]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/ata/libata-core.c
libata: don't whine on spurious IRQ
[mirror_ubuntu-artful-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
029cfd6b 77const struct ata_port_operations ata_base_port_ops = {
0aa1113d 78 .prereset = ata_std_prereset,
203c75b8 79 .postreset = ata_std_postreset,
a1efdaba 80 .error_handler = ata_std_error_handler,
029cfd6b
TH
81};
82
83const struct ata_port_operations sata_port_ops = {
84 .inherits = &ata_base_port_ops,
85
86 .qc_defer = ata_std_qc_defer,
57c9efdf 87 .hardreset = sata_std_hardreset,
029cfd6b
TH
88};
89
3373efd8
TH
90static unsigned int ata_dev_init_params(struct ata_device *dev,
91 u16 heads, u16 sectors);
92static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
93static unsigned int ata_dev_set_feature(struct ata_device *dev,
94 u8 enable, u8 feature);
3373efd8 95static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 96static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 97
f3187195 98unsigned int ata_print_id = 1;
1da177e4
LT
99static struct workqueue_struct *ata_wq;
100
453b07ac
TH
101struct workqueue_struct *ata_aux_wq;
102
33267325
TH
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
05944bdf 110 unsigned int lflags;
33267325
TH
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
2486fa56 127static int atapi_enabled = 1;
1623c81e 128module_param(atapi_enabled, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 130
c5c61bda 131static int atapi_dmadir = 0;
95de719a 132module_param(atapi_dmadir, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 134
baf4fdfa
ML
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 138
c3c013a2
JG
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 142
2dcb407e 143static int ata_ignore_hpa;
1e999736
AC
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
b3a70601
AC
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
87fbc5a0 151static int ata_probe_timeout;
a8601e5f
AM
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
6ebe9d86 155int libata_noacpi = 0;
d7d0dad6 156module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 158
ae8d4ee7
AC
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 162
1da177e4
LT
163MODULE_AUTHOR("Jeff Garzik");
164MODULE_DESCRIPTION("Library module for ATA devices");
165MODULE_LICENSE("GPL");
166MODULE_VERSION(DRV_VERSION);
167
0baab86b 168
9913ff8a
TH
169static bool ata_sstatus_online(u32 sstatus)
170{
171 return (sstatus & 0xf) == 0x3;
172}
173
1eca4365
TH
174/**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
aadffb68 182 *
1eca4365
TH
183 * RETURNS:
184 * Pointer to the next link.
aadffb68 185 */
1eca4365
TH
186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
aadffb68 188{
1eca4365
TH
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
aadffb68 192 /* NULL link indicates start of iteration */
1eca4365
TH
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
aadffb68 203
1eca4365
TH
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
b1c72916 213 return ap->slave_link;
1eca4365
TH
214 /* fall through */
215 case ATA_LITER_EDGE:
aadffb68 216 return NULL;
b1c72916 217 }
aadffb68 218
b1c72916
TH
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
1eca4365 223 /* we were over a PMP link */
aadffb68
TH
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
1eca4365
TH
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
aadffb68
TH
230 return NULL;
231}
232
1eca4365
TH
233/**
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
238 *
239 * LOCKING:
240 * Host lock or EH context.
241 *
242 * RETURNS:
243 * Pointer to the next device.
244 */
245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
247{
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
262 }
263
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
277 }
278
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
284}
285
b1c72916
TH
286/**
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
289 *
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
293 *
294 * LOCKING:
295 * Don't care.
296 *
297 * RETURNS:
298 * Pointer to the found physical link.
299 */
300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301{
302 struct ata_port *ap = dev->link->ap;
303
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
309}
310
33267325
TH
311/**
312 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 313 * @ap: ATA port of interest
33267325
TH
314 *
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
320 *
321 * LOCKING:
322 * EH context.
323 */
324void ata_force_cbl(struct ata_port *ap)
325{
326 int i;
327
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
333
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
336
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342}
343
344/**
05944bdf 345 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
346 * @link: ATA link of interest
347 *
05944bdf
TH
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
33267325
TH
356 *
357 * LOCKING:
358 * EH context.
359 */
05944bdf 360static void ata_force_link_limits(struct ata_link *link)
33267325 361{
05944bdf 362 bool did_spd = false;
b1c72916
TH
363 int linkno = link->pmp;
364 int i;
33267325
TH
365
366 if (ata_is_host_link(link))
b1c72916 367 linkno += 15;
33267325
TH
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
05944bdf
TH
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
385 }
33267325 386
05944bdf
TH
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
393 }
33267325
TH
394 }
395}
396
397/**
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
400 *
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
404 *
405 * LOCKING:
406 * EH context.
407 */
408static void ata_force_xfermask(struct ata_device *dev)
409{
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
413
b1c72916
TH
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
33267325
TH
417
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
421
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
424
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
428
429 if (!fe->param.xfer_mask)
430 continue;
431
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
443 }
444
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
448 }
449}
450
451/**
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
454 *
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
458 *
459 * LOCKING:
460 * EH context.
461 */
462static void ata_force_horkage(struct ata_device *dev)
463{
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
467
b1c72916
TH
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
33267325
TH
471
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
474
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
477
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
481
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
485
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
488
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
491 }
492}
493
436d34b3
TH
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
e52dcc48
TH
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
436d34b3
TH
527 default:
528 return ATAPI_MISC;
529 }
530}
531
1da177e4
LT
532/**
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
1da177e4 535 * @pmp: Port multiplier port
9977126c
TH
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
1da177e4
LT
538 *
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
541 *
542 * LOCKING:
543 * Inherited from caller.
544 */
9977126c 545void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 546{
9977126c
TH
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551
1da177e4
LT
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
554
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
559
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
564
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
569
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
574}
575
576/**
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
580 *
e12a1be6 581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
582 *
583 * LOCKING:
584 * Inherited from caller.
585 */
586
057ace5e 587void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
588{
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
591
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
596
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
600
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
603}
604
8cbd6df1
AL
605static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
611 0,
612 0,
613 0,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 0,
8cbd6df1
AL
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
9a3dccc4
TH
628 ATA_CMD_WRITE_EXT,
629 0,
630 0,
631 0,
632 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 633};
1da177e4
LT
634
635/**
8cbd6df1 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
1da177e4 639 *
2e9edbf8 640 * Examine the device configuration and tf->flags to calculate
8cbd6df1 641 * the proper read/write commands and protocol to use.
1da177e4
LT
642 *
643 * LOCKING:
644 * caller.
645 */
bd056d7e 646static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 647{
9a3dccc4 648 u8 cmd;
1da177e4 649
9a3dccc4 650 int index, fua, lba48, write;
2e9edbf8 651
9a3dccc4 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 655
8cbd6df1
AL
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
9a3dccc4 658 index = dev->multi_count ? 0 : 8;
9af5c9c9 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
0565c26d 662 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
663 } else {
664 tf->protocol = ATA_PROT_DMA;
9a3dccc4 665 index = 16;
8cbd6df1 666 }
1da177e4 667
9a3dccc4
TH
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
672 }
673 return -1;
1da177e4
LT
674}
675
35b649fe
TH
676/**
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
680 *
681 * LOCKING:
682 * None.
683 *
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
687 *
688 * RETURNS:
689 * Block address read from @tf.
690 */
691u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692{
693 u64 block = 0;
694
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
44901a96 699 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
700 } else
701 block |= (tf->device & 0xf) << 24;
702
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
708
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
712
ac8672ea
TH
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
717 }
718
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
720 }
721
722 return block;
723}
724
bd056d7e
TH
725/**
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
733 *
734 * LOCKING:
735 * None.
736 *
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
739 *
740 * RETURNS:
741 *
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
744 */
745int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
748{
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
751
6d1245bf 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
756
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
764
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
768
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
775
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
cb95d562
TH
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
7dc951ae
TH
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
cb95d562
TH
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
c0489e4e
TH
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
881 */
7dc951ae
TH
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
cb95d562 893static const struct ata_xfer_ent {
be9a50c8 894 int shift, bits;
cb95d562
TH
895 u8 base;
896} ata_xfer_tbl[] = {
70cd071e
TH
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
70cd071e 914 * Matching XFER_* value, 0xff if no match found.
cb95d562 915 */
7dc951ae 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
70cd071e 924 return 0xff;
cb95d562
TH
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
7dc951ae 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
cb95d562
TH
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
7dc951ae 962int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
1da177e4 972/**
1da7b0d0
TH
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
975 *
976 * Determine string which represents the highest speed
1da7b0d0 977 * (highest bit in @modemask).
1da177e4
LT
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
1da7b0d0 984 * @mode_mask, or the constant C string "<n/a>".
1da177e4 985 */
7dc951ae 986const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 987{
75f554bc
TH
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
b352e57d
AC
994 "PIO5",
995 "PIO6",
75f554bc
TH
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
b352e57d
AC
999 "MWDMA3",
1000 "MWDMA4",
75f554bc
TH
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1da7b0d0 1010 int highbit;
1da177e4 1011
1da7b0d0
TH
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1da177e4 1015 return "<n/a>";
1da177e4
LT
1016}
1017
4c360c81
TH
1018static const char *sata_spd_string(unsigned int spd)
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
8522ee25 1023 "6.0 Gbps",
4c360c81
TH
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
ca77329f
KCA
1031static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1032{
1033 struct ata_link *link = dev->link;
1034 struct ata_port *ap = link->ap;
1035 u32 scontrol;
1036 unsigned int err_mask;
1037 int rc;
1038
1039 /*
1040 * disallow DIPM for drivers which haven't set
1041 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1042 * phy ready will be set in the interrupt status on
1043 * state changes, which will cause some drivers to
1044 * think there are errors - additionally drivers will
1045 * need to disable hot plug.
1046 */
1047 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1048 ap->pm_policy = NOT_AVAILABLE;
1049 return -EINVAL;
1050 }
1051
1052 /*
1053 * For DIPM, we will only enable it for the
1054 * min_power setting.
1055 *
1056 * Why? Because Disks are too stupid to know that
1057 * If the host rejects a request to go to SLUMBER
1058 * they should retry at PARTIAL, and instead it
1059 * just would give up. So, for medium_power to
1060 * work at all, we need to only allow HIPM.
1061 */
1062 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1063 if (rc)
1064 return rc;
1065
1066 switch (policy) {
1067 case MIN_POWER:
1068 /* no restrictions on IPM transitions */
1069 scontrol &= ~(0x3 << 8);
1070 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1071 if (rc)
1072 return rc;
1073
1074 /* enable DIPM */
1075 if (dev->flags & ATA_DFLAG_DIPM)
1076 err_mask = ata_dev_set_feature(dev,
1077 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1078 break;
1079 case MEDIUM_POWER:
1080 /* allow IPM to PARTIAL */
1081 scontrol &= ~(0x1 << 8);
1082 scontrol |= (0x2 << 8);
1083 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1084 if (rc)
1085 return rc;
1086
f5456b63
KCA
1087 /*
1088 * we don't have to disable DIPM since IPM flags
1089 * disallow transitions to SLUMBER, which effectively
1090 * disable DIPM if it does not support PARTIAL
1091 */
ca77329f
KCA
1092 break;
1093 case NOT_AVAILABLE:
1094 case MAX_PERFORMANCE:
1095 /* disable all IPM transitions */
1096 scontrol |= (0x3 << 8);
1097 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1098 if (rc)
1099 return rc;
1100
f5456b63
KCA
1101 /*
1102 * we don't have to disable DIPM since IPM flags
1103 * disallow all transitions which effectively
1104 * disable DIPM anyway.
1105 */
ca77329f
KCA
1106 break;
1107 }
1108
1109 /* FIXME: handle SET FEATURES failure */
1110 (void) err_mask;
1111
1112 return 0;
1113}
1114
1115/**
1116 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1117 * @dev: device to enable power management
1118 * @policy: the link power management policy
ca77329f
KCA
1119 *
1120 * Enable SATA Interface power management. This will enable
1121 * Device Interface Power Management (DIPM) for min_power
1122 * policy, and then call driver specific callbacks for
1123 * enabling Host Initiated Power management.
1124 *
1125 * Locking: Caller.
1126 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 */
1128void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1129{
1130 int rc = 0;
1131 struct ata_port *ap = dev->link->ap;
1132
1133 /* set HIPM first, then DIPM */
1134 if (ap->ops->enable_pm)
1135 rc = ap->ops->enable_pm(ap, policy);
1136 if (rc)
1137 goto enable_pm_out;
1138 rc = ata_dev_set_dipm(dev, policy);
1139
1140enable_pm_out:
1141 if (rc)
1142 ap->pm_policy = MAX_PERFORMANCE;
1143 else
1144 ap->pm_policy = policy;
1145 return /* rc */; /* hopefully we can use 'rc' eventually */
1146}
1147
1992a5ed 1148#ifdef CONFIG_PM
ca77329f
KCA
1149/**
1150 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1151 * @dev: device to disable power management
ca77329f
KCA
1152 *
1153 * Disable SATA Interface power management. This will disable
1154 * Device Interface Power Management (DIPM) without changing
1155 * policy, call driver specific callbacks for disabling Host
1156 * Initiated Power management.
1157 *
1158 * Locking: Caller.
1159 * Returns: void
1160 */
1161static void ata_dev_disable_pm(struct ata_device *dev)
1162{
1163 struct ata_port *ap = dev->link->ap;
1164
1165 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1166 if (ap->ops->disable_pm)
1167 ap->ops->disable_pm(ap);
1168}
1992a5ed 1169#endif /* CONFIG_PM */
ca77329f
KCA
1170
1171void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1172{
1173 ap->pm_policy = policy;
3ec25ebd 1174 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1175 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1176 ata_port_schedule_eh(ap);
1177}
1178
1992a5ed 1179#ifdef CONFIG_PM
ca77329f
KCA
1180static void ata_lpm_enable(struct ata_host *host)
1181{
1182 struct ata_link *link;
1183 struct ata_port *ap;
1184 struct ata_device *dev;
1185 int i;
1186
1187 for (i = 0; i < host->n_ports; i++) {
1188 ap = host->ports[i];
1eca4365
TH
1189 ata_for_each_link(link, ap, EDGE) {
1190 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1191 ata_dev_disable_pm(dev);
1192 }
1193 }
1194}
1195
1196static void ata_lpm_disable(struct ata_host *host)
1197{
1198 int i;
1199
1200 for (i = 0; i < host->n_ports; i++) {
1201 struct ata_port *ap = host->ports[i];
1202 ata_lpm_schedule(ap, ap->pm_policy);
1203 }
1204}
1992a5ed 1205#endif /* CONFIG_PM */
ca77329f 1206
1da177e4
LT
1207/**
1208 * ata_dev_classify - determine device type based on ATA-spec signature
1209 * @tf: ATA taskfile register set for device to be identified
1210 *
1211 * Determine from taskfile register contents whether a device is
1212 * ATA or ATAPI, as per "Signature and persistence" section
1213 * of ATA/PI spec (volume 1, sect 5.14).
1214 *
1215 * LOCKING:
1216 * None.
1217 *
1218 * RETURNS:
633273a3
TH
1219 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1220 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1221 */
057ace5e 1222unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1223{
1224 /* Apple's open source Darwin code hints that some devices only
1225 * put a proper signature into the LBA mid/high registers,
1226 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1227 *
1228 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1229 * signatures for ATA and ATAPI devices attached on SerialATA,
1230 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1231 * spec has never mentioned about using different signatures
1232 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1233 * Multiplier specification began to use 0x69/0x96 to identify
1234 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1235 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1236 * 0x69/0x96 shortly and described them as reserved for
1237 * SerialATA.
1238 *
1239 * We follow the current spec and consider that 0x69/0x96
1240 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1241 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1242 * SEMB signature. This is worked around in
1243 * ata_dev_read_id().
1da177e4 1244 */
633273a3 1245 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1246 DPRINTK("found ATA device by sig\n");
1247 return ATA_DEV_ATA;
1248 }
1249
633273a3 1250 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1251 DPRINTK("found ATAPI device by sig\n");
1252 return ATA_DEV_ATAPI;
1253 }
1254
633273a3
TH
1255 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1256 DPRINTK("found PMP device by sig\n");
1257 return ATA_DEV_PMP;
1258 }
1259
1260 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1261 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1262 return ATA_DEV_SEMB;
633273a3
TH
1263 }
1264
1da177e4
LT
1265 DPRINTK("unknown device\n");
1266 return ATA_DEV_UNKNOWN;
1267}
1268
1da177e4 1269/**
6a62a04d 1270 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1271 * @id: IDENTIFY DEVICE results we will examine
1272 * @s: string into which data is output
1273 * @ofs: offset into identify device page
1274 * @len: length of string to return. must be an even number.
1275 *
1276 * The strings in the IDENTIFY DEVICE page are broken up into
1277 * 16-bit chunks. Run through the string, and output each
1278 * 8-bit chunk linearly, regardless of platform.
1279 *
1280 * LOCKING:
1281 * caller.
1282 */
1283
6a62a04d
TH
1284void ata_id_string(const u16 *id, unsigned char *s,
1285 unsigned int ofs, unsigned int len)
1da177e4
LT
1286{
1287 unsigned int c;
1288
963e4975
AC
1289 BUG_ON(len & 1);
1290
1da177e4
LT
1291 while (len > 0) {
1292 c = id[ofs] >> 8;
1293 *s = c;
1294 s++;
1295
1296 c = id[ofs] & 0xff;
1297 *s = c;
1298 s++;
1299
1300 ofs++;
1301 len -= 2;
1302 }
1303}
1304
0e949ff3 1305/**
6a62a04d 1306 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1307 * @id: IDENTIFY DEVICE results we will examine
1308 * @s: string into which data is output
1309 * @ofs: offset into identify device page
1310 * @len: length of string to return. must be an odd number.
1311 *
6a62a04d 1312 * This function is identical to ata_id_string except that it
0e949ff3
TH
1313 * trims trailing spaces and terminates the resulting string with
1314 * null. @len must be actual maximum length (even number) + 1.
1315 *
1316 * LOCKING:
1317 * caller.
1318 */
6a62a04d
TH
1319void ata_id_c_string(const u16 *id, unsigned char *s,
1320 unsigned int ofs, unsigned int len)
0e949ff3
TH
1321{
1322 unsigned char *p;
1323
6a62a04d 1324 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1325
1326 p = s + strnlen(s, len - 1);
1327 while (p > s && p[-1] == ' ')
1328 p--;
1329 *p = '\0';
1330}
0baab86b 1331
db6f8759
TH
1332static u64 ata_id_n_sectors(const u16 *id)
1333{
1334 if (ata_id_has_lba(id)) {
1335 if (ata_id_has_lba48(id))
968e594a 1336 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1337 else
968e594a 1338 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1339 } else {
1340 if (ata_id_current_chs_valid(id))
968e594a
RH
1341 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1342 id[ATA_ID_CUR_SECTORS];
db6f8759 1343 else
968e594a
RH
1344 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1345 id[ATA_ID_SECTORS];
db6f8759
TH
1346 }
1347}
1348
a5987e0a 1349u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1350{
1351 u64 sectors = 0;
1352
1353 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1354 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1355 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1356 sectors |= (tf->lbah & 0xff) << 16;
1357 sectors |= (tf->lbam & 0xff) << 8;
1358 sectors |= (tf->lbal & 0xff);
1359
a5987e0a 1360 return sectors;
1e999736
AC
1361}
1362
a5987e0a 1363u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1364{
1365 u64 sectors = 0;
1366
1367 sectors |= (tf->device & 0x0f) << 24;
1368 sectors |= (tf->lbah & 0xff) << 16;
1369 sectors |= (tf->lbam & 0xff) << 8;
1370 sectors |= (tf->lbal & 0xff);
1371
a5987e0a 1372 return sectors;
1e999736
AC
1373}
1374
1375/**
c728a914
TH
1376 * ata_read_native_max_address - Read native max address
1377 * @dev: target device
1378 * @max_sectors: out parameter for the result native max address
1e999736 1379 *
c728a914
TH
1380 * Perform an LBA48 or LBA28 native size query upon the device in
1381 * question.
1e999736 1382 *
c728a914
TH
1383 * RETURNS:
1384 * 0 on success, -EACCES if command is aborted by the drive.
1385 * -EIO on other errors.
1e999736 1386 */
c728a914 1387static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1388{
c728a914 1389 unsigned int err_mask;
1e999736 1390 struct ata_taskfile tf;
c728a914 1391 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1392
1393 ata_tf_init(dev, &tf);
1394
c728a914 1395 /* always clear all address registers */
1e999736 1396 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1397
c728a914
TH
1398 if (lba48) {
1399 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1400 tf.flags |= ATA_TFLAG_LBA48;
1401 } else
1402 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1403
1e999736 1404 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1405 tf.device |= ATA_LBA;
1406
2b789108 1407 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1408 if (err_mask) {
1409 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1410 "max address (err_mask=0x%x)\n", err_mask);
1411 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1412 return -EACCES;
1413 return -EIO;
1414 }
1e999736 1415
c728a914 1416 if (lba48)
a5987e0a 1417 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1418 else
a5987e0a 1419 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1420 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1421 (*max_sectors)--;
c728a914 1422 return 0;
1e999736
AC
1423}
1424
1425/**
c728a914
TH
1426 * ata_set_max_sectors - Set max sectors
1427 * @dev: target device
6b38d1d1 1428 * @new_sectors: new max sectors value to set for the device
1e999736 1429 *
c728a914
TH
1430 * Set max sectors of @dev to @new_sectors.
1431 *
1432 * RETURNS:
1433 * 0 on success, -EACCES if command is aborted or denied (due to
1434 * previous non-volatile SET_MAX) by the drive. -EIO on other
1435 * errors.
1e999736 1436 */
05027adc 1437static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1438{
c728a914 1439 unsigned int err_mask;
1e999736 1440 struct ata_taskfile tf;
c728a914 1441 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1442
1443 new_sectors--;
1444
1445 ata_tf_init(dev, &tf);
1446
1e999736 1447 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1448
1449 if (lba48) {
1450 tf.command = ATA_CMD_SET_MAX_EXT;
1451 tf.flags |= ATA_TFLAG_LBA48;
1452
1453 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1454 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1455 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1456 } else {
c728a914
TH
1457 tf.command = ATA_CMD_SET_MAX;
1458
1e582ba4
TH
1459 tf.device |= (new_sectors >> 24) & 0xf;
1460 }
1461
1e999736 1462 tf.protocol |= ATA_PROT_NODATA;
c728a914 1463 tf.device |= ATA_LBA;
1e999736
AC
1464
1465 tf.lbal = (new_sectors >> 0) & 0xff;
1466 tf.lbam = (new_sectors >> 8) & 0xff;
1467 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1468
2b789108 1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1470 if (err_mask) {
1471 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1472 "max address (err_mask=0x%x)\n", err_mask);
1473 if (err_mask == AC_ERR_DEV &&
1474 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1475 return -EACCES;
1476 return -EIO;
1477 }
1478
c728a914 1479 return 0;
1e999736
AC
1480}
1481
1482/**
1483 * ata_hpa_resize - Resize a device with an HPA set
1484 * @dev: Device to resize
1485 *
1486 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1487 * it if required to the full size of the media. The caller must check
1488 * the drive has the HPA feature set enabled.
05027adc
TH
1489 *
1490 * RETURNS:
1491 * 0 on success, -errno on failure.
1e999736 1492 */
05027adc 1493static int ata_hpa_resize(struct ata_device *dev)
1e999736 1494{
05027adc
TH
1495 struct ata_eh_context *ehc = &dev->link->eh_context;
1496 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1497 u64 sectors = ata_id_n_sectors(dev->id);
1498 u64 native_sectors;
c728a914 1499 int rc;
a617c09f 1500
05027adc
TH
1501 /* do we need to do it? */
1502 if (dev->class != ATA_DEV_ATA ||
1503 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1504 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1505 return 0;
1e999736 1506
05027adc
TH
1507 /* read native max address */
1508 rc = ata_read_native_max_address(dev, &native_sectors);
1509 if (rc) {
dda7aba1
TH
1510 /* If device aborted the command or HPA isn't going to
1511 * be unlocked, skip HPA resizing.
