if (dev->dma_mode)
2237 used_dma = 1;
a6d5a51c 2238 }
4f65977d 2239 if (!found)
e82cbdb9 2240 goto out;
a6d5a51c
TH
2241
2242 /* step 2: always set host PIO timings */
e8e0619f
TH
2243 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2244 dev = &ap->device[i];
2245 if (!ata_dev_enabled(dev))
2246 continue;
2247
2248 if (!dev->pio_mode) {
f15a1daf 2249 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2250 rc = -EINVAL;
e82cbdb9 2251 goto out;
e8e0619f
TH
2252 }
2253
2254 dev->xfer_mode = dev->pio_mode;
2255 dev->xfer_shift = ATA_SHIFT_PIO;
2256 if (ap->ops->set_piomode)
2257 ap->ops->set_piomode(ap, dev);
2258 }
1da177e4 2259
a6d5a51c 2260 /* step 3: set host DMA timings */
e8e0619f
TH
2261 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2262 dev = &ap->device[i];
2263
2264 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2265 continue;
2266
2267 dev->xfer_mode = dev->dma_mode;
2268 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2269 if (ap->ops->set_dmamode)
2270 ap->ops->set_dmamode(ap, dev);
2271 }
1da177e4
LT
2272
2273 /* step 4: update devices' xfer mode */
83206a29 2274 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2275 dev = &ap->device[i];
1da177e4 2276
02670bf3
TH
2277 /* don't udpate suspended devices' xfer mode */
2278 if (!ata_dev_ready(dev))
83206a29
TH
2279 continue;
2280
3373efd8 2281 rc = ata_dev_set_mode(dev);
5bbc53f4 2282 if (rc)
e82cbdb9 2283 goto out;
83206a29 2284 }
1da177e4 2285
e8e0619f
TH
2286 /* Record simplex status. If we selected DMA then the other
2287 * host channels are not permitted to do so.
5444a6f4 2288 */
cca3974e
JG
2289 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2290 ap->host->simplex_claimed = 1;
5444a6f4 2291
e8e0619f 2292 /* step5: chip specific finalisation */
1da177e4
LT
2293 if (ap->ops->post_set_mode)
2294 ap->ops->post_set_mode(ap);
2295
e82cbdb9
TH
2296 out:
2297 if (rc)
2298 *r_failed_dev = dev;
2299 return rc;
1da177e4
LT
2300}
2301
1fdffbce
JG
2302/**
2303 * ata_tf_to_host - issue ATA taskfile to host controller
2304 * @ap: port to which command is being issued
2305 * @tf: ATA taskfile register set
2306 *
2307 * Issues ATA taskfile register set to ATA host controller,
2308 * with proper synchronization with interrupt handler and
2309 * other threads.
2310 *
2311 * LOCKING:
cca3974e 2312 * spin_lock_irqsave(host lock)
1fdffbce
JG
2313 */
2314
2315static inline void ata_tf_to_host(struct ata_port *ap,
2316 const struct ata_taskfile *tf)
2317{
2318 ap->ops->tf_load(ap, tf);
2319 ap->ops->exec_command(ap, tf);
2320}
2321
1da177e4
LT
2322/**
2323 * ata_busy_sleep - sleep until BSY clears, or timeout
2324 * @ap: port containing status register to be polled
2325 * @tmout_pat: impatience timeout
2326 * @tmout: overall timeout
2327 *
780a87f7
JG
2328 * Sleep until ATA Status register bit BSY clears,
2329 * or a timeout occurs.
2330 *
2331 * LOCKING: None.
1da177e4
LT
2332 */
2333
6f8b9958
TH
2334unsigned int ata_busy_sleep (struct ata_port *ap,
2335 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2336{
2337 unsigned long timer_start, timeout;
2338 u8 status;
2339
2340 status = ata_busy_wait(ap, ATA_BUSY, 300);
2341 timer_start = jiffies;
2342 timeout = timer_start + tmout_pat;
2343 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2344 msleep(50);
2345 status = ata_busy_wait(ap, ATA_BUSY, 3);
2346 }
2347
2348 if (status & ATA_BUSY)
f15a1daf 2349 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2350 "port is slow to respond, please be patient "
2351 "(Status 0x%x)\n", status);
1da177e4
LT
2352
2353 timeout = timer_start + tmout;
2354 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2355 msleep(50);
2356 status = ata_chk_status(ap);
2357 }
2358
2359 if (status & ATA_BUSY) {
f15a1daf 2360 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2361 "(%lu secs, Status 0x%x)\n",
2362 tmout / HZ, status);
1da177e4
LT
2363 return 1;
2364 }
2365
2366 return 0;
2367}
2368
2369static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2370{
2371 struct ata_ioports *ioaddr = &ap->ioaddr;
2372 unsigned int dev0 = devmask & (1 << 0);
2373 unsigned int dev1 = devmask & (1 << 1);
2374 unsigned long timeout;
2375
2376 /* if device 0 was found in ata_devchk, wait for its
2377 * BSY bit to clear
2378 */
2379 if (dev0)
2380 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2381
2382 /* if device 1 was found in ata_devchk, wait for
2383 * register access, then wait for BSY to clear
2384 */
2385 timeout = jiffies + ATA_TMOUT_BOOT;
2386 while (dev1) {
2387 u8 nsect, lbal;
2388
2389 ap->ops->dev_select(ap, 1);
2390 if (ap->flags & ATA_FLAG_MMIO) {
2391 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2392 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2393 } else {
2394 nsect = inb(ioaddr->nsect_addr);
2395 lbal = inb(ioaddr->lbal_addr);
2396 }
2397 if ((nsect == 1) && (lbal == 1))
2398 break;
2399 if (time_after(jiffies, timeout)) {
2400 dev1 = 0;
2401 break;
2402 }
2403 msleep(50); /* give drive a breather */
2404 }
2405 if (dev1)
2406 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2407
2408 /* is all this really necessary? */
2409 ap->ops->dev_select(ap, 0);
2410 if (dev1)
2411 ap->ops->dev_select(ap, 1);
2412 if (dev0)
2413 ap->ops->dev_select(ap, 0);
2414}
2415
1da177e4
LT
2416static unsigned int ata_bus_softreset(struct ata_port *ap,
2417 unsigned int devmask)
2418{
2419 struct ata_ioports *ioaddr = &ap->ioaddr;
2420
2421 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2422
2423 /* software reset. causes dev0 to be selected */
2424 if (ap->flags & ATA_FLAG_MMIO) {
2425 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2426 udelay(20); /* FIXME: flush */
2427 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2428 udelay(20); /* FIXME: flush */
2429 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2430 } else {
2431 outb(ap->ctl, ioaddr->ctl_addr);
2432 udelay(10);
2433 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2434 udelay(10);
2435 outb(ap->ctl, ioaddr->ctl_addr);
2436 }
2437
2438 /* spec mandates ">= 2ms" before checking status.
2439 * We wait 150ms, because that was the magic delay used for
2440 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2441 * between when the ATA command register is written, and then
2442 * status is checked. Because waiting for "a while" before
2443 * checking status is fine, post SRST, we perform this magic
2444 * delay here as well.
09c7ad79
AC
2445 *
2446 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2447 */
2448 msleep(150);
2449
2e9edbf8 2450 /* Before we perform post reset processing we want to see if
298a41ca
TH
2451 * the bus shows 0xFF because the odd clown forgets the D7
2452 * pulldown resistor.
2453 */
987d2f05 2454 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2455 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2456 return AC_ERR_OTHER;
987d2f05 2457 }
09c7ad79 2458
1da177e4
LT
2459 ata_bus_post_reset(ap, devmask);
2460
2461 return 0;
2462}
2463
2464/**
2465 * ata_bus_reset - reset host port and associated ATA channel
2466 * @ap: port to reset
2467 *
2468 * This is typically the first time we actually start issuing
2469 * commands to the ATA channel. We wait for BSY to clear, then
2470 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2471 * result. Determine what devices, if any, are on the channel
2472 * by looking at the device 0/1 error register. Look at the signature
2473 * stored in each device's taskfile registers, to determine if
2474 * the device is ATA or ATAPI.
2475 *
2476 * LOCKING:
0cba632b 2477 * PCI/etc. bus probe sem.
cca3974e 2478 * Obtains host lock.
1da177e4
LT
2479 *
2480 * SIDE EFFECTS:
198e0fed 2481 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2482 */
2483
2484void ata_bus_reset(struct ata_port *ap)
2485{
2486 struct ata_ioports *ioaddr = &ap->ioaddr;
2487 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2488 u8 err;
aec5c3c1 2489 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2490
2491 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2492
2493 /* determine if device 0/1 are present */
2494 if (ap->flags & ATA_FLAG_SATA_RESET)
2495 dev0 = 1;
2496 else {
2497 dev0 = ata_devchk(ap, 0);
2498 if (slave_possible)
2499 dev1 = ata_devchk(ap, 1);
2500 }
2501
2502 if (dev0)
2503 devmask |= (1 << 0);
2504 if (dev1)
2505 devmask |= (1 << 1);
2506
2507 /* select device 0 again */
2508 ap->ops->dev_select(ap, 0);
2509
2510 /* issue bus reset */
2511 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2512 if (ata_bus_softreset(ap, devmask))
2513 goto err_out;
1da177e4
LT
2514
2515 /*
2516 * determine by signature whether we have ATA or ATAPI devices
2517 */
b4dc7623 2518 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2519 if ((slave_possible) && (err != 0x81))
b4dc7623 2520 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2521
2522 /* re-enable interrupts */
2523 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2524 ata_irq_on(ap);
2525
2526 /* is double-select really necessary? */
2527 if (ap->device[1].class != ATA_DEV_NONE)
2528 ap->ops->dev_select(ap, 1);
2529 if (ap->device[0].class != ATA_DEV_NONE)
2530 ap->ops->dev_select(ap, 0);
2531
2532 /* if no devices were detected, disable this port */
2533 if ((ap->device[0].class == ATA_DEV_NONE) &&
2534 (ap->device[1].class == ATA_DEV_NONE))
2535 goto err_out;
2536
2537 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2538 /* set up device control for ATA_FLAG_SATA_RESET */
2539 if (ap->flags & ATA_FLAG_MMIO)
2540 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2541 else
2542 outb(ap->ctl, ioaddr->ctl_addr);
2543 }
2544
2545 DPRINTK("EXIT\n");
2546 return;
2547
2548err_out:
f15a1daf 2549 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2550 ap->ops->port_disable(ap);
2551
2552 DPRINTK("EXIT\n");
2553}
2554
d7bb4cc7
TH
2555/**
2556 * sata_phy_debounce - debounce SATA phy status
2557 * @ap: ATA port to debounce SATA phy status for
2558 * @params: timing parameters { interval, duratinon, timeout } in msec
2559 *
2560 * Make sure SStatus of @ap reaches stable state, determined by
2561 * holding the same value where DET is not 1 for @duration polled
2562 * every @interval, before @timeout. Timeout constraints the
2563 * beginning of the stable state. Because, after hot unplugging,
2564 * DET gets stuck at 1 on some controllers, this functions waits
2565 * until timeout then returns 0 if DET is stable at 1.
2566 *
2567 * LOCKING:
2568 * Kernel thread context (may sleep)
2569 *
2570 * RETURNS:
2571 * 0 on success, -errno on failure.
2572 */
2573int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2574{
d7bb4cc7
TH
2575 unsigned long interval_msec = params[0];
2576 unsigned long duration = params[1] * HZ / 1000;
2577 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2578 unsigned long last_jiffies;
2579 u32 last, cur;
2580 int rc;
2581
2582 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2583 return rc;
2584 cur &= 0xf;
2585
2586 last = cur;
2587 last_jiffies = jiffies;
2588
2589 while (1) {
2590 msleep(interval_msec);
2591 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2592 return rc;
2593 cur &= 0xf;
2594
2595 /* DET stable? */
2596 if (cur == last) {
2597 if (cur == 1 && time_before(jiffies, timeout))
2598 continue;
2599 if (time_after(jiffies, last_jiffies + duration))
2600 return 0;
2601 continue;
2602 }
2603
2604 /* unstable, start over */
2605 last = cur;
2606 last_jiffies = jiffies;
2607
2608 /* check timeout */
2609 if (time_after(jiffies, timeout))
2610 return -EBUSY;
2611 }
2612}
2613
2614/**
2615 * sata_phy_resume - resume SATA phy
2616 * @ap: ATA port to resume SATA phy for
2617 * @params: timing parameters { interval, duratinon, timeout } in msec
2618 *
2619 * Resume SATA phy of @ap and debounce it.
2620 *
2621 * LOCKING:
2622 * Kernel thread context (may sleep)
2623 *
2624 * RETURNS:
2625 * 0 on success, -errno on failure.
2626 */
2627int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2628{
2629 u32 scontrol;
81952c54
TH
2630 int rc;
2631
2632 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2633 return rc;
7a7921e8 2634
852ee16a 2635 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2636
2637 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2638 return rc;
7a7921e8 2639
d7bb4cc7
TH
2640 /* Some PHYs react badly if SStatus is pounded immediately
2641 * after resuming. Delay 200ms before debouncing.
2642 */
2643 msleep(200);
7a7921e8 2644
d7bb4cc7 2645 return sata_phy_debounce(ap, params);
7a7921e8
TH
2646}
2647
f5914a46
TH
2648static void ata_wait_spinup(struct ata_port *ap)
2649{
2650 struct ata_eh_context *ehc = &ap->eh_context;
2651 unsigned long end, secs;
2652 int rc;
2653
2654 /* first, debounce phy if SATA */
2655 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2656 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2657
2658 /* if debounced successfully and offline, no need to wait */
2659 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2660 return;
2661 }
2662
2663 /* okay, let's give the drive time to spin up */
2664 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2665 secs = ((end - jiffies) + HZ - 1) / HZ;
2666
2667 if (time_after(jiffies, end))
2668 return;
2669
2670 if (secs > 5)
2671 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2672 "(%lu secs)\n", secs);
2673
2674 schedule_timeout_uninterruptible(end - jiffies);
2675}
2676
2677/**
2678 * ata_std_prereset - prepare for reset
2679 * @ap: ATA port to be reset
2680 *
2681 * @ap is about to be reset. Initialize it.
2682 *
2683 * LOCKING:
2684 * Kernel thread context (may sleep)
2685 *
2686 * RETURNS:
2687 * 0 on success, -errno otherwise.
2688 */
2689int ata_std_prereset(struct ata_port *ap)
2690{
2691 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2692 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2693 int rc;
2694
28324304
TH
2695 /* handle link resume & hotplug spinup */
2696 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2697 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2698 ehc->i.action |= ATA_EH_HARDRESET;
2699
2700 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2701 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2702 ata_wait_spinup(ap);
f5914a46
TH
2703
2704 /* if we're about to do hardreset, nothing more to do */
2705 if (ehc->i.action & ATA_EH_HARDRESET)
2706 return 0;
2707
2708 /* if SATA, resume phy */
2709 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2710 rc = sata_phy_resume(ap, timing);
2711 if (rc && rc != -EOPNOTSUPP) {
2712 /* phy resume failed */
2713 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2714 "link for reset (errno=%d)\n", rc);
2715 return rc;
2716 }
2717 }
2718
2719 /* Wait for !BSY if the controller can wait for the first D2H
2720 * Reg FIS and we don't know that no device is attached.
