]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - drivers/ata/libata-core.c
[PATCH] libata: implement ATA_EHI_SETMODE and ATA_EHI_POST_SETMODE
[mirror_ubuntu-eoan-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1
AL
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
1da177e4 203 *
2e9edbf8 204 * Examine the device configuration and tf->flags to calculate
8cbd6df1 205 * the proper read/write commands and protocol to use.
1da177e4
LT
206 *
207 * LOCKING:
208 * caller.
209 */
9a3dccc4 210int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 211{
8cbd6df1
AL
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
9a3dccc4 214 u8 cmd;
1da177e4 215
9a3dccc4 216 int index, fua, lba48, write;
2e9edbf8 217
9a3dccc4 218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 221
8cbd6df1
AL
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
9a3dccc4 224 index = dev->multi_count ? 0 : 8;
8d238e01
AC
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
0565c26d 228 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
229 } else {
230 tf->protocol = ATA_PROT_DMA;
9a3dccc4 231 index = 16;
8cbd6df1 232 }
1da177e4 233
9a3dccc4
TH
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
1da177e4
LT
240}
241
cb95d562
TH
242/**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260{
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264}
265
c0489e4e
TH
266/**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280{
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287}
288
cb95d562 289static const struct ata_xfer_ent {
be9a50c8 290 int shift, bits;
cb95d562
TH
291 u8 base;
292} ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297};
298
299/**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313{
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321}
322
323/**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336{
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343}
344
345/**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357static int ata_xfer_mode2shift(unsigned int xfer_mode)
358{
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365}
366
1da177e4 367/**
1da7b0d0
TH
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
370 *
371 * Determine string which represents the highest speed
1da7b0d0 372 * (highest bit in @modemask).
1da177e4
LT
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
1da7b0d0 379 * @mode_mask, or the constant C string "<n/a>".
1da177e4 380 */
1da7b0d0 381static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 382{
75f554bc
TH
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
b352e57d
AC
389 "PIO5",
390 "PIO6",
75f554bc
TH
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
b352e57d
AC
394 "MWDMA3",
395 "MWDMA4",
75f554bc
TH
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
1da7b0d0 405 int highbit;
1da177e4 406
1da7b0d0
TH
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
1da177e4 410 return "<n/a>";
1da177e4
LT
411}
412
4c360c81
TH
413static const char *sata_spd_string(unsigned int spd)
414{
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423}
424
3373efd8 425void ata_dev_disable(struct ata_device *dev)
0b8efb0a 426{
0dd4b21f 427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
429 dev->class++;
430 }
431}
432
1da177e4
LT
433/**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453{
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475}
476
477/**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497{
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519}
520
521/**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536{
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540}
541
542/**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
057ace5e 558unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
559{
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579}
580
581/**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
b4dc7623 585 * @r_err: Value of error register on completion
1da177e4
LT
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
b4dc7623
TH
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
601 */
602
b4dc7623
TH
603static unsigned int
604ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 605{
1da177e4
LT
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
1da177e4 614 ap->ops->tf_read(ap, &tf);
0169e284 615 err = tf.feature;
b4dc7623
TH
616 if (r_err)
617 *r_err = err;
1da177e4 618
93590859
AC
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
1da177e4
LT
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629
b4dc7623 630 /* determine if device is ATA or ATAPI */
1da177e4 631 class = ata_dev_classify(&tf);
b4dc7623 632
1da177e4 633 if (class == ATA_DEV_UNKNOWN)
b4dc7623 634 return ATA_DEV_NONE;
1da177e4 635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
636 return ATA_DEV_NONE;
637 return class;
1da177e4
LT
638}
639
640/**
6a62a04d 641 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
6a62a04d
TH
655void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
1da177e4
LT
657{
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672}
673
0e949ff3 674/**
6a62a04d 675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
6a62a04d 681 * This function is identical to ata_id_string except that it
0e949ff3
TH
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
6a62a04d
TH
688void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
0e949ff3
TH
690{
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
6a62a04d 695 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701}
0baab86b 702
2940740b
TH
703static u64 ata_id_n_sectors(const u16 *id)
704{
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716}
717
0baab86b
EF
718/**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
1da177e4
LT
730void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731{
732}
733
0baab86b 734
1da177e4
LT
735/**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
0baab86b
EF
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
745 *
746 * LOCKING:
747 * caller.
748 */
749
750void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751{
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765}
766
767/**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788{
88574551 789 if (ata_msg_probe(ap))
0dd4b21f 790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 791 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803}
804
805/**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 807 * @id: IDENTIFY DEVICE page to dump
1da177e4 808 *
0bd3300a
TH
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
1da177e4
LT
811 *
812 * LOCKING:
813 * caller.
814 */
815
0bd3300a 816static inline void ata_dump_id(const u16 *id)
1da177e4
LT
817{
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
0bd3300a
TH
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
1da177e4
LT
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
0bd3300a
TH
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
1da177e4
LT
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
0bd3300a
TH
840 id[88],
841 id[93]);
1da177e4
LT
842}
843
cb95d562
TH
844/**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859static unsigned int ata_id_xfermask(const u16 *id)
860{
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
46767aeb
AC
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
cb95d562
TH
878
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
884 */
885 }
886
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 888
b352e57d
AC
889 if (ata_id_is_cfa(id)) {
890 /*
891 * Process compact flash extended modes
892 */
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
895
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
904 }
905
fb21f0d0
TH
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
909
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
911}
912
86e45b6b
TH
913/**
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
86e45b6b
TH
919 *
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
924 *
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
928 *
929 * LOCKING:
930 * Inherited from caller.
931 */
932void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
934{
935 int rc;
936
b51e9e5d 937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
938 return;
939
940 PREPARE_WORK(&ap->port_task, fn, data);
941
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
946
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
949}
950
951/**
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
954 *
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
957 *
958 * LOCKING:
959 * Kernel thread context (may sleep)
960 */
961void ata_port_flush_task(struct ata_port *ap)
962{
963 unsigned long flags;
964
965 DPRINTK("ENTER\n");
966
ba6a1308 967 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 969 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
970
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
973
974 /*
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
978 */
979 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 980 if (ata_msg_ctl(ap))
88574551
TH
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
86e45b6b
TH
983 flush_workqueue(ata_wq);
984 }
985
ba6a1308 986 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 988 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 989
0dd4b21f
BP
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
992}
993
77853bf2 994void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 995{
77853bf2 996 struct completion *waiting = qc->private_data;
a2a7a662 997
a2a7a662 998 complete(waiting);
a2a7a662
TH
999}
1000
1001/**
1002 * ata_exec_internal - execute libata internal command
a2a7a662
TH
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
d69cf37d 1005 * @cdb: CDB for packet command
a2a7a662
TH
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1009 *
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1015 *
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
551e8889
TH
1018 *
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1021 */
3373efd8 1022unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1025{
3373efd8 1026 struct ata_port *ap = dev->ap;
a2a7a662
TH
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
2ab7db1f 1029 unsigned int tag, preempted_tag;
dedaf2b0 1030 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1031 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1032 unsigned long flags;
77853bf2 1033 unsigned int err_mask;
d95a717f 1034 int rc;
a2a7a662 1035
ba6a1308 1036 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1037
e3180499 1038 /* no internal command while frozen */
b51e9e5d 1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1040 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1041 return AC_ERR_SYSTEM;
1042 }
1043
2ab7db1f 1044 /* initialize internal qc */
a2a7a662 1045
2ab7db1f
TH
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1050 */
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1055
6cec4a39 1056 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1057 BUG();
f69499f4 1058 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1059
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1065
1066 preempted_tag = ap->active_tag;
dedaf2b0
TH
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
2ab7db1f 1069 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
2ab7db1f
TH
1072
1073 /* prepare & issue qc */
a2a7a662 1074 qc->tf = *tf;
d69cf37d
TH
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1082 }
1083
77853bf2 1084 qc->private_data = &wait;
a2a7a662
TH
1085 qc->complete_fn = ata_qc_complete_internal;
1086
8e0e694a 1087 ata_qc_issue(qc);
a2a7a662 1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1090
a8601e5f 1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1092
1093 ata_port_flush_task(ap);
41ade50c 1094
d95a717f 1095 if (!rc) {
ba6a1308 1096 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1097
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
d95a717f
TH
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
a2a7a662 1102 */
77853bf2 1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1105
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
f15a1daf 1110
0dd4b21f
BP
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
88574551 1113 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1114 }
1115
ba6a1308 1116 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1117 }
1118
d95a717f
TH
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1122
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1124 if (ata_msg_warn(ap))
88574551 1125 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1126 "zero err_mask for failed "
88574551 1127 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1128 qc->err_mask |= AC_ERR_OTHER;
1129 }
1130
15869303 1131 /* finish up */
ba6a1308 1132 spin_lock_irqsave(ap->lock, flags);
15869303 1133
e61e0672 1134 *tf = qc->result_tf;
77853bf2
TH
1135 err_mask = qc->err_mask;
1136
1137 ata_qc_free(qc);
2ab7db1f 1138 ap->active_tag = preempted_tag;
dedaf2b0
TH
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
77853bf2 1141
1f7dd3e9
TH
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1146 *
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1150 *
1151 * Kill the following code as soon as those drivers are fixed.
1152 */
198e0fed 1153 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1156 }
1157
ba6a1308 1158 spin_unlock_irqrestore(ap->lock, flags);
15869303 1159
77853bf2 1160 return err_mask;
a2a7a662
TH
1161}
1162
977e6b9f
TH
1163/**
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1167 *
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1170 *
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1173 *
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
e58eb583 1176 */
77b08fb5 1177unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1178{
1179 struct ata_taskfile tf;
e58eb583
TH
1180
1181 ata_tf_init(dev, &tf);
1182
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1186
977e6b9f 1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1188}
1189
1bc4ccff
AC
1190/**
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1193 *
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1196 */
1197
1198unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1199{
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1202
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
2e9edbf8 1207
1bc4ccff
AC
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1209
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1218 }
1219 }
1220 return 0;
1221}
1222
1da177e4 1223/**
49016aca 1224 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
fe635c7e 1228 * @id: buffer to read IDENTIFY data into
1da177e4 1229 *
49016aca
TH
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1da177e4
LT
1234 *
1235 * LOCKING:
49016aca
TH
1236 * Kernel thread context (may sleep)
1237 *
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1da177e4 1240 */
a9beec95
TH
1241int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1da177e4 1243{
3373efd8 1244 struct ata_port *ap = dev->ap;
49016aca 1245 unsigned int class = *p_class;
a0123703 1246 struct ata_taskfile tf;
49016aca
TH
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1da177e4 1250
0dd4b21f 1251 if (ata_msg_ctl(ap))
88574551
TH
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1da177e4 1254
49016aca 1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1256
49016aca 1257 retry:
3373efd8 1258 ata_tf_init(dev, &tf);
a0123703 1259
49016aca
TH
1260 switch (class) {
1261 case ATA_DEV_ATA:
a0123703 1262 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1263 break;
1264 case ATA_DEV_ATAPI:
a0123703 1265 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1da177e4
LT
1271 }
1272
a0123703 1273 tf.protocol = ATA_PROT_PIO;
1da177e4 1274
3373efd8 1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1276 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1277 if (err_mask) {
49016aca
TH
1278 rc = -EIO;
1279 reason = "I/O error";
1da177e4
LT
1280 goto err_out;
1281 }
1282
49016aca 1283 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1284
49016aca 1285 /* sanity check */
a4f5749b
TH
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1288
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
49016aca
TH
1295 }
1296
1297 if (post_reset && class == ATA_DEV_ATA) {
1298 /*
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1305 */
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1312 }
1313
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1316 */
1317 post_reset = 0;
1318 goto retry;
1319 }
1320 }
1321
1322 *p_class = class;
fe635c7e 1323
49016aca
TH
1324 return 0;
1325
1326 err_out:
88574551 1327 if (ata_msg_warn(ap))
0dd4b21f 1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1330 return rc;
1331}
1332
3373efd8 1333static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1334{
3373efd8 1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1336}
1337
a6e6ce8e
TH
1338static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1340{
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1343
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1347 }
6919a0a6
AC
1348 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1349 snprintf(desc, desc_sz, "NCQ (not used)");
1350 return;
1351 }
a6e6ce8e 1352 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1353 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1354 dev->flags |= ATA_DFLAG_NCQ;
1355 }
1356
1357 if (hdepth >= ddepth)
1358 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1359 else
1360 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1361}
1362
e6d902a3
BK
1363static void ata_set_port_max_cmd_len(struct ata_port *ap)
1364{
1365 int i;
1366
cca3974e
JG
1367 if (ap->scsi_host) {
1368 unsigned int len = 0;
1369
e6d902a3 1370 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1371 len = max(len, ap->device[i].cdb_len);
1372
1373 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1374 }
1375}
1376
49016aca 1377/**
ffeae418 1378 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1379 * @dev: Target device to configure
1380 *
1381 * Configure @dev according to @dev->id. Generic and low-level
1382 * driver specific fixups are also applied.
49016aca
TH
1383 *
1384 * LOCKING:
ffeae418
TH
1385 * Kernel thread context (may sleep)
1386 *
1387 * RETURNS:
1388 * 0 on success, -errno otherwise
49016aca 1389 */
efdaedc4 1390int ata_dev_configure(struct ata_device *dev)
49016aca 1391{
3373efd8 1392 struct ata_port *ap = dev->ap;
efdaedc4 1393 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1394 const u16 *id = dev->id;
ff8854b2 1395 unsigned int xfer_mask;
b352e57d 1396 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1397 int rc;
49016aca 1398
0dd4b21f 1399 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1400 ata_dev_printk(dev, KERN_INFO,
1401 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1402 __FUNCTION__, ap->id, dev->devno);
ffeae418 1403 return 0;
49016aca
TH
1404 }
1405
0dd4b21f 1406 if (ata_msg_probe(ap))
88574551
TH
1407 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1408 __FUNCTION__, ap->id, dev->devno);
1da177e4 1409
c39f5ebe 1410 /* print device capabilities */
0dd4b21f 1411 if (ata_msg_probe(ap))
88574551
TH
1412 ata_dev_printk(dev, KERN_DEBUG,
1413 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1414 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1415 __FUNCTION__,
f15a1daf
TH
1416 id[49], id[82], id[83], id[84],
1417 id[85], id[86], id[87], id[88]);
c39f5ebe 1418
208a9933 1419 /* initialize to-be-configured parameters */
ea1dd4e1 1420 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1421 dev->max_sectors = 0;
1422 dev->cdb_len = 0;
1423 dev->n_sectors = 0;
1424 dev->cylinders = 0;
1425 dev->heads = 0;
1426 dev->sectors = 0;
1427
1da177e4
LT
1428 /*
1429 * common ATA, ATAPI feature tests
1430 */
1431
ff8854b2 1432 /* find max transfer mode; for printk only */
1148c3a7 1433 xfer_mask = ata_id_xfermask(id);
1da177e4 1434
0dd4b21f
BP
1435 if (ata_msg_probe(ap))
1436 ata_dump_id(id);
1da177e4
LT
1437
1438 /* ATA-specific feature tests */
1439 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1440 if (ata_id_is_cfa(id)) {
1441 if (id[162] & 1) /* CPRM may make this media unusable */
1442 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1443 ap->id, dev->devno);
1444 snprintf(revbuf, 7, "CFA");
1445 }
1446 else
1447 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1448
1148c3a7 1449 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1450
1148c3a7 1451 if (ata_id_has_lba(id)) {
4c2d721a 1452 const char *lba_desc;
a6e6ce8e 1453 char ncq_desc[20];
8bf62ece 1454
4c2d721a
TH
1455 lba_desc = "LBA";
1456 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1457 if (ata_id_has_lba48(id)) {
8bf62ece 1458 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1459 lba_desc = "LBA48";
1460 }
8bf62ece 1461
a6e6ce8e
TH
1462 /* config NCQ */
1463 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1464
8bf62ece 1465 /* print device info to dmesg */
5afc8142 1466 if (ata_msg_drv(ap) && print_info)
b352e57d 1467 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1468 "max %s, %Lu sectors: %s %s\n",
b352e57d 1469 revbuf,
f15a1daf
TH
1470 ata_mode_string(xfer_mask),
1471 (unsigned long long)dev->n_sectors,
a6e6ce8e 1472 lba_desc, ncq_desc);
ffeae418 1473 } else {
8bf62ece
AL
1474 /* CHS */
1475
1476 /* Default translation */
1148c3a7
TH
1477 dev->cylinders = id[1];
1478 dev->heads = id[3];
1479 dev->sectors = id[6];
8bf62ece 1480
1148c3a7 1481 if (ata_id_current_chs_valid(id)) {
8bf62ece 1482 /* Current CHS translation is valid. */
1148c3a7
TH
1483 dev->cylinders = id[54];
1484 dev->heads = id[55];
1485 dev->sectors = id[56];
8bf62ece
AL
1486 }
1487
1488 /* print device info to dmesg */
5afc8142 1489 if (ata_msg_drv(ap) && print_info)
b352e57d 1490 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1491 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1492 revbuf,
f15a1daf
TH
1493 ata_mode_string(xfer_mask),
1494 (unsigned long long)dev->n_sectors,
88574551
TH
1495 dev->cylinders, dev->heads,
1496 dev->sectors);
1da177e4
LT
1497 }
1498
07f6f7d0
AL
1499 if (dev->id[59] & 0x100) {
1500 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1501 if (ata_msg_drv(ap) && print_info)
88574551
TH
1502 ata_dev_printk(dev, KERN_INFO,
1503 "ata%u: dev %u multi count %u\n",
1504 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1505 }
1506
6e7846e9 1507 dev->cdb_len = 16;
1da177e4
LT
1508 }
1509
1510 /* ATAPI-specific feature tests */
2c13b7ce 1511 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1512 char *cdb_intr_string = "";
1513
1148c3a7 1514 rc = atapi_cdb_len(id);
1da177e4 1515 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1516 if (ata_msg_warn(ap))
88574551
TH
1517 ata_dev_printk(dev, KERN_WARNING,
1518 "unsupported CDB len\n");
ffeae418 1519 rc = -EINVAL;
1da177e4
LT
1520 goto err_out_nosup;
1521 }
6e7846e9 1522 dev->cdb_len = (unsigned int) rc;
1da177e4 1523
08a556db 1524 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1525 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1526 cdb_intr_string = ", CDB intr";
1527 }
312f7da2 1528
1da177e4 1529 /* print device info to dmesg */
5afc8142 1530 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1531 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1532 ata_mode_string(xfer_mask),
1533 cdb_intr_string);
1da177e4
LT
1534 }
1535
93590859
AC
1536 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1537 /* Let the user know. We don't want to disallow opens for
1538 rescue purposes, or in case the vendor is just a blithering
1539 idiot */
1540 if (print_info) {
1541 ata_dev_printk(dev, KERN_WARNING,
1542"Drive reports diagnostics failure. This may indicate a drive\n");
1543 ata_dev_printk(dev, KERN_WARNING,
1544"fault or invalid emulation. Contact drive vendor for information.\n");
1545 }
1546 }
1547
e6d902a3 1548 ata_set_port_max_cmd_len(ap);
6e7846e9 1549
4b2f3ede 1550 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1551 if (ata_dev_knobble(dev)) {
5afc8142 1552 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1553 ata_dev_printk(dev, KERN_INFO,
1554 "applying bridge limits\n");
5a529139 1555 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1556 dev->max_sectors = ATA_MAX_SECTORS;
1557 }
1558
1559 if (ap->ops->dev_config)
1560 ap->ops->dev_config(ap, dev);
1561
0dd4b21f
BP
1562 if (ata_msg_probe(ap))
1563 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1564 __FUNCTION__, ata_chk_status(ap));
ffeae418 1565 return 0;
1da177e4
LT
1566
1567err_out_nosup:
0dd4b21f 1568 if (ata_msg_probe(ap))
88574551
TH
1569 ata_dev_printk(dev, KERN_DEBUG,
1570 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1571 return rc;
1da177e4
LT
1572}
1573
1574/**
1575 * ata_bus_probe - Reset and probe ATA bus
1576 * @ap: Bus to probe
1577 *
0cba632b
JG
1578 * Master ATA bus probing function. Initiates a hardware-dependent
1579 * bus reset, then attempts to identify any devices found on
1580 * the bus.
1581 *
1da177e4 1582 * LOCKING:
0cba632b 1583 * PCI/etc. bus probe sem.
1da177e4
LT
1584 *
1585 * RETURNS:
96072e69 1586 * Zero on success, negative errno otherwise.