05027adc 1512 */
dda7aba1 1513 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1514 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1515 "broken, skipping HPA handling\n");
05027adc
TH
1516 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1517
1518 /* we can continue if device aborted the command */
1519 if (rc == -EACCES)
1520 rc = 0;
1e999736 1521 }
37301a55 1522
05027adc
TH
1523 return rc;
1524 }
5920dadf 1525 dev->n_native_sectors = native_sectors;
05027adc
TH
1526
1527 /* nothing to do? */
1528 if (native_sectors <= sectors || !ata_ignore_hpa) {
1529 if (!print_info || native_sectors == sectors)
1530 return 0;
1531
1532 if (native_sectors > sectors)
1533 ata_dev_printk(dev, KERN_INFO,
1534 "HPA detected: current %llu, native %llu\n",
1535 (unsigned long long)sectors,
1536 (unsigned long long)native_sectors);
1537 else if (native_sectors < sectors)
1538 ata_dev_printk(dev, KERN_WARNING,
1539 "native sectors (%llu) is smaller than "
1540 "sectors (%llu)\n",
1541 (unsigned long long)native_sectors,
1542 (unsigned long long)sectors);
1543 return 0;
1544 }
1545
1546 /* let's unlock HPA */
1547 rc = ata_set_max_sectors(dev, native_sectors);
1548 if (rc == -EACCES) {
1549 /* if device aborted the command, skip HPA resizing */
1550 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1551 "(%llu -> %llu), skipping HPA handling\n",
1552 (unsigned long long)sectors,
1553 (unsigned long long)native_sectors);
1554 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1555 return 0;
1556 } else if (rc)
1557 return rc;
1558
1559 /* re-read IDENTIFY data */
1560 rc = ata_dev_reread_id(dev, 0);
1561 if (rc) {
1562 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1563 "data after HPA resizing\n");
1564 return rc;
1565 }
1566
1567 if (print_info) {
1568 u64 new_sectors = ata_id_n_sectors(dev->id);
1569 ata_dev_printk(dev, KERN_INFO,
1570 "HPA unlocked: %llu -> %llu, native %llu\n",
1571 (unsigned long long)sectors,
1572 (unsigned long long)new_sectors,
1573 (unsigned long long)native_sectors);
1574 }
1575
1576 return 0;
1e999736
AC
1577}
1578
1da177e4
LT
1579/**
1580 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1581 * @id: IDENTIFY DEVICE page to dump
1da177e4 1582 *
0bd3300a
TH
1583 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1584 * page.
1da177e4
LT
1585 *
1586 * LOCKING:
1587 * caller.
1588 */
1589
0bd3300a 1590static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1591{
1592 DPRINTK("49==0x%04x "
1593 "53==0x%04x "
1594 "63==0x%04x "
1595 "64==0x%04x "
1596 "75==0x%04x \n",
0bd3300a
TH
1597 id[49],
1598 id[53],
1599 id[63],
1600 id[64],
1601 id[75]);
1da177e4
LT
1602 DPRINTK("80==0x%04x "
1603 "81==0x%04x "
1604 "82==0x%04x "
1605 "83==0x%04x "
1606 "84==0x%04x \n",
0bd3300a
TH
1607 id[80],
1608 id[81],
1609 id[82],
1610 id[83],
1611 id[84]);
1da177e4
LT
1612 DPRINTK("88==0x%04x "
1613 "93==0x%04x\n",
0bd3300a
TH
1614 id[88],
1615 id[93]);
1da177e4
LT
1616}
1617
cb95d562
TH
1618/**
1619 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1620 * @id: IDENTIFY data to compute xfer mask from
1621 *
1622 * Compute the xfermask for this device. This is not as trivial
1623 * as it seems if we must consider early devices correctly.
1624 *
1625 * FIXME: pre IDE drive timing (do we care ?).
1626 *
1627 * LOCKING:
1628 * None.
1629 *
1630 * RETURNS:
1631 * Computed xfermask
1632 */
7dc951ae 1633unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1634{
7dc951ae 1635 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1636
1637 /* Usual case. Word 53 indicates word 64 is valid */
1638 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1639 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1640 pio_mask <<= 3;
1641 pio_mask |= 0x7;
1642 } else {
1643 /* If word 64 isn't valid then Word 51 high byte holds
1644 * the PIO timing number for the maximum. Turn it into
1645 * a mask.
1646 */
7a0f1c8a 1647 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1648 if (mode < 5) /* Valid PIO range */
2dcb407e 1649 pio_mask = (2 << mode) - 1;
46767aeb
AC
1650 else
1651 pio_mask = 1;
cb95d562
TH
1652
1653 /* But wait.. there's more. Design your standards by
1654 * committee and you too can get a free iordy field to
1655 * process. However its the speeds not the modes that
1656 * are supported... Note drivers using the timing API
1657 * will get this right anyway
1658 */
1659 }
1660
1661 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1662
b352e57d
AC
1663 if (ata_id_is_cfa(id)) {
1664 /*
1665 * Process compact flash extended modes
1666 */
62afe5d7
SS
1667 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1668 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1669
1670 if (pio)
1671 pio_mask |= (1 << 5);
1672 if (pio > 1)
1673 pio_mask |= (1 << 6);
1674 if (dma)
1675 mwdma_mask |= (1 << 3);
1676 if (dma > 1)
1677 mwdma_mask |= (1 << 4);
1678 }
1679
fb21f0d0
TH
1680 udma_mask = 0;
1681 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1682 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1683
1684 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1685}
1686
86e45b6b 1687/**
442eacc3 1688 * ata_pio_queue_task - Queue port_task
86e45b6b 1689 * @ap: The ata_port to queue port_task for
65f27f38 1690 * @data: data for @fn to use
341c2c95 1691 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1692 *
1693 * Schedule @fn(@data) for execution after @delay jiffies using
1694 * port_task. There is one port_task per port and it's the
1695 * user(low level driver)'s responsibility to make sure that only
1696 * one task is active at any given time.
1697 *
1698 * libata core layer takes care of synchronization between
442eacc3 1699 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1700 * synchronization.
1701 *
1702 * LOCKING:
1703 * Inherited from caller.
1704 */
624d5c51 1705void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1706{
65f27f38 1707 ap->port_task_data = data;
86e45b6b 1708
45a66c1c 1709 /* may fail if ata_port_flush_task() in progress */
341c2c95 1710 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1711}
1712
1713/**
1714 * ata_port_flush_task - Flush port_task
1715 * @ap: The ata_port to flush port_task for
1716 *
1717 * After this function completes, port_task is guranteed not to
1718 * be running or scheduled.
1719 *
1720 * LOCKING:
1721 * Kernel thread context (may sleep)
1722 */
1723void ata_port_flush_task(struct ata_port *ap)
1724{
86e45b6b
TH
1725 DPRINTK("ENTER\n");
1726
45a66c1c 1727 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1728
0dd4b21f 1729 if (ata_msg_ctl(ap))
7f5e4e8d 1730 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1731}
1732
7102d230 1733static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1734{
77853bf2 1735 struct completion *waiting = qc->private_data;
a2a7a662 1736
a2a7a662 1737 complete(waiting);
a2a7a662
TH
1738}
1739
1740/**
2432697b 1741 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1742 * @dev: Device to which the command is sent
1743 * @tf: Taskfile registers for the command and the result
d69cf37d 1744 * @cdb: CDB for packet command
a2a7a662 1745 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1746 * @sgl: sg list for the data buffer of the command
2432697b 1747 * @n_elem: Number of sg entries
2b789108 1748 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1749 *
1750 * Executes libata internal command with timeout. @tf contains
1751 * command on entry and result on return. Timeout and error
1752 * conditions are reported via return value. No recovery action
1753 * is taken after a command times out. It's caller's duty to
1754 * clean up after timeout.
1755 *
1756 * LOCKING:
1757 * None. Should be called with kernel context, might sleep.
551e8889
TH
1758 *
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1761 */
2432697b
TH
1762unsigned ata_exec_internal_sg(struct ata_device *dev,
1763 struct ata_taskfile *tf, const u8 *cdb,
87260216 1764 int dma_dir, struct scatterlist *sgl,
2b789108 1765 unsigned int n_elem, unsigned long timeout)
a2a7a662 1766{
9af5c9c9
TH
1767 struct ata_link *link = dev->link;
1768 struct ata_port *ap = link->ap;
a2a7a662 1769 u8 command = tf->command;
87fbc5a0 1770 int auto_timeout = 0;
a2a7a662 1771 struct ata_queued_cmd *qc;
2ab7db1f 1772 unsigned int tag, preempted_tag;
dedaf2b0 1773 u32 preempted_sactive, preempted_qc_active;
da917d69 1774 int preempted_nr_active_links;
60be6b9a 1775 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1776 unsigned long flags;
77853bf2 1777 unsigned int err_mask;
d95a717f 1778 int rc;
a2a7a662 1779
ba6a1308 1780 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1781
e3180499 1782 /* no internal command while frozen */
b51e9e5d 1783 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1784 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1785 return AC_ERR_SYSTEM;
1786 }
1787
2ab7db1f 1788 /* initialize internal qc */
a2a7a662 1789
2ab7db1f
TH
1790 /* XXX: Tag 0 is used for drivers with legacy EH as some
1791 * drivers choke if any other tag is given. This breaks
1792 * ata_tag_internal() test for those drivers. Don't use new
1793 * EH stuff without converting to it.
1794 */
1795 if (ap->ops->error_handler)
1796 tag = ATA_TAG_INTERNAL;
1797 else
1798 tag = 0;
1799
8a8bc223
TH
1800 if (test_and_set_bit(tag, &ap->qc_allocated))
1801 BUG();
f69499f4 1802 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1803
1804 qc->tag = tag;
1805 qc->scsicmd = NULL;
1806 qc->ap = ap;
1807 qc->dev = dev;
1808 ata_qc_reinit(qc);
1809
9af5c9c9
TH
1810 preempted_tag = link->active_tag;
1811 preempted_sactive = link->sactive;
dedaf2b0 1812 preempted_qc_active = ap->qc_active;
da917d69 1813 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1814 link->active_tag = ATA_TAG_POISON;
1815 link->sactive = 0;
dedaf2b0 1816 ap->qc_active = 0;
da917d69 1817 ap->nr_active_links = 0;
2ab7db1f
TH
1818
1819 /* prepare & issue qc */
a2a7a662 1820 qc->tf = *tf;
d69cf37d
TH
1821 if (cdb)
1822 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1823 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1824 qc->dma_dir = dma_dir;
1825 if (dma_dir != DMA_NONE) {
2432697b 1826 unsigned int i, buflen = 0;
87260216 1827 struct scatterlist *sg;
2432697b 1828
87260216
JA
1829 for_each_sg(sgl, sg, n_elem, i)
1830 buflen += sg->length;
2432697b 1831
87260216 1832 ata_sg_init(qc, sgl, n_elem);
49c80429 1833 qc->nbytes = buflen;
a2a7a662
TH
1834 }
1835
77853bf2 1836 qc->private_data = &wait;
a2a7a662
TH
1837 qc->complete_fn = ata_qc_complete_internal;
1838
8e0e694a 1839 ata_qc_issue(qc);
a2a7a662 1840
ba6a1308 1841 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1842
87fbc5a0
TH
1843 if (!timeout) {
1844 if (ata_probe_timeout)
1845 timeout = ata_probe_timeout * 1000;
1846 else {
1847 timeout = ata_internal_cmd_timeout(dev, command);
1848 auto_timeout = 1;
1849 }
1850 }
2b789108
TH
1851
1852 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1853
1854 ata_port_flush_task(ap);
41ade50c 1855
d95a717f 1856 if (!rc) {
ba6a1308 1857 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1858
1859 /* We're racing with irq here. If we lose, the
1860 * following test prevents us from completing the qc
d95a717f
TH
1861 * twice. If we win, the port is frozen and will be
1862 * cleaned up by ->post_internal_cmd().
a2a7a662 1863 */
77853bf2 1864 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1865 qc->err_mask |= AC_ERR_TIMEOUT;
1866
1867 if (ap->ops->error_handler)
1868 ata_port_freeze(ap);
1869 else
1870 ata_qc_complete(qc);
f15a1daf 1871
0dd4b21f
BP
1872 if (ata_msg_warn(ap))
1873 ata_dev_printk(dev, KERN_WARNING,
88574551 1874 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1875 }
1876
ba6a1308 1877 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1878 }
1879
d95a717f
TH
1880 /* do post_internal_cmd */
1881 if (ap->ops->post_internal_cmd)
1882 ap->ops->post_internal_cmd(qc);
1883
a51d644a
TH
1884 /* perform minimal error analysis */
1885 if (qc->flags & ATA_QCFLAG_FAILED) {
1886 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1887 qc->err_mask |= AC_ERR_DEV;
1888
1889 if (!qc->err_mask)
1890 qc->err_mask |= AC_ERR_OTHER;
1891
1892 if (qc->err_mask & ~AC_ERR_OTHER)
1893 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1894 }
1895
15869303 1896 /* finish up */
ba6a1308 1897 spin_lock_irqsave(ap->lock, flags);
15869303 1898
e61e0672 1899 *tf = qc->result_tf;
77853bf2
TH
1900 err_mask = qc->err_mask;
1901
1902 ata_qc_free(qc);
9af5c9c9
TH
1903 link->active_tag = preempted_tag;
1904 link->sactive = preempted_sactive;
dedaf2b0 1905 ap->qc_active = preempted_qc_active;
da917d69 1906 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1907
1f7dd3e9
TH
1908 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1909 * Until those drivers are fixed, we detect the condition
1910 * here, fail the command with AC_ERR_SYSTEM and reenable the
1911 * port.
1912 *
1913 * Note that this doesn't change any behavior as internal
1914 * command failure results in disabling the device in the
1915 * higher layer for LLDDs without new reset/EH callbacks.
1916 *
1917 * Kill the following code as soon as those drivers are fixed.
1918 */
198e0fed 1919 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1920 err_mask |= AC_ERR_SYSTEM;
1921 ata_port_probe(ap);
1922 }
1923
ba6a1308 1924 spin_unlock_irqrestore(ap->lock, flags);
15869303 1925
87fbc5a0
TH
1926 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1927 ata_internal_cmd_timed_out(dev, command);
1928
77853bf2 1929 return err_mask;
a2a7a662
TH
1930}
1931
2432697b 1932/**
33480a0e 1933 * ata_exec_internal - execute libata internal command
2432697b
TH
1934 * @dev: Device to which the command is sent
1935 * @tf: Taskfile registers for the command and the result
1936 * @cdb: CDB for packet command
1937 * @dma_dir: Data tranfer direction of the command
1938 * @buf: Data buffer of the command
1939 * @buflen: Length of data buffer
2b789108 1940 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1941 *
1942 * Wrapper around ata_exec_internal_sg() which takes simple
1943 * buffer instead of sg list.
1944 *
1945 * LOCKING:
1946 * None. Should be called with kernel context, might sleep.
1947 *
1948 * RETURNS:
1949 * Zero on success, AC_ERR_* mask on failure
1950 */
1951unsigned ata_exec_internal(struct ata_device *dev,
1952 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1953 int dma_dir, void *buf, unsigned int buflen,
1954 unsigned long timeout)
2432697b 1955{
33480a0e
TH
1956 struct scatterlist *psg = NULL, sg;
1957 unsigned int n_elem = 0;
2432697b 1958
33480a0e
TH
1959 if (dma_dir != DMA_NONE) {
1960 WARN_ON(!buf);
1961 sg_init_one(&sg, buf, buflen);
1962 psg = &sg;
1963 n_elem++;
1964 }
2432697b 1965
2b789108
TH
1966 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1967 timeout);
2432697b
TH
1968}
1969
977e6b9f
TH
1970/**
1971 * ata_do_simple_cmd - execute simple internal command
1972 * @dev: Device to which the command is sent
1973 * @cmd: Opcode to execute
1974 *
1975 * Execute a 'simple' command, that only consists of the opcode
1976 * 'cmd' itself, without filling any other registers
1977 *
1978 * LOCKING:
1979 * Kernel thread context (may sleep).
1980 *
1981 * RETURNS:
1982 * Zero on success, AC_ERR_* mask on failure
e58eb583 1983 */
77b08fb5 1984unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1985{
1986 struct ata_taskfile tf;
e58eb583
TH
1987
1988 ata_tf_init(dev, &tf);
1989
1990 tf.command = cmd;
1991 tf.flags |= ATA_TFLAG_DEVICE;
1992 tf.protocol = ATA_PROT_NODATA;
1993
2b789108 1994 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1995}
1996
1bc4ccff
AC
1997/**
1998 * ata_pio_need_iordy - check if iordy needed
1999 * @adev: ATA device
2000 *
2001 * Check if the current speed of the device requires IORDY. Used
2002 * by various controllers for chip configuration.
2003 */
1bc4ccff
AC
2004unsigned int ata_pio_need_iordy(const struct ata_device *adev)
2005{
0d9e6659
TH
2006 /* Don't set IORDY if we're preparing for reset. IORDY may
2007 * lead to controller lock up on certain controllers if the
2008 * port is not occupied. See bko#11703 for details.
2009 */
2010 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2011 return 0;
2012 /* Controller doesn't support IORDY. Probably a pointless
2013 * check as the caller should know this.
2014 */
9af5c9c9 2015 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 2016 return 0;
5c18c4d2
DD
2017 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2018 if (ata_id_is_cfa(adev->id)
2019 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2020 return 0;
432729f0
AC
2021 /* PIO3 and higher it is mandatory */
2022 if (adev->pio_mode > XFER_PIO_2)
2023 return 1;
2024 /* We turn it on when possible */
2025 if (ata_id_has_iordy(adev->id))
1bc4ccff 2026 return 1;
432729f0
AC
2027 return 0;
2028}
2e9edbf8 2029
432729f0
AC
2030/**
2031 * ata_pio_mask_no_iordy - Return the non IORDY mask
2032 * @adev: ATA device
2033 *
2034 * Compute the highest mode possible if we are not using iordy. Return
2035 * -1 if no iordy mode is available.
2036 */
432729f0
AC
2037static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2038{
1bc4ccff 2039 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2040 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2041 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2042 /* Is the speed faster than the drive allows non IORDY ? */
2043 if (pio) {
2044 /* This is cycle times not frequency - watch the logic! */
2045 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2046 return 3 << ATA_SHIFT_PIO;
2047 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2048 }
2049 }
432729f0 2050 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2051}
2052
963e4975
AC
2053/**
2054 * ata_do_dev_read_id - default ID read method
2055 * @dev: device
2056 * @tf: proposed taskfile
2057 * @id: data buffer
2058 *
2059 * Issue the identify taskfile and hand back the buffer containing
2060 * identify data. For some RAID controllers and for pre ATA devices
2061 * this function is wrapped or replaced by the driver
2062 */
2063unsigned int ata_do_dev_read_id(struct ata_device *dev,
2064 struct ata_taskfile *tf, u16 *id)
2065{
2066 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2067 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2068}
2069
1da177e4 2070/**
49016aca 2071 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2072 * @dev: target device
2073 * @p_class: pointer to class of the target device (may be changed)
bff04647 2074 * @flags: ATA_READID_* flags
fe635c7e 2075 * @id: buffer to read IDENTIFY data into
1da177e4 2076 *
49016aca
TH
2077 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2078 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2079 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2080 * for pre-ATA4 drives.
1da177e4 2081 *
50a99018 2082 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2083 * now we abort if we hit that case.
50a99018 2084 *
1da177e4 2085 * LOCKING:
49016aca
TH
2086 * Kernel thread context (may sleep)
2087 *
2088 * RETURNS:
2089 * 0 on success, -errno otherwise.
1da177e4 2090 */
a9beec95 2091int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2092 unsigned int flags, u16 *id)
1da177e4 2093{
9af5c9c9 2094 struct ata_port *ap = dev->link->ap;
49016aca 2095 unsigned int class = *p_class;
a0123703 2096 struct ata_taskfile tf;
49016aca
TH
2097 unsigned int err_mask = 0;
2098 const char *reason;
79b42bab 2099 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2100 int may_fallback = 1, tried_spinup = 0;
49016aca 2101 int rc;
1da177e4 2102
0dd4b21f 2103 if (ata_msg_ctl(ap))
7f5e4e8d 2104 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2105
963e4975 2106retry:
3373efd8 2107 ata_tf_init(dev, &tf);
a0123703 2108
49016aca 2109 switch (class) {
79b42bab
TH
2110 case ATA_DEV_SEMB:
2111 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2112 case ATA_DEV_ATA:
a0123703 2113 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2114 break;
2115 case ATA_DEV_ATAPI:
a0123703 2116 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2117 break;
2118 default:
2119 rc = -ENODEV;
2120 reason = "unsupported class";
2121 goto err_out;
1da177e4
LT
2122 }
2123
a0123703 2124 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2125
2126 /* Some devices choke if TF registers contain garbage. Make
2127 * sure those are properly initialized.
2128 */
2129 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2130
2131 /* Device presence detection is unreliable on some
2132 * controllers. Always poll IDENTIFY if available.
2133 */
2134 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2135
963e4975
AC
2136 if (ap->ops->read_id)
2137 err_mask = ap->ops->read_id(dev, &tf, id);
2138 else
2139 err_mask = ata_do_dev_read_id(dev, &tf, id);
2140
a0123703 2141 if (err_mask) {
800b3996 2142 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2143 ata_dev_printk(dev, KERN_DEBUG,
2144 "NODEV after polling detection\n");
55a8e2c8
TH
2145 return -ENOENT;
2146 }
2147
79b42bab
TH
2148 if (is_semb) {
2149 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2150 "device w/ SEMB sig, disabled\n");
2151 /* SEMB is not supported yet */
2152 *p_class = ATA_DEV_SEMB_UNSUP;
2153 return 0;
2154 }
2155
1ffc151f
TH
2156 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2157 /* Device or controller might have reported
2158 * the wrong device class. Give a shot at the
2159 * other IDENTIFY if the current one is
2160 * aborted by the device.
2161 */
2162 if (may_fallback) {
2163 may_fallback = 0;
2164
2165 if (class == ATA_DEV_ATA)
2166 class = ATA_DEV_ATAPI;
2167 else
2168 class = ATA_DEV_ATA;
2169 goto retry;
2170 }
2171
2172 /* Control reaches here iff the device aborted
2173 * both flavors of IDENTIFYs which happens
2174 * sometimes with phantom devices.
2175 */
2176 ata_dev_printk(dev, KERN_DEBUG,
2177 "both IDENTIFYs aborted, assuming NODEV\n");
2178 return -ENOENT;
54936f8b
TH
2179 }
2180
49016aca
TH
2181 rc = -EIO;
2182 reason = "I/O error";
1da177e4
LT
2183 goto err_out;
2184 }
2185
54936f8b
TH
2186 /* Falling back doesn't make sense if ID data was read
2187 * successfully at least once.
2188 */
2189 may_fallback = 0;
2190
49016aca 2191 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2192
49016aca 2193 /* sanity check */
a4f5749b 2194 rc = -EINVAL;
6070068b 2195 reason = "device reports invalid type";
a4f5749b
TH
2196
2197 if (class == ATA_DEV_ATA) {
2198 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2199 goto err_out;
2200 } else {
2201 if (ata_id_is_ata(id))
2202 goto err_out;
49016aca
TH
2203 }
2204
169439c2
ML
2205 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2206 tried_spinup = 1;
2207 /*
2208 * Drive powered-up in standby mode, and requires a specific
2209 * SET_FEATURES spin-up subcommand before it will accept
2210 * anything other than the original IDENTIFY command.
2211 */
218f3d30 2212 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2213 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2214 rc = -EIO;
2215 reason = "SPINUP failed";
2216 goto err_out;
2217 }
2218 /*
2219 * If the drive initially returned incomplete IDENTIFY info,
2220 * we now must reissue the IDENTIFY command.
2221 */
2222 if (id[2] == 0x37c8)
2223 goto retry;
2224 }
2225
bff04647 2226 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2227 /*
2228 * The exact sequence expected by certain pre-ATA4 drives is:
2229 * SRST RESET
50a99018
AC
2230 * IDENTIFY (optional in early ATA)
2231 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2232 * anything else..
