]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - drivers/ata/libata-core.c
[libata] minor PCI IDE probe fixes and cleanups
[mirror_ubuntu-focal-kernel.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
d7bb4cc7 62/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
63const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 66
3373efd8
TH
67static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
71
72static unsigned int ata_unique_id = 1;
73static struct workqueue_struct *ata_wq;
74
453b07ac
TH
75struct workqueue_struct *ata_aux_wq;
76
418dc1f5 77int atapi_enabled = 1;
1623c81e
JG
78module_param(atapi_enabled, int, 0444);
79MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
95de719a
AL
81int atapi_dmadir = 0;
82module_param(atapi_dmadir, int, 0444);
83MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
84
c3c013a2
JG
85int libata_fua = 0;
86module_param_named(fua, libata_fua, int, 0444);
87MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
88
a8601e5f
AM
89static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90module_param(ata_probe_timeout, int, 0444);
91MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
92
1da177e4
LT
93MODULE_AUTHOR("Jeff Garzik");
94MODULE_DESCRIPTION("Library module for ATA devices");
95MODULE_LICENSE("GPL");
96MODULE_VERSION(DRV_VERSION);
97
0baab86b 98
1da177e4
LT
99/**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
104 *
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
107 *
108 * LOCKING:
109 * Inherited from caller.
110 */
111
057ace5e 112void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
113{
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
119
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
124
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
129
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
134
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
139}
140
141/**
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
145 *
e12a1be6 146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
057ace5e 152void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
153{
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
156
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
161
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
165
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
168}
169
8cbd6df1
AL
170static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
176 0,
177 0,
178 0,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
185 0,
186 0,
187 0,
188 0,
8cbd6df1
AL
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
9a3dccc4
TH
193 ATA_CMD_WRITE_EXT,
194 0,
195 0,
196 0,
197 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 198};
1da177e4
LT
199
200/**
8cbd6df1
AL
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
1da177e4 203 *
2e9edbf8 204 * Examine the device configuration and tf->flags to calculate
8cbd6df1 205 * the proper read/write commands and protocol to use.
1da177e4
LT
206 *
207 * LOCKING:
208 * caller.
209 */
9a3dccc4 210int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 211{
8cbd6df1
AL
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
9a3dccc4 214 u8 cmd;
1da177e4 215
9a3dccc4 216 int index, fua, lba48, write;
2e9edbf8 217
9a3dccc4 218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 221
8cbd6df1
AL
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
9a3dccc4 224 index = dev->multi_count ? 0 : 8;
8d238e01
AC
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
0565c26d 228 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
229 } else {
230 tf->protocol = ATA_PROT_DMA;
9a3dccc4 231 index = 16;
8cbd6df1 232 }
1da177e4 233
9a3dccc4
TH
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
238 }
239 return -1;
1da177e4
LT
240}
241
cb95d562
TH
242/**
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
247 *
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
250 *
251 * LOCKING:
252 * None.
253 *
254 * RETURNS:
255 * Packed xfer_mask.
256 */
257static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
260{
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
264}
265
c0489e4e
TH
266/**
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
272 *
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
275 */
276static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
280{
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
287}
288
cb95d562 289static const struct ata_xfer_ent {
be9a50c8 290 int shift, bits;
cb95d562
TH
291 u8 base;
292} ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
297};
298
299/**
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
302 *
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
305 *
306 * LOCKING:
307 * None.
308 *
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
311 */
312static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
313{
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
316
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
321}
322
323/**
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
326 *
327 * Return matching xfer_mask for @xfer_mode.
328 *
329 * LOCKING:
330 * None.
331 *
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
334 */
335static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
336{
337 const struct ata_xfer_ent *ent;
338
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
343}
344
345/**
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
348 *
349 * Return matching xfer_shift for @xfer_mode.
350 *
351 * LOCKING:
352 * None.
353 *
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
356 */
357static int ata_xfer_mode2shift(unsigned int xfer_mode)
358{
359 const struct ata_xfer_ent *ent;
360
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
365}
366
1da177e4 367/**
1da7b0d0
TH
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
370 *
371 * Determine string which represents the highest speed
1da7b0d0 372 * (highest bit in @modemask).
1da177e4
LT
373 *
374 * LOCKING:
375 * None.
376 *
377 * RETURNS:
378 * Constant C string representing highest speed listed in
1da7b0d0 379 * @mode_mask, or the constant C string "<n/a>".
1da177e4 380 */
1da7b0d0 381static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 382{
75f554bc
TH
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
b352e57d
AC
389 "PIO5",
390 "PIO6",
75f554bc
TH
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
b352e57d
AC
394 "MWDMA3",
395 "MWDMA4",
75f554bc
TH
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
404 };
1da7b0d0 405 int highbit;
1da177e4 406
1da7b0d0
TH
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
1da177e4 410 return "<n/a>";
1da177e4
LT
411}
412
4c360c81
TH
413static const char *sata_spd_string(unsigned int spd)
414{
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
418 };
419
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
423}
424
3373efd8 425void ata_dev_disable(struct ata_device *dev)
0b8efb0a 426{
0dd4b21f 427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
429 dev->class++;
430 }
431}
432
1da177e4
LT
433/**
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 *
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
441 *
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
446 *
447 * LOCKING:
448 * caller.
449 */
450
451static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
453{
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
456
457 ap->ops->dev_select(ap, device);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
464
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
467
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
470
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
473
474 return 0; /* nothing found */
475}
476
477/**
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
481 *
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
485 *
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
490 *
491 * LOCKING:
492 * caller.
493 */
494
495static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
497{
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
500
501 ap->ops->dev_select(ap, device);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
508
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
511
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
514
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
517
518 return 0; /* nothing found */
519}
520
521/**
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
525 *
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
529 *
530 * LOCKING:
531 * caller.
532 */
533
534static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
536{
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
540}
541
542/**
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
545 *
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
556 */
557
057ace5e 558unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
559{
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
563 */
564
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
569 }
570
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
575 }
576
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
579}
580
581/**
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
b4dc7623 585 * @r_err: Value of error register on completion
1da177e4
LT
586 *
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
591 *
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
595 *
596 * LOCKING:
597 * caller.
b4dc7623
TH
598 *
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
601 */
602
b4dc7623
TH
603static unsigned int
604ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 605{
1da177e4
LT
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
609
610 ap->ops->dev_select(ap, device);
611
612 memset(&tf, 0, sizeof(tf));
613
1da177e4 614 ap->ops->tf_read(ap, &tf);
0169e284 615 err = tf.feature;
b4dc7623
TH
616 if (r_err)
617 *r_err = err;
1da177e4 618
93590859
AC
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
1da177e4
LT
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629
b4dc7623 630 /* determine if device is ATA or ATAPI */
1da177e4 631 class = ata_dev_classify(&tf);
b4dc7623 632
1da177e4 633 if (class == ATA_DEV_UNKNOWN)
b4dc7623 634 return ATA_DEV_NONE;
1da177e4 635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
636 return ATA_DEV_NONE;
637 return class;
1da177e4
LT
638}
639
640/**
6a62a04d 641 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
646 *
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
650 *
651 * LOCKING:
652 * caller.
653 */
654
6a62a04d
TH
655void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
1da177e4
LT
657{
658 unsigned int c;
659
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
664
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
668
669 ofs++;
670 len -= 2;
671 }
672}
673
0e949ff3 674/**
6a62a04d 675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
680 *
6a62a04d 681 * This function is identical to ata_id_string except that it
0e949ff3
TH
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
684 *
685 * LOCKING:
686 * caller.
687 */
6a62a04d
TH
688void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
0e949ff3
TH
690{
691 unsigned char *p;
692
693 WARN_ON(!(len & 1));
694
6a62a04d 695 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
696
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
701}
0baab86b 702
2940740b
TH
703static u64 ata_id_n_sectors(const u16 *id)
704{
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
715 }
716}
717
0baab86b
EF
718/**
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
722 *
723 * This function performs no actual function.
724 *
725 * May be used as the dev_select() entry in ata_port_operations.
726 *
727 * LOCKING:
728 * caller.
729 */
1da177e4
LT
730void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
731{
732}
733
0baab86b 734
1da177e4
LT
735/**
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
739 *
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
0baab86b
EF
742 * ATA channel. Works with both PIO and MMIO.
743 *
744 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
745 *
746 * LOCKING:
747 * caller.
748 */
749
750void ata_std_dev_select (struct ata_port *ap, unsigned int device)
751{
752 u8 tmp;
753
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
758
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
763 }
764 ata_pause(ap); /* needed; also flushes, for mmio */
765}
766
767/**
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
773 *
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
777 *
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
788{
88574551 789 if (ata_msg_probe(ap))
0dd4b21f 790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 791 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
792
793 if (wait)
794 ata_wait_idle(ap);
795
796 ap->ops->dev_select(ap, device);
797
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
802 }
803}
804
805/**
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 807 * @id: IDENTIFY DEVICE page to dump
1da177e4 808 *
0bd3300a
TH
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
1da177e4
LT
811 *
812 * LOCKING:
813 * caller.
814 */
815
0bd3300a 816static inline void ata_dump_id(const u16 *id)
1da177e4
LT
817{
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
0bd3300a
TH
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
1da177e4
LT
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
0bd3300a
TH
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
1da177e4
LT
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
0bd3300a
TH
840 id[88],
841 id[93]);
1da177e4
LT
842}
843
cb95d562
TH
844/**
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
847 *
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
850 *
851 * FIXME: pre IDE drive timing (do we care ?).
852 *
853 * LOCKING:
854 * None.
855 *
856 * RETURNS:
857 * Computed xfermask
858 */
859static unsigned int ata_id_xfermask(const u16 *id)
860{
861 unsigned int pio_mask, mwdma_mask, udma_mask;
862
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
872 */
873 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
874
875 /* But wait.. there's more. Design your standards by
876 * committee and you too can get a free iordy field to
877 * process. However its the speeds not the modes that
878 * are supported... Note drivers using the timing API
879 * will get this right anyway
880 */
881 }
882
883 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 884
b352e57d
AC
885 if (ata_id_is_cfa(id)) {
886 /*
887 * Process compact flash extended modes
888 */
889 int pio = id[163] & 0x7;
890 int dma = (id[163] >> 3) & 7;
891
892 if (pio)
893 pio_mask |= (1 << 5);
894 if (pio > 1)
895 pio_mask |= (1 << 6);
896 if (dma)
897 mwdma_mask |= (1 << 3);
898 if (dma > 1)
899 mwdma_mask |= (1 << 4);
900 }
901
fb21f0d0
TH
902 udma_mask = 0;
903 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
904 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
905
906 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
907}
908
86e45b6b
TH
909/**
910 * ata_port_queue_task - Queue port_task
911 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
912 * @fn: workqueue function to be scheduled
913 * @data: data value to pass to workqueue function
914 * @delay: delay time for workqueue function
86e45b6b
TH
915 *
916 * Schedule @fn(@data) for execution after @delay jiffies using
917 * port_task. There is one port_task per port and it's the
918 * user(low level driver)'s responsibility to make sure that only
919 * one task is active at any given time.
920 *
921 * libata core layer takes care of synchronization between
922 * port_task and EH. ata_port_queue_task() may be ignored for EH
923 * synchronization.
924 *
925 * LOCKING:
926 * Inherited from caller.
927 */
928void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
929 unsigned long delay)
930{
931 int rc;
932
b51e9e5d 933 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
934 return;
935
936 PREPARE_WORK(&ap->port_task, fn, data);
937
938 if (!delay)
939 rc = queue_work(ata_wq, &ap->port_task);
940 else
941 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
942
943 /* rc == 0 means that another user is using port task */
944 WARN_ON(rc == 0);
945}
946
947/**
948 * ata_port_flush_task - Flush port_task
949 * @ap: The ata_port to flush port_task for
950 *
951 * After this function completes, port_task is guranteed not to
952 * be running or scheduled.
953 *
954 * LOCKING:
955 * Kernel thread context (may sleep)
956 */
957void ata_port_flush_task(struct ata_port *ap)
958{
959 unsigned long flags;
960
961 DPRINTK("ENTER\n");
962
ba6a1308 963 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 964 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 965 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
966
967 DPRINTK("flush #1\n");
968 flush_workqueue(ata_wq);
969
970 /*
971 * At this point, if a task is running, it's guaranteed to see
972 * the FLUSH flag; thus, it will never queue pio tasks again.
973 * Cancel and flush.
974 */
975 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 976 if (ata_msg_ctl(ap))
88574551
TH
977 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
978 __FUNCTION__);
86e45b6b
TH
979 flush_workqueue(ata_wq);
980 }
981
ba6a1308 982 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 983 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 984 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 985
0dd4b21f
BP
986 if (ata_msg_ctl(ap))
987 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
988}
989
77853bf2 990void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 991{
77853bf2 992 struct completion *waiting = qc->private_data;
a2a7a662 993
a2a7a662 994 complete(waiting);
a2a7a662
TH
995}
996
997/**
998 * ata_exec_internal - execute libata internal command
a2a7a662
TH
999 * @dev: Device to which the command is sent
1000 * @tf: Taskfile registers for the command and the result
d69cf37d 1001 * @cdb: CDB for packet command
a2a7a662
TH
1002 * @dma_dir: Data tranfer direction of the command
1003 * @buf: Data buffer of the command
1004 * @buflen: Length of data buffer
1005 *
1006 * Executes libata internal command with timeout. @tf contains
1007 * command on entry and result on return. Timeout and error
1008 * conditions are reported via return value. No recovery action
1009 * is taken after a command times out. It's caller's duty to
1010 * clean up after timeout.
1011 *
1012 * LOCKING:
1013 * None. Should be called with kernel context, might sleep.
551e8889
TH
1014 *
1015 * RETURNS:
1016 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1017 */
3373efd8 1018unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
1019 struct ata_taskfile *tf, const u8 *cdb,
1020 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 1021{
3373efd8 1022 struct ata_port *ap = dev->ap;
a2a7a662
TH
1023 u8 command = tf->command;
1024 struct ata_queued_cmd *qc;
2ab7db1f 1025 unsigned int tag, preempted_tag;
dedaf2b0 1026 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1027 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1028 unsigned long flags;
77853bf2 1029 unsigned int err_mask;
d95a717f 1030 int rc;
a2a7a662 1031
ba6a1308 1032 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1033
e3180499 1034 /* no internal command while frozen */
b51e9e5d 1035 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1036 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1037 return AC_ERR_SYSTEM;
1038 }
1039
2ab7db1f 1040 /* initialize internal qc */
a2a7a662 1041
2ab7db1f
TH
1042 /* XXX: Tag 0 is used for drivers with legacy EH as some
1043 * drivers choke if any other tag is given. This breaks
1044 * ata_tag_internal() test for those drivers. Don't use new
1045 * EH stuff without converting to it.
1046 */
1047 if (ap->ops->error_handler)
1048 tag = ATA_TAG_INTERNAL;
1049 else
1050 tag = 0;
1051
6cec4a39 1052 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1053 BUG();
f69499f4 1054 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1055
1056 qc->tag = tag;
1057 qc->scsicmd = NULL;
1058 qc->ap = ap;
1059 qc->dev = dev;
1060 ata_qc_reinit(qc);
1061
1062 preempted_tag = ap->active_tag;
dedaf2b0
TH
1063 preempted_sactive = ap->sactive;
1064 preempted_qc_active = ap->qc_active;
2ab7db1f 1065 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1066 ap->sactive = 0;
1067 ap->qc_active = 0;
2ab7db1f
TH
1068
1069 /* prepare & issue qc */
a2a7a662 1070 qc->tf = *tf;
d69cf37d
TH
1071 if (cdb)
1072 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1073 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1074 qc->dma_dir = dma_dir;
1075 if (dma_dir != DMA_NONE) {
1076 ata_sg_init_one(qc, buf, buflen);
1077 qc->nsect = buflen / ATA_SECT_SIZE;
1078 }
1079
77853bf2 1080 qc->private_data = &wait;
a2a7a662
TH
1081 qc->complete_fn = ata_qc_complete_internal;
1082
8e0e694a 1083 ata_qc_issue(qc);
a2a7a662 1084
ba6a1308 1085 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1086
a8601e5f 1087 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1088
1089 ata_port_flush_task(ap);
41ade50c 1090
d95a717f 1091 if (!rc) {
ba6a1308 1092 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1093
1094 /* We're racing with irq here. If we lose, the
1095 * following test prevents us from completing the qc
d95a717f
TH
1096 * twice. If we win, the port is frozen and will be
1097 * cleaned up by ->post_internal_cmd().
a2a7a662 1098 */
77853bf2 1099 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1100 qc->err_mask |= AC_ERR_TIMEOUT;
1101
1102 if (ap->ops->error_handler)
1103 ata_port_freeze(ap);
1104 else
1105 ata_qc_complete(qc);
f15a1daf 1106
0dd4b21f
BP
1107 if (ata_msg_warn(ap))
1108 ata_dev_printk(dev, KERN_WARNING,
88574551 1109 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1110 }
1111
ba6a1308 1112 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1113 }
1114
d95a717f
TH
1115 /* do post_internal_cmd */
1116 if (ap->ops->post_internal_cmd)
1117 ap->ops->post_internal_cmd(qc);
1118
1119 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1120 if (ata_msg_warn(ap))
88574551 1121 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1122 "zero err_mask for failed "
88574551 1123 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1124 qc->err_mask |= AC_ERR_OTHER;
1125 }
1126
15869303 1127 /* finish up */
ba6a1308 1128 spin_lock_irqsave(ap->lock, flags);
15869303 1129
e61e0672 1130 *tf = qc->result_tf;
77853bf2
TH
1131 err_mask = qc->err_mask;
1132
1133 ata_qc_free(qc);
2ab7db1f 1134 ap->active_tag = preempted_tag;
dedaf2b0
TH
1135 ap->sactive = preempted_sactive;
1136 ap->qc_active = preempted_qc_active;
77853bf2 1137
1f7dd3e9
TH
1138 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1139 * Until those drivers are fixed, we detect the condition
1140 * here, fail the command with AC_ERR_SYSTEM and reenable the
1141 * port.
1142 *
1143 * Note that this doesn't change any behavior as internal
1144 * command failure results in disabling the device in the
1145 * higher layer for LLDDs without new reset/EH callbacks.
1146 *
1147 * Kill the following code as soon as those drivers are fixed.
1148 */
198e0fed 1149 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1150 err_mask |= AC_ERR_SYSTEM;
1151 ata_port_probe(ap);
1152 }
1153
ba6a1308 1154 spin_unlock_irqrestore(ap->lock, flags);
15869303 1155
77853bf2 1156 return err_mask;
a2a7a662
TH
1157}
1158
977e6b9f
TH
1159/**
1160 * ata_do_simple_cmd - execute simple internal command
1161 * @dev: Device to which the command is sent
1162 * @cmd: Opcode to execute
1163 *
1164 * Execute a 'simple' command, that only consists of the opcode
1165 * 'cmd' itself, without filling any other registers
1166 *
1167 * LOCKING:
1168 * Kernel thread context (may sleep).
1169 *
1170 * RETURNS:
1171 * Zero on success, AC_ERR_* mask on failure
e58eb583 1172 */
77b08fb5 1173unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1174{
1175 struct ata_taskfile tf;
e58eb583
TH
1176
1177 ata_tf_init(dev, &tf);
1178
1179 tf.command = cmd;
1180 tf.flags |= ATA_TFLAG_DEVICE;
1181 tf.protocol = ATA_PROT_NODATA;
1182
977e6b9f 1183 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1184}
1185
1bc4ccff
AC
1186/**
1187 * ata_pio_need_iordy - check if iordy needed
1188 * @adev: ATA device
1189 *
1190 * Check if the current speed of the device requires IORDY. Used
1191 * by various controllers for chip configuration.