2721 */
2722 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2723 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2724
2725 return 0;
2726}
2727
c2bd5804
TH
2728/**
2729 * ata_std_softreset - reset host port via ATA SRST
2730 * @ap: port to reset
c2bd5804
TH
2731 * @classes: resulting classes of attached devices
2732 *
52783c5d 2733 * Reset host port using ATA SRST.
c2bd5804
TH
2734 *
2735 * LOCKING:
2736 * Kernel thread context (may sleep)
2737 *
2738 * RETURNS:
2739 * 0 on success, -errno otherwise.
2740 */
2bf2cb26 2741int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2742{
2743 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2744 unsigned int devmask = 0, err_mask;
2745 u8 err;
2746
2747 DPRINTK("ENTER\n");
2748
81952c54 2749 if (ata_port_offline(ap)) {
3a39746a
TH
2750 classes[0] = ATA_DEV_NONE;
2751 goto out;
2752 }
2753
c2bd5804
TH
2754 /* determine if device 0/1 are present */
2755 if (ata_devchk(ap, 0))
2756 devmask |= (1 << 0);
2757 if (slave_possible && ata_devchk(ap, 1))
2758 devmask |= (1 << 1);
2759
c2bd5804
TH
2760 /* select device 0 again */
2761 ap->ops->dev_select(ap, 0);
2762
2763 /* issue bus reset */
2764 DPRINTK("about to softreset, devmask=%x\n", devmask);
2765 err_mask = ata_bus_softreset(ap, devmask);
2766 if (err_mask) {
f15a1daf
TH
2767 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2768 err_mask);
c2bd5804
TH
2769 return -EIO;
2770 }
2771
2772 /* determine by signature whether we have ATA or ATAPI devices */
2773 classes[0] = ata_dev_try_classify(ap, 0, &err);
2774 if (slave_possible && err != 0x81)
2775 classes[1] = ata_dev_try_classify(ap, 1, &err);
2776
3a39746a 2777 out:
c2bd5804
TH
2778 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2779 return 0;
2780}
2781
2782/**
2783 * sata_std_hardreset - reset host port via SATA phy reset
2784 * @ap: port to reset
c2bd5804
TH
2785 * @class: resulting class of attached device
2786 *
2787 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2788 *
2789 * LOCKING:
2790 * Kernel thread context (may sleep)
2791 *
2792 * RETURNS:
2793 * 0 on success, -errno otherwise.
2794 */
2bf2cb26 2795int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2796{
e9c83914
TH
2797 struct ata_eh_context *ehc = &ap->eh_context;
2798 const unsigned long *timing = sata_ehc_deb_timing(ehc);
852ee16a 2799 u32 scontrol;
81952c54 2800 int rc;
852ee16a 2801
c2bd5804
TH
2802 DPRINTK("ENTER\n");
2803
3c567b7d 2804 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2805 /* SATA spec says nothing about how to reconfigure
2806 * spd. To be on the safe side, turn off phy during
2807 * reconfiguration. This works for at least ICH7 AHCI
2808 * and Sil3124.
2809 */
81952c54
TH
2810 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2811 return rc;
2812
a34b6fc0 2813 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2814
2815 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2816 return rc;
1c3fae4d 2817
3c567b7d 2818 sata_set_spd(ap);
1c3fae4d
TH
2819 }
2820
2821 /* issue phy wake/reset */
81952c54
TH
2822 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2823 return rc;
2824
852ee16a 2825 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2826
2827 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2828 return rc;
c2bd5804 2829
1c3fae4d 2830 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2831 * 10.4.2 says at least 1 ms.
2832 */
2833 msleep(1);
2834
1c3fae4d 2835 /* bring phy back */
e9c83914 2836 sata_phy_resume(ap, timing);
c2bd5804 2837
c2bd5804 2838 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2839 if (ata_port_offline(ap)) {
c2bd5804
TH
2840 *class = ATA_DEV_NONE;
2841 DPRINTK("EXIT, link offline\n");
2842 return 0;
2843 }
2844
2845 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2846 ata_port_printk(ap, KERN_ERR,
2847 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2848 return -EIO;
2849 }
2850
3a39746a
TH
2851 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2852
c2bd5804
TH
2853 *class = ata_dev_try_classify(ap, 0, NULL);
2854
2855 DPRINTK("EXIT, class=%u\n", *class);
2856 return 0;
2857}
2858
2859/**
2860 * ata_std_postreset - standard postreset callback
2861 * @ap: the target ata_port
2862 * @classes: classes of attached devices
2863 *
2864 * This function is invoked after a successful reset. Note that
2865 * the device might have been reset more than once using
2866 * different reset methods before postreset is invoked.
c2bd5804 2867 *
c2bd5804
TH
2868 * LOCKING:
2869 * Kernel thread context (may sleep)
2870 */
2871void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2872{
dc2b3515
TH
2873 u32 serror;
2874
c2bd5804
TH
2875 DPRINTK("ENTER\n");
2876
c2bd5804 2877 /* print link status */
81952c54 2878 sata_print_link_status(ap);
c2bd5804 2879
dc2b3515
TH
2880 /* clear SError */
2881 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2882 sata_scr_write(ap, SCR_ERROR, serror);
2883
3a39746a 2884 /* re-enable interrupts */
e3180499
TH
2885 if (!ap->ops->error_handler) {
2886 /* FIXME: hack. create a hook instead */
2887 if (ap->ioaddr.ctl_addr)
2888 ata_irq_on(ap);
2889 }
c2bd5804
TH
2890
2891 /* is double-select really necessary? */
2892 if (classes[0] != ATA_DEV_NONE)
2893 ap->ops->dev_select(ap, 1);
2894 if (classes[1] != ATA_DEV_NONE)
2895 ap->ops->dev_select(ap, 0);
2896
3a39746a
TH
2897 /* bail out if no device is present */
2898 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2899 DPRINTK("EXIT, no device\n");
2900 return;
2901 }
2902
2903 /* set up device control */
2904 if (ap->ioaddr.ctl_addr) {
2905 if (ap->flags & ATA_FLAG_MMIO)
2906 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2907 else
2908 outb(ap->ctl, ap->ioaddr.ctl_addr);
2909 }
c2bd5804
TH
2910
2911 DPRINTK("EXIT\n");
2912}
2913
623a3128
TH
2914/**
2915 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2916 * @dev: device to compare against
2917 * @new_class: class of the new device
2918 * @new_id: IDENTIFY page of the new device
2919 *
2920 * Compare @new_class and @new_id against @dev and determine
2921 * whether @dev is the device indicated by @new_class and
2922 * @new_id.
2923 *
2924 * LOCKING:
2925 * None.
2926 *
2927 * RETURNS:
2928 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2929 */
3373efd8
TH
2930static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2931 const u16 *new_id)
623a3128
TH
2932{
2933 const u16 *old_id = dev->id;
2934 unsigned char model[2][41], serial[2][21];
2935 u64 new_n_sectors;
2936
2937 if (dev->class != new_class) {
f15a1daf
TH
2938 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2939 dev->class, new_class);
623a3128
TH
2940 return 0;
2941 }
2942
2943 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2944 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2945 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2946 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2947 new_n_sectors = ata_id_n_sectors(new_id);
2948
2949 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2950 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2951 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2952 return 0;
2953 }
2954
2955 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2956 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2957 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2958 return 0;
2959 }
2960
2961 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2962 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2963 "%llu != %llu\n",
2964 (unsigned long long)dev->n_sectors,
2965 (unsigned long long)new_n_sectors);
623a3128
TH
2966 return 0;
2967 }
2968
2969 return 1;
2970}
2971
2972/**
2973 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2974 * @dev: device to revalidate
2975 * @post_reset: is this revalidation after reset?
2976 *
2977 * Re-read IDENTIFY page and make sure @dev is still attached to
2978 * the port.
2979 *
2980 * LOCKING:
2981 * Kernel thread context (may sleep)
2982 *
2983 * RETURNS:
2984 * 0 on success, negative errno otherwise
2985 */
3373efd8 2986int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2987{
5eb45c02 2988 unsigned int class = dev->class;
f15a1daf 2989 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2990 int rc;
2991
5eb45c02
TH
2992 if (!ata_dev_enabled(dev)) {
2993 rc = -ENODEV;
2994 goto fail;
2995 }
623a3128 2996
fe635c7e 2997 /* read ID data */
3373efd8 2998 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2999 if (rc)
3000 goto fail;
3001
3002 /* is the device still there? */
3373efd8 3003 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3004 rc = -ENODEV;
3005 goto fail;
3006 }
3007
fe635c7e 3008 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3009
3010 /* configure device according to the new ID */
3373efd8 3011 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
3012 if (rc == 0)
3013 return 0;
623a3128
TH
3014
3015 fail:
f15a1daf 3016 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3017 return rc;
3018}
3019
6919a0a6
AC
3020struct ata_blacklist_entry {
3021 const char *model_num;
3022 const char *model_rev;
3023 unsigned long horkage;
3024};
3025
3026static const struct ata_blacklist_entry ata_device_blacklist [] = {
3027 /* Devices with DMA related problems under Linux */
3028 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3029 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3030 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3031 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3032 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3033 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3034 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3035 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3036 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3037 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3038 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3039 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3040 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3041 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3042 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3043 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3044 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3045 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3046 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3047 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3048 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3049 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3050 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3051 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3052 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3053 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3054 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3055 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3056 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3057 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3058
3059 /* Devices we expect to fail diagnostics */
3060
3061 /* Devices where NCQ should be avoided */
3062 /* NCQ is slow */
3063 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3064
3065 /* Devices with NCQ limits */
3066
3067 /* End Marker */
3068 { }
1da177e4 3069};
2e9edbf8 3070
f4b15fef
AC
3071static int ata_strim(char *s, size_t len)
3072{
3073 len = strnlen(s, len);
3074
3075 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3076 while ((len > 0) && (s[len - 1] == ' ')) {
3077 len--;
3078 s[len] = 0;
3079 }
3080 return len;
3081}
1da177e4 3082
6919a0a6 3083unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3084{
f4b15fef
AC
3085 unsigned char model_num[40];
3086 unsigned char model_rev[16];
3087 unsigned int nlen, rlen;
6919a0a6 3088 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3089
f4b15fef
AC
3090 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3091 sizeof(model_num));
3092 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3093 sizeof(model_rev));
3094 nlen = ata_strim(model_num, sizeof(model_num));
3095 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3096
6919a0a6
AC
3097 while (ad->model_num) {
3098 if (!strncmp(ad->model_num, model_num, nlen)) {
3099 if (ad->model_rev == NULL)
3100 return ad->horkage;
3101 if (!strncmp(ad->model_rev, model_rev, rlen))
3102 return ad->horkage;
f4b15fef 3103 }
6919a0a6 3104 ad++;
f4b15fef 3105 }
1da177e4
LT
3106 return 0;
3107}
3108
6919a0a6
AC
3109static int ata_dma_blacklisted(const struct ata_device *dev)
3110{
3111 /* We don't support polling DMA.
3112 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3113 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3114 */
3115 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3116 (dev->flags & ATA_DFLAG_CDB_INTR))
3117 return 1;
3118 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3119}
3120
a6d5a51c
TH
3121/**
3122 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3123 * @dev: Device to compute xfermask for
3124 *
acf356b1
TH
3125 * Compute supported xfermask of @dev and store it in
3126 * dev->*_mask. This function is responsible for applying all
3127 * known limits including host controller limits, device
3128 * blacklist, etc...
a6d5a51c
TH
3129 *
3130 * LOCKING:
3131 * None.
a6d5a51c 3132 */
3373efd8 3133static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3134{
3373efd8 3135 struct ata_port *ap = dev->ap;
cca3974e 3136 struct ata_host *host = ap->host;
a6d5a51c 3137 unsigned long xfer_mask;
1da177e4 3138
37deecb5 3139 /* controller modes available */
565083e1
TH
3140 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3141 ap->mwdma_mask, ap->udma_mask);
3142
3143 /* Apply cable rule here. Don't apply it early because when
3144 * we handle hot plug the cable type can itself change.
3145 */
3146 if (ap->cbl == ATA_CBL_PATA40)
3147 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3148 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3149 * host side are checked drive side as well. Cases where we know a
3150 * 40wire cable is used safely for 80 are not checked here.
3151 */
3152 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3153 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3154
1da177e4 3155
37deecb5
TH
3156 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3157 dev->mwdma_mask, dev->udma_mask);
3158 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3159
b352e57d
AC
3160 /*
3161 * CFA Advanced TrueIDE timings are not allowed on a shared
3162 * cable
3163 */
3164 if (ata_dev_pair(dev)) {
3165 /* No PIO5 or PIO6 */
3166 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3167 /* No MWDMA3 or MWDMA 4 */
3168 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3169 }
3170
37deecb5
TH
3171 if (ata_dma_blacklisted(dev)) {
3172 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3173 ata_dev_printk(dev, KERN_WARNING,
3174 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3175 }
a6d5a51c 3176
cca3974e 3177 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3178 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3179 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3180 "other device, disabling DMA\n");
5444a6f4 3181 }
565083e1 3182
5444a6f4
AC
3183 if (ap->ops->mode_filter)
3184 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3185
565083e1
TH
3186 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3187 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3188}
3189
1da177e4
LT
3190/**
3191 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3192 * @dev: Device to which command will be sent
3193 *
780a87f7
JG
3194 * Issue SET FEATURES - XFER MODE command to device @dev
3195 * on port @ap.
3196 *
1da177e4 3197 * LOCKING:
0cba632b 3198 * PCI/etc. bus probe sem.
83206a29
TH
3199 *
3200 * RETURNS:
3201 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3202 */
3203
3373efd8 3204static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3205{
a0123703 3206 struct ata_taskfile tf;
83206a29 3207 unsigned int err_mask;
1da177e4
LT
3208
3209 /* set up set-features taskfile */
3210 DPRINTK("set features - xfer mode\n");
3211
3373efd8 3212 ata_tf_init(dev, &tf);
a0123703
TH
3213 tf.command = ATA_CMD_SET_FEATURES;
3214 tf.feature = SETFEATURES_XFER;
3215 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3216 tf.protocol = ATA_PROT_NODATA;
3217 tf.nsect = dev->xfer_mode;
1da177e4 3218
3373efd8 3219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3220
83206a29
TH
3221 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3222 return err_mask;
1da177e4
LT
3223}
3224
8bf62ece
AL
3225/**
3226 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3227 * @dev: Device to which command will be sent
e2a7f77a
RD
3228 * @heads: Number of heads (taskfile parameter)
3229 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3230 *
3231 * LOCKING:
6aff8f1f
TH
3232 * Kernel thread context (may sleep)
3233 *
3234 * RETURNS:
3235 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3236 */
3373efd8
TH
3237static unsigned int ata_dev_init_params(struct ata_device *dev,
3238 u16 heads, u16 sectors)
8bf62ece 3239{
a0123703 3240 struct ata_taskfile tf;
6aff8f1f 3241 unsigned int err_mask;
8bf62ece
AL
3242
3243 /* Number of sectors per track 1-255. Number of heads 1-16 */
3244 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3245 return AC_ERR_INVALID;
8bf62ece
AL
3246
3247 /* set up init dev params taskfile */
3248 DPRINTK("init dev params \n");
3249
3373efd8 3250 ata_tf_init(dev, &tf);
a0123703
TH
3251 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3252 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3253 tf.protocol = ATA_PROT_NODATA;
3254 tf.nsect = sectors;
3255 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3256
3373efd8 3257 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3258
6aff8f1f
TH
3259 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3260 return err_mask;
8bf62ece
AL
3261}
3262
1da177e4 3263/**
0cba632b
JG
3264 * ata_sg_clean - Unmap DMA memory associated with command
3265 * @qc: Command containing DMA memory to be released
3266 *
3267 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3268 *
3269 * LOCKING:
cca3974e 3270 * spin_lock_irqsave(host lock)
1da177e4
LT
3271 */
3272
3273static void ata_sg_clean(struct ata_queued_cmd *qc)
3274{
3275 struct ata_port *ap = qc->ap;
cedc9a47 3276 struct scatterlist *sg = qc->__sg;
1da177e4 3277 int dir = qc->dma_dir;
cedc9a47 3278 void *pad_buf = NULL;
1da177e4 3279
a4631474
TH
3280 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3281 WARN_ON(sg == NULL);
1da177e4
LT
3282
3283 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3284 WARN_ON(qc->n_elem > 1);
1da177e4 3285
2c13b7ce 3286 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3287
cedc9a47
JG
3288 /* if we padded the buffer out to 32-bit bound, and data
3289 * xfer direction is from-device, we must copy from the
3290 * pad buffer back into the supplied buffer
3291 */
3292 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3293 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3294
3295 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3296 if (qc->n_elem)
2f1f610b 3297 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3298 /* restore last sg */
3299 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3300 if (pad_buf) {
3301 struct scatterlist *psg = &qc->pad_sgent;
3302 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3303 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3304 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3305 }
3306 } else {
2e242fa9 3307 if (qc->n_elem)
2f1f610b 3308 dma_unmap_single(ap->dev,
e1410f2d
JG
3309 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3310 dir);
cedc9a47
JG
3311 /* restore sg */
3312 sg->length += qc->pad_len;
3313 if (pad_buf)
3314 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3315 pad_buf, qc->pad_len);
3316 }
1da177e4
LT
3317
3318 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3319 qc->__sg = NULL;
1da177e4
LT
3320}
3321
3322/**
3323 * ata_fill_sg - Fill PCI IDE PRD table
3324 * @qc: Metadata associated with taskfile to be transferred
3325 *
780a87f7
JG
3326 * Fill PCI IDE PRD (scatter-gather) table with segments
3327 * associated with the current disk command.