2233 * Some drives were very specific about that exact sequence.
50a99018
AC
2234 *
2235 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2236 * should never trigger.
49016aca
TH
2237 */
2238 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2239 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2240 if (err_mask) {
2241 rc = -EIO;
2242 reason = "INIT_DEV_PARAMS failed";
2243 goto err_out;
2244 }
2245
2246 /* current CHS translation info (id[53-58]) might be
2247 * changed. reread the identify device info.
2248 */
bff04647 2249 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2250 goto retry;
2251 }
2252 }
2253
2254 *p_class = class;
fe635c7e 2255
49016aca
TH
2256 return 0;
2257
2258 err_out:
88574551 2259 if (ata_msg_warn(ap))
0dd4b21f 2260 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2261 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2262 return rc;
2263}
2264
9062712f
TH
2265static int ata_do_link_spd_horkage(struct ata_device *dev)
2266{
2267 struct ata_link *plink = ata_dev_phys_link(dev);
2268 u32 target, target_limit;
2269
2270 if (!sata_scr_valid(plink))
2271 return 0;
2272
2273 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2274 target = 1;
2275 else
2276 return 0;
2277
2278 target_limit = (1 << target) - 1;
2279
2280 /* if already on stricter limit, no need to push further */
2281 if (plink->sata_spd_limit <= target_limit)
2282 return 0;
2283
2284 plink->sata_spd_limit = target_limit;
2285
2286 /* Request another EH round by returning -EAGAIN if link is
2287 * going faster than the target speed. Forward progress is
2288 * guaranteed by setting sata_spd_limit to target_limit above.
2289 */
2290 if (plink->sata_spd > target) {
2291 ata_dev_printk(dev, KERN_INFO,
2292 "applying link speed limit horkage to %s\n",
2293 sata_spd_string(target));
2294 return -EAGAIN;
2295 }
2296 return 0;
2297}
2298
3373efd8 2299static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2300{
9af5c9c9 2301 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2302
2303 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2304 return 0;
2305
9af5c9c9 2306 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2307}
2308
388539f3 2309static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2310 char *desc, size_t desc_sz)
2311{
9af5c9c9 2312 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2313 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2314 unsigned int err_mask;
2315 char *aa_desc = "";
a6e6ce8e
TH
2316
2317 if (!ata_id_has_ncq(dev->id)) {
2318 desc[0] = '\0';
388539f3 2319 return 0;
a6e6ce8e 2320 }
75683fe7 2321 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2322 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2323 return 0;
6919a0a6 2324 }
a6e6ce8e 2325 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2326 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2327 dev->flags |= ATA_DFLAG_NCQ;
2328 }
2329
388539f3
SL
2330 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2331 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2332 ata_id_has_fpdma_aa(dev->id)) {
2333 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2334 SATA_FPDMA_AA);
2335 if (err_mask) {
2336 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2337 "(error_mask=0x%x)\n", err_mask);
2338 if (err_mask != AC_ERR_DEV) {
2339 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2340 return -EIO;
2341 }
2342 } else
2343 aa_desc = ", AA";
2344 }
2345
a6e6ce8e 2346 if (hdepth >= ddepth)
388539f3 2347 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2348 else
388539f3
SL
2349 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2350 ddepth, aa_desc);
2351 return 0;
a6e6ce8e
TH
2352}
2353
49016aca 2354/**
ffeae418 2355 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2356 * @dev: Target device to configure
2357 *
2358 * Configure @dev according to @dev->id. Generic and low-level
2359 * driver specific fixups are also applied.
49016aca
TH
2360 *
2361 * LOCKING:
ffeae418
TH
2362 * Kernel thread context (may sleep)
2363 *
2364 * RETURNS:
2365 * 0 on success, -errno otherwise
49016aca 2366 */
efdaedc4 2367int ata_dev_configure(struct ata_device *dev)
49016aca 2368{
9af5c9c9
TH
2369 struct ata_port *ap = dev->link->ap;
2370 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2371 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2372 const u16 *id = dev->id;
7dc951ae 2373 unsigned long xfer_mask;
b352e57d 2374 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2375 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2376 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2377 int rc;
49016aca 2378
0dd4b21f 2379 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2380 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2381 __func__);
ffeae418 2382 return 0;
49016aca
TH
2383 }
2384
0dd4b21f 2385 if (ata_msg_probe(ap))
7f5e4e8d 2386 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2387
75683fe7
TH
2388 /* set horkage */
2389 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2390 ata_force_horkage(dev);
75683fe7 2391
50af2fa1
TH
2392 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2393 ata_dev_printk(dev, KERN_INFO,
2394 "unsupported device, disabling\n");
2395 ata_dev_disable(dev);
2396 return 0;
2397 }
2398
2486fa56
TH
2399 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2400 dev->class == ATA_DEV_ATAPI) {
2401 ata_dev_printk(dev, KERN_WARNING,
2402 "WARNING: ATAPI is %s, device ignored.\n",
2403 atapi_enabled ? "not supported with this driver"
2404 : "disabled");
2405 ata_dev_disable(dev);
2406 return 0;
2407 }
2408
9062712f
TH
2409 rc = ata_do_link_spd_horkage(dev);
2410 if (rc)
2411 return rc;
2412
6746544c
TH
2413 /* let ACPI work its magic */
2414 rc = ata_acpi_on_devcfg(dev);
2415 if (rc)
2416 return rc;
08573a86 2417
05027adc
TH
2418 /* massage HPA, do it early as it might change IDENTIFY data */
2419 rc = ata_hpa_resize(dev);
2420 if (rc)
2421 return rc;
2422
c39f5ebe 2423 /* print device capabilities */
0dd4b21f 2424 if (ata_msg_probe(ap))
88574551
TH
2425 ata_dev_printk(dev, KERN_DEBUG,
2426 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2427 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2428 __func__,
f15a1daf
TH
2429 id[49], id[82], id[83], id[84],
2430 id[85], id[86], id[87], id[88]);
c39f5ebe 2431
208a9933 2432 /* initialize to-be-configured parameters */
ea1dd4e1 2433 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2434 dev->max_sectors = 0;
2435 dev->cdb_len = 0;
2436 dev->n_sectors = 0;
2437 dev->cylinders = 0;
2438 dev->heads = 0;
2439 dev->sectors = 0;
e18086d6 2440 dev->multi_count = 0;
208a9933 2441
1da177e4
LT
2442 /*
2443 * common ATA, ATAPI feature tests
2444 */
2445
ff8854b2 2446 /* find max transfer mode; for printk only */
1148c3a7 2447 xfer_mask = ata_id_xfermask(id);
1da177e4 2448
0dd4b21f
BP
2449 if (ata_msg_probe(ap))
2450 ata_dump_id(id);
1da177e4 2451
ef143d57
AL
2452 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2453 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2454 sizeof(fwrevbuf));
2455
2456 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2457 sizeof(modelbuf));
2458
1da177e4
LT
2459 /* ATA-specific feature tests */
2460 if (dev->class == ATA_DEV_ATA) {
b352e57d 2461 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2462 /* CPRM may make this media unusable */
2463 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2464 ata_dev_printk(dev, KERN_WARNING,
2465 "supports DRM functions and may "
2466 "not be fully accessable.\n");
b352e57d 2467 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2468 } else {
2dcb407e 2469 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2470 /* Warn the user if the device has TPM extensions */
2471 if (ata_id_has_tpm(id))
2472 ata_dev_printk(dev, KERN_WARNING,
2473 "supports DRM functions and may "
2474 "not be fully accessable.\n");
2475 }
b352e57d 2476
1148c3a7 2477 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2478
e18086d6
ML
2479 /* get current R/W Multiple count setting */
2480 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2481 unsigned int max = dev->id[47] & 0xff;
2482 unsigned int cnt = dev->id[59] & 0xff;
2483 /* only recognize/allow powers of two here */
2484 if (is_power_of_2(max) && is_power_of_2(cnt))
2485 if (cnt <= max)
2486 dev->multi_count = cnt;
2487 }
3f64f565 2488
1148c3a7 2489 if (ata_id_has_lba(id)) {
4c2d721a 2490 const char *lba_desc;
388539f3 2491 char ncq_desc[24];
8bf62ece 2492
4c2d721a
TH
2493 lba_desc = "LBA";
2494 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2495 if (ata_id_has_lba48(id)) {
8bf62ece 2496 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2497 lba_desc = "LBA48";
6fc49adb
TH
2498
2499 if (dev->n_sectors >= (1UL << 28) &&
2500 ata_id_has_flush_ext(id))
2501 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2502 }
8bf62ece 2503
a6e6ce8e 2504 /* config NCQ */
388539f3
SL
2505 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2506 if (rc)
2507 return rc;
a6e6ce8e 2508
8bf62ece 2509 /* print device info to dmesg */
3f64f565
EM
2510 if (ata_msg_drv(ap) && print_info) {
2511 ata_dev_printk(dev, KERN_INFO,
2512 "%s: %s, %s, max %s\n",
2513 revbuf, modelbuf, fwrevbuf,
2514 ata_mode_string(xfer_mask));
2515 ata_dev_printk(dev, KERN_INFO,
2516 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2517 (unsigned long long)dev->n_sectors,
3f64f565
EM
2518 dev->multi_count, lba_desc, ncq_desc);
2519 }
ffeae418 2520 } else {
8bf62ece
AL
2521 /* CHS */
2522
2523 /* Default translation */
1148c3a7
TH
2524 dev->cylinders = id[1];
2525 dev->heads = id[3];
2526 dev->sectors = id[6];
8bf62ece 2527
1148c3a7 2528 if (ata_id_current_chs_valid(id)) {
8bf62ece 2529 /* Current CHS translation is valid. */
1148c3a7
TH
2530 dev->cylinders = id[54];
2531 dev->heads = id[55];
2532 dev->sectors = id[56];
8bf62ece
AL
2533 }
2534
2535 /* print device info to dmesg */
3f64f565 2536 if (ata_msg_drv(ap) && print_info) {
88574551 2537 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2538 "%s: %s, %s, max %s\n",
2539 revbuf, modelbuf, fwrevbuf,
2540 ata_mode_string(xfer_mask));
a84471fe 2541 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2542 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2543 (unsigned long long)dev->n_sectors,
2544 dev->multi_count, dev->cylinders,
2545 dev->heads, dev->sectors);
2546 }
07f6f7d0
AL
2547 }
2548
6e7846e9 2549 dev->cdb_len = 16;
1da177e4
LT
2550 }
2551
2552 /* ATAPI-specific feature tests */
2c13b7ce 2553 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2554 const char *cdb_intr_string = "";
2555 const char *atapi_an_string = "";
91163006 2556 const char *dma_dir_string = "";
7d77b247 2557 u32 sntf;
08a556db 2558
1148c3a7 2559 rc = atapi_cdb_len(id);
1da177e4 2560 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2561 if (ata_msg_warn(ap))
88574551
TH
2562 ata_dev_printk(dev, KERN_WARNING,
2563 "unsupported CDB len\n");
ffeae418 2564 rc = -EINVAL;
1da177e4
LT
2565 goto err_out_nosup;
2566 }
6e7846e9 2567 dev->cdb_len = (unsigned int) rc;
1da177e4 2568
7d77b247
TH
2569 /* Enable ATAPI AN if both the host and device have
2570 * the support. If PMP is attached, SNTF is required
2571 * to enable ATAPI AN to discern between PHY status
2572 * changed notifications and ATAPI ANs.
9f45cbd3 2573 */
7d77b247 2574 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2575 (!sata_pmp_attached(ap) ||
7d77b247 2576 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2577 unsigned int err_mask;
2578
9f45cbd3 2579 /* issue SET feature command to turn this on */
218f3d30
JG
2580 err_mask = ata_dev_set_feature(dev,
2581 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2582 if (err_mask)
9f45cbd3 2583 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2584 "failed to enable ATAPI AN "
2585 "(err_mask=0x%x)\n", err_mask);
2586 else {
9f45cbd3 2587 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2588 atapi_an_string = ", ATAPI AN";
2589 }
9f45cbd3
KCA
2590 }
2591
08a556db 2592 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2593 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2594 cdb_intr_string = ", CDB intr";
2595 }
312f7da2 2596
91163006
TH
2597 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2598 dev->flags |= ATA_DFLAG_DMADIR;
2599 dma_dir_string = ", DMADIR";
2600 }
2601
1da177e4 2602 /* print device info to dmesg */
5afc8142 2603 if (ata_msg_drv(ap) && print_info)
ef143d57 2604 ata_dev_printk(dev, KERN_INFO,
91163006 2605 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2606 modelbuf, fwrevbuf,
12436c30 2607 ata_mode_string(xfer_mask),
91163006
TH
2608 cdb_intr_string, atapi_an_string,
2609 dma_dir_string);
1da177e4
LT
2610 }
2611
914ed354
TH
2612 /* determine max_sectors */
2613 dev->max_sectors = ATA_MAX_SECTORS;
2614 if (dev->flags & ATA_DFLAG_LBA48)
2615 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2616
ca77329f
KCA
2617 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2618 if (ata_id_has_hipm(dev->id))
2619 dev->flags |= ATA_DFLAG_HIPM;
2620 if (ata_id_has_dipm(dev->id))
2621 dev->flags |= ATA_DFLAG_DIPM;
2622 }
2623
c5038fc0
AC
2624 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2625 200 sectors */
3373efd8 2626 if (ata_dev_knobble(dev)) {
5afc8142 2627 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2628 ata_dev_printk(dev, KERN_INFO,
2629 "applying bridge limits\n");
5a529139 2630 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2631 dev->max_sectors = ATA_MAX_SECTORS;
2632 }
2633
f8d8e579 2634 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2635 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2636 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2637 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2638 }
f8d8e579 2639
75683fe7 2640 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2641 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2642 dev->max_sectors);
18d6e9d5 2643
ca77329f
KCA
2644 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2645 dev->horkage |= ATA_HORKAGE_IPM;
2646
2647 /* reset link pm_policy for this port to no pm */
2648 ap->pm_policy = MAX_PERFORMANCE;
2649 }
2650
4b2f3ede 2651 if (ap->ops->dev_config)
cd0d3bbc 2652 ap->ops->dev_config(dev);
4b2f3ede 2653
c5038fc0
AC
2654 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2655 /* Let the user know. We don't want to disallow opens for
2656 rescue purposes, or in case the vendor is just a blithering
2657 idiot. Do this after the dev_config call as some controllers
2658 with buggy firmware may want to avoid reporting false device
2659 bugs */
2660
2661 if (print_info) {
2662 ata_dev_printk(dev, KERN_WARNING,
2663"Drive reports diagnostics failure. This may indicate a drive\n");
2664 ata_dev_printk(dev, KERN_WARNING,
2665"fault or invalid emulation. Contact drive vendor for information.\n");
2666 }
2667 }
2668
ac70a964
TH
2669 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2670 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2671 "firmware update to be fully functional.\n");
2672 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2673 "or visit http://ata.wiki.kernel.org.\n");
2674 }
2675
ffeae418 2676 return 0;
1da177e4
LT
2677
2678err_out_nosup:
0dd4b21f 2679 if (ata_msg_probe(ap))
88574551 2680 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2681 "%s: EXIT, err\n", __func__);
ffeae418 2682 return rc;
1da177e4
LT
2683}
2684
be0d18df 2685/**
2e41e8e6 2686 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2687 * @ap: port
2688 *
2e41e8e6 2689 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2690 * detection.
2691 */
2692
2693int ata_cable_40wire(struct ata_port *ap)
2694{
2695 return ATA_CBL_PATA40;
2696}
2697
2698/**
2e41e8e6 2699 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2700 * @ap: port
2701 *
2e41e8e6 2702 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2703 * detection.
2704 */
2705
2706int ata_cable_80wire(struct ata_port *ap)
2707{
2708 return ATA_CBL_PATA80;
2709}
2710
2711/**
2712 * ata_cable_unknown - return unknown PATA cable.
2713 * @ap: port
2714 *
2715 * Helper method for drivers which have no PATA cable detection.
2716 */
2717
2718int ata_cable_unknown(struct ata_port *ap)
2719{
2720 return ATA_CBL_PATA_UNK;
2721}
2722
c88f90c3
TH
2723/**
2724 * ata_cable_ignore - return ignored PATA cable.
2725 * @ap: port
2726 *
2727 * Helper method for drivers which don't use cable type to limit
2728 * transfer mode.
2729 */
2730int ata_cable_ignore(struct ata_port *ap)
2731{
2732 return ATA_CBL_PATA_IGN;
2733}
2734
be0d18df
AC
2735/**
2736 * ata_cable_sata - return SATA cable type
2737 * @ap: port
2738 *
2739 * Helper method for drivers which have SATA cables
2740 */
2741
2742int ata_cable_sata(struct ata_port *ap)
2743{
2744 return ATA_CBL_SATA;
2745}
2746
1da177e4
LT
2747/**
2748 * ata_bus_probe - Reset and probe ATA bus
2749 * @ap: Bus to probe
2750 *
0cba632b
JG
2751 * Master ATA bus probing function. Initiates a hardware-dependent
2752 * bus reset, then attempts to identify any devices found on
2753 * the bus.
2754 *
1da177e4 2755 * LOCKING:
0cba632b 2756 * PCI/etc. bus probe sem.
1da177e4
LT
2757 *
2758 * RETURNS:
96072e69 2759 * Zero on success, negative errno otherwise.
1da177e4
LT
2760 */
2761
80289167 2762int ata_bus_probe(struct ata_port *ap)
1da177e4 2763{
28ca5c57 2764 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2765 int tries[ATA_MAX_DEVICES];
f58229f8 2766 int rc;
e82cbdb9 2767 struct ata_device *dev;
1da177e4 2768
28ca5c57 2769 ata_port_probe(ap);
c19ba8af 2770
1eca4365 2771 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2772 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2773
2774 retry:
1eca4365 2775 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2776 /* If we issue an SRST then an ATA drive (not ATAPI)
2777 * may change configuration and be in PIO0 timing. If
2778 * we do a hard reset (or are coming from power on)
2779 * this is true for ATA or ATAPI. Until we've set a
2780 * suitable controller mode we should not touch the
2781 * bus as we may be talking too fast.
2782 */
2783 dev->pio_mode = XFER_PIO_0;
2784
2785 /* If the controller has a pio mode setup function
2786 * then use it to set the chipset to rights. Don't
2787 * touch the DMA setup as that will be dealt with when
2788 * configuring devices.
2789 */
2790 if (ap->ops->set_piomode)
2791 ap->ops->set_piomode(ap, dev);
2792 }
2793
2044470c 2794 /* reset and determine device classes */
52783c5d 2795 ap->ops->phy_reset(ap);
2061a47a 2796
1eca4365 2797 ata_for_each_dev(dev, &ap->link, ALL) {
52783c5d
TH
2798 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2799 dev->class != ATA_DEV_UNKNOWN)
2800 classes[dev->devno] = dev->class;
2801 else
2802 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2803
52783c5d 2804 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2805 }
1da177e4 2806
52783c5d 2807 ata_port_probe(ap);
2044470c 2808
f31f0cc2
JG
2809 /* read IDENTIFY page and configure devices. We have to do the identify
2810 specific sequence bass-ackwards so that PDIAG- is released by
2811 the slave device */
2812
1eca4365 2813 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2814 if (tries[dev->devno])
2815 dev->class = classes[dev->devno];
ffeae418 2816
14d2bac1 2817 if (!ata_dev_enabled(dev))
ffeae418 2818 continue;
ffeae418 2819
bff04647
TH
2820 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2821 dev->id);
14d2bac1
TH
2822 if (rc)
2823 goto fail;
f31f0cc2
JG
2824 }
2825
be0d18df
AC
2826 /* Now ask for the cable type as PDIAG- should have been released */
2827 if (ap->ops->cable_detect)
2828 ap->cbl = ap->ops->cable_detect(ap);
2829
1eca4365
TH
2830 /* We may have SATA bridge glue hiding here irrespective of
2831 * the reported cable types and sensed types. When SATA
2832 * drives indicate we have a bridge, we don't know which end
2833 * of the link the bridge is which is a problem.
2834 */
2835 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2836 if (ata_id_is_sata(dev->id))
2837 ap->cbl = ATA_CBL_SATA;
614fe29b 2838
f31f0cc2
JG
2839 /* After the identify sequence we can now set up the devices. We do
2840 this in the normal order so that the user doesn't get confused */
2841
1eca4365 2842 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2843 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2844 rc = ata_dev_configure(dev);
9af5c9c9 2845 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2846 if (rc)
2847 goto fail;
1da177e4
LT
2848 }
2849
e82cbdb9 2850 /* configure transfer mode */
0260731f 2851 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2852 if (rc)
51713d35 2853 goto fail;
1da177e4 2854
1eca4365
TH
2855 ata_for_each_dev(dev, &ap->link, ENABLED)
2856 return 0;
1da177e4 2857
e82cbdb9
TH
2858 /* no device present, disable port */
2859 ata_port_disable(ap);
96072e69 2860 return -ENODEV;
14d2bac1
TH
2861
2862 fail:
4ae72a1e
TH
2863 tries[dev->devno]--;
2864
14d2bac1
TH
2865 switch (rc) {
2866 case -EINVAL:
4ae72a1e 2867 /* eeek, something went very wrong, give up */
14d2bac1
TH
2868 tries[dev->devno] = 0;
2869 break;
4ae72a1e
TH
2870
2871 case -ENODEV:
2872 /* give it just one more chance */
2873 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2874 case -EIO:
4ae72a1e
TH
2875 if (tries[dev->devno] == 1) {
2876 /* This is the last chance, better to slow
2877 * down than lose it.
2878 */
a07d499b 2879 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2880 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2881 }
14d2bac1
TH
2882 }
2883
4ae72a1e 2884 if (!tries[dev->devno])
3373efd8 2885 ata_dev_disable(dev);
ec573755 2886
14d2bac1 2887 goto retry;
1da177e4
LT
2888}
2889
2890/**
0cba632b
JG
2891 * ata_port_probe - Mark port as enabled
2892 * @ap: Port for which we indicate enablement
1da177e4 2893 *
0cba632b
JG
2894 * Modify @ap data structure such that the system
2895 * thinks that the entire port is enabled.
2896 *
cca3974e 2897 * LOCKING: host lock, or some other form of
0cba632b 2898 * serialization.
1da177e4
LT
2899 */
2900
2901void ata_port_probe(struct ata_port *ap)
2902{
198e0fed 2903 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2904}
2905
3be680b7
TH
2906/**
2907 * sata_print_link_status - Print SATA link status
936fd732 2908 * @link: SATA link to printk link status about
3be680b7
TH
2909 *
2910 * This function prints link speed and status of a SATA link.
2911 *
2912 * LOCKING:
2913 * None.
2914 */
6bdb4fc9 2915static void sata_print_link_status(struct ata_link *link)
3be680b7 2916{
6d5f9732 2917 u32 sstatus, scontrol, tmp;
3be680b7 2918
936fd732 2919 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2920 return;
936fd732 2921 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2922
b1c72916 2923 if (ata_phys_link_online(link)) {
3be680b7 2924 tmp = (sstatus >> 4) & 0xf;
936fd732 2925 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2926 "SATA link up %s (SStatus %X SControl %X)\n",
2927 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2928 } else {
936fd732 2929 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2930 "SATA link down (SStatus %X SControl %X)\n",
2931 sstatus, scontrol);
3be680b7
TH
2932 }
2933}
2934
ebdfca6e
AC
2935/**
2936 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2937 * @adev: device
2938 *
2939 * Obtain the other device on the same cable, or if none is
2940 * present NULL is returned
2941 */
2e9edbf8 2942
3373efd8 2943struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2944{
9af5c9c9
TH
2945 struct ata_link *link = adev->link;
2946 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2947 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2948 return NULL;
2949 return pair;
2950}
2951
1da177e4 2952/**
780a87f7
JG
2953 * ata_port_disable - Disable port.
2954 * @ap: Port to be disabled.