1da177e4
LT
1587 */
1588
80289167 1589int ata_bus_probe(struct ata_port *ap)
1da177e4 1590{
28ca5c57 1591 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1592 int tries[ATA_MAX_DEVICES];
1593 int i, rc, down_xfermask;
e82cbdb9 1594 struct ata_device *dev;
1da177e4 1595
28ca5c57 1596 ata_port_probe(ap);
c19ba8af 1597
14d2bac1
TH
1598 for (i = 0; i < ATA_MAX_DEVICES; i++)
1599 tries[i] = ATA_PROBE_MAX_TRIES;
1600
1601 retry:
1602 down_xfermask = 0;
1603
2044470c 1604 /* reset and determine device classes */
52783c5d 1605 ap->ops->phy_reset(ap);
2061a47a 1606
52783c5d
TH
1607 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1608 dev = &ap->device[i];
c19ba8af 1609
52783c5d
TH
1610 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1611 dev->class != ATA_DEV_UNKNOWN)
1612 classes[dev->devno] = dev->class;
1613 else
1614 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1615
52783c5d 1616 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1617 }
1da177e4 1618
52783c5d 1619 ata_port_probe(ap);
2044470c 1620
b6079ca4
AC
1621 /* after the reset the device state is PIO 0 and the controller
1622 state is undefined. Record the mode */
1623
1624 for (i = 0; i < ATA_MAX_DEVICES; i++)
1625 ap->device[i].pio_mode = XFER_PIO_0;
1626
28ca5c57 1627 /* read IDENTIFY page and configure devices */
1da177e4 1628 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1629 dev = &ap->device[i];
28ca5c57 1630
ec573755
TH
1631 if (tries[i])
1632 dev->class = classes[i];
ffeae418 1633
14d2bac1 1634 if (!ata_dev_enabled(dev))
ffeae418 1635 continue;
ffeae418 1636
3373efd8 1637 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1638 if (rc)
1639 goto fail;
1640
efdaedc4
TH
1641 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1642 rc = ata_dev_configure(dev);
1643 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1644 if (rc)
1645 goto fail;
1da177e4
LT
1646 }
1647
e82cbdb9 1648 /* configure transfer mode */
3adcebb2 1649 rc = ata_set_mode(ap, &dev);
51713d35
TH
1650 if (rc) {
1651 down_xfermask = 1;
1652 goto fail;
e82cbdb9 1653 }
1da177e4 1654
e82cbdb9
TH
1655 for (i = 0; i < ATA_MAX_DEVICES; i++)
1656 if (ata_dev_enabled(&ap->device[i]))
1657 return 0;
1da177e4 1658
e82cbdb9
TH
1659 /* no device present, disable port */
1660 ata_port_disable(ap);
1da177e4 1661 ap->ops->port_disable(ap);
96072e69 1662 return -ENODEV;
14d2bac1
TH
1663
1664 fail:
1665 switch (rc) {
1666 case -EINVAL:
1667 case -ENODEV:
1668 tries[dev->devno] = 0;
1669 break;
1670 case -EIO:
3c567b7d 1671 sata_down_spd_limit(ap);
14d2bac1
TH
1672 /* fall through */
1673 default:
1674 tries[dev->devno]--;
1675 if (down_xfermask &&
3373efd8 1676 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1677 tries[dev->devno] = 0;
1678 }
1679
ec573755 1680 if (!tries[dev->devno]) {
3373efd8
TH
1681 ata_down_xfermask_limit(dev, 1);
1682 ata_dev_disable(dev);
ec573755
TH
1683 }
1684
14d2bac1 1685 goto retry;
1da177e4
LT
1686}
1687
1688/**
0cba632b
JG
1689 * ata_port_probe - Mark port as enabled
1690 * @ap: Port for which we indicate enablement
1da177e4 1691 *
0cba632b
JG
1692 * Modify @ap data structure such that the system
1693 * thinks that the entire port is enabled.
1694 *
cca3974e 1695 * LOCKING: host lock, or some other form of
0cba632b 1696 * serialization.
1da177e4
LT
1697 */
1698
1699void ata_port_probe(struct ata_port *ap)
1700{
198e0fed 1701 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1702}
1703
3be680b7
TH
1704/**
1705 * sata_print_link_status - Print SATA link status
1706 * @ap: SATA port to printk link status about
1707 *
1708 * This function prints link speed and status of a SATA link.
1709 *
1710 * LOCKING:
1711 * None.
1712 */
1713static void sata_print_link_status(struct ata_port *ap)
1714{
6d5f9732 1715 u32 sstatus, scontrol, tmp;
3be680b7 1716
81952c54 1717 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1718 return;
81952c54 1719 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1720
81952c54 1721 if (ata_port_online(ap)) {
3be680b7 1722 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1723 ata_port_printk(ap, KERN_INFO,
1724 "SATA link up %s (SStatus %X SControl %X)\n",
1725 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1726 } else {
f15a1daf
TH
1727 ata_port_printk(ap, KERN_INFO,
1728 "SATA link down (SStatus %X SControl %X)\n",
1729 sstatus, scontrol);
3be680b7
TH
1730 }
1731}
1732
1da177e4 1733/**
780a87f7
JG
1734 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1735 * @ap: SATA port associated with target SATA PHY.
1da177e4 1736 *
780a87f7
JG
1737 * This function issues commands to standard SATA Sxxx
1738 * PHY registers, to wake up the phy (and device), and
1739 * clear any reset condition.
1da177e4
LT
1740 *
1741 * LOCKING:
0cba632b 1742 * PCI/etc. bus probe sem.
1da177e4
LT
1743 *
1744 */
1745void __sata_phy_reset(struct ata_port *ap)
1746{
1747 u32 sstatus;
1748 unsigned long timeout = jiffies + (HZ * 5);
1749
1750 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1751 /* issue phy wake/reset */
81952c54 1752 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1753 /* Couldn't find anything in SATA I/II specs, but
1754 * AHCI-1.1 10.4.2 says at least 1 ms. */
1755 mdelay(1);
1da177e4 1756 }
81952c54
TH
1757 /* phy wake/clear reset */
1758 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1759
1760 /* wait for phy to become ready, if necessary */
1761 do {
1762 msleep(200);
81952c54 1763 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1764 if ((sstatus & 0xf) != 1)
1765 break;
1766 } while (time_before(jiffies, timeout));
1767
3be680b7
TH
1768 /* print link status */
1769 sata_print_link_status(ap);
656563e3 1770
3be680b7 1771 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1772 if (!ata_port_offline(ap))
1da177e4 1773 ata_port_probe(ap);
3be680b7 1774 else
1da177e4 1775 ata_port_disable(ap);
1da177e4 1776
198e0fed 1777 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1778 return;
1779
1780 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1781 ata_port_disable(ap);
1782 return;
1783 }
1784
1785 ap->cbl = ATA_CBL_SATA;
1786}
1787
1788/**
780a87f7
JG
1789 * sata_phy_reset - Reset SATA bus.
1790 * @ap: SATA port associated with target SATA PHY.
1da177e4 1791 *
780a87f7
JG
1792 * This function resets the SATA bus, and then probes
1793 * the bus for devices.
1da177e4
LT
1794 *
1795 * LOCKING:
0cba632b 1796 * PCI/etc. bus probe sem.
1da177e4
LT
1797 *
1798 */
1799void sata_phy_reset(struct ata_port *ap)
1800{
1801 __sata_phy_reset(ap);
198e0fed 1802 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1803 return;
1804 ata_bus_reset(ap);
1805}
1806
ebdfca6e
AC
1807/**
1808 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1809 * @adev: device
1810 *
1811 * Obtain the other device on the same cable, or if none is
1812 * present NULL is returned
1813 */
2e9edbf8 1814
3373efd8 1815struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1816{
3373efd8 1817 struct ata_port *ap = adev->ap;
ebdfca6e 1818 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1819 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1820 return NULL;
1821 return pair;
1822}
1823
1da177e4 1824/**
780a87f7
JG
1825 * ata_port_disable - Disable port.
1826 * @ap: Port to be disabled.
1da177e4 1827 *
780a87f7
JG
1828 * Modify @ap data structure such that the system
1829 * thinks that the entire port is disabled, and should
1830 * never attempt to probe or communicate with devices
1831 * on this port.
1832 *
cca3974e 1833 * LOCKING: host lock, or some other form of
780a87f7 1834 * serialization.
1da177e4
LT
1835 */
1836
1837void ata_port_disable(struct ata_port *ap)
1838{
1839 ap->device[0].class = ATA_DEV_NONE;
1840 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1841 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1842}
1843
1c3fae4d 1844/**
3c567b7d 1845 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1846 * @ap: Port to adjust SATA spd limit for
1847 *
1848 * Adjust SATA spd limit of @ap downward. Note that this
1849 * function only adjusts the limit. The change must be applied
3c567b7d 1850 * using sata_set_spd().
1c3fae4d
TH
1851 *
1852 * LOCKING:
1853 * Inherited from caller.
1854 *
1855 * RETURNS:
1856 * 0 on success, negative errno on failure
1857 */
3c567b7d 1858int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1859{
81952c54
TH
1860 u32 sstatus, spd, mask;
1861 int rc, highbit;
1c3fae4d 1862
81952c54
TH
1863 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1864 if (rc)
1865 return rc;
1c3fae4d
TH
1866
1867 mask = ap->sata_spd_limit;
1868 if (mask <= 1)
1869 return -EINVAL;
1870 highbit = fls(mask) - 1;
1871 mask &= ~(1 << highbit);
1872
81952c54 1873 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1874 if (spd <= 1)
1875 return -EINVAL;
1876 spd--;
1877 mask &= (1 << spd) - 1;
1878 if (!mask)
1879 return -EINVAL;
1880
1881 ap->sata_spd_limit = mask;
1882
f15a1daf
TH
1883 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1884 sata_spd_string(fls(mask)));
1c3fae4d
TH
1885
1886 return 0;
1887}
1888
3c567b7d 1889static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1890{
1891 u32 spd, limit;
1892
1893 if (ap->sata_spd_limit == UINT_MAX)
1894 limit = 0;
1895 else
1896 limit = fls(ap->sata_spd_limit);
1897
1898 spd = (*scontrol >> 4) & 0xf;
1899 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1900
1901 return spd != limit;
1902}
1903
1904/**
3c567b7d 1905 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1906 * @ap: Port in question
1907 *
1908 * Test whether the spd limit in SControl matches
1909 * @ap->sata_spd_limit. This function is used to determine
1910 * whether hardreset is necessary to apply SATA spd
1911 * configuration.
1912 *
1913 * LOCKING:
1914 * Inherited from caller.
1915 *
1916 * RETURNS:
1917 * 1 if SATA spd configuration is needed, 0 otherwise.
1918 */
3c567b7d 1919int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1920{
1921 u32 scontrol;
1922
81952c54 1923 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1924 return 0;
1925
3c567b7d 1926 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1927}
1928
1929/**
3c567b7d 1930 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1931 * @ap: Port to set SATA spd for
1932 *
1933 * Set SATA spd of @ap according to sata_spd_limit.
1934 *
1935 * LOCKING:
1936 * Inherited from caller.
1937 *
1938 * RETURNS:
1939 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1940 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1941 */
3c567b7d 1942int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1943{
1944 u32 scontrol;
81952c54 1945 int rc;
1c3fae4d 1946
81952c54
TH
1947 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1948 return rc;
1c3fae4d 1949
3c567b7d 1950 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1951 return 0;
1952
81952c54
TH
1953 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1954 return rc;
1955
1c3fae4d
TH
1956 return 1;
1957}
1958
452503f9
AC
1959/*
1960 * This mode timing computation functionality is ported over from
1961 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1962 */
1963/*
b352e57d 1964 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 1965 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
1966 * for UDMA6, which is currently supported only by Maxtor drives.
1967 *
1968 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
1969 */
1970
1971static const struct ata_timing ata_timing[] = {
1972
1973 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1974 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1975 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1976 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1977
b352e57d
AC
1978 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1979 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
1980 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1981 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1982 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1983
1984/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1985
452503f9
AC
1986 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1987 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1988 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1989
452503f9
AC
1990 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1991 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1992 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1993
b352e57d
AC
1994 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1995 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
1996 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1997 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1998
1999 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2000 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2001 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2002
2003/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2004
2005 { 0xFF }
2006};
2007
2008#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2009#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2010
2011static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2012{
2013 q->setup = EZ(t->setup * 1000, T);
2014 q->act8b = EZ(t->act8b * 1000, T);
2015 q->rec8b = EZ(t->rec8b * 1000, T);
2016 q->cyc8b = EZ(t->cyc8b * 1000, T);
2017 q->active = EZ(t->active * 1000, T);
2018 q->recover = EZ(t->recover * 1000, T);
2019 q->cycle = EZ(t->cycle * 1000, T);
2020 q->udma = EZ(t->udma * 1000, UT);
2021}
2022
2023void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2024 struct ata_timing *m, unsigned int what)
2025{
2026 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2027 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2028 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2029 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2030 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2031 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2032 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2033 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2034}
2035
2036static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2037{
2038 const struct ata_timing *t;
2039
2040 for (t = ata_timing; t->mode != speed; t++)
91190758 2041 if (t->mode == 0xFF)
452503f9 2042 return NULL;
2e9edbf8 2043 return t;
452503f9
AC
2044}
2045
2046int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2047 struct ata_timing *t, int T, int UT)
2048{
2049 const struct ata_timing *s;
2050 struct ata_timing p;
2051
2052 /*
2e9edbf8 2053 * Find the mode.
75b1f2f8 2054 */
452503f9
AC
2055
2056 if (!(s = ata_timing_find_mode(speed)))
2057 return -EINVAL;
2058
75b1f2f8
AL
2059 memcpy(t, s, sizeof(*s));
2060
452503f9
AC
2061 /*
2062 * If the drive is an EIDE drive, it can tell us it needs extended
2063 * PIO/MW_DMA cycle timing.
2064 */
2065
2066 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2067 memset(&p, 0, sizeof(p));
2068 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2069 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2070 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2071 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2072 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2073 }
2074 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2075 }
2076
2077 /*
2078 * Convert the timing to bus clock counts.
2079 */
2080
75b1f2f8 2081 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2082
2083 /*
c893a3ae
RD
2084 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2085 * S.M.A.R.T * and some other commands. We have to ensure that the
2086 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2087 */
2088
2089 if (speed > XFER_PIO_4) {
2090 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2091 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2092 }
2093
2094 /*
c893a3ae 2095 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2096 */
2097
2098 if (t->act8b + t->rec8b < t->cyc8b) {
2099 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2100 t->rec8b = t->cyc8b - t->act8b;
2101 }
2102
2103 if (t->active + t->recover < t->cycle) {
2104 t->active += (t->cycle - (t->active + t->recover)) / 2;
2105 t->recover = t->cycle - t->active;
2106 }
2107
2108 return 0;
2109}
2110
cf176e1a
TH
2111/**
2112 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2113 * @dev: Device to adjust xfer masks
2114 * @force_pio0: Force PIO0
2115 *
2116 * Adjust xfer masks of @dev downward. Note that this function
2117 * does not apply the change. Invoking ata_set_mode() afterwards
2118 * will apply the limit.
2119 *
2120 * LOCKING:
2121 * Inherited from caller.
2122 *
2123 * RETURNS:
2124 * 0 on success, negative errno on failure
2125 */
3373efd8 2126int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2127{
2128 unsigned long xfer_mask;
2129 int highbit;
2130
2131 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2132 dev->udma_mask);
2133
2134 if (!xfer_mask)
2135 goto fail;
2136 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2137 if (xfer_mask & ATA_MASK_UDMA)
2138 xfer_mask &= ~ATA_MASK_MWDMA;
2139
2140 highbit = fls(xfer_mask) - 1;
2141 xfer_mask &= ~(1 << highbit);
2142 if (force_pio0)
2143 xfer_mask &= 1 << ATA_SHIFT_PIO;
2144 if (!xfer_mask)
2145 goto fail;
2146
2147 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2148 &dev->udma_mask);
2149
f15a1daf
TH
2150 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2151 ata_mode_string(xfer_mask));
cf176e1a
TH
2152
2153 return 0;
2154
2155 fail:
2156 return -EINVAL;
2157}
2158
3373efd8 2159static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2160{
baa1e78a 2161 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2162 unsigned int err_mask;
2163 int rc;
1da177e4 2164
e8384607 2165 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2166 if (dev->xfer_shift == ATA_SHIFT_PIO)
2167 dev->flags |= ATA_DFLAG_PIO;
2168
3373efd8 2169 err_mask = ata_dev_set_xfermode(dev);
83206a29 2170 if (err_mask) {
f15a1daf
TH
2171 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2172 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2173 return -EIO;
2174 }
1da177e4 2175
baa1e78a 2176 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2177 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2178 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2179 if (rc)
83206a29 2180 return rc;
48a8a14f 2181
23e71c3d
TH
2182 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2183 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2184
f15a1daf
TH
2185 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2186 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2187 return 0;
1da177e4
LT
2188}
2189
1da177e4
LT
2190/**
2191 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2192 * @ap: port on which timings will be programmed
e82cbdb9 2193 * @r_failed_dev: out paramter for failed device
1da177e4 2194 *
e82cbdb9
TH
2195 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2196 * ata_set_mode() fails, pointer to the failing device is
2197 * returned in @r_failed_dev.
780a87f7 2198 *
1da177e4 2199 * LOCKING:
0cba632b 2200 * PCI/etc. bus probe sem.
e82cbdb9
TH
2201 *
2202 * RETURNS:
2203 * 0 on success, negative errno otherwise
1da177e4 2204 */
1ad8e7f9 2205int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2206{
e8e0619f 2207 struct ata_device *dev;
e82cbdb9 2208 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2209
3adcebb2
TH
2210 /* has private set_mode? */
2211 if (ap->ops->set_mode) {
2212 /* FIXME: make ->set_mode handle no device case and
2213 * return error code and failing device on failure.
2214 */
2215 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2216 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2217 ap->ops->set_mode(ap);
2218 break;
2219 }
2220 }
2221 return 0;
2222 }
2223
a6d5a51c
TH
2224 /* step 1: calculate xfer_mask */
2225 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2226 unsigned int pio_mask, dma_mask;
a6d5a51c 2227
e8e0619f
TH
2228 dev = &ap->device[i];
2229
e1211e3f 2230 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2231 continue;
2232
3373efd8 2233 ata_dev_xfermask(dev);
1da177e4 2234
acf356b1
TH
2235 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2236 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2237 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2238 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2239
4f65977d 2240 found = 1;
5444a6f4
AC
2241 if (dev->dma_mode)
2242 used_dma = 1;
a6d5a51c 2243 }
4f65977d 2244 if (!found)
e82cbdb9 2245 goto out;
a6d5a51c
TH
2246
2247 /* step 2: always set host PIO timings */
e8e0619f
TH
2248 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2249 dev = &ap->device[i];
2250 if (!ata_dev_enabled(dev))
2251 continue;
2252
2253 if (!dev->pio_mode) {
f15a1daf 2254 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2255 rc = -EINVAL;
e82cbdb9 2256 goto out;
e8e0619f
TH
2257 }
2258
2259 dev->xfer_mode = dev->pio_mode;
2260 dev->xfer_shift = ATA_SHIFT_PIO;
2261 if (ap->ops->set_piomode)
2262 ap->ops->set_piomode(ap, dev);
2263 }
1da177e4 2264
a6d5a51c 2265 /* step 3: set host DMA timings */
e8e0619f
TH
2266 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2267 dev = &ap->device[i];
2268
2269 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2270 continue;
2271
2272 dev->xfer_mode = dev->dma_mode;
2273 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2274 if (ap->ops->set_dmamode)
2275 ap->ops->set_dmamode(ap, dev);
2276 }
1da177e4
LT
2277
2278 /* step 4: update devices' xfer mode */
83206a29 2279 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2280 dev = &ap->device[i];
1da177e4 2281
02670bf3
TH
2282 /* don't udpate suspended devices' xfer mode */
2283 if (!ata_dev_ready(dev))
83206a29
TH
2284 continue;
2285
3373efd8 2286 rc = ata_dev_set_mode(dev);
5bbc53f4 2287 if (rc)
e82cbdb9 2288 goto out;
83206a29 2289 }
1da177e4 2290
e8e0619f
TH
2291 /* Record simplex status. If we selected DMA then the other
2292 * host channels are not permitted to do so.