3328 *
1da177e4 3329 * LOCKING:
cca3974e 3330 * spin_lock_irqsave(host lock)
1da177e4
LT
3331 *
3332 */
3333static void ata_fill_sg(struct ata_queued_cmd *qc)
3334{
1da177e4 3335 struct ata_port *ap = qc->ap;
cedc9a47
JG
3336 struct scatterlist *sg;
3337 unsigned int idx;
1da177e4 3338
a4631474 3339 WARN_ON(qc->__sg == NULL);
f131883e 3340 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3341
3342 idx = 0;
cedc9a47 3343 ata_for_each_sg(sg, qc) {
1da177e4
LT
3344 u32 addr, offset;
3345 u32 sg_len, len;
3346
3347 /* determine if physical DMA addr spans 64K boundary.
3348 * Note h/w doesn't support 64-bit, so we unconditionally
3349 * truncate dma_addr_t to u32.
3350 */
3351 addr = (u32) sg_dma_address(sg);
3352 sg_len = sg_dma_len(sg);
3353
3354 while (sg_len) {
3355 offset = addr & 0xffff;
3356 len = sg_len;
3357 if ((offset + sg_len) > 0x10000)
3358 len = 0x10000 - offset;
3359
3360 ap->prd[idx].addr = cpu_to_le32(addr);
3361 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3362 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3363
3364 idx++;
3365 sg_len -= len;
3366 addr += len;
3367 }
3368 }
3369
3370 if (idx)
3371 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3372}
3373/**
3374 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3375 * @qc: Metadata associated with taskfile to check
3376 *
780a87f7
JG
3377 * Allow low-level driver to filter ATA PACKET commands, returning
3378 * a status indicating whether or not it is OK to use DMA for the
3379 * supplied PACKET command.
3380 *
1da177e4 3381 * LOCKING:
cca3974e 3382 * spin_lock_irqsave(host lock)
0cba632b 3383 *
1da177e4
LT
3384 * RETURNS: 0 when ATAPI DMA can be used
3385 * nonzero otherwise
3386 */
3387int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3388{
3389 struct ata_port *ap = qc->ap;
3390 int rc = 0; /* Assume ATAPI DMA is OK by default */
3391
3392 if (ap->ops->check_atapi_dma)
3393 rc = ap->ops->check_atapi_dma(qc);
3394
3395 return rc;
3396}
3397/**
3398 * ata_qc_prep - Prepare taskfile for submission
3399 * @qc: Metadata associated with taskfile to be prepared
3400 *
780a87f7
JG
3401 * Prepare ATA taskfile for submission.
3402 *
1da177e4 3403 * LOCKING:
cca3974e 3404 * spin_lock_irqsave(host lock)
1da177e4
LT
3405 */
3406void ata_qc_prep(struct ata_queued_cmd *qc)
3407{
3408 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3409 return;
3410
3411 ata_fill_sg(qc);
3412}
3413
e46834cd
BK
3414void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3415
0cba632b
JG
3416/**
3417 * ata_sg_init_one - Associate command with memory buffer
3418 * @qc: Command to be associated
3419 * @buf: Memory buffer
3420 * @buflen: Length of memory buffer, in bytes.
3421 *
3422 * Initialize the data-related elements of queued_cmd @qc
3423 * to point to a single memory buffer, @buf of byte length @buflen.
3424 *
3425 * LOCKING:
cca3974e 3426 * spin_lock_irqsave(host lock)
0cba632b
JG
3427 */
3428
1da177e4
LT
3429void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3430{
3431 struct scatterlist *sg;
3432
3433 qc->flags |= ATA_QCFLAG_SINGLE;
3434
3435 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3436 qc->__sg = &qc->sgent;
1da177e4 3437 qc->n_elem = 1;
cedc9a47 3438 qc->orig_n_elem = 1;
1da177e4 3439 qc->buf_virt = buf;
233277ca 3440 qc->nbytes = buflen;
1da177e4 3441
cedc9a47 3442 sg = qc->__sg;
f0612bbc 3443 sg_init_one(sg, buf, buflen);
1da177e4
LT
3444}
3445
0cba632b
JG
3446/**
3447 * ata_sg_init - Associate command with scatter-gather table.
3448 * @qc: Command to be associated
3449 * @sg: Scatter-gather table.
3450 * @n_elem: Number of elements in s/g table.
3451 *
3452 * Initialize the data-related elements of queued_cmd @qc
3453 * to point to a scatter-gather table @sg, containing @n_elem
3454 * elements.
3455 *
3456 * LOCKING:
cca3974e 3457 * spin_lock_irqsave(host lock)
0cba632b
JG
3458 */
3459
1da177e4
LT
3460void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3461 unsigned int n_elem)
3462{
3463 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3464 qc->__sg = sg;
1da177e4 3465 qc->n_elem = n_elem;
cedc9a47 3466 qc->orig_n_elem = n_elem;
1da177e4
LT
3467}
3468
3469/**
0cba632b
JG
3470 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3471 * @qc: Command with memory buffer to be mapped.
3472 *
3473 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3474 *
3475 * LOCKING:
cca3974e 3476 * spin_lock_irqsave(host lock)
1da177e4
LT
3477 *
3478 * RETURNS:
0cba632b 3479 * Zero on success, negative on error.
1da177e4
LT
3480 */
3481
3482static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3483{
3484 struct ata_port *ap = qc->ap;
3485 int dir = qc->dma_dir;
cedc9a47 3486 struct scatterlist *sg = qc->__sg;
1da177e4 3487 dma_addr_t dma_address;
2e242fa9 3488 int trim_sg = 0;
1da177e4 3489
cedc9a47
JG
3490 /* we must lengthen transfers to end on a 32-bit boundary */
3491 qc->pad_len = sg->length & 3;
3492 if (qc->pad_len) {
3493 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3494 struct scatterlist *psg = &qc->pad_sgent;
3495
a4631474 3496 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3497
3498 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3499
3500 if (qc->tf.flags & ATA_TFLAG_WRITE)
3501 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3502 qc->pad_len);
3503
3504 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3505 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3506 /* trim sg */
3507 sg->length -= qc->pad_len;
2e242fa9
TH
3508 if (sg->length == 0)
3509 trim_sg = 1;
cedc9a47
JG
3510
3511 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3512 sg->length, qc->pad_len);
3513 }
3514
2e242fa9
TH
3515 if (trim_sg) {
3516 qc->n_elem--;
e1410f2d
JG
3517 goto skip_map;
3518 }
3519
2f1f610b 3520 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3521 sg->length, dir);
537a95d9
TH
3522 if (dma_mapping_error(dma_address)) {
3523 /* restore sg */
3524 sg->length += qc->pad_len;
1da177e4 3525 return -1;
537a95d9 3526 }
1da177e4
LT
3527
3528 sg_dma_address(sg) = dma_address;
32529e01 3529 sg_dma_len(sg) = sg->length;
1da177e4 3530
2e242fa9 3531skip_map:
1da177e4
LT
3532 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3533 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3534
3535 return 0;
3536}
3537
3538/**
0cba632b
JG
3539 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3540 * @qc: Command with scatter-gather table to be mapped.
3541 *
3542 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3543 *
3544 * LOCKING:
cca3974e 3545 * spin_lock_irqsave(host lock)
1da177e4
LT
3546 *
3547 * RETURNS:
0cba632b 3548 * Zero on success, negative on error.
1da177e4
LT
3549 *
3550 */
3551
3552static int ata_sg_setup(struct ata_queued_cmd *qc)
3553{
3554 struct ata_port *ap = qc->ap;
cedc9a47
JG
3555 struct scatterlist *sg = qc->__sg;
3556 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3557 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3558
3559 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3560 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3561
cedc9a47
JG
3562 /* we must lengthen transfers to end on a 32-bit boundary */
3563 qc->pad_len = lsg->length & 3;
3564 if (qc->pad_len) {
3565 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3566 struct scatterlist *psg = &qc->pad_sgent;
3567 unsigned int offset;
3568
a4631474 3569 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3570
3571 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3572
3573 /*
3574 * psg->page/offset are used to copy to-be-written
3575 * data in this function or read data in ata_sg_clean.
3576 */
3577 offset = lsg->offset + lsg->length - qc->pad_len;
3578 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3579 psg->offset = offset_in_page(offset);
3580
3581 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3582 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3583 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3584 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3585 }
3586
3587 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3588 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3589 /* trim last sg */
3590 lsg->length -= qc->pad_len;
e1410f2d
JG
3591 if (lsg->length == 0)
3592 trim_sg = 1;
cedc9a47
JG
3593
3594 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3595 qc->n_elem - 1, lsg->length, qc->pad_len);
3596 }
3597
e1410f2d
JG
3598 pre_n_elem = qc->n_elem;
3599 if (trim_sg && pre_n_elem)
3600 pre_n_elem--;
3601
3602 if (!pre_n_elem) {
3603 n_elem = 0;
3604 goto skip_map;
3605 }
3606
1da177e4 3607 dir = qc->dma_dir;
2f1f610b 3608 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3609 if (n_elem < 1) {
3610 /* restore last sg */
3611 lsg->length += qc->pad_len;
1da177e4 3612 return -1;
537a95d9 3613 }
1da177e4
LT
3614
3615 DPRINTK("%d sg elements mapped\n", n_elem);
3616
e1410f2d 3617skip_map:
1da177e4
LT
3618 qc->n_elem = n_elem;
3619
3620 return 0;
3621}
3622
0baab86b 3623/**
c893a3ae 3624 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3625 * @buf: Buffer to swap
3626 * @buf_words: Number of 16-bit words in buffer.
3627 *
3628 * Swap halves of 16-bit words if needed to convert from
3629 * little-endian byte order to native cpu byte order, or
3630 * vice-versa.
3631 *
3632 * LOCKING:
6f0ef4fa 3633 * Inherited from caller.
0baab86b 3634 */
1da177e4
LT
3635void swap_buf_le16(u16 *buf, unsigned int buf_words)
3636{
3637#ifdef __BIG_ENDIAN
3638 unsigned int i;
3639
3640 for (i = 0; i < buf_words; i++)
3641 buf[i] = le16_to_cpu(buf[i]);
3642#endif /* __BIG_ENDIAN */
3643}
3644
6ae4cfb5
AL
3645/**
3646 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3647 * @adev: device for this I/O
6ae4cfb5
AL
3648 * @buf: data buffer
3649 * @buflen: buffer length
344babaa 3650 * @write_data: read/write
6ae4cfb5
AL
3651 *
3652 * Transfer data from/to the device data register by MMIO.
3653 *
3654 * LOCKING:
3655 * Inherited from caller.
6ae4cfb5
AL
3656 */
3657
88574551 3658void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3659 unsigned int buflen, int write_data)
1da177e4 3660{
a6b2c5d4 3661 struct ata_port *ap = adev->ap;
1da177e4
LT
3662 unsigned int i;
3663 unsigned int words = buflen >> 1;
3664 u16 *buf16 = (u16 *) buf;
3665 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3666
6ae4cfb5 3667 /* Transfer multiple of 2 bytes */
1da177e4
LT
3668 if (write_data) {
3669 for (i = 0; i < words; i++)
3670 writew(le16_to_cpu(buf16[i]), mmio);
3671 } else {
3672 for (i = 0; i < words; i++)
3673 buf16[i] = cpu_to_le16(readw(mmio));
3674 }
6ae4cfb5
AL
3675
3676 /* Transfer trailing 1 byte, if any. */
3677 if (unlikely(buflen & 0x01)) {
3678 u16 align_buf[1] = { 0 };
3679 unsigned char *trailing_buf = buf + buflen - 1;
3680
3681 if (write_data) {
3682 memcpy(align_buf, trailing_buf, 1);
3683 writew(le16_to_cpu(align_buf[0]), mmio);
3684 } else {
3685 align_buf[0] = cpu_to_le16(readw(mmio));
3686 memcpy(trailing_buf, align_buf, 1);
3687 }
3688 }
1da177e4
LT
3689}
3690
6ae4cfb5
AL
3691/**
3692 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3693 * @adev: device to target
6ae4cfb5
AL
3694 * @buf: data buffer
3695 * @buflen: buffer length
344babaa 3696 * @write_data: read/write
6ae4cfb5
AL
3697 *
3698 * Transfer data from/to the device data register by PIO.
3699 *
3700 * LOCKING:
3701 * Inherited from caller.
6ae4cfb5
AL
3702 */
3703
88574551 3704void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3705 unsigned int buflen, int write_data)
1da177e4 3706{
a6b2c5d4 3707 struct ata_port *ap = adev->ap;
6ae4cfb5 3708 unsigned int words = buflen >> 1;
1da177e4 3709
6ae4cfb5 3710 /* Transfer multiple of 2 bytes */
1da177e4 3711 if (write_data)
6ae4cfb5 3712 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3713 else
6ae4cfb5
AL
3714 insw(ap->ioaddr.data_addr, buf, words);
3715
3716 /* Transfer trailing 1 byte, if any. */
3717 if (unlikely(buflen & 0x01)) {
3718 u16 align_buf[1] = { 0 };
3719 unsigned char *trailing_buf = buf + buflen - 1;
3720
3721 if (write_data) {
3722 memcpy(align_buf, trailing_buf, 1);
3723 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3724 } else {
3725 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3726 memcpy(trailing_buf, align_buf, 1);
3727 }
3728 }
1da177e4
LT
3729}
3730
75e99585
AC
3731/**
3732 * ata_pio_data_xfer_noirq - Transfer data by PIO
3733 * @adev: device to target
3734 * @buf: data buffer
3735 * @buflen: buffer length
3736 * @write_data: read/write
3737 *
88574551 3738 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3739 * transfer with interrupts disabled.
3740 *
3741 * LOCKING:
3742 * Inherited from caller.