1da177e4 2955 *
780a87f7
JG
2956 * Modify @ap data structure such that the system
2957 * thinks that the entire port is disabled, and should
2958 * never attempt to probe or communicate with devices
2959 * on this port.
2960 *
cca3974e 2961 * LOCKING: host lock, or some other form of
780a87f7 2962 * serialization.
1da177e4
LT
2963 */
2964
2965void ata_port_disable(struct ata_port *ap)
2966{
9af5c9c9
TH
2967 ap->link.device[0].class = ATA_DEV_NONE;
2968 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2969 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2970}
2971
1c3fae4d 2972/**
3c567b7d 2973 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2974 * @link: Link to adjust SATA spd limit for
a07d499b 2975 * @spd_limit: Additional limit
1c3fae4d 2976 *
936fd732 2977 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2978 * function only adjusts the limit. The change must be applied
3c567b7d 2979 * using sata_set_spd().
1c3fae4d 2980 *
a07d499b
TH
2981 * If @spd_limit is non-zero, the speed is limited to equal to or
2982 * lower than @spd_limit if such speed is supported. If
2983 * @spd_limit is slower than any supported speed, only the lowest
2984 * supported speed is allowed.
2985 *
1c3fae4d
TH
2986 * LOCKING:
2987 * Inherited from caller.
2988 *
2989 * RETURNS:
2990 * 0 on success, negative errno on failure
2991 */
a07d499b 2992int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2993{
81952c54 2994 u32 sstatus, spd, mask;
a07d499b 2995 int rc, bit;
1c3fae4d 2996
936fd732 2997 if (!sata_scr_valid(link))
008a7896
TH
2998 return -EOPNOTSUPP;
2999
3000 /* If SCR can be read, use it to determine the current SPD.
936fd732 3001 * If not, use cached value in link->sata_spd.
008a7896 3002 */
936fd732 3003 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 3004 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
3005 spd = (sstatus >> 4) & 0xf;
3006 else
936fd732 3007 spd = link->sata_spd;
1c3fae4d 3008
936fd732 3009 mask = link->sata_spd_limit;
1c3fae4d
TH
3010 if (mask <= 1)
3011 return -EINVAL;
008a7896
TH
3012
3013 /* unconditionally mask off the highest bit */
a07d499b
TH
3014 bit = fls(mask) - 1;
3015 mask &= ~(1 << bit);
1c3fae4d 3016
008a7896
TH
3017 /* Mask off all speeds higher than or equal to the current
3018 * one. Force 1.5Gbps if current SPD is not available.
3019 */
3020 if (spd > 1)
3021 mask &= (1 << (spd - 1)) - 1;
3022 else
3023 mask &= 1;
3024
3025 /* were we already at the bottom? */
1c3fae4d
TH
3026 if (!mask)
3027 return -EINVAL;
3028
a07d499b
TH
3029 if (spd_limit) {
3030 if (mask & ((1 << spd_limit) - 1))
3031 mask &= (1 << spd_limit) - 1;
3032 else {
3033 bit = ffs(mask) - 1;
3034 mask = 1 << bit;
3035 }
3036 }
3037
936fd732 3038 link->sata_spd_limit = mask;
1c3fae4d 3039
936fd732 3040 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 3041 sata_spd_string(fls(mask)));
1c3fae4d
TH
3042
3043 return 0;
3044}
3045
936fd732 3046static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3047{
5270222f
TH
3048 struct ata_link *host_link = &link->ap->link;
3049 u32 limit, target, spd;
1c3fae4d 3050
5270222f
TH
3051 limit = link->sata_spd_limit;
3052
3053 /* Don't configure downstream link faster than upstream link.
3054 * It doesn't speed up anything and some PMPs choke on such
3055 * configuration.
3056 */
3057 if (!ata_is_host_link(link) && host_link->sata_spd)
3058 limit &= (1 << host_link->sata_spd) - 1;
3059
3060 if (limit == UINT_MAX)
3061 target = 0;
1c3fae4d 3062 else
5270222f 3063 target = fls(limit);
1c3fae4d
TH
3064
3065 spd = (*scontrol >> 4) & 0xf;
5270222f 3066 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3067
5270222f 3068 return spd != target;
1c3fae4d
TH
3069}
3070
3071/**
3c567b7d 3072 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3073 * @link: Link in question
1c3fae4d
TH
3074 *
3075 * Test whether the spd limit in SControl matches
936fd732 3076 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3077 * whether hardreset is necessary to apply SATA spd
3078 * configuration.
3079 *
3080 * LOCKING:
3081 * Inherited from caller.
3082 *
3083 * RETURNS:
3084 * 1 if SATA spd configuration is needed, 0 otherwise.
3085 */
1dc55e87 3086static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3087{
3088 u32 scontrol;
3089
936fd732 3090 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3091 return 1;
1c3fae4d 3092
936fd732 3093 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3094}
3095
3096/**
3c567b7d 3097 * sata_set_spd - set SATA spd according to spd limit
936fd732 3098 * @link: Link to set SATA spd for
1c3fae4d 3099 *
936fd732 3100 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3101 *
3102 * LOCKING:
3103 * Inherited from caller.
3104 *
3105 * RETURNS:
3106 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3107 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3108 */
936fd732 3109int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3110{
3111 u32 scontrol;
81952c54 3112 int rc;
1c3fae4d 3113
936fd732 3114 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3115 return rc;
1c3fae4d 3116
936fd732 3117 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3118 return 0;
3119
936fd732 3120 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3121 return rc;
3122
1c3fae4d
TH
3123 return 1;
3124}
3125
452503f9
AC
3126/*
3127 * This mode timing computation functionality is ported over from
3128 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3129 */
3130/*
b352e57d 3131 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3132 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3133 * for UDMA6, which is currently supported only by Maxtor drives.
3134 *
3135 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3136 */
3137
3138static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3139/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3140 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3141 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3142 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3143 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3144 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3145 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3146 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3147
3148 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3149 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3150 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3151
3152 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3153 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3154 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3155 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3156 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3157
3158/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3159 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3160 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3161 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3162 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3163 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3164 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3165 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3166
3167 { 0xFF }
3168};
3169
2dcb407e
JG
3170#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3171#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3172
3173static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3174{
3ada9c12
DD
3175 q->setup = EZ(t->setup * 1000, T);
3176 q->act8b = EZ(t->act8b * 1000, T);
3177 q->rec8b = EZ(t->rec8b * 1000, T);
3178 q->cyc8b = EZ(t->cyc8b * 1000, T);
3179 q->active = EZ(t->active * 1000, T);
3180 q->recover = EZ(t->recover * 1000, T);
3181 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3182 q->cycle = EZ(t->cycle * 1000, T);
3183 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3184}
3185
3186void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3187 struct ata_timing *m, unsigned int what)
3188{
3189 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3190 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3191 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3192 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3193 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3194 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3195 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3196 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3197 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3198}
3199
6357357c 3200const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3201{
70cd071e
TH
3202 const struct ata_timing *t = ata_timing;
3203
3204 while (xfer_mode > t->mode)
3205 t++;
452503f9 3206
70cd071e
TH
3207 if (xfer_mode == t->mode)
3208 return t;
3209 return NULL;
452503f9
AC
3210}
3211
3212int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3213 struct ata_timing *t, int T, int UT)
3214{
9e8808a9 3215 const u16 *id = adev->id;
452503f9
AC
3216 const struct ata_timing *s;
3217 struct ata_timing p;
3218
3219 /*
2e9edbf8 3220 * Find the mode.
75b1f2f8 3221 */
452503f9
AC
3222
3223 if (!(s = ata_timing_find_mode(speed)))
3224 return -EINVAL;
3225
75b1f2f8
AL
3226 memcpy(t, s, sizeof(*s));
3227
452503f9
AC
3228 /*
3229 * If the drive is an EIDE drive, it can tell us it needs extended
3230 * PIO/MW_DMA cycle timing.
3231 */
3232
9e8808a9 3233 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3234 memset(&p, 0, sizeof(p));
9e8808a9 3235
2dcb407e 3236 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3237 if (speed <= XFER_PIO_2)
3238 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3239 else if ((speed <= XFER_PIO_4) ||
3240 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3241 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3242 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3243 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3244
452503f9
AC
3245 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3246 }
3247
3248 /*
3249 * Convert the timing to bus clock counts.
3250 */
3251
75b1f2f8 3252 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3253
3254 /*
c893a3ae
RD
3255 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3256 * S.M.A.R.T * and some other commands. We have to ensure that the
3257 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3258 */
3259
fd3367af 3260 if (speed > XFER_PIO_6) {
452503f9
AC
3261 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3262 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3263 }
3264
3265 /*
c893a3ae 3266 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3267 */
3268
3269 if (t->act8b + t->rec8b < t->cyc8b) {
3270 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3271 t->rec8b = t->cyc8b - t->act8b;
3272 }
3273
3274 if (t->active + t->recover < t->cycle) {
3275 t->active += (t->cycle - (t->active + t->recover)) / 2;
3276 t->recover = t->cycle - t->active;
3277 }
a617c09f 3278
4f701d1e
AC
3279 /* In a few cases quantisation may produce enough errors to
3280 leave t->cycle too low for the sum of active and recovery
3281 if so we must correct this */
3282 if (t->active + t->recover > t->cycle)
3283 t->cycle = t->active + t->recover;
452503f9
AC
3284
3285 return 0;
3286}
3287
a0f79b92
TH
3288/**
3289 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3290 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3291 * @cycle: cycle duration in ns
3292 *
3293 * Return matching xfer mode for @cycle. The returned mode is of
3294 * the transfer type specified by @xfer_shift. If @cycle is too
3295 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3296 * than the fastest known mode, the fasted mode is returned.
3297 *
3298 * LOCKING:
3299 * None.
3300 *
3301 * RETURNS:
3302 * Matching xfer_mode, 0xff if no match found.
3303 */
3304u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3305{
3306 u8 base_mode = 0xff, last_mode = 0xff;
3307 const struct ata_xfer_ent *ent;
3308 const struct ata_timing *t;
3309
3310 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3311 if (ent->shift == xfer_shift)
3312 base_mode = ent->base;
3313
3314 for (t = ata_timing_find_mode(base_mode);
3315 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3316 unsigned short this_cycle;
3317
3318 switch (xfer_shift) {
3319 case ATA_SHIFT_PIO:
3320 case ATA_SHIFT_MWDMA:
3321 this_cycle = t->cycle;
3322 break;
3323 case ATA_SHIFT_UDMA:
3324 this_cycle = t->udma;
3325 break;
3326 default:
3327 return 0xff;
3328 }
3329
3330 if (cycle > this_cycle)
3331 break;
3332
3333 last_mode = t->mode;
3334 }
3335
3336 return last_mode;
3337}
3338
cf176e1a
TH
3339/**
3340 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3341 * @dev: Device to adjust xfer masks
458337db 3342 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3343 *
3344 * Adjust xfer masks of @dev downward. Note that this function
3345 * does not apply the change. Invoking ata_set_mode() afterwards
3346 * will apply the limit.
3347 *
3348 * LOCKING:
3349 * Inherited from caller.
3350 *
3351 * RETURNS:
3352 * 0 on success, negative errno on failure
3353 */
458337db 3354int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3355{
458337db 3356 char buf[32];
7dc951ae
TH
3357 unsigned long orig_mask, xfer_mask;
3358 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3359 int quiet, highbit;
cf176e1a 3360
458337db
TH
3361 quiet = !!(sel & ATA_DNXFER_QUIET);
3362 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3363
458337db
TH
3364 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3365 dev->mwdma_mask,
3366 dev->udma_mask);
3367 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3368
458337db
TH
3369 switch (sel) {
3370 case ATA_DNXFER_PIO:
3371 highbit = fls(pio_mask) - 1;
3372 pio_mask &= ~(1 << highbit);
3373 break;
3374
3375 case ATA_DNXFER_DMA:
3376 if (udma_mask) {
3377 highbit = fls(udma_mask) - 1;
3378 udma_mask &= ~(1 << highbit);
3379 if (!udma_mask)
3380 return -ENOENT;
3381 } else if (mwdma_mask) {
3382 highbit = fls(mwdma_mask) - 1;
3383 mwdma_mask &= ~(1 << highbit);
3384 if (!mwdma_mask)
3385 return -ENOENT;
3386 }
3387 break;
3388
3389 case ATA_DNXFER_40C:
3390 udma_mask &= ATA_UDMA_MASK_40C;
3391 break;
3392
3393 case ATA_DNXFER_FORCE_PIO0:
3394 pio_mask &= 1;
3395 case ATA_DNXFER_FORCE_PIO:
3396 mwdma_mask = 0;
3397 udma_mask = 0;
3398 break;
3399
458337db
TH
3400 default:
3401 BUG();
3402 }
3403
3404 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3405
3406 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3407 return -ENOENT;
3408
3409 if (!quiet) {
3410 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3411 snprintf(buf, sizeof(buf), "%s:%s",
3412 ata_mode_string(xfer_mask),
3413 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3414 else
3415 snprintf(buf, sizeof(buf), "%s",
3416 ata_mode_string(xfer_mask));
3417
3418 ata_dev_printk(dev, KERN_WARNING,
3419 "limiting speed to %s\n", buf);
3420 }
cf176e1a
TH
3421
3422 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3423 &dev->udma_mask);
3424
cf176e1a 3425 return 0;
cf176e1a
TH
3426}
3427
3373efd8 3428static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3429{
d0cb43b3 3430 struct ata_port *ap = dev->link->ap;
9af5c9c9 3431 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3432 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3433 const char *dev_err_whine = "";
3434 int ign_dev_err = 0;
d0cb43b3 3435 unsigned int err_mask = 0;
83206a29 3436 int rc;
1da177e4 3437
e8384607 3438 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3439 if (dev->xfer_shift == ATA_SHIFT_PIO)
3440 dev->flags |= ATA_DFLAG_PIO;
3441
d0cb43b3
TH
3442 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3443 dev_err_whine = " (SET_XFERMODE skipped)";
3444 else {
3445 if (nosetxfer)
3446 ata_dev_printk(dev, KERN_WARNING,
3447 "NOSETXFER but PATA detected - can't "
3448 "skip SETXFER, might malfunction\n");
3449 err_mask = ata_dev_set_xfermode(dev);
3450 }
2dcb407e 3451
4055dee7
TH
3452 if (err_mask & ~AC_ERR_DEV)
3453 goto fail;
3454
3455 /* revalidate */
3456 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3457 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3458 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3459 if (rc)
3460 return rc;
3461
b93fda12
AC
3462 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3463 /* Old CFA may refuse this command, which is just fine */
3464 if (ata_id_is_cfa(dev->id))
3465 ign_dev_err = 1;
3466 /* Catch several broken garbage emulations plus some pre
3467 ATA devices */
3468 if (ata_id_major_version(dev->id) == 0 &&
3469 dev->pio_mode <= XFER_PIO_2)
3470 ign_dev_err = 1;
3471 /* Some very old devices and some bad newer ones fail
3472 any kind of SET_XFERMODE request but support PIO0-2
3473 timings and no IORDY */
3474 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3475 ign_dev_err = 1;
3476 }
3acaf94b
AC
3477 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3478 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3479 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3480 dev->dma_mode == XFER_MW_DMA_0 &&
3481 (dev->id[63] >> 8) & 1)
4055dee7 3482 ign_dev_err = 1;
3acaf94b 3483
4055dee7
TH
3484 /* if the device is actually configured correctly, ignore dev err */
3485 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3486 ign_dev_err = 1;
1da177e4 3487
4055dee7
TH
3488 if (err_mask & AC_ERR_DEV) {
3489 if (!ign_dev_err)
3490 goto fail;
3491 else
3492 dev_err_whine = " (device error ignored)";
3493 }
48a8a14f 3494
23e71c3d
TH
3495 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3496 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3497
4055dee7
TH
3498 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3499 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3500 dev_err_whine);
3501
83206a29 3502 return 0;
4055dee7
TH
3503
3504 fail:
3505 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3506 "(err_mask=0x%x)\n", err_mask);
3507 return -EIO;
1da177e4
LT
3508}
3509
1da177e4 3510/**
04351821 3511 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3512 * @link: link on which timings will be programmed
1967b7ff 3513 * @r_failed_dev: out parameter for failed device
1da177e4 3514 *
04351821
AC
3515 * Standard implementation of the function used to tune and set
3516 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3517 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3518 * returned in @r_failed_dev.
780a87f7 3519 *
1da177e4 3520 * LOCKING:
0cba632b 3521 * PCI/etc. bus probe sem.
e82cbdb9
TH
3522 *
3523 * RETURNS:
3524 * 0 on success, negative errno otherwise
1da177e4 3525 */
04351821 3526
0260731f 3527int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3528{
0260731f 3529 struct ata_port *ap = link->ap;
e8e0619f 3530 struct ata_device *dev;
f58229f8 3531 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3532
a6d5a51c 3533 /* step 1: calculate xfer_mask */
1eca4365 3534 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3535 unsigned long pio_mask, dma_mask;
b3a70601 3536 unsigned int mode_mask;
a6d5a51c 3537
b3a70601
AC
3538 mode_mask = ATA_DMA_MASK_ATA;
3539 if (dev->class == ATA_DEV_ATAPI)
3540 mode_mask = ATA_DMA_MASK_ATAPI;
3541 else if (ata_id_is_cfa(dev->id))
3542 mode_mask = ATA_DMA_MASK_CFA;
3543
3373efd8 3544 ata_dev_xfermask(dev);
33267325 3545 ata_force_xfermask(dev);
1da177e4 3546
acf356b1
TH
3547 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3548 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3549
3550 if (libata_dma_mask & mode_mask)
3551 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3552 else
3553 dma_mask = 0;
3554
acf356b1
TH
3555 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3556 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3557
4f65977d 3558 found = 1;
b15b3eba 3559 if (ata_dma_enabled(dev))
5444a6f4 3560 used_dma = 1;
a6d5a51c 3561 }
4f65977d 3562 if (!found)
e82cbdb9 3563 goto out;
a6d5a51c
TH
3564
3565 /* step 2: always set host PIO timings */
1eca4365 3566 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3567 if (dev->pio_mode == 0xff) {
f15a1daf 3568 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3569 rc = -EINVAL;
e82cbdb9 3570 goto out;
e8e0619f
TH
3571 }
3572
3573 dev->xfer_mode = dev->pio_mode;
3574 dev->xfer_shift = ATA_SHIFT_PIO;
3575 if (ap->ops->set_piomode)
3576 ap->ops->set_piomode(ap, dev);
3577 }
1da177e4 3578
a6d5a51c 3579 /* step 3: set host DMA timings */
1eca4365
TH
3580 ata_for_each_dev(dev, link, ENABLED) {
3581 if (!ata_dma_enabled(dev))
e8e0619f
TH
3582 continue;
3583
3584 dev->xfer_mode = dev->dma_mode;
3585 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3586 if (ap->ops->set_dmamode)
3587 ap->ops->set_dmamode(ap, dev);
3588 }
1da177e4
LT
3589
3590 /* step 4: update devices' xfer mode */
1eca4365 3591 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3592 rc = ata_dev_set_mode(dev);
5bbc53f4 3593 if (rc)
e82cbdb9 3594 goto out;
83206a29 3595 }
1da177e4 3596
e8e0619f
TH
3597 /* Record simplex status. If we selected DMA then the other
3598 * host channels are not permitted to do so.
5444a6f4 3599 */
cca3974e 3600 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3601 ap->host->simplex_claimed = ap;
5444a6f4 3602
e82cbdb9
TH
3603 out:
3604 if (rc)
3605 *r_failed_dev = dev;
3606 return rc;
1da177e4
LT
3607}
3608
aa2731ad
TH
3609/**
3610 * ata_wait_ready - wait for link to become ready
3611 * @link: link to be waited on
3612 * @deadline: deadline jiffies for the operation
3613 * @check_ready: callback to check link readiness
3614 *
3615 * Wait for @link to become ready. @check_ready should return
3616 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3617 * link doesn't seem to be occupied, other errno for other error
3618 * conditions.
3619 *
3620 * Transient -ENODEV conditions are allowed for
3621 * ATA_TMOUT_FF_WAIT.
3622 *
3623 * LOCKING:
3624 * EH context.
3625 *
3626 * RETURNS:
3627 * 0 if @linke is ready before @deadline; otherwise, -errno.
3628 */
3629int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3630 int (*check_ready)(struct ata_link *link))
3631{
3632 unsigned long start = jiffies;
341c2c95 3633 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
aa2731ad
TH
3634 int warned = 0;
3635
b1c72916
TH
3636 /* Slave readiness can't be tested separately from master. On
3637 * M/S emulation configuration, this function should be called
3638 * only on the master and it will handle both master and slave.
3639 */
3640 WARN_ON(link == link->ap->slave_link);
3641
aa2731ad
TH
3642 if (time_after(nodev_deadline, deadline))
3643 nodev_deadline = deadline;
3644
3645 while (1) {
3646 unsigned long now = jiffies;
3647 int ready, tmp;
3648
3649 ready = tmp = check_ready(link);
3650 if (ready > 0)
3651 return 0;
3652
3653 /* -ENODEV could be transient. Ignore -ENODEV if link
3654 * is online. Also, some SATA devices take a long
3655 * time to clear 0xff after reset. For example,
3656 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3657 * GoVault needs even more than that. Wait for
3658 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3659 *
3660 * Note that some PATA controllers (pata_ali) explode
3661 * if status register is read more than once when
3662 * there's no device attached.
3663 */
3664 if (ready == -ENODEV) {
3665 if (ata_link_online(link))
3666 ready = 0;
3667 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3668 !ata_link_offline(link) &&
3669 time_before(now, nodev_deadline))
3670 ready = 0;
3671 }
3672
3673 if (ready)
3674 return ready;
3675 if (time_after(now, deadline))
3676 return -EBUSY;
3677
3678 if (!warned && time_after(now, start + 5 * HZ) &&
3679 (deadline - now > 3 * HZ)) {
3680 ata_link_printk(link, KERN_WARNING,
3681 "link is slow to respond, please be patient "
3682 "(ready=%d)\n", tmp);
3683 warned = 1;
3684 }
3685
3686 msleep(50);
3687 }
3688}
3689
3690/**
3691 * ata_wait_after_reset - wait for link to become ready after reset
3692 * @link: link to be waited on
3693 * @deadline: deadline jiffies for the operation
3694 * @check_ready: callback to check link readiness
3695 *
3696 * Wait for @link to become ready after reset.
3697 *
3698 * LOCKING:
3699 * EH context.
3700 *
3701 * RETURNS:
3702 * 0 if @linke is ready before @deadline; otherwise, -errno.
3703 */
2b4221bb 3704int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3705 int (*check_ready)(struct ata_link *link))
3706{
341c2c95 3707 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3708
3709 return ata_wait_ready(link, deadline, check_ready);
3710}
3711
d7bb4cc7 3712/**
936fd732
TH
3713 * sata_link_debounce - debounce SATA phy status
3714 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3715 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3716 * @deadline: deadline jiffies for the operation
d7bb4cc7 3717 *
936fd732 3718* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3719 * holding the same value where DET is not 1 for @duration polled
3720 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3721 * beginning of the stable state. Because DET gets stuck at 1 on
3722 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3723 * until timeout then returns 0 if DET is stable at 1.
3724 *
d4b2bab4
TH
3725 * @timeout is further limited by @deadline. The sooner of the
3726 * two is used.
3727 *
d7bb4cc7
TH
3728 * LOCKING:
3729 * Kernel thread context (may sleep)
3730 *
3731 * RETURNS:
3732 * 0 on success, -errno on failure.