1192 */
1193
1194unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1195{
1196 int pio;
1197 int speed = adev->pio_mode - XFER_PIO_0;
1198
1199 if (speed < 2)
1200 return 0;
1201 if (speed > 2)
1202 return 1;
2e9edbf8 1203
1bc4ccff
AC
1204 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1205
1206 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1207 pio = adev->id[ATA_ID_EIDE_PIO];
1208 /* Is the speed faster than the drive allows non IORDY ? */
1209 if (pio) {
1210 /* This is cycle times not frequency - watch the logic! */
1211 if (pio > 240) /* PIO2 is 240nS per cycle */
1212 return 1;
1213 return 0;
1214 }
1215 }
1216 return 0;
1217}
1218
1da177e4 1219/**
49016aca 1220 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1221 * @dev: target device
1222 * @p_class: pointer to class of the target device (may be changed)
1223 * @post_reset: is this read ID post-reset?
fe635c7e 1224 * @id: buffer to read IDENTIFY data into
1da177e4 1225 *
49016aca
TH
1226 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1227 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1228 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1229 * for pre-ATA4 drives.
1da177e4
LT
1230 *
1231 * LOCKING:
49016aca
TH
1232 * Kernel thread context (may sleep)
1233 *
1234 * RETURNS:
1235 * 0 on success, -errno otherwise.
1da177e4 1236 */
a9beec95
TH
1237int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1238 int post_reset, u16 *id)
1da177e4 1239{
3373efd8 1240 struct ata_port *ap = dev->ap;
49016aca 1241 unsigned int class = *p_class;
a0123703 1242 struct ata_taskfile tf;
49016aca
TH
1243 unsigned int err_mask = 0;
1244 const char *reason;
1245 int rc;
1da177e4 1246
0dd4b21f 1247 if (ata_msg_ctl(ap))
88574551
TH
1248 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1249 __FUNCTION__, ap->id, dev->devno);
1da177e4 1250
49016aca 1251 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1252
49016aca 1253 retry:
3373efd8 1254 ata_tf_init(dev, &tf);
a0123703 1255
49016aca
TH
1256 switch (class) {
1257 case ATA_DEV_ATA:
a0123703 1258 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1259 break;
1260 case ATA_DEV_ATAPI:
a0123703 1261 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1262 break;
1263 default:
1264 rc = -ENODEV;
1265 reason = "unsupported class";
1266 goto err_out;
1da177e4
LT
1267 }
1268
a0123703 1269 tf.protocol = ATA_PROT_PIO;
1da177e4 1270
3373efd8 1271 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1272 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1273 if (err_mask) {
49016aca
TH
1274 rc = -EIO;
1275 reason = "I/O error";
1da177e4
LT
1276 goto err_out;
1277 }
1278
49016aca 1279 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1280
49016aca 1281 /* sanity check */
a4f5749b
TH
1282 rc = -EINVAL;
1283 reason = "device reports illegal type";
1284
1285 if (class == ATA_DEV_ATA) {
1286 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1287 goto err_out;
1288 } else {
1289 if (ata_id_is_ata(id))
1290 goto err_out;
49016aca
TH
1291 }
1292
1293 if (post_reset && class == ATA_DEV_ATA) {
1294 /*
1295 * The exact sequence expected by certain pre-ATA4 drives is:
1296 * SRST RESET
1297 * IDENTIFY
1298 * INITIALIZE DEVICE PARAMETERS
1299 * anything else..
1300 * Some drives were very specific about that exact sequence.
1301 */
1302 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1303 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1304 if (err_mask) {
1305 rc = -EIO;
1306 reason = "INIT_DEV_PARAMS failed";
1307 goto err_out;
1308 }
1309
1310 /* current CHS translation info (id[53-58]) might be
1311 * changed. reread the identify device info.
1312 */
1313 post_reset = 0;
1314 goto retry;
1315 }
1316 }
1317
1318 *p_class = class;
fe635c7e 1319
49016aca
TH
1320 return 0;
1321
1322 err_out:
88574551 1323 if (ata_msg_warn(ap))
0dd4b21f 1324 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1325 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1326 return rc;
1327}
1328
3373efd8 1329static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1330{
3373efd8 1331 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1332}
1333
a6e6ce8e
TH
1334static void ata_dev_config_ncq(struct ata_device *dev,
1335 char *desc, size_t desc_sz)
1336{
1337 struct ata_port *ap = dev->ap;
1338 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1339
1340 if (!ata_id_has_ncq(dev->id)) {
1341 desc[0] = '\0';
1342 return;
1343 }
1344
1345 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1346 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1347 dev->flags |= ATA_DFLAG_NCQ;
1348 }
1349
1350 if (hdepth >= ddepth)
1351 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1352 else
1353 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1354}
1355
e6d902a3
BK
1356static void ata_set_port_max_cmd_len(struct ata_port *ap)
1357{
1358 int i;
1359
cca3974e
JG
1360 if (ap->scsi_host) {
1361 unsigned int len = 0;
1362
e6d902a3 1363 for (i = 0; i < ATA_MAX_DEVICES; i++)
cca3974e
JG
1364 len = max(len, ap->device[i].cdb_len);
1365
1366 ap->scsi_host->max_cmd_len = len;
e6d902a3
BK
1367 }
1368}
1369
49016aca 1370/**
ffeae418 1371 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1372 * @dev: Target device to configure
4c2d721a 1373 * @print_info: Enable device info printout
ffeae418
TH
1374 *
1375 * Configure @dev according to @dev->id. Generic and low-level
1376 * driver specific fixups are also applied.
49016aca
TH
1377 *
1378 * LOCKING:
ffeae418
TH
1379 * Kernel thread context (may sleep)
1380 *
1381 * RETURNS:
1382 * 0 on success, -errno otherwise
49016aca 1383 */
a9beec95 1384int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1385{
3373efd8 1386 struct ata_port *ap = dev->ap;
1148c3a7 1387 const u16 *id = dev->id;
ff8854b2 1388 unsigned int xfer_mask;
b352e57d 1389 char revbuf[7]; /* XYZ-99\0 */
e6d902a3 1390 int rc;
49016aca 1391
0dd4b21f 1392 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1393 ata_dev_printk(dev, KERN_INFO,
1394 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1395 __FUNCTION__, ap->id, dev->devno);
ffeae418 1396 return 0;
49016aca
TH
1397 }
1398
0dd4b21f 1399 if (ata_msg_probe(ap))
88574551
TH
1400 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1401 __FUNCTION__, ap->id, dev->devno);
1da177e4 1402
c39f5ebe 1403 /* print device capabilities */
0dd4b21f 1404 if (ata_msg_probe(ap))
88574551
TH
1405 ata_dev_printk(dev, KERN_DEBUG,
1406 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1407 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1408 __FUNCTION__,
f15a1daf
TH
1409 id[49], id[82], id[83], id[84],
1410 id[85], id[86], id[87], id[88]);
c39f5ebe 1411
208a9933 1412 /* initialize to-be-configured parameters */
ea1dd4e1 1413 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1414 dev->max_sectors = 0;
1415 dev->cdb_len = 0;
1416 dev->n_sectors = 0;
1417 dev->cylinders = 0;
1418 dev->heads = 0;
1419 dev->sectors = 0;
1420
1da177e4
LT
1421 /*
1422 * common ATA, ATAPI feature tests
1423 */
1424
ff8854b2 1425 /* find max transfer mode; for printk only */
1148c3a7 1426 xfer_mask = ata_id_xfermask(id);
1da177e4 1427
0dd4b21f
BP
1428 if (ata_msg_probe(ap))
1429 ata_dump_id(id);
1da177e4
LT
1430
1431 /* ATA-specific feature tests */
1432 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1433 if (ata_id_is_cfa(id)) {
1434 if (id[162] & 1) /* CPRM may make this media unusable */
1435 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1436 ap->id, dev->devno);
1437 snprintf(revbuf, 7, "CFA");
1438 }
1439 else
1440 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1441
1148c3a7 1442 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1443
1148c3a7 1444 if (ata_id_has_lba(id)) {
4c2d721a 1445 const char *lba_desc;
a6e6ce8e 1446 char ncq_desc[20];
8bf62ece 1447
4c2d721a
TH
1448 lba_desc = "LBA";
1449 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1450 if (ata_id_has_lba48(id)) {
8bf62ece 1451 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1452 lba_desc = "LBA48";
1453 }
8bf62ece 1454
a6e6ce8e
TH
1455 /* config NCQ */
1456 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1457
8bf62ece 1458 /* print device info to dmesg */
5afc8142 1459 if (ata_msg_drv(ap) && print_info)
b352e57d 1460 ata_dev_printk(dev, KERN_INFO, "%s, "
a6e6ce8e 1461 "max %s, %Lu sectors: %s %s\n",
b352e57d 1462 revbuf,
f15a1daf
TH
1463 ata_mode_string(xfer_mask),
1464 (unsigned long long)dev->n_sectors,
a6e6ce8e 1465 lba_desc, ncq_desc);
ffeae418 1466 } else {
8bf62ece
AL
1467 /* CHS */
1468
1469 /* Default translation */
1148c3a7
TH
1470 dev->cylinders = id[1];
1471 dev->heads = id[3];
1472 dev->sectors = id[6];
8bf62ece 1473
1148c3a7 1474 if (ata_id_current_chs_valid(id)) {
8bf62ece 1475 /* Current CHS translation is valid. */
1148c3a7
TH
1476 dev->cylinders = id[54];
1477 dev->heads = id[55];
1478 dev->sectors = id[56];
8bf62ece
AL
1479 }
1480
1481 /* print device info to dmesg */
5afc8142 1482 if (ata_msg_drv(ap) && print_info)
b352e57d 1483 ata_dev_printk(dev, KERN_INFO, "%s, "
f15a1daf 1484 "max %s, %Lu sectors: CHS %u/%u/%u\n",
b352e57d 1485 revbuf,
f15a1daf
TH
1486 ata_mode_string(xfer_mask),
1487 (unsigned long long)dev->n_sectors,
88574551
TH
1488 dev->cylinders, dev->heads,
1489 dev->sectors);
1da177e4
LT
1490 }
1491
07f6f7d0
AL
1492 if (dev->id[59] & 0x100) {
1493 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1494 if (ata_msg_drv(ap) && print_info)
88574551
TH
1495 ata_dev_printk(dev, KERN_INFO,
1496 "ata%u: dev %u multi count %u\n",
1497 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1498 }
1499
6e7846e9 1500 dev->cdb_len = 16;
1da177e4
LT
1501 }
1502
1503 /* ATAPI-specific feature tests */
2c13b7ce 1504 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1505 char *cdb_intr_string = "";
1506
1148c3a7 1507 rc = atapi_cdb_len(id);
1da177e4 1508 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1509 if (ata_msg_warn(ap))
88574551
TH
1510 ata_dev_printk(dev, KERN_WARNING,
1511 "unsupported CDB len\n");
ffeae418 1512 rc = -EINVAL;
1da177e4
LT
1513 goto err_out_nosup;
1514 }
6e7846e9 1515 dev->cdb_len = (unsigned int) rc;
1da177e4 1516
08a556db 1517 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1518 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1519 cdb_intr_string = ", CDB intr";
1520 }
312f7da2 1521
1da177e4 1522 /* print device info to dmesg */
5afc8142 1523 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1524 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1525 ata_mode_string(xfer_mask),
1526 cdb_intr_string);
1da177e4
LT
1527 }
1528
93590859
AC
1529 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1530 /* Let the user know. We don't want to disallow opens for
1531 rescue purposes, or in case the vendor is just a blithering
1532 idiot */
1533 if (print_info) {
1534 ata_dev_printk(dev, KERN_WARNING,
1535"Drive reports diagnostics failure. This may indicate a drive\n");
1536 ata_dev_printk(dev, KERN_WARNING,
1537"fault or invalid emulation. Contact drive vendor for information.\n");
1538 }
1539 }
1540
e6d902a3 1541 ata_set_port_max_cmd_len(ap);
6e7846e9 1542
4b2f3ede 1543 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1544 if (ata_dev_knobble(dev)) {
5afc8142 1545 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1546 ata_dev_printk(dev, KERN_INFO,
1547 "applying bridge limits\n");
5a529139 1548 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1549 dev->max_sectors = ATA_MAX_SECTORS;
1550 }
1551
1552 if (ap->ops->dev_config)
1553 ap->ops->dev_config(ap, dev);
1554
0dd4b21f
BP
1555 if (ata_msg_probe(ap))
1556 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1557 __FUNCTION__, ata_chk_status(ap));
ffeae418 1558 return 0;
1da177e4
LT
1559
1560err_out_nosup:
0dd4b21f 1561 if (ata_msg_probe(ap))
88574551
TH
1562 ata_dev_printk(dev, KERN_DEBUG,
1563 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1564 return rc;
1da177e4
LT
1565}
1566
1567/**
1568 * ata_bus_probe - Reset and probe ATA bus
1569 * @ap: Bus to probe
1570 *
0cba632b
JG
1571 * Master ATA bus probing function. Initiates a hardware-dependent
1572 * bus reset, then attempts to identify any devices found on
1573 * the bus.
1574 *
1da177e4 1575 * LOCKING:
0cba632b 1576 * PCI/etc. bus probe sem.
1da177e4
LT
1577 *
1578 * RETURNS:
96072e69 1579 * Zero on success, negative errno otherwise.
1da177e4
LT
1580 */
1581
80289167 1582int ata_bus_probe(struct ata_port *ap)
1da177e4 1583{
28ca5c57 1584 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1585 int tries[ATA_MAX_DEVICES];
1586 int i, rc, down_xfermask;
e82cbdb9 1587 struct ata_device *dev;
1da177e4 1588
28ca5c57 1589 ata_port_probe(ap);
c19ba8af 1590
14d2bac1
TH
1591 for (i = 0; i < ATA_MAX_DEVICES; i++)
1592 tries[i] = ATA_PROBE_MAX_TRIES;
1593
1594 retry:
1595 down_xfermask = 0;
1596
2044470c 1597 /* reset and determine device classes */
52783c5d 1598 ap->ops->phy_reset(ap);
2061a47a 1599
52783c5d
TH
1600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1601 dev = &ap->device[i];
c19ba8af 1602
52783c5d
TH
1603 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1604 dev->class != ATA_DEV_UNKNOWN)
1605 classes[dev->devno] = dev->class;
1606 else
1607 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1608
52783c5d 1609 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1610 }
1da177e4 1611
52783c5d 1612 ata_port_probe(ap);
2044470c 1613
b6079ca4
AC
1614 /* after the reset the device state is PIO 0 and the controller
1615 state is undefined. Record the mode */
1616
1617 for (i = 0; i < ATA_MAX_DEVICES; i++)
1618 ap->device[i].pio_mode = XFER_PIO_0;
1619
28ca5c57 1620 /* read IDENTIFY page and configure devices */
1da177e4 1621 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1622 dev = &ap->device[i];
28ca5c57 1623
ec573755
TH
1624 if (tries[i])
1625 dev->class = classes[i];
ffeae418 1626
14d2bac1 1627 if (!ata_dev_enabled(dev))
ffeae418 1628 continue;
ffeae418 1629
3373efd8 1630 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1631 if (rc)
1632 goto fail;
1633
3373efd8 1634 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1635 if (rc)
1636 goto fail;
1da177e4
LT
1637 }
1638
e82cbdb9 1639 /* configure transfer mode */
3adcebb2 1640 rc = ata_set_mode(ap, &dev);
51713d35
TH
1641 if (rc) {
1642 down_xfermask = 1;
1643 goto fail;
e82cbdb9 1644 }
1da177e4 1645
e82cbdb9
TH
1646 for (i = 0; i < ATA_MAX_DEVICES; i++)
1647 if (ata_dev_enabled(&ap->device[i]))
1648 return 0;
1da177e4 1649
e82cbdb9
TH
1650 /* no device present, disable port */
1651 ata_port_disable(ap);
1da177e4 1652 ap->ops->port_disable(ap);
96072e69 1653 return -ENODEV;
14d2bac1
TH
1654
1655 fail:
1656 switch (rc) {
1657 case -EINVAL:
1658 case -ENODEV:
1659 tries[dev->devno] = 0;
1660 break;
1661 case -EIO:
3c567b7d 1662 sata_down_spd_limit(ap);
14d2bac1
TH
1663 /* fall through */
1664 default:
1665 tries[dev->devno]--;
1666 if (down_xfermask &&
3373efd8 1667 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1668 tries[dev->devno] = 0;
1669 }
1670
ec573755 1671 if (!tries[dev->devno]) {
3373efd8
TH
1672 ata_down_xfermask_limit(dev, 1);
1673 ata_dev_disable(dev);
ec573755
TH
1674 }
1675
14d2bac1 1676 goto retry;
1da177e4
LT
1677}
1678
1679/**
0cba632b
JG
1680 * ata_port_probe - Mark port as enabled
1681 * @ap: Port for which we indicate enablement
1da177e4 1682 *
0cba632b
JG
1683 * Modify @ap data structure such that the system
1684 * thinks that the entire port is enabled.
1685 *
cca3974e 1686 * LOCKING: host lock, or some other form of
0cba632b 1687 * serialization.
1da177e4
LT
1688 */
1689
1690void ata_port_probe(struct ata_port *ap)
1691{
198e0fed 1692 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1693}
1694
3be680b7
TH
1695/**
1696 * sata_print_link_status - Print SATA link status
1697 * @ap: SATA port to printk link status about
1698 *
1699 * This function prints link speed and status of a SATA link.
1700 *
1701 * LOCKING:
1702 * None.
1703 */
1704static void sata_print_link_status(struct ata_port *ap)
1705{
6d5f9732 1706 u32 sstatus, scontrol, tmp;
3be680b7 1707
81952c54 1708 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1709 return;
81952c54 1710 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1711
81952c54 1712 if (ata_port_online(ap)) {
3be680b7 1713 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1714 ata_port_printk(ap, KERN_INFO,
1715 "SATA link up %s (SStatus %X SControl %X)\n",
1716 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1717 } else {
f15a1daf
TH
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link down (SStatus %X SControl %X)\n",
1720 sstatus, scontrol);
3be680b7
TH
1721 }
1722}
1723
1da177e4 1724/**
780a87f7
JG
1725 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1726 * @ap: SATA port associated with target SATA PHY.
1da177e4 1727 *
780a87f7
JG
1728 * This function issues commands to standard SATA Sxxx
1729 * PHY registers, to wake up the phy (and device), and
1730 * clear any reset condition.
1da177e4
LT
1731 *
1732 * LOCKING:
0cba632b 1733 * PCI/etc. bus probe sem.
1da177e4
LT
1734 *
1735 */
1736void __sata_phy_reset(struct ata_port *ap)
1737{
1738 u32 sstatus;
1739 unsigned long timeout = jiffies + (HZ * 5);
1740
1741 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1742 /* issue phy wake/reset */
81952c54 1743 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1744 /* Couldn't find anything in SATA I/II specs, but
1745 * AHCI-1.1 10.4.2 says at least 1 ms. */
1746 mdelay(1);
1da177e4 1747 }
81952c54
TH
1748 /* phy wake/clear reset */
1749 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1750
1751 /* wait for phy to become ready, if necessary */
1752 do {
1753 msleep(200);
81952c54 1754 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1755 if ((sstatus & 0xf) != 1)
1756 break;
1757 } while (time_before(jiffies, timeout));
1758
3be680b7
TH
1759 /* print link status */
1760 sata_print_link_status(ap);
656563e3 1761
3be680b7 1762 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1763 if (!ata_port_offline(ap))
1da177e4 1764 ata_port_probe(ap);
3be680b7 1765 else
1da177e4 1766 ata_port_disable(ap);
1da177e4 1767
198e0fed 1768 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1769 return;
1770
1771 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1772 ata_port_disable(ap);
1773 return;
1774 }
1775
1776 ap->cbl = ATA_CBL_SATA;
1777}
1778
1779/**
780a87f7
JG
1780 * sata_phy_reset - Reset SATA bus.