3743 */
3744
3745void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3746 unsigned int buflen, int write_data)
3747{
3748 unsigned long flags;
3749 local_irq_save(flags);
3750 ata_pio_data_xfer(adev, buf, buflen, write_data);
3751 local_irq_restore(flags);
3752}
3753
3754
6ae4cfb5
AL
3755/**
3756 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3757 * @qc: Command on going
3758 *
3759 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3760 *
3761 * LOCKING:
3762 * Inherited from caller.
3763 */
3764
1da177e4
LT
3765static void ata_pio_sector(struct ata_queued_cmd *qc)
3766{
3767 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3768 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3769 struct ata_port *ap = qc->ap;
3770 struct page *page;
3771 unsigned int offset;
3772 unsigned char *buf;
3773
3774 if (qc->cursect == (qc->nsect - 1))
14be71f4 3775 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3776
3777 page = sg[qc->cursg].page;
3778 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3779
3780 /* get the current page and offset */
3781 page = nth_page(page, (offset >> PAGE_SHIFT));
3782 offset %= PAGE_SIZE;
3783
1da177e4
LT
3784 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3785
91b8b313
AL
3786 if (PageHighMem(page)) {
3787 unsigned long flags;
3788
a6b2c5d4 3789 /* FIXME: use a bounce buffer */
91b8b313
AL
3790 local_irq_save(flags);
3791 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3792
91b8b313 3793 /* do the actual data transfer */
a6b2c5d4 3794 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3795
91b8b313
AL
3796 kunmap_atomic(buf, KM_IRQ0);
3797 local_irq_restore(flags);
3798 } else {
3799 buf = page_address(page);
a6b2c5d4 3800 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3801 }
1da177e4
LT
3802
3803 qc->cursect++;
3804 qc->cursg_ofs++;
3805
32529e01 3806 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3807 qc->cursg++;
3808 qc->cursg_ofs = 0;
3809 }
1da177e4 3810}
1da177e4 3811
07f6f7d0
AL
3812/**
3813 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3814 * @qc: Command on going
3815 *
c81e29b4 3816 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3817 * ATA device for the DRQ request.
3818 *
3819 * LOCKING:
3820 * Inherited from caller.
3821 */
1da177e4 3822
07f6f7d0
AL
3823static void ata_pio_sectors(struct ata_queued_cmd *qc)
3824{
3825 if (is_multi_taskfile(&qc->tf)) {
3826 /* READ/WRITE MULTIPLE */
3827 unsigned int nsect;
3828
587005de 3829 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3830
07f6f7d0
AL
3831 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3832 while (nsect--)
3833 ata_pio_sector(qc);
3834 } else
3835 ata_pio_sector(qc);
3836}
3837
c71c1857
AL
3838/**
3839 * atapi_send_cdb - Write CDB bytes to hardware
3840 * @ap: Port to which ATAPI device is attached.
3841 * @qc: Taskfile currently active
3842 *
3843 * When device has indicated its readiness to accept
3844 * a CDB, this function is called. Send the CDB.
3845 *
3846 * LOCKING:
3847 * caller.
3848 */
3849
3850static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3851{
3852 /* send SCSI cdb */
3853 DPRINTK("send cdb\n");
db024d53 3854 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3855
a6b2c5d4 3856 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3857 ata_altstatus(ap); /* flush */
3858
3859 switch (qc->tf.protocol) {
3860 case ATA_PROT_ATAPI:
3861 ap->hsm_task_state = HSM_ST;
3862 break;
3863 case ATA_PROT_ATAPI_NODATA:
3864 ap->hsm_task_state = HSM_ST_LAST;
3865 break;
3866 case ATA_PROT_ATAPI_DMA:
3867 ap->hsm_task_state = HSM_ST_LAST;
3868 /* initiate bmdma */
3869 ap->ops->bmdma_start(qc);
3870 break;
3871 }
1da177e4
LT
3872}
3873
6ae4cfb5
AL
3874/**
3875 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3876 * @qc: Command on going
3877 * @bytes: number of bytes
3878 *
3879 * Transfer Transfer data from/to the ATAPI device.
3880 *
3881 * LOCKING:
3882 * Inherited from caller.
3883 *
3884 */
3885
1da177e4
LT
3886static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3887{
3888 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3889 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3890 struct ata_port *ap = qc->ap;
3891 struct page *page;
3892 unsigned char *buf;
3893 unsigned int offset, count;
3894
563a6e1f 3895 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3896 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3897
3898next_sg:
563a6e1f 3899 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3900 /*
563a6e1f
AL
3901 * The end of qc->sg is reached and the device expects
3902 * more data to transfer. In order not to overrun qc->sg
3903 * and fulfill length specified in the byte count register,
3904 * - for read case, discard trailing data from the device
3905 * - for write case, padding zero data to the device
3906 */
3907 u16 pad_buf[1] = { 0 };
3908 unsigned int words = bytes >> 1;
3909 unsigned int i;
3910
3911 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3912 ata_dev_printk(qc->dev, KERN_WARNING,
3913 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3914
3915 for (i = 0; i < words; i++)
a6b2c5d4 3916 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3917
14be71f4 3918 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3919 return;
3920 }
3921
cedc9a47 3922 sg = &qc->__sg[qc->cursg];
1da177e4 3923
1da177e4
LT
3924 page = sg->page;
3925 offset = sg->offset + qc->cursg_ofs;
3926
3927 /* get the current page and offset */
3928 page = nth_page(page, (offset >> PAGE_SHIFT));
3929 offset %= PAGE_SIZE;
3930
6952df03 3931 /* don't overrun current sg */
32529e01 3932 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3933
3934 /* don't cross page boundaries */
3935 count = min(count, (unsigned int)PAGE_SIZE - offset);
3936
7282aa4b
AL
3937 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3938
91b8b313
AL
3939 if (PageHighMem(page)) {
3940 unsigned long flags;
3941
a6b2c5d4 3942 /* FIXME: use bounce buffer */
91b8b313
AL
3943 local_irq_save(flags);
3944 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3945
91b8b313 3946 /* do the actual data transfer */
a6b2c5d4 3947 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3948
91b8b313
AL
3949 kunmap_atomic(buf, KM_IRQ0);
3950 local_irq_restore(flags);
3951 } else {
3952 buf = page_address(page);
a6b2c5d4 3953 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3954 }
1da177e4
LT
3955
3956 bytes -= count;
3957 qc->curbytes += count;
3958 qc->cursg_ofs += count;
3959
32529e01 3960 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3961 qc->cursg++;
3962 qc->cursg_ofs = 0;
3963 }
3964
563a6e1f 3965 if (bytes)
1da177e4 3966 goto next_sg;
1da177e4
LT
3967}
3968
6ae4cfb5
AL
3969/**
3970 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3971 * @qc: Command on going
3972 *
3973 * Transfer Transfer data from/to the ATAPI device.
3974 *
3975 * LOCKING:
3976 * Inherited from caller.
6ae4cfb5
AL
3977 */
3978
1da177e4
LT
3979static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3980{
3981 struct ata_port *ap = qc->ap;
3982 struct ata_device *dev = qc->dev;
3983 unsigned int ireason, bc_lo, bc_hi, bytes;
3984 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3985
eec4c3f3
AL
3986 /* Abuse qc->result_tf for temp storage of intermediate TF
3987 * here to save some kernel stack usage.
3988 * For normal completion, qc->result_tf is not relevant. For
3989 * error, qc->result_tf is later overwritten by ata_qc_complete().
3990 * So, the correctness of qc->result_tf is not affected.
3991 */
3992 ap->ops->tf_read(ap, &qc->result_tf);
3993 ireason = qc->result_tf.nsect;
3994 bc_lo = qc->result_tf.lbam;
3995 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3996 bytes = (bc_hi << 8) | bc_lo;
3997
3998 /* shall be cleared to zero, indicating xfer of data */
3999 if (ireason & (1 << 0))
4000 goto err_out;
4001
4002 /* make sure transfer direction matches expected */
4003 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4004 if (do_write != i_write)
4005 goto err_out;
4006
312f7da2
AL
4007 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4008
1da177e4
LT
4009 __atapi_pio_bytes(qc, bytes);
4010
4011 return;
4012
4013err_out:
f15a1daf 4014 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4015 qc->err_mask |= AC_ERR_HSM;
14be71f4 4016 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4017}
4018
4019/**
c234fb00
AL
4020 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4021 * @ap: the target ata_port
4022 * @qc: qc on going
1da177e4 4023 *
c234fb00
AL
4024 * RETURNS:
4025 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4026 */
c234fb00
AL
4027
4028static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4029{
c234fb00
AL
4030 if (qc->tf.flags & ATA_TFLAG_POLLING)
4031 return 1;
1da177e4 4032
c234fb00
AL
4033 if (ap->hsm_task_state == HSM_ST_FIRST) {
4034 if (qc->tf.protocol == ATA_PROT_PIO &&
4035 (qc->tf.flags & ATA_TFLAG_WRITE))
4036 return 1;
1da177e4 4037
c234fb00
AL
4038 if (is_atapi_taskfile(&qc->tf) &&
4039 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4040 return 1;
fe79e683
AL
4041 }
4042
c234fb00
AL
4043 return 0;
4044}
1da177e4 4045
c17ea20d
TH
4046/**
4047 * ata_hsm_qc_complete - finish a qc running on standard HSM
4048 * @qc: Command to complete
4049 * @in_wq: 1 if called from workqueue, 0 otherwise
4050 *
4051 * Finish @qc which is running on standard HSM.
4052 *
4053 * LOCKING:
cca3974e 4054 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4055 * Otherwise, none on entry and grabs host lock.
4056 */
4057static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4058{
4059 struct ata_port *ap = qc->ap;
4060 unsigned long flags;
4061
4062 if (ap->ops->error_handler) {
4063 if (in_wq) {
ba6a1308 4064 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4065
cca3974e
JG
4066 /* EH might have kicked in while host lock is
4067 * released.
c17ea20d
TH
4068 */
4069 qc = ata_qc_from_tag(ap, qc->tag);
4070 if (qc) {
4071 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4072 ata_irq_on(ap);
4073 ata_qc_complete(qc);
4074 } else
4075 ata_port_freeze(ap);
4076 }
4077
ba6a1308 4078 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4079 } else {
4080 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4081 ata_qc_complete(qc);
4082 else
4083 ata_port_freeze(ap);
4084 }
4085 } else {
4086 if (in_wq) {
ba6a1308 4087 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4088 ata_irq_on(ap);
4089 ata_qc_complete(qc);
ba6a1308 4090 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4091 } else
4092 ata_qc_complete(qc);
4093 }
1da177e4 4094
c81e29b4 4095 ata_altstatus(ap); /* flush */
c17ea20d
TH
4096}
4097
bb5cb290
AL
4098/**
4099 * ata_hsm_move - move the HSM to the next state.
4100 * @ap: the target ata_port
4101 * @qc: qc on going
4102 * @status: current device status
4103 * @in_wq: 1 if called from workqueue, 0 otherwise
4104 *
4105 * RETURNS:
4106 * 1 when poll next status needed, 0 otherwise.
4107 */
9a1004d0
TH
4108int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4109 u8 status, int in_wq)
e2cec771 4110{
bb5cb290
AL
4111 unsigned long flags = 0;
4112 int poll_next;
4113
6912ccd5
AL
4114 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4115
bb5cb290
AL
4116 /* Make sure ata_qc_issue_prot() does not throw things
4117 * like DMA polling into the workqueue. Notice that
4118 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4119 */
c234fb00 4120 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4121
e2cec771 4122fsm_start:
999bb6f4
AL
4123 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4124 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4125
e2cec771
AL
4126 switch (ap->hsm_task_state) {
4127 case HSM_ST_FIRST:
bb5cb290
AL
4128 /* Send first data block or PACKET CDB */
4129
4130 /* If polling, we will stay in the work queue after
4131 * sending the data. Otherwise, interrupt handler
4132 * takes over after sending the data.
4133 */
4134 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4135
e2cec771 4136 /* check device status */
3655d1d3
AL
4137 if (unlikely((status & ATA_DRQ) == 0)) {
4138 /* handle BSY=0, DRQ=0 as error */
4139 if (likely(status & (ATA_ERR | ATA_DF)))
4140 /* device stops HSM for abort/error */
4141 qc->err_mask |= AC_ERR_DEV;
4142 else
4143 /* HSM violation. Let EH handle this */
4144 qc->err_mask |= AC_ERR_HSM;
4145
14be71f4 4146 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4147 goto fsm_start;
1da177e4
LT
4148 }
4149
71601958
AL
4150 /* Device should not ask for data transfer (DRQ=1)
4151 * when it finds something wrong.
eee6c32f
AL
4152 * We ignore DRQ here and stop the HSM by
4153 * changing hsm_task_state to HSM_ST_ERR and
4154 * let the EH abort the command or reset the device.
71601958
AL
4155 */
4156 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4157 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4158 ap->id, status);
3655d1d3 4159 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4160 ap->hsm_task_state = HSM_ST_ERR;
4161 goto fsm_start;
71601958 4162 }
1da177e4 4163
bb5cb290
AL
4164 /* Send the CDB (atapi) or the first data block (ata pio out).
4165 * During the state transition, interrupt handler shouldn't
4166 * be invoked before the data transfer is complete and
4167 * hsm_task_state is changed. Hence, the following locking.
4168 */
4169 if (in_wq)
ba6a1308 4170 spin_lock_irqsave(ap->lock, flags);
1da177e4 4171
bb5cb290
AL
4172 if (qc->tf.protocol == ATA_PROT_PIO) {
4173 /* PIO data out protocol.
4174 * send first data block.
4175 */
0565c26d 4176
bb5cb290
AL
4177 /* ata_pio_sectors() might change the state
4178 * to HSM_ST_LAST. so, the state is changed here
4179 * before ata_pio_sectors().
4180 */
4181 ap->hsm_task_state = HSM_ST;
4182 ata_pio_sectors(qc);
4183 ata_altstatus(ap); /* flush */
4184 } else
4185 /* send CDB */
4186 atapi_send_cdb(ap, qc);
4187
4188 if (in_wq)
ba6a1308 4189 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4190
4191 /* if polling, ata_pio_task() handles the rest.
4192 * otherwise, interrupt handler takes over from here.
4193 */
e2cec771 4194 break;
1c848984 4195
e2cec771
AL
4196 case HSM_ST:
4197 /* complete command or read/write the data register */
4198 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4199 /* ATAPI PIO protocol */
4200 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4201 /* No more data to transfer or device error.
4202 * Device error will be tagged in HSM_ST_LAST.
4203 */
e2cec771
AL
4204 ap->hsm_task_state = HSM_ST_LAST;
4205 goto fsm_start;
4206 }
1da177e4 4207
71601958
AL
4208 /* Device should not ask for data transfer (DRQ=1)
4209 * when it finds something wrong.
eee6c32f
AL
4210 * We ignore DRQ here and stop the HSM by
4211 * changing hsm_task_state to HSM_ST_ERR and
4212 * let the EH abort the command or reset the device.