5444a6f4 2293 */
cca3974e
JG
2294 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2295 ap->host->simplex_claimed = 1;
5444a6f4 2296
e8e0619f 2297 /* step5: chip specific finalisation */
1da177e4
LT
2298 if (ap->ops->post_set_mode)
2299 ap->ops->post_set_mode(ap);
2300
e82cbdb9
TH
2301 out:
2302 if (rc)
2303 *r_failed_dev = dev;
2304 return rc;
1da177e4
LT
2305}
2306
1fdffbce
JG
2307/**
2308 * ata_tf_to_host - issue ATA taskfile to host controller
2309 * @ap: port to which command is being issued
2310 * @tf: ATA taskfile register set
2311 *
2312 * Issues ATA taskfile register set to ATA host controller,
2313 * with proper synchronization with interrupt handler and
2314 * other threads.
2315 *
2316 * LOCKING:
cca3974e 2317 * spin_lock_irqsave(host lock)
1fdffbce
JG
2318 */
2319
2320static inline void ata_tf_to_host(struct ata_port *ap,
2321 const struct ata_taskfile *tf)
2322{
2323 ap->ops->tf_load(ap, tf);
2324 ap->ops->exec_command(ap, tf);
2325}
2326
1da177e4
LT
2327/**
2328 * ata_busy_sleep - sleep until BSY clears, or timeout
2329 * @ap: port containing status register to be polled
2330 * @tmout_pat: impatience timeout
2331 * @tmout: overall timeout
2332 *
780a87f7
JG
2333 * Sleep until ATA Status register bit BSY clears,
2334 * or a timeout occurs.
2335 *
d1adc1bb
TH
2336 * LOCKING:
2337 * Kernel thread context (may sleep).
2338 *
2339 * RETURNS:
2340 * 0 on success, -errno otherwise.
1da177e4 2341 */
d1adc1bb
TH
2342int ata_busy_sleep(struct ata_port *ap,
2343 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2344{
2345 unsigned long timer_start, timeout;
2346 u8 status;
2347
2348 status = ata_busy_wait(ap, ATA_BUSY, 300);
2349 timer_start = jiffies;
2350 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2351 while (status != 0xff && (status & ATA_BUSY) &&
2352 time_before(jiffies, timeout)) {
1da177e4
LT
2353 msleep(50);
2354 status = ata_busy_wait(ap, ATA_BUSY, 3);
2355 }
2356
d1adc1bb 2357 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2358 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2359 "port is slow to respond, please be patient "
2360 "(Status 0x%x)\n", status);
1da177e4
LT
2361
2362 timeout = timer_start + tmout;
d1adc1bb
TH
2363 while (status != 0xff && (status & ATA_BUSY) &&
2364 time_before(jiffies, timeout)) {
1da177e4
LT
2365 msleep(50);
2366 status = ata_chk_status(ap);
2367 }
2368
d1adc1bb
TH
2369 if (status == 0xff)
2370 return -ENODEV;
2371
1da177e4 2372 if (status & ATA_BUSY) {
f15a1daf 2373 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2374 "(%lu secs, Status 0x%x)\n",
2375 tmout / HZ, status);
d1adc1bb 2376 return -EBUSY;
1da177e4
LT
2377 }
2378
2379 return 0;
2380}
2381
2382static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2383{
2384 struct ata_ioports *ioaddr = &ap->ioaddr;
2385 unsigned int dev0 = devmask & (1 << 0);
2386 unsigned int dev1 = devmask & (1 << 1);
2387 unsigned long timeout;
2388
2389 /* if device 0 was found in ata_devchk, wait for its
2390 * BSY bit to clear
2391 */
2392 if (dev0)
2393 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2394
2395 /* if device 1 was found in ata_devchk, wait for
2396 * register access, then wait for BSY to clear
2397 */
2398 timeout = jiffies + ATA_TMOUT_BOOT;
2399 while (dev1) {
2400 u8 nsect, lbal;
2401
2402 ap->ops->dev_select(ap, 1);
2403 if (ap->flags & ATA_FLAG_MMIO) {
2404 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2405 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2406 } else {
2407 nsect = inb(ioaddr->nsect_addr);
2408 lbal = inb(ioaddr->lbal_addr);
2409 }
2410 if ((nsect == 1) && (lbal == 1))
2411 break;
2412 if (time_after(jiffies, timeout)) {
2413 dev1 = 0;
2414 break;
2415 }
2416 msleep(50); /* give drive a breather */
2417 }
2418 if (dev1)
2419 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2420
2421 /* is all this really necessary? */
2422 ap->ops->dev_select(ap, 0);
2423 if (dev1)
2424 ap->ops->dev_select(ap, 1);
2425 if (dev0)
2426 ap->ops->dev_select(ap, 0);
2427}
2428
1da177e4
LT
2429static unsigned int ata_bus_softreset(struct ata_port *ap,
2430 unsigned int devmask)
2431{
2432 struct ata_ioports *ioaddr = &ap->ioaddr;
2433
2434 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2435
2436 /* software reset. causes dev0 to be selected */
2437 if (ap->flags & ATA_FLAG_MMIO) {
2438 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2439 udelay(20); /* FIXME: flush */
2440 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2441 udelay(20); /* FIXME: flush */
2442 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2443 } else {
2444 outb(ap->ctl, ioaddr->ctl_addr);
2445 udelay(10);
2446 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2447 udelay(10);
2448 outb(ap->ctl, ioaddr->ctl_addr);
2449 }
2450
2451 /* spec mandates ">= 2ms" before checking status.
2452 * We wait 150ms, because that was the magic delay used for
2453 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2454 * between when the ATA command register is written, and then
2455 * status is checked. Because waiting for "a while" before
2456 * checking status is fine, post SRST, we perform this magic
2457 * delay here as well.
09c7ad79
AC
2458 *
2459 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2460 */
2461 msleep(150);
2462
2e9edbf8 2463 /* Before we perform post reset processing we want to see if
298a41ca
TH
2464 * the bus shows 0xFF because the odd clown forgets the D7
2465 * pulldown resistor.
2466 */
d1adc1bb
TH
2467 if (ata_check_status(ap) == 0xFF)
2468 return 0;
09c7ad79 2469
1da177e4
LT
2470 ata_bus_post_reset(ap, devmask);
2471
2472 return 0;
2473}
2474
2475/**
2476 * ata_bus_reset - reset host port and associated ATA channel
2477 * @ap: port to reset
2478 *
2479 * This is typically the first time we actually start issuing
2480 * commands to the ATA channel. We wait for BSY to clear, then
2481 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2482 * result. Determine what devices, if any, are on the channel
2483 * by looking at the device 0/1 error register. Look at the signature
2484 * stored in each device's taskfile registers, to determine if
2485 * the device is ATA or ATAPI.
2486 *
2487 * LOCKING:
0cba632b 2488 * PCI/etc. bus probe sem.
cca3974e 2489 * Obtains host lock.
1da177e4
LT
2490 *
2491 * SIDE EFFECTS:
198e0fed 2492 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2493 */
2494
2495void ata_bus_reset(struct ata_port *ap)
2496{
2497 struct ata_ioports *ioaddr = &ap->ioaddr;
2498 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2499 u8 err;
aec5c3c1 2500 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2501
2502 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2503
2504 /* determine if device 0/1 are present */
2505 if (ap->flags & ATA_FLAG_SATA_RESET)
2506 dev0 = 1;
2507 else {
2508 dev0 = ata_devchk(ap, 0);
2509 if (slave_possible)
2510 dev1 = ata_devchk(ap, 1);
2511 }
2512
2513 if (dev0)
2514 devmask |= (1 << 0);
2515 if (dev1)
2516 devmask |= (1 << 1);
2517
2518 /* select device 0 again */
2519 ap->ops->dev_select(ap, 0);
2520
2521 /* issue bus reset */
2522 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2523 if (ata_bus_softreset(ap, devmask))
2524 goto err_out;
1da177e4
LT
2525
2526 /*
2527 * determine by signature whether we have ATA or ATAPI devices
2528 */
b4dc7623 2529 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2530 if ((slave_possible) && (err != 0x81))
b4dc7623 2531 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2532
2533 /* re-enable interrupts */
2534 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2535 ata_irq_on(ap);
2536
2537 /* is double-select really necessary? */
2538 if (ap->device[1].class != ATA_DEV_NONE)
2539 ap->ops->dev_select(ap, 1);
2540 if (ap->device[0].class != ATA_DEV_NONE)
2541 ap->ops->dev_select(ap, 0);
2542
2543 /* if no devices were detected, disable this port */
2544 if ((ap->device[0].class == ATA_DEV_NONE) &&
2545 (ap->device[1].class == ATA_DEV_NONE))
2546 goto err_out;
2547
2548 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2549 /* set up device control for ATA_FLAG_SATA_RESET */
2550 if (ap->flags & ATA_FLAG_MMIO)
2551 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2552 else
2553 outb(ap->ctl, ioaddr->ctl_addr);
2554 }
2555
2556 DPRINTK("EXIT\n");
2557 return;
2558
2559err_out:
f15a1daf 2560 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2561 ap->ops->port_disable(ap);
2562
2563 DPRINTK("EXIT\n");
2564}
2565
d7bb4cc7
TH
2566/**
2567 * sata_phy_debounce - debounce SATA phy status
2568 * @ap: ATA port to debounce SATA phy status for
2569 * @params: timing parameters { interval, duratinon, timeout } in msec
2570 *
2571 * Make sure SStatus of @ap reaches stable state, determined by
2572 * holding the same value where DET is not 1 for @duration polled
2573 * every @interval, before @timeout. Timeout constraints the
2574 * beginning of the stable state. Because, after hot unplugging,
2575 * DET gets stuck at 1 on some controllers, this functions waits
2576 * until timeout then returns 0 if DET is stable at 1.
2577 *
2578 * LOCKING:
2579 * Kernel thread context (may sleep)
2580 *
2581 * RETURNS:
2582 * 0 on success, -errno on failure.
2583 */
2584int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2585{
d7bb4cc7
TH
2586 unsigned long interval_msec = params[0];
2587 unsigned long duration = params[1] * HZ / 1000;
2588 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2589 unsigned long last_jiffies;
2590 u32 last, cur;
2591 int rc;
2592
2593 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2594 return rc;
2595 cur &= 0xf;
2596
2597 last = cur;
2598 last_jiffies = jiffies;
2599
2600 while (1) {
2601 msleep(interval_msec);
2602 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2603 return rc;
2604 cur &= 0xf;
2605
2606 /* DET stable? */
2607 if (cur == last) {
2608 if (cur == 1 && time_before(jiffies, timeout))
2609 continue;
2610 if (time_after(jiffies, last_jiffies + duration))
2611 return 0;
2612 continue;
2613 }
2614
2615 /* unstable, start over */
2616 last = cur;
2617 last_jiffies = jiffies;
2618
2619 /* check timeout */
2620 if (time_after(jiffies, timeout))
2621 return -EBUSY;
2622 }
2623}
2624
2625/**
2626 * sata_phy_resume - resume SATA phy
2627 * @ap: ATA port to resume SATA phy for
2628 * @params: timing parameters { interval, duratinon, timeout } in msec
2629 *
2630 * Resume SATA phy of @ap and debounce it.
2631 *
2632 * LOCKING:
2633 * Kernel thread context (may sleep)
2634 *
2635 * RETURNS:
2636 * 0 on success, -errno on failure.
2637 */
2638int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2639{
2640 u32 scontrol;
81952c54
TH
2641 int rc;
2642
2643 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2644 return rc;
7a7921e8 2645
852ee16a 2646 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2647
2648 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2649 return rc;
7a7921e8 2650
d7bb4cc7
TH
2651 /* Some PHYs react badly if SStatus is pounded immediately
2652 * after resuming. Delay 200ms before debouncing.
2653 */
2654 msleep(200);
7a7921e8 2655
d7bb4cc7 2656 return sata_phy_debounce(ap, params);
7a7921e8
TH
2657}
2658
f5914a46
TH
2659static void ata_wait_spinup(struct ata_port *ap)
2660{
2661 struct ata_eh_context *ehc = &ap->eh_context;
2662 unsigned long end, secs;
2663 int rc;
2664
2665 /* first, debounce phy if SATA */
2666 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2667 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2668
2669 /* if debounced successfully and offline, no need to wait */
2670 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2671 return;
2672 }
2673
2674 /* okay, let's give the drive time to spin up */
2675 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2676 secs = ((end - jiffies) + HZ - 1) / HZ;
2677
2678 if (time_after(jiffies, end))
2679 return;
2680
2681 if (secs > 5)
2682 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2683 "(%lu secs)\n", secs);
2684
2685 schedule_timeout_uninterruptible(end - jiffies);
2686}
2687
2688/**
2689 * ata_std_prereset - prepare for reset
2690 * @ap: ATA port to be reset
2691 *
2692 * @ap is about to be reset. Initialize it.
2693 *
2694 * LOCKING:
2695 * Kernel thread context (may sleep)
2696 *
2697 * RETURNS:
2698 * 0 on success, -errno otherwise.
2699 */
2700int ata_std_prereset(struct ata_port *ap)
2701{
2702 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2703 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2704 int rc;
2705
28324304
TH
2706 /* handle link resume & hotplug spinup */
2707 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2708 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2709 ehc->i.action |= ATA_EH_HARDRESET;
2710
2711 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2712 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2713 ata_wait_spinup(ap);
f5914a46
TH
2714
2715 /* if we're about to do hardreset, nothing more to do */
2716 if (ehc->i.action & ATA_EH_HARDRESET)
2717 return 0;
2718
2719 /* if SATA, resume phy */
2720 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2721 rc = sata_phy_resume(ap, timing);
2722 if (rc && rc != -EOPNOTSUPP) {
2723 /* phy resume failed */
2724 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2725 "link for reset (errno=%d)\n", rc);
2726 return rc;
2727 }
2728 }
2729
2730 /* Wait for !BSY if the controller can wait for the first D2H
2731 * Reg FIS and we don't know that no device is attached.
2732 */
2733 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2734 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2735
2736 return 0;
2737}
2738
c2bd5804
TH
2739/**
2740 * ata_std_softreset - reset host port via ATA SRST
2741 * @ap: port to reset
c2bd5804
TH
2742 * @classes: resulting classes of attached devices
2743 *
52783c5d 2744 * Reset host port using ATA SRST.
c2bd5804
TH
2745 *
2746 * LOCKING:
2747 * Kernel thread context (may sleep)
2748 *
2749 * RETURNS:
2750 * 0 on success, -errno otherwise.
2751 */
2bf2cb26 2752int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2753{
2754 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2755 unsigned int devmask = 0, err_mask;
2756 u8 err;
2757
2758 DPRINTK("ENTER\n");
2759
81952c54 2760 if (ata_port_offline(ap)) {
3a39746a
TH
2761 classes[0] = ATA_DEV_NONE;
2762 goto out;
2763 }
2764
c2bd5804
TH
2765 /* determine if device 0/1 are present */
2766 if (ata_devchk(ap, 0))
2767 devmask |= (1 << 0);
2768 if (slave_possible && ata_devchk(ap, 1))
2769 devmask |= (1 << 1);
2770
c2bd5804
TH
2771 /* select device 0 again */
2772 ap->ops->dev_select(ap, 0);
2773
2774 /* issue bus reset */
2775 DPRINTK("about to softreset, devmask=%x\n", devmask);
2776 err_mask = ata_bus_softreset(ap, devmask);
2777 if (err_mask) {
f15a1daf
TH
2778 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2779 err_mask);
c2bd5804
TH
2780 return -EIO;
2781 }
2782
2783 /* determine by signature whether we have ATA or ATAPI devices */
2784 classes[0] = ata_dev_try_classify(ap, 0, &err);
2785 if (slave_possible && err != 0x81)
2786 classes[1] = ata_dev_try_classify(ap, 1, &err);
2787
3a39746a 2788 out:
c2bd5804
TH
2789 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2790 return 0;
2791}
2792
2793/**
b6103f6d 2794 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 2795 * @ap: port to reset
b6103f6d 2796 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
2797 *
2798 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2799 *
2800 * LOCKING:
2801 * Kernel thread context (may sleep)
2802 *
2803 * RETURNS:
2804 * 0 on success, -errno otherwise.
2805 */
b6103f6d 2806int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 2807{
852ee16a 2808 u32 scontrol;
81952c54 2809 int rc;
852ee16a 2810
c2bd5804
TH
2811 DPRINTK("ENTER\n");
2812
3c567b7d 2813 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2814 /* SATA spec says nothing about how to reconfigure
2815 * spd. To be on the safe side, turn off phy during
2816 * reconfiguration. This works for at least ICH7 AHCI
2817 * and Sil3124.
2818 */
81952c54 2819 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2820 goto out;
81952c54 2821
a34b6fc0 2822 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2823
2824 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 2825 goto out;
1c3fae4d 2826
3c567b7d 2827 sata_set_spd(ap);
1c3fae4d
TH
2828 }
2829
2830 /* issue phy wake/reset */
81952c54 2831 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 2832 goto out;
81952c54 2833
852ee16a 2834 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2835
2836 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 2837 goto out;
c2bd5804 2838
1c3fae4d 2839 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2840 * 10.4.2 says at least 1 ms.
2841 */
2842 msleep(1);
2843
1c3fae4d 2844 /* bring phy back */
b6103f6d
TH
2845 rc = sata_phy_resume(ap, timing);
2846 out:
2847 DPRINTK("EXIT, rc=%d\n", rc);
2848 return rc;
2849}
2850
2851/**
2852 * sata_std_hardreset - reset host port via SATA phy reset
2853 * @ap: port to reset
2854 * @class: resulting class of attached device
2855 *
2856 * SATA phy-reset host port using DET bits of SControl register,
2857 * wait for !BSY and classify the attached device.
2858 *
2859 * LOCKING:
2860 * Kernel thread context (may sleep)
2861 *
2862 * RETURNS:
2863 * 0 on success, -errno otherwise.
2864 */
2865int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2866{
2867 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
2868 int rc;
2869
2870 DPRINTK("ENTER\n");
2871
2872 /* do hardreset */
2873 rc = sata_port_hardreset(ap, timing);
2874 if (rc) {
2875 ata_port_printk(ap, KERN_ERR,
2876 "COMRESET failed (errno=%d)\n", rc);
2877 return rc;
2878 }
c2bd5804 2879
c2bd5804 2880 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2881 if (ata_port_offline(ap)) {
c2bd5804
TH
2882 *class = ATA_DEV_NONE;
2883 DPRINTK("EXIT, link offline\n");
2884 return 0;
2885 }
2886
2887 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2888 ata_port_printk(ap, KERN_ERR,
2889 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2890 return -EIO;
2891 }
2892
3a39746a
TH
2893 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2894
c2bd5804
TH
2895 *class = ata_dev_try_classify(ap, 0, NULL);
2896
2897 DPRINTK("EXIT, class=%u\n", *class);
2898 return 0;
2899}
2900
2901/**
2902 * ata_std_postreset - standard postreset callback
2903 * @ap: the target ata_port
2904 * @classes: classes of attached devices
2905 *
2906 * This function is invoked after a successful reset. Note that
2907 * the device might have been reset more than once using
2908 * different reset methods before postreset is invoked.
c2bd5804 2909 *
c2bd5804
TH
2910 * LOCKING:
2911 * Kernel thread context (may sleep)
2912 */
2913void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2914{
dc2b3515
TH
2915 u32 serror;
2916
c2bd5804
TH
2917 DPRINTK("ENTER\n");
2918
c2bd5804 2919 /* print link status */
81952c54 2920 sata_print_link_status(ap);
c2bd5804 2921
dc2b3515
TH
2922 /* clear SError */
2923 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2924 sata_scr_write(ap, SCR_ERROR, serror);
2925
3a39746a 2926 /* re-enable interrupts */
e3180499
TH
2927 if (!ap->ops->error_handler) {
2928 /* FIXME: hack. create a hook instead */
2929 if (ap->ioaddr.ctl_addr)
2930 ata_irq_on(ap);
2931 }
c2bd5804
TH
2932
2933 /* is double-select really necessary? */
2934 if (classes[0] != ATA_DEV_NONE)
2935 ap->ops->dev_select(ap, 1);
2936 if (classes[1] != ATA_DEV_NONE)
2937 ap->ops->dev_select(ap, 0);
2938
3a39746a
TH
2939 /* bail out if no device is present */
2940 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2941 DPRINTK("EXIT, no device\n");
2942 return;
2943 }
2944
2945 /* set up device control */
2946 if (ap->ioaddr.ctl_addr) {
2947 if (ap->flags & ATA_FLAG_MMIO)
2948 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2949 else
2950 outb(ap->ctl, ap->ioaddr.ctl_addr);
2951 }
c2bd5804
TH
2952
2953 DPRINTK("EXIT\n");
2954}
2955
623a3128
TH
2956/**
2957 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2958 * @dev: device to compare against
2959 * @new_class: class of the new device
2960 * @new_id: IDENTIFY page of the new device
2961 *
2962 * Compare @new_class and @new_id against @dev and determine
2963 * whether @dev is the device indicated by @new_class and
2964 * @new_id.