1781 * @ap: SATA port associated with target SATA PHY.
1da177e4 1782 *
780a87f7
JG
1783 * This function resets the SATA bus, and then probes
1784 * the bus for devices.
1da177e4
LT
1785 *
1786 * LOCKING:
0cba632b 1787 * PCI/etc. bus probe sem.
1da177e4
LT
1788 *
1789 */
1790void sata_phy_reset(struct ata_port *ap)
1791{
1792 __sata_phy_reset(ap);
198e0fed 1793 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1794 return;
1795 ata_bus_reset(ap);
1796}
1797
ebdfca6e
AC
1798/**
1799 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1800 * @adev: device
1801 *
1802 * Obtain the other device on the same cable, or if none is
1803 * present NULL is returned
1804 */
2e9edbf8 1805
3373efd8 1806struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1807{
3373efd8 1808 struct ata_port *ap = adev->ap;
ebdfca6e 1809 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1810 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1811 return NULL;
1812 return pair;
1813}
1814
1da177e4 1815/**
780a87f7
JG
1816 * ata_port_disable - Disable port.
1817 * @ap: Port to be disabled.
1da177e4 1818 *
780a87f7
JG
1819 * Modify @ap data structure such that the system
1820 * thinks that the entire port is disabled, and should
1821 * never attempt to probe or communicate with devices
1822 * on this port.
1823 *
cca3974e 1824 * LOCKING: host lock, or some other form of
780a87f7 1825 * serialization.
1da177e4
LT
1826 */
1827
1828void ata_port_disable(struct ata_port *ap)
1829{
1830 ap->device[0].class = ATA_DEV_NONE;
1831 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1832 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1833}
1834
1c3fae4d 1835/**
3c567b7d 1836 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1837 * @ap: Port to adjust SATA spd limit for
1838 *
1839 * Adjust SATA spd limit of @ap downward. Note that this
1840 * function only adjusts the limit. The change must be applied
3c567b7d 1841 * using sata_set_spd().
1c3fae4d
TH
1842 *
1843 * LOCKING:
1844 * Inherited from caller.
1845 *
1846 * RETURNS:
1847 * 0 on success, negative errno on failure
1848 */
3c567b7d 1849int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1850{
81952c54
TH
1851 u32 sstatus, spd, mask;
1852 int rc, highbit;
1c3fae4d 1853
81952c54
TH
1854 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1855 if (rc)
1856 return rc;
1c3fae4d
TH
1857
1858 mask = ap->sata_spd_limit;
1859 if (mask <= 1)
1860 return -EINVAL;
1861 highbit = fls(mask) - 1;
1862 mask &= ~(1 << highbit);
1863
81952c54 1864 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1865 if (spd <= 1)
1866 return -EINVAL;
1867 spd--;
1868 mask &= (1 << spd) - 1;
1869 if (!mask)
1870 return -EINVAL;
1871
1872 ap->sata_spd_limit = mask;
1873
f15a1daf
TH
1874 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1875 sata_spd_string(fls(mask)));
1c3fae4d
TH
1876
1877 return 0;
1878}
1879
3c567b7d 1880static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1881{
1882 u32 spd, limit;
1883
1884 if (ap->sata_spd_limit == UINT_MAX)
1885 limit = 0;
1886 else
1887 limit = fls(ap->sata_spd_limit);
1888
1889 spd = (*scontrol >> 4) & 0xf;
1890 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1891
1892 return spd != limit;
1893}
1894
1895/**
3c567b7d 1896 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1897 * @ap: Port in question
1898 *
1899 * Test whether the spd limit in SControl matches
1900 * @ap->sata_spd_limit. This function is used to determine
1901 * whether hardreset is necessary to apply SATA spd
1902 * configuration.
1903 *
1904 * LOCKING:
1905 * Inherited from caller.
1906 *
1907 * RETURNS:
1908 * 1 if SATA spd configuration is needed, 0 otherwise.
1909 */
3c567b7d 1910int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1911{
1912 u32 scontrol;
1913
81952c54 1914 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1915 return 0;
1916
3c567b7d 1917 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1918}
1919
1920/**
3c567b7d 1921 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1922 * @ap: Port to set SATA spd for
1923 *
1924 * Set SATA spd of @ap according to sata_spd_limit.
1925 *
1926 * LOCKING:
1927 * Inherited from caller.
1928 *
1929 * RETURNS:
1930 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1931 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1932 */
3c567b7d 1933int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1934{
1935 u32 scontrol;
81952c54 1936 int rc;
1c3fae4d 1937
81952c54
TH
1938 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1939 return rc;
1c3fae4d 1940
3c567b7d 1941 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1942 return 0;
1943
81952c54
TH
1944 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1945 return rc;
1946
1c3fae4d
TH
1947 return 1;
1948}
1949
452503f9
AC
1950/*
1951 * This mode timing computation functionality is ported over from
1952 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1953 */
1954/*
b352e57d 1955 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 1956 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
1957 * for UDMA6, which is currently supported only by Maxtor drives.
1958 *
1959 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
1960 */
1961
1962static const struct ata_timing ata_timing[] = {
1963
1964 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1965 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1966 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1967 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1968
b352e57d
AC
1969 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1970 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
1971 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1972 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1973 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1974
1975/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1976
452503f9
AC
1977 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1978 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1979 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1980
452503f9
AC
1981 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1982 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1983 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1984
b352e57d
AC
1985 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
1987 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1988 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1989
1990 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1991 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1992 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1993
1994/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1995
1996 { 0xFF }
1997};
1998
1999#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2000#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2001
2002static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2003{
2004 q->setup = EZ(t->setup * 1000, T);
2005 q->act8b = EZ(t->act8b * 1000, T);
2006 q->rec8b = EZ(t->rec8b * 1000, T);
2007 q->cyc8b = EZ(t->cyc8b * 1000, T);
2008 q->active = EZ(t->active * 1000, T);
2009 q->recover = EZ(t->recover * 1000, T);
2010 q->cycle = EZ(t->cycle * 1000, T);
2011 q->udma = EZ(t->udma * 1000, UT);
2012}
2013
2014void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2015 struct ata_timing *m, unsigned int what)
2016{
2017 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2018 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2019 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2020 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2021 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2022 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2023 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2024 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2025}
2026
2027static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2028{
2029 const struct ata_timing *t;
2030
2031 for (t = ata_timing; t->mode != speed; t++)
91190758 2032 if (t->mode == 0xFF)
452503f9 2033 return NULL;
2e9edbf8 2034 return t;
452503f9
AC
2035}
2036
2037int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2038 struct ata_timing *t, int T, int UT)
2039{
2040 const struct ata_timing *s;
2041 struct ata_timing p;
2042
2043 /*
2e9edbf8 2044 * Find the mode.
75b1f2f8 2045 */
452503f9
AC
2046
2047 if (!(s = ata_timing_find_mode(speed)))
2048 return -EINVAL;
2049
75b1f2f8
AL
2050 memcpy(t, s, sizeof(*s));
2051
452503f9
AC
2052 /*
2053 * If the drive is an EIDE drive, it can tell us it needs extended
2054 * PIO/MW_DMA cycle timing.
2055 */
2056
2057 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2058 memset(&p, 0, sizeof(p));
2059 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2060 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2061 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2062 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2063 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2064 }
2065 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2066 }
2067
2068 /*
2069 * Convert the timing to bus clock counts.
2070 */
2071
75b1f2f8 2072 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2073
2074 /*
c893a3ae
RD
2075 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2076 * S.M.A.R.T * and some other commands. We have to ensure that the
2077 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2078 */
2079
2080 if (speed > XFER_PIO_4) {
2081 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2082 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2083 }
2084
2085 /*
c893a3ae 2086 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2087 */
2088
2089 if (t->act8b + t->rec8b < t->cyc8b) {
2090 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2091 t->rec8b = t->cyc8b - t->act8b;
2092 }
2093
2094 if (t->active + t->recover < t->cycle) {
2095 t->active += (t->cycle - (t->active + t->recover)) / 2;
2096 t->recover = t->cycle - t->active;
2097 }
2098
2099 return 0;
2100}
2101
cf176e1a
TH
2102/**
2103 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2104 * @dev: Device to adjust xfer masks
2105 * @force_pio0: Force PIO0
2106 *
2107 * Adjust xfer masks of @dev downward. Note that this function
2108 * does not apply the change. Invoking ata_set_mode() afterwards
2109 * will apply the limit.
2110 *
2111 * LOCKING:
2112 * Inherited from caller.
2113 *
2114 * RETURNS:
2115 * 0 on success, negative errno on failure
2116 */
3373efd8 2117int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2118{
2119 unsigned long xfer_mask;
2120 int highbit;
2121
2122 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2123 dev->udma_mask);
2124
2125 if (!xfer_mask)
2126 goto fail;
2127 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2128 if (xfer_mask & ATA_MASK_UDMA)
2129 xfer_mask &= ~ATA_MASK_MWDMA;
2130
2131 highbit = fls(xfer_mask) - 1;
2132 xfer_mask &= ~(1 << highbit);
2133 if (force_pio0)
2134 xfer_mask &= 1 << ATA_SHIFT_PIO;
2135 if (!xfer_mask)
2136 goto fail;
2137
2138 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2139 &dev->udma_mask);
2140
f15a1daf
TH
2141 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2142 ata_mode_string(xfer_mask));
cf176e1a
TH
2143
2144 return 0;
2145
2146 fail:
2147 return -EINVAL;
2148}
2149
3373efd8 2150static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2151{
83206a29
TH
2152 unsigned int err_mask;
2153 int rc;
1da177e4 2154
e8384607 2155 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2156 if (dev->xfer_shift == ATA_SHIFT_PIO)
2157 dev->flags |= ATA_DFLAG_PIO;
2158
3373efd8 2159 err_mask = ata_dev_set_xfermode(dev);
83206a29 2160 if (err_mask) {
f15a1daf
TH
2161 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2162 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2163 return -EIO;
2164 }
1da177e4 2165
3373efd8 2166 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2167 if (rc)
83206a29 2168 return rc;
48a8a14f 2169
23e71c3d
TH
2170 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2171 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2172
f15a1daf
TH
2173 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2174 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2175 return 0;
1da177e4
LT
2176}
2177
1da177e4
LT
2178/**
2179 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2180 * @ap: port on which timings will be programmed
e82cbdb9 2181 * @r_failed_dev: out paramter for failed device
1da177e4 2182 *
e82cbdb9
TH
2183 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2184 * ata_set_mode() fails, pointer to the failing device is
2185 * returned in @r_failed_dev.
780a87f7 2186 *
1da177e4 2187 * LOCKING:
0cba632b 2188 * PCI/etc. bus probe sem.
e82cbdb9
TH
2189 *
2190 * RETURNS:
2191 * 0 on success, negative errno otherwise
1da177e4 2192 */
1ad8e7f9 2193int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2194{
e8e0619f 2195 struct ata_device *dev;
e82cbdb9 2196 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2197
3adcebb2
TH
2198 /* has private set_mode? */
2199 if (ap->ops->set_mode) {
2200 /* FIXME: make ->set_mode handle no device case and
2201 * return error code and failing device on failure.
2202 */
2203 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2204 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2205 ap->ops->set_mode(ap);
2206 break;
2207 }
2208 }
2209 return 0;
2210 }
2211
a6d5a51c
TH
2212 /* step 1: calculate xfer_mask */
2213 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2214 unsigned int pio_mask, dma_mask;
a6d5a51c 2215
e8e0619f
TH
2216 dev = &ap->device[i];
2217
e1211e3f 2218 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2219 continue;
2220
3373efd8 2221 ata_dev_xfermask(dev);
1da177e4 2222
acf356b1
TH
2223 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2224 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2225 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2226 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2227
4f65977d 2228 found = 1;
5444a6f4
AC
2229 if (dev->dma_mode)
2230 used_dma = 1;
a6d5a51c 2231 }
4f65977d 2232 if (!found)
e82cbdb9 2233 goto out;
a6d5a51c
TH
2234
2235 /* step 2: always set host PIO timings */
e8e0619f
TH
2236 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2237 dev = &ap->device[i];
2238 if (!ata_dev_enabled(dev))
2239 continue;
2240
2241 if (!dev->pio_mode) {
f15a1daf 2242 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2243 rc = -EINVAL;
e82cbdb9 2244 goto out;
e8e0619f
TH
2245 }
2246
2247 dev->xfer_mode = dev->pio_mode;
2248 dev->xfer_shift = ATA_SHIFT_PIO;
2249 if (ap->ops->set_piomode)
2250 ap->ops->set_piomode(ap, dev);
2251 }
1da177e4 2252
a6d5a51c 2253 /* step 3: set host DMA timings */
e8e0619f
TH
2254 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2255 dev = &ap->device[i];
2256
2257 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2258 continue;
2259
2260 dev->xfer_mode = dev->dma_mode;
2261 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2262 if (ap->ops->set_dmamode)
2263 ap->ops->set_dmamode(ap, dev);
2264 }
1da177e4
LT
2265
2266 /* step 4: update devices' xfer mode */
83206a29 2267 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2268 dev = &ap->device[i];
1da177e4 2269
02670bf3
TH
2270 /* don't udpate suspended devices' xfer mode */
2271 if (!ata_dev_ready(dev))
83206a29
TH
2272 continue;
2273
3373efd8 2274 rc = ata_dev_set_mode(dev);
5bbc53f4 2275 if (rc)
e82cbdb9 2276 goto out;
83206a29 2277 }
1da177e4 2278
e8e0619f
TH
2279 /* Record simplex status. If we selected DMA then the other
2280 * host channels are not permitted to do so.
5444a6f4 2281 */
cca3974e
JG
2282 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2283 ap->host->simplex_claimed = 1;
5444a6f4 2284
e8e0619f 2285 /* step5: chip specific finalisation */
1da177e4
LT
2286 if (ap->ops->post_set_mode)
2287 ap->ops->post_set_mode(ap);
2288
e82cbdb9
TH
2289 out:
2290 if (rc)
2291 *r_failed_dev = dev;
2292 return rc;
1da177e4
LT
2293}
2294
1fdffbce
JG
2295/**
2296 * ata_tf_to_host - issue ATA taskfile to host controller
2297 * @ap: port to which command is being issued
2298 * @tf: ATA taskfile register set
2299 *
2300 * Issues ATA taskfile register set to ATA host controller,
2301 * with proper synchronization with interrupt handler and
2302 * other threads.
2303 *
2304 * LOCKING:
cca3974e 2305 * spin_lock_irqsave(host lock)
1fdffbce
JG
2306 */
2307
2308static inline void ata_tf_to_host(struct ata_port *ap,
2309 const struct ata_taskfile *tf)
2310{
2311 ap->ops->tf_load(ap, tf);
2312 ap->ops->exec_command(ap, tf);
2313}
2314
1da177e4
LT
2315/**
2316 * ata_busy_sleep - sleep until BSY clears, or timeout
2317 * @ap: port containing status register to be polled
2318 * @tmout_pat: impatience timeout
2319 * @tmout: overall timeout
2320 *
780a87f7
JG
2321 * Sleep until ATA Status register bit BSY clears,
2322 * or a timeout occurs.
2323 *
2324 * LOCKING: None.
1da177e4
LT
2325 */
2326
6f8b9958
TH
2327unsigned int ata_busy_sleep (struct ata_port *ap,
2328 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2329{
2330 unsigned long timer_start, timeout;
2331 u8 status;
2332
2333 status = ata_busy_wait(ap, ATA_BUSY, 300);
2334 timer_start = jiffies;
2335 timeout = timer_start + tmout_pat;
2336 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2337 msleep(50);
2338 status = ata_busy_wait(ap, ATA_BUSY, 3);
2339 }
2340
2341 if (status & ATA_BUSY)
f15a1daf
TH
2342 ata_port_printk(ap, KERN_WARNING,
2343 "port is slow to respond, please be patient\n");
1da177e4
LT
2344
2345 timeout = timer_start + tmout;
2346 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2347 msleep(50);
2348 status = ata_chk_status(ap);
2349 }
2350
2351 if (status & ATA_BUSY) {
f15a1daf
TH
2352 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2353 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2354 return 1;
2355 }
2356
2357 return 0;
2358}
2359
2360static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2361{
2362 struct ata_ioports *ioaddr = &ap->ioaddr;
2363 unsigned int dev0 = devmask & (1 << 0);
2364 unsigned int dev1 = devmask & (1 << 1);
2365 unsigned long timeout;
2366
2367 /* if device 0 was found in ata_devchk, wait for its
2368 * BSY bit to clear
2369 */
2370 if (dev0)
2371 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2372
2373 /* if device 1 was found in ata_devchk, wait for
2374 * register access, then wait for BSY to clear
2375 */
2376 timeout = jiffies + ATA_TMOUT_BOOT;
2377 while (dev1) {
2378 u8 nsect, lbal;
2379
2380 ap->ops->dev_select(ap, 1);
2381 if (ap->flags & ATA_FLAG_MMIO) {
2382 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2383 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2384 } else {
2385 nsect = inb(ioaddr->nsect_addr);
2386 lbal = inb(ioaddr->lbal_addr);
2387 }
2388 if ((nsect == 1) && (lbal == 1))
2389 break;
2390 if (time_after(jiffies, timeout)) {
2391 dev1 = 0;
2392 break;
2393 }
2394 msleep(50); /* give drive a breather */
2395 }
2396 if (dev1)
2397 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2398
2399 /* is all this really necessary? */
2400 ap->ops->dev_select(ap, 0);
2401 if (dev1)
2402 ap->ops->dev_select(ap, 1);
2403 if (dev0)
2404 ap->ops->dev_select(ap, 0);
2405}
2406
1da177e4
LT
2407static unsigned int ata_bus_softreset(struct ata_port *ap,
2408 unsigned int devmask)
2409{
2410 struct ata_ioports *ioaddr = &ap->ioaddr;
2411
2412 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2413
2414 /* software reset. causes dev0 to be selected */
2415 if (ap->flags & ATA_FLAG_MMIO) {
2416 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2417 udelay(20); /* FIXME: flush */
2418 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2419 udelay(20); /* FIXME: flush */
2420 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2421 } else {
2422 outb(ap->ctl, ioaddr->ctl_addr);
2423 udelay(10);
2424 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2425 udelay(10);
2426 outb(ap->ctl, ioaddr->ctl_addr);
2427 }
2428
2429 /* spec mandates ">= 2ms" before checking status.
2430 * We wait 150ms, because that was the magic delay used for
2431 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2432 * between when the ATA command register is written, and then
2433 * status is checked. Because waiting for "a while" before
2434 * checking status is fine, post SRST, we perform this magic
2435 * delay here as well.
09c7ad79
AC
2436 *
2437 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2438 */
2439 msleep(150);
2440
2e9edbf8 2441 /* Before we perform post reset processing we want to see if
298a41ca
TH
2442 * the bus shows 0xFF because the odd clown forgets the D7
2443 * pulldown resistor.
2444 */
987d2f05 2445 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2446 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2447 return AC_ERR_OTHER;
987d2f05 2448 }
09c7ad79 2449
1da177e4
LT
2450 ata_bus_post_reset(ap, devmask);
2451
2452 return 0;
2453}
2454
2455/**
2456 * ata_bus_reset - reset host port and associated ATA channel
2457 * @ap: port to reset
2458 *
2459 * This is typically the first time we actually start issuing
2460 * commands to the ATA channel. We wait for BSY to clear, then
2461 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2462 * result. Determine what devices, if any, are on the channel
2463 * by looking at the device 0/1 error register. Look at the signature
2464 * stored in each device's taskfile registers, to determine if
2465 * the device is ATA or ATAPI.