71601958
AL
4213 */
4214 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4215 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4216 ap->id, status);
3655d1d3 4217 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4218 ap->hsm_task_state = HSM_ST_ERR;
4219 goto fsm_start;
71601958 4220 }
1da177e4 4221
e2cec771 4222 atapi_pio_bytes(qc);
7fb6ec28 4223
e2cec771
AL
4224 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4225 /* bad ireason reported by device */
4226 goto fsm_start;
1da177e4 4227
e2cec771
AL
4228 } else {
4229 /* ATA PIO protocol */
4230 if (unlikely((status & ATA_DRQ) == 0)) {
4231 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4232 if (likely(status & (ATA_ERR | ATA_DF)))
4233 /* device stops HSM for abort/error */
4234 qc->err_mask |= AC_ERR_DEV;
4235 else
4236 /* HSM violation. Let EH handle this */
4237 qc->err_mask |= AC_ERR_HSM;
4238
e2cec771
AL
4239 ap->hsm_task_state = HSM_ST_ERR;
4240 goto fsm_start;
4241 }
1da177e4 4242
eee6c32f
AL
4243 /* For PIO reads, some devices may ask for
4244 * data transfer (DRQ=1) alone with ERR=1.
4245 * We respect DRQ here and transfer one
4246 * block of junk data before changing the
4247 * hsm_task_state to HSM_ST_ERR.
4248 *
4249 * For PIO writes, ERR=1 DRQ=1 doesn't make
4250 * sense since the data block has been
4251 * transferred to the device.
71601958
AL
4252 */
4253 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4254 /* data might be corrputed */
4255 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4256
4257 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4258 ata_pio_sectors(qc);
4259 ata_altstatus(ap);
4260 status = ata_wait_idle(ap);
4261 }
4262
3655d1d3
AL
4263 if (status & (ATA_BUSY | ATA_DRQ))
4264 qc->err_mask |= AC_ERR_HSM;
4265
eee6c32f
AL
4266 /* ata_pio_sectors() might change the
4267 * state to HSM_ST_LAST. so, the state
4268 * is changed after ata_pio_sectors().
4269 */
4270 ap->hsm_task_state = HSM_ST_ERR;
4271 goto fsm_start;
71601958
AL
4272 }
4273
e2cec771
AL
4274 ata_pio_sectors(qc);
4275
4276 if (ap->hsm_task_state == HSM_ST_LAST &&
4277 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4278 /* all data read */
4279 ata_altstatus(ap);
52a32205 4280 status = ata_wait_idle(ap);
e2cec771
AL
4281 goto fsm_start;
4282 }
4283 }
4284
4285 ata_altstatus(ap); /* flush */
bb5cb290 4286 poll_next = 1;
1da177e4
LT
4287 break;
4288
14be71f4 4289 case HSM_ST_LAST:
6912ccd5
AL
4290 if (unlikely(!ata_ok(status))) {
4291 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4292 ap->hsm_task_state = HSM_ST_ERR;
4293 goto fsm_start;
4294 }
4295
4296 /* no more data to transfer */
4332a771
AL
4297 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4298 ap->id, qc->dev->devno, status);
e2cec771 4299
6912ccd5
AL
4300 WARN_ON(qc->err_mask);
4301
e2cec771 4302 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4303
e2cec771 4304 /* complete taskfile transaction */
c17ea20d 4305 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4306
4307 poll_next = 0;
1da177e4
LT
4308 break;
4309
14be71f4 4310 case HSM_ST_ERR:
e2cec771
AL
4311 /* make sure qc->err_mask is available to
4312 * know what's wrong and recover
4313 */
4314 WARN_ON(qc->err_mask == 0);
4315
4316 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4317
999bb6f4 4318 /* complete taskfile transaction */
c17ea20d 4319 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4320
4321 poll_next = 0;
e2cec771
AL
4322 break;
4323 default:
bb5cb290 4324 poll_next = 0;
6912ccd5 4325 BUG();
1da177e4
LT
4326 }
4327
bb5cb290 4328 return poll_next;
1da177e4
LT
4329}
4330
1da177e4 4331static void ata_pio_task(void *_data)
8061f5f0 4332{
c91af2c8
TH
4333 struct ata_queued_cmd *qc = _data;
4334 struct ata_port *ap = qc->ap;
8061f5f0 4335 u8 status;
a1af3734 4336 int poll_next;
8061f5f0 4337
7fb6ec28 4338fsm_start:
a1af3734 4339 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4340
a1af3734
AL
4341 /*
4342 * This is purely heuristic. This is a fast path.
4343 * Sometimes when we enter, BSY will be cleared in
4344 * a chk-status or two. If not, the drive is probably seeking
4345 * or something. Snooze for a couple msecs, then
4346 * chk-status again. If still busy, queue delayed work.
4347 */
4348 status = ata_busy_wait(ap, ATA_BUSY, 5);
4349 if (status & ATA_BUSY) {
4350 msleep(2);
4351 status = ata_busy_wait(ap, ATA_BUSY, 10);
4352 if (status & ATA_BUSY) {
31ce6dae 4353 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4354 return;
4355 }
8061f5f0
TH
4356 }
4357
a1af3734
AL
4358 /* move the HSM */
4359 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4360
a1af3734
AL
4361 /* another command or interrupt handler
4362 * may be running at this point.
4363 */
4364 if (poll_next)
7fb6ec28 4365 goto fsm_start;
8061f5f0
TH
4366}
4367
1da177e4
LT
4368/**
4369 * ata_qc_new - Request an available ATA command, for queueing
4370 * @ap: Port associated with device @dev
4371 * @dev: Device from whom we request an available command structure
4372 *
4373 * LOCKING:
0cba632b 4374 * None.
1da177e4
LT
4375 */
4376
4377static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4378{
4379 struct ata_queued_cmd *qc = NULL;
4380 unsigned int i;
4381
e3180499 4382 /* no command while frozen */
b51e9e5d 4383 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4384 return NULL;
4385
2ab7db1f
TH
4386 /* the last tag is reserved for internal command. */
4387 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4388 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4389 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4390 break;
4391 }
4392
4393 if (qc)
4394 qc->tag = i;
4395
4396 return qc;
4397}
4398
4399/**
4400 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4401 * @dev: Device from whom we request an available command structure
4402 *
4403 * LOCKING:
0cba632b 4404 * None.
1da177e4
LT
4405 */
4406
3373efd8 4407struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4408{
3373efd8 4409 struct ata_port *ap = dev->ap;
1da177e4
LT
4410 struct ata_queued_cmd *qc;
4411
4412 qc = ata_qc_new(ap);
4413 if (qc) {
1da177e4
LT
4414 qc->scsicmd = NULL;
4415 qc->ap = ap;
4416 qc->dev = dev;
1da177e4 4417
2c13b7ce 4418 ata_qc_reinit(qc);
1da177e4
LT
4419 }
4420
4421 return qc;
4422}
4423
1da177e4
LT
4424/**
4425 * ata_qc_free - free unused ata_queued_cmd
4426 * @qc: Command to complete
4427 *
4428 * Designed to free unused ata_queued_cmd object
4429 * in case something prevents using it.
4430 *
4431 * LOCKING:
cca3974e 4432 * spin_lock_irqsave(host lock)
1da177e4
LT
4433 */
4434void ata_qc_free(struct ata_queued_cmd *qc)
4435{
4ba946e9
TH
4436 struct ata_port *ap = qc->ap;
4437 unsigned int tag;
4438
a4631474 4439 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4440
4ba946e9
TH
4441 qc->flags = 0;
4442 tag = qc->tag;
4443 if (likely(ata_tag_valid(tag))) {
4ba946e9 4444 qc->tag = ATA_TAG_POISON;
6cec4a39 4445 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4446 }
1da177e4
LT
4447}
4448
76014427 4449void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4450{
dedaf2b0
TH
4451 struct ata_port *ap = qc->ap;
4452
a4631474
TH
4453 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4454 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4455
4456 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4457 ata_sg_clean(qc);
4458
7401abf2 4459 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4460 if (qc->tf.protocol == ATA_PROT_NCQ)
4461 ap->sactive &= ~(1 << qc->tag);
4462 else
4463 ap->active_tag = ATA_TAG_POISON;
7401abf2 4464
3f3791d3
AL
4465 /* atapi: mark qc as inactive to prevent the interrupt handler
4466 * from completing the command twice later, before the error handler
4467 * is called. (when rc != 0 and atapi request sense is needed)
4468 */
4469 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4470 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4471
1da177e4 4472 /* call completion callback */
77853bf2 4473 qc->complete_fn(qc);
1da177e4
LT
4474}
4475
f686bcb8
TH
4476/**
4477 * ata_qc_complete - Complete an active ATA command
4478 * @qc: Command to complete
4479 * @err_mask: ATA Status register contents
4480 *
4481 * Indicate to the mid and upper layers that an ATA
4482 * command has completed, with either an ok or not-ok status.
4483 *
4484 * LOCKING:
cca3974e 4485 * spin_lock_irqsave(host lock)
f686bcb8
TH
4486 */
4487void ata_qc_complete(struct ata_queued_cmd *qc)
4488{
4489 struct ata_port *ap = qc->ap;
4490
4491 /* XXX: New EH and old EH use different mechanisms to
4492 * synchronize EH with regular execution path.
4493 *
4494 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4495 * Normal execution path is responsible for not accessing a
4496 * failed qc. libata core enforces the rule by returning NULL
4497 * from ata_qc_from_tag() for failed qcs.
4498 *
4499 * Old EH depends on ata_qc_complete() nullifying completion
4500 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4501 * not synchronize with interrupt handler. Only PIO task is
4502 * taken care of.
4503 */
4504 if (ap->ops->error_handler) {
b51e9e5d 4505 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4506
4507 if (unlikely(qc->err_mask))
4508 qc->flags |= ATA_QCFLAG_FAILED;
4509
4510 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4511 if (!ata_tag_internal(qc->tag)) {
4512 /* always fill result TF for failed qc */
4513 ap->ops->tf_read(ap, &qc->result_tf);
4514 ata_qc_schedule_eh(qc);
4515 return;
4516 }
4517 }
4518
4519 /* read result TF if requested */
4520 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4521 ap->ops->tf_read(ap, &qc->result_tf);
4522
4523 __ata_qc_complete(qc);
4524 } else {
4525 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4526 return;
4527
4528 /* read result TF if failed or requested */
4529 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4530 ap->ops->tf_read(ap, &qc->result_tf);
4531
4532 __ata_qc_complete(qc);
4533 }
4534}
4535
dedaf2b0
TH
4536/**
4537 * ata_qc_complete_multiple - Complete multiple qcs successfully
4538 * @ap: port in question
4539 * @qc_active: new qc_active mask
4540 * @finish_qc: LLDD callback invoked before completing a qc
4541 *
4542 * Complete in-flight commands. This functions is meant to be
4543 * called from low-level driver's interrupt routine to complete
4544 * requests normally. ap->qc_active and @qc_active is compared
4545 * and commands are completed accordingly.
4546 *
4547 * LOCKING:
cca3974e 4548 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4549 *
4550 * RETURNS:
4551 * Number of completed commands on success, -errno otherwise.
4552 */
4553int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4554 void (*finish_qc)(struct ata_queued_cmd *))
4555{
4556 int nr_done = 0;
4557 u32 done_mask;
4558 int i;
4559
4560 done_mask = ap->qc_active ^ qc_active;
4561
4562 if (unlikely(done_mask & qc_active)) {
4563 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4564 "(%08x->%08x)\n", ap->qc_active, qc_active);
4565 return -EINVAL;
4566 }
4567
4568 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4569 struct ata_queued_cmd *qc;
4570
4571 if (!(done_mask & (1 << i)))
4572 continue;
4573
4574 if ((qc = ata_qc_from_tag(ap, i))) {
4575 if (finish_qc)
4576 finish_qc(qc);
4577 ata_qc_complete(qc);
4578 nr_done++;
4579 }
4580 }
4581
4582 return nr_done;
4583}
4584
1da177e4
LT
4585static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4586{
4587 struct ata_port *ap = qc->ap;
4588
4589 switch (qc->tf.protocol) {
3dc1d881 4590 case ATA_PROT_NCQ:
1da177e4
LT
4591 case ATA_PROT_DMA:
4592 case ATA_PROT_ATAPI_DMA:
4593 return 1;
4594
4595 case ATA_PROT_ATAPI:
4596 case ATA_PROT_PIO:
1da177e4
LT
4597 if (ap->flags & ATA_FLAG_PIO_DMA)
4598 return 1;
4599
4600 /* fall through */
4601
4602 default:
4603 return 0;
4604 }
4605
4606 /* never reached */
4607}
4608
4609/**
4610 * ata_qc_issue - issue taskfile to device
4611 * @qc: command to issue to device
4612 *
4613 * Prepare an ATA command to submission to device.
4614 * This includes mapping the data into a DMA-able
4615 * area, filling in the S/G table, and finally
4616 * writing the taskfile to hardware, starting the command.
4617 *
4618 * LOCKING:
cca3974e 4619 * spin_lock_irqsave(host lock)
1da177e4 4620 */
8e0e694a 4621void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4622{
4623 struct ata_port *ap = qc->ap;
4624
dedaf2b0
TH
4625 /* Make sure only one non-NCQ command is outstanding. The
4626 * check is skipped for old EH because it reuses active qc to
4627 * request ATAPI sense.
4628 */
4629 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4630
4631 if (qc->tf.protocol == ATA_PROT_NCQ) {
4632 WARN_ON(ap->sactive & (1 << qc->tag));
4633 ap->sactive |= 1 << qc->tag;
4634 } else {
4635 WARN_ON(ap->sactive);
4636 ap->active_tag = qc->tag;
4637 }
4638
e4a70e76 4639 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4640 ap->qc_active |= 1 << qc->tag;
e4a70e76 4641
1da177e4
LT
4642 if (ata_should_dma_map(qc)) {
4643 if (qc->flags & ATA_QCFLAG_SG) {
4644 if (ata_sg_setup(qc))
8e436af9 4645 goto sg_err;
1da177e4
LT
4646 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4647 if (ata_sg_setup_one(qc))
8e436af9 4648 goto sg_err;
1da177e4
LT
4649 }
4650 } else {
4651 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4652 }
4653
4654 ap->ops->qc_prep(qc);
4655
8e0e694a
TH
4656 qc->err_mask |= ap->ops->qc_issue(qc);
4657 if (unlikely(qc->err_mask))
4658 goto err;
4659 return;
1da177e4 4660
8e436af9
TH
4661sg_err:
4662 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4663 qc->err_mask |= AC_ERR_SYSTEM;
4664err:
4665 ata_qc_complete(qc);
1da177e4
LT
4666}
4667
4668/**
4669 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4670 * @qc: command to issue to device
4671 *
4672 * Using various libata functions and hooks, this function
4673 * starts an ATA command. ATA commands are grouped into
4674 * classes called "protocols", and issuing each type of protocol
4675 * is slightly different.
4676 *
0baab86b
EF
4677 * May be used as the qc_issue() entry in ata_port_operations.
4678 *
1da177e4 4679 * LOCKING:
cca3974e 4680 * spin_lock_irqsave(host lock)
1da177e4
LT
4681 *
4682 * RETURNS:
9a3d9eb0 4683 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4684 */
4685
9a3d9eb0 4686unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4687{
4688 struct ata_port *ap = qc->ap;
4689
e50362ec
AL
4690 /* Use polling pio if the LLD doesn't handle
4691 * interrupt driven pio and atapi CDB interrupt.