2965 *
2966 * LOCKING:
2967 * None.
2968 *
2969 * RETURNS:
2970 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2971 */
3373efd8
TH
2972static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2973 const u16 *new_id)
623a3128
TH
2974{
2975 const u16 *old_id = dev->id;
2976 unsigned char model[2][41], serial[2][21];
2977 u64 new_n_sectors;
2978
2979 if (dev->class != new_class) {
f15a1daf
TH
2980 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2981 dev->class, new_class);
623a3128
TH
2982 return 0;
2983 }
2984
2985 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2986 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2987 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2988 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2989 new_n_sectors = ata_id_n_sectors(new_id);
2990
2991 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2992 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2993 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2994 return 0;
2995 }
2996
2997 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2998 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2999 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3000 return 0;
3001 }
3002
3003 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3004 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3005 "%llu != %llu\n",
3006 (unsigned long long)dev->n_sectors,
3007 (unsigned long long)new_n_sectors);
623a3128
TH
3008 return 0;
3009 }
3010
3011 return 1;
3012}
3013
3014/**
3015 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
3016 * @dev: device to revalidate
3017 * @post_reset: is this revalidation after reset?
3018 *
3019 * Re-read IDENTIFY page and make sure @dev is still attached to
3020 * the port.
3021 *
3022 * LOCKING:
3023 * Kernel thread context (may sleep)
3024 *
3025 * RETURNS:
3026 * 0 on success, negative errno otherwise
3027 */
3373efd8 3028int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 3029{
5eb45c02 3030 unsigned int class = dev->class;
f15a1daf 3031 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3032 int rc;
3033
5eb45c02
TH
3034 if (!ata_dev_enabled(dev)) {
3035 rc = -ENODEV;
3036 goto fail;
3037 }
623a3128 3038
fe635c7e 3039 /* read ID data */
3373efd8 3040 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
3041 if (rc)
3042 goto fail;
3043
3044 /* is the device still there? */
3373efd8 3045 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3046 rc = -ENODEV;
3047 goto fail;
3048 }
3049
fe635c7e 3050 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3051
3052 /* configure device according to the new ID */
efdaedc4 3053 rc = ata_dev_configure(dev);
5eb45c02
TH
3054 if (rc == 0)
3055 return 0;
623a3128
TH
3056
3057 fail:
f15a1daf 3058 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3059 return rc;
3060}
3061
6919a0a6
AC
3062struct ata_blacklist_entry {
3063 const char *model_num;
3064 const char *model_rev;
3065 unsigned long horkage;
3066};
3067
3068static const struct ata_blacklist_entry ata_device_blacklist [] = {
3069 /* Devices with DMA related problems under Linux */
3070 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3071 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3072 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3073 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3074 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3075 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3076 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3077 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3078 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3079 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3080 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3081 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3082 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3083 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3084 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3085 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3086 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3087 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3088 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3089 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3090 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3091 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3092 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3093 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3094 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3095 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3096 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3097 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3098 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3099 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3100
3101 /* Devices we expect to fail diagnostics */
3102
3103 /* Devices where NCQ should be avoided */
3104 /* NCQ is slow */
3105 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3106
3107 /* Devices with NCQ limits */
3108
3109 /* End Marker */
3110 { }
1da177e4 3111};
2e9edbf8 3112
f4b15fef
AC
3113static int ata_strim(char *s, size_t len)
3114{
3115 len = strnlen(s, len);
3116
3117 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3118 while ((len > 0) && (s[len - 1] == ' ')) {
3119 len--;
3120 s[len] = 0;
3121 }
3122 return len;
3123}
1da177e4 3124
6919a0a6 3125unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3126{
f4b15fef
AC
3127 unsigned char model_num[40];
3128 unsigned char model_rev[16];
3129 unsigned int nlen, rlen;
6919a0a6 3130 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3131
f4b15fef
AC
3132 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3133 sizeof(model_num));
3134 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3135 sizeof(model_rev));
3136 nlen = ata_strim(model_num, sizeof(model_num));
3137 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3138
6919a0a6
AC
3139 while (ad->model_num) {
3140 if (!strncmp(ad->model_num, model_num, nlen)) {
3141 if (ad->model_rev == NULL)
3142 return ad->horkage;
3143 if (!strncmp(ad->model_rev, model_rev, rlen))
3144 return ad->horkage;
f4b15fef 3145 }
6919a0a6 3146 ad++;
f4b15fef 3147 }
1da177e4
LT
3148 return 0;
3149}
3150
6919a0a6
AC
3151static int ata_dma_blacklisted(const struct ata_device *dev)
3152{
3153 /* We don't support polling DMA.
3154 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3155 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3156 */
3157 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3158 (dev->flags & ATA_DFLAG_CDB_INTR))
3159 return 1;
3160 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3161}
3162
a6d5a51c
TH
3163/**
3164 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3165 * @dev: Device to compute xfermask for
3166 *
acf356b1
TH
3167 * Compute supported xfermask of @dev and store it in
3168 * dev->*_mask. This function is responsible for applying all
3169 * known limits including host controller limits, device
3170 * blacklist, etc...
a6d5a51c
TH
3171 *
3172 * LOCKING:
3173 * None.
a6d5a51c 3174 */
3373efd8 3175static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3176{
3373efd8 3177 struct ata_port *ap = dev->ap;
cca3974e 3178 struct ata_host *host = ap->host;
a6d5a51c 3179 unsigned long xfer_mask;
1da177e4 3180
37deecb5 3181 /* controller modes available */
565083e1
TH
3182 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3183 ap->mwdma_mask, ap->udma_mask);
3184
3185 /* Apply cable rule here. Don't apply it early because when
3186 * we handle hot plug the cable type can itself change.
3187 */
3188 if (ap->cbl == ATA_CBL_PATA40)
3189 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
fc085150
AC
3190 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3191 * host side are checked drive side as well. Cases where we know a
3192 * 40wire cable is used safely for 80 are not checked here.
3193 */
3194 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3195 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3196
1da177e4 3197
37deecb5
TH
3198 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3199 dev->mwdma_mask, dev->udma_mask);
3200 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3201
b352e57d
AC
3202 /*
3203 * CFA Advanced TrueIDE timings are not allowed on a shared
3204 * cable
3205 */
3206 if (ata_dev_pair(dev)) {
3207 /* No PIO5 or PIO6 */
3208 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3209 /* No MWDMA3 or MWDMA 4 */
3210 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3211 }
3212
37deecb5
TH
3213 if (ata_dma_blacklisted(dev)) {
3214 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3215 ata_dev_printk(dev, KERN_WARNING,
3216 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3217 }
a6d5a51c 3218
cca3974e 3219 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3220 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3221 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3222 "other device, disabling DMA\n");
5444a6f4 3223 }
565083e1 3224
5444a6f4
AC
3225 if (ap->ops->mode_filter)
3226 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3227
565083e1
TH
3228 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3229 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3230}
3231
1da177e4
LT
3232/**
3233 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3234 * @dev: Device to which command will be sent
3235 *
780a87f7
JG
3236 * Issue SET FEATURES - XFER MODE command to device @dev
3237 * on port @ap.
3238 *
1da177e4 3239 * LOCKING:
0cba632b 3240 * PCI/etc. bus probe sem.
83206a29
TH
3241 *
3242 * RETURNS:
3243 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3244 */
3245
3373efd8 3246static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3247{
a0123703 3248 struct ata_taskfile tf;
83206a29 3249 unsigned int err_mask;
1da177e4
LT
3250
3251 /* set up set-features taskfile */
3252 DPRINTK("set features - xfer mode\n");
3253
3373efd8 3254 ata_tf_init(dev, &tf);
a0123703
TH
3255 tf.command = ATA_CMD_SET_FEATURES;
3256 tf.feature = SETFEATURES_XFER;
3257 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3258 tf.protocol = ATA_PROT_NODATA;
3259 tf.nsect = dev->xfer_mode;
1da177e4 3260
3373efd8 3261 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3262
83206a29
TH
3263 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3264 return err_mask;
1da177e4
LT
3265}
3266
8bf62ece
AL
3267/**
3268 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3269 * @dev: Device to which command will be sent
e2a7f77a
RD
3270 * @heads: Number of heads (taskfile parameter)
3271 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3272 *
3273 * LOCKING:
6aff8f1f
TH
3274 * Kernel thread context (may sleep)
3275 *
3276 * RETURNS:
3277 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3278 */
3373efd8
TH
3279static unsigned int ata_dev_init_params(struct ata_device *dev,
3280 u16 heads, u16 sectors)
8bf62ece 3281{
a0123703 3282 struct ata_taskfile tf;
6aff8f1f 3283 unsigned int err_mask;
8bf62ece
AL
3284
3285 /* Number of sectors per track 1-255. Number of heads 1-16 */
3286 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3287 return AC_ERR_INVALID;
8bf62ece
AL
3288
3289 /* set up init dev params taskfile */
3290 DPRINTK("init dev params \n");
3291
3373efd8 3292 ata_tf_init(dev, &tf);
a0123703
TH
3293 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3294 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3295 tf.protocol = ATA_PROT_NODATA;
3296 tf.nsect = sectors;
3297 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3298
3373efd8 3299 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3300
6aff8f1f
TH
3301 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3302 return err_mask;
8bf62ece
AL
3303}
3304
1da177e4 3305/**
0cba632b
JG
3306 * ata_sg_clean - Unmap DMA memory associated with command
3307 * @qc: Command containing DMA memory to be released
3308 *
3309 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3310 *
3311 * LOCKING:
cca3974e 3312 * spin_lock_irqsave(host lock)
1da177e4
LT
3313 */
3314
3315static void ata_sg_clean(struct ata_queued_cmd *qc)
3316{
3317 struct ata_port *ap = qc->ap;
cedc9a47 3318 struct scatterlist *sg = qc->__sg;
1da177e4 3319 int dir = qc->dma_dir;
cedc9a47 3320 void *pad_buf = NULL;
1da177e4 3321
a4631474
TH
3322 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3323 WARN_ON(sg == NULL);
1da177e4
LT
3324
3325 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3326 WARN_ON(qc->n_elem > 1);
1da177e4 3327
2c13b7ce 3328 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3329
cedc9a47
JG
3330 /* if we padded the buffer out to 32-bit bound, and data
3331 * xfer direction is from-device, we must copy from the
3332 * pad buffer back into the supplied buffer
3333 */
3334 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3335 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3336
3337 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3338 if (qc->n_elem)
2f1f610b 3339 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3340 /* restore last sg */
3341 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3342 if (pad_buf) {
3343 struct scatterlist *psg = &qc->pad_sgent;
3344 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3345 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3346 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3347 }
3348 } else {
2e242fa9 3349 if (qc->n_elem)
2f1f610b 3350 dma_unmap_single(ap->dev,
e1410f2d
JG
3351 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3352 dir);
cedc9a47
JG
3353 /* restore sg */
3354 sg->length += qc->pad_len;
3355 if (pad_buf)
3356 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3357 pad_buf, qc->pad_len);
3358 }
1da177e4
LT
3359
3360 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3361 qc->__sg = NULL;
1da177e4
LT
3362}
3363
3364/**
3365 * ata_fill_sg - Fill PCI IDE PRD table
3366 * @qc: Metadata associated with taskfile to be transferred
3367 *
780a87f7
JG
3368 * Fill PCI IDE PRD (scatter-gather) table with segments
3369 * associated with the current disk command.
3370 *
1da177e4 3371 * LOCKING:
cca3974e 3372 * spin_lock_irqsave(host lock)
1da177e4
LT
3373 *
3374 */
3375static void ata_fill_sg(struct ata_queued_cmd *qc)
3376{
1da177e4 3377 struct ata_port *ap = qc->ap;
cedc9a47
JG
3378 struct scatterlist *sg;
3379 unsigned int idx;
1da177e4 3380
a4631474 3381 WARN_ON(qc->__sg == NULL);
f131883e 3382 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3383
3384 idx = 0;
cedc9a47 3385 ata_for_each_sg(sg, qc) {
1da177e4
LT
3386 u32 addr, offset;
3387 u32 sg_len, len;
3388
3389 /* determine if physical DMA addr spans 64K boundary.
3390 * Note h/w doesn't support 64-bit, so we unconditionally
3391 * truncate dma_addr_t to u32.
3392 */
3393 addr = (u32) sg_dma_address(sg);
3394 sg_len = sg_dma_len(sg);
3395
3396 while (sg_len) {
3397 offset = addr & 0xffff;
3398 len = sg_len;
3399 if ((offset + sg_len) > 0x10000)
3400 len = 0x10000 - offset;
3401
3402 ap->prd[idx].addr = cpu_to_le32(addr);
3403 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3404 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3405
3406 idx++;
3407 sg_len -= len;
3408 addr += len;
3409 }
3410 }
3411
3412 if (idx)
3413 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3414}
3415/**
3416 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3417 * @qc: Metadata associated with taskfile to check
3418 *
780a87f7
JG
3419 * Allow low-level driver to filter ATA PACKET commands, returning
3420 * a status indicating whether or not it is OK to use DMA for the
3421 * supplied PACKET command.
3422 *
1da177e4 3423 * LOCKING:
cca3974e 3424 * spin_lock_irqsave(host lock)
0cba632b 3425 *
1da177e4
LT
3426 * RETURNS: 0 when ATAPI DMA can be used
3427 * nonzero otherwise
3428 */
3429int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3430{
3431 struct ata_port *ap = qc->ap;
3432 int rc = 0; /* Assume ATAPI DMA is OK by default */
3433
3434 if (ap->ops->check_atapi_dma)
3435 rc = ap->ops->check_atapi_dma(qc);
3436
3437 return rc;
3438}
3439/**
3440 * ata_qc_prep - Prepare taskfile for submission
3441 * @qc: Metadata associated with taskfile to be prepared
3442 *
780a87f7
JG
3443 * Prepare ATA taskfile for submission.
3444 *
1da177e4 3445 * LOCKING:
cca3974e 3446 * spin_lock_irqsave(host lock)
1da177e4
LT
3447 */
3448void ata_qc_prep(struct ata_queued_cmd *qc)
3449{
3450 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3451 return;
3452
3453 ata_fill_sg(qc);
3454}
3455
e46834cd
BK
3456void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3457
0cba632b
JG
3458/**
3459 * ata_sg_init_one - Associate command with memory buffer
3460 * @qc: Command to be associated
3461 * @buf: Memory buffer
3462 * @buflen: Length of memory buffer, in bytes.
3463 *
3464 * Initialize the data-related elements of queued_cmd @qc
3465 * to point to a single memory buffer, @buf of byte length @buflen.
3466 *
3467 * LOCKING:
cca3974e 3468 * spin_lock_irqsave(host lock)
0cba632b
JG
3469 */
3470
1da177e4
LT
3471void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3472{
3473 struct scatterlist *sg;
3474
3475 qc->flags |= ATA_QCFLAG_SINGLE;
3476
3477 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3478 qc->__sg = &qc->sgent;
1da177e4 3479 qc->n_elem = 1;
cedc9a47 3480 qc->orig_n_elem = 1;
1da177e4 3481 qc->buf_virt = buf;
233277ca 3482 qc->nbytes = buflen;
1da177e4 3483
cedc9a47 3484 sg = qc->__sg;
f0612bbc 3485 sg_init_one(sg, buf, buflen);
1da177e4
LT
3486}
3487
0cba632b
JG
3488/**
3489 * ata_sg_init - Associate command with scatter-gather table.
3490 * @qc: Command to be associated
3491 * @sg: Scatter-gather table.
3492 * @n_elem: Number of elements in s/g table.
3493 *
3494 * Initialize the data-related elements of queued_cmd @qc
3495 * to point to a scatter-gather table @sg, containing @n_elem
3496 * elements.
3497 *
3498 * LOCKING:
cca3974e 3499 * spin_lock_irqsave(host lock)
0cba632b
JG
3500 */
3501
1da177e4
LT
3502void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3503 unsigned int n_elem)
3504{
3505 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3506 qc->__sg = sg;
1da177e4 3507 qc->n_elem = n_elem;
cedc9a47 3508 qc->orig_n_elem = n_elem;
1da177e4
LT
3509}
3510
3511/**
0cba632b
JG
3512 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3513 * @qc: Command with memory buffer to be mapped.
3514 *
3515 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3516 *
3517 * LOCKING:
cca3974e 3518 * spin_lock_irqsave(host lock)
1da177e4
LT
3519 *
3520 * RETURNS:
0cba632b 3521 * Zero on success, negative on error.
1da177e4
LT
3522 */
3523
3524static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3525{
3526 struct ata_port *ap = qc->ap;
3527 int dir = qc->dma_dir;
cedc9a47 3528 struct scatterlist *sg = qc->__sg;
1da177e4 3529 dma_addr_t dma_address;
2e242fa9 3530 int trim_sg = 0;
1da177e4 3531
cedc9a47
JG
3532 /* we must lengthen transfers to end on a 32-bit boundary */
3533 qc->pad_len = sg->length & 3;
3534 if (qc->pad_len) {
3535 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3536 struct scatterlist *psg = &qc->pad_sgent;
3537
a4631474 3538 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3539
3540 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3541
3542 if (qc->tf.flags & ATA_TFLAG_WRITE)
3543 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3544 qc->pad_len);
3545
3546 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3547 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3548 /* trim sg */
3549 sg->length -= qc->pad_len;
2e242fa9
TH
3550 if (sg->length == 0)
3551 trim_sg = 1;
cedc9a47
JG
3552
3553 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3554 sg->length, qc->pad_len);
3555 }
3556
2e242fa9
TH
3557 if (trim_sg) {
3558 qc->n_elem--;
e1410f2d
JG
3559 goto skip_map;
3560 }
3561
2f1f610b 3562 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3563 sg->length, dir);
537a95d9
TH
3564 if (dma_mapping_error(dma_address)) {
3565 /* restore sg */
3566 sg->length += qc->pad_len;
1da177e4 3567 return -1;
537a95d9 3568 }
1da177e4
LT
3569
3570 sg_dma_address(sg) = dma_address;
32529e01 3571 sg_dma_len(sg) = sg->length;
1da177e4 3572
2e242fa9 3573skip_map:
1da177e4
LT
3574 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3575 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3576
3577 return 0;
3578}
3579
3580/**
0cba632b
JG
3581 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3582 * @qc: Command with scatter-gather table to be mapped.
3583 *
3584 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3585 *
3586 * LOCKING:
cca3974e 3587 * spin_lock_irqsave(host lock)
1da177e4
LT
3588 *
3589 * RETURNS:
0cba632b 3590 * Zero on success, negative on error.
1da177e4
LT
3591 *
3592 */
3593
3594static int ata_sg_setup(struct ata_queued_cmd *qc)
3595{
3596 struct ata_port *ap = qc->ap;
cedc9a47
JG
3597 struct scatterlist *sg = qc->__sg;
3598 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3599 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3600
3601 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3602 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3603
cedc9a47
JG
3604 /* we must lengthen transfers to end on a 32-bit boundary */
3605 qc->pad_len = lsg->length & 3;
3606 if (qc->pad_len) {
3607 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3608 struct scatterlist *psg = &qc->pad_sgent;
3609 unsigned int offset;
3610
a4631474 3611 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3612
3613 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3614
3615 /*
3616 * psg->page/offset are used to copy to-be-written
3617 * data in this function or read data in ata_sg_clean.
3618 */
3619 offset = lsg->offset + lsg->length - qc->pad_len;
3620 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3621 psg->offset = offset_in_page(offset);
3622
3623 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3624 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3625 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3626 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3627 }
3628
3629 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3630 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3631 /* trim last sg */
3632 lsg->length -= qc->pad_len;
e1410f2d
JG
3633 if (lsg->length == 0)
3634 trim_sg = 1;
cedc9a47
JG
3635
3636 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3637 qc->n_elem - 1, lsg->length, qc->pad_len);
3638 }
3639
e1410f2d
JG
3640 pre_n_elem = qc->n_elem;
3641 if (trim_sg && pre_n_elem)
3642 pre_n_elem--;
3643
3644 if (!pre_n_elem) {
3645 n_elem = 0;
3646 goto skip_map;
3647 }
3648
1da177e4 3649 dir = qc->dma_dir;
2f1f610b 3650 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3651 if (n_elem < 1) {
3652 /* restore last sg */
3653 lsg->length += qc->pad_len;
1da177e4 3654 return -1;
537a95d9 3655 }
1da177e4
LT
3656
3657 DPRINTK("%d sg elements mapped\n", n_elem);
3658
e1410f2d 3659skip_map:
1da177e4
LT
3660 qc->n_elem = n_elem;
3661
3662 return 0;
3663}
3664
0baab86b 3665/**
c893a3ae 3666 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3667 * @buf: Buffer to swap
3668 * @buf_words: Number of 16-bit words in buffer.