2466 *
2467 * LOCKING:
0cba632b 2468 * PCI/etc. bus probe sem.
cca3974e 2469 * Obtains host lock.
1da177e4
LT
2470 *
2471 * SIDE EFFECTS:
198e0fed 2472 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2473 */
2474
2475void ata_bus_reset(struct ata_port *ap)
2476{
2477 struct ata_ioports *ioaddr = &ap->ioaddr;
2478 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2479 u8 err;
aec5c3c1 2480 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2481
2482 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2483
2484 /* determine if device 0/1 are present */
2485 if (ap->flags & ATA_FLAG_SATA_RESET)
2486 dev0 = 1;
2487 else {
2488 dev0 = ata_devchk(ap, 0);
2489 if (slave_possible)
2490 dev1 = ata_devchk(ap, 1);
2491 }
2492
2493 if (dev0)
2494 devmask |= (1 << 0);
2495 if (dev1)
2496 devmask |= (1 << 1);
2497
2498 /* select device 0 again */
2499 ap->ops->dev_select(ap, 0);
2500
2501 /* issue bus reset */
2502 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2503 if (ata_bus_softreset(ap, devmask))
2504 goto err_out;
1da177e4
LT
2505
2506 /*
2507 * determine by signature whether we have ATA or ATAPI devices
2508 */
b4dc7623 2509 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2510 if ((slave_possible) && (err != 0x81))
b4dc7623 2511 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2512
2513 /* re-enable interrupts */
2514 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2515 ata_irq_on(ap);
2516
2517 /* is double-select really necessary? */
2518 if (ap->device[1].class != ATA_DEV_NONE)
2519 ap->ops->dev_select(ap, 1);
2520 if (ap->device[0].class != ATA_DEV_NONE)
2521 ap->ops->dev_select(ap, 0);
2522
2523 /* if no devices were detected, disable this port */
2524 if ((ap->device[0].class == ATA_DEV_NONE) &&
2525 (ap->device[1].class == ATA_DEV_NONE))
2526 goto err_out;
2527
2528 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2529 /* set up device control for ATA_FLAG_SATA_RESET */
2530 if (ap->flags & ATA_FLAG_MMIO)
2531 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2532 else
2533 outb(ap->ctl, ioaddr->ctl_addr);
2534 }
2535
2536 DPRINTK("EXIT\n");
2537 return;
2538
2539err_out:
f15a1daf 2540 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2541 ap->ops->port_disable(ap);
2542
2543 DPRINTK("EXIT\n");
2544}
2545
d7bb4cc7
TH
2546/**
2547 * sata_phy_debounce - debounce SATA phy status
2548 * @ap: ATA port to debounce SATA phy status for
2549 * @params: timing parameters { interval, duratinon, timeout } in msec
2550 *
2551 * Make sure SStatus of @ap reaches stable state, determined by
2552 * holding the same value where DET is not 1 for @duration polled
2553 * every @interval, before @timeout. Timeout constraints the
2554 * beginning of the stable state. Because, after hot unplugging,
2555 * DET gets stuck at 1 on some controllers, this functions waits
2556 * until timeout then returns 0 if DET is stable at 1.
2557 *
2558 * LOCKING:
2559 * Kernel thread context (may sleep)
2560 *
2561 * RETURNS:
2562 * 0 on success, -errno on failure.
2563 */
2564int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2565{
d7bb4cc7
TH
2566 unsigned long interval_msec = params[0];
2567 unsigned long duration = params[1] * HZ / 1000;
2568 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2569 unsigned long last_jiffies;
2570 u32 last, cur;
2571 int rc;
2572
2573 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2574 return rc;
2575 cur &= 0xf;
2576
2577 last = cur;
2578 last_jiffies = jiffies;
2579
2580 while (1) {
2581 msleep(interval_msec);
2582 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2583 return rc;
2584 cur &= 0xf;
2585
2586 /* DET stable? */
2587 if (cur == last) {
2588 if (cur == 1 && time_before(jiffies, timeout))
2589 continue;
2590 if (time_after(jiffies, last_jiffies + duration))
2591 return 0;
2592 continue;
2593 }
2594
2595 /* unstable, start over */
2596 last = cur;
2597 last_jiffies = jiffies;
2598
2599 /* check timeout */
2600 if (time_after(jiffies, timeout))
2601 return -EBUSY;
2602 }
2603}
2604
2605/**
2606 * sata_phy_resume - resume SATA phy
2607 * @ap: ATA port to resume SATA phy for
2608 * @params: timing parameters { interval, duratinon, timeout } in msec
2609 *
2610 * Resume SATA phy of @ap and debounce it.
2611 *
2612 * LOCKING:
2613 * Kernel thread context (may sleep)
2614 *
2615 * RETURNS:
2616 * 0 on success, -errno on failure.
2617 */
2618int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2619{
2620 u32 scontrol;
81952c54
TH
2621 int rc;
2622
2623 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2624 return rc;
7a7921e8 2625
852ee16a 2626 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2627
2628 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2629 return rc;
7a7921e8 2630
d7bb4cc7
TH
2631 /* Some PHYs react badly if SStatus is pounded immediately
2632 * after resuming. Delay 200ms before debouncing.
2633 */
2634 msleep(200);
7a7921e8 2635
d7bb4cc7 2636 return sata_phy_debounce(ap, params);
7a7921e8
TH
2637}
2638
f5914a46
TH
2639static void ata_wait_spinup(struct ata_port *ap)
2640{
2641 struct ata_eh_context *ehc = &ap->eh_context;
2642 unsigned long end, secs;
2643 int rc;
2644
2645 /* first, debounce phy if SATA */
2646 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2647 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2648
2649 /* if debounced successfully and offline, no need to wait */
2650 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2651 return;
2652 }
2653
2654 /* okay, let's give the drive time to spin up */
2655 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2656 secs = ((end - jiffies) + HZ - 1) / HZ;
2657
2658 if (time_after(jiffies, end))
2659 return;
2660
2661 if (secs > 5)
2662 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2663 "(%lu secs)\n", secs);
2664
2665 schedule_timeout_uninterruptible(end - jiffies);
2666}
2667
2668/**
2669 * ata_std_prereset - prepare for reset
2670 * @ap: ATA port to be reset
2671 *
2672 * @ap is about to be reset. Initialize it.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2680int ata_std_prereset(struct ata_port *ap)
2681{
2682 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2683 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2684 int rc;
2685
28324304
TH
2686 /* handle link resume & hotplug spinup */
2687 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2688 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2689 ehc->i.action |= ATA_EH_HARDRESET;
2690
2691 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2692 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2693 ata_wait_spinup(ap);
f5914a46
TH
2694
2695 /* if we're about to do hardreset, nothing more to do */
2696 if (ehc->i.action & ATA_EH_HARDRESET)
2697 return 0;
2698
2699 /* if SATA, resume phy */
2700 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2701 rc = sata_phy_resume(ap, timing);
2702 if (rc && rc != -EOPNOTSUPP) {
2703 /* phy resume failed */
2704 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2705 "link for reset (errno=%d)\n", rc);
2706 return rc;
2707 }
2708 }
2709
2710 /* Wait for !BSY if the controller can wait for the first D2H
2711 * Reg FIS and we don't know that no device is attached.
2712 */
2713 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2714 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2715
2716 return 0;
2717}
2718
c2bd5804
TH
2719/**
2720 * ata_std_softreset - reset host port via ATA SRST
2721 * @ap: port to reset
c2bd5804
TH
2722 * @classes: resulting classes of attached devices
2723 *
52783c5d 2724 * Reset host port using ATA SRST.
c2bd5804
TH
2725 *
2726 * LOCKING:
2727 * Kernel thread context (may sleep)
2728 *
2729 * RETURNS:
2730 * 0 on success, -errno otherwise.
2731 */
2bf2cb26 2732int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2733{
2734 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2735 unsigned int devmask = 0, err_mask;
2736 u8 err;
2737
2738 DPRINTK("ENTER\n");
2739
81952c54 2740 if (ata_port_offline(ap)) {
3a39746a
TH
2741 classes[0] = ATA_DEV_NONE;
2742 goto out;
2743 }
2744
c2bd5804
TH
2745 /* determine if device 0/1 are present */
2746 if (ata_devchk(ap, 0))
2747 devmask |= (1 << 0);
2748 if (slave_possible && ata_devchk(ap, 1))
2749 devmask |= (1 << 1);
2750
c2bd5804
TH
2751 /* select device 0 again */
2752 ap->ops->dev_select(ap, 0);
2753
2754 /* issue bus reset */
2755 DPRINTK("about to softreset, devmask=%x\n", devmask);
2756 err_mask = ata_bus_softreset(ap, devmask);
2757 if (err_mask) {
f15a1daf
TH
2758 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2759 err_mask);
c2bd5804
TH
2760 return -EIO;
2761 }
2762
2763 /* determine by signature whether we have ATA or ATAPI devices */
2764 classes[0] = ata_dev_try_classify(ap, 0, &err);
2765 if (slave_possible && err != 0x81)
2766 classes[1] = ata_dev_try_classify(ap, 1, &err);
2767
3a39746a 2768 out:
c2bd5804
TH
2769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2770 return 0;
2771}
2772
2773/**
2774 * sata_std_hardreset - reset host port via SATA phy reset
2775 * @ap: port to reset
c2bd5804
TH
2776 * @class: resulting class of attached device
2777 *
2778 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, -errno otherwise.
2785 */
2bf2cb26 2786int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2787{
e9c83914
TH
2788 struct ata_eh_context *ehc = &ap->eh_context;
2789 const unsigned long *timing = sata_ehc_deb_timing(ehc);
852ee16a 2790 u32 scontrol;
81952c54 2791 int rc;
852ee16a 2792
c2bd5804
TH
2793 DPRINTK("ENTER\n");
2794
3c567b7d 2795 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2796 /* SATA spec says nothing about how to reconfigure
2797 * spd. To be on the safe side, turn off phy during
2798 * reconfiguration. This works for at least ICH7 AHCI
2799 * and Sil3124.
2800 */
81952c54
TH
2801 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2802 return rc;
2803
a34b6fc0 2804 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
2805
2806 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2807 return rc;
1c3fae4d 2808
3c567b7d 2809 sata_set_spd(ap);
1c3fae4d
TH
2810 }
2811
2812 /* issue phy wake/reset */
81952c54
TH
2813 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2814 return rc;
2815
852ee16a 2816 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2817
2818 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2819 return rc;
c2bd5804 2820
1c3fae4d 2821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2822 * 10.4.2 says at least 1 ms.
2823 */
2824 msleep(1);
2825
1c3fae4d 2826 /* bring phy back */
e9c83914 2827 sata_phy_resume(ap, timing);
c2bd5804 2828
c2bd5804 2829 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2830 if (ata_port_offline(ap)) {
c2bd5804
TH
2831 *class = ATA_DEV_NONE;
2832 DPRINTK("EXIT, link offline\n");
2833 return 0;
2834 }
2835
2836 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2837 ata_port_printk(ap, KERN_ERR,
2838 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2839 return -EIO;
2840 }
2841
3a39746a
TH
2842 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2843
c2bd5804
TH
2844 *class = ata_dev_try_classify(ap, 0, NULL);
2845
2846 DPRINTK("EXIT, class=%u\n", *class);
2847 return 0;
2848}
2849
2850/**
2851 * ata_std_postreset - standard postreset callback
2852 * @ap: the target ata_port
2853 * @classes: classes of attached devices
2854 *
2855 * This function is invoked after a successful reset. Note that
2856 * the device might have been reset more than once using
2857 * different reset methods before postreset is invoked.
c2bd5804 2858 *
c2bd5804
TH
2859 * LOCKING:
2860 * Kernel thread context (may sleep)
2861 */
2862void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2863{
dc2b3515
TH
2864 u32 serror;
2865
c2bd5804
TH
2866 DPRINTK("ENTER\n");
2867
c2bd5804 2868 /* print link status */
81952c54 2869 sata_print_link_status(ap);
c2bd5804 2870
dc2b3515
TH
2871 /* clear SError */
2872 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2873 sata_scr_write(ap, SCR_ERROR, serror);
2874
3a39746a 2875 /* re-enable interrupts */
e3180499
TH
2876 if (!ap->ops->error_handler) {
2877 /* FIXME: hack. create a hook instead */
2878 if (ap->ioaddr.ctl_addr)
2879 ata_irq_on(ap);
2880 }
c2bd5804
TH
2881
2882 /* is double-select really necessary? */
2883 if (classes[0] != ATA_DEV_NONE)
2884 ap->ops->dev_select(ap, 1);
2885 if (classes[1] != ATA_DEV_NONE)
2886 ap->ops->dev_select(ap, 0);
2887
3a39746a
TH
2888 /* bail out if no device is present */
2889 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2890 DPRINTK("EXIT, no device\n");
2891 return;
2892 }
2893
2894 /* set up device control */
2895 if (ap->ioaddr.ctl_addr) {
2896 if (ap->flags & ATA_FLAG_MMIO)
2897 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2898 else
2899 outb(ap->ctl, ap->ioaddr.ctl_addr);
2900 }
c2bd5804
TH
2901
2902 DPRINTK("EXIT\n");
2903}
2904
623a3128
TH
2905/**
2906 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2907 * @dev: device to compare against
2908 * @new_class: class of the new device
2909 * @new_id: IDENTIFY page of the new device
2910 *
2911 * Compare @new_class and @new_id against @dev and determine
2912 * whether @dev is the device indicated by @new_class and
2913 * @new_id.
2914 *
2915 * LOCKING:
2916 * None.
2917 *
2918 * RETURNS:
2919 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2920 */
3373efd8
TH
2921static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2922 const u16 *new_id)
623a3128
TH
2923{
2924 const u16 *old_id = dev->id;
2925 unsigned char model[2][41], serial[2][21];
2926 u64 new_n_sectors;
2927
2928 if (dev->class != new_class) {
f15a1daf
TH
2929 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2930 dev->class, new_class);
623a3128
TH
2931 return 0;
2932 }
2933
2934 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2935 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2936 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2937 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2938 new_n_sectors = ata_id_n_sectors(new_id);
2939
2940 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2941 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2942 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2943 return 0;
2944 }
2945
2946 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2947 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2948 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2949 return 0;
2950 }
2951
2952 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2953 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2954 "%llu != %llu\n",
2955 (unsigned long long)dev->n_sectors,
2956 (unsigned long long)new_n_sectors);
623a3128
TH
2957 return 0;
2958 }
2959
2960 return 1;
2961}
2962
2963/**
2964 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2965 * @dev: device to revalidate
2966 * @post_reset: is this revalidation after reset?
2967 *
2968 * Re-read IDENTIFY page and make sure @dev is still attached to
2969 * the port.
2970 *
2971 * LOCKING:
2972 * Kernel thread context (may sleep)
2973 *
2974 * RETURNS:
2975 * 0 on success, negative errno otherwise
2976 */
3373efd8 2977int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2978{
5eb45c02 2979 unsigned int class = dev->class;
f15a1daf 2980 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2981 int rc;
2982
5eb45c02
TH
2983 if (!ata_dev_enabled(dev)) {
2984 rc = -ENODEV;
2985 goto fail;
2986 }
623a3128 2987
fe635c7e 2988 /* read ID data */
3373efd8 2989 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2990 if (rc)
2991 goto fail;
2992
2993 /* is the device still there? */
3373efd8 2994 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2995 rc = -ENODEV;
2996 goto fail;
2997 }
2998
fe635c7e 2999 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3000
3001 /* configure device according to the new ID */
3373efd8 3002 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
3003 if (rc == 0)
3004 return 0;
623a3128
TH
3005
3006 fail:
f15a1daf 3007 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3008 return rc;
3009}
3010
98ac62de 3011static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
3012 "WDC AC11000H", NULL,
3013 "WDC AC22100H", NULL,
3014 "WDC AC32500H", NULL,
3015 "WDC AC33100H", NULL,
3016 "WDC AC31600H", NULL,
3017 "WDC AC32100H", "24.09P07",
3018 "WDC AC23200L", "21.10N21",
3019 "Compaq CRD-8241B", NULL,
3020 "CRD-8400B", NULL,
3021 "CRD-8480B", NULL,
3022 "CRD-8482B", NULL,
3023 "CRD-84", NULL,
3024 "SanDisk SDP3B", NULL,
3025 "SanDisk SDP3B-64", NULL,
3026 "SANYO CD-ROM CRD", NULL,
3027 "HITACHI CDR-8", NULL,
2e9edbf8 3028 "HITACHI CDR-8335", NULL,
f4b15fef 3029 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
3030 "Toshiba CD-ROM XM-6202B", NULL,
3031 "TOSHIBA CD-ROM XM-1702BC", NULL,
3032 "CD-532E-A", NULL,
3033 "E-IDE CD-ROM CR-840", NULL,
3034 "CD-ROM Drive/F5A", NULL,
3035 "WPI CDD-820", NULL,
f4b15fef 3036 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 3037 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
3038 "SanDisk SDP3B-64", NULL,
3039 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3040 "_NEC DV5800A", NULL,
3041 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 3042};
2e9edbf8 3043
f4b15fef
AC
3044static int ata_strim(char *s, size_t len)
3045{
3046 len = strnlen(s, len);
3047
3048 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3049 while ((len > 0) && (s[len - 1] == ' ')) {
3050 len--;
3051 s[len] = 0;
3052 }
3053 return len;
3054}
1da177e4 3055
057ace5e 3056static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 3057{
f4b15fef
AC
3058 unsigned char model_num[40];
3059 unsigned char model_rev[16];
3060 unsigned int nlen, rlen;
1da177e4
LT
3061 int i;
3062
3a778275
AL
3063 /* We don't support polling DMA.
3064 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3065 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3066 */
3067 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3068 (dev->flags & ATA_DFLAG_CDB_INTR))
3069 return 1;
3070
f4b15fef
AC
3071 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3072 sizeof(model_num));
3073 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3074 sizeof(model_rev));
3075 nlen = ata_strim(model_num, sizeof(model_num));
3076 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3077
f4b15fef
AC
3078 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3079 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3080 if (ata_dma_blacklist[i+1] == NULL)
3081 return 1;
3082 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3083 return 1;
3084 }
3085 }
1da177e4
LT
3086 return 0;
3087}
3088
a6d5a51c
TH
3089/**
3090 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3091 * @dev: Device to compute xfermask for
3092 *
acf356b1
TH
3093 * Compute supported xfermask of @dev and store it in
3094 * dev->*_mask. This function is responsible for applying all
3095 * known limits including host controller limits, device
3096 * blacklist, etc...
a6d5a51c
TH
3097 *
3098 * LOCKING:
3099 * None.
a6d5a51c 3100 */
3373efd8 3101static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3102{
3373efd8 3103 struct ata_port *ap = dev->ap;
cca3974e 3104 struct ata_host *host = ap->host;
a6d5a51c 3105 unsigned long xfer_mask;
1da177e4 3106
37deecb5 3107 /* controller modes available */
565083e1
TH
3108 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3109 ap->mwdma_mask, ap->udma_mask);
3110
3111 /* Apply cable rule here. Don't apply it early because when
3112 * we handle hot plug the cable type can itself change.