4692 */
4693 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4694 switch (qc->tf.protocol) {
4695 case ATA_PROT_PIO:
4696 case ATA_PROT_ATAPI:
4697 case ATA_PROT_ATAPI_NODATA:
4698 qc->tf.flags |= ATA_TFLAG_POLLING;
4699 break;
4700 case ATA_PROT_ATAPI_DMA:
4701 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4702 /* see ata_dma_blacklisted() */
e50362ec
AL
4703 BUG();
4704 break;
4705 default:
4706 break;
4707 }
4708 }
4709
312f7da2 4710 /* select the device */
1da177e4
LT
4711 ata_dev_select(ap, qc->dev->devno, 1, 0);
4712
312f7da2 4713 /* start the command */
1da177e4
LT
4714 switch (qc->tf.protocol) {
4715 case ATA_PROT_NODATA:
312f7da2
AL
4716 if (qc->tf.flags & ATA_TFLAG_POLLING)
4717 ata_qc_set_polling(qc);
4718
e5338254 4719 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4720 ap->hsm_task_state = HSM_ST_LAST;
4721
4722 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4723 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4724
1da177e4
LT
4725 break;
4726
4727 case ATA_PROT_DMA:
587005de 4728 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4729
1da177e4
LT
4730 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4731 ap->ops->bmdma_setup(qc); /* set up bmdma */
4732 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4733 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4734 break;
4735
312f7da2
AL
4736 case ATA_PROT_PIO:
4737 if (qc->tf.flags & ATA_TFLAG_POLLING)
4738 ata_qc_set_polling(qc);
1da177e4 4739
e5338254 4740 ata_tf_to_host(ap, &qc->tf);
312f7da2 4741
54f00389
AL
4742 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4743 /* PIO data out protocol */
4744 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4745 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4746
4747 /* always send first data block using
e27486db 4748 * the ata_pio_task() codepath.
54f00389 4749 */
312f7da2 4750 } else {
54f00389
AL
4751 /* PIO data in protocol */
4752 ap->hsm_task_state = HSM_ST;
4753
4754 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4755 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4756
4757 /* if polling, ata_pio_task() handles the rest.
4758 * otherwise, interrupt handler takes over from here.
4759 */
312f7da2
AL
4760 }
4761
1da177e4
LT
4762 break;
4763
1da177e4 4764 case ATA_PROT_ATAPI:
1da177e4 4765 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4766 if (qc->tf.flags & ATA_TFLAG_POLLING)
4767 ata_qc_set_polling(qc);
4768
e5338254 4769 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4770
312f7da2
AL
4771 ap->hsm_task_state = HSM_ST_FIRST;
4772
4773 /* send cdb by polling if no cdb interrupt */
4774 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4775 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4776 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4777 break;
4778
4779 case ATA_PROT_ATAPI_DMA:
587005de 4780 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4781
1da177e4
LT
4782 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4783 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4784 ap->hsm_task_state = HSM_ST_FIRST;
4785
4786 /* send cdb by polling if no cdb interrupt */
4787 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4788 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4789 break;
4790
4791 default:
4792 WARN_ON(1);
9a3d9eb0 4793 return AC_ERR_SYSTEM;
1da177e4
LT
4794 }
4795
4796 return 0;
4797}
4798
1da177e4
LT
4799/**
4800 * ata_host_intr - Handle host interrupt for given (port, task)
4801 * @ap: Port on which interrupt arrived (possibly...)
4802 * @qc: Taskfile currently active in engine
4803 *
4804 * Handle host interrupt for given queued command. Currently,
4805 * only DMA interrupts are handled. All other commands are
4806 * handled via polling with interrupts disabled (nIEN bit).
4807 *
4808 * LOCKING:
cca3974e 4809 * spin_lock_irqsave(host lock)
1da177e4
LT
4810 *
4811 * RETURNS:
4812 * One if interrupt was handled, zero if not (shared irq).
4813 */
4814
4815inline unsigned int ata_host_intr (struct ata_port *ap,
4816 struct ata_queued_cmd *qc)
4817{
312f7da2 4818 u8 status, host_stat = 0;
1da177e4 4819
312f7da2
AL
4820 VPRINTK("ata%u: protocol %d task_state %d\n",
4821 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4822
312f7da2
AL
4823 /* Check whether we are expecting interrupt in this state */
4824 switch (ap->hsm_task_state) {
4825 case HSM_ST_FIRST:
6912ccd5
AL
4826 /* Some pre-ATAPI-4 devices assert INTRQ
4827 * at this state when ready to receive CDB.
4828 */
1da177e4 4829
312f7da2
AL
4830 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4831 * The flag was turned on only for atapi devices.
4832 * No need to check is_atapi_taskfile(&qc->tf) again.
4833 */
4834 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4835 goto idle_irq;
1da177e4 4836 break;
312f7da2
AL
4837 case HSM_ST_LAST:
4838 if (qc->tf.protocol == ATA_PROT_DMA ||
4839 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4840 /* check status of DMA engine */
4841 host_stat = ap->ops->bmdma_status(ap);
4842 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4843
4844 /* if it's not our irq... */
4845 if (!(host_stat & ATA_DMA_INTR))
4846 goto idle_irq;
4847
4848 /* before we do anything else, clear DMA-Start bit */
4849 ap->ops->bmdma_stop(qc);
a4f16610
AL
4850
4851 if (unlikely(host_stat & ATA_DMA_ERR)) {
4852 /* error when transfering data to/from memory */
4853 qc->err_mask |= AC_ERR_HOST_BUS;
4854 ap->hsm_task_state = HSM_ST_ERR;
4855 }
312f7da2
AL
4856 }
4857 break;
4858 case HSM_ST:
4859 break;
1da177e4
LT
4860 default:
4861 goto idle_irq;
4862 }
4863
312f7da2
AL
4864 /* check altstatus */
4865 status = ata_altstatus(ap);
4866 if (status & ATA_BUSY)
4867 goto idle_irq;
1da177e4 4868
312f7da2
AL
4869 /* check main status, clearing INTRQ */
4870 status = ata_chk_status(ap);
4871 if (unlikely(status & ATA_BUSY))
4872 goto idle_irq;
1da177e4 4873
312f7da2
AL
4874 /* ack bmdma irq events */
4875 ap->ops->irq_clear(ap);
1da177e4 4876
bb5cb290 4877 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4878 return 1; /* irq handled */
4879
4880idle_irq:
4881 ap->stats.idle_irq++;
4882
4883#ifdef ATA_IRQ_TRAP
4884 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4885 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4886 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4887 return 1;
1da177e4
LT
4888 }
4889#endif
4890 return 0; /* irq not handled */
4891}
4892
4893/**
4894 * ata_interrupt - Default ATA host interrupt handler
0cba632b 4895 * @irq: irq line (unused)
cca3974e 4896 * @dev_instance: pointer to our ata_host information structure
1da177e4 4897 *
0cba632b
JG
4898 * Default interrupt handler for PCI IDE devices. Calls
4899 * ata_host_intr() for each port that is not disabled.
4900 *
1da177e4 4901 * LOCKING:
cca3974e 4902 * Obtains host lock during operation.
1da177e4
LT
4903 *
4904 * RETURNS:
0cba632b 4905 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4906 */
4907
7d12e780 4908irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 4909{
cca3974e 4910 struct ata_host *host = dev_instance;
1da177e4
LT
4911 unsigned int i;
4912 unsigned int handled = 0;
4913 unsigned long flags;
4914
4915 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 4916 spin_lock_irqsave(&host->lock, flags);
1da177e4 4917
cca3974e 4918 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
4919 struct ata_port *ap;
4920
cca3974e 4921 ap = host->ports[i];
c1389503 4922 if (ap &&
029f5468 4923 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4924 struct ata_queued_cmd *qc;
4925
4926 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4927 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4928 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4929 handled |= ata_host_intr(ap, qc);
4930 }
4931 }
4932
cca3974e 4933 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
4934
4935 return IRQ_RETVAL(handled);
4936}
4937
34bf2170
TH
4938/**
4939 * sata_scr_valid - test whether SCRs are accessible
4940 * @ap: ATA port to test SCR accessibility for
4941 *
4942 * Test whether SCRs are accessible for @ap.
4943 *
4944 * LOCKING:
4945 * None.
4946 *
4947 * RETURNS:
4948 * 1 if SCRs are accessible, 0 otherwise.
4949 */
4950int sata_scr_valid(struct ata_port *ap)
4951{
4952 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4953}
4954
4955/**
4956 * sata_scr_read - read SCR register of the specified port
4957 * @ap: ATA port to read SCR for
4958 * @reg: SCR to read
4959 * @val: Place to store read value
4960 *
4961 * Read SCR register @reg of @ap into *@val. This function is
4962 * guaranteed to succeed if the cable type of the port is SATA
4963 * and the port implements ->scr_read.
4964 *
4965 * LOCKING:
4966 * None.
4967 *
4968 * RETURNS:
4969 * 0 on success, negative errno on failure.
4970 */
4971int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4972{
4973 if (sata_scr_valid(ap)) {
4974 *val = ap->ops->scr_read(ap, reg);
4975 return 0;
4976 }
4977 return -EOPNOTSUPP;
4978}
4979
4980/**
4981 * sata_scr_write - write SCR register of the specified port
4982 * @ap: ATA port to write SCR for
4983 * @reg: SCR to write
4984 * @val: value to write
4985 *
4986 * Write @val to SCR register @reg of @ap. This function is
4987 * guaranteed to succeed if the cable type of the port is SATA
4988 * and the port implements ->scr_read.
4989 *
4990 * LOCKING:
4991 * None.
4992 *
4993 * RETURNS:
4994 * 0 on success, negative errno on failure.
4995 */
4996int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4997{
4998 if (sata_scr_valid(ap)) {
4999 ap->ops->scr_write(ap, reg, val);
5000 return 0;
5001 }
5002 return -EOPNOTSUPP;
5003}
5004
5005/**
5006 * sata_scr_write_flush - write SCR register of the specified port and flush
5007 * @ap: ATA port to write SCR for
5008 * @reg: SCR to write
5009 * @val: value to write
5010 *
5011 * This function is identical to sata_scr_write() except that this
5012 * function performs flush after writing to the register.
5013 *
5014 * LOCKING:
5015 * None.
5016 *
5017 * RETURNS:
5018 * 0 on success, negative errno on failure.
5019 */
5020int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5021{
5022 if (sata_scr_valid(ap)) {
5023 ap->ops->scr_write(ap, reg, val);
5024 ap->ops->scr_read(ap, reg);
5025 return 0;
5026 }
5027 return -EOPNOTSUPP;
5028}
5029
5030/**
5031 * ata_port_online - test whether the given port is online
5032 * @ap: ATA port to test
5033 *
5034 * Test whether @ap is online. Note that this function returns 0
5035 * if online status of @ap cannot be obtained, so
5036 * ata_port_online(ap) != !ata_port_offline(ap).
5037 *
5038 * LOCKING:
5039 * None.
5040 *
5041 * RETURNS:
5042 * 1 if the port online status is available and online.
5043 */
5044int ata_port_online(struct ata_port *ap)
5045{
5046 u32 sstatus;
5047
5048 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5049 return 1;
5050 return 0;
5051}
5052
5053/**
5054 * ata_port_offline - test whether the given port is offline
5055 * @ap: ATA port to test
5056 *
5057 * Test whether @ap is offline. Note that this function returns
5058 * 0 if offline status of @ap cannot be obtained, so
5059 * ata_port_online(ap) != !ata_port_offline(ap).
5060 *
5061 * LOCKING:
5062 * None.
5063 *
5064 * RETURNS:
5065 * 1 if the port offline status is available and offline.
5066 */
5067int ata_port_offline(struct ata_port *ap)
5068{
5069 u32 sstatus;
5070
5071 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5072 return 1;
5073 return 0;
5074}
0baab86b 5075
77b08fb5 5076int ata_flush_cache(struct ata_device *dev)
9b847548 5077{
977e6b9f 5078 unsigned int err_mask;
9b847548
JA
5079 u8 cmd;
5080
5081 if (!ata_try_flush_cache(dev))
5082 return 0;
5083
5084 if (ata_id_has_flush_ext(dev->id))
5085 cmd = ATA_CMD_FLUSH_EXT;
5086 else
5087 cmd = ATA_CMD_FLUSH;
5088
977e6b9f
TH
5089 err_mask = ata_do_simple_cmd(dev, cmd);
5090 if (err_mask) {
5091 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5092 return -EIO;
5093 }
5094
5095 return 0;
9b847548
JA
5096}
5097
cca3974e
JG
5098static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5099 unsigned int action, unsigned int ehi_flags,
5100 int wait)
500530f6
TH
5101{
5102 unsigned long flags;
5103 int i, rc;
5104
cca3974e
JG
5105 for (i = 0; i < host->n_ports; i++) {
5106 struct ata_port *ap = host->ports[i];
500530f6
TH
5107
5108 /* Previous resume operation might still be in
5109 * progress. Wait for PM_PENDING to clear.
5110 */
5111 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5112 ata_port_wait_eh(ap);
5113 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5114 }
5115
5116 /* request PM ops to EH */
5117 spin_lock_irqsave(ap->lock, flags);
5118
5119 ap->pm_mesg = mesg;
5120 if (wait) {
5121 rc = 0;
5122 ap->pm_result = &rc;
5123 }
5124
5125 ap->pflags |= ATA_PFLAG_PM_PENDING;
5126 ap->eh_info.action |= action;
5127 ap->eh_info.flags |= ehi_flags;
5128
5129 ata_port_schedule_eh(ap);
5130
5131 spin_unlock_irqrestore(ap->lock, flags);
5132
5133 /* wait and check result */
5134 if (wait) {
5135 ata_port_wait_eh(ap);
5136 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5137 if (rc)
5138 return rc;
5139 }
5140 }
5141
5142 return 0;
5143}
5144
5145/**
cca3974e
JG
5146 * ata_host_suspend - suspend host
5147 * @host: host to suspend
500530f6
TH
5148 * @mesg: PM message
5149 *
cca3974e 5150 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5151 * function requests EH to perform PM operations and waits for EH
5152 * to finish.
5153 *
5154 * LOCKING:
5155 * Kernel thread context (may sleep).
5156 *
5157 * RETURNS:
5158 * 0 on success, -errno on failure.
5159 */
cca3974e 5160int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5161{
5162 int i, j, rc;
5163
cca3974e 5164 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5165 if (rc)
5166 goto fail;
5167
5168 /* EH is quiescent now. Fail if we have any ready device.
5169 * This happens if hotplug occurs between completion of device
5170 * suspension and here.
5171 */
cca3974e
JG
5172 for (i = 0; i < host->n_ports; i++) {
5173 struct ata_port *ap = host->ports[i];
500530f6
TH
5174
5175 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5176 struct ata_device *dev = &ap->device[j];
5177
5178 if (ata_dev_ready(dev)) {
5179 ata_port_printk(ap, KERN_WARNING,
5180 "suspend failed, device %d "
5181 "still active\n", dev->devno);
5182 rc = -EBUSY;
5183 goto fail;
5184 }
5185 }
5186 }
5187
cca3974e 5188 host->dev->power.power_state = mesg;
500530f6
TH
5189 return 0;
5190
5191 fail:
cca3974e 5192 ata_host_resume(host);
500530f6
TH
5193 return rc;
5194}
5195
5196/**
cca3974e
JG
5197 * ata_host_resume - resume host
5198 * @host: host to resume
500530f6 5199 *
cca3974e 5200 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5201 * function requests EH to perform PM operations and returns.
5202 * Note that all resume operations are performed parallely.
5203 *
5204 * LOCKING:
5205 * Kernel thread context (may sleep).
5206 */
cca3974e 5207void ata_host_resume(struct ata_host *host)
500530f6 5208{
cca3974e
JG
5209 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5210 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5211 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5212}
5213
c893a3ae
RD
5214/**
5215 * ata_port_start - Set port up for dma.
5216 * @ap: Port to initialize
5217 *
5218 * Called just after data structures for each port are
5219 * initialized. Allocates space for PRD table.
5220 *
5221 * May be used as the port_start() entry in ata_port_operations.
5222 *
5223 * LOCKING:
5224 * Inherited from caller.