3733 */
936fd732
TH
3734int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3735 unsigned long deadline)
7a7921e8 3736{
341c2c95
TH
3737 unsigned long interval = params[0];
3738 unsigned long duration = params[1];
d4b2bab4 3739 unsigned long last_jiffies, t;
d7bb4cc7
TH
3740 u32 last, cur;
3741 int rc;
3742
341c2c95 3743 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3744 if (time_before(t, deadline))
3745 deadline = t;
3746
936fd732 3747 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3748 return rc;
3749 cur &= 0xf;
3750
3751 last = cur;
3752 last_jiffies = jiffies;
3753
3754 while (1) {
341c2c95 3755 msleep(interval);
936fd732 3756 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3757 return rc;
3758 cur &= 0xf;
3759
3760 /* DET stable? */
3761 if (cur == last) {
d4b2bab4 3762 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3763 continue;
341c2c95
TH
3764 if (time_after(jiffies,
3765 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3766 return 0;
3767 continue;
3768 }
3769
3770 /* unstable, start over */
3771 last = cur;
3772 last_jiffies = jiffies;
3773
f1545154
TH
3774 /* Check deadline. If debouncing failed, return
3775 * -EPIPE to tell upper layer to lower link speed.
3776 */
d4b2bab4 3777 if (time_after(jiffies, deadline))
f1545154 3778 return -EPIPE;
d7bb4cc7
TH
3779 }
3780}
3781
3782/**
936fd732
TH
3783 * sata_link_resume - resume SATA link
3784 * @link: ATA link to resume SATA
d7bb4cc7 3785 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3786 * @deadline: deadline jiffies for the operation
d7bb4cc7 3787 *
936fd732 3788 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3789 *
3790 * LOCKING:
3791 * Kernel thread context (may sleep)
3792 *
3793 * RETURNS:
3794 * 0 on success, -errno on failure.
3795 */
936fd732
TH
3796int sata_link_resume(struct ata_link *link, const unsigned long *params,
3797 unsigned long deadline)
d7bb4cc7 3798{
5040ab67 3799 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3800 u32 scontrol, serror;
81952c54
TH
3801 int rc;
3802
936fd732 3803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3804 return rc;
7a7921e8 3805
5040ab67
TH
3806 /*
3807 * Writes to SControl sometimes get ignored under certain
3808 * controllers (ata_piix SIDPR). Make sure DET actually is
3809 * cleared.
3810 */
3811 do {
3812 scontrol = (scontrol & 0x0f0) | 0x300;
3813 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3814 return rc;
3815 /*
3816 * Some PHYs react badly if SStatus is pounded
3817 * immediately after resuming. Delay 200ms before
3818 * debouncing.
3819 */
3820 msleep(200);
81952c54 3821
5040ab67
TH
3822 /* is SControl restored correctly? */
3823 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3824 return rc;
3825 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3826
5040ab67
TH
3827 if ((scontrol & 0xf0f) != 0x300) {
3828 ata_link_printk(link, KERN_ERR,
3829 "failed to resume link (SControl %X)\n",
3830 scontrol);
3831 return 0;
3832 }
3833
3834 if (tries < ATA_LINK_RESUME_TRIES)
3835 ata_link_printk(link, KERN_WARNING,
3836 "link resume succeeded after %d retries\n",
3837 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3838
ac371987
TH
3839 if ((rc = sata_link_debounce(link, params, deadline)))
3840 return rc;
3841
f046519f 3842 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3843 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3844 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3845
f046519f 3846 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3847}
3848
f5914a46 3849/**
0aa1113d 3850 * ata_std_prereset - prepare for reset
cc0680a5 3851 * @link: ATA link to be reset
d4b2bab4 3852 * @deadline: deadline jiffies for the operation
f5914a46 3853 *
cc0680a5 3854 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3855 * prereset makes libata abort whole reset sequence and give up
3856 * that port, so prereset should be best-effort. It does its
3857 * best to prepare for reset sequence but if things go wrong, it
3858 * should just whine, not fail.
f5914a46
TH
3859 *
3860 * LOCKING:
3861 * Kernel thread context (may sleep)
3862 *
3863 * RETURNS:
3864 * 0 on success, -errno otherwise.
3865 */
0aa1113d 3866int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3867{
cc0680a5 3868 struct ata_port *ap = link->ap;
936fd732 3869 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3870 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3871 int rc;
3872
f5914a46
TH
3873 /* if we're about to do hardreset, nothing more to do */
3874 if (ehc->i.action & ATA_EH_HARDRESET)
3875 return 0;
3876
936fd732 3877 /* if SATA, resume link */
a16abc0b 3878 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3879 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3880 /* whine about phy resume failure but proceed */
3881 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3882 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3883 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3884 }
3885
45db2f6c 3886 /* no point in trying softreset on offline link */
b1c72916 3887 if (ata_phys_link_offline(link))
45db2f6c
TH
3888 ehc->i.action &= ~ATA_EH_SOFTRESET;
3889
f5914a46
TH
3890 return 0;
3891}
3892
c2bd5804 3893/**
624d5c51
TH
3894 * sata_link_hardreset - reset link via SATA phy reset
3895 * @link: link to reset
3896 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3897 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3898 * @online: optional out parameter indicating link onlineness
3899 * @check_ready: optional callback to check link readiness
c2bd5804 3900 *
624d5c51 3901 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3902 * After hardreset, link readiness is waited upon using
3903 * ata_wait_ready() if @check_ready is specified. LLDs are
3904 * allowed to not specify @check_ready and wait itself after this
3905 * function returns. Device classification is LLD's
3906 * responsibility.
3907 *
3908 * *@online is set to one iff reset succeeded and @link is online
3909 * after reset.
c2bd5804
TH
3910 *
3911 * LOCKING:
3912 * Kernel thread context (may sleep)
3913 *
3914 * RETURNS:
3915 * 0 on success, -errno otherwise.
3916 */
624d5c51 3917int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3918 unsigned long deadline,
3919 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3920{
624d5c51 3921 u32 scontrol;
81952c54 3922 int rc;
852ee16a 3923
c2bd5804
TH
3924 DPRINTK("ENTER\n");
3925
9dadd45b
TH
3926 if (online)
3927 *online = false;
3928
936fd732 3929 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3930 /* SATA spec says nothing about how to reconfigure
3931 * spd. To be on the safe side, turn off phy during
3932 * reconfiguration. This works for at least ICH7 AHCI
3933 * and Sil3124.
3934 */
936fd732 3935 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3936 goto out;
81952c54 3937
a34b6fc0 3938 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3939
936fd732 3940 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3941 goto out;
1c3fae4d 3942
936fd732 3943 sata_set_spd(link);
1c3fae4d
TH
3944 }
3945
3946 /* issue phy wake/reset */
936fd732 3947 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3948 goto out;
81952c54 3949
852ee16a 3950 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3951
936fd732 3952 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3953 goto out;
c2bd5804 3954
1c3fae4d 3955 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3956 * 10.4.2 says at least 1 ms.
3957 */
3958 msleep(1);
3959
936fd732
TH
3960 /* bring link back */
3961 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3962 if (rc)
3963 goto out;
3964 /* if link is offline nothing more to do */
b1c72916 3965 if (ata_phys_link_offline(link))
9dadd45b
TH
3966 goto out;
3967
3968 /* Link is online. From this point, -ENODEV too is an error. */
3969 if (online)
3970 *online = true;
3971
071f44b1 3972 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3973 /* If PMP is supported, we have to do follow-up SRST.
3974 * Some PMPs don't send D2H Reg FIS after hardreset if
3975 * the first port is empty. Wait only for
3976 * ATA_TMOUT_PMP_SRST_WAIT.
3977 */
3978 if (check_ready) {
3979 unsigned long pmp_deadline;
3980
341c2c95
TH
3981 pmp_deadline = ata_deadline(jiffies,
3982 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3983 if (time_after(pmp_deadline, deadline))
3984 pmp_deadline = deadline;
3985 ata_wait_ready(link, pmp_deadline, check_ready);
3986 }
3987 rc = -EAGAIN;
3988 goto out;
3989 }
3990
3991 rc = 0;
3992 if (check_ready)
3993 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3994 out:
0cbf0711
TH
3995 if (rc && rc != -EAGAIN) {
3996 /* online is set iff link is online && reset succeeded */
3997 if (online)
3998 *online = false;
9dadd45b
TH
3999 ata_link_printk(link, KERN_ERR,
4000 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 4001 }
b6103f6d
TH
4002 DPRINTK("EXIT, rc=%d\n", rc);
4003 return rc;
4004}
4005
57c9efdf
TH
4006/**
4007 * sata_std_hardreset - COMRESET w/o waiting or classification
4008 * @link: link to reset
4009 * @class: resulting class of attached device
4010 * @deadline: deadline jiffies for the operation
4011 *
4012 * Standard SATA COMRESET w/o waiting or classification.
4013 *
4014 * LOCKING:
4015 * Kernel thread context (may sleep)
4016 *
4017 * RETURNS:
4018 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4019 */
4020int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4021 unsigned long deadline)
4022{
4023 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4024 bool online;
4025 int rc;
4026
4027 /* do hardreset */
4028 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
4029 return online ? -EAGAIN : rc;
4030}
4031
c2bd5804 4032/**
203c75b8 4033 * ata_std_postreset - standard postreset callback
cc0680a5 4034 * @link: the target ata_link
c2bd5804
TH
4035 * @classes: classes of attached devices
4036 *
4037 * This function is invoked after a successful reset. Note that
4038 * the device might have been reset more than once using
4039 * different reset methods before postreset is invoked.
c2bd5804 4040 *
c2bd5804
TH
4041 * LOCKING:
4042 * Kernel thread context (may sleep)
4043 */
203c75b8 4044void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 4045{
f046519f
TH
4046 u32 serror;
4047
c2bd5804
TH
4048 DPRINTK("ENTER\n");
4049
f046519f
TH
4050 /* reset complete, clear SError */
4051 if (!sata_scr_read(link, SCR_ERROR, &serror))
4052 sata_scr_write(link, SCR_ERROR, serror);
4053
c2bd5804 4054 /* print link status */
936fd732 4055 sata_print_link_status(link);
c2bd5804 4056
c2bd5804
TH
4057 DPRINTK("EXIT\n");
4058}
4059
623a3128
TH
4060/**
4061 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
4062 * @dev: device to compare against
4063 * @new_class: class of the new device
4064 * @new_id: IDENTIFY page of the new device
4065 *
4066 * Compare @new_class and @new_id against @dev and determine
4067 * whether @dev is the device indicated by @new_class and
4068 * @new_id.
4069 *
4070 * LOCKING:
4071 * None.
4072 *
4073 * RETURNS:
4074 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4075 */
3373efd8
TH
4076static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4077 const u16 *new_id)
623a3128
TH
4078{
4079 const u16 *old_id = dev->id;
a0cf733b
TH
4080 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4081 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4082
4083 if (dev->class != new_class) {
f15a1daf
TH
4084 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4085 dev->class, new_class);
623a3128
TH
4086 return 0;
4087 }
4088
a0cf733b
TH
4089 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4090 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4091 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4092 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4093
4094 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4095 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4096 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4097 return 0;
4098 }
4099
4100 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4101 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4102 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4103 return 0;
4104 }
4105
623a3128
TH
4106 return 1;
4107}
4108
4109/**
fe30911b 4110 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4111 * @dev: target ATA device
bff04647 4112 * @readid_flags: read ID flags
623a3128
TH
4113 *
4114 * Re-read IDENTIFY page and make sure @dev is still attached to
4115 * the port.
4116 *
4117 * LOCKING:
4118 * Kernel thread context (may sleep)
4119 *
4120 * RETURNS:
4121 * 0 on success, negative errno otherwise
4122 */
fe30911b 4123int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4124{
5eb45c02 4125 unsigned int class = dev->class;
9af5c9c9 4126 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4127 int rc;
4128
fe635c7e 4129 /* read ID data */
bff04647 4130 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4131 if (rc)
fe30911b 4132 return rc;
623a3128
TH
4133
4134 /* is the device still there? */
fe30911b
TH
4135 if (!ata_dev_same_device(dev, class, id))
4136 return -ENODEV;
623a3128 4137
fe635c7e 4138 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4139 return 0;
4140}
4141
4142/**
4143 * ata_dev_revalidate - Revalidate ATA device
4144 * @dev: device to revalidate
422c9daa 4145 * @new_class: new class code
fe30911b
TH
4146 * @readid_flags: read ID flags
4147 *
4148 * Re-read IDENTIFY page, make sure @dev is still attached to the
4149 * port and reconfigure it according to the new IDENTIFY page.
4150 *
4151 * LOCKING:
4152 * Kernel thread context (may sleep)
4153 *
4154 * RETURNS:
4155 * 0 on success, negative errno otherwise
4156 */
422c9daa
TH
4157int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4158 unsigned int readid_flags)
fe30911b 4159{
6ddcd3b0 4160 u64 n_sectors = dev->n_sectors;
5920dadf 4161 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4162 int rc;
4163
4164 if (!ata_dev_enabled(dev))
4165 return -ENODEV;
4166
422c9daa
TH
4167 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4168 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4169 new_class != ATA_DEV_ATA &&
4170 new_class != ATA_DEV_ATAPI &&
4171 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4172 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4173 dev->class, new_class);
4174 rc = -ENODEV;
4175 goto fail;
4176 }
4177
fe30911b
TH
4178 /* re-read ID */
4179 rc = ata_dev_reread_id(dev, readid_flags);
4180 if (rc)
4181 goto fail;
623a3128
TH
4182
4183 /* configure device according to the new ID */
efdaedc4 4184 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4185 if (rc)
4186 goto fail;
4187
4188 /* verify n_sectors hasn't changed */
b54eebd6
TH
4189 if (dev->class == ATA_DEV_ATA && n_sectors &&
4190 dev->n_sectors != n_sectors) {
5920dadf 4191 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch "
6ddcd3b0
TH
4192 "%llu != %llu\n",
4193 (unsigned long long)n_sectors,
4194 (unsigned long long)dev->n_sectors);
5920dadf
TH
4195 /*
4196 * Something could have caused HPA to be unlocked
4197 * involuntarily. If n_native_sectors hasn't changed
4198 * and the new size matches it, keep the device.
4199 */
4200 if (dev->n_native_sectors == n_native_sectors &&
4201 dev->n_sectors > n_sectors &&
4202 dev->n_sectors == n_native_sectors) {
4203 ata_dev_printk(dev, KERN_WARNING,
4204 "new n_sectors matches native, probably "
4205 "late HPA unlock, continuing\n");
4206 /* keep using the old n_sectors */
4207 dev->n_sectors = n_sectors;
4208 } else {
4209 /* restore original n_[native]_sectors and fail */
4210 dev->n_native_sectors = n_native_sectors;
4211 dev->n_sectors = n_sectors;
4212 rc = -ENODEV;
4213 goto fail;
4214 }
6ddcd3b0
TH
4215 }
4216
4217 return 0;
623a3128
TH
4218
4219 fail:
f15a1daf 4220 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4221 return rc;
4222}
4223
6919a0a6
AC
4224struct ata_blacklist_entry {
4225 const char *model_num;
4226 const char *model_rev;
4227 unsigned long horkage;
4228};
4229
4230static const struct ata_blacklist_entry ata_device_blacklist [] = {
4231 /* Devices with DMA related problems under Linux */
4232 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4233 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4234 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4235 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4236 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4237 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4238 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4239 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4240 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4241 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4242 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4243 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4244 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4245 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4246 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4247 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4248 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4249 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4250 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4251 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4252 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4253 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4254 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4255 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4256 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4257 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4258 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4259 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4260 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4261 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4262 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4263 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4264
18d6e9d5 4265 /* Weird ATAPI devices */
40a1d531 4266 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4267 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4268
6919a0a6
AC
4269 /* Devices we expect to fail diagnostics */
4270
4271 /* Devices where NCQ should be avoided */
4272 /* NCQ is slow */
2dcb407e 4273 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4274 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4275 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4276 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4277 /* NCQ is broken */
539cc7c7 4278 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4279 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4280 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4281 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4282 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4283
ac70a964 4284 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4285 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4286 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4287 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4288 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4289 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4290 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4291 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4292 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4293 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4294 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4295
4296 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4297 ATA_HORKAGE_FIRMWARE_WARN },
4298 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4299 ATA_HORKAGE_FIRMWARE_WARN },
4300 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4301 ATA_HORKAGE_FIRMWARE_WARN },
4302 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4303 ATA_HORKAGE_FIRMWARE_WARN },
4304 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4305 ATA_HORKAGE_FIRMWARE_WARN },
4306
4307 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4308 ATA_HORKAGE_FIRMWARE_WARN },
4309 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4310 ATA_HORKAGE_FIRMWARE_WARN },
4311 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4312 ATA_HORKAGE_FIRMWARE_WARN },
4313 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4314 ATA_HORKAGE_FIRMWARE_WARN },
4315 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4316 ATA_HORKAGE_FIRMWARE_WARN },
4317
4318 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4319 ATA_HORKAGE_FIRMWARE_WARN },
4320 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4321 ATA_HORKAGE_FIRMWARE_WARN },
4322 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4323 ATA_HORKAGE_FIRMWARE_WARN },
4324 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4325 ATA_HORKAGE_FIRMWARE_WARN },
4326 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4327 ATA_HORKAGE_FIRMWARE_WARN },
4328
4329 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4330 ATA_HORKAGE_FIRMWARE_WARN },
4331 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4332 ATA_HORKAGE_FIRMWARE_WARN },
4333 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4334 ATA_HORKAGE_FIRMWARE_WARN },
4335 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4336 ATA_HORKAGE_FIRMWARE_WARN },
4337 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4338 ATA_HORKAGE_FIRMWARE_WARN },
4339
4340 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4341 ATA_HORKAGE_FIRMWARE_WARN },
4342 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4343 ATA_HORKAGE_FIRMWARE_WARN },
4344 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4345 ATA_HORKAGE_FIRMWARE_WARN },
4346 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4347 ATA_HORKAGE_FIRMWARE_WARN },
4348 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4349 ATA_HORKAGE_FIRMWARE_WARN },
4350
36e337d0
RH
4351 /* Blacklist entries taken from Silicon Image 3124/3132
4352 Windows driver .inf file - also several Linux problem reports */
4353 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4354 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4355 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4356
16c55b03
TH
4357 /* devices which puke on READ_NATIVE_MAX */
4358 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4359 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4360 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4361 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4362
7831387b
TH
4363 /* this one allows HPA unlocking but fails IOs on the area */
4364 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4365
93328e11
AC
4366 /* Devices which report 1 sector over size HPA */
4367 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4368 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4369 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4370
6bbfd53d
AC
4371 /* Devices which get the IVB wrong */
4372 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4373 /* Maybe we should just blacklist TSSTcorp... */
4374 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4375 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4376 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4377 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4378 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4379 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4380
9ce8e307
JA
4381 /* Devices that do not need bridging limits applied */
4382 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4383
9062712f
TH
4384 /* Devices which aren't very happy with higher link speeds */
4385 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4386
d0cb43b3
TH
4387 /*
4388 * Devices which choke on SETXFER. Applies only if both the
4389 * device and controller are SATA.
4390 */
4391 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4392
6919a0a6
AC
4393 /* End Marker */
4394 { }
1da177e4 4395};
2e9edbf8 4396
741b7763 4397static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4398{
4399 const char *p;
4400 int len;
4401
4402 /*
4403 * check for trailing wildcard: *\0
4404 */
4405 p = strchr(patt, wildchar);
4406 if (p && ((*(p + 1)) == 0))
4407 len = p - patt;
317b50b8 4408 else {
539cc7c7 4409 len = strlen(name);
317b50b8
AP
4410 if (!len) {
4411 if (!*patt)
4412 return 0;
4413 return -1;
4414 }
4415 }
539cc7c7
JG
4416
4417 return strncmp(patt, name, len);
4418}
4419
75683fe7 4420static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4421{
8bfa79fc
TH
4422 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4423 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4424 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4425
8bfa79fc
TH
4426 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4427 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4428
6919a0a6 4429 while (ad->model_num) {
539cc7c7 4430 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4431 if (ad->model_rev == NULL)
4432 return ad->horkage;
539cc7c7 4433 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4434 return ad->horkage;
f4b15fef 4435 }
6919a0a6 4436 ad++;
f4b15fef 4437 }
1da177e4
LT
4438 return 0;
4439}
4440
6919a0a6
AC
4441static int ata_dma_blacklisted(const struct ata_device *dev)
4442{
4443 /* We don't support polling DMA.
4444 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4445 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4446 */
9af5c9c9 4447 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4448 (dev->flags & ATA_DFLAG_CDB_INTR))
4449 return 1;
75683fe7 4450 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4451}
4452
6bbfd53d
AC
4453/**
4454 * ata_is_40wire - check drive side detection
4455 * @dev: device
4456 *
4457 * Perform drive side detection decoding, allowing for device vendors
4458 * who can't follow the documentation.
4459 */
4460
4461static int ata_is_40wire(struct ata_device *dev)
4462{
4463 if (dev->horkage & ATA_HORKAGE_IVB)
4464 return ata_drive_40wire_relaxed(dev->id);
4465 return ata_drive_40wire(dev->id);
4466}
4467
15a5551c
AC
4468/**
4469 * cable_is_40wire - 40/80/SATA decider
4470 * @ap: port to consider
4471 *
4472 * This function encapsulates the policy for speed management
4473 * in one place. At the moment we don't cache the result but
4474 * there is a good case for setting ap->cbl to the result when
4475 * we are called with unknown cables (and figuring out if it
4476 * impacts hotplug at all).
4477 *
4478 * Return 1 if the cable appears to be 40 wire.
4479 */
4480
4481static int cable_is_40wire(struct ata_port *ap)
4482{
4483 struct ata_link *link;
4484 struct ata_device *dev;
4485
4a9c7b33 4486 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4487 if (ap->cbl == ATA_CBL_PATA40)
4488 return 1;
4a9c7b33
TH
4489
4490 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4491 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4492 return 0;
4a9c7b33
TH
4493
4494 /* If the system is known to be 40 wire short cable (eg
4495 * laptop), then we allow 80 wire modes even if the drive
4496 * isn't sure.
4497 */
f792068e
AC
4498 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4499 return 0;
4a9c7b33
TH
4500
4501 /* If the controller doesn't know, we scan.
4502 *
4503 * Note: We look for all 40 wire detects at this point. Any
4504 * 80 wire detect is taken to be 80 wire cable because
4505 * - in many setups only the one drive (slave if present) will
4506 * give a valid detect
4507 * - if you have a non detect capable drive you don't want it
4508 * to colour the choice
4509 */
1eca4365
TH
4510 ata_for_each_link(link, ap, EDGE) {
4511 ata_for_each_dev(dev, link, ENABLED) {
4512 if (!ata_is_40wire(dev))
15a5551c
AC
4513 return 0;
4514 }
4515 }
4516 return 1;
4517}
4518
a6d5a51c
TH
4519/**
4520 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4521 * @dev: Device to compute xfermask for
4522 *
acf356b1
TH
4523 * Compute supported xfermask of @dev and store it in
4524 * dev->*_mask. This function is responsible for applying all
4525 * known limits including host controller limits, device
4526 * blacklist, etc...
a6d5a51c
TH
4527 *
4528 * LOCKING:
4529 * None.
a6d5a51c 4530 */
3373efd8 4531static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4532{
9af5c9c9
TH
4533 struct ata_link *link = dev->link;
4534 struct ata_port *ap = link->ap;
cca3974e 4535 struct ata_host *host = ap->host;
a6d5a51c 4536 unsigned long xfer_mask;
1da177e4 4537
37deecb5 4538 /* controller modes available */
565083e1
TH
4539 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4540 ap->mwdma_mask, ap->udma_mask);
4541
8343f889 4542 /* drive modes available */
37deecb5
TH
4543 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4544 dev->mwdma_mask, dev->udma_mask);
4545 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4546
b352e57d
AC
4547 /*
4548 * CFA Advanced TrueIDE timings are not allowed on a shared
4549 * cable
4550 */
4551 if (ata_dev_pair(dev)) {
4552 /* No PIO5 or PIO6 */
4553 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4554 /* No MWDMA3 or MWDMA 4 */
4555 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4556 }
4557
37deecb5
TH
4558 if (ata_dma_blacklisted(dev)) {
4559 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4560 ata_dev_printk(dev, KERN_WARNING,
4561 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4562 }
a6d5a51c 4563
14d66ab7 4564 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4565 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4566 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4567 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4568 "other device, disabling DMA\n");
5444a6f4 4569 }
565083e1 4570
e424675f
JG
4571 if (ap->flags & ATA_FLAG_NO_IORDY)
4572 xfer_mask &= ata_pio_mask_no_iordy(dev);
4573
5444a6f4 4574 if (ap->ops->mode_filter)
a76b62ca 4575 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4576
8343f889
RH
4577 /* Apply cable rule here. Don't apply it early because when
4578 * we handle hot plug the cable type can itself change.