3669 *
3670 * Swap halves of 16-bit words if needed to convert from
3671 * little-endian byte order to native cpu byte order, or
3672 * vice-versa.
3673 *
3674 * LOCKING:
6f0ef4fa 3675 * Inherited from caller.
0baab86b 3676 */
1da177e4
LT
3677void swap_buf_le16(u16 *buf, unsigned int buf_words)
3678{
3679#ifdef __BIG_ENDIAN
3680 unsigned int i;
3681
3682 for (i = 0; i < buf_words; i++)
3683 buf[i] = le16_to_cpu(buf[i]);
3684#endif /* __BIG_ENDIAN */
3685}
3686
6ae4cfb5
AL
3687/**
3688 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3689 * @adev: device for this I/O
6ae4cfb5
AL
3690 * @buf: data buffer
3691 * @buflen: buffer length
344babaa 3692 * @write_data: read/write
6ae4cfb5
AL
3693 *
3694 * Transfer data from/to the device data register by MMIO.
3695 *
3696 * LOCKING:
3697 * Inherited from caller.
6ae4cfb5
AL
3698 */
3699
88574551 3700void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3701 unsigned int buflen, int write_data)
1da177e4 3702{
a6b2c5d4 3703 struct ata_port *ap = adev->ap;
1da177e4
LT
3704 unsigned int i;
3705 unsigned int words = buflen >> 1;
3706 u16 *buf16 = (u16 *) buf;
3707 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3708
6ae4cfb5 3709 /* Transfer multiple of 2 bytes */
1da177e4
LT
3710 if (write_data) {
3711 for (i = 0; i < words; i++)
3712 writew(le16_to_cpu(buf16[i]), mmio);
3713 } else {
3714 for (i = 0; i < words; i++)
3715 buf16[i] = cpu_to_le16(readw(mmio));
3716 }
6ae4cfb5
AL
3717
3718 /* Transfer trailing 1 byte, if any. */
3719 if (unlikely(buflen & 0x01)) {
3720 u16 align_buf[1] = { 0 };
3721 unsigned char *trailing_buf = buf + buflen - 1;
3722
3723 if (write_data) {
3724 memcpy(align_buf, trailing_buf, 1);
3725 writew(le16_to_cpu(align_buf[0]), mmio);
3726 } else {
3727 align_buf[0] = cpu_to_le16(readw(mmio));
3728 memcpy(trailing_buf, align_buf, 1);
3729 }
3730 }
1da177e4
LT
3731}
3732
6ae4cfb5
AL
3733/**
3734 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3735 * @adev: device to target
6ae4cfb5
AL
3736 * @buf: data buffer
3737 * @buflen: buffer length
344babaa 3738 * @write_data: read/write
6ae4cfb5
AL
3739 *
3740 * Transfer data from/to the device data register by PIO.
3741 *
3742 * LOCKING:
3743 * Inherited from caller.
6ae4cfb5
AL
3744 */
3745
88574551 3746void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3747 unsigned int buflen, int write_data)
1da177e4 3748{
a6b2c5d4 3749 struct ata_port *ap = adev->ap;
6ae4cfb5 3750 unsigned int words = buflen >> 1;
1da177e4 3751
6ae4cfb5 3752 /* Transfer multiple of 2 bytes */
1da177e4 3753 if (write_data)
6ae4cfb5 3754 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3755 else
6ae4cfb5
AL
3756 insw(ap->ioaddr.data_addr, buf, words);
3757
3758 /* Transfer trailing 1 byte, if any. */
3759 if (unlikely(buflen & 0x01)) {
3760 u16 align_buf[1] = { 0 };
3761 unsigned char *trailing_buf = buf + buflen - 1;
3762
3763 if (write_data) {
3764 memcpy(align_buf, trailing_buf, 1);
3765 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3766 } else {
3767 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3768 memcpy(trailing_buf, align_buf, 1);
3769 }
3770 }
1da177e4
LT
3771}
3772
75e99585
AC
3773/**
3774 * ata_pio_data_xfer_noirq - Transfer data by PIO
3775 * @adev: device to target
3776 * @buf: data buffer
3777 * @buflen: buffer length
3778 * @write_data: read/write
3779 *
88574551 3780 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3781 * transfer with interrupts disabled.
3782 *
3783 * LOCKING:
3784 * Inherited from caller.
3785 */
3786
3787void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3788 unsigned int buflen, int write_data)
3789{
3790 unsigned long flags;
3791 local_irq_save(flags);
3792 ata_pio_data_xfer(adev, buf, buflen, write_data);
3793 local_irq_restore(flags);
3794}
3795
3796
6ae4cfb5
AL
3797/**
3798 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3799 * @qc: Command on going
3800 *
3801 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3802 *
3803 * LOCKING:
3804 * Inherited from caller.
3805 */
3806
1da177e4
LT
3807static void ata_pio_sector(struct ata_queued_cmd *qc)
3808{
3809 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3810 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3811 struct ata_port *ap = qc->ap;
3812 struct page *page;
3813 unsigned int offset;
3814 unsigned char *buf;
3815
3816 if (qc->cursect == (qc->nsect - 1))
14be71f4 3817 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3818
3819 page = sg[qc->cursg].page;
3820 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3821
3822 /* get the current page and offset */
3823 page = nth_page(page, (offset >> PAGE_SHIFT));
3824 offset %= PAGE_SIZE;
3825
1da177e4
LT
3826 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3827
91b8b313
AL
3828 if (PageHighMem(page)) {
3829 unsigned long flags;
3830
a6b2c5d4 3831 /* FIXME: use a bounce buffer */
91b8b313
AL
3832 local_irq_save(flags);
3833 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3834
91b8b313 3835 /* do the actual data transfer */
a6b2c5d4 3836 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3837
91b8b313
AL
3838 kunmap_atomic(buf, KM_IRQ0);
3839 local_irq_restore(flags);
3840 } else {
3841 buf = page_address(page);
a6b2c5d4 3842 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3843 }
1da177e4
LT
3844
3845 qc->cursect++;
3846 qc->cursg_ofs++;
3847
32529e01 3848 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3849 qc->cursg++;
3850 qc->cursg_ofs = 0;
3851 }
1da177e4 3852}
1da177e4 3853
07f6f7d0
AL
3854/**
3855 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3856 * @qc: Command on going
3857 *
c81e29b4 3858 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3859 * ATA device for the DRQ request.
3860 *
3861 * LOCKING:
3862 * Inherited from caller.
3863 */
1da177e4 3864
07f6f7d0
AL
3865static void ata_pio_sectors(struct ata_queued_cmd *qc)
3866{
3867 if (is_multi_taskfile(&qc->tf)) {
3868 /* READ/WRITE MULTIPLE */
3869 unsigned int nsect;
3870
587005de 3871 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3872
07f6f7d0
AL
3873 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3874 while (nsect--)
3875 ata_pio_sector(qc);
3876 } else
3877 ata_pio_sector(qc);
3878}
3879
c71c1857
AL
3880/**
3881 * atapi_send_cdb - Write CDB bytes to hardware
3882 * @ap: Port to which ATAPI device is attached.
3883 * @qc: Taskfile currently active
3884 *
3885 * When device has indicated its readiness to accept
3886 * a CDB, this function is called. Send the CDB.
3887 *
3888 * LOCKING:
3889 * caller.
3890 */
3891
3892static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3893{
3894 /* send SCSI cdb */
3895 DPRINTK("send cdb\n");
db024d53 3896 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3897
a6b2c5d4 3898 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3899 ata_altstatus(ap); /* flush */
3900
3901 switch (qc->tf.protocol) {
3902 case ATA_PROT_ATAPI:
3903 ap->hsm_task_state = HSM_ST;
3904 break;
3905 case ATA_PROT_ATAPI_NODATA:
3906 ap->hsm_task_state = HSM_ST_LAST;
3907 break;
3908 case ATA_PROT_ATAPI_DMA:
3909 ap->hsm_task_state = HSM_ST_LAST;
3910 /* initiate bmdma */
3911 ap->ops->bmdma_start(qc);
3912 break;
3913 }
1da177e4
LT
3914}
3915
6ae4cfb5
AL
3916/**
3917 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3918 * @qc: Command on going
3919 * @bytes: number of bytes
3920 *
3921 * Transfer Transfer data from/to the ATAPI device.
3922 *
3923 * LOCKING:
3924 * Inherited from caller.
3925 *
3926 */
3927
1da177e4
LT
3928static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3929{
3930 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3931 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3932 struct ata_port *ap = qc->ap;
3933 struct page *page;
3934 unsigned char *buf;
3935 unsigned int offset, count;
3936
563a6e1f 3937 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3938 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3939
3940next_sg:
563a6e1f 3941 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3942 /*
563a6e1f
AL
3943 * The end of qc->sg is reached and the device expects
3944 * more data to transfer. In order not to overrun qc->sg
3945 * and fulfill length specified in the byte count register,
3946 * - for read case, discard trailing data from the device
3947 * - for write case, padding zero data to the device
3948 */
3949 u16 pad_buf[1] = { 0 };
3950 unsigned int words = bytes >> 1;
3951 unsigned int i;
3952
3953 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3954 ata_dev_printk(qc->dev, KERN_WARNING,
3955 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3956
3957 for (i = 0; i < words; i++)
a6b2c5d4 3958 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3959
14be71f4 3960 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3961 return;
3962 }
3963
cedc9a47 3964 sg = &qc->__sg[qc->cursg];
1da177e4 3965
1da177e4
LT
3966 page = sg->page;
3967 offset = sg->offset + qc->cursg_ofs;
3968
3969 /* get the current page and offset */
3970 page = nth_page(page, (offset >> PAGE_SHIFT));
3971 offset %= PAGE_SIZE;
3972
6952df03 3973 /* don't overrun current sg */
32529e01 3974 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3975
3976 /* don't cross page boundaries */
3977 count = min(count, (unsigned int)PAGE_SIZE - offset);
3978
7282aa4b
AL
3979 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3980
91b8b313
AL
3981 if (PageHighMem(page)) {
3982 unsigned long flags;
3983
a6b2c5d4 3984 /* FIXME: use bounce buffer */
91b8b313
AL
3985 local_irq_save(flags);
3986 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3987
91b8b313 3988 /* do the actual data transfer */
a6b2c5d4 3989 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3990
91b8b313
AL
3991 kunmap_atomic(buf, KM_IRQ0);
3992 local_irq_restore(flags);
3993 } else {
3994 buf = page_address(page);
a6b2c5d4 3995 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3996 }
1da177e4
LT
3997
3998 bytes -= count;
3999 qc->curbytes += count;
4000 qc->cursg_ofs += count;
4001
32529e01 4002 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4003 qc->cursg++;
4004 qc->cursg_ofs = 0;
4005 }
4006
563a6e1f 4007 if (bytes)
1da177e4 4008 goto next_sg;
1da177e4
LT
4009}
4010
6ae4cfb5
AL
4011/**
4012 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4013 * @qc: Command on going
4014 *
4015 * Transfer Transfer data from/to the ATAPI device.
4016 *
4017 * LOCKING:
4018 * Inherited from caller.
6ae4cfb5
AL
4019 */
4020
1da177e4
LT
4021static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4022{
4023 struct ata_port *ap = qc->ap;
4024 struct ata_device *dev = qc->dev;
4025 unsigned int ireason, bc_lo, bc_hi, bytes;
4026 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4027
eec4c3f3
AL
4028 /* Abuse qc->result_tf for temp storage of intermediate TF
4029 * here to save some kernel stack usage.
4030 * For normal completion, qc->result_tf is not relevant. For
4031 * error, qc->result_tf is later overwritten by ata_qc_complete().
4032 * So, the correctness of qc->result_tf is not affected.
4033 */
4034 ap->ops->tf_read(ap, &qc->result_tf);
4035 ireason = qc->result_tf.nsect;
4036 bc_lo = qc->result_tf.lbam;
4037 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4038 bytes = (bc_hi << 8) | bc_lo;
4039
4040 /* shall be cleared to zero, indicating xfer of data */
4041 if (ireason & (1 << 0))
4042 goto err_out;
4043
4044 /* make sure transfer direction matches expected */
4045 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4046 if (do_write != i_write)
4047 goto err_out;
4048
312f7da2
AL
4049 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4050
1da177e4
LT
4051 __atapi_pio_bytes(qc, bytes);
4052
4053 return;
4054
4055err_out:
f15a1daf 4056 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4057 qc->err_mask |= AC_ERR_HSM;
14be71f4 4058 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4059}
4060
4061/**
c234fb00
AL
4062 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4063 * @ap: the target ata_port
4064 * @qc: qc on going
1da177e4 4065 *
c234fb00
AL
4066 * RETURNS:
4067 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4068 */
c234fb00
AL
4069
4070static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4071{
c234fb00
AL
4072 if (qc->tf.flags & ATA_TFLAG_POLLING)
4073 return 1;
1da177e4 4074
c234fb00
AL
4075 if (ap->hsm_task_state == HSM_ST_FIRST) {
4076 if (qc->tf.protocol == ATA_PROT_PIO &&
4077 (qc->tf.flags & ATA_TFLAG_WRITE))
4078 return 1;
1da177e4 4079
c234fb00
AL
4080 if (is_atapi_taskfile(&qc->tf) &&
4081 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4082 return 1;
fe79e683
AL
4083 }
4084
c234fb00
AL
4085 return 0;
4086}
1da177e4 4087
c17ea20d
TH
4088/**
4089 * ata_hsm_qc_complete - finish a qc running on standard HSM
4090 * @qc: Command to complete
4091 * @in_wq: 1 if called from workqueue, 0 otherwise
4092 *
4093 * Finish @qc which is running on standard HSM.
4094 *
4095 * LOCKING:
cca3974e 4096 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4097 * Otherwise, none on entry and grabs host lock.
4098 */
4099static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4100{
4101 struct ata_port *ap = qc->ap;
4102 unsigned long flags;
4103
4104 if (ap->ops->error_handler) {
4105 if (in_wq) {
ba6a1308 4106 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4107
cca3974e
JG
4108 /* EH might have kicked in while host lock is
4109 * released.
c17ea20d
TH
4110 */
4111 qc = ata_qc_from_tag(ap, qc->tag);
4112 if (qc) {
4113 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4114 ata_irq_on(ap);
4115 ata_qc_complete(qc);
4116 } else
4117 ata_port_freeze(ap);
4118 }
4119
ba6a1308 4120 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4121 } else {
4122 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4123 ata_qc_complete(qc);
4124 else
4125 ata_port_freeze(ap);
4126 }
4127 } else {
4128 if (in_wq) {
ba6a1308 4129 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4130 ata_irq_on(ap);
4131 ata_qc_complete(qc);
ba6a1308 4132 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4133 } else
4134 ata_qc_complete(qc);
4135 }
1da177e4 4136
c81e29b4 4137 ata_altstatus(ap); /* flush */
c17ea20d
TH
4138}
4139
bb5cb290
AL
4140/**
4141 * ata_hsm_move - move the HSM to the next state.
4142 * @ap: the target ata_port
4143 * @qc: qc on going
4144 * @status: current device status
4145 * @in_wq: 1 if called from workqueue, 0 otherwise
4146 *
4147 * RETURNS:
4148 * 1 when poll next status needed, 0 otherwise.
4149 */
9a1004d0
TH
4150int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4151 u8 status, int in_wq)
e2cec771 4152{
bb5cb290
AL
4153 unsigned long flags = 0;
4154 int poll_next;
4155
6912ccd5
AL
4156 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4157
bb5cb290
AL
4158 /* Make sure ata_qc_issue_prot() does not throw things
4159 * like DMA polling into the workqueue. Notice that
4160 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4161 */
c234fb00 4162 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4163
e2cec771 4164fsm_start:
999bb6f4
AL
4165 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4166 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4167
e2cec771
AL
4168 switch (ap->hsm_task_state) {
4169 case HSM_ST_FIRST:
bb5cb290
AL
4170 /* Send first data block or PACKET CDB */
4171
4172 /* If polling, we will stay in the work queue after
4173 * sending the data. Otherwise, interrupt handler
4174 * takes over after sending the data.
4175 */
4176 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4177
e2cec771 4178 /* check device status */
3655d1d3
AL
4179 if (unlikely((status & ATA_DRQ) == 0)) {
4180 /* handle BSY=0, DRQ=0 as error */
4181 if (likely(status & (ATA_ERR | ATA_DF)))
4182 /* device stops HSM for abort/error */
4183 qc->err_mask |= AC_ERR_DEV;
4184 else
4185 /* HSM violation. Let EH handle this */
4186 qc->err_mask |= AC_ERR_HSM;
4187
14be71f4 4188 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4189 goto fsm_start;
1da177e4
LT
4190 }
4191
71601958
AL
4192 /* Device should not ask for data transfer (DRQ=1)
4193 * when it finds something wrong.
eee6c32f
AL
4194 * We ignore DRQ here and stop the HSM by
4195 * changing hsm_task_state to HSM_ST_ERR and
4196 * let the EH abort the command or reset the device.
71601958
AL
4197 */
4198 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4199 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4200 ap->id, status);
3655d1d3 4201 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4202 ap->hsm_task_state = HSM_ST_ERR;
4203 goto fsm_start;
71601958 4204 }
1da177e4 4205
bb5cb290
AL
4206 /* Send the CDB (atapi) or the first data block (ata pio out).
4207 * During the state transition, interrupt handler shouldn't
4208 * be invoked before the data transfer is complete and
4209 * hsm_task_state is changed. Hence, the following locking.
4210 */
4211 if (in_wq)
ba6a1308 4212 spin_lock_irqsave(ap->lock, flags);
1da177e4 4213
bb5cb290
AL
4214 if (qc->tf.protocol == ATA_PROT_PIO) {
4215 /* PIO data out protocol.
4216 * send first data block.
4217 */
0565c26d 4218
bb5cb290
AL
4219 /* ata_pio_sectors() might change the state
4220 * to HSM_ST_LAST. so, the state is changed here
4221 * before ata_pio_sectors().
4222 */
4223 ap->hsm_task_state = HSM_ST;
4224 ata_pio_sectors(qc);
4225 ata_altstatus(ap); /* flush */
4226 } else
4227 /* send CDB */
4228 atapi_send_cdb(ap, qc);
4229
4230 if (in_wq)
ba6a1308 4231 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4232
4233 /* if polling, ata_pio_task() handles the rest.
4234 * otherwise, interrupt handler takes over from here.
4235 */
e2cec771 4236 break;
1c848984 4237
e2cec771
AL
4238 case HSM_ST:
4239 /* complete command or read/write the data register */
4240 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4241 /* ATAPI PIO protocol */
4242 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4243 /* No more data to transfer or device error.
4244 * Device error will be tagged in HSM_ST_LAST.
4245 */
e2cec771
AL
4246 ap->hsm_task_state = HSM_ST_LAST;
4247 goto fsm_start;
4248 }
1da177e4 4249
71601958
AL
4250 /* Device should not ask for data transfer (DRQ=1)
4251 * when it finds something wrong.
eee6c32f
AL
4252 * We ignore DRQ here and stop the HSM by
4253 * changing hsm_task_state to HSM_ST_ERR and
4254 * let the EH abort the command or reset the device.
71601958
AL
4255 */
4256 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4257 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4258 ap->id, status);
3655d1d3 4259 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4260 ap->hsm_task_state = HSM_ST_ERR;
4261 goto fsm_start;
71601958 4262 }
1da177e4 4263
e2cec771 4264 atapi_pio_bytes(qc);
7fb6ec28 4265
e2cec771
AL
4266 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4267 /* bad ireason reported by device */
4268 goto fsm_start;
1da177e4 4269
e2cec771
AL
4270 } else {
4271 /* ATA PIO protocol */
4272 if (unlikely((status & ATA_DRQ) == 0)) {
4273 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4274 if (likely(status & (ATA_ERR | ATA_DF)))
4275 /* device stops HSM for abort/error */
4276 qc->err_mask |= AC_ERR_DEV;
4277 else
4278 /* HSM violation. Let EH handle this */
4279 qc->err_mask |= AC_ERR_HSM;
4280
e2cec771
AL
4281 ap->hsm_task_state = HSM_ST_ERR;
4282 goto fsm_start;
4283 }
1da177e4 4284
eee6c32f
AL
4285 /* For PIO reads, some devices may ask for
4286 * data transfer (DRQ=1) alone with ERR=1.