3113 */
3114 if (ap->cbl == ATA_CBL_PATA40)
3115 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3116
37deecb5
TH
3117 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3118 dev->mwdma_mask, dev->udma_mask);
3119 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3120
b352e57d
AC
3121 /*
3122 * CFA Advanced TrueIDE timings are not allowed on a shared
3123 * cable
3124 */
3125 if (ata_dev_pair(dev)) {
3126 /* No PIO5 or PIO6 */
3127 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3128 /* No MWDMA3 or MWDMA 4 */
3129 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3130 }
3131
37deecb5
TH
3132 if (ata_dma_blacklisted(dev)) {
3133 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3134 ata_dev_printk(dev, KERN_WARNING,
3135 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3136 }
a6d5a51c 3137
cca3974e 3138 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
37deecb5
TH
3139 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3140 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3141 "other device, disabling DMA\n");
5444a6f4 3142 }
565083e1 3143
5444a6f4
AC
3144 if (ap->ops->mode_filter)
3145 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3146
565083e1
TH
3147 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3148 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3149}
3150
1da177e4
LT
3151/**
3152 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3153 * @dev: Device to which command will be sent
3154 *
780a87f7
JG
3155 * Issue SET FEATURES - XFER MODE command to device @dev
3156 * on port @ap.
3157 *
1da177e4 3158 * LOCKING:
0cba632b 3159 * PCI/etc. bus probe sem.
83206a29
TH
3160 *
3161 * RETURNS:
3162 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3163 */
3164
3373efd8 3165static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3166{
a0123703 3167 struct ata_taskfile tf;
83206a29 3168 unsigned int err_mask;
1da177e4
LT
3169
3170 /* set up set-features taskfile */
3171 DPRINTK("set features - xfer mode\n");
3172
3373efd8 3173 ata_tf_init(dev, &tf);
a0123703
TH
3174 tf.command = ATA_CMD_SET_FEATURES;
3175 tf.feature = SETFEATURES_XFER;
3176 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3177 tf.protocol = ATA_PROT_NODATA;
3178 tf.nsect = dev->xfer_mode;
1da177e4 3179
3373efd8 3180 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3181
83206a29
TH
3182 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3183 return err_mask;
1da177e4
LT
3184}
3185
8bf62ece
AL
3186/**
3187 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3188 * @dev: Device to which command will be sent
e2a7f77a
RD
3189 * @heads: Number of heads (taskfile parameter)
3190 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3191 *
3192 * LOCKING:
6aff8f1f
TH
3193 * Kernel thread context (may sleep)
3194 *
3195 * RETURNS:
3196 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3197 */
3373efd8
TH
3198static unsigned int ata_dev_init_params(struct ata_device *dev,
3199 u16 heads, u16 sectors)
8bf62ece 3200{
a0123703 3201 struct ata_taskfile tf;
6aff8f1f 3202 unsigned int err_mask;
8bf62ece
AL
3203
3204 /* Number of sectors per track 1-255. Number of heads 1-16 */
3205 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3206 return AC_ERR_INVALID;
8bf62ece
AL
3207
3208 /* set up init dev params taskfile */
3209 DPRINTK("init dev params \n");
3210
3373efd8 3211 ata_tf_init(dev, &tf);
a0123703
TH
3212 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3213 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3214 tf.protocol = ATA_PROT_NODATA;
3215 tf.nsect = sectors;
3216 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3217
3373efd8 3218 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3219
6aff8f1f
TH
3220 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3221 return err_mask;
8bf62ece
AL
3222}
3223
1da177e4 3224/**
0cba632b
JG
3225 * ata_sg_clean - Unmap DMA memory associated with command
3226 * @qc: Command containing DMA memory to be released
3227 *
3228 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3229 *
3230 * LOCKING:
cca3974e 3231 * spin_lock_irqsave(host lock)
1da177e4
LT
3232 */
3233
3234static void ata_sg_clean(struct ata_queued_cmd *qc)
3235{
3236 struct ata_port *ap = qc->ap;
cedc9a47 3237 struct scatterlist *sg = qc->__sg;
1da177e4 3238 int dir = qc->dma_dir;
cedc9a47 3239 void *pad_buf = NULL;
1da177e4 3240
a4631474
TH
3241 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3242 WARN_ON(sg == NULL);
1da177e4
LT
3243
3244 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3245 WARN_ON(qc->n_elem > 1);
1da177e4 3246
2c13b7ce 3247 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3248
cedc9a47
JG
3249 /* if we padded the buffer out to 32-bit bound, and data
3250 * xfer direction is from-device, we must copy from the
3251 * pad buffer back into the supplied buffer
3252 */
3253 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3254 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3255
3256 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3257 if (qc->n_elem)
2f1f610b 3258 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3259 /* restore last sg */
3260 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3261 if (pad_buf) {
3262 struct scatterlist *psg = &qc->pad_sgent;
3263 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3264 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3265 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3266 }
3267 } else {
2e242fa9 3268 if (qc->n_elem)
2f1f610b 3269 dma_unmap_single(ap->dev,
e1410f2d
JG
3270 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3271 dir);
cedc9a47
JG
3272 /* restore sg */
3273 sg->length += qc->pad_len;
3274 if (pad_buf)
3275 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3276 pad_buf, qc->pad_len);
3277 }
1da177e4
LT
3278
3279 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3280 qc->__sg = NULL;
1da177e4
LT
3281}
3282
3283/**
3284 * ata_fill_sg - Fill PCI IDE PRD table
3285 * @qc: Metadata associated with taskfile to be transferred
3286 *
780a87f7
JG
3287 * Fill PCI IDE PRD (scatter-gather) table with segments
3288 * associated with the current disk command.
3289 *
1da177e4 3290 * LOCKING:
cca3974e 3291 * spin_lock_irqsave(host lock)
1da177e4
LT
3292 *
3293 */
3294static void ata_fill_sg(struct ata_queued_cmd *qc)
3295{
1da177e4 3296 struct ata_port *ap = qc->ap;
cedc9a47
JG
3297 struct scatterlist *sg;
3298 unsigned int idx;
1da177e4 3299
a4631474 3300 WARN_ON(qc->__sg == NULL);
f131883e 3301 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3302
3303 idx = 0;
cedc9a47 3304 ata_for_each_sg(sg, qc) {
1da177e4
LT
3305 u32 addr, offset;
3306 u32 sg_len, len;
3307
3308 /* determine if physical DMA addr spans 64K boundary.
3309 * Note h/w doesn't support 64-bit, so we unconditionally
3310 * truncate dma_addr_t to u32.
3311 */
3312 addr = (u32) sg_dma_address(sg);
3313 sg_len = sg_dma_len(sg);
3314
3315 while (sg_len) {
3316 offset = addr & 0xffff;
3317 len = sg_len;
3318 if ((offset + sg_len) > 0x10000)
3319 len = 0x10000 - offset;
3320
3321 ap->prd[idx].addr = cpu_to_le32(addr);
3322 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3323 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3324
3325 idx++;
3326 sg_len -= len;
3327 addr += len;
3328 }
3329 }
3330
3331 if (idx)
3332 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3333}
3334/**
3335 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3336 * @qc: Metadata associated with taskfile to check
3337 *
780a87f7
JG
3338 * Allow low-level driver to filter ATA PACKET commands, returning
3339 * a status indicating whether or not it is OK to use DMA for the
3340 * supplied PACKET command.
3341 *
1da177e4 3342 * LOCKING:
cca3974e 3343 * spin_lock_irqsave(host lock)
0cba632b 3344 *
1da177e4
LT
3345 * RETURNS: 0 when ATAPI DMA can be used
3346 * nonzero otherwise
3347 */
3348int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3349{
3350 struct ata_port *ap = qc->ap;
3351 int rc = 0; /* Assume ATAPI DMA is OK by default */
3352
3353 if (ap->ops->check_atapi_dma)
3354 rc = ap->ops->check_atapi_dma(qc);
3355
3356 return rc;
3357}
3358/**
3359 * ata_qc_prep - Prepare taskfile for submission
3360 * @qc: Metadata associated with taskfile to be prepared
3361 *
780a87f7
JG
3362 * Prepare ATA taskfile for submission.
3363 *
1da177e4 3364 * LOCKING:
cca3974e 3365 * spin_lock_irqsave(host lock)
1da177e4
LT
3366 */
3367void ata_qc_prep(struct ata_queued_cmd *qc)
3368{
3369 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3370 return;
3371
3372 ata_fill_sg(qc);
3373}
3374
e46834cd
BK
3375void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3376
0cba632b
JG
3377/**
3378 * ata_sg_init_one - Associate command with memory buffer
3379 * @qc: Command to be associated
3380 * @buf: Memory buffer
3381 * @buflen: Length of memory buffer, in bytes.
3382 *
3383 * Initialize the data-related elements of queued_cmd @qc
3384 * to point to a single memory buffer, @buf of byte length @buflen.
3385 *
3386 * LOCKING:
cca3974e 3387 * spin_lock_irqsave(host lock)
0cba632b
JG
3388 */
3389
1da177e4
LT
3390void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3391{
3392 struct scatterlist *sg;
3393
3394 qc->flags |= ATA_QCFLAG_SINGLE;
3395
3396 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3397 qc->__sg = &qc->sgent;
1da177e4 3398 qc->n_elem = 1;
cedc9a47 3399 qc->orig_n_elem = 1;
1da177e4 3400 qc->buf_virt = buf;
233277ca 3401 qc->nbytes = buflen;
1da177e4 3402
cedc9a47 3403 sg = qc->__sg;
f0612bbc 3404 sg_init_one(sg, buf, buflen);
1da177e4
LT
3405}
3406
0cba632b
JG
3407/**
3408 * ata_sg_init - Associate command with scatter-gather table.
3409 * @qc: Command to be associated
3410 * @sg: Scatter-gather table.
3411 * @n_elem: Number of elements in s/g table.
3412 *
3413 * Initialize the data-related elements of queued_cmd @qc
3414 * to point to a scatter-gather table @sg, containing @n_elem
3415 * elements.
3416 *
3417 * LOCKING:
cca3974e 3418 * spin_lock_irqsave(host lock)
0cba632b
JG
3419 */
3420
1da177e4
LT
3421void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3422 unsigned int n_elem)
3423{
3424 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3425 qc->__sg = sg;
1da177e4 3426 qc->n_elem = n_elem;
cedc9a47 3427 qc->orig_n_elem = n_elem;
1da177e4
LT
3428}
3429
3430/**
0cba632b
JG
3431 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3432 * @qc: Command with memory buffer to be mapped.
3433 *
3434 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3435 *
3436 * LOCKING:
cca3974e 3437 * spin_lock_irqsave(host lock)
1da177e4
LT
3438 *
3439 * RETURNS:
0cba632b 3440 * Zero on success, negative on error.
1da177e4
LT
3441 */
3442
3443static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3444{
3445 struct ata_port *ap = qc->ap;
3446 int dir = qc->dma_dir;
cedc9a47 3447 struct scatterlist *sg = qc->__sg;
1da177e4 3448 dma_addr_t dma_address;
2e242fa9 3449 int trim_sg = 0;
1da177e4 3450
cedc9a47
JG
3451 /* we must lengthen transfers to end on a 32-bit boundary */
3452 qc->pad_len = sg->length & 3;
3453 if (qc->pad_len) {
3454 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3455 struct scatterlist *psg = &qc->pad_sgent;
3456
a4631474 3457 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3458
3459 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3460
3461 if (qc->tf.flags & ATA_TFLAG_WRITE)
3462 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3463 qc->pad_len);
3464
3465 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3466 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3467 /* trim sg */
3468 sg->length -= qc->pad_len;
2e242fa9
TH
3469 if (sg->length == 0)
3470 trim_sg = 1;
cedc9a47
JG
3471
3472 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3473 sg->length, qc->pad_len);
3474 }
3475
2e242fa9
TH
3476 if (trim_sg) {
3477 qc->n_elem--;
e1410f2d
JG
3478 goto skip_map;
3479 }
3480
2f1f610b 3481 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3482 sg->length, dir);
537a95d9
TH
3483 if (dma_mapping_error(dma_address)) {
3484 /* restore sg */
3485 sg->length += qc->pad_len;
1da177e4 3486 return -1;
537a95d9 3487 }
1da177e4
LT
3488
3489 sg_dma_address(sg) = dma_address;
32529e01 3490 sg_dma_len(sg) = sg->length;
1da177e4 3491
2e242fa9 3492skip_map:
1da177e4
LT
3493 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3494 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3495
3496 return 0;
3497}
3498
3499/**
0cba632b
JG
3500 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3501 * @qc: Command with scatter-gather table to be mapped.
3502 *
3503 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3504 *
3505 * LOCKING:
cca3974e 3506 * spin_lock_irqsave(host lock)
1da177e4
LT
3507 *
3508 * RETURNS:
0cba632b 3509 * Zero on success, negative on error.
1da177e4
LT
3510 *
3511 */
3512
3513static int ata_sg_setup(struct ata_queued_cmd *qc)
3514{
3515 struct ata_port *ap = qc->ap;
cedc9a47
JG
3516 struct scatterlist *sg = qc->__sg;
3517 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3518 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3519
3520 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3521 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3522
cedc9a47
JG
3523 /* we must lengthen transfers to end on a 32-bit boundary */
3524 qc->pad_len = lsg->length & 3;
3525 if (qc->pad_len) {
3526 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3527 struct scatterlist *psg = &qc->pad_sgent;
3528 unsigned int offset;
3529
a4631474 3530 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3531
3532 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3533
3534 /*
3535 * psg->page/offset are used to copy to-be-written
3536 * data in this function or read data in ata_sg_clean.
3537 */
3538 offset = lsg->offset + lsg->length - qc->pad_len;
3539 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3540 psg->offset = offset_in_page(offset);
3541
3542 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3543 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3544 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3545 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3546 }
3547
3548 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3549 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3550 /* trim last sg */
3551 lsg->length -= qc->pad_len;
e1410f2d
JG
3552 if (lsg->length == 0)
3553 trim_sg = 1;
cedc9a47
JG
3554
3555 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3556 qc->n_elem - 1, lsg->length, qc->pad_len);
3557 }
3558
e1410f2d
JG
3559 pre_n_elem = qc->n_elem;
3560 if (trim_sg && pre_n_elem)
3561 pre_n_elem--;
3562
3563 if (!pre_n_elem) {
3564 n_elem = 0;
3565 goto skip_map;
3566 }
3567
1da177e4 3568 dir = qc->dma_dir;
2f1f610b 3569 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3570 if (n_elem < 1) {
3571 /* restore last sg */
3572 lsg->length += qc->pad_len;
1da177e4 3573 return -1;
537a95d9 3574 }
1da177e4
LT
3575
3576 DPRINTK("%d sg elements mapped\n", n_elem);
3577
e1410f2d 3578skip_map:
1da177e4
LT
3579 qc->n_elem = n_elem;
3580
3581 return 0;
3582}
3583
0baab86b 3584/**
c893a3ae 3585 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3586 * @buf: Buffer to swap
3587 * @buf_words: Number of 16-bit words in buffer.
3588 *
3589 * Swap halves of 16-bit words if needed to convert from
3590 * little-endian byte order to native cpu byte order, or
3591 * vice-versa.
3592 *
3593 * LOCKING:
6f0ef4fa 3594 * Inherited from caller.
0baab86b 3595 */
1da177e4
LT
3596void swap_buf_le16(u16 *buf, unsigned int buf_words)
3597{
3598#ifdef __BIG_ENDIAN
3599 unsigned int i;
3600
3601 for (i = 0; i < buf_words; i++)
3602 buf[i] = le16_to_cpu(buf[i]);
3603#endif /* __BIG_ENDIAN */
3604}
3605
6ae4cfb5
AL
3606/**
3607 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3608 * @adev: device for this I/O
6ae4cfb5
AL
3609 * @buf: data buffer
3610 * @buflen: buffer length
344babaa 3611 * @write_data: read/write
6ae4cfb5
AL
3612 *
3613 * Transfer data from/to the device data register by MMIO.
3614 *
3615 * LOCKING:
3616 * Inherited from caller.
6ae4cfb5
AL
3617 */
3618
88574551 3619void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3620 unsigned int buflen, int write_data)
1da177e4 3621{
a6b2c5d4 3622 struct ata_port *ap = adev->ap;
1da177e4
LT
3623 unsigned int i;
3624 unsigned int words = buflen >> 1;
3625 u16 *buf16 = (u16 *) buf;
3626 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3627
6ae4cfb5 3628 /* Transfer multiple of 2 bytes */
1da177e4
LT
3629 if (write_data) {
3630 for (i = 0; i < words; i++)
3631 writew(le16_to_cpu(buf16[i]), mmio);
3632 } else {
3633 for (i = 0; i < words; i++)
3634 buf16[i] = cpu_to_le16(readw(mmio));
3635 }
6ae4cfb5
AL
3636
3637 /* Transfer trailing 1 byte, if any. */
3638 if (unlikely(buflen & 0x01)) {
3639 u16 align_buf[1] = { 0 };
3640 unsigned char *trailing_buf = buf + buflen - 1;
3641
3642 if (write_data) {
3643 memcpy(align_buf, trailing_buf, 1);
3644 writew(le16_to_cpu(align_buf[0]), mmio);
3645 } else {
3646 align_buf[0] = cpu_to_le16(readw(mmio));
3647 memcpy(trailing_buf, align_buf, 1);
3648 }
3649 }
1da177e4
LT
3650}
3651
6ae4cfb5
AL
3652/**
3653 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3654 * @adev: device to target
6ae4cfb5
AL
3655 * @buf: data buffer
3656 * @buflen: buffer length
344babaa 3657 * @write_data: read/write
6ae4cfb5
AL
3658 *
3659 * Transfer data from/to the device data register by PIO.
3660 *
3661 * LOCKING:
3662 * Inherited from caller.
6ae4cfb5
AL
3663 */
3664
88574551 3665void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3666 unsigned int buflen, int write_data)
1da177e4 3667{
a6b2c5d4 3668 struct ata_port *ap = adev->ap;
6ae4cfb5 3669 unsigned int words = buflen >> 1;
1da177e4 3670
6ae4cfb5 3671 /* Transfer multiple of 2 bytes */
1da177e4 3672 if (write_data)
6ae4cfb5 3673 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3674 else
6ae4cfb5
AL
3675 insw(ap->ioaddr.data_addr, buf, words);
3676
3677 /* Transfer trailing 1 byte, if any. */
3678 if (unlikely(buflen & 0x01)) {
3679 u16 align_buf[1] = { 0 };
3680 unsigned char *trailing_buf = buf + buflen - 1;
3681
3682 if (write_data) {
3683 memcpy(align_buf, trailing_buf, 1);
3684 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3685 } else {
3686 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3687 memcpy(trailing_buf, align_buf, 1);
3688 }
3689 }
1da177e4
LT
3690}
3691
75e99585
AC
3692/**
3693 * ata_pio_data_xfer_noirq - Transfer data by PIO
3694 * @adev: device to target
3695 * @buf: data buffer
3696 * @buflen: buffer length
3697 * @write_data: read/write
3698 *
88574551 3699 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3700 * transfer with interrupts disabled.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
3705
3706void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3707 unsigned int buflen, int write_data)
3708{
3709 unsigned long flags;
3710 local_irq_save(flags);
3711 ata_pio_data_xfer(adev, buf, buflen, write_data);
3712 local_irq_restore(flags);
3713}
3714
3715
6ae4cfb5
AL
3716/**
3717 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3718 * @qc: Command on going
3719 *
3720 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3721 *
3722 * LOCKING:
3723 * Inherited from caller.