4579 * Check this last so that we know if the transfer rate was
4580 * solely limited by the cable.
4581 * Unknown or 80 wire cables reported host side are checked
4582 * drive side as well. Cases where we know a 40wire cable
4583 * is used safely for 80 are not checked here.
4584 */
4585 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4586 /* UDMA/44 or higher would be available */
15a5551c 4587 if (cable_is_40wire(ap)) {
2dcb407e 4588 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4589 "limited to UDMA/33 due to 40-wire cable\n");
4590 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4591 }
4592
565083e1
TH
4593 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4594 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4595}
4596
1da177e4
LT
4597/**
4598 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4599 * @dev: Device to which command will be sent
4600 *
780a87f7
JG
4601 * Issue SET FEATURES - XFER MODE command to device @dev
4602 * on port @ap.
4603 *
1da177e4 4604 * LOCKING:
0cba632b 4605 * PCI/etc. bus probe sem.
83206a29
TH
4606 *
4607 * RETURNS:
4608 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4609 */
4610
3373efd8 4611static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4612{
a0123703 4613 struct ata_taskfile tf;
83206a29 4614 unsigned int err_mask;
1da177e4
LT
4615
4616 /* set up set-features taskfile */
4617 DPRINTK("set features - xfer mode\n");
4618
464cf177
TH
4619 /* Some controllers and ATAPI devices show flaky interrupt
4620 * behavior after setting xfer mode. Use polling instead.
4621 */
3373efd8 4622 ata_tf_init(dev, &tf);
a0123703
TH
4623 tf.command = ATA_CMD_SET_FEATURES;
4624 tf.feature = SETFEATURES_XFER;
464cf177 4625 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4626 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4627 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4628 if (ata_pio_need_iordy(dev))
4629 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4630 /* If the device has IORDY and the controller does not - turn it off */
4631 else if (ata_id_has_iordy(dev->id))
11b7becc 4632 tf.nsect = 0x01;
b9f8ab2d
AC
4633 else /* In the ancient relic department - skip all of this */
4634 return 0;
1da177e4 4635
2b789108 4636 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4637
4638 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4639 return err_mask;
4640}
9f45cbd3 4641/**
218f3d30 4642 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4643 * @dev: Device to which command will be sent
4644 * @enable: Whether to enable or disable the feature
218f3d30 4645 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4646 *
4647 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4648 * on port @ap with sector count
9f45cbd3
KCA
4649 *
4650 * LOCKING:
4651 * PCI/etc. bus probe sem.
4652 *
4653 * RETURNS:
4654 * 0 on success, AC_ERR_* mask otherwise.
4655 */
218f3d30
JG
4656static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4657 u8 feature)
9f45cbd3
KCA
4658{
4659 struct ata_taskfile tf;
4660 unsigned int err_mask;
4661
4662 /* set up set-features taskfile */
4663 DPRINTK("set features - SATA features\n");
4664
4665 ata_tf_init(dev, &tf);
4666 tf.command = ATA_CMD_SET_FEATURES;
4667 tf.feature = enable;
4668 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4669 tf.protocol = ATA_PROT_NODATA;
218f3d30 4670 tf.nsect = feature;
9f45cbd3 4671
2b789108 4672 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4673
83206a29
TH
4674 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4675 return err_mask;
1da177e4
LT
4676}
4677
8bf62ece
AL
4678/**
4679 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4680 * @dev: Device to which command will be sent
e2a7f77a
RD
4681 * @heads: Number of heads (taskfile parameter)
4682 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4683 *
4684 * LOCKING:
6aff8f1f
TH
4685 * Kernel thread context (may sleep)
4686 *
4687 * RETURNS:
4688 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4689 */
3373efd8
TH
4690static unsigned int ata_dev_init_params(struct ata_device *dev,
4691 u16 heads, u16 sectors)
8bf62ece 4692{
a0123703 4693 struct ata_taskfile tf;
6aff8f1f 4694 unsigned int err_mask;
8bf62ece
AL
4695
4696 /* Number of sectors per track 1-255. Number of heads 1-16 */
4697 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4698 return AC_ERR_INVALID;
8bf62ece
AL
4699
4700 /* set up init dev params taskfile */
4701 DPRINTK("init dev params \n");
4702
3373efd8 4703 ata_tf_init(dev, &tf);
a0123703
TH
4704 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4705 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4706 tf.protocol = ATA_PROT_NODATA;
4707 tf.nsect = sectors;
4708 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4709
2b789108 4710 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4711 /* A clean abort indicates an original or just out of spec drive
4712 and we should continue as we issue the setup based on the
4713 drive reported working geometry */
4714 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4715 err_mask = 0;
8bf62ece 4716
6aff8f1f
TH
4717 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4718 return err_mask;
8bf62ece
AL
4719}
4720
1da177e4 4721/**
0cba632b
JG
4722 * ata_sg_clean - Unmap DMA memory associated with command
4723 * @qc: Command containing DMA memory to be released
4724 *
4725 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4726 *
4727 * LOCKING:
cca3974e 4728 * spin_lock_irqsave(host lock)
1da177e4 4729 */
70e6ad0c 4730void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4731{
4732 struct ata_port *ap = qc->ap;
ff2aeb1e 4733 struct scatterlist *sg = qc->sg;
1da177e4
LT
4734 int dir = qc->dma_dir;
4735
efcb3cf7 4736 WARN_ON_ONCE(sg == NULL);
1da177e4 4737
dde20207 4738 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4739
dde20207 4740 if (qc->n_elem)
5825627c 4741 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4742
4743 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4744 qc->sg = NULL;
1da177e4
LT
4745}
4746
1da177e4 4747/**
5895ef9a 4748 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4749 * @qc: Metadata associated with taskfile to check
4750 *
780a87f7
JG
4751 * Allow low-level driver to filter ATA PACKET commands, returning
4752 * a status indicating whether or not it is OK to use DMA for the
4753 * supplied PACKET command.
4754 *
1da177e4 4755 * LOCKING:
624d5c51
TH
4756 * spin_lock_irqsave(host lock)
4757 *
4758 * RETURNS: 0 when ATAPI DMA can be used
4759 * nonzero otherwise
4760 */
5895ef9a 4761int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4762{
4763 struct ata_port *ap = qc->ap;
71601958 4764
624d5c51
TH
4765 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4766 * few ATAPI devices choke on such DMA requests.
4767 */
6a87e42e
TH
4768 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4769 unlikely(qc->nbytes & 15))
624d5c51 4770 return 1;
e2cec771 4771
624d5c51
TH
4772 if (ap->ops->check_atapi_dma)
4773 return ap->ops->check_atapi_dma(qc);
e2cec771 4774
624d5c51
TH
4775 return 0;
4776}
1da177e4 4777
624d5c51
TH
4778/**
4779 * ata_std_qc_defer - Check whether a qc needs to be deferred
4780 * @qc: ATA command in question
4781 *
4782 * Non-NCQ commands cannot run with any other command, NCQ or
4783 * not. As upper layer only knows the queue depth, we are
4784 * responsible for maintaining exclusion. This function checks
4785 * whether a new command @qc can be issued.
4786 *
4787 * LOCKING:
4788 * spin_lock_irqsave(host lock)
4789 *
4790 * RETURNS:
4791 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4792 */
4793int ata_std_qc_defer(struct ata_queued_cmd *qc)
4794{
4795 struct ata_link *link = qc->dev->link;
e2cec771 4796
624d5c51
TH
4797 if (qc->tf.protocol == ATA_PROT_NCQ) {
4798 if (!ata_tag_valid(link->active_tag))
4799 return 0;
4800 } else {
4801 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4802 return 0;
4803 }
e2cec771 4804
624d5c51
TH
4805 return ATA_DEFER_LINK;
4806}
6912ccd5 4807
624d5c51 4808void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4809
624d5c51
TH
4810/**
4811 * ata_sg_init - Associate command with scatter-gather table.
4812 * @qc: Command to be associated
4813 * @sg: Scatter-gather table.
4814 * @n_elem: Number of elements in s/g table.
4815 *
4816 * Initialize the data-related elements of queued_cmd @qc
4817 * to point to a scatter-gather table @sg, containing @n_elem
4818 * elements.
4819 *
4820 * LOCKING:
4821 * spin_lock_irqsave(host lock)
4822 */
4823void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4824 unsigned int n_elem)
4825{
4826 qc->sg = sg;
4827 qc->n_elem = n_elem;
4828 qc->cursg = qc->sg;
4829}
bb5cb290 4830
624d5c51
TH
4831/**
4832 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4833 * @qc: Command with scatter-gather table to be mapped.
4834 *
4835 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4836 *
4837 * LOCKING:
4838 * spin_lock_irqsave(host lock)
4839 *
4840 * RETURNS:
4841 * Zero on success, negative on error.
4842 *
4843 */
4844static int ata_sg_setup(struct ata_queued_cmd *qc)
4845{
4846 struct ata_port *ap = qc->ap;
4847 unsigned int n_elem;
1da177e4 4848
624d5c51 4849 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4850
624d5c51
TH
4851 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4852 if (n_elem < 1)
4853 return -1;
bb5cb290 4854
624d5c51 4855 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4856 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4857 qc->n_elem = n_elem;
4858 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4859
624d5c51 4860 return 0;
1da177e4
LT
4861}
4862
624d5c51
TH
4863/**
4864 * swap_buf_le16 - swap halves of 16-bit words in place
4865 * @buf: Buffer to swap
4866 * @buf_words: Number of 16-bit words in buffer.
4867 *
4868 * Swap halves of 16-bit words if needed to convert from
4869 * little-endian byte order to native cpu byte order, or
4870 * vice-versa.
4871 *
4872 * LOCKING:
4873 * Inherited from caller.
4874 */
4875void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4876{
624d5c51
TH
4877#ifdef __BIG_ENDIAN
4878 unsigned int i;
8061f5f0 4879
624d5c51
TH
4880 for (i = 0; i < buf_words; i++)
4881 buf[i] = le16_to_cpu(buf[i]);
4882#endif /* __BIG_ENDIAN */
8061f5f0
TH
4883}
4884
8a8bc223
TH
4885/**
4886 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4887 * @ap: target port
8a8bc223
TH
4888 *
4889 * LOCKING:
4890 * None.
4891 */
4892
4893static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4894{
4895 struct ata_queued_cmd *qc = NULL;
4896 unsigned int i;
4897
4898 /* no command while frozen */
4899 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4900 return NULL;
4901
4902 /* the last tag is reserved for internal command. */
4903 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4904 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4905 qc = __ata_qc_from_tag(ap, i);
4906 break;
4907 }
4908
4909 if (qc)
4910 qc->tag = i;
4911
4912 return qc;
4913}
4914
1da177e4
LT
4915/**
4916 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4917 * @dev: Device from whom we request an available command structure
4918 *
4919 * LOCKING:
0cba632b 4920 * None.
1da177e4
LT
4921 */
4922
8a8bc223 4923struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4924{
9af5c9c9 4925 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4926 struct ata_queued_cmd *qc;
4927
8a8bc223 4928 qc = ata_qc_new(ap);
1da177e4 4929 if (qc) {
1da177e4
LT
4930 qc->scsicmd = NULL;
4931 qc->ap = ap;
4932 qc->dev = dev;
1da177e4 4933
2c13b7ce 4934 ata_qc_reinit(qc);
1da177e4
LT
4935 }
4936
4937 return qc;
4938}
4939
8a8bc223
TH
4940/**
4941 * ata_qc_free - free unused ata_queued_cmd
4942 * @qc: Command to complete
4943 *
4944 * Designed to free unused ata_queued_cmd object
4945 * in case something prevents using it.
4946 *
4947 * LOCKING:
4948 * spin_lock_irqsave(host lock)
4949 */
4950void ata_qc_free(struct ata_queued_cmd *qc)
4951{
a1104016 4952 struct ata_port *ap;
8a8bc223
TH
4953 unsigned int tag;
4954
efcb3cf7 4955 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4956 ap = qc->ap;
8a8bc223
TH
4957
4958 qc->flags = 0;
4959 tag = qc->tag;
4960 if (likely(ata_tag_valid(tag))) {
4961 qc->tag = ATA_TAG_POISON;
4962 clear_bit(tag, &ap->qc_allocated);
4963 }
4964}
4965
76014427 4966void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4967{
a1104016
JL
4968 struct ata_port *ap;
4969 struct ata_link *link;
dedaf2b0 4970
efcb3cf7
TH
4971 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4972 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4973 ap = qc->ap;
4974 link = qc->dev->link;
1da177e4
LT
4975
4976 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4977 ata_sg_clean(qc);
4978
7401abf2 4979 /* command should be marked inactive atomically with qc completion */
da917d69 4980 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4981 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4982 if (!link->sactive)
4983 ap->nr_active_links--;
4984 } else {
9af5c9c9 4985 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4986 ap->nr_active_links--;
4987 }
4988
4989 /* clear exclusive status */
4990 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4991 ap->excl_link == link))
4992 ap->excl_link = NULL;
7401abf2 4993
3f3791d3
AL
4994 /* atapi: mark qc as inactive to prevent the interrupt handler
4995 * from completing the command twice later, before the error handler
4996 * is called. (when rc != 0 and atapi request sense is needed)
4997 */
4998 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4999 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5000
1da177e4 5001 /* call completion callback */
77853bf2 5002 qc->complete_fn(qc);
1da177e4
LT
5003}
5004
39599a53
TH
5005static void fill_result_tf(struct ata_queued_cmd *qc)
5006{
5007 struct ata_port *ap = qc->ap;
5008
39599a53 5009 qc->result_tf.flags = qc->tf.flags;
22183bf5 5010 ap->ops->qc_fill_rtf(qc);
39599a53
TH
5011}
5012
00115e0f
TH
5013static void ata_verify_xfer(struct ata_queued_cmd *qc)
5014{
5015 struct ata_device *dev = qc->dev;
5016
5017 if (ata_tag_internal(qc->tag))
5018 return;
5019
5020 if (ata_is_nodata(qc->tf.protocol))
5021 return;
5022
5023 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5024 return;
5025
5026 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5027}
5028
f686bcb8
TH
5029/**
5030 * ata_qc_complete - Complete an active ATA command
5031 * @qc: Command to complete
f686bcb8
TH
5032 *
5033 * Indicate to the mid and upper layers that an ATA
5034 * command has completed, with either an ok or not-ok status.
5035 *
5036 * LOCKING:
cca3974e 5037 * spin_lock_irqsave(host lock)
f686bcb8
TH
5038 */
5039void ata_qc_complete(struct ata_queued_cmd *qc)
5040{
5041 struct ata_port *ap = qc->ap;
5042
5043 /* XXX: New EH and old EH use different mechanisms to
5044 * synchronize EH with regular execution path.
5045 *
5046 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5047 * Normal execution path is responsible for not accessing a
5048 * failed qc. libata core enforces the rule by returning NULL
5049 * from ata_qc_from_tag() for failed qcs.
5050 *
5051 * Old EH depends on ata_qc_complete() nullifying completion
5052 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5053 * not synchronize with interrupt handler. Only PIO task is
5054 * taken care of.
5055 */
5056 if (ap->ops->error_handler) {
4dbfa39b
TH
5057 struct ata_device *dev = qc->dev;
5058 struct ata_eh_info *ehi = &dev->link->eh_info;
5059
f686bcb8
TH
5060 if (unlikely(qc->err_mask))
5061 qc->flags |= ATA_QCFLAG_FAILED;
5062
5063 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
5064 /* always fill result TF for failed qc */
5065 fill_result_tf(qc);
5066
5067 if (!ata_tag_internal(qc->tag))
f686bcb8 5068 ata_qc_schedule_eh(qc);
f4b31db9
TH
5069 else
5070 __ata_qc_complete(qc);
5071 return;
f686bcb8
TH
5072 }
5073
4dc738ed
TH
5074 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5075
f686bcb8
TH
5076 /* read result TF if requested */
5077 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5078 fill_result_tf(qc);
f686bcb8 5079
4dbfa39b
TH
5080 /* Some commands need post-processing after successful
5081 * completion.
5082 */
5083 switch (qc->tf.command) {
5084 case ATA_CMD_SET_FEATURES:
5085 if (qc->tf.feature != SETFEATURES_WC_ON &&
5086 qc->tf.feature != SETFEATURES_WC_OFF)
5087 break;
5088 /* fall through */
5089 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5090 case ATA_CMD_SET_MULTI: /* multi_count changed */
5091 /* revalidate device */
5092 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5093 ata_port_schedule_eh(ap);
5094 break;
054a5fba
TH
5095
5096 case ATA_CMD_SLEEP:
5097 dev->flags |= ATA_DFLAG_SLEEPING;
5098 break;
4dbfa39b
TH
5099 }
5100
00115e0f
TH
5101 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5102 ata_verify_xfer(qc);
5103
f686bcb8
TH
5104 __ata_qc_complete(qc);
5105 } else {
5106 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5107 return;
5108
5109 /* read result TF if failed or requested */
5110 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5111 fill_result_tf(qc);
f686bcb8
TH
5112
5113 __ata_qc_complete(qc);
5114 }
5115}
5116
dedaf2b0
TH
5117/**
5118 * ata_qc_complete_multiple - Complete multiple qcs successfully
5119 * @ap: port in question
5120 * @qc_active: new qc_active mask
dedaf2b0
TH
5121 *
5122 * Complete in-flight commands. This functions is meant to be
5123 * called from low-level driver's interrupt routine to complete
5124 * requests normally. ap->qc_active and @qc_active is compared
5125 * and commands are completed accordingly.
5126 *
5127 * LOCKING:
cca3974e 5128 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5129 *
5130 * RETURNS:
5131 * Number of completed commands on success, -errno otherwise.
5132 */
79f97dad 5133int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5134{
5135 int nr_done = 0;
5136 u32 done_mask;
dedaf2b0
TH
5137
5138 done_mask = ap->qc_active ^ qc_active;
5139
5140 if (unlikely(done_mask & qc_active)) {
5141 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5142 "(%08x->%08x)\n", ap->qc_active, qc_active);
5143 return -EINVAL;
5144 }
5145
43768180 5146 while (done_mask) {
dedaf2b0 5147 struct ata_queued_cmd *qc;
43768180 5148 unsigned int tag = __ffs(done_mask);
dedaf2b0 5149
43768180
JA
5150 qc = ata_qc_from_tag(ap, tag);
5151 if (qc) {
dedaf2b0
TH
5152 ata_qc_complete(qc);
5153 nr_done++;
5154 }
43768180 5155 done_mask &= ~(1 << tag);
dedaf2b0
TH
5156 }
5157
5158 return nr_done;
5159}
5160
1da177e4
LT
5161/**
5162 * ata_qc_issue - issue taskfile to device
5163 * @qc: command to issue to device
5164 *
5165 * Prepare an ATA command to submission to device.
5166 * This includes mapping the data into a DMA-able
5167 * area, filling in the S/G table, and finally
5168 * writing the taskfile to hardware, starting the command.
5169 *
5170 * LOCKING:
cca3974e 5171 * spin_lock_irqsave(host lock)
1da177e4 5172 */
8e0e694a 5173void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5174{
5175 struct ata_port *ap = qc->ap;
9af5c9c9 5176 struct ata_link *link = qc->dev->link;
405e66b3 5177 u8 prot = qc->tf.protocol;
1da177e4 5178
dedaf2b0
TH
5179 /* Make sure only one non-NCQ command is outstanding. The
5180 * check is skipped for old EH because it reuses active qc to
5181 * request ATAPI sense.
5182 */
efcb3cf7 5183 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5184
1973a023 5185 if (ata_is_ncq(prot)) {
efcb3cf7 5186 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5187
5188 if (!link->sactive)
5189 ap->nr_active_links++;
9af5c9c9 5190 link->sactive |= 1 << qc->tag;
dedaf2b0 5191 } else {
efcb3cf7 5192 WARN_ON_ONCE(link->sactive);
da917d69
TH
5193
5194 ap->nr_active_links++;
9af5c9c9 5195 link->active_tag = qc->tag;
dedaf2b0
TH
5196 }
5197
e4a70e76 5198 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5199 ap->qc_active |= 1 << qc->tag;
e4a70e76 5200
f92a2636
TH
5201 /* We guarantee to LLDs that they will have at least one
5202 * non-zero sg if the command is a data command.
5203 */
ff2aeb1e 5204 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5205
405e66b3 5206 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5207 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5208 if (ata_sg_setup(qc))
5209 goto sg_err;
1da177e4 5210
cf480626 5211 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5212 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5213 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5214 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5215 ata_link_abort(link);
5216 return;
5217 }
5218
1da177e4
LT
5219 ap->ops->qc_prep(qc);
5220
8e0e694a
TH
5221 qc->err_mask |= ap->ops->qc_issue(qc);
5222 if (unlikely(qc->err_mask))
5223 goto err;
5224 return;
1da177e4 5225
8e436af9 5226sg_err:
8e0e694a
TH
5227 qc->err_mask |= AC_ERR_SYSTEM;
5228err:
5229 ata_qc_complete(qc);
1da177e4
LT
5230}
5231
34bf2170
TH
5232/**
5233 * sata_scr_valid - test whether SCRs are accessible
936fd732 5234 * @link: ATA link to test SCR accessibility for
34bf2170 5235 *
936fd732 5236 * Test whether SCRs are accessible for @link.
34bf2170
TH
5237 *
5238 * LOCKING:
5239 * None.
5240 *
5241 * RETURNS:
5242 * 1 if SCRs are accessible, 0 otherwise.
5243 */
936fd732 5244int sata_scr_valid(struct ata_link *link)
34bf2170 5245{
936fd732
TH
5246 struct ata_port *ap = link->ap;
5247
a16abc0b 5248 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5249}
5250
5251/**
5252 * sata_scr_read - read SCR register of the specified port
936fd732 5253 * @link: ATA link to read SCR for
34bf2170
TH
5254 * @reg: SCR to read
5255 * @val: Place to store read value
5256 *
936fd732 5257 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5258 * guaranteed to succeed if @link is ap->link, the cable type of
5259 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5260 *
5261 * LOCKING:
633273a3 5262 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5263 *
5264 * RETURNS:
5265 * 0 on success, negative errno on failure.
5266 */
936fd732 5267int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5268{
633273a3 5269 if (ata_is_host_link(link)) {
633273a3 5270 if (sata_scr_valid(link))
82ef04fb 5271 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5272 return -EOPNOTSUPP;
5273 }
5274
5275 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5276}
5277
5278/**
5279 * sata_scr_write - write SCR register of the specified port
936fd732 5280 * @link: ATA link to write SCR for
34bf2170
TH
5281 * @reg: SCR to write
5282 * @val: value to write
5283 *
936fd732 5284 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5285 * guaranteed to succeed if @link is ap->link, the cable type of
5286 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5287 *
5288 * LOCKING:
633273a3 5289 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5290 *
5291 * RETURNS:
5292 * 0 on success, negative errno on failure.
5293 */
936fd732 5294int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5295{
633273a3 5296 if (ata_is_host_link(link)) {
633273a3 5297 if (sata_scr_valid(link))
82ef04fb 5298 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5299 return -EOPNOTSUPP;
5300 }
936fd732 5301
633273a3 5302 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5303}
5304
5305/**
5306 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5307 * @link: ATA link to write SCR for
34bf2170
TH
5308 * @reg: SCR to write
5309 * @val: value to write
5310 *
5311 * This function is identical to sata_scr_write() except that this
5312 * function performs flush after writing to the register.
5313 *
5314 * LOCKING:
633273a3 5315 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5316 *
5317 * RETURNS:
5318 * 0 on success, negative errno on failure.