4287 * We respect DRQ here and transfer one
4288 * block of junk data before changing the
4289 * hsm_task_state to HSM_ST_ERR.
4290 *
4291 * For PIO writes, ERR=1 DRQ=1 doesn't make
4292 * sense since the data block has been
4293 * transferred to the device.
71601958
AL
4294 */
4295 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4296 /* data might be corrputed */
4297 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4298
4299 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4300 ata_pio_sectors(qc);
4301 ata_altstatus(ap);
4302 status = ata_wait_idle(ap);
4303 }
4304
3655d1d3
AL
4305 if (status & (ATA_BUSY | ATA_DRQ))
4306 qc->err_mask |= AC_ERR_HSM;
4307
eee6c32f
AL
4308 /* ata_pio_sectors() might change the
4309 * state to HSM_ST_LAST. so, the state
4310 * is changed after ata_pio_sectors().
4311 */
4312 ap->hsm_task_state = HSM_ST_ERR;
4313 goto fsm_start;
71601958
AL
4314 }
4315
e2cec771
AL
4316 ata_pio_sectors(qc);
4317
4318 if (ap->hsm_task_state == HSM_ST_LAST &&
4319 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4320 /* all data read */
4321 ata_altstatus(ap);
52a32205 4322 status = ata_wait_idle(ap);
e2cec771
AL
4323 goto fsm_start;
4324 }
4325 }
4326
4327 ata_altstatus(ap); /* flush */
bb5cb290 4328 poll_next = 1;
1da177e4
LT
4329 break;
4330
14be71f4 4331 case HSM_ST_LAST:
6912ccd5
AL
4332 if (unlikely(!ata_ok(status))) {
4333 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4334 ap->hsm_task_state = HSM_ST_ERR;
4335 goto fsm_start;
4336 }
4337
4338 /* no more data to transfer */
4332a771
AL
4339 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4340 ap->id, qc->dev->devno, status);
e2cec771 4341
6912ccd5
AL
4342 WARN_ON(qc->err_mask);
4343
e2cec771 4344 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4345
e2cec771 4346 /* complete taskfile transaction */
c17ea20d 4347 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4348
4349 poll_next = 0;
1da177e4
LT
4350 break;
4351
14be71f4 4352 case HSM_ST_ERR:
e2cec771
AL
4353 /* make sure qc->err_mask is available to
4354 * know what's wrong and recover
4355 */
4356 WARN_ON(qc->err_mask == 0);
4357
4358 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4359
999bb6f4 4360 /* complete taskfile transaction */
c17ea20d 4361 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4362
4363 poll_next = 0;
e2cec771
AL
4364 break;
4365 default:
bb5cb290 4366 poll_next = 0;
6912ccd5 4367 BUG();
1da177e4
LT
4368 }
4369
bb5cb290 4370 return poll_next;
1da177e4
LT
4371}
4372
1da177e4 4373static void ata_pio_task(void *_data)
8061f5f0 4374{
c91af2c8
TH
4375 struct ata_queued_cmd *qc = _data;
4376 struct ata_port *ap = qc->ap;
8061f5f0 4377 u8 status;
a1af3734 4378 int poll_next;
8061f5f0 4379
7fb6ec28 4380fsm_start:
a1af3734 4381 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4382
a1af3734
AL
4383 /*
4384 * This is purely heuristic. This is a fast path.
4385 * Sometimes when we enter, BSY will be cleared in
4386 * a chk-status or two. If not, the drive is probably seeking
4387 * or something. Snooze for a couple msecs, then
4388 * chk-status again. If still busy, queue delayed work.
4389 */
4390 status = ata_busy_wait(ap, ATA_BUSY, 5);
4391 if (status & ATA_BUSY) {
4392 msleep(2);
4393 status = ata_busy_wait(ap, ATA_BUSY, 10);
4394 if (status & ATA_BUSY) {
31ce6dae 4395 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4396 return;
4397 }
8061f5f0
TH
4398 }
4399
a1af3734
AL
4400 /* move the HSM */
4401 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4402
a1af3734
AL
4403 /* another command or interrupt handler
4404 * may be running at this point.
4405 */
4406 if (poll_next)
7fb6ec28 4407 goto fsm_start;
8061f5f0
TH
4408}
4409
1da177e4
LT
4410/**
4411 * ata_qc_new - Request an available ATA command, for queueing
4412 * @ap: Port associated with device @dev
4413 * @dev: Device from whom we request an available command structure
4414 *
4415 * LOCKING:
0cba632b 4416 * None.
1da177e4
LT
4417 */
4418
4419static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4420{
4421 struct ata_queued_cmd *qc = NULL;
4422 unsigned int i;
4423
e3180499 4424 /* no command while frozen */
b51e9e5d 4425 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4426 return NULL;
4427
2ab7db1f
TH
4428 /* the last tag is reserved for internal command. */
4429 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4430 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4431 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4432 break;
4433 }
4434
4435 if (qc)
4436 qc->tag = i;
4437
4438 return qc;
4439}
4440
4441/**
4442 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4443 * @dev: Device from whom we request an available command structure
4444 *
4445 * LOCKING:
0cba632b 4446 * None.
1da177e4
LT
4447 */
4448
3373efd8 4449struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4450{
3373efd8 4451 struct ata_port *ap = dev->ap;
1da177e4
LT
4452 struct ata_queued_cmd *qc;
4453
4454 qc = ata_qc_new(ap);
4455 if (qc) {
1da177e4
LT
4456 qc->scsicmd = NULL;
4457 qc->ap = ap;
4458 qc->dev = dev;
1da177e4 4459
2c13b7ce 4460 ata_qc_reinit(qc);
1da177e4
LT
4461 }
4462
4463 return qc;
4464}
4465
1da177e4
LT
4466/**
4467 * ata_qc_free - free unused ata_queued_cmd
4468 * @qc: Command to complete
4469 *
4470 * Designed to free unused ata_queued_cmd object
4471 * in case something prevents using it.
4472 *
4473 * LOCKING:
cca3974e 4474 * spin_lock_irqsave(host lock)
1da177e4
LT
4475 */
4476void ata_qc_free(struct ata_queued_cmd *qc)
4477{
4ba946e9
TH
4478 struct ata_port *ap = qc->ap;
4479 unsigned int tag;
4480
a4631474 4481 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4482
4ba946e9
TH
4483 qc->flags = 0;
4484 tag = qc->tag;
4485 if (likely(ata_tag_valid(tag))) {
4ba946e9 4486 qc->tag = ATA_TAG_POISON;
6cec4a39 4487 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4488 }
1da177e4
LT
4489}
4490
76014427 4491void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4492{
dedaf2b0
TH
4493 struct ata_port *ap = qc->ap;
4494
a4631474
TH
4495 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4496 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4497
4498 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4499 ata_sg_clean(qc);
4500
7401abf2 4501 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4502 if (qc->tf.protocol == ATA_PROT_NCQ)
4503 ap->sactive &= ~(1 << qc->tag);
4504 else
4505 ap->active_tag = ATA_TAG_POISON;
7401abf2 4506
3f3791d3
AL
4507 /* atapi: mark qc as inactive to prevent the interrupt handler
4508 * from completing the command twice later, before the error handler
4509 * is called. (when rc != 0 and atapi request sense is needed)
4510 */
4511 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4512 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4513
1da177e4 4514 /* call completion callback */
77853bf2 4515 qc->complete_fn(qc);
1da177e4
LT
4516}
4517
f686bcb8
TH
4518/**
4519 * ata_qc_complete - Complete an active ATA command
4520 * @qc: Command to complete
4521 * @err_mask: ATA Status register contents
4522 *
4523 * Indicate to the mid and upper layers that an ATA
4524 * command has completed, with either an ok or not-ok status.
4525 *
4526 * LOCKING:
cca3974e 4527 * spin_lock_irqsave(host lock)
f686bcb8
TH
4528 */
4529void ata_qc_complete(struct ata_queued_cmd *qc)
4530{
4531 struct ata_port *ap = qc->ap;
4532
4533 /* XXX: New EH and old EH use different mechanisms to
4534 * synchronize EH with regular execution path.
4535 *
4536 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4537 * Normal execution path is responsible for not accessing a
4538 * failed qc. libata core enforces the rule by returning NULL
4539 * from ata_qc_from_tag() for failed qcs.
4540 *
4541 * Old EH depends on ata_qc_complete() nullifying completion
4542 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4543 * not synchronize with interrupt handler. Only PIO task is
4544 * taken care of.
4545 */
4546 if (ap->ops->error_handler) {
b51e9e5d 4547 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4548
4549 if (unlikely(qc->err_mask))
4550 qc->flags |= ATA_QCFLAG_FAILED;
4551
4552 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4553 if (!ata_tag_internal(qc->tag)) {
4554 /* always fill result TF for failed qc */
4555 ap->ops->tf_read(ap, &qc->result_tf);
4556 ata_qc_schedule_eh(qc);
4557 return;
4558 }
4559 }
4560
4561 /* read result TF if requested */
4562 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4563 ap->ops->tf_read(ap, &qc->result_tf);
4564
4565 __ata_qc_complete(qc);
4566 } else {
4567 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4568 return;
4569
4570 /* read result TF if failed or requested */
4571 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4572 ap->ops->tf_read(ap, &qc->result_tf);
4573
4574 __ata_qc_complete(qc);
4575 }
4576}
4577
dedaf2b0
TH
4578/**
4579 * ata_qc_complete_multiple - Complete multiple qcs successfully
4580 * @ap: port in question
4581 * @qc_active: new qc_active mask
4582 * @finish_qc: LLDD callback invoked before completing a qc
4583 *
4584 * Complete in-flight commands. This functions is meant to be
4585 * called from low-level driver's interrupt routine to complete
4586 * requests normally. ap->qc_active and @qc_active is compared
4587 * and commands are completed accordingly.
4588 *
4589 * LOCKING:
cca3974e 4590 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4591 *
4592 * RETURNS:
4593 * Number of completed commands on success, -errno otherwise.
4594 */
4595int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4596 void (*finish_qc)(struct ata_queued_cmd *))
4597{
4598 int nr_done = 0;
4599 u32 done_mask;
4600 int i;
4601
4602 done_mask = ap->qc_active ^ qc_active;
4603
4604 if (unlikely(done_mask & qc_active)) {
4605 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4606 "(%08x->%08x)\n", ap->qc_active, qc_active);
4607 return -EINVAL;
4608 }
4609
4610 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4611 struct ata_queued_cmd *qc;
4612
4613 if (!(done_mask & (1 << i)))
4614 continue;
4615
4616 if ((qc = ata_qc_from_tag(ap, i))) {
4617 if (finish_qc)
4618 finish_qc(qc);
4619 ata_qc_complete(qc);
4620 nr_done++;
4621 }
4622 }
4623
4624 return nr_done;
4625}
4626
1da177e4
LT
4627static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4628{
4629 struct ata_port *ap = qc->ap;
4630
4631 switch (qc->tf.protocol) {
3dc1d881 4632 case ATA_PROT_NCQ:
1da177e4
LT
4633 case ATA_PROT_DMA:
4634 case ATA_PROT_ATAPI_DMA:
4635 return 1;
4636
4637 case ATA_PROT_ATAPI:
4638 case ATA_PROT_PIO:
1da177e4
LT
4639 if (ap->flags & ATA_FLAG_PIO_DMA)
4640 return 1;
4641
4642 /* fall through */
4643
4644 default:
4645 return 0;
4646 }
4647
4648 /* never reached */
4649}
4650
4651/**
4652 * ata_qc_issue - issue taskfile to device
4653 * @qc: command to issue to device
4654 *
4655 * Prepare an ATA command to submission to device.
4656 * This includes mapping the data into a DMA-able
4657 * area, filling in the S/G table, and finally
4658 * writing the taskfile to hardware, starting the command.
4659 *
4660 * LOCKING:
cca3974e 4661 * spin_lock_irqsave(host lock)
1da177e4 4662 */
8e0e694a 4663void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4664{
4665 struct ata_port *ap = qc->ap;
4666
dedaf2b0
TH
4667 /* Make sure only one non-NCQ command is outstanding. The
4668 * check is skipped for old EH because it reuses active qc to
4669 * request ATAPI sense.
4670 */
4671 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4672
4673 if (qc->tf.protocol == ATA_PROT_NCQ) {
4674 WARN_ON(ap->sactive & (1 << qc->tag));
4675 ap->sactive |= 1 << qc->tag;
4676 } else {
4677 WARN_ON(ap->sactive);
4678 ap->active_tag = qc->tag;
4679 }
4680
e4a70e76 4681 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4682 ap->qc_active |= 1 << qc->tag;
e4a70e76 4683
1da177e4
LT
4684 if (ata_should_dma_map(qc)) {
4685 if (qc->flags & ATA_QCFLAG_SG) {
4686 if (ata_sg_setup(qc))
8e436af9 4687 goto sg_err;
1da177e4
LT
4688 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4689 if (ata_sg_setup_one(qc))
8e436af9 4690 goto sg_err;
1da177e4
LT
4691 }
4692 } else {
4693 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4694 }
4695
4696 ap->ops->qc_prep(qc);
4697
8e0e694a
TH
4698 qc->err_mask |= ap->ops->qc_issue(qc);
4699 if (unlikely(qc->err_mask))
4700 goto err;
4701 return;
1da177e4 4702
8e436af9
TH
4703sg_err:
4704 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4705 qc->err_mask |= AC_ERR_SYSTEM;
4706err:
4707 ata_qc_complete(qc);
1da177e4
LT
4708}
4709
4710/**
4711 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4712 * @qc: command to issue to device
4713 *
4714 * Using various libata functions and hooks, this function
4715 * starts an ATA command. ATA commands are grouped into
4716 * classes called "protocols", and issuing each type of protocol
4717 * is slightly different.
4718 *
0baab86b
EF
4719 * May be used as the qc_issue() entry in ata_port_operations.
4720 *
1da177e4 4721 * LOCKING:
cca3974e 4722 * spin_lock_irqsave(host lock)
1da177e4
LT
4723 *
4724 * RETURNS:
9a3d9eb0 4725 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4726 */
4727
9a3d9eb0 4728unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4729{
4730 struct ata_port *ap = qc->ap;
4731
e50362ec
AL
4732 /* Use polling pio if the LLD doesn't handle
4733 * interrupt driven pio and atapi CDB interrupt.
4734 */
4735 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4736 switch (qc->tf.protocol) {
4737 case ATA_PROT_PIO:
4738 case ATA_PROT_ATAPI:
4739 case ATA_PROT_ATAPI_NODATA:
4740 qc->tf.flags |= ATA_TFLAG_POLLING;
4741 break;
4742 case ATA_PROT_ATAPI_DMA:
4743 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4744 /* see ata_dma_blacklisted() */
e50362ec
AL
4745 BUG();
4746 break;
4747 default:
4748 break;
4749 }
4750 }
4751
312f7da2 4752 /* select the device */
1da177e4
LT
4753 ata_dev_select(ap, qc->dev->devno, 1, 0);
4754
312f7da2 4755 /* start the command */
1da177e4
LT
4756 switch (qc->tf.protocol) {
4757 case ATA_PROT_NODATA:
312f7da2
AL
4758 if (qc->tf.flags & ATA_TFLAG_POLLING)
4759 ata_qc_set_polling(qc);
4760
e5338254 4761 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4762 ap->hsm_task_state = HSM_ST_LAST;
4763
4764 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4765 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4766
1da177e4
LT
4767 break;
4768
4769 case ATA_PROT_DMA:
587005de 4770 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4771
1da177e4
LT
4772 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4773 ap->ops->bmdma_setup(qc); /* set up bmdma */
4774 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4775 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4776 break;
4777
312f7da2
AL
4778 case ATA_PROT_PIO:
4779 if (qc->tf.flags & ATA_TFLAG_POLLING)
4780 ata_qc_set_polling(qc);
1da177e4 4781
e5338254 4782 ata_tf_to_host(ap, &qc->tf);
312f7da2 4783
54f00389
AL
4784 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4785 /* PIO data out protocol */
4786 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4787 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4788
4789 /* always send first data block using
e27486db 4790 * the ata_pio_task() codepath.
54f00389 4791 */
312f7da2 4792 } else {
54f00389
AL
4793 /* PIO data in protocol */
4794 ap->hsm_task_state = HSM_ST;
4795
4796 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4797 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4798
4799 /* if polling, ata_pio_task() handles the rest.
4800 * otherwise, interrupt handler takes over from here.
4801 */
312f7da2
AL
4802 }
4803
1da177e4
LT
4804 break;
4805
1da177e4 4806 case ATA_PROT_ATAPI:
1da177e4 4807 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4808 if (qc->tf.flags & ATA_TFLAG_POLLING)
4809 ata_qc_set_polling(qc);
4810
e5338254 4811 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4812
312f7da2
AL
4813 ap->hsm_task_state = HSM_ST_FIRST;
4814
4815 /* send cdb by polling if no cdb interrupt */
4816 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4817 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4818 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4819 break;
4820
4821 case ATA_PROT_ATAPI_DMA:
587005de 4822 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4823
1da177e4
LT
4824 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4825 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4826 ap->hsm_task_state = HSM_ST_FIRST;
4827
4828 /* send cdb by polling if no cdb interrupt */
4829 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4830 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4831 break;
4832
4833 default:
4834 WARN_ON(1);
9a3d9eb0 4835 return AC_ERR_SYSTEM;
1da177e4
LT
4836 }
4837
4838 return 0;
4839}
4840
1da177e4
LT
4841/**
4842 * ata_host_intr - Handle host interrupt for given (port, task)
4843 * @ap: Port on which interrupt arrived (possibly...)
4844 * @qc: Taskfile currently active in engine
4845 *
4846 * Handle host interrupt for given queued command. Currently,
4847 * only DMA interrupts are handled. All other commands are
4848 * handled via polling with interrupts disabled (nIEN bit).
4849 *
4850 * LOCKING:
cca3974e 4851 * spin_lock_irqsave(host lock)
1da177e4
LT
4852 *
4853 * RETURNS:
4854 * One if interrupt was handled, zero if not (shared irq).
4855 */
4856
4857inline unsigned int ata_host_intr (struct ata_port *ap,
4858 struct ata_queued_cmd *qc)
4859{
312f7da2 4860 u8 status, host_stat = 0;
1da177e4 4861
312f7da2
AL
4862 VPRINTK("ata%u: protocol %d task_state %d\n",
4863 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4864
312f7da2
AL
4865 /* Check whether we are expecting interrupt in this state */
4866 switch (ap->hsm_task_state) {
4867 case HSM_ST_FIRST:
6912ccd5
AL
4868 /* Some pre-ATAPI-4 devices assert INTRQ
4869 * at this state when ready to receive CDB.
4870 */
1da177e4 4871
312f7da2
AL
4872 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4873 * The flag was turned on only for atapi devices.
4874 * No need to check is_atapi_taskfile(&qc->tf) again.
4875 */
4876 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4877 goto idle_irq;
1da177e4 4878 break;
312f7da2
AL
4879 case HSM_ST_LAST:
4880 if (qc->tf.protocol == ATA_PROT_DMA ||
4881 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4882 /* check status of DMA engine */
4883 host_stat = ap->ops->bmdma_status(ap);
4884 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4885
4886 /* if it's not our irq... */
4887 if (!(host_stat & ATA_DMA_INTR))
4888 goto idle_irq;
4889
4890 /* before we do anything else, clear DMA-Start bit */
4891 ap->ops->bmdma_stop(qc);
a4f16610
AL
4892
4893 if (unlikely(host_stat & ATA_DMA_ERR)) {
4894 /* error when transfering data to/from memory */
4895 qc->err_mask |= AC_ERR_HOST_BUS;
4896 ap->hsm_task_state = HSM_ST_ERR;
4897 }
312f7da2
AL
4898 }
4899 break;
4900 case HSM_ST:
4901 break;
1da177e4
LT
4902 default:
4903 goto idle_irq;
4904 }
4905
312f7da2
AL
4906 /* check altstatus */
4907 status = ata_altstatus(ap);
4908 if (status & ATA_BUSY)
4909 goto idle_irq;
1da177e4 4910
312f7da2
AL
4911 /* check main status, clearing INTRQ */
4912 status = ata_chk_status(ap);
4913 if (unlikely(status & ATA_BUSY))
4914 goto idle_irq;
1da177e4 4915
312f7da2
AL
4916 /* ack bmdma irq events */
4917 ap->ops->irq_clear(ap);
1da177e4 4918
bb5cb290 4919 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4920 return 1; /* irq handled */
4921
4922idle_irq:
4923 ap->stats.idle_irq++;
4924
4925#ifdef ATA_IRQ_TRAP
4926 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4927 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4928 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4929 return 1;
1da177e4
LT
4930 }
4931#endif
4932 return 0; /* irq not handled */
4933}
4934
4935/**
4936 * ata_interrupt - Default ATA host interrupt handler
0cba632b 4937 * @irq: irq line (unused)
cca3974e 4938 * @dev_instance: pointer to our ata_host information structure
1da177e4 4939 *
0cba632b
JG
4940 * Default interrupt handler for PCI IDE devices. Calls
4941 * ata_host_intr() for each port that is not disabled.