3724 */
3725
1da177e4
LT
3726static void ata_pio_sector(struct ata_queued_cmd *qc)
3727{
3728 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3729 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3730 struct ata_port *ap = qc->ap;
3731 struct page *page;
3732 unsigned int offset;
3733 unsigned char *buf;
3734
3735 if (qc->cursect == (qc->nsect - 1))
14be71f4 3736 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3737
3738 page = sg[qc->cursg].page;
3739 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3740
3741 /* get the current page and offset */
3742 page = nth_page(page, (offset >> PAGE_SHIFT));
3743 offset %= PAGE_SIZE;
3744
1da177e4
LT
3745 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3746
91b8b313
AL
3747 if (PageHighMem(page)) {
3748 unsigned long flags;
3749
a6b2c5d4 3750 /* FIXME: use a bounce buffer */
91b8b313
AL
3751 local_irq_save(flags);
3752 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3753
91b8b313 3754 /* do the actual data transfer */
a6b2c5d4 3755 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3756
91b8b313
AL
3757 kunmap_atomic(buf, KM_IRQ0);
3758 local_irq_restore(flags);
3759 } else {
3760 buf = page_address(page);
a6b2c5d4 3761 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3762 }
1da177e4
LT
3763
3764 qc->cursect++;
3765 qc->cursg_ofs++;
3766
32529e01 3767 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3768 qc->cursg++;
3769 qc->cursg_ofs = 0;
3770 }
1da177e4 3771}
1da177e4 3772
07f6f7d0
AL
3773/**
3774 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3775 * @qc: Command on going
3776 *
c81e29b4 3777 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3778 * ATA device for the DRQ request.
3779 *
3780 * LOCKING:
3781 * Inherited from caller.
3782 */
1da177e4 3783
07f6f7d0
AL
3784static void ata_pio_sectors(struct ata_queued_cmd *qc)
3785{
3786 if (is_multi_taskfile(&qc->tf)) {
3787 /* READ/WRITE MULTIPLE */
3788 unsigned int nsect;
3789
587005de 3790 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3791
07f6f7d0
AL
3792 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3793 while (nsect--)
3794 ata_pio_sector(qc);
3795 } else
3796 ata_pio_sector(qc);
3797}
3798
c71c1857
AL
3799/**
3800 * atapi_send_cdb - Write CDB bytes to hardware
3801 * @ap: Port to which ATAPI device is attached.
3802 * @qc: Taskfile currently active
3803 *
3804 * When device has indicated its readiness to accept
3805 * a CDB, this function is called. Send the CDB.
3806 *
3807 * LOCKING:
3808 * caller.
3809 */
3810
3811static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3812{
3813 /* send SCSI cdb */
3814 DPRINTK("send cdb\n");
db024d53 3815 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3816
a6b2c5d4 3817 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3818 ata_altstatus(ap); /* flush */
3819
3820 switch (qc->tf.protocol) {
3821 case ATA_PROT_ATAPI:
3822 ap->hsm_task_state = HSM_ST;
3823 break;
3824 case ATA_PROT_ATAPI_NODATA:
3825 ap->hsm_task_state = HSM_ST_LAST;
3826 break;
3827 case ATA_PROT_ATAPI_DMA:
3828 ap->hsm_task_state = HSM_ST_LAST;
3829 /* initiate bmdma */
3830 ap->ops->bmdma_start(qc);
3831 break;
3832 }
1da177e4
LT
3833}
3834
6ae4cfb5
AL
3835/**
3836 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3837 * @qc: Command on going
3838 * @bytes: number of bytes
3839 *
3840 * Transfer Transfer data from/to the ATAPI device.
3841 *
3842 * LOCKING:
3843 * Inherited from caller.
3844 *
3845 */
3846
1da177e4
LT
3847static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3848{
3849 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3850 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3851 struct ata_port *ap = qc->ap;
3852 struct page *page;
3853 unsigned char *buf;
3854 unsigned int offset, count;
3855
563a6e1f 3856 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3857 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3858
3859next_sg:
563a6e1f 3860 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3861 /*
563a6e1f
AL
3862 * The end of qc->sg is reached and the device expects
3863 * more data to transfer. In order not to overrun qc->sg
3864 * and fulfill length specified in the byte count register,
3865 * - for read case, discard trailing data from the device
3866 * - for write case, padding zero data to the device
3867 */
3868 u16 pad_buf[1] = { 0 };
3869 unsigned int words = bytes >> 1;
3870 unsigned int i;
3871
3872 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3873 ata_dev_printk(qc->dev, KERN_WARNING,
3874 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3875
3876 for (i = 0; i < words; i++)
a6b2c5d4 3877 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3878
14be71f4 3879 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3880 return;
3881 }
3882
cedc9a47 3883 sg = &qc->__sg[qc->cursg];
1da177e4 3884
1da177e4
LT
3885 page = sg->page;
3886 offset = sg->offset + qc->cursg_ofs;
3887
3888 /* get the current page and offset */
3889 page = nth_page(page, (offset >> PAGE_SHIFT));
3890 offset %= PAGE_SIZE;
3891
6952df03 3892 /* don't overrun current sg */
32529e01 3893 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3894
3895 /* don't cross page boundaries */
3896 count = min(count, (unsigned int)PAGE_SIZE - offset);
3897
7282aa4b
AL
3898 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3899
91b8b313
AL
3900 if (PageHighMem(page)) {
3901 unsigned long flags;
3902
a6b2c5d4 3903 /* FIXME: use bounce buffer */
91b8b313
AL
3904 local_irq_save(flags);
3905 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3906
91b8b313 3907 /* do the actual data transfer */
a6b2c5d4 3908 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3909
91b8b313
AL
3910 kunmap_atomic(buf, KM_IRQ0);
3911 local_irq_restore(flags);
3912 } else {
3913 buf = page_address(page);
a6b2c5d4 3914 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3915 }
1da177e4
LT
3916
3917 bytes -= count;
3918 qc->curbytes += count;
3919 qc->cursg_ofs += count;
3920
32529e01 3921 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3922 qc->cursg++;
3923 qc->cursg_ofs = 0;
3924 }
3925
563a6e1f 3926 if (bytes)
1da177e4 3927 goto next_sg;
1da177e4
LT
3928}
3929
6ae4cfb5
AL
3930/**
3931 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3932 * @qc: Command on going
3933 *
3934 * Transfer Transfer data from/to the ATAPI device.
3935 *
3936 * LOCKING:
3937 * Inherited from caller.
6ae4cfb5
AL
3938 */
3939
1da177e4
LT
3940static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3941{
3942 struct ata_port *ap = qc->ap;
3943 struct ata_device *dev = qc->dev;
3944 unsigned int ireason, bc_lo, bc_hi, bytes;
3945 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3946
eec4c3f3
AL
3947 /* Abuse qc->result_tf for temp storage of intermediate TF
3948 * here to save some kernel stack usage.
3949 * For normal completion, qc->result_tf is not relevant. For
3950 * error, qc->result_tf is later overwritten by ata_qc_complete().
3951 * So, the correctness of qc->result_tf is not affected.
3952 */
3953 ap->ops->tf_read(ap, &qc->result_tf);
3954 ireason = qc->result_tf.nsect;
3955 bc_lo = qc->result_tf.lbam;
3956 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3957 bytes = (bc_hi << 8) | bc_lo;
3958
3959 /* shall be cleared to zero, indicating xfer of data */
3960 if (ireason & (1 << 0))
3961 goto err_out;
3962
3963 /* make sure transfer direction matches expected */
3964 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3965 if (do_write != i_write)
3966 goto err_out;
3967
312f7da2
AL
3968 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3969
1da177e4
LT
3970 __atapi_pio_bytes(qc, bytes);
3971
3972 return;
3973
3974err_out:
f15a1daf 3975 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3976 qc->err_mask |= AC_ERR_HSM;
14be71f4 3977 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3978}
3979
3980/**
c234fb00
AL
3981 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3982 * @ap: the target ata_port
3983 * @qc: qc on going
1da177e4 3984 *
c234fb00
AL
3985 * RETURNS:
3986 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3987 */
c234fb00
AL
3988
3989static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3990{
c234fb00
AL
3991 if (qc->tf.flags & ATA_TFLAG_POLLING)
3992 return 1;
1da177e4 3993
c234fb00
AL
3994 if (ap->hsm_task_state == HSM_ST_FIRST) {
3995 if (qc->tf.protocol == ATA_PROT_PIO &&
3996 (qc->tf.flags & ATA_TFLAG_WRITE))
3997 return 1;
1da177e4 3998
c234fb00
AL
3999 if (is_atapi_taskfile(&qc->tf) &&
4000 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4001 return 1;
fe79e683
AL
4002 }
4003
c234fb00
AL
4004 return 0;
4005}
1da177e4 4006
c17ea20d
TH
4007/**
4008 * ata_hsm_qc_complete - finish a qc running on standard HSM
4009 * @qc: Command to complete
4010 * @in_wq: 1 if called from workqueue, 0 otherwise
4011 *
4012 * Finish @qc which is running on standard HSM.
4013 *
4014 * LOCKING:
cca3974e 4015 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4016 * Otherwise, none on entry and grabs host lock.
4017 */
4018static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4019{
4020 struct ata_port *ap = qc->ap;
4021 unsigned long flags;
4022
4023 if (ap->ops->error_handler) {
4024 if (in_wq) {
ba6a1308 4025 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4026
cca3974e
JG
4027 /* EH might have kicked in while host lock is
4028 * released.
c17ea20d
TH
4029 */
4030 qc = ata_qc_from_tag(ap, qc->tag);
4031 if (qc) {
4032 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4033 ata_irq_on(ap);
4034 ata_qc_complete(qc);
4035 } else
4036 ata_port_freeze(ap);
4037 }
4038
ba6a1308 4039 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4040 } else {
4041 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4042 ata_qc_complete(qc);
4043 else
4044 ata_port_freeze(ap);
4045 }
4046 } else {
4047 if (in_wq) {
ba6a1308 4048 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
4049 ata_irq_on(ap);
4050 ata_qc_complete(qc);
ba6a1308 4051 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4052 } else
4053 ata_qc_complete(qc);
4054 }
1da177e4 4055
c81e29b4 4056 ata_altstatus(ap); /* flush */
c17ea20d
TH
4057}
4058
bb5cb290
AL
4059/**
4060 * ata_hsm_move - move the HSM to the next state.
4061 * @ap: the target ata_port
4062 * @qc: qc on going
4063 * @status: current device status
4064 * @in_wq: 1 if called from workqueue, 0 otherwise
4065 *
4066 * RETURNS:
4067 * 1 when poll next status needed, 0 otherwise.
4068 */
9a1004d0
TH
4069int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4070 u8 status, int in_wq)
e2cec771 4071{
bb5cb290
AL
4072 unsigned long flags = 0;
4073 int poll_next;
4074
6912ccd5
AL
4075 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4076
bb5cb290
AL
4077 /* Make sure ata_qc_issue_prot() does not throw things
4078 * like DMA polling into the workqueue. Notice that
4079 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4080 */
c234fb00 4081 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4082
e2cec771 4083fsm_start:
999bb6f4
AL
4084 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4085 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4086
e2cec771
AL
4087 switch (ap->hsm_task_state) {
4088 case HSM_ST_FIRST:
bb5cb290
AL
4089 /* Send first data block or PACKET CDB */
4090
4091 /* If polling, we will stay in the work queue after
4092 * sending the data. Otherwise, interrupt handler
4093 * takes over after sending the data.
4094 */
4095 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4096
e2cec771 4097 /* check device status */
3655d1d3
AL
4098 if (unlikely((status & ATA_DRQ) == 0)) {
4099 /* handle BSY=0, DRQ=0 as error */
4100 if (likely(status & (ATA_ERR | ATA_DF)))
4101 /* device stops HSM for abort/error */
4102 qc->err_mask |= AC_ERR_DEV;
4103 else
4104 /* HSM violation. Let EH handle this */
4105 qc->err_mask |= AC_ERR_HSM;
4106
14be71f4 4107 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4108 goto fsm_start;
1da177e4
LT
4109 }
4110
71601958
AL
4111 /* Device should not ask for data transfer (DRQ=1)
4112 * when it finds something wrong.
eee6c32f
AL
4113 * We ignore DRQ here and stop the HSM by
4114 * changing hsm_task_state to HSM_ST_ERR and
4115 * let the EH abort the command or reset the device.
71601958
AL
4116 */
4117 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4118 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4119 ap->id, status);
3655d1d3 4120 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4121 ap->hsm_task_state = HSM_ST_ERR;
4122 goto fsm_start;
71601958 4123 }
1da177e4 4124
bb5cb290
AL
4125 /* Send the CDB (atapi) or the first data block (ata pio out).
4126 * During the state transition, interrupt handler shouldn't
4127 * be invoked before the data transfer is complete and
4128 * hsm_task_state is changed. Hence, the following locking.
4129 */
4130 if (in_wq)
ba6a1308 4131 spin_lock_irqsave(ap->lock, flags);
1da177e4 4132
bb5cb290
AL
4133 if (qc->tf.protocol == ATA_PROT_PIO) {
4134 /* PIO data out protocol.
4135 * send first data block.
4136 */
0565c26d 4137
bb5cb290
AL
4138 /* ata_pio_sectors() might change the state
4139 * to HSM_ST_LAST. so, the state is changed here
4140 * before ata_pio_sectors().
4141 */
4142 ap->hsm_task_state = HSM_ST;
4143 ata_pio_sectors(qc);
4144 ata_altstatus(ap); /* flush */
4145 } else
4146 /* send CDB */
4147 atapi_send_cdb(ap, qc);
4148
4149 if (in_wq)
ba6a1308 4150 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4151
4152 /* if polling, ata_pio_task() handles the rest.
4153 * otherwise, interrupt handler takes over from here.
4154 */
e2cec771 4155 break;
1c848984 4156
e2cec771
AL
4157 case HSM_ST:
4158 /* complete command or read/write the data register */
4159 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4160 /* ATAPI PIO protocol */
4161 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4162 /* No more data to transfer or device error.
4163 * Device error will be tagged in HSM_ST_LAST.
4164 */
e2cec771
AL
4165 ap->hsm_task_state = HSM_ST_LAST;
4166 goto fsm_start;
4167 }
1da177e4 4168
71601958
AL
4169 /* Device should not ask for data transfer (DRQ=1)
4170 * when it finds something wrong.
eee6c32f
AL
4171 * We ignore DRQ here and stop the HSM by
4172 * changing hsm_task_state to HSM_ST_ERR and
4173 * let the EH abort the command or reset the device.
71601958
AL
4174 */
4175 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4176 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4177 ap->id, status);
3655d1d3 4178 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4179 ap->hsm_task_state = HSM_ST_ERR;
4180 goto fsm_start;
71601958 4181 }
1da177e4 4182
e2cec771 4183 atapi_pio_bytes(qc);
7fb6ec28 4184
e2cec771
AL
4185 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4186 /* bad ireason reported by device */
4187 goto fsm_start;
1da177e4 4188
e2cec771
AL
4189 } else {
4190 /* ATA PIO protocol */
4191 if (unlikely((status & ATA_DRQ) == 0)) {
4192 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4193 if (likely(status & (ATA_ERR | ATA_DF)))
4194 /* device stops HSM for abort/error */
4195 qc->err_mask |= AC_ERR_DEV;
4196 else
4197 /* HSM violation. Let EH handle this */
4198 qc->err_mask |= AC_ERR_HSM;
4199
e2cec771
AL
4200 ap->hsm_task_state = HSM_ST_ERR;
4201 goto fsm_start;
4202 }
1da177e4 4203
eee6c32f
AL
4204 /* For PIO reads, some devices may ask for
4205 * data transfer (DRQ=1) alone with ERR=1.
4206 * We respect DRQ here and transfer one
4207 * block of junk data before changing the
4208 * hsm_task_state to HSM_ST_ERR.
4209 *
4210 * For PIO writes, ERR=1 DRQ=1 doesn't make
4211 * sense since the data block has been
4212 * transferred to the device.
71601958
AL
4213 */
4214 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4215 /* data might be corrputed */
4216 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4217
4218 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4219 ata_pio_sectors(qc);
4220 ata_altstatus(ap);
4221 status = ata_wait_idle(ap);
4222 }
4223
3655d1d3
AL
4224 if (status & (ATA_BUSY | ATA_DRQ))
4225 qc->err_mask |= AC_ERR_HSM;
4226
eee6c32f
AL
4227 /* ata_pio_sectors() might change the
4228 * state to HSM_ST_LAST. so, the state
4229 * is changed after ata_pio_sectors().
4230 */
4231 ap->hsm_task_state = HSM_ST_ERR;
4232 goto fsm_start;
71601958
AL
4233 }
4234
e2cec771
AL
4235 ata_pio_sectors(qc);
4236
4237 if (ap->hsm_task_state == HSM_ST_LAST &&
4238 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4239 /* all data read */
4240 ata_altstatus(ap);
52a32205 4241 status = ata_wait_idle(ap);
e2cec771
AL
4242 goto fsm_start;
4243 }
4244 }
4245
4246 ata_altstatus(ap); /* flush */
bb5cb290 4247 poll_next = 1;
1da177e4
LT
4248 break;
4249
14be71f4 4250 case HSM_ST_LAST:
6912ccd5
AL
4251 if (unlikely(!ata_ok(status))) {
4252 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4253 ap->hsm_task_state = HSM_ST_ERR;
4254 goto fsm_start;
4255 }
4256
4257 /* no more data to transfer */
4332a771
AL
4258 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4259 ap->id, qc->dev->devno, status);
e2cec771 4260
6912ccd5
AL
4261 WARN_ON(qc->err_mask);
4262
e2cec771 4263 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4264
e2cec771 4265 /* complete taskfile transaction */
c17ea20d 4266 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4267
4268 poll_next = 0;
1da177e4
LT
4269 break;
4270
14be71f4 4271 case HSM_ST_ERR:
e2cec771
AL
4272 /* make sure qc->err_mask is available to
4273 * know what's wrong and recover
4274 */
4275 WARN_ON(qc->err_mask == 0);
4276
4277 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4278
999bb6f4 4279 /* complete taskfile transaction */
c17ea20d 4280 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4281
4282 poll_next = 0;
e2cec771
AL
4283 break;
4284 default:
bb5cb290 4285 poll_next = 0;
6912ccd5 4286 BUG();
1da177e4
LT
4287 }
4288
bb5cb290 4289 return poll_next;
1da177e4
LT
4290}
4291
1da177e4 4292static void ata_pio_task(void *_data)
8061f5f0 4293{
c91af2c8
TH
4294 struct ata_queued_cmd *qc = _data;
4295 struct ata_port *ap = qc->ap;
8061f5f0 4296 u8 status;
a1af3734 4297 int poll_next;
8061f5f0 4298
7fb6ec28 4299fsm_start:
a1af3734 4300 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4301
a1af3734
AL
4302 /*
4303 * This is purely heuristic. This is a fast path.
4304 * Sometimes when we enter, BSY will be cleared in
4305 * a chk-status or two. If not, the drive is probably seeking
4306 * or something. Snooze for a couple msecs, then
4307 * chk-status again. If still busy, queue delayed work.
4308 */
4309 status = ata_busy_wait(ap, ATA_BUSY, 5);
4310 if (status & ATA_BUSY) {
4311 msleep(2);
4312 status = ata_busy_wait(ap, ATA_BUSY, 10);
4313 if (status & ATA_BUSY) {
31ce6dae 4314 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4315 return;
4316 }
8061f5f0
TH
4317 }
4318
a1af3734
AL
4319 /* move the HSM */
4320 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4321
a1af3734
AL
4322 /* another command or interrupt handler
4323 * may be running at this point.
4324 */
4325 if (poll_next)
7fb6ec28 4326 goto fsm_start;
8061f5f0
TH
4327}
4328
1da177e4
LT
4329/**
4330 * ata_qc_new - Request an available ATA command, for queueing
4331 * @ap: Port associated with device @dev
4332 * @dev: Device from whom we request an available command structure
4333 *
4334 * LOCKING:
0cba632b 4335 * None.