5319 */
936fd732 5320int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5321{
633273a3 5322 if (ata_is_host_link(link)) {
633273a3 5323 int rc;
da3dbb17 5324
633273a3 5325 if (sata_scr_valid(link)) {
82ef04fb 5326 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5327 if (rc == 0)
82ef04fb 5328 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5329 return rc;
5330 }
5331 return -EOPNOTSUPP;
34bf2170 5332 }
633273a3
TH
5333
5334 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5335}
5336
5337/**
b1c72916 5338 * ata_phys_link_online - test whether the given link is online
936fd732 5339 * @link: ATA link to test
34bf2170 5340 *
936fd732
TH
5341 * Test whether @link is online. Note that this function returns
5342 * 0 if online status of @link cannot be obtained, so
5343 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5344 *
5345 * LOCKING:
5346 * None.
5347 *
5348 * RETURNS:
b5b3fa38 5349 * True if the port online status is available and online.
34bf2170 5350 */
b1c72916 5351bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5352{
5353 u32 sstatus;
5354
936fd732 5355 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5356 ata_sstatus_online(sstatus))
b5b3fa38
TH
5357 return true;
5358 return false;
34bf2170
TH
5359}
5360
5361/**
b1c72916 5362 * ata_phys_link_offline - test whether the given link is offline
936fd732 5363 * @link: ATA link to test
34bf2170 5364 *
936fd732
TH
5365 * Test whether @link is offline. Note that this function
5366 * returns 0 if offline status of @link cannot be obtained, so
5367 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5368 *
5369 * LOCKING:
5370 * None.
5371 *
5372 * RETURNS:
b5b3fa38 5373 * True if the port offline status is available and offline.
34bf2170 5374 */
b1c72916 5375bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5376{
5377 u32 sstatus;
5378
936fd732 5379 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5380 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5381 return true;
5382 return false;
34bf2170 5383}
0baab86b 5384
b1c72916
TH
5385/**
5386 * ata_link_online - test whether the given link is online
5387 * @link: ATA link to test
5388 *
5389 * Test whether @link is online. This is identical to
5390 * ata_phys_link_online() when there's no slave link. When
5391 * there's a slave link, this function should only be called on
5392 * the master link and will return true if any of M/S links is
5393 * online.
5394 *
5395 * LOCKING:
5396 * None.
5397 *
5398 * RETURNS:
5399 * True if the port online status is available and online.
5400 */
5401bool ata_link_online(struct ata_link *link)
5402{
5403 struct ata_link *slave = link->ap->slave_link;
5404
5405 WARN_ON(link == slave); /* shouldn't be called on slave link */
5406
5407 return ata_phys_link_online(link) ||
5408 (slave && ata_phys_link_online(slave));
5409}
5410
5411/**
5412 * ata_link_offline - test whether the given link is offline
5413 * @link: ATA link to test
5414 *
5415 * Test whether @link is offline. This is identical to
5416 * ata_phys_link_offline() when there's no slave link. When
5417 * there's a slave link, this function should only be called on
5418 * the master link and will return true if both M/S links are
5419 * offline.
5420 *
5421 * LOCKING:
5422 * None.
5423 *
5424 * RETURNS:
5425 * True if the port offline status is available and offline.
5426 */
5427bool ata_link_offline(struct ata_link *link)
5428{
5429 struct ata_link *slave = link->ap->slave_link;
5430
5431 WARN_ON(link == slave); /* shouldn't be called on slave link */
5432
5433 return ata_phys_link_offline(link) &&
5434 (!slave || ata_phys_link_offline(slave));
5435}
5436
6ffa01d8 5437#ifdef CONFIG_PM
cca3974e
JG
5438static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5439 unsigned int action, unsigned int ehi_flags,
5440 int wait)
500530f6
TH
5441{
5442 unsigned long flags;
5443 int i, rc;
5444
cca3974e
JG
5445 for (i = 0; i < host->n_ports; i++) {
5446 struct ata_port *ap = host->ports[i];
e3667ebf 5447 struct ata_link *link;
500530f6
TH
5448
5449 /* Previous resume operation might still be in
5450 * progress. Wait for PM_PENDING to clear.
5451 */
5452 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5453 ata_port_wait_eh(ap);
5454 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5455 }
5456
5457 /* request PM ops to EH */
5458 spin_lock_irqsave(ap->lock, flags);
5459
5460 ap->pm_mesg = mesg;
5461 if (wait) {
5462 rc = 0;
5463 ap->pm_result = &rc;
5464 }
5465
5466 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5467 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5468 link->eh_info.action |= action;
5469 link->eh_info.flags |= ehi_flags;
5470 }
500530f6
TH
5471
5472 ata_port_schedule_eh(ap);
5473
5474 spin_unlock_irqrestore(ap->lock, flags);
5475
5476 /* wait and check result */
5477 if (wait) {
5478 ata_port_wait_eh(ap);
5479 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5480 if (rc)
5481 return rc;
5482 }
5483 }
5484
5485 return 0;
5486}
5487
5488/**
cca3974e
JG
5489 * ata_host_suspend - suspend host
5490 * @host: host to suspend
500530f6
TH
5491 * @mesg: PM message
5492 *
cca3974e 5493 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5494 * function requests EH to perform PM operations and waits for EH
5495 * to finish.
5496 *
5497 * LOCKING:
5498 * Kernel thread context (may sleep).
5499 *
5500 * RETURNS:
5501 * 0 on success, -errno on failure.
5502 */
cca3974e 5503int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5504{
9666f400 5505 int rc;
500530f6 5506
ca77329f
KCA
5507 /*
5508 * disable link pm on all ports before requesting
5509 * any pm activity
5510 */
5511 ata_lpm_enable(host);
5512
cca3974e 5513 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5514 if (rc == 0)
5515 host->dev->power.power_state = mesg;
500530f6
TH
5516 return rc;
5517}
5518
5519/**
cca3974e
JG
5520 * ata_host_resume - resume host
5521 * @host: host to resume
500530f6 5522 *
cca3974e 5523 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5524 * function requests EH to perform PM operations and returns.
5525 * Note that all resume operations are performed parallely.
5526 *
5527 * LOCKING:
5528 * Kernel thread context (may sleep).
5529 */
cca3974e 5530void ata_host_resume(struct ata_host *host)
500530f6 5531{
cf480626 5532 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5533 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5534 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5535
5536 /* reenable link pm */
5537 ata_lpm_disable(host);
500530f6 5538}
6ffa01d8 5539#endif
500530f6 5540
c893a3ae
RD
5541/**
5542 * ata_port_start - Set port up for dma.
5543 * @ap: Port to initialize
5544 *
5545 * Called just after data structures for each port are
5546 * initialized. Allocates space for PRD table.
5547 *
5548 * May be used as the port_start() entry in ata_port_operations.
5549 *
5550 * LOCKING:
5551 * Inherited from caller.
5552 */
f0d36efd 5553int ata_port_start(struct ata_port *ap)
1da177e4 5554{
2f1f610b 5555 struct device *dev = ap->dev;
1da177e4 5556
f0d36efd
TH
5557 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5558 GFP_KERNEL);
1da177e4
LT
5559 if (!ap->prd)
5560 return -ENOMEM;
5561
1da177e4
LT
5562 return 0;
5563}
5564
3ef3b43d
TH
5565/**
5566 * ata_dev_init - Initialize an ata_device structure
5567 * @dev: Device structure to initialize
5568 *
5569 * Initialize @dev in preparation for probing.
5570 *
5571 * LOCKING:
5572 * Inherited from caller.
5573 */
5574void ata_dev_init(struct ata_device *dev)
5575{
b1c72916 5576 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5577 struct ata_port *ap = link->ap;
72fa4b74
TH
5578 unsigned long flags;
5579
b1c72916 5580 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5581 link->sata_spd_limit = link->hw_sata_spd_limit;
5582 link->sata_spd = 0;
5a04bf4b 5583
72fa4b74
TH
5584 /* High bits of dev->flags are used to record warm plug
5585 * requests which occur asynchronously. Synchronize using
cca3974e 5586 * host lock.
72fa4b74 5587 */
ba6a1308 5588 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5589 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5590 dev->horkage = 0;
ba6a1308 5591 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5592
99cf610a
TH
5593 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5594 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5595 dev->pio_mask = UINT_MAX;
5596 dev->mwdma_mask = UINT_MAX;
5597 dev->udma_mask = UINT_MAX;
5598}
5599
4fb37a25
TH
5600/**
5601 * ata_link_init - Initialize an ata_link structure
5602 * @ap: ATA port link is attached to
5603 * @link: Link structure to initialize
8989805d 5604 * @pmp: Port multiplier port number
4fb37a25
TH
5605 *
5606 * Initialize @link.
5607 *
5608 * LOCKING:
5609 * Kernel thread context (may sleep)
5610 */
fb7fd614 5611void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5612{
5613 int i;
5614
5615 /* clear everything except for devices */
5616 memset(link, 0, offsetof(struct ata_link, device[0]));
5617
5618 link->ap = ap;
8989805d 5619 link->pmp = pmp;
4fb37a25
TH
5620 link->active_tag = ATA_TAG_POISON;
5621 link->hw_sata_spd_limit = UINT_MAX;
5622
5623 /* can't use iterator, ap isn't initialized yet */
5624 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5625 struct ata_device *dev = &link->device[i];
5626
5627 dev->link = link;
5628 dev->devno = dev - link->device;
110f66d2
TH
5629#ifdef CONFIG_ATA_ACPI
5630 dev->gtf_filter = ata_acpi_gtf_filter;
5631#endif
4fb37a25
TH
5632 ata_dev_init(dev);
5633 }
5634}
5635
5636/**
5637 * sata_link_init_spd - Initialize link->sata_spd_limit
5638 * @link: Link to configure sata_spd_limit for
5639 *
5640 * Initialize @link->[hw_]sata_spd_limit to the currently
5641 * configured value.
5642 *
5643 * LOCKING:
5644 * Kernel thread context (may sleep).
5645 *
5646 * RETURNS:
5647 * 0 on success, -errno on failure.
5648 */
fb7fd614 5649int sata_link_init_spd(struct ata_link *link)
4fb37a25 5650{
33267325 5651 u8 spd;
4fb37a25
TH
5652 int rc;
5653
d127ea7b 5654 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5655 if (rc)
5656 return rc;
5657
d127ea7b 5658 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5659 if (spd)
5660 link->hw_sata_spd_limit &= (1 << spd) - 1;
5661
05944bdf 5662 ata_force_link_limits(link);
33267325 5663
4fb37a25
TH
5664 link->sata_spd_limit = link->hw_sata_spd_limit;
5665
5666 return 0;
5667}
5668
1da177e4 5669/**
f3187195
TH
5670 * ata_port_alloc - allocate and initialize basic ATA port resources
5671 * @host: ATA host this allocated port belongs to
1da177e4 5672 *
f3187195
TH
5673 * Allocate and initialize basic ATA port resources.
5674 *
5675 * RETURNS:
5676 * Allocate ATA port on success, NULL on failure.
0cba632b 5677 *
1da177e4 5678 * LOCKING:
f3187195 5679 * Inherited from calling layer (may sleep).
1da177e4 5680 */
f3187195 5681struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5682{
f3187195 5683 struct ata_port *ap;
1da177e4 5684
f3187195
TH
5685 DPRINTK("ENTER\n");
5686
5687 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5688 if (!ap)
5689 return NULL;
5690
f4d6d004 5691 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5692 ap->lock = &host->lock;
198e0fed 5693 ap->flags = ATA_FLAG_DISABLED;
f3187195 5694 ap->print_id = -1;
1da177e4 5695 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5696 ap->host = host;
f3187195 5697 ap->dev = host->dev;
1da177e4 5698 ap->last_ctl = 0xFF;
bd5d825c
BP
5699
5700#if defined(ATA_VERBOSE_DEBUG)
5701 /* turn on all debugging levels */
5702 ap->msg_enable = 0x00FF;
5703#elif defined(ATA_DEBUG)
5704 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5705#else
0dd4b21f 5706 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5707#endif
1da177e4 5708
127102ae 5709#ifdef CONFIG_ATA_SFF
442eacc3 5710 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
f667fdbb
TH
5711#else
5712 INIT_DELAYED_WORK(&ap->port_task, NULL);
127102ae 5713#endif
65f27f38
DH
5714 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5715 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5716 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5717 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5718 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5719 init_timer_deferrable(&ap->fastdrain_timer);
5720 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5721 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5722
838df628 5723 ap->cbl = ATA_CBL_NONE;
838df628 5724
8989805d 5725 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5726
5727#ifdef ATA_IRQ_TRAP
5728 ap->stats.unhandled_irq = 1;
5729 ap->stats.idle_irq = 1;
5730#endif
1da177e4 5731 return ap;
1da177e4
LT
5732}
5733
f0d36efd
TH
5734static void ata_host_release(struct device *gendev, void *res)
5735{
5736 struct ata_host *host = dev_get_drvdata(gendev);
5737 int i;
5738
1aa506e4
TH
5739 for (i = 0; i < host->n_ports; i++) {
5740 struct ata_port *ap = host->ports[i];
5741
4911487a
TH
5742 if (!ap)
5743 continue;
5744
5745 if (ap->scsi_host)
1aa506e4
TH
5746 scsi_host_put(ap->scsi_host);
5747
633273a3 5748 kfree(ap->pmp_link);
b1c72916 5749 kfree(ap->slave_link);
4911487a 5750 kfree(ap);
1aa506e4
TH
5751 host->ports[i] = NULL;
5752 }
5753
1aa56cca 5754 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5755}
5756
f3187195
TH
5757/**
5758 * ata_host_alloc - allocate and init basic ATA host resources
5759 * @dev: generic device this host is associated with
5760 * @max_ports: maximum number of ATA ports associated with this host
5761 *
5762 * Allocate and initialize basic ATA host resources. LLD calls
5763 * this function to allocate a host, initializes it fully and
5764 * attaches it using ata_host_register().
5765 *
5766 * @max_ports ports are allocated and host->n_ports is
5767 * initialized to @max_ports. The caller is allowed to decrease
5768 * host->n_ports before calling ata_host_register(). The unused
5769 * ports will be automatically freed on registration.
5770 *
5771 * RETURNS:
5772 * Allocate ATA host on success, NULL on failure.
5773 *
5774 * LOCKING:
5775 * Inherited from calling layer (may sleep).
5776 */
5777struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5778{
5779 struct ata_host *host;
5780 size_t sz;
5781 int i;
5782
5783 DPRINTK("ENTER\n");
5784
5785 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5786 return NULL;
5787
5788 /* alloc a container for our list of ATA ports (buses) */
5789 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5790 /* alloc a container for our list of ATA ports (buses) */
5791 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5792 if (!host)
5793 goto err_out;
5794
5795 devres_add(dev, host);
5796 dev_set_drvdata(dev, host);
5797
5798 spin_lock_init(&host->lock);
5799 host->dev = dev;
5800 host->n_ports = max_ports;
5801
5802 /* allocate ports bound to this host */
5803 for (i = 0; i < max_ports; i++) {
5804 struct ata_port *ap;
5805
5806 ap = ata_port_alloc(host);
5807 if (!ap)
5808 goto err_out;
5809
5810 ap->port_no = i;
5811 host->ports[i] = ap;
5812 }
5813
5814 devres_remove_group(dev, NULL);
5815 return host;
5816
5817 err_out:
5818 devres_release_group(dev, NULL);
5819 return NULL;
5820}
5821
f5cda257
TH
5822/**
5823 * ata_host_alloc_pinfo - alloc host and init with port_info array
5824 * @dev: generic device this host is associated with
5825 * @ppi: array of ATA port_info to initialize host with
5826 * @n_ports: number of ATA ports attached to this host
5827 *
5828 * Allocate ATA host and initialize with info from @ppi. If NULL
5829 * terminated, @ppi may contain fewer entries than @n_ports. The
5830 * last entry will be used for the remaining ports.
5831 *
5832 * RETURNS:
5833 * Allocate ATA host on success, NULL on failure.
5834 *
5835 * LOCKING:
5836 * Inherited from calling layer (may sleep).
5837 */
5838struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5839 const struct ata_port_info * const * ppi,
5840 int n_ports)
5841{
5842 const struct ata_port_info *pi;
5843 struct ata_host *host;
5844 int i, j;
5845
5846 host = ata_host_alloc(dev, n_ports);
5847 if (!host)
5848 return NULL;
5849
5850 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5851 struct ata_port *ap = host->ports[i];
5852
5853 if (ppi[j])
5854 pi = ppi[j++];
5855
5856 ap->pio_mask = pi->pio_mask;
5857 ap->mwdma_mask = pi->mwdma_mask;
5858 ap->udma_mask = pi->udma_mask;
5859 ap->flags |= pi->flags;
0c88758b 5860 ap->link.flags |= pi->link_flags;
f5cda257
TH
5861 ap->ops = pi->port_ops;
5862
5863 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5864 host->ops = pi->port_ops;
f5cda257
TH
5865 }
5866
5867 return host;
5868}
5869
b1c72916
TH
5870/**
5871 * ata_slave_link_init - initialize slave link
5872 * @ap: port to initialize slave link for
5873 *
5874 * Create and initialize slave link for @ap. This enables slave
5875 * link handling on the port.
5876 *
5877 * In libata, a port contains links and a link contains devices.
5878 * There is single host link but if a PMP is attached to it,
5879 * there can be multiple fan-out links. On SATA, there's usually
5880 * a single device connected to a link but PATA and SATA
5881 * controllers emulating TF based interface can have two - master
5882 * and slave.
5883 *
5884 * However, there are a few controllers which don't fit into this
5885 * abstraction too well - SATA controllers which emulate TF
5886 * interface with both master and slave devices but also have
5887 * separate SCR register sets for each device. These controllers
5888 * need separate links for physical link handling
5889 * (e.g. onlineness, link speed) but should be treated like a
5890 * traditional M/S controller for everything else (e.g. command
5891 * issue, softreset).
5892 *
5893 * slave_link is libata's way of handling this class of
5894 * controllers without impacting core layer too much. For
5895 * anything other than physical link handling, the default host
5896 * link is used for both master and slave. For physical link
5897 * handling, separate @ap->slave_link is used. All dirty details
5898 * are implemented inside libata core layer. From LLD's POV, the
5899 * only difference is that prereset, hardreset and postreset are
5900 * called once more for the slave link, so the reset sequence
5901 * looks like the following.
5902 *
5903 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5904 * softreset(M) -> postreset(M) -> postreset(S)
5905 *
5906 * Note that softreset is called only for the master. Softreset
5907 * resets both M/S by definition, so SRST on master should handle
5908 * both (the standard method will work just fine).
5909 *
5910 * LOCKING:
5911 * Should be called before host is registered.
5912 *
5913 * RETURNS:
5914 * 0 on success, -errno on failure.
5915 */
5916int ata_slave_link_init(struct ata_port *ap)
5917{
5918 struct ata_link *link;
5919
5920 WARN_ON(ap->slave_link);
5921 WARN_ON(ap->flags & ATA_FLAG_PMP);
5922
5923 link = kzalloc(sizeof(*link), GFP_KERNEL);
5924 if (!link)
5925 return -ENOMEM;
5926
5927 ata_link_init(ap, link, 1);
5928 ap->slave_link = link;
5929 return 0;
5930}
5931
32ebbc0c
TH
5932static void ata_host_stop(struct device *gendev, void *res)
5933{
5934 struct ata_host *host = dev_get_drvdata(gendev);
5935 int i;
5936
5937 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5938
5939 for (i = 0; i < host->n_ports; i++) {
5940 struct ata_port *ap = host->ports[i];
5941
5942 if (ap->ops->port_stop)
5943 ap->ops->port_stop(ap);
5944 }
5945
5946 if (host->ops->host_stop)
5947 host->ops->host_stop(host);
5948}
5949
029cfd6b
TH
5950/**
5951 * ata_finalize_port_ops - finalize ata_port_operations
5952 * @ops: ata_port_operations to finalize
5953 *
5954 * An ata_port_operations can inherit from another ops and that
5955 * ops can again inherit from another. This can go on as many
5956 * times as necessary as long as there is no loop in the
5957 * inheritance chain.
5958 *
5959 * Ops tables are finalized when the host is started. NULL or
5960 * unspecified entries are inherited from the closet ancestor
5961 * which has the method and the entry is populated with it.
5962 * After finalization, the ops table directly points to all the
5963 * methods and ->inherits is no longer necessary and cleared.
5964 *
5965 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5966 *
5967 * LOCKING:
5968 * None.
5969 */
5970static void ata_finalize_port_ops(struct ata_port_operations *ops)
5971{
2da67659 5972 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5973 const struct ata_port_operations *cur;
5974 void **begin = (void **)ops;
5975 void **end = (void **)&ops->inherits;
5976 void **pp;
5977
5978 if (!ops || !ops->inherits)
5979 return;
5980
5981 spin_lock(&lock);
5982
5983 for (cur = ops->inherits; cur; cur = cur->inherits) {
5984 void **inherit = (void **)cur;
5985
5986 for (pp = begin; pp < end; pp++, inherit++)
5987 if (!*pp)
5988 *pp = *inherit;
5989 }
5990
5991 for (pp = begin; pp < end; pp++)
5992 if (IS_ERR(*pp))
5993 *pp = NULL;
5994
5995 ops->inherits = NULL;
5996
5997 spin_unlock(&lock);
5998}
5999
ecef7253
TH
6000/**
6001 * ata_host_start - start and freeze ports of an ATA host
6002 * @host: ATA host to start ports for
6003 *
6004 * Start and then freeze ports of @host. Started status is
6005 * recorded in host->flags, so this function can be called
6006 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6007 * once. If host->ops isn't initialized yet, its set to the
6008 * first non-dummy port ops.
ecef7253
TH
6009 *
6010 * LOCKING:
6011 * Inherited from calling layer (may sleep).
6012 *
6013 * RETURNS:
6014 * 0 if all ports are started successfully, -errno otherwise.
6015 */
6016int ata_host_start(struct ata_host *host)
6017{
32ebbc0c
TH
6018 int have_stop = 0;
6019 void *start_dr = NULL;
ecef7253
TH
6020 int i, rc;
6021
6022 if (host->flags & ATA_HOST_STARTED)
6023 return 0;
6024
029cfd6b
TH
6025 ata_finalize_port_ops(host->ops);
6026
ecef7253
TH
6027 for (i = 0; i < host->n_ports; i++) {
6028 struct ata_port *ap = host->ports[i];
6029
029cfd6b
TH
6030 ata_finalize_port_ops(ap->ops);
6031
f3187195
TH
6032 if (!host->ops && !ata_port_is_dummy(ap))
6033 host->ops = ap->ops;
6034
32ebbc0c
TH
6035 if (ap->ops->port_stop)
6036 have_stop = 1;
6037 }
6038
6039 if (host->ops->host_stop)
6040 have_stop = 1;
6041
6042 if (have_stop) {
6043 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6044 if (!start_dr)
6045 return -ENOMEM;
6046 }
6047
6048 for (i = 0; i < host->n_ports; i++) {
6049 struct ata_port *ap = host->ports[i];
6050
ecef7253
TH
6051 if (ap->ops->port_start) {
6052 rc = ap->ops->port_start(ap);
6053 if (rc) {
0f9fe9b7 6054 if (rc != -ENODEV)
0f757743
AM
6055 dev_printk(KERN_ERR, host->dev,
6056 "failed to start port %d "
6057 "(errno=%d)\n", i, rc);
ecef7253
TH
6058 goto err_out;
6059 }
6060 }
ecef7253
TH
6061 ata_eh_freeze_port(ap);
6062 }
6063
32ebbc0c
TH
6064 if (start_dr)
6065 devres_add(host->dev, start_dr);
ecef7253
TH
6066 host->flags |= ATA_HOST_STARTED;
6067 return 0;
6068
6069 err_out:
6070 while (--i >= 0) {
6071 struct ata_port *ap = host->ports[i];
6072
6073 if (ap->ops->port_stop)
6074 ap->ops->port_stop(ap);
6075 }
32ebbc0c 6076 devres_free(start_dr);
ecef7253
TH
6077 return rc;
6078}
6079
b03732f0 6080/**
cca3974e
JG
6081 * ata_sas_host_init - Initialize a host struct
6082 * @host: host to initialize
6083 * @dev: device host is attached to
6084 * @flags: host flags
6085 * @ops: port_ops
b03732f0
BK
6086 *
6087 * LOCKING:
6088 * PCI/etc. bus probe sem.