4942 *
1da177e4 4943 * LOCKING:
cca3974e 4944 * Obtains host lock during operation.
1da177e4
LT
4945 *
4946 * RETURNS:
0cba632b 4947 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4948 */
4949
7d12e780 4950irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 4951{
cca3974e 4952 struct ata_host *host = dev_instance;
1da177e4
LT
4953 unsigned int i;
4954 unsigned int handled = 0;
4955 unsigned long flags;
4956
4957 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 4958 spin_lock_irqsave(&host->lock, flags);
1da177e4 4959
cca3974e 4960 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
4961 struct ata_port *ap;
4962
cca3974e 4963 ap = host->ports[i];
c1389503 4964 if (ap &&
029f5468 4965 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4966 struct ata_queued_cmd *qc;
4967
4968 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4969 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4970 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4971 handled |= ata_host_intr(ap, qc);
4972 }
4973 }
4974
cca3974e 4975 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
4976
4977 return IRQ_RETVAL(handled);
4978}
4979
34bf2170
TH
4980/**
4981 * sata_scr_valid - test whether SCRs are accessible
4982 * @ap: ATA port to test SCR accessibility for
4983 *
4984 * Test whether SCRs are accessible for @ap.
4985 *
4986 * LOCKING:
4987 * None.
4988 *
4989 * RETURNS:
4990 * 1 if SCRs are accessible, 0 otherwise.
4991 */
4992int sata_scr_valid(struct ata_port *ap)
4993{
4994 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4995}
4996
4997/**
4998 * sata_scr_read - read SCR register of the specified port
4999 * @ap: ATA port to read SCR for
5000 * @reg: SCR to read
5001 * @val: Place to store read value
5002 *
5003 * Read SCR register @reg of @ap into *@val. This function is
5004 * guaranteed to succeed if the cable type of the port is SATA
5005 * and the port implements ->scr_read.
5006 *
5007 * LOCKING:
5008 * None.
5009 *
5010 * RETURNS:
5011 * 0 on success, negative errno on failure.
5012 */
5013int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5014{
5015 if (sata_scr_valid(ap)) {
5016 *val = ap->ops->scr_read(ap, reg);
5017 return 0;
5018 }
5019 return -EOPNOTSUPP;
5020}
5021
5022/**
5023 * sata_scr_write - write SCR register of the specified port
5024 * @ap: ATA port to write SCR for
5025 * @reg: SCR to write
5026 * @val: value to write
5027 *
5028 * Write @val to SCR register @reg of @ap. This function is
5029 * guaranteed to succeed if the cable type of the port is SATA
5030 * and the port implements ->scr_read.
5031 *
5032 * LOCKING:
5033 * None.
5034 *
5035 * RETURNS:
5036 * 0 on success, negative errno on failure.
5037 */
5038int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5039{
5040 if (sata_scr_valid(ap)) {
5041 ap->ops->scr_write(ap, reg, val);
5042 return 0;
5043 }
5044 return -EOPNOTSUPP;
5045}
5046
5047/**
5048 * sata_scr_write_flush - write SCR register of the specified port and flush
5049 * @ap: ATA port to write SCR for
5050 * @reg: SCR to write
5051 * @val: value to write
5052 *
5053 * This function is identical to sata_scr_write() except that this
5054 * function performs flush after writing to the register.
5055 *
5056 * LOCKING:
5057 * None.
5058 *
5059 * RETURNS:
5060 * 0 on success, negative errno on failure.
5061 */
5062int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5063{
5064 if (sata_scr_valid(ap)) {
5065 ap->ops->scr_write(ap, reg, val);
5066 ap->ops->scr_read(ap, reg);
5067 return 0;
5068 }
5069 return -EOPNOTSUPP;
5070}
5071
5072/**
5073 * ata_port_online - test whether the given port is online
5074 * @ap: ATA port to test
5075 *
5076 * Test whether @ap is online. Note that this function returns 0
5077 * if online status of @ap cannot be obtained, so
5078 * ata_port_online(ap) != !ata_port_offline(ap).
5079 *
5080 * LOCKING:
5081 * None.
5082 *
5083 * RETURNS:
5084 * 1 if the port online status is available and online.
5085 */
5086int ata_port_online(struct ata_port *ap)
5087{
5088 u32 sstatus;
5089
5090 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5091 return 1;
5092 return 0;
5093}
5094
5095/**
5096 * ata_port_offline - test whether the given port is offline
5097 * @ap: ATA port to test
5098 *
5099 * Test whether @ap is offline. Note that this function returns
5100 * 0 if offline status of @ap cannot be obtained, so
5101 * ata_port_online(ap) != !ata_port_offline(ap).
5102 *
5103 * LOCKING:
5104 * None.
5105 *
5106 * RETURNS:
5107 * 1 if the port offline status is available and offline.
5108 */
5109int ata_port_offline(struct ata_port *ap)
5110{
5111 u32 sstatus;
5112
5113 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5114 return 1;
5115 return 0;
5116}
0baab86b 5117
77b08fb5 5118int ata_flush_cache(struct ata_device *dev)
9b847548 5119{
977e6b9f 5120 unsigned int err_mask;
9b847548
JA
5121 u8 cmd;
5122
5123 if (!ata_try_flush_cache(dev))
5124 return 0;
5125
5126 if (ata_id_has_flush_ext(dev->id))
5127 cmd = ATA_CMD_FLUSH_EXT;
5128 else
5129 cmd = ATA_CMD_FLUSH;
5130
977e6b9f
TH
5131 err_mask = ata_do_simple_cmd(dev, cmd);
5132 if (err_mask) {
5133 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5134 return -EIO;
5135 }
5136
5137 return 0;
9b847548
JA
5138}
5139
cca3974e
JG
5140static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5141 unsigned int action, unsigned int ehi_flags,
5142 int wait)
500530f6
TH
5143{
5144 unsigned long flags;
5145 int i, rc;
5146
cca3974e
JG
5147 for (i = 0; i < host->n_ports; i++) {
5148 struct ata_port *ap = host->ports[i];
500530f6
TH
5149
5150 /* Previous resume operation might still be in
5151 * progress. Wait for PM_PENDING to clear.
5152 */
5153 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5154 ata_port_wait_eh(ap);
5155 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5156 }
5157
5158 /* request PM ops to EH */
5159 spin_lock_irqsave(ap->lock, flags);
5160
5161 ap->pm_mesg = mesg;
5162 if (wait) {
5163 rc = 0;
5164 ap->pm_result = &rc;
5165 }
5166
5167 ap->pflags |= ATA_PFLAG_PM_PENDING;
5168 ap->eh_info.action |= action;
5169 ap->eh_info.flags |= ehi_flags;
5170
5171 ata_port_schedule_eh(ap);
5172
5173 spin_unlock_irqrestore(ap->lock, flags);
5174
5175 /* wait and check result */
5176 if (wait) {
5177 ata_port_wait_eh(ap);
5178 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5179 if (rc)
5180 return rc;
5181 }
5182 }
5183
5184 return 0;
5185}
5186
5187/**
cca3974e
JG
5188 * ata_host_suspend - suspend host
5189 * @host: host to suspend
500530f6
TH
5190 * @mesg: PM message
5191 *
cca3974e 5192 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5193 * function requests EH to perform PM operations and waits for EH
5194 * to finish.
5195 *
5196 * LOCKING:
5197 * Kernel thread context (may sleep).
5198 *
5199 * RETURNS:
5200 * 0 on success, -errno on failure.
5201 */
cca3974e 5202int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5203{
5204 int i, j, rc;
5205
cca3974e 5206 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5207 if (rc)
5208 goto fail;
5209
5210 /* EH is quiescent now. Fail if we have any ready device.
5211 * This happens if hotplug occurs between completion of device
5212 * suspension and here.
5213 */
cca3974e
JG
5214 for (i = 0; i < host->n_ports; i++) {
5215 struct ata_port *ap = host->ports[i];
500530f6
TH
5216
5217 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5218 struct ata_device *dev = &ap->device[j];
5219
5220 if (ata_dev_ready(dev)) {
5221 ata_port_printk(ap, KERN_WARNING,
5222 "suspend failed, device %d "
5223 "still active\n", dev->devno);
5224 rc = -EBUSY;
5225 goto fail;
5226 }
5227 }
5228 }
5229
cca3974e 5230 host->dev->power.power_state = mesg;
500530f6
TH
5231 return 0;
5232
5233 fail:
cca3974e 5234 ata_host_resume(host);
500530f6
TH
5235 return rc;
5236}
5237
5238/**
cca3974e
JG
5239 * ata_host_resume - resume host
5240 * @host: host to resume
500530f6 5241 *
cca3974e 5242 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5243 * function requests EH to perform PM operations and returns.
5244 * Note that all resume operations are performed parallely.
5245 *
5246 * LOCKING:
5247 * Kernel thread context (may sleep).
5248 */
cca3974e 5249void ata_host_resume(struct ata_host *host)
500530f6 5250{
cca3974e
JG
5251 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5252 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5253 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5254}
5255
c893a3ae
RD
5256/**
5257 * ata_port_start - Set port up for dma.
5258 * @ap: Port to initialize
5259 *
5260 * Called just after data structures for each port are
5261 * initialized. Allocates space for PRD table.
5262 *
5263 * May be used as the port_start() entry in ata_port_operations.
5264 *
5265 * LOCKING:
5266 * Inherited from caller.
5267 */
5268
1da177e4
LT
5269int ata_port_start (struct ata_port *ap)
5270{
2f1f610b 5271 struct device *dev = ap->dev;
6037d6bb 5272 int rc;
1da177e4
LT
5273
5274 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5275 if (!ap->prd)
5276 return -ENOMEM;
5277
6037d6bb
JG
5278 rc = ata_pad_alloc(ap, dev);
5279 if (rc) {
cedc9a47 5280 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5281 return rc;
cedc9a47
JG
5282 }
5283
1da177e4
LT
5284 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5285
5286 return 0;
5287}
5288
0baab86b
EF
5289
5290/**
5291 * ata_port_stop - Undo ata_port_start()
5292 * @ap: Port to shut down
5293 *
5294 * Frees the PRD table.
5295 *
5296 * May be used as the port_stop() entry in ata_port_operations.
5297 *
5298 * LOCKING:
6f0ef4fa 5299 * Inherited from caller.
0baab86b
EF
5300 */
5301
1da177e4
LT
5302void ata_port_stop (struct ata_port *ap)
5303{
2f1f610b 5304 struct device *dev = ap->dev;
1da177e4
LT
5305
5306 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5307 ata_pad_free(ap, dev);
1da177e4
LT
5308}
5309
cca3974e 5310void ata_host_stop (struct ata_host *host)
aa8f0dc6 5311{
cca3974e
JG
5312 if (host->mmio_base)
5313 iounmap(host->mmio_base);
aa8f0dc6
JG
5314}
5315
3ef3b43d
TH
5316/**
5317 * ata_dev_init - Initialize an ata_device structure
5318 * @dev: Device structure to initialize
5319 *
5320 * Initialize @dev in preparation for probing.
5321 *
5322 * LOCKING:
5323 * Inherited from caller.
5324 */
5325void ata_dev_init(struct ata_device *dev)
5326{
5327 struct ata_port *ap = dev->ap;
72fa4b74
TH
5328 unsigned long flags;
5329
5a04bf4b
TH
5330 /* SATA spd limit is bound to the first device */
5331 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5332
72fa4b74
TH
5333 /* High bits of dev->flags are used to record warm plug
5334 * requests which occur asynchronously. Synchronize using
cca3974e 5335 * host lock.
72fa4b74 5336 */
ba6a1308 5337 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5338 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5339 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5340
72fa4b74
TH
5341 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5342 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5343 dev->pio_mask = UINT_MAX;
5344 dev->mwdma_mask = UINT_MAX;
5345 dev->udma_mask = UINT_MAX;
5346}
5347
1da177e4 5348/**
155a8a9c 5349 * ata_port_init - Initialize an ata_port structure
1da177e4 5350 * @ap: Structure to initialize
cca3974e 5351 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5352 * @ent: Probe information provided by low-level driver
5353 * @port_no: Port number associated with this ata_port
5354 *
155a8a9c 5355 * Initialize a new ata_port structure.
0cba632b 5356 *
1da177e4 5357 * LOCKING:
0cba632b 5358 * Inherited from caller.
1da177e4 5359 */
cca3974e 5360void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5361 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5362{
5363 unsigned int i;
5364
cca3974e 5365 ap->lock = &host->lock;
198e0fed 5366 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5367 ap->id = ata_unique_id++;
1da177e4 5368 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5369 ap->host = host;
2f1f610b 5370 ap->dev = ent->dev;
1da177e4 5371 ap->port_no = port_no;
fea63e38
TH
5372 if (port_no == 1 && ent->pinfo2) {
5373 ap->pio_mask = ent->pinfo2->pio_mask;
5374 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5375 ap->udma_mask = ent->pinfo2->udma_mask;
5376 ap->flags |= ent->pinfo2->flags;
5377 ap->ops = ent->pinfo2->port_ops;
5378 } else {
5379 ap->pio_mask = ent->pio_mask;
5380 ap->mwdma_mask = ent->mwdma_mask;
5381 ap->udma_mask = ent->udma_mask;
5382 ap->flags |= ent->port_flags;
5383 ap->ops = ent->port_ops;
5384 }
5a04bf4b 5385 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5386 ap->active_tag = ATA_TAG_POISON;
5387 ap->last_ctl = 0xFF;
bd5d825c
BP
5388
5389#if defined(ATA_VERBOSE_DEBUG)
5390 /* turn on all debugging levels */
5391 ap->msg_enable = 0x00FF;
5392#elif defined(ATA_DEBUG)
5393 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5394#else
0dd4b21f 5395 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5396#endif
1da177e4 5397
86e45b6b 5398 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5399 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5400 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5401 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5402 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5403
838df628
TH
5404 /* set cable type */
5405 ap->cbl = ATA_CBL_NONE;
5406 if (ap->flags & ATA_FLAG_SATA)
5407 ap->cbl = ATA_CBL_SATA;
5408
acf356b1
TH
5409 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5410 struct ata_device *dev = &ap->device[i];
38d87234 5411 dev->ap = ap;
72fa4b74 5412 dev->devno = i;
3ef3b43d 5413 ata_dev_init(dev);
acf356b1 5414 }
1da177e4
LT
5415
5416#ifdef ATA_IRQ_TRAP
5417 ap->stats.unhandled_irq = 1;
5418 ap->stats.idle_irq = 1;
5419#endif
5420
5421 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5422}
5423
155a8a9c 5424/**
4608c160
TH
5425 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5426 * @ap: ATA port to initialize SCSI host for
5427 * @shost: SCSI host associated with @ap
155a8a9c 5428 *
4608c160 5429 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5430 *
5431 * LOCKING:
5432 * Inherited from caller.
5433 */
4608c160 5434static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5435{
cca3974e 5436 ap->scsi_host = shost;
155a8a9c 5437
4608c160
TH
5438 shost->unique_id = ap->id;
5439 shost->max_id = 16;
5440 shost->max_lun = 1;
5441 shost->max_channel = 1;
5442 shost->max_cmd_len = 12;
155a8a9c
BK
5443}
5444
1da177e4 5445/**
996139f1 5446 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5447 * @ent: Information provided by low-level driver
cca3974e 5448 * @host: Collections of ports to which we add
1da177e4
LT
5449 * @port_no: Port number associated with this host
5450 *
0cba632b
JG
5451 * Attach low-level ATA driver to system.
5452 *
1da177e4 5453 * LOCKING:
0cba632b 5454 * PCI/etc. bus probe sem.
1da177e4
LT
5455 *
5456 * RETURNS:
0cba632b 5457 * New ata_port on success, for NULL on error.
1da177e4 5458 */
996139f1 5459static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5460 struct ata_host *host,
1da177e4
LT
5461 unsigned int port_no)
5462{
996139f1 5463 struct Scsi_Host *shost;
1da177e4 5464 struct ata_port *ap;
1da177e4
LT
5465
5466 DPRINTK("ENTER\n");
aec5c3c1 5467
52783c5d 5468 if (!ent->port_ops->error_handler &&
cca3974e 5469 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5470 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5471 port_no);
5472 return NULL;
5473 }
5474
996139f1
JG
5475 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5476 if (!shost)
1da177e4
LT
5477 return NULL;
5478
996139f1 5479 shost->transportt = &ata_scsi_transport_template;
30afc84c 5480
996139f1 5481 ap = ata_shost_to_port(shost);
1da177e4 5482
cca3974e 5483 ata_port_init(ap, host, ent, port_no);
996139f1 5484 ata_port_init_shost(ap, shost);
1da177e4 5485
1da177e4 5486 return ap;
1da177e4
LT
5487}
5488
b03732f0 5489/**
cca3974e
JG
5490 * ata_sas_host_init - Initialize a host struct
5491 * @host: host to initialize
5492 * @dev: device host is attached to
5493 * @flags: host flags
5494 * @ops: port_ops
b03732f0
BK
5495 *
5496 * LOCKING:
5497 * PCI/etc. bus probe sem.
5498 *
5499 */
5500
cca3974e
JG
5501void ata_host_init(struct ata_host *host, struct device *dev,
5502 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5503{
cca3974e
JG
5504 spin_lock_init(&host->lock);
5505 host->dev = dev;
5506 host->flags = flags;
5507 host->ops = ops;
b03732f0
BK
5508}
5509
1da177e4 5510/**
0cba632b
JG
5511 * ata_device_add - Register hardware device with ATA and SCSI layers
5512 * @ent: Probe information describing hardware device to be registered
5513 *
5514 * This function processes the information provided in the probe
5515 * information struct @ent, allocates the necessary ATA and SCSI
5516 * host information structures, initializes them, and registers
5517 * everything with requisite kernel subsystems.
5518 *
5519 * This function requests irqs, probes the ATA bus, and probes
5520 * the SCSI bus.
1da177e4
LT
5521 *
5522 * LOCKING:
0cba632b 5523 * PCI/etc. bus probe sem.