5225 */
5226
1da177e4
LT
5227int ata_port_start (struct ata_port *ap)
5228{
2f1f610b 5229 struct device *dev = ap->dev;
6037d6bb 5230 int rc;
1da177e4
LT
5231
5232 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5233 if (!ap->prd)
5234 return -ENOMEM;
5235
6037d6bb
JG
5236 rc = ata_pad_alloc(ap, dev);
5237 if (rc) {
cedc9a47 5238 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5239 return rc;
cedc9a47
JG
5240 }
5241
1da177e4
LT
5242 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5243
5244 return 0;
5245}
5246
0baab86b
EF
5247
5248/**
5249 * ata_port_stop - Undo ata_port_start()
5250 * @ap: Port to shut down
5251 *
5252 * Frees the PRD table.
5253 *
5254 * May be used as the port_stop() entry in ata_port_operations.
5255 *
5256 * LOCKING:
6f0ef4fa 5257 * Inherited from caller.
0baab86b
EF
5258 */
5259
1da177e4
LT
5260void ata_port_stop (struct ata_port *ap)
5261{
2f1f610b 5262 struct device *dev = ap->dev;
1da177e4
LT
5263
5264 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5265 ata_pad_free(ap, dev);
1da177e4
LT
5266}
5267
cca3974e 5268void ata_host_stop (struct ata_host *host)
aa8f0dc6 5269{
cca3974e
JG
5270 if (host->mmio_base)
5271 iounmap(host->mmio_base);
aa8f0dc6
JG
5272}
5273
3ef3b43d
TH
5274/**
5275 * ata_dev_init - Initialize an ata_device structure
5276 * @dev: Device structure to initialize
5277 *
5278 * Initialize @dev in preparation for probing.
5279 *
5280 * LOCKING:
5281 * Inherited from caller.
5282 */
5283void ata_dev_init(struct ata_device *dev)
5284{
5285 struct ata_port *ap = dev->ap;
72fa4b74
TH
5286 unsigned long flags;
5287
5a04bf4b
TH
5288 /* SATA spd limit is bound to the first device */
5289 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5290
72fa4b74
TH
5291 /* High bits of dev->flags are used to record warm plug
5292 * requests which occur asynchronously. Synchronize using
cca3974e 5293 * host lock.
72fa4b74 5294 */
ba6a1308 5295 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5296 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5297 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5298
72fa4b74
TH
5299 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5300 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5301 dev->pio_mask = UINT_MAX;
5302 dev->mwdma_mask = UINT_MAX;
5303 dev->udma_mask = UINT_MAX;
5304}
5305
1da177e4 5306/**
155a8a9c 5307 * ata_port_init - Initialize an ata_port structure
1da177e4 5308 * @ap: Structure to initialize
cca3974e 5309 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5310 * @ent: Probe information provided by low-level driver
5311 * @port_no: Port number associated with this ata_port
5312 *
155a8a9c 5313 * Initialize a new ata_port structure.
0cba632b 5314 *
1da177e4 5315 * LOCKING:
0cba632b 5316 * Inherited from caller.
1da177e4 5317 */
cca3974e 5318void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5319 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5320{
5321 unsigned int i;
5322
cca3974e 5323 ap->lock = &host->lock;
198e0fed 5324 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5325 ap->id = ata_unique_id++;
1da177e4 5326 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5327 ap->host = host;
2f1f610b 5328 ap->dev = ent->dev;
1da177e4 5329 ap->port_no = port_no;
fea63e38
TH
5330 if (port_no == 1 && ent->pinfo2) {
5331 ap->pio_mask = ent->pinfo2->pio_mask;
5332 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5333 ap->udma_mask = ent->pinfo2->udma_mask;
5334 ap->flags |= ent->pinfo2->flags;
5335 ap->ops = ent->pinfo2->port_ops;
5336 } else {
5337 ap->pio_mask = ent->pio_mask;
5338 ap->mwdma_mask = ent->mwdma_mask;
5339 ap->udma_mask = ent->udma_mask;
5340 ap->flags |= ent->port_flags;
5341 ap->ops = ent->port_ops;
5342 }
5a04bf4b 5343 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5344 ap->active_tag = ATA_TAG_POISON;
5345 ap->last_ctl = 0xFF;
bd5d825c
BP
5346
5347#if defined(ATA_VERBOSE_DEBUG)
5348 /* turn on all debugging levels */
5349 ap->msg_enable = 0x00FF;
5350#elif defined(ATA_DEBUG)
5351 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5352#else
0dd4b21f 5353 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5354#endif
1da177e4 5355
86e45b6b 5356 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5357 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5358 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5359 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5360 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5361
838df628
TH
5362 /* set cable type */
5363 ap->cbl = ATA_CBL_NONE;
5364 if (ap->flags & ATA_FLAG_SATA)
5365 ap->cbl = ATA_CBL_SATA;
5366
acf356b1
TH
5367 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5368 struct ata_device *dev = &ap->device[i];
38d87234 5369 dev->ap = ap;
72fa4b74 5370 dev->devno = i;
3ef3b43d 5371 ata_dev_init(dev);
acf356b1 5372 }
1da177e4
LT
5373
5374#ifdef ATA_IRQ_TRAP
5375 ap->stats.unhandled_irq = 1;
5376 ap->stats.idle_irq = 1;
5377#endif
5378
5379 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5380}
5381
155a8a9c 5382/**
4608c160
TH
5383 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5384 * @ap: ATA port to initialize SCSI host for
5385 * @shost: SCSI host associated with @ap
155a8a9c 5386 *
4608c160 5387 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5388 *
5389 * LOCKING:
5390 * Inherited from caller.
5391 */
4608c160 5392static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5393{
cca3974e 5394 ap->scsi_host = shost;
155a8a9c 5395
4608c160
TH
5396 shost->unique_id = ap->id;
5397 shost->max_id = 16;
5398 shost->max_lun = 1;
5399 shost->max_channel = 1;
5400 shost->max_cmd_len = 12;
155a8a9c
BK
5401}
5402
1da177e4 5403/**
996139f1 5404 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5405 * @ent: Information provided by low-level driver
cca3974e 5406 * @host: Collections of ports to which we add
1da177e4
LT
5407 * @port_no: Port number associated with this host
5408 *
0cba632b
JG
5409 * Attach low-level ATA driver to system.
5410 *
1da177e4 5411 * LOCKING:
0cba632b 5412 * PCI/etc. bus probe sem.
1da177e4
LT
5413 *
5414 * RETURNS:
0cba632b 5415 * New ata_port on success, for NULL on error.
1da177e4 5416 */
996139f1 5417static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5418 struct ata_host *host,
1da177e4
LT
5419 unsigned int port_no)
5420{
996139f1 5421 struct Scsi_Host *shost;
1da177e4 5422 struct ata_port *ap;
1da177e4
LT
5423
5424 DPRINTK("ENTER\n");
aec5c3c1 5425
52783c5d 5426 if (!ent->port_ops->error_handler &&
cca3974e 5427 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5428 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5429 port_no);
5430 return NULL;
5431 }
5432
996139f1
JG
5433 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5434 if (!shost)
1da177e4
LT
5435 return NULL;
5436
996139f1 5437 shost->transportt = &ata_scsi_transport_template;
30afc84c 5438
996139f1 5439 ap = ata_shost_to_port(shost);
1da177e4 5440
cca3974e 5441 ata_port_init(ap, host, ent, port_no);
996139f1 5442 ata_port_init_shost(ap, shost);
1da177e4 5443
1da177e4 5444 return ap;
1da177e4
LT
5445}
5446
b03732f0 5447/**
cca3974e
JG
5448 * ata_sas_host_init - Initialize a host struct
5449 * @host: host to initialize
5450 * @dev: device host is attached to
5451 * @flags: host flags
5452 * @ops: port_ops
b03732f0
BK
5453 *
5454 * LOCKING:
5455 * PCI/etc. bus probe sem.
5456 *
5457 */
5458
cca3974e
JG
5459void ata_host_init(struct ata_host *host, struct device *dev,
5460 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5461{
cca3974e
JG
5462 spin_lock_init(&host->lock);
5463 host->dev = dev;
5464 host->flags = flags;
5465 host->ops = ops;
b03732f0
BK
5466}
5467
1da177e4 5468/**
0cba632b
JG
5469 * ata_device_add - Register hardware device with ATA and SCSI layers
5470 * @ent: Probe information describing hardware device to be registered
5471 *
5472 * This function processes the information provided in the probe
5473 * information struct @ent, allocates the necessary ATA and SCSI
5474 * host information structures, initializes them, and registers
5475 * everything with requisite kernel subsystems.
5476 *
5477 * This function requests irqs, probes the ATA bus, and probes
5478 * the SCSI bus.
1da177e4
LT
5479 *
5480 * LOCKING:
0cba632b 5481 * PCI/etc. bus probe sem.
1da177e4
LT
5482 *
5483 * RETURNS:
0cba632b 5484 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5485 */
057ace5e 5486int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5487{
6d0500df 5488 unsigned int i;
1da177e4 5489 struct device *dev = ent->dev;
cca3974e 5490 struct ata_host *host;
39b07ce6 5491 int rc;
1da177e4
LT
5492
5493 DPRINTK("ENTER\n");
02f076aa
AC
5494
5495 if (ent->irq == 0) {
5496 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5497 return 0;
5498 }
1da177e4 5499 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5500 host = kzalloc(sizeof(struct ata_host) +
5501 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5502 if (!host)
1da177e4 5503 return 0;
1da177e4 5504
cca3974e
JG
5505 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5506 host->n_ports = ent->n_ports;
5507 host->irq = ent->irq;
5508 host->irq2 = ent->irq2;
5509 host->mmio_base = ent->mmio_base;
5510 host->private_data = ent->private_data;
1da177e4
LT
5511
5512 /* register each port bound to this device */
cca3974e 5513 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5514 struct ata_port *ap;
5515 unsigned long xfer_mode_mask;
2ec7df04 5516 int irq_line = ent->irq;
1da177e4 5517
cca3974e 5518 ap = ata_port_add(ent, host, i);
c38778c3 5519 host->ports[i] = ap;
1da177e4
LT
5520 if (!ap)
5521 goto err_out;
5522
dd5b06c4
TH
5523 /* dummy? */
5524 if (ent->dummy_port_mask & (1 << i)) {
5525 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5526 ap->ops = &ata_dummy_port_ops;
5527 continue;
5528 }
5529
5530 /* start port */
5531 rc = ap->ops->port_start(ap);
5532 if (rc) {
cca3974e
JG
5533 host->ports[i] = NULL;
5534 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5535 goto err_out;
5536 }
5537
2ec7df04
AC
5538 /* Report the secondary IRQ for second channel legacy */
5539 if (i == 1 && ent->irq2)
5540 irq_line = ent->irq2;
5541
1da177e4
LT
5542 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5543 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5544 (ap->pio_mask << ATA_SHIFT_PIO);
5545
5546 /* print per-port info to dmesg */
f15a1daf 5547 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5548 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5549 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5550 ata_mode_string(xfer_mode_mask),
5551 ap->ioaddr.cmd_addr,
5552 ap->ioaddr.ctl_addr,
5553 ap->ioaddr.bmdma_addr,
2ec7df04 5554 irq_line);
1da177e4
LT
5555
5556 ata_chk_status(ap);
cca3974e 5557 host->ops->irq_clear(ap);
e3180499 5558 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5559 }
5560
2ec7df04 5561 /* obtain irq, that may be shared between channels */
39b07ce6 5562 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5563 DRV_NAME, host);
39b07ce6
JG
5564 if (rc) {
5565 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5566 ent->irq, rc);
1da177e4 5567 goto err_out;
39b07ce6 5568 }
1da177e4 5569
2ec7df04
AC
5570 /* do we have a second IRQ for the other channel, eg legacy mode */
5571 if (ent->irq2) {
5572 /* We will get weird core code crashes later if this is true
5573 so trap it now */
5574 BUG_ON(ent->irq == ent->irq2);
5575
5576 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5577 DRV_NAME, host);
2ec7df04
AC
5578 if (rc) {
5579 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5580 ent->irq2, rc);
5581 goto err_out_free_irq;
5582 }
5583 }
5584
1da177e4
LT
5585 /* perform each probe synchronously */
5586 DPRINTK("probe begin\n");
cca3974e
JG
5587 for (i = 0; i < host->n_ports; i++) {
5588 struct ata_port *ap = host->ports[i];
5a04bf4b 5589 u32 scontrol;
1da177e4
LT
5590 int rc;
5591
5a04bf4b
TH
5592 /* init sata_spd_limit to the current value */
5593 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5594 int spd = (scontrol >> 4) & 0xf;
5595 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5596 }
5597 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5598
cca3974e 5599 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5600 if (rc) {
f15a1daf 5601 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5602 /* FIXME: do something useful here */
5603 /* FIXME: handle unconditional calls to
5604 * scsi_scan_host and ata_host_remove, below,
5605 * at the very least
5606 */
5607 }
3e706399 5608
52783c5d 5609 if (ap->ops->error_handler) {
1cdaf534 5610 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5611 unsigned long flags;
5612
5613 ata_port_probe(ap);
5614
5615 /* kick EH for boot probing */
ba6a1308 5616 spin_lock_irqsave(ap->lock, flags);
3e706399 5617
1cdaf534
TH
5618 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5619 ehi->action |= ATA_EH_SOFTRESET;
5620 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5621
b51e9e5d 5622 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5623 ata_port_schedule_eh(ap);
5624
ba6a1308 5625 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5626
5627 /* wait for EH to finish */
5628 ata_port_wait_eh(ap);
5629 } else {
5630 DPRINTK("ata%u: bus probe begin\n", ap->id);
5631 rc = ata_bus_probe(ap);
5632 DPRINTK("ata%u: bus probe end\n", ap->id);
5633
5634 if (rc) {
5635 /* FIXME: do something useful here?
5636 * Current libata behavior will
5637 * tear down everything when
5638 * the module is removed
5639 * or the h/w is unplugged.
5640 */
5641 }
5642 }
1da177e4
LT
5643 }
5644
5645 /* probes are done, now scan each port's disk(s) */
c893a3ae 5646 DPRINTK("host probe begin\n");
cca3974e
JG
5647 for (i = 0; i < host->n_ports; i++) {
5648 struct ata_port *ap = host->ports[i];
1da177e4 5649
644dd0cc 5650 ata_scsi_scan_host(ap);
1da177e4
LT
5651 }
5652
cca3974e 5653 dev_set_drvdata(dev, host);
1da177e4
LT
5654
5655 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5656 return ent->n_ports; /* success */
5657
2ec7df04 5658err_out_free_irq:
cca3974e 5659 free_irq(ent->irq, host);
1da177e4 5660err_out:
cca3974e
JG
5661 for (i = 0; i < host->n_ports; i++) {
5662 struct ata_port *ap = host->ports[i];
77f3f879
TH
5663 if (ap) {
5664 ap->ops->port_stop(ap);
cca3974e 5665 scsi_host_put(ap->scsi_host);
77f3f879 5666 }
1da177e4 5667 }
6d0500df 5668
cca3974e 5669 kfree(host);
1da177e4
LT
5670 VPRINTK("EXIT, returning 0\n");
5671 return 0;
5672}
5673
720ba126
TH
5674/**
5675 * ata_port_detach - Detach ATA port in prepration of device removal
5676 * @ap: ATA port to be detached
5677 *
5678 * Detach all ATA devices and the associated SCSI devices of @ap;
5679 * then, remove the associated SCSI host. @ap is guaranteed to
5680 * be quiescent on return from this function.
5681 *
5682 * LOCKING:
5683 * Kernel thread context (may sleep).