6089 *
6090 */
f3187195 6091/* KILLME - the only user left is ipr */
cca3974e 6092void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 6093 unsigned long flags, struct ata_port_operations *ops)
b03732f0 6094{
cca3974e
JG
6095 spin_lock_init(&host->lock);
6096 host->dev = dev;
6097 host->flags = flags;
6098 host->ops = ops;
b03732f0
BK
6099}
6100
79318057
AV
6101
6102static void async_port_probe(void *data, async_cookie_t cookie)
6103{
6104 int rc;
6105 struct ata_port *ap = data;
886ad09f
AV
6106
6107 /*
6108 * If we're not allowed to scan this host in parallel,
6109 * we need to wait until all previous scans have completed
6110 * before going further.
fa853a48
AV
6111 * Jeff Garzik says this is only within a controller, so we
6112 * don't need to wait for port 0, only for later ports.
886ad09f 6113 */
fa853a48 6114 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6115 async_synchronize_cookie(cookie);
6116
79318057
AV
6117 /* probe */
6118 if (ap->ops->error_handler) {
6119 struct ata_eh_info *ehi = &ap->link.eh_info;
6120 unsigned long flags;
6121
6122 ata_port_probe(ap);
6123
6124 /* kick EH for boot probing */
6125 spin_lock_irqsave(ap->lock, flags);
6126
6127 ehi->probe_mask |= ATA_ALL_DEVICES;
6128 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6129 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6130
6131 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6132 ap->pflags |= ATA_PFLAG_LOADING;
6133 ata_port_schedule_eh(ap);
6134
6135 spin_unlock_irqrestore(ap->lock, flags);
6136
6137 /* wait for EH to finish */
6138 ata_port_wait_eh(ap);
6139 } else {
6140 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6141 rc = ata_bus_probe(ap);
6142 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6143
6144 if (rc) {
6145 /* FIXME: do something useful here?
6146 * Current libata behavior will
6147 * tear down everything when
6148 * the module is removed
6149 * or the h/w is unplugged.
6150 */
6151 }
6152 }
f29d3b23
AV
6153
6154 /* in order to keep device order, we need to synchronize at this point */
6155 async_synchronize_cookie(cookie);
6156
6157 ata_scsi_scan_host(ap, 1);
6158
79318057 6159}
f3187195
TH
6160/**
6161 * ata_host_register - register initialized ATA host
6162 * @host: ATA host to register
6163 * @sht: template for SCSI host
6164 *
6165 * Register initialized ATA host. @host is allocated using
6166 * ata_host_alloc() and fully initialized by LLD. This function
6167 * starts ports, registers @host with ATA and SCSI layers and
6168 * probe registered devices.
6169 *
6170 * LOCKING:
6171 * Inherited from calling layer (may sleep).
6172 *
6173 * RETURNS:
6174 * 0 on success, -errno otherwise.
6175 */
6176int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6177{
6178 int i, rc;
6179
6180 /* host must have been started */
6181 if (!(host->flags & ATA_HOST_STARTED)) {
6182 dev_printk(KERN_ERR, host->dev,
6183 "BUG: trying to register unstarted host\n");
6184 WARN_ON(1);
6185 return -EINVAL;
6186 }
6187
6188 /* Blow away unused ports. This happens when LLD can't
6189 * determine the exact number of ports to allocate at
6190 * allocation time.
6191 */
6192 for (i = host->n_ports; host->ports[i]; i++)
6193 kfree(host->ports[i]);
6194
6195 /* give ports names and add SCSI hosts */
6196 for (i = 0; i < host->n_ports; i++)
6197 host->ports[i]->print_id = ata_print_id++;
6198
6199 rc = ata_scsi_add_hosts(host, sht);
6200 if (rc)
6201 return rc;
6202
fafbae87
TH
6203 /* associate with ACPI nodes */
6204 ata_acpi_associate(host);
6205
f3187195
TH
6206 /* set cable, sata_spd_limit and report */
6207 for (i = 0; i < host->n_ports; i++) {
6208 struct ata_port *ap = host->ports[i];
f3187195
TH
6209 unsigned long xfer_mask;
6210
6211 /* set SATA cable type if still unset */
6212 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6213 ap->cbl = ATA_CBL_SATA;
6214
6215 /* init sata_spd_limit to the current value */
4fb37a25 6216 sata_link_init_spd(&ap->link);
b1c72916
TH
6217 if (ap->slave_link)
6218 sata_link_init_spd(ap->slave_link);
f3187195 6219
cbcdd875 6220 /* print per-port info to dmesg */
f3187195
TH
6221 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6222 ap->udma_mask);
6223
abf6e8ed 6224 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6225 ata_port_printk(ap, KERN_INFO,
6226 "%cATA max %s %s\n",
a16abc0b 6227 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6228 ata_mode_string(xfer_mask),
cbcdd875 6229 ap->link.eh_info.desc);
abf6e8ed
TH
6230 ata_ehi_clear_desc(&ap->link.eh_info);
6231 } else
f3187195
TH
6232 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6233 }
6234
f6005354 6235 /* perform each probe asynchronously */
f3187195
TH
6236 for (i = 0; i < host->n_ports; i++) {
6237 struct ata_port *ap = host->ports[i];
79318057 6238 async_schedule(async_port_probe, ap);
f3187195 6239 }
f3187195
TH
6240
6241 return 0;
6242}
6243
f5cda257
TH
6244/**
6245 * ata_host_activate - start host, request IRQ and register it
6246 * @host: target ATA host
6247 * @irq: IRQ to request
6248 * @irq_handler: irq_handler used when requesting IRQ
6249 * @irq_flags: irq_flags used when requesting IRQ
6250 * @sht: scsi_host_template to use when registering the host
6251 *
6252 * After allocating an ATA host and initializing it, most libata
6253 * LLDs perform three steps to activate the host - start host,
6254 * request IRQ and register it. This helper takes necessasry
6255 * arguments and performs the three steps in one go.
6256 *
3d46b2e2
PM
6257 * An invalid IRQ skips the IRQ registration and expects the host to
6258 * have set polling mode on the port. In this case, @irq_handler
6259 * should be NULL.
6260 *
f5cda257
TH
6261 * LOCKING:
6262 * Inherited from calling layer (may sleep).
6263 *
6264 * RETURNS:
6265 * 0 on success, -errno otherwise.
6266 */
6267int ata_host_activate(struct ata_host *host, int irq,
6268 irq_handler_t irq_handler, unsigned long irq_flags,
6269 struct scsi_host_template *sht)
6270{
cbcdd875 6271 int i, rc;
f5cda257
TH
6272
6273 rc = ata_host_start(host);
6274 if (rc)
6275 return rc;
6276
3d46b2e2
PM
6277 /* Special case for polling mode */
6278 if (!irq) {
6279 WARN_ON(irq_handler);
6280 return ata_host_register(host, sht);
6281 }
6282
f5cda257
TH
6283 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6284 dev_driver_string(host->dev), host);
6285 if (rc)
6286 return rc;
6287
cbcdd875
TH
6288 for (i = 0; i < host->n_ports; i++)
6289 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6290
f5cda257
TH
6291 rc = ata_host_register(host, sht);
6292 /* if failed, just free the IRQ and leave ports alone */
6293 if (rc)
6294 devm_free_irq(host->dev, irq, host);
6295
6296 return rc;
6297}
6298
720ba126
TH
6299/**
6300 * ata_port_detach - Detach ATA port in prepration of device removal
6301 * @ap: ATA port to be detached
6302 *
6303 * Detach all ATA devices and the associated SCSI devices of @ap;
6304 * then, remove the associated SCSI host. @ap is guaranteed to
6305 * be quiescent on return from this function.
6306 *
6307 * LOCKING:
6308 * Kernel thread context (may sleep).
6309 */
741b7763 6310static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6311{
6312 unsigned long flags;
720ba126
TH
6313
6314 if (!ap->ops->error_handler)
c3cf30a9 6315 goto skip_eh;
720ba126
TH
6316
6317 /* tell EH we're leaving & flush EH */
ba6a1308 6318 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6319 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6320 ata_port_schedule_eh(ap);
ba6a1308 6321 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6322
ece180d1 6323 /* wait till EH commits suicide */
720ba126
TH
6324 ata_port_wait_eh(ap);
6325
ece180d1
TH
6326 /* it better be dead now */
6327 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6328
45a66c1c 6329 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6330
c3cf30a9 6331 skip_eh:
720ba126 6332 /* remove the associated SCSI host */
cca3974e 6333 scsi_remove_host(ap->scsi_host);
720ba126
TH
6334}
6335
0529c159
TH
6336/**
6337 * ata_host_detach - Detach all ports of an ATA host
6338 * @host: Host to detach
6339 *
6340 * Detach all ports of @host.
6341 *
6342 * LOCKING:
6343 * Kernel thread context (may sleep).
6344 */
6345void ata_host_detach(struct ata_host *host)
6346{
6347 int i;
6348
6349 for (i = 0; i < host->n_ports; i++)
6350 ata_port_detach(host->ports[i]);
562f0c2d
TH
6351
6352 /* the host is dead now, dissociate ACPI */
6353 ata_acpi_dissociate(host);
0529c159
TH
6354}
6355
374b1873
JG
6356#ifdef CONFIG_PCI
6357
1da177e4
LT
6358/**
6359 * ata_pci_remove_one - PCI layer callback for device removal
6360 * @pdev: PCI device that was removed
6361 *
b878ca5d
TH
6362 * PCI layer indicates to libata via this hook that hot-unplug or
6363 * module unload event has occurred. Detach all ports. Resource
6364 * release is handled via devres.
1da177e4
LT
6365 *
6366 * LOCKING:
6367 * Inherited from PCI layer (may sleep).
6368 */
f0d36efd 6369void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6370{
2855568b 6371 struct device *dev = &pdev->dev;
cca3974e 6372 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6373
b878ca5d 6374 ata_host_detach(host);
1da177e4
LT
6375}
6376
6377/* move to PCI subsystem */
057ace5e 6378int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6379{
6380 unsigned long tmp = 0;
6381
6382 switch (bits->width) {
6383 case 1: {
6384 u8 tmp8 = 0;
6385 pci_read_config_byte(pdev, bits->reg, &tmp8);
6386 tmp = tmp8;
6387 break;
6388 }
6389 case 2: {
6390 u16 tmp16 = 0;
6391 pci_read_config_word(pdev, bits->reg, &tmp16);
6392 tmp = tmp16;
6393 break;
6394 }
6395 case 4: {
6396 u32 tmp32 = 0;
6397 pci_read_config_dword(pdev, bits->reg, &tmp32);
6398 tmp = tmp32;
6399 break;
6400 }
6401
6402 default:
6403 return -EINVAL;
6404 }
6405
6406 tmp &= bits->mask;
6407
6408 return (tmp == bits->val) ? 1 : 0;
6409}
9b847548 6410
6ffa01d8 6411#ifdef CONFIG_PM
3c5100c1 6412void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6413{
6414 pci_save_state(pdev);
4c90d971 6415 pci_disable_device(pdev);
500530f6 6416
3a2d5b70 6417 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6418 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6419}
6420
553c4aa6 6421int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6422{
553c4aa6
TH
6423 int rc;
6424
9b847548
JA
6425 pci_set_power_state(pdev, PCI_D0);
6426 pci_restore_state(pdev);
553c4aa6 6427
b878ca5d 6428 rc = pcim_enable_device(pdev);
553c4aa6
TH
6429 if (rc) {
6430 dev_printk(KERN_ERR, &pdev->dev,
6431 "failed to enable device after resume (%d)\n", rc);
6432 return rc;
6433 }
6434
9b847548 6435 pci_set_master(pdev);
553c4aa6 6436 return 0;
500530f6
TH
6437}
6438
3c5100c1 6439int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6440{
cca3974e 6441 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6442 int rc = 0;
6443
cca3974e 6444 rc = ata_host_suspend(host, mesg);
500530f6
TH
6445 if (rc)
6446 return rc;
6447
3c5100c1 6448 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6449
6450 return 0;
6451}
6452
6453int ata_pci_device_resume(struct pci_dev *pdev)
6454{
cca3974e 6455 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6456 int rc;
500530f6 6457
553c4aa6
TH
6458 rc = ata_pci_device_do_resume(pdev);
6459 if (rc == 0)
6460 ata_host_resume(host);
6461 return rc;
9b847548 6462}
6ffa01d8
TH
6463#endif /* CONFIG_PM */
6464
1da177e4
LT
6465#endif /* CONFIG_PCI */
6466
33267325
TH
6467static int __init ata_parse_force_one(char **cur,
6468 struct ata_force_ent *force_ent,
6469 const char **reason)
6470{
6471 /* FIXME: Currently, there's no way to tag init const data and
6472 * using __initdata causes build failure on some versions of
6473 * gcc. Once __initdataconst is implemented, add const to the
6474 * following structure.
6475 */
6476 static struct ata_force_param force_tbl[] __initdata = {
6477 { "40c", .cbl = ATA_CBL_PATA40 },
6478 { "80c", .cbl = ATA_CBL_PATA80 },
6479 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6480 { "unk", .cbl = ATA_CBL_PATA_UNK },
6481 { "ign", .cbl = ATA_CBL_PATA_IGN },
6482 { "sata", .cbl = ATA_CBL_SATA },
6483 { "1.5Gbps", .spd_limit = 1 },
6484 { "3.0Gbps", .spd_limit = 2 },
6485 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6486 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6487 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6488 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6489 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6490 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6491 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6492 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6493 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6494 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6495 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6496 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6497 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6498 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6499 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6500 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6501 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6502 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6503 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6504 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6505 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6506 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6507 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6508 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6509 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6510 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6511 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6512 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6513 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6514 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6515 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6516 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6517 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6518 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6519 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6520 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6521 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6522 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6523 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6524 };
6525 char *start = *cur, *p = *cur;
6526 char *id, *val, *endp;
6527 const struct ata_force_param *match_fp = NULL;
6528 int nr_matches = 0, i;
6529
6530 /* find where this param ends and update *cur */
6531 while (*p != '\0' && *p != ',')
6532 p++;
6533
6534 if (*p == '\0')
6535 *cur = p;
6536 else
6537 *cur = p + 1;
6538
6539 *p = '\0';
6540
6541 /* parse */
6542 p = strchr(start, ':');
6543 if (!p) {
6544 val = strstrip(start);
6545 goto parse_val;
6546 }
6547 *p = '\0';
6548
6549 id = strstrip(start);
6550 val = strstrip(p + 1);
6551
6552 /* parse id */
6553 p = strchr(id, '.');
6554 if (p) {
6555 *p++ = '\0';
6556 force_ent->device = simple_strtoul(p, &endp, 10);
6557 if (p == endp || *endp != '\0') {
6558 *reason = "invalid device";
6559 return -EINVAL;
6560 }
6561 }
6562
6563 force_ent->port = simple_strtoul(id, &endp, 10);
6564 if (p == endp || *endp != '\0') {
6565 *reason = "invalid port/link";
6566 return -EINVAL;
6567 }
6568
6569 parse_val:
6570 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6571 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6572 const struct ata_force_param *fp = &force_tbl[i];
6573
6574 if (strncasecmp(val, fp->name, strlen(val)))
6575 continue;
6576
6577 nr_matches++;
6578 match_fp = fp;
6579
6580 if (strcasecmp(val, fp->name) == 0) {
6581 nr_matches = 1;
6582 break;
6583 }
6584 }
6585
6586 if (!nr_matches) {
6587 *reason = "unknown value";
6588 return -EINVAL;
6589 }
6590 if (nr_matches > 1) {
6591 *reason = "ambigious value";
6592 return -EINVAL;
6593 }
6594
6595 force_ent->param = *match_fp;
6596
6597 return 0;
6598}
6599
6600static void __init ata_parse_force_param(void)
6601{
6602 int idx = 0, size = 1;
6603 int last_port = -1, last_device = -1;
6604 char *p, *cur, *next;
6605
6606 /* calculate maximum number of params and allocate force_tbl */
6607 for (p = ata_force_param_buf; *p; p++)
6608 if (*p == ',')
6609 size++;
6610
6611 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6612 if (!ata_force_tbl) {
6613 printk(KERN_WARNING "ata: failed to extend force table, "
6614 "libata.force ignored\n");
6615 return;
6616 }
6617
6618 /* parse and populate the table */
6619 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6620 const char *reason = "";
6621 struct ata_force_ent te = { .port = -1, .device = -1 };
6622
6623 next = cur;
6624 if (ata_parse_force_one(&next, &te, &reason)) {
6625 printk(KERN_WARNING "ata: failed to parse force "
6626 "parameter \"%s\" (%s)\n",
6627 cur, reason);
6628 continue;
6629 }
6630
6631 if (te.port == -1) {
6632 te.port = last_port;
6633 te.device = last_device;
6634 }
6635
6636 ata_force_tbl[idx++] = te;
6637
6638 last_port = te.port;
6639 last_device = te.device;
6640 }
6641
6642 ata_force_tbl_size = idx;
6643}
1da177e4 6644
1da177e4
LT
6645static int __init ata_init(void)
6646{
33267325
TH
6647 ata_parse_force_param();
6648
9cd13bdb
BZ
6649 /*
6650 * FIXME: In UP case, there is only one workqueue thread and if you
6651 * have more than one PIO device, latency is bloody awful, with
6652 * occasional multi-second "hiccups" as one PIO device waits for
6653 * another. It's an ugly wart that users DO occasionally complain
6654 * about; luckily most users have at most one PIO polled device.
6655 */
1da177e4
LT
6656 ata_wq = create_workqueue("ata");
6657 if (!ata_wq)
49ea3b04 6658 goto free_force_tbl;
1da177e4 6659
453b07ac 6660 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6661 if (!ata_aux_wq)
6662 goto free_wq;
453b07ac 6663
1da177e4
LT
6664 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665 return 0;
49ea3b04
EO
6666
6667free_wq:
6668 destroy_workqueue(ata_wq);
6669free_force_tbl:
6670 kfree(ata_force_tbl);
6671 return -ENOMEM;
1da177e4
LT
6672}
6673
6674static void __exit ata_exit(void)
6675{
33267325 6676 kfree(ata_force_tbl);
1da177e4 6677 destroy_workqueue(ata_wq);
453b07ac 6678 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6679}
6680
a4625085 6681subsys_initcall(ata_init);
1da177e4
LT
6682module_exit(ata_exit);
6683
67846b30 6684static unsigned long ratelimit_time;
34af946a 6685static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6686
6687int ata_ratelimit(void)
6688{
6689 int rc;
6690 unsigned long flags;
6691
6692 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6693
6694 if (time_after(jiffies, ratelimit_time)) {
6695 rc = 1;
6696 ratelimit_time = jiffies + (HZ/5);
6697 } else
6698 rc = 0;
6699
6700 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6701
6702 return rc;
6703}
6704
c22daff4
TH
6705/**
6706 * ata_wait_register - wait until register value changes
6707 * @reg: IO-mapped register
6708 * @mask: Mask to apply to read register value
6709 * @val: Wait condition
341c2c95
TH
6710 * @interval: polling interval in milliseconds
6711 * @timeout: timeout in milliseconds
c22daff4
TH
6712 *
6713 * Waiting for some bits of register to change is a common
6714 * operation for ATA controllers. This function reads 32bit LE
6715 * IO-mapped register @reg and tests for the following condition.
6716 *
6717 * (*@reg & mask) != val
6718 *
6719 * If the condition is met, it returns; otherwise, the process is
6720 * repeated after @interval_msec until timeout.
6721 *
6722 * LOCKING:
6723 * Kernel thread context (may sleep)
6724 *
6725 * RETURNS:
6726 * The final register value.
6727 */
6728u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6729 unsigned long interval, unsigned long timeout)
c22daff4 6730{
341c2c95 6731 unsigned long deadline;
c22daff4
TH
6732 u32 tmp;
6733
6734 tmp = ioread32(reg);
6735
6736 /* Calculate timeout _after_ the first read to make sure
6737 * preceding writes reach the controller before starting to
6738 * eat away the timeout.
6739 */
341c2c95 6740 deadline = ata_deadline(jiffies, timeout);
c22daff4 6741
341c2c95
TH
6742 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6743 msleep(interval);
c22daff4
TH
6744 tmp = ioread32(reg);
6745 }
6746
6747 return tmp;
6748}
6749
dd5b06c4
TH
6750/*
6751 * Dummy port_ops
6752 */
182d7bba 6753static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6754{
182d7bba 6755 return AC_ERR_SYSTEM;
dd5b06c4
TH
6756}
6757
182d7bba 6758static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6759{
182d7bba 6760 /* truly dummy */
dd5b06c4
TH
6761}
6762
029cfd6b 6763struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6764 .qc_prep = ata_noop_qc_prep,
6765 .qc_issue = ata_dummy_qc_issue,
182d7bba 6766 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6767};
6768
21b0ad4f
TH
6769const struct ata_port_info ata_dummy_port_info = {
6770 .port_ops = &ata_dummy_port_ops,
6771};
6772
1da177e4
LT
6773/*
6774 * libata is essentially a library of internal helper functions for
6775 * low-level ATA host controller drivers. As such, the API/ABI is
6776 * likely to change as new drivers are added and updated.
6777 * Do not depend on ABI/API stability.
6778 */
e9c83914
TH
6779EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6780EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6781EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6782EXPORT_SYMBOL_GPL(ata_base_port_ops);
6783EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6784EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6785EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6786EXPORT_SYMBOL_GPL(ata_link_next);
6787EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6788EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6789EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6790EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6791EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6792EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6793EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6794EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6795EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6796EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6797EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6798EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6799EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6800EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6801EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6802EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6803EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6804EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6805EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6806EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6807EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6808EXPORT_SYMBOL_GPL(ata_mode_string);
6809EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6810EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6811EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6812EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6813EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6814EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6815EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6816EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6817EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6818EXPORT_SYMBOL_GPL(sata_link_debounce);
6819EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6820EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6821EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6822EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6823EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6824EXPORT_SYMBOL_GPL(ata_dev_classify);
6825EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6826EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6827EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6828EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6829EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6830EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6831EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6832EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6833EXPORT_SYMBOL_GPL(sata_scr_valid);
6834EXPORT_SYMBOL_GPL(sata_scr_read);
6835EXPORT_SYMBOL_GPL(sata_scr_write);
6836EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6837EXPORT_SYMBOL_GPL(ata_link_online);
6838EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6839#ifdef CONFIG_PM
cca3974e
JG
6840EXPORT_SYMBOL_GPL(ata_host_suspend);
6841EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6842#endif /* CONFIG_PM */
6a62a04d
TH
6843EXPORT_SYMBOL_GPL(ata_id_string);
6844EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6845EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6846EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6847
1a660164 6848EXPORT_SYMBOL_GPL(ata_pio_queue_task);
1bc4ccff 6849EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6850EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6851EXPORT_SYMBOL_GPL(ata_timing_compute);
6852EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6853EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6854
1da177e4
LT
6855#ifdef CONFIG_PCI
6856EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6857EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6858#ifdef CONFIG_PM
500530f6
TH
6859EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6860EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6861EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6862EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6863#endif /* CONFIG_PM */
1da177e4 6864#endif /* CONFIG_PCI */
9b847548 6865
b64bbc39
TH
6866EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6867EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6868EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6869EXPORT_SYMBOL_GPL(ata_port_desc);
6870#ifdef CONFIG_PCI
6871EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6872#endif /* CONFIG_PCI */
7b70fc03 6873EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6874EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6875EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6876EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6877EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6878EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6879EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6880EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6881EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6882EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6883EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6884EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6885
6886EXPORT_SYMBOL_GPL(ata_cable_40wire);
6887EXPORT_SYMBOL_GPL(ata_cable_80wire);
6888EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6889EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6890EXPORT_SYMBOL_GPL(ata_cable_sata);