1da177e4
LT
5524 *
5525 * RETURNS:
0cba632b 5526 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5527 */
057ace5e 5528int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5529{
6d0500df 5530 unsigned int i;
1da177e4 5531 struct device *dev = ent->dev;
cca3974e 5532 struct ata_host *host;
39b07ce6 5533 int rc;
1da177e4
LT
5534
5535 DPRINTK("ENTER\n");
02f076aa
AC
5536
5537 if (ent->irq == 0) {
5538 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5539 return 0;
5540 }
1da177e4 5541 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5542 host = kzalloc(sizeof(struct ata_host) +
5543 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5544 if (!host)
1da177e4 5545 return 0;
1da177e4 5546
cca3974e
JG
5547 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5548 host->n_ports = ent->n_ports;
5549 host->irq = ent->irq;
5550 host->irq2 = ent->irq2;
5551 host->mmio_base = ent->mmio_base;
5552 host->private_data = ent->private_data;
1da177e4
LT
5553
5554 /* register each port bound to this device */
cca3974e 5555 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5556 struct ata_port *ap;
5557 unsigned long xfer_mode_mask;
2ec7df04 5558 int irq_line = ent->irq;
1da177e4 5559
cca3974e 5560 ap = ata_port_add(ent, host, i);
c38778c3 5561 host->ports[i] = ap;
1da177e4
LT
5562 if (!ap)
5563 goto err_out;
5564
dd5b06c4
TH
5565 /* dummy? */
5566 if (ent->dummy_port_mask & (1 << i)) {
5567 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5568 ap->ops = &ata_dummy_port_ops;
5569 continue;
5570 }
5571
5572 /* start port */
5573 rc = ap->ops->port_start(ap);
5574 if (rc) {
cca3974e
JG
5575 host->ports[i] = NULL;
5576 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5577 goto err_out;
5578 }
5579
2ec7df04
AC
5580 /* Report the secondary IRQ for second channel legacy */
5581 if (i == 1 && ent->irq2)
5582 irq_line = ent->irq2;
5583
1da177e4
LT
5584 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5585 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5586 (ap->pio_mask << ATA_SHIFT_PIO);
5587
5588 /* print per-port info to dmesg */
f15a1daf 5589 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5590 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5591 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5592 ata_mode_string(xfer_mode_mask),
5593 ap->ioaddr.cmd_addr,
5594 ap->ioaddr.ctl_addr,
5595 ap->ioaddr.bmdma_addr,
2ec7df04 5596 irq_line);
1da177e4
LT
5597
5598 ata_chk_status(ap);
cca3974e 5599 host->ops->irq_clear(ap);
e3180499 5600 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5601 }
5602
2ec7df04 5603 /* obtain irq, that may be shared between channels */
39b07ce6 5604 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5605 DRV_NAME, host);
39b07ce6
JG
5606 if (rc) {
5607 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5608 ent->irq, rc);
1da177e4 5609 goto err_out;
39b07ce6 5610 }
1da177e4 5611
2ec7df04
AC
5612 /* do we have a second IRQ for the other channel, eg legacy mode */
5613 if (ent->irq2) {
5614 /* We will get weird core code crashes later if this is true
5615 so trap it now */
5616 BUG_ON(ent->irq == ent->irq2);
5617
5618 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5619 DRV_NAME, host);
2ec7df04
AC
5620 if (rc) {
5621 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5622 ent->irq2, rc);
5623 goto err_out_free_irq;
5624 }
5625 }
5626
1da177e4
LT
5627 /* perform each probe synchronously */
5628 DPRINTK("probe begin\n");
cca3974e
JG
5629 for (i = 0; i < host->n_ports; i++) {
5630 struct ata_port *ap = host->ports[i];
5a04bf4b 5631 u32 scontrol;
1da177e4
LT
5632 int rc;
5633
5a04bf4b
TH
5634 /* init sata_spd_limit to the current value */
5635 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5636 int spd = (scontrol >> 4) & 0xf;
5637 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5638 }
5639 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5640
cca3974e 5641 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5642 if (rc) {
f15a1daf 5643 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5644 /* FIXME: do something useful here */
5645 /* FIXME: handle unconditional calls to
5646 * scsi_scan_host and ata_host_remove, below,
5647 * at the very least
5648 */
5649 }
3e706399 5650
52783c5d 5651 if (ap->ops->error_handler) {
1cdaf534 5652 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5653 unsigned long flags;
5654
5655 ata_port_probe(ap);
5656
5657 /* kick EH for boot probing */
ba6a1308 5658 spin_lock_irqsave(ap->lock, flags);
3e706399 5659
1cdaf534
TH
5660 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5661 ehi->action |= ATA_EH_SOFTRESET;
5662 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5663
b51e9e5d 5664 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5665 ata_port_schedule_eh(ap);
5666
ba6a1308 5667 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5668
5669 /* wait for EH to finish */
5670 ata_port_wait_eh(ap);
5671 } else {
5672 DPRINTK("ata%u: bus probe begin\n", ap->id);
5673 rc = ata_bus_probe(ap);
5674 DPRINTK("ata%u: bus probe end\n", ap->id);
5675
5676 if (rc) {
5677 /* FIXME: do something useful here?
5678 * Current libata behavior will
5679 * tear down everything when
5680 * the module is removed
5681 * or the h/w is unplugged.
5682 */
5683 }
5684 }
1da177e4
LT
5685 }
5686
5687 /* probes are done, now scan each port's disk(s) */
c893a3ae 5688 DPRINTK("host probe begin\n");
cca3974e
JG
5689 for (i = 0; i < host->n_ports; i++) {
5690 struct ata_port *ap = host->ports[i];
1da177e4 5691
644dd0cc 5692 ata_scsi_scan_host(ap);
1da177e4
LT
5693 }
5694
cca3974e 5695 dev_set_drvdata(dev, host);
1da177e4
LT
5696
5697 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5698 return ent->n_ports; /* success */
5699
2ec7df04 5700err_out_free_irq:
cca3974e 5701 free_irq(ent->irq, host);
1da177e4 5702err_out:
cca3974e
JG
5703 for (i = 0; i < host->n_ports; i++) {
5704 struct ata_port *ap = host->ports[i];
77f3f879
TH
5705 if (ap) {
5706 ap->ops->port_stop(ap);
cca3974e 5707 scsi_host_put(ap->scsi_host);
77f3f879 5708 }
1da177e4 5709 }
6d0500df 5710
cca3974e 5711 kfree(host);
1da177e4
LT
5712 VPRINTK("EXIT, returning 0\n");
5713 return 0;
5714}
5715
720ba126
TH
5716/**
5717 * ata_port_detach - Detach ATA port in prepration of device removal
5718 * @ap: ATA port to be detached
5719 *
5720 * Detach all ATA devices and the associated SCSI devices of @ap;
5721 * then, remove the associated SCSI host. @ap is guaranteed to
5722 * be quiescent on return from this function.
5723 *
5724 * LOCKING:
5725 * Kernel thread context (may sleep).
5726 */
5727void ata_port_detach(struct ata_port *ap)
5728{
5729 unsigned long flags;
5730 int i;
5731
5732 if (!ap->ops->error_handler)
c3cf30a9 5733 goto skip_eh;
720ba126
TH
5734
5735 /* tell EH we're leaving & flush EH */
ba6a1308 5736 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5737 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5738 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5739
5740 ata_port_wait_eh(ap);
5741
5742 /* EH is now guaranteed to see UNLOADING, so no new device
5743 * will be attached. Disable all existing devices.
5744 */
ba6a1308 5745 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5746
5747 for (i = 0; i < ATA_MAX_DEVICES; i++)
5748 ata_dev_disable(&ap->device[i]);
5749
ba6a1308 5750 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5751
5752 /* Final freeze & EH. All in-flight commands are aborted. EH
5753 * will be skipped and retrials will be terminated with bad
5754 * target.
5755 */
ba6a1308 5756 spin_lock_irqsave(ap->lock, flags);
720ba126 5757 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5758 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5759
5760 ata_port_wait_eh(ap);
5761
5762 /* Flush hotplug task. The sequence is similar to
5763 * ata_port_flush_task().
5764 */
5765 flush_workqueue(ata_aux_wq);
5766 cancel_delayed_work(&ap->hotplug_task);
5767 flush_workqueue(ata_aux_wq);
5768
c3cf30a9 5769 skip_eh:
720ba126 5770 /* remove the associated SCSI host */
cca3974e 5771 scsi_remove_host(ap->scsi_host);
720ba126
TH
5772}
5773
17b14451 5774/**
cca3974e
JG
5775 * ata_host_remove - PCI layer callback for device removal
5776 * @host: ATA host set that was removed
17b14451 5777 *
2e9edbf8 5778 * Unregister all objects associated with this host set. Free those
17b14451
AC
5779 * objects.
5780 *
5781 * LOCKING:
5782 * Inherited from calling layer (may sleep).
5783 */
5784
cca3974e 5785void ata_host_remove(struct ata_host *host)
17b14451 5786{
17b14451
AC
5787 unsigned int i;
5788
cca3974e
JG
5789 for (i = 0; i < host->n_ports; i++)
5790 ata_port_detach(host->ports[i]);
17b14451 5791
cca3974e
JG
5792 free_irq(host->irq, host);
5793 if (host->irq2)
5794 free_irq(host->irq2, host);
17b14451 5795
cca3974e
JG
5796 for (i = 0; i < host->n_ports; i++) {
5797 struct ata_port *ap = host->ports[i];
17b14451 5798
cca3974e 5799 ata_scsi_release(ap->scsi_host);
17b14451
AC
5800
5801 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5802 struct ata_ioports *ioaddr = &ap->ioaddr;
5803
2ec7df04
AC
5804 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5805 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5806 release_region(ATA_PRIMARY_CMD, 8);
5807 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5808 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5809 }
5810
cca3974e 5811 scsi_host_put(ap->scsi_host);
17b14451
AC
5812 }
5813
cca3974e
JG
5814 if (host->ops->host_stop)
5815 host->ops->host_stop(host);
17b14451 5816
cca3974e 5817 kfree(host);
17b14451
AC
5818}
5819
1da177e4
LT
5820/**
5821 * ata_scsi_release - SCSI layer callback hook for host unload
4f931374 5822 * @shost: libata host to be unloaded
1da177e4
LT
5823 *
5824 * Performs all duties necessary to shut down a libata port...
5825 * Kill port kthread, disable port, and release resources.
5826 *
5827 * LOCKING:
5828 * Inherited from SCSI layer.
5829 *
5830 * RETURNS:
5831 * One.
5832 */
5833
cca3974e 5834int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 5835{
cca3974e 5836 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
5837
5838 DPRINTK("ENTER\n");
5839
5840 ap->ops->port_disable(ap);
6543bc07 5841 ap->ops->port_stop(ap);
1da177e4
LT
5842
5843 DPRINTK("EXIT\n");
5844 return 1;
5845}
5846
f6d950e2
BK
5847struct ata_probe_ent *
5848ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5849{
5850 struct ata_probe_ent *probe_ent;
5851
5852 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5853 if (!probe_ent) {
5854 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5855 kobject_name(&(dev->kobj)));
5856 return NULL;
5857 }
5858
5859 INIT_LIST_HEAD(&probe_ent->node);
5860 probe_ent->dev = dev;
5861
5862 probe_ent->sht = port->sht;
cca3974e 5863 probe_ent->port_flags = port->flags;
f6d950e2
BK
5864 probe_ent->pio_mask = port->pio_mask;
5865 probe_ent->mwdma_mask = port->mwdma_mask;
5866 probe_ent->udma_mask = port->udma_mask;
5867 probe_ent->port_ops = port->port_ops;
d639ca94 5868 probe_ent->private_data = port->private_data;
f6d950e2
BK
5869
5870 return probe_ent;
5871}
5872
1da177e4
LT
5873/**
5874 * ata_std_ports - initialize ioaddr with standard port offsets.
5875 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5876 *
5877 * Utility function which initializes data_addr, error_addr,
5878 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5879 * device_addr, status_addr, and command_addr to standard offsets
5880 * relative to cmd_addr.
5881 *
5882 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5883 */
0baab86b 5884
1da177e4
LT
5885void ata_std_ports(struct ata_ioports *ioaddr)
5886{
5887 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5888 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5889 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5890 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5891 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5892 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5893 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5894 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5895 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5896 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5897}
5898
0baab86b 5899
374b1873
JG
5900#ifdef CONFIG_PCI
5901
cca3974e 5902void ata_pci_host_stop (struct ata_host *host)
374b1873 5903{
cca3974e 5904 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 5905
cca3974e 5906 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
5907}
5908
1da177e4
LT
5909/**
5910 * ata_pci_remove_one - PCI layer callback for device removal
5911 * @pdev: PCI device that was removed
5912 *
5913 * PCI layer indicates to libata via this hook that
6f0ef4fa 5914 * hot-unplug or module unload event has occurred.
1da177e4
LT
5915 * Handle this by unregistering all objects associated
5916 * with this PCI device. Free those objects. Then finally
5917 * release PCI resources and disable device.
5918 *
5919 * LOCKING:
5920 * Inherited from PCI layer (may sleep).
5921 */
5922
5923void ata_pci_remove_one (struct pci_dev *pdev)
5924{
5925 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 5926 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5927
cca3974e 5928 ata_host_remove(host);
f0eb62b8 5929
1da177e4
LT
5930 pci_release_regions(pdev);
5931 pci_disable_device(pdev);
5932 dev_set_drvdata(dev, NULL);
5933}
5934
5935/* move to PCI subsystem */
057ace5e 5936int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5937{
5938 unsigned long tmp = 0;
5939
5940 switch (bits->width) {
5941 case 1: {
5942 u8 tmp8 = 0;
5943 pci_read_config_byte(pdev, bits->reg, &tmp8);
5944 tmp = tmp8;
5945 break;
5946 }
5947 case 2: {
5948 u16 tmp16 = 0;
5949 pci_read_config_word(pdev, bits->reg, &tmp16);
5950 tmp = tmp16;
5951 break;
5952 }
5953 case 4: {
5954 u32 tmp32 = 0;
5955 pci_read_config_dword(pdev, bits->reg, &tmp32);
5956 tmp = tmp32;
5957 break;
5958 }
5959
5960 default:
5961 return -EINVAL;
5962 }
5963
5964 tmp &= bits->mask;
5965
5966 return (tmp == bits->val) ? 1 : 0;
5967}
9b847548 5968
3c5100c1 5969void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5970{
5971 pci_save_state(pdev);
500530f6 5972
3c5100c1 5973 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
5974 pci_disable_device(pdev);
5975 pci_set_power_state(pdev, PCI_D3hot);
5976 }
9b847548
JA
5977}
5978
500530f6 5979void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5980{
5981 pci_set_power_state(pdev, PCI_D0);
5982 pci_restore_state(pdev);
5983 pci_enable_device(pdev);
5984 pci_set_master(pdev);
500530f6
TH
5985}
5986
3c5100c1 5987int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 5988{
cca3974e 5989 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5990 int rc = 0;
5991
cca3974e 5992 rc = ata_host_suspend(host, mesg);
500530f6
TH
5993 if (rc)
5994 return rc;
5995
3c5100c1 5996 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5997
5998 return 0;
5999}
6000
6001int ata_pci_device_resume(struct pci_dev *pdev)
6002{
cca3974e 6003 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6004
6005 ata_pci_device_do_resume(pdev);
cca3974e 6006 ata_host_resume(host);
9b847548
JA
6007 return 0;
6008}
1da177e4
LT
6009#endif /* CONFIG_PCI */
6010
6011
1da177e4
LT
6012static int __init ata_init(void)
6013{
a8601e5f 6014 ata_probe_timeout *= HZ;
1da177e4
LT
6015 ata_wq = create_workqueue("ata");
6016 if (!ata_wq)
6017 return -ENOMEM;
6018
453b07ac
TH
6019 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6020 if (!ata_aux_wq) {
6021 destroy_workqueue(ata_wq);
6022 return -ENOMEM;
6023 }
6024
1da177e4
LT
6025 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6026 return 0;
6027}
6028
6029static void __exit ata_exit(void)
6030{
6031 destroy_workqueue(ata_wq);
453b07ac 6032 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6033}
6034
a4625085 6035subsys_initcall(ata_init);
1da177e4
LT
6036module_exit(ata_exit);
6037
67846b30 6038static unsigned long ratelimit_time;
34af946a 6039static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6040
6041int ata_ratelimit(void)
6042{
6043 int rc;
6044 unsigned long flags;
6045
6046 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6047
6048 if (time_after(jiffies, ratelimit_time)) {
6049 rc = 1;
6050 ratelimit_time = jiffies + (HZ/5);
6051 } else
6052 rc = 0;
6053
6054 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6055
6056 return rc;
6057}
6058
c22daff4
TH
6059/**
6060 * ata_wait_register - wait until register value changes
6061 * @reg: IO-mapped register
6062 * @mask: Mask to apply to read register value
6063 * @val: Wait condition
6064 * @interval_msec: polling interval in milliseconds
6065 * @timeout_msec: timeout in milliseconds
6066 *
6067 * Waiting for some bits of register to change is a common
6068 * operation for ATA controllers. This function reads 32bit LE
6069 * IO-mapped register @reg and tests for the following condition.
6070 *
6071 * (*@reg & mask) != val
6072 *
6073 * If the condition is met, it returns; otherwise, the process is
6074 * repeated after @interval_msec until timeout.
6075 *
6076 * LOCKING:
6077 * Kernel thread context (may sleep)
6078 *
6079 * RETURNS:
6080 * The final register value.
6081 */
6082u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6083 unsigned long interval_msec,
6084 unsigned long timeout_msec)
6085{
6086 unsigned long timeout;
6087 u32 tmp;
6088
6089 tmp = ioread32(reg);
6090
6091 /* Calculate timeout _after_ the first read to make sure
6092 * preceding writes reach the controller before starting to
6093 * eat away the timeout.
6094 */
6095 timeout = jiffies + (timeout_msec * HZ) / 1000;
6096
6097 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6098 msleep(interval_msec);
6099 tmp = ioread32(reg);
6100 }
6101
6102 return tmp;
6103}
6104
dd5b06c4
TH
6105/*
6106 * Dummy port_ops
6107 */
6108static void ata_dummy_noret(struct ata_port *ap) { }
6109static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6110static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6111
6112static u8 ata_dummy_check_status(struct ata_port *ap)
6113{
6114 return ATA_DRDY;
6115}
6116
6117static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6118{
6119 return AC_ERR_SYSTEM;
6120}
6121
6122const struct ata_port_operations ata_dummy_port_ops = {
6123 .port_disable = ata_port_disable,
6124 .check_status = ata_dummy_check_status,
6125 .check_altstatus = ata_dummy_check_status,
6126 .dev_select = ata_noop_dev_select,
6127 .qc_prep = ata_noop_qc_prep,
6128 .qc_issue = ata_dummy_qc_issue,
6129 .freeze = ata_dummy_noret,
6130 .thaw = ata_dummy_noret,
6131 .error_handler = ata_dummy_noret,
6132 .post_internal_cmd = ata_dummy_qc_noret,
6133 .irq_clear = ata_dummy_noret,
6134 .port_start = ata_dummy_ret0,
6135 .port_stop = ata_dummy_noret,
6136};
6137
1da177e4
LT
6138/*
6139 * libata is essentially a library of internal helper functions for
6140 * low-level ATA host controller drivers. As such, the API/ABI is
6141 * likely to change as new drivers are added and updated.
6142 * Do not depend on ABI/API stability.
6143 */
6144
e9c83914
TH
6145EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6146EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6147EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6148EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6149EXPORT_SYMBOL_GPL(ata_std_bios_param);
6150EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6151EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6152EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6153EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6154EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6155EXPORT_SYMBOL_GPL(ata_sg_init);
6156EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6157EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6158EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6159EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6160EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6161EXPORT_SYMBOL_GPL(ata_tf_load);
6162EXPORT_SYMBOL_GPL(ata_tf_read);
6163EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6164EXPORT_SYMBOL_GPL(ata_std_dev_select);
6165EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6166EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6167EXPORT_SYMBOL_GPL(ata_check_status);
6168EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6169EXPORT_SYMBOL_GPL(ata_exec_command);
6170EXPORT_SYMBOL_GPL(ata_port_start);
6171EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6172EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6173EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6174EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6175EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6176EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6177EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6178EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6179EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6180EXPORT_SYMBOL_GPL(ata_bmdma_start);
6181EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6182EXPORT_SYMBOL_GPL(ata_bmdma_status);
6183EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6184EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6185EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6186EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6187EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6188EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6189EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6190EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6191EXPORT_SYMBOL_GPL(sata_phy_debounce);
6192EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6193EXPORT_SYMBOL_GPL(sata_phy_reset);
6194EXPORT_SYMBOL_GPL(__sata_phy_reset);
6195EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6196EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6197EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6198EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6199EXPORT_SYMBOL_GPL(sata_std_hardreset);
6200EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6201EXPORT_SYMBOL_GPL(ata_dev_classify);
6202EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6203EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6204EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6205EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6206EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6207EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6208EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6209EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6210EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6211EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6212EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6213EXPORT_SYMBOL_GPL(ata_scsi_release);
6214EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6215EXPORT_SYMBOL_GPL(sata_scr_valid);
6216EXPORT_SYMBOL_GPL(sata_scr_read);
6217EXPORT_SYMBOL_GPL(sata_scr_write);
6218EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6219EXPORT_SYMBOL_GPL(ata_port_online);
6220EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6221EXPORT_SYMBOL_GPL(ata_host_suspend);
6222EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6223EXPORT_SYMBOL_GPL(ata_id_string);
6224EXPORT_SYMBOL_GPL(ata_id_c_string);
6919a0a6 6225EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6226EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6227
1bc4ccff 6228EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6229EXPORT_SYMBOL_GPL(ata_timing_compute);
6230EXPORT_SYMBOL_GPL(ata_timing_merge);
6231
1da177e4
LT
6232#ifdef CONFIG_PCI
6233EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6234EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6235EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6236EXPORT_SYMBOL_GPL(ata_pci_init_one);
6237EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6238EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6239EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6240EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6241EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6242EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6243EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6244#endif /* CONFIG_PCI */
9b847548 6245
9b847548
JA
6246EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6247EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6248
ece1d636 6249EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6250EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6251EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6252EXPORT_SYMBOL_GPL(ata_port_freeze);
6253EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6254EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6255EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6256EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6257EXPORT_SYMBOL_GPL(ata_do_eh);