5684 */
5685void ata_port_detach(struct ata_port *ap)
5686{
5687 unsigned long flags;
5688 int i;
5689
5690 if (!ap->ops->error_handler)
c3cf30a9 5691 goto skip_eh;
720ba126
TH
5692
5693 /* tell EH we're leaving & flush EH */
ba6a1308 5694 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5695 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5696 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5697
5698 ata_port_wait_eh(ap);
5699
5700 /* EH is now guaranteed to see UNLOADING, so no new device
5701 * will be attached. Disable all existing devices.
5702 */
ba6a1308 5703 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5704
5705 for (i = 0; i < ATA_MAX_DEVICES; i++)
5706 ata_dev_disable(&ap->device[i]);
5707
ba6a1308 5708 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5709
5710 /* Final freeze & EH. All in-flight commands are aborted. EH
5711 * will be skipped and retrials will be terminated with bad
5712 * target.
5713 */
ba6a1308 5714 spin_lock_irqsave(ap->lock, flags);
720ba126 5715 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5716 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5717
5718 ata_port_wait_eh(ap);
5719
5720 /* Flush hotplug task. The sequence is similar to
5721 * ata_port_flush_task().
5722 */
5723 flush_workqueue(ata_aux_wq);
5724 cancel_delayed_work(&ap->hotplug_task);
5725 flush_workqueue(ata_aux_wq);
5726
c3cf30a9 5727 skip_eh:
720ba126 5728 /* remove the associated SCSI host */
cca3974e 5729 scsi_remove_host(ap->scsi_host);
720ba126
TH
5730}
5731
17b14451 5732/**
cca3974e
JG
5733 * ata_host_remove - PCI layer callback for device removal
5734 * @host: ATA host set that was removed
17b14451 5735 *
2e9edbf8 5736 * Unregister all objects associated with this host set. Free those
17b14451
AC
5737 * objects.
5738 *
5739 * LOCKING:
5740 * Inherited from calling layer (may sleep).
5741 */
5742
cca3974e 5743void ata_host_remove(struct ata_host *host)
17b14451 5744{
17b14451
AC
5745 unsigned int i;
5746
cca3974e
JG
5747 for (i = 0; i < host->n_ports; i++)
5748 ata_port_detach(host->ports[i]);
17b14451 5749
cca3974e
JG
5750 free_irq(host->irq, host);
5751 if (host->irq2)
5752 free_irq(host->irq2, host);
17b14451 5753
cca3974e
JG
5754 for (i = 0; i < host->n_ports; i++) {
5755 struct ata_port *ap = host->ports[i];
17b14451 5756
cca3974e 5757 ata_scsi_release(ap->scsi_host);
17b14451
AC
5758
5759 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5760 struct ata_ioports *ioaddr = &ap->ioaddr;
5761
2ec7df04
AC
5762 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5763 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5764 release_region(ATA_PRIMARY_CMD, 8);
5765 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5766 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5767 }
5768
cca3974e 5769 scsi_host_put(ap->scsi_host);
17b14451
AC
5770 }
5771
cca3974e
JG
5772 if (host->ops->host_stop)
5773 host->ops->host_stop(host);
17b14451 5774
cca3974e 5775 kfree(host);
17b14451
AC
5776}
5777
1da177e4
LT
5778/**
5779 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 5780 * @shost: libata host to be unloaded
1da177e4
LT
5781 *
5782 * Performs all duties necessary to shut down a libata port...
5783 * Kill port kthread, disable port, and release resources.
5784 *
5785 * LOCKING:
5786 * Inherited from SCSI layer.
5787 *
5788 * RETURNS:
5789 * One.
5790 */
5791
cca3974e 5792int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 5793{
cca3974e 5794 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
5795
5796 DPRINTK("ENTER\n");
5797
5798 ap->ops->port_disable(ap);
6543bc07 5799 ap->ops->port_stop(ap);
1da177e4
LT
5800
5801 DPRINTK("EXIT\n");
5802 return 1;
5803}
5804
f6d950e2
BK
5805struct ata_probe_ent *
5806ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5807{
5808 struct ata_probe_ent *probe_ent;
5809
5810 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5811 if (!probe_ent) {
5812 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5813 kobject_name(&(dev->kobj)));
5814 return NULL;
5815 }
5816
5817 INIT_LIST_HEAD(&probe_ent->node);
5818 probe_ent->dev = dev;
5819
5820 probe_ent->sht = port->sht;
cca3974e 5821 probe_ent->port_flags = port->flags;
f6d950e2
BK
5822 probe_ent->pio_mask = port->pio_mask;
5823 probe_ent->mwdma_mask = port->mwdma_mask;
5824 probe_ent->udma_mask = port->udma_mask;
5825 probe_ent->port_ops = port->port_ops;
d639ca94 5826 probe_ent->private_data = port->private_data;
f6d950e2
BK
5827
5828 return probe_ent;
5829}
5830
1da177e4
LT
5831/**
5832 * ata_std_ports - initialize ioaddr with standard port offsets.
5833 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5834 *
5835 * Utility function which initializes data_addr, error_addr,
5836 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5837 * device_addr, status_addr, and command_addr to standard offsets
5838 * relative to cmd_addr.
5839 *
5840 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5841 */
0baab86b 5842
1da177e4
LT
5843void ata_std_ports(struct ata_ioports *ioaddr)
5844{
5845 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5846 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5847 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5848 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5849 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5850 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5851 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5852 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5853 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5854 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5855}
5856
0baab86b 5857
374b1873
JG
5858#ifdef CONFIG_PCI
5859
cca3974e 5860void ata_pci_host_stop (struct ata_host *host)
374b1873 5861{
cca3974e 5862 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 5863
cca3974e 5864 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
5865}
5866
1da177e4
LT
5867/**
5868 * ata_pci_remove_one - PCI layer callback for device removal
5869 * @pdev: PCI device that was removed
5870 *
5871 * PCI layer indicates to libata via this hook that
6f0ef4fa 5872 * hot-unplug or module unload event has occurred.
1da177e4
LT
5873 * Handle this by unregistering all objects associated
5874 * with this PCI device. Free those objects. Then finally
5875 * release PCI resources and disable device.
5876 *
5877 * LOCKING:
5878 * Inherited from PCI layer (may sleep).
5879 */
5880
5881void ata_pci_remove_one (struct pci_dev *pdev)
5882{
5883 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 5884 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5885
cca3974e 5886 ata_host_remove(host);
f0eb62b8 5887
1da177e4
LT
5888 pci_release_regions(pdev);
5889 pci_disable_device(pdev);
5890 dev_set_drvdata(dev, NULL);
5891}
5892
5893/* move to PCI subsystem */
057ace5e 5894int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5895{
5896 unsigned long tmp = 0;
5897
5898 switch (bits->width) {
5899 case 1: {
5900 u8 tmp8 = 0;
5901 pci_read_config_byte(pdev, bits->reg, &tmp8);
5902 tmp = tmp8;
5903 break;
5904 }
5905 case 2: {
5906 u16 tmp16 = 0;
5907 pci_read_config_word(pdev, bits->reg, &tmp16);
5908 tmp = tmp16;
5909 break;
5910 }
5911 case 4: {
5912 u32 tmp32 = 0;
5913 pci_read_config_dword(pdev, bits->reg, &tmp32);
5914 tmp = tmp32;
5915 break;
5916 }
5917
5918 default:
5919 return -EINVAL;
5920 }
5921
5922 tmp &= bits->mask;
5923
5924 return (tmp == bits->val) ? 1 : 0;
5925}
9b847548 5926
3c5100c1 5927void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5928{
5929 pci_save_state(pdev);
500530f6 5930
3c5100c1 5931 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
5932 pci_disable_device(pdev);
5933 pci_set_power_state(pdev, PCI_D3hot);
5934 }
9b847548
JA
5935}
5936
500530f6 5937void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5938{
5939 pci_set_power_state(pdev, PCI_D0);
5940 pci_restore_state(pdev);
5941 pci_enable_device(pdev);
5942 pci_set_master(pdev);
500530f6
TH
5943}
5944
3c5100c1 5945int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 5946{
cca3974e 5947 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5948 int rc = 0;
5949
cca3974e 5950 rc = ata_host_suspend(host, mesg);
500530f6
TH
5951 if (rc)
5952 return rc;
5953
3c5100c1 5954 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5955
5956 return 0;
5957}
5958
5959int ata_pci_device_resume(struct pci_dev *pdev)
5960{
cca3974e 5961 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5962
5963 ata_pci_device_do_resume(pdev);
cca3974e 5964 ata_host_resume(host);
9b847548
JA
5965 return 0;
5966}
1da177e4
LT
5967#endif /* CONFIG_PCI */
5968
5969
1da177e4
LT
5970static int __init ata_init(void)
5971{
a8601e5f 5972 ata_probe_timeout *= HZ;
1da177e4
LT
5973 ata_wq = create_workqueue("ata");
5974 if (!ata_wq)
5975 return -ENOMEM;
5976
453b07ac
TH
5977 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5978 if (!ata_aux_wq) {
5979 destroy_workqueue(ata_wq);
5980 return -ENOMEM;
5981 }
5982
1da177e4
LT
5983 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5984 return 0;
5985}
5986
5987static void __exit ata_exit(void)
5988{
5989 destroy_workqueue(ata_wq);
453b07ac 5990 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5991}
5992
a4625085 5993subsys_initcall(ata_init);
1da177e4
LT
5994module_exit(ata_exit);
5995
67846b30 5996static unsigned long ratelimit_time;
34af946a 5997static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5998
5999int ata_ratelimit(void)
6000{
6001 int rc;
6002 unsigned long flags;
6003
6004 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6005
6006 if (time_after(jiffies, ratelimit_time)) {
6007 rc = 1;
6008 ratelimit_time = jiffies + (HZ/5);
6009 } else
6010 rc = 0;
6011
6012 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6013
6014 return rc;
6015}
6016
c22daff4
TH
6017/**
6018 * ata_wait_register - wait until register value changes
6019 * @reg: IO-mapped register
6020 * @mask: Mask to apply to read register value
6021 * @val: Wait condition
6022 * @interval_msec: polling interval in milliseconds
6023 * @timeout_msec: timeout in milliseconds
6024 *
6025 * Waiting for some bits of register to change is a common
6026 * operation for ATA controllers. This function reads 32bit LE
6027 * IO-mapped register @reg and tests for the following condition.
6028 *
6029 * (*@reg & mask) != val
6030 *
6031 * If the condition is met, it returns; otherwise, the process is
6032 * repeated after @interval_msec until timeout.
6033 *
6034 * LOCKING:
6035 * Kernel thread context (may sleep)
6036 *
6037 * RETURNS:
6038 * The final register value.
6039 */
6040u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6041 unsigned long interval_msec,
6042 unsigned long timeout_msec)
6043{
6044 unsigned long timeout;
6045 u32 tmp;
6046
6047 tmp = ioread32(reg);
6048
6049 /* Calculate timeout _after_ the first read to make sure
6050 * preceding writes reach the controller before starting to
6051 * eat away the timeout.
6052 */
6053 timeout = jiffies + (timeout_msec * HZ) / 1000;
6054
6055 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6056 msleep(interval_msec);
6057 tmp = ioread32(reg);
6058 }
6059
6060 return tmp;
6061}
6062
dd5b06c4
TH
6063/*
6064 * Dummy port_ops
6065 */
6066static void ata_dummy_noret(struct ata_port *ap) { }
6067static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6068static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6069
6070static u8 ata_dummy_check_status(struct ata_port *ap)
6071{
6072 return ATA_DRDY;
6073}
6074
6075static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6076{
6077 return AC_ERR_SYSTEM;
6078}
6079
6080const struct ata_port_operations ata_dummy_port_ops = {
6081 .port_disable = ata_port_disable,
6082 .check_status = ata_dummy_check_status,
6083 .check_altstatus = ata_dummy_check_status,
6084 .dev_select = ata_noop_dev_select,
6085 .qc_prep = ata_noop_qc_prep,
6086 .qc_issue = ata_dummy_qc_issue,
6087 .freeze = ata_dummy_noret,
6088 .thaw = ata_dummy_noret,
6089 .error_handler = ata_dummy_noret,
6090 .post_internal_cmd = ata_dummy_qc_noret,
6091 .irq_clear = ata_dummy_noret,
6092 .port_start = ata_dummy_ret0,
6093 .port_stop = ata_dummy_noret,
6094};
6095
1da177e4
LT
6096/*
6097 * libata is essentially a library of internal helper functions for
6098 * low-level ATA host controller drivers. As such, the API/ABI is
6099 * likely to change as new drivers are added and updated.
6100 * Do not depend on ABI/API stability.
6101 */
6102
e9c83914
TH
6103EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6104EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6105EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6106EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6107EXPORT_SYMBOL_GPL(ata_std_bios_param);
6108EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6109EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6110EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6111EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6112EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6113EXPORT_SYMBOL_GPL(ata_sg_init);
6114EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6115EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6116EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6117EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6118EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6119EXPORT_SYMBOL_GPL(ata_tf_load);
6120EXPORT_SYMBOL_GPL(ata_tf_read);
6121EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6122EXPORT_SYMBOL_GPL(ata_std_dev_select);
6123EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6124EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6125EXPORT_SYMBOL_GPL(ata_check_status);
6126EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6127EXPORT_SYMBOL_GPL(ata_exec_command);
6128EXPORT_SYMBOL_GPL(ata_port_start);
6129EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6130EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6131EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6132EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6133EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6134EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6135EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6136EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6137EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6138EXPORT_SYMBOL_GPL(ata_bmdma_start);
6139EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6140EXPORT_SYMBOL_GPL(ata_bmdma_status);
6141EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6142EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6143EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6144EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6145EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6146EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6147EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6148EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6149EXPORT_SYMBOL_GPL(sata_phy_debounce);
6150EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6151EXPORT_SYMBOL_GPL(sata_phy_reset);
6152EXPORT_SYMBOL_GPL(__sata_phy_reset);
6153EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6154EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
6155EXPORT_SYMBOL_GPL(ata_std_softreset);
6156EXPORT_SYMBOL_GPL(sata_std_hardreset);
6157EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6158EXPORT_SYMBOL_GPL(ata_dev_classify);
6159EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6160EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6161EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6162EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6163EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6164EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6165EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6166EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6167EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6168EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6169EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6170EXPORT_SYMBOL_GPL(ata_scsi_release);
6171EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6172EXPORT_SYMBOL_GPL(sata_scr_valid);
6173EXPORT_SYMBOL_GPL(sata_scr_read);
6174EXPORT_SYMBOL_GPL(sata_scr_write);
6175EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6176EXPORT_SYMBOL_GPL(ata_port_online);
6177EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6178EXPORT_SYMBOL_GPL(ata_host_suspend);
6179EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6180EXPORT_SYMBOL_GPL(ata_id_string);
6181EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6182EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6183EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6184
1bc4ccff 6185EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6186EXPORT_SYMBOL_GPL(ata_timing_compute);
6187EXPORT_SYMBOL_GPL(ata_timing_merge);
6188
1da177e4
LT
6189#ifdef CONFIG_PCI
6190EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6191EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6192EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6193EXPORT_SYMBOL_GPL(ata_pci_init_one);
6194EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6195EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6196EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6197EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6198EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6199EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6200EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6201#endif /* CONFIG_PCI */
9b847548 6202
9b847548
JA
6203EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6204EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6205
ece1d636 6206EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6207EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6208EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6209EXPORT_SYMBOL_GPL(ata_port_freeze);
6210EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6211EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6212EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6213EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6214EXPORT_SYMBOL_GPL(ata_do_eh);