1da177e4
LT
4336 */
4337
4338static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4339{
4340 struct ata_queued_cmd *qc = NULL;
4341 unsigned int i;
4342
e3180499 4343 /* no command while frozen */
b51e9e5d 4344 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4345 return NULL;
4346
2ab7db1f
TH
4347 /* the last tag is reserved for internal command. */
4348 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4349 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4350 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4351 break;
4352 }
4353
4354 if (qc)
4355 qc->tag = i;
4356
4357 return qc;
4358}
4359
4360/**
4361 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4362 * @dev: Device from whom we request an available command structure
4363 *
4364 * LOCKING:
0cba632b 4365 * None.
1da177e4
LT
4366 */
4367
3373efd8 4368struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4369{
3373efd8 4370 struct ata_port *ap = dev->ap;
1da177e4
LT
4371 struct ata_queued_cmd *qc;
4372
4373 qc = ata_qc_new(ap);
4374 if (qc) {
1da177e4
LT
4375 qc->scsicmd = NULL;
4376 qc->ap = ap;
4377 qc->dev = dev;
1da177e4 4378
2c13b7ce 4379 ata_qc_reinit(qc);
1da177e4
LT
4380 }
4381
4382 return qc;
4383}
4384
1da177e4
LT
4385/**
4386 * ata_qc_free - free unused ata_queued_cmd
4387 * @qc: Command to complete
4388 *
4389 * Designed to free unused ata_queued_cmd object
4390 * in case something prevents using it.
4391 *
4392 * LOCKING:
cca3974e 4393 * spin_lock_irqsave(host lock)
1da177e4
LT
4394 */
4395void ata_qc_free(struct ata_queued_cmd *qc)
4396{
4ba946e9
TH
4397 struct ata_port *ap = qc->ap;
4398 unsigned int tag;
4399
a4631474 4400 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4401
4ba946e9
TH
4402 qc->flags = 0;
4403 tag = qc->tag;
4404 if (likely(ata_tag_valid(tag))) {
4ba946e9 4405 qc->tag = ATA_TAG_POISON;
6cec4a39 4406 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4407 }
1da177e4
LT
4408}
4409
76014427 4410void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4411{
dedaf2b0
TH
4412 struct ata_port *ap = qc->ap;
4413
a4631474
TH
4414 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4415 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4416
4417 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4418 ata_sg_clean(qc);
4419
7401abf2 4420 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4421 if (qc->tf.protocol == ATA_PROT_NCQ)
4422 ap->sactive &= ~(1 << qc->tag);
4423 else
4424 ap->active_tag = ATA_TAG_POISON;
7401abf2 4425
3f3791d3
AL
4426 /* atapi: mark qc as inactive to prevent the interrupt handler
4427 * from completing the command twice later, before the error handler
4428 * is called. (when rc != 0 and atapi request sense is needed)
4429 */
4430 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4431 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4432
1da177e4 4433 /* call completion callback */
77853bf2 4434 qc->complete_fn(qc);
1da177e4
LT
4435}
4436
f686bcb8
TH
4437/**
4438 * ata_qc_complete - Complete an active ATA command
4439 * @qc: Command to complete
4440 * @err_mask: ATA Status register contents
4441 *
4442 * Indicate to the mid and upper layers that an ATA
4443 * command has completed, with either an ok or not-ok status.
4444 *
4445 * LOCKING:
cca3974e 4446 * spin_lock_irqsave(host lock)
f686bcb8
TH
4447 */
4448void ata_qc_complete(struct ata_queued_cmd *qc)
4449{
4450 struct ata_port *ap = qc->ap;
4451
4452 /* XXX: New EH and old EH use different mechanisms to
4453 * synchronize EH with regular execution path.
4454 *
4455 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4456 * Normal execution path is responsible for not accessing a
4457 * failed qc. libata core enforces the rule by returning NULL
4458 * from ata_qc_from_tag() for failed qcs.
4459 *
4460 * Old EH depends on ata_qc_complete() nullifying completion
4461 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4462 * not synchronize with interrupt handler. Only PIO task is
4463 * taken care of.
4464 */
4465 if (ap->ops->error_handler) {
b51e9e5d 4466 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4467
4468 if (unlikely(qc->err_mask))
4469 qc->flags |= ATA_QCFLAG_FAILED;
4470
4471 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4472 if (!ata_tag_internal(qc->tag)) {
4473 /* always fill result TF for failed qc */
4474 ap->ops->tf_read(ap, &qc->result_tf);
4475 ata_qc_schedule_eh(qc);
4476 return;
4477 }
4478 }
4479
4480 /* read result TF if requested */
4481 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4482 ap->ops->tf_read(ap, &qc->result_tf);
4483
4484 __ata_qc_complete(qc);
4485 } else {
4486 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4487 return;
4488
4489 /* read result TF if failed or requested */
4490 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4491 ap->ops->tf_read(ap, &qc->result_tf);
4492
4493 __ata_qc_complete(qc);
4494 }
4495}
4496
dedaf2b0
TH
4497/**
4498 * ata_qc_complete_multiple - Complete multiple qcs successfully
4499 * @ap: port in question
4500 * @qc_active: new qc_active mask
4501 * @finish_qc: LLDD callback invoked before completing a qc
4502 *
4503 * Complete in-flight commands. This functions is meant to be
4504 * called from low-level driver's interrupt routine to complete
4505 * requests normally. ap->qc_active and @qc_active is compared
4506 * and commands are completed accordingly.
4507 *
4508 * LOCKING:
cca3974e 4509 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4510 *
4511 * RETURNS:
4512 * Number of completed commands on success, -errno otherwise.
4513 */
4514int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4515 void (*finish_qc)(struct ata_queued_cmd *))
4516{
4517 int nr_done = 0;
4518 u32 done_mask;
4519 int i;
4520
4521 done_mask = ap->qc_active ^ qc_active;
4522
4523 if (unlikely(done_mask & qc_active)) {
4524 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4525 "(%08x->%08x)\n", ap->qc_active, qc_active);
4526 return -EINVAL;
4527 }
4528
4529 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4530 struct ata_queued_cmd *qc;
4531
4532 if (!(done_mask & (1 << i)))
4533 continue;
4534
4535 if ((qc = ata_qc_from_tag(ap, i))) {
4536 if (finish_qc)
4537 finish_qc(qc);
4538 ata_qc_complete(qc);
4539 nr_done++;
4540 }
4541 }
4542
4543 return nr_done;
4544}
4545
1da177e4
LT
4546static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4547{
4548 struct ata_port *ap = qc->ap;
4549
4550 switch (qc->tf.protocol) {
3dc1d881 4551 case ATA_PROT_NCQ:
1da177e4
LT
4552 case ATA_PROT_DMA:
4553 case ATA_PROT_ATAPI_DMA:
4554 return 1;
4555
4556 case ATA_PROT_ATAPI:
4557 case ATA_PROT_PIO:
1da177e4
LT
4558 if (ap->flags & ATA_FLAG_PIO_DMA)
4559 return 1;
4560
4561 /* fall through */
4562
4563 default:
4564 return 0;
4565 }
4566
4567 /* never reached */
4568}
4569
4570/**
4571 * ata_qc_issue - issue taskfile to device
4572 * @qc: command to issue to device
4573 *
4574 * Prepare an ATA command to submission to device.
4575 * This includes mapping the data into a DMA-able
4576 * area, filling in the S/G table, and finally
4577 * writing the taskfile to hardware, starting the command.
4578 *
4579 * LOCKING:
cca3974e 4580 * spin_lock_irqsave(host lock)
1da177e4 4581 */
8e0e694a 4582void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4583{
4584 struct ata_port *ap = qc->ap;
4585
dedaf2b0
TH
4586 /* Make sure only one non-NCQ command is outstanding. The
4587 * check is skipped for old EH because it reuses active qc to
4588 * request ATAPI sense.
4589 */
4590 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4591
4592 if (qc->tf.protocol == ATA_PROT_NCQ) {
4593 WARN_ON(ap->sactive & (1 << qc->tag));
4594 ap->sactive |= 1 << qc->tag;
4595 } else {
4596 WARN_ON(ap->sactive);
4597 ap->active_tag = qc->tag;
4598 }
4599
e4a70e76 4600 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4601 ap->qc_active |= 1 << qc->tag;
e4a70e76 4602
1da177e4
LT
4603 if (ata_should_dma_map(qc)) {
4604 if (qc->flags & ATA_QCFLAG_SG) {
4605 if (ata_sg_setup(qc))
8e436af9 4606 goto sg_err;
1da177e4
LT
4607 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4608 if (ata_sg_setup_one(qc))
8e436af9 4609 goto sg_err;
1da177e4
LT
4610 }
4611 } else {
4612 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4613 }
4614
4615 ap->ops->qc_prep(qc);
4616
8e0e694a
TH
4617 qc->err_mask |= ap->ops->qc_issue(qc);
4618 if (unlikely(qc->err_mask))
4619 goto err;
4620 return;
1da177e4 4621
8e436af9
TH
4622sg_err:
4623 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4624 qc->err_mask |= AC_ERR_SYSTEM;
4625err:
4626 ata_qc_complete(qc);
1da177e4
LT
4627}
4628
4629/**
4630 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4631 * @qc: command to issue to device
4632 *
4633 * Using various libata functions and hooks, this function
4634 * starts an ATA command. ATA commands are grouped into
4635 * classes called "protocols", and issuing each type of protocol
4636 * is slightly different.
4637 *
0baab86b
EF
4638 * May be used as the qc_issue() entry in ata_port_operations.
4639 *
1da177e4 4640 * LOCKING:
cca3974e 4641 * spin_lock_irqsave(host lock)
1da177e4
LT
4642 *
4643 * RETURNS:
9a3d9eb0 4644 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4645 */
4646
9a3d9eb0 4647unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4648{
4649 struct ata_port *ap = qc->ap;
4650
e50362ec
AL
4651 /* Use polling pio if the LLD doesn't handle
4652 * interrupt driven pio and atapi CDB interrupt.
4653 */
4654 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4655 switch (qc->tf.protocol) {
4656 case ATA_PROT_PIO:
4657 case ATA_PROT_ATAPI:
4658 case ATA_PROT_ATAPI_NODATA:
4659 qc->tf.flags |= ATA_TFLAG_POLLING;
4660 break;
4661 case ATA_PROT_ATAPI_DMA:
4662 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4663 /* see ata_dma_blacklisted() */
e50362ec
AL
4664 BUG();
4665 break;
4666 default:
4667 break;
4668 }
4669 }
4670
312f7da2 4671 /* select the device */
1da177e4
LT
4672 ata_dev_select(ap, qc->dev->devno, 1, 0);
4673
312f7da2 4674 /* start the command */
1da177e4
LT
4675 switch (qc->tf.protocol) {
4676 case ATA_PROT_NODATA:
312f7da2
AL
4677 if (qc->tf.flags & ATA_TFLAG_POLLING)
4678 ata_qc_set_polling(qc);
4679
e5338254 4680 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4681 ap->hsm_task_state = HSM_ST_LAST;
4682
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4684 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4685
1da177e4
LT
4686 break;
4687
4688 case ATA_PROT_DMA:
587005de 4689 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4690
1da177e4
LT
4691 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4692 ap->ops->bmdma_setup(qc); /* set up bmdma */
4693 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4694 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4695 break;
4696
312f7da2
AL
4697 case ATA_PROT_PIO:
4698 if (qc->tf.flags & ATA_TFLAG_POLLING)
4699 ata_qc_set_polling(qc);
1da177e4 4700
e5338254 4701 ata_tf_to_host(ap, &qc->tf);
312f7da2 4702
54f00389
AL
4703 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4704 /* PIO data out protocol */
4705 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4706 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4707
4708 /* always send first data block using
e27486db 4709 * the ata_pio_task() codepath.
54f00389 4710 */
312f7da2 4711 } else {
54f00389
AL
4712 /* PIO data in protocol */
4713 ap->hsm_task_state = HSM_ST;
4714
4715 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4716 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4717
4718 /* if polling, ata_pio_task() handles the rest.
4719 * otherwise, interrupt handler takes over from here.
4720 */
312f7da2
AL
4721 }
4722
1da177e4
LT
4723 break;
4724
1da177e4 4725 case ATA_PROT_ATAPI:
1da177e4 4726 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4727 if (qc->tf.flags & ATA_TFLAG_POLLING)
4728 ata_qc_set_polling(qc);
4729
e5338254 4730 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4731
312f7da2
AL
4732 ap->hsm_task_state = HSM_ST_FIRST;
4733
4734 /* send cdb by polling if no cdb interrupt */
4735 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4736 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4737 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4738 break;
4739
4740 case ATA_PROT_ATAPI_DMA:
587005de 4741 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4742
1da177e4
LT
4743 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4744 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4745 ap->hsm_task_state = HSM_ST_FIRST;
4746
4747 /* send cdb by polling if no cdb interrupt */
4748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4749 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4750 break;
4751
4752 default:
4753 WARN_ON(1);
9a3d9eb0 4754 return AC_ERR_SYSTEM;
1da177e4
LT
4755 }
4756
4757 return 0;
4758}
4759
1da177e4
LT
4760/**
4761 * ata_host_intr - Handle host interrupt for given (port, task)
4762 * @ap: Port on which interrupt arrived (possibly...)
4763 * @qc: Taskfile currently active in engine
4764 *
4765 * Handle host interrupt for given queued command. Currently,
4766 * only DMA interrupts are handled. All other commands are
4767 * handled via polling with interrupts disabled (nIEN bit).
4768 *
4769 * LOCKING:
cca3974e 4770 * spin_lock_irqsave(host lock)
1da177e4
LT
4771 *
4772 * RETURNS:
4773 * One if interrupt was handled, zero if not (shared irq).
4774 */
4775
4776inline unsigned int ata_host_intr (struct ata_port *ap,
4777 struct ata_queued_cmd *qc)
4778{
312f7da2 4779 u8 status, host_stat = 0;
1da177e4 4780
312f7da2
AL
4781 VPRINTK("ata%u: protocol %d task_state %d\n",
4782 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4783
312f7da2
AL
4784 /* Check whether we are expecting interrupt in this state */
4785 switch (ap->hsm_task_state) {
4786 case HSM_ST_FIRST:
6912ccd5
AL
4787 /* Some pre-ATAPI-4 devices assert INTRQ
4788 * at this state when ready to receive CDB.
4789 */
1da177e4 4790
312f7da2
AL
4791 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4792 * The flag was turned on only for atapi devices.
4793 * No need to check is_atapi_taskfile(&qc->tf) again.
4794 */
4795 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4796 goto idle_irq;
1da177e4 4797 break;
312f7da2
AL
4798 case HSM_ST_LAST:
4799 if (qc->tf.protocol == ATA_PROT_DMA ||
4800 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4801 /* check status of DMA engine */
4802 host_stat = ap->ops->bmdma_status(ap);
4803 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4804
4805 /* if it's not our irq... */
4806 if (!(host_stat & ATA_DMA_INTR))
4807 goto idle_irq;
4808
4809 /* before we do anything else, clear DMA-Start bit */
4810 ap->ops->bmdma_stop(qc);
a4f16610
AL
4811
4812 if (unlikely(host_stat & ATA_DMA_ERR)) {
4813 /* error when transfering data to/from memory */
4814 qc->err_mask |= AC_ERR_HOST_BUS;
4815 ap->hsm_task_state = HSM_ST_ERR;
4816 }
312f7da2
AL
4817 }
4818 break;
4819 case HSM_ST:
4820 break;
1da177e4
LT
4821 default:
4822 goto idle_irq;
4823 }
4824
312f7da2
AL
4825 /* check altstatus */
4826 status = ata_altstatus(ap);
4827 if (status & ATA_BUSY)
4828 goto idle_irq;
1da177e4 4829
312f7da2
AL
4830 /* check main status, clearing INTRQ */
4831 status = ata_chk_status(ap);
4832 if (unlikely(status & ATA_BUSY))
4833 goto idle_irq;
1da177e4 4834
312f7da2
AL
4835 /* ack bmdma irq events */
4836 ap->ops->irq_clear(ap);
1da177e4 4837
bb5cb290 4838 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4839 return 1; /* irq handled */
4840
4841idle_irq:
4842 ap->stats.idle_irq++;
4843
4844#ifdef ATA_IRQ_TRAP
4845 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4846 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4847 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4848 return 1;
1da177e4
LT
4849 }
4850#endif
4851 return 0; /* irq not handled */
4852}
4853
4854/**
4855 * ata_interrupt - Default ATA host interrupt handler
0cba632b 4856 * @irq: irq line (unused)
cca3974e 4857 * @dev_instance: pointer to our ata_host information structure
1da177e4
LT
4858 * @regs: unused
4859 *
0cba632b
JG
4860 * Default interrupt handler for PCI IDE devices. Calls
4861 * ata_host_intr() for each port that is not disabled.
4862 *
1da177e4 4863 * LOCKING:
cca3974e 4864 * Obtains host lock during operation.
1da177e4
LT
4865 *
4866 * RETURNS:
0cba632b 4867 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4868 */
4869
4870irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4871{
cca3974e 4872 struct ata_host *host = dev_instance;
1da177e4
LT
4873 unsigned int i;
4874 unsigned int handled = 0;
4875 unsigned long flags;
4876
4877 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 4878 spin_lock_irqsave(&host->lock, flags);
1da177e4 4879
cca3974e 4880 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
4881 struct ata_port *ap;
4882
cca3974e 4883 ap = host->ports[i];
c1389503 4884 if (ap &&
029f5468 4885 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4886 struct ata_queued_cmd *qc;
4887
4888 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4889 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4890 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4891 handled |= ata_host_intr(ap, qc);
4892 }
4893 }
4894
cca3974e 4895 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
4896
4897 return IRQ_RETVAL(handled);
4898}
4899
34bf2170
TH
4900/**
4901 * sata_scr_valid - test whether SCRs are accessible
4902 * @ap: ATA port to test SCR accessibility for
4903 *
4904 * Test whether SCRs are accessible for @ap.
4905 *
4906 * LOCKING:
4907 * None.
4908 *
4909 * RETURNS:
4910 * 1 if SCRs are accessible, 0 otherwise.
4911 */
4912int sata_scr_valid(struct ata_port *ap)
4913{
4914 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4915}
4916
4917/**
4918 * sata_scr_read - read SCR register of the specified port
4919 * @ap: ATA port to read SCR for
4920 * @reg: SCR to read
4921 * @val: Place to store read value
4922 *
4923 * Read SCR register @reg of @ap into *@val. This function is
4924 * guaranteed to succeed if the cable type of the port is SATA
4925 * and the port implements ->scr_read.
4926 *
4927 * LOCKING:
4928 * None.
4929 *
4930 * RETURNS:
4931 * 0 on success, negative errno on failure.
4932 */
4933int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4934{
4935 if (sata_scr_valid(ap)) {
4936 *val = ap->ops->scr_read(ap, reg);
4937 return 0;
4938 }
4939 return -EOPNOTSUPP;
4940}
4941
4942/**
4943 * sata_scr_write - write SCR register of the specified port
4944 * @ap: ATA port to write SCR for
4945 * @reg: SCR to write
4946 * @val: value to write
4947 *
4948 * Write @val to SCR register @reg of @ap. This function is
4949 * guaranteed to succeed if the cable type of the port is SATA
4950 * and the port implements ->scr_read.
4951 *
4952 * LOCKING:
4953 * None.
4954 *
4955 * RETURNS:
4956 * 0 on success, negative errno on failure.
4957 */
4958int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4959{
4960 if (sata_scr_valid(ap)) {
4961 ap->ops->scr_write(ap, reg, val);
4962 return 0;
4963 }
4964 return -EOPNOTSUPP;
4965}
4966
4967/**
4968 * sata_scr_write_flush - write SCR register of the specified port and flush
4969 * @ap: ATA port to write SCR for
4970 * @reg: SCR to write
4971 * @val: value to write
4972 *
4973 * This function is identical to sata_scr_write() except that this
4974 * function performs flush after writing to the register.
4975 *
4976 * LOCKING:
4977 * None.
4978 *
4979 * RETURNS:
4980 * 0 on success, negative errno on failure.
4981 */
4982int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4983{
4984 if (sata_scr_valid(ap)) {
4985 ap->ops->scr_write(ap, reg, val);
4986 ap->ops->scr_read(ap, reg);
4987 return 0;
4988 }
4989 return -EOPNOTSUPP;
4990}
4991
4992/**
4993 * ata_port_online - test whether the given port is online
4994 * @ap: ATA port to test
4995 *
4996 * Test whether @ap is online. Note that this function returns 0
4997 * if online status of @ap cannot be obtained, so
4998 * ata_port_online(ap) != !ata_port_offline(ap).
4999 *
5000 * LOCKING:
5001 * None.
5002 *
5003 * RETURNS:
5004 * 1 if the port online status is available and online.
5005 */
5006int ata_port_online(struct ata_port *ap)
5007{
5008 u32 sstatus;
5009
5010 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5011 return 1;
5012 return 0;
5013}
5014
5015/**
5016 * ata_port_offline - test whether the given port is offline
5017 * @ap: ATA port to test
5018 *
5019 * Test whether @ap is offline. Note that this function returns
5020 * 0 if offline status of @ap cannot be obtained, so
5021 * ata_port_online(ap) != !ata_port_offline(ap).
5022 *
5023 * LOCKING:
5024 * None.
5025 *
5026 * RETURNS:
5027 * 1 if the port offline status is available and offline.
5028 */
5029int ata_port_offline(struct ata_port *ap)
5030{
5031 u32 sstatus;
5032
5033 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5034 return 1;
5035 return 0;
5036}
0baab86b 5037
77b08fb5 5038int ata_flush_cache(struct ata_device *dev)
9b847548 5039{
977e6b9f 5040 unsigned int err_mask;
9b847548
JA
5041 u8 cmd;
5042
5043 if (!ata_try_flush_cache(dev))
5044 return 0;
5045
5046 if (ata_id_has_flush_ext(dev->id))
5047 cmd = ATA_CMD_FLUSH_EXT;
5048 else
5049 cmd = ATA_CMD_FLUSH;
5050
977e6b9f
TH
5051 err_mask = ata_do_simple_cmd(dev, cmd);
5052 if (err_mask) {
5053 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5054 return -EIO;
5055 }
5056
5057 return 0;
9b847548
JA
5058}
5059
cca3974e
JG
5060static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5061 unsigned int action, unsigned int ehi_flags,
5062 int wait)
500530f6
TH
5063{
5064 unsigned long flags;
5065 int i, rc;
5066
cca3974e
JG
5067 for (i = 0; i < host->n_ports; i++) {
5068 struct ata_port *ap = host->ports[i];
500530f6
TH
5069
5070 /* Previous resume operation might still be in
5071 * progress. Wait for PM_PENDING to clear.
5072 */
5073 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5074 ata_port_wait_eh(ap);
5075 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5076 }
5077
5078 /* request PM ops to EH */
5079 spin_lock_irqsave(ap->lock, flags);
5080
5081 ap->pm_mesg = mesg;
5082 if (wait) {
5083 rc = 0;
5084 ap->pm_result = &rc;
5085 }
5086
5087 ap->pflags |= ATA_PFLAG_PM_PENDING;
5088 ap->eh_info.action |= action;
5089 ap->eh_info.flags |= ehi_flags;
5090
5091 ata_port_schedule_eh(ap);
5092
5093 spin_unlock_irqrestore(ap->lock, flags);
5094
5095 /* wait and check result */
5096 if (wait) {
5097 ata_port_wait_eh(ap);
5098 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5099 if (rc)
5100 return rc;
5101 }
5102 }
5103
5104 return 0;
5105}
5106
5107/**
cca3974e
JG
5108 * ata_host_suspend - suspend host
5109 * @host: host to suspend
500530f6
TH
5110 * @mesg: PM message
5111 *
cca3974e 5112 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5113 * function requests EH to perform PM operations and waits for EH
5114 * to finish.
5115 *
5116 * LOCKING:
5117 * Kernel thread context (may sleep).
5118 *
5119 * RETURNS:
5120 * 0 on success, -errno on failure.
5121 */
cca3974e 5122int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5123{
5124 int i, j, rc;
5125
cca3974e 5126 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5127 if (rc)
5128 goto fail;
5129
5130 /* EH is quiescent now. Fail if we have any ready device.
5131 * This happens if hotplug occurs between completion of device
5132 * suspension and here.
5133 */
cca3974e
JG
5134 for (i = 0; i < host->n_ports; i++) {
5135 struct ata_port *ap = host->ports[i];
500530f6
TH
5136
5137 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5138 struct ata_device *dev = &ap->device[j];
5139
5140 if (ata_dev_ready(dev)) {
5141 ata_port_printk(ap, KERN_WARNING,
5142 "suspend failed, device %d "
5143 "still active\n", dev->devno);
5144 rc = -EBUSY;
5145 goto fail;
5146 }
5147 }
5148 }
5149
cca3974e 5150 host->dev->power.power_state = mesg;
500530f6
TH
5151 return 0;
5152
5153 fail:
cca3974e 5154 ata_host_resume(host);
500530f6
TH
5155 return rc;
5156}
5157
5158/**
cca3974e
JG
5159 * ata_host_resume - resume host
5160 * @host: host to resume
500530f6 5161 *
cca3974e 5162 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5163 * function requests EH to perform PM operations and returns.
5164 * Note that all resume operations are performed parallely.
5165 *
5166 * LOCKING:
5167 * Kernel thread context (may sleep).
5168 */
cca3974e 5169void ata_host_resume(struct ata_host *host)
500530f6 5170{
cca3974e
JG
5171 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5172 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5173 host->dev->power.power_state = PMSG_ON;
500530f6
TH
5174}
5175
c893a3ae
RD
5176/**
5177 * ata_port_start - Set port up for dma.
5178 * @ap: Port to initialize
5179 *
5180 * Called just after data structures for each port are
5181 * initialized. Allocates space for PRD table.
5182 *
5183 * May be used as the port_start() entry in ata_port_operations.
5184 *
5185 * LOCKING:
5186 * Inherited from caller.
5187 */
5188
1da177e4
LT
5189int ata_port_start (struct ata_port *ap)
5190{
2f1f610b 5191 struct device *dev = ap->dev;
6037d6bb 5192 int rc;
1da177e4
LT
5193
5194 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5195 if (!ap->prd)
5196 return -ENOMEM;
5197
6037d6bb
JG
5198 rc = ata_pad_alloc(ap, dev);
5199 if (rc) {
cedc9a47 5200 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5201 return rc;
cedc9a47
JG
5202 }
5203
1da177e4
LT
5204 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5205
5206 return 0;
5207}
5208
0baab86b
EF
5209
5210/**
5211 * ata_port_stop - Undo ata_port_start()
5212 * @ap: Port to shut down
5213 *
5214 * Frees the PRD table.
5215 *
5216 * May be used as the port_stop() entry in ata_port_operations.
5217 *
5218 * LOCKING:
6f0ef4fa 5219 * Inherited from caller.
0baab86b
EF
5220 */
5221
1da177e4
LT
5222void ata_port_stop (struct ata_port *ap)
5223{
2f1f610b 5224 struct device *dev = ap->dev;
1da177e4
LT
5225
5226 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5227 ata_pad_free(ap, dev);
1da177e4
LT
5228}
5229
cca3974e 5230void ata_host_stop (struct ata_host *host)
aa8f0dc6 5231{
cca3974e
JG
5232 if (host->mmio_base)
5233 iounmap(host->mmio_base);
aa8f0dc6
JG
5234}
5235
3ef3b43d
TH
5236/**
5237 * ata_dev_init - Initialize an ata_device structure
5238 * @dev: Device structure to initialize
5239 *
5240 * Initialize @dev in preparation for probing.
5241 *
5242 * LOCKING:
5243 * Inherited from caller.
5244 */
5245void ata_dev_init(struct ata_device *dev)
5246{
5247 struct ata_port *ap = dev->ap;
72fa4b74
TH
5248 unsigned long flags;
5249
5a04bf4b
TH
5250 /* SATA spd limit is bound to the first device */
5251 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5252
72fa4b74
TH
5253 /* High bits of dev->flags are used to record warm plug
5254 * requests which occur asynchronously. Synchronize using
cca3974e 5255 * host lock.
72fa4b74 5256 */
ba6a1308 5257 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5258 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5259 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5260
72fa4b74
TH
5261 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5262 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5263 dev->pio_mask = UINT_MAX;
5264 dev->mwdma_mask = UINT_MAX;
5265 dev->udma_mask = UINT_MAX;
5266}
5267
1da177e4 5268/**
155a8a9c 5269 * ata_port_init - Initialize an ata_port structure
1da177e4 5270 * @ap: Structure to initialize
cca3974e 5271 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5272 * @ent: Probe information provided by low-level driver
5273 * @port_no: Port number associated with this ata_port
5274 *
155a8a9c 5275 * Initialize a new ata_port structure.
0cba632b 5276 *
1da177e4 5277 * LOCKING:
0cba632b 5278 * Inherited from caller.
1da177e4 5279 */
cca3974e 5280void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5281 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5282{
5283 unsigned int i;
5284
cca3974e 5285 ap->lock = &host->lock;
198e0fed 5286 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5287 ap->id = ata_unique_id++;
1da177e4 5288 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5289 ap->host = host;
2f1f610b 5290 ap->dev = ent->dev;
1da177e4 5291 ap->port_no = port_no;
fea63e38
TH
5292 if (port_no == 1 && ent->pinfo2) {
5293 ap->pio_mask = ent->pinfo2->pio_mask;
5294 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5295 ap->udma_mask = ent->pinfo2->udma_mask;
5296 ap->flags |= ent->pinfo2->flags;
5297 ap->ops = ent->pinfo2->port_ops;
5298 } else {
5299 ap->pio_mask = ent->pio_mask;
5300 ap->mwdma_mask = ent->mwdma_mask;
5301 ap->udma_mask = ent->udma_mask;
5302 ap->flags |= ent->port_flags;
5303 ap->ops = ent->port_ops;
5304 }
5a04bf4b 5305 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5306 ap->active_tag = ATA_TAG_POISON;
5307 ap->last_ctl = 0xFF;
bd5d825c
BP
5308
5309#if defined(ATA_VERBOSE_DEBUG)
5310 /* turn on all debugging levels */
5311 ap->msg_enable = 0x00FF;
5312#elif defined(ATA_DEBUG)
5313 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5314#else
0dd4b21f 5315 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5316#endif
1da177e4 5317
86e45b6b 5318 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5319 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5320 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5321 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5322 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5323
838df628
TH
5324 /* set cable type */
5325 ap->cbl = ATA_CBL_NONE;
5326 if (ap->flags & ATA_FLAG_SATA)
5327 ap->cbl = ATA_CBL_SATA;
5328
acf356b1
TH
5329 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5330 struct ata_device *dev = &ap->device[i];
38d87234 5331 dev->ap = ap;
72fa4b74 5332 dev->devno = i;
3ef3b43d 5333 ata_dev_init(dev);
acf356b1 5334 }
1da177e4
LT
5335
5336#ifdef ATA_IRQ_TRAP
5337 ap->stats.unhandled_irq = 1;
5338 ap->stats.idle_irq = 1;
5339#endif
5340
5341 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5342}
5343
155a8a9c 5344/**
4608c160
TH
5345 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5346 * @ap: ATA port to initialize SCSI host for
5347 * @shost: SCSI host associated with @ap
155a8a9c 5348 *
4608c160 5349 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5350 *
5351 * LOCKING:
5352 * Inherited from caller.
5353 */
4608c160 5354static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5355{
cca3974e 5356 ap->scsi_host = shost;
155a8a9c 5357
4608c160
TH
5358 shost->unique_id = ap->id;
5359 shost->max_id = 16;
5360 shost->max_lun = 1;
5361 shost->max_channel = 1;
5362 shost->max_cmd_len = 12;
155a8a9c
BK
5363}
5364
1da177e4 5365/**
996139f1 5366 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5367 * @ent: Information provided by low-level driver
cca3974e 5368 * @host: Collections of ports to which we add
1da177e4
LT
5369 * @port_no: Port number associated with this host
5370 *
0cba632b
JG
5371 * Attach low-level ATA driver to system.
5372 *
1da177e4 5373 * LOCKING:
0cba632b 5374 * PCI/etc. bus probe sem.
1da177e4
LT
5375 *
5376 * RETURNS:
0cba632b 5377 * New ata_port on success, for NULL on error.
1da177e4 5378 */
996139f1 5379static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5380 struct ata_host *host,
1da177e4
LT
5381 unsigned int port_no)
5382{
996139f1 5383 struct Scsi_Host *shost;
1da177e4 5384 struct ata_port *ap;
1da177e4
LT
5385
5386 DPRINTK("ENTER\n");
aec5c3c1 5387
52783c5d 5388 if (!ent->port_ops->error_handler &&
cca3974e 5389 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5390 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5391 port_no);
5392 return NULL;
5393 }
5394
996139f1
JG
5395 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5396 if (!shost)
1da177e4
LT
5397 return NULL;
5398
996139f1 5399 shost->transportt = &ata_scsi_transport_template;
30afc84c 5400
996139f1 5401 ap = ata_shost_to_port(shost);
1da177e4 5402
cca3974e 5403 ata_port_init(ap, host, ent, port_no);
996139f1 5404 ata_port_init_shost(ap, shost);
1da177e4 5405
1da177e4 5406 return ap;
1da177e4
LT
5407}
5408
b03732f0 5409/**
cca3974e
JG
5410 * ata_sas_host_init - Initialize a host struct
5411 * @host: host to initialize
5412 * @dev: device host is attached to
5413 * @flags: host flags
5414 * @ops: port_ops
b03732f0
BK
5415 *
5416 * LOCKING:
5417 * PCI/etc. bus probe sem.
5418 *
5419 */
5420
cca3974e
JG
5421void ata_host_init(struct ata_host *host, struct device *dev,
5422 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5423{
cca3974e
JG
5424 spin_lock_init(&host->lock);
5425 host->dev = dev;
5426 host->flags = flags;
5427 host->ops = ops;
b03732f0
BK
5428}
5429
1da177e4 5430/**
0cba632b
JG
5431 * ata_device_add - Register hardware device with ATA and SCSI layers
5432 * @ent: Probe information describing hardware device to be registered
5433 *
5434 * This function processes the information provided in the probe
5435 * information struct @ent, allocates the necessary ATA and SCSI
5436 * host information structures, initializes them, and registers
5437 * everything with requisite kernel subsystems.
5438 *
5439 * This function requests irqs, probes the ATA bus, and probes
5440 * the SCSI bus.
1da177e4
LT
5441 *
5442 * LOCKING:
0cba632b 5443 * PCI/etc. bus probe sem.
1da177e4
LT
5444 *
5445 * RETURNS:
0cba632b 5446 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5447 */
057ace5e 5448int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5449{
6d0500df 5450 unsigned int i;
1da177e4 5451 struct device *dev = ent->dev;
cca3974e 5452 struct ata_host *host;
39b07ce6 5453 int rc;
1da177e4
LT
5454
5455 DPRINTK("ENTER\n");
02f076aa
AC
5456
5457 if (ent->irq == 0) {
5458 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5459 return 0;
5460 }
1da177e4 5461 /* alloc a container for our list of ATA ports (buses) */
cca3974e
JG
5462 host = kzalloc(sizeof(struct ata_host) +
5463 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5464 if (!host)
1da177e4 5465 return 0;
1da177e4 5466
cca3974e
JG
5467 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5468 host->n_ports = ent->n_ports;
5469 host->irq = ent->irq;
5470 host->irq2 = ent->irq2;
5471 host->mmio_base = ent->mmio_base;
5472 host->private_data = ent->private_data;
1da177e4
LT
5473
5474 /* register each port bound to this device */
cca3974e 5475 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5476 struct ata_port *ap;
5477 unsigned long xfer_mode_mask;
2ec7df04 5478 int irq_line = ent->irq;
1da177e4 5479
cca3974e 5480 ap = ata_port_add(ent, host, i);
c38778c3 5481 host->ports[i] = ap;
1da177e4
LT
5482 if (!ap)
5483 goto err_out;
5484
dd5b06c4
TH
5485 /* dummy? */
5486 if (ent->dummy_port_mask & (1 << i)) {
5487 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5488 ap->ops = &ata_dummy_port_ops;
5489 continue;
5490 }
5491
5492 /* start port */
5493 rc = ap->ops->port_start(ap);
5494 if (rc) {
cca3974e
JG
5495 host->ports[i] = NULL;
5496 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5497 goto err_out;
5498 }
5499
2ec7df04
AC
5500 /* Report the secondary IRQ for second channel legacy */
5501 if (i == 1 && ent->irq2)
5502 irq_line = ent->irq2;
5503
1da177e4
LT
5504 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5505 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5506 (ap->pio_mask << ATA_SHIFT_PIO);
5507
5508 /* print per-port info to dmesg */
f15a1daf 5509 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5510 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5511 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5512 ata_mode_string(xfer_mode_mask),
5513 ap->ioaddr.cmd_addr,
5514 ap->ioaddr.ctl_addr,
5515 ap->ioaddr.bmdma_addr,
2ec7df04 5516 irq_line);
1da177e4
LT
5517
5518 ata_chk_status(ap);
cca3974e 5519 host->ops->irq_clear(ap);
e3180499 5520 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5521 }
5522
2ec7df04 5523 /* obtain irq, that may be shared between channels */
39b07ce6 5524 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5525 DRV_NAME, host);
39b07ce6
JG
5526 if (rc) {
5527 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5528 ent->irq, rc);
1da177e4 5529 goto err_out;
39b07ce6 5530 }
1da177e4 5531
2ec7df04
AC
5532 /* do we have a second IRQ for the other channel, eg legacy mode */
5533 if (ent->irq2) {
5534 /* We will get weird core code crashes later if this is true
5535 so trap it now */
5536 BUG_ON(ent->irq == ent->irq2);
5537
5538 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
cca3974e 5539 DRV_NAME, host);
2ec7df04
AC
5540 if (rc) {
5541 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5542 ent->irq2, rc);
5543 goto err_out_free_irq;
5544 }
5545 }
5546
1da177e4
LT
5547 /* perform each probe synchronously */
5548 DPRINTK("probe begin\n");
cca3974e
JG
5549 for (i = 0; i < host->n_ports; i++) {
5550 struct ata_port *ap = host->ports[i];
5a04bf4b 5551 u32 scontrol;
1da177e4
LT
5552 int rc;
5553
5a04bf4b
TH
5554 /* init sata_spd_limit to the current value */
5555 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5556 int spd = (scontrol >> 4) & 0xf;
5557 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5558 }
5559 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5560
cca3974e 5561 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5562 if (rc) {
f15a1daf 5563 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5564 /* FIXME: do something useful here */
5565 /* FIXME: handle unconditional calls to
5566 * scsi_scan_host and ata_host_remove, below,
5567 * at the very least
5568 */
5569 }
3e706399 5570
52783c5d 5571 if (ap->ops->error_handler) {
1cdaf534 5572 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5573 unsigned long flags;
5574
5575 ata_port_probe(ap);
5576
5577 /* kick EH for boot probing */
ba6a1308 5578 spin_lock_irqsave(ap->lock, flags);
3e706399 5579
1cdaf534
TH
5580 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5581 ehi->action |= ATA_EH_SOFTRESET;
5582 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5583
b51e9e5d 5584 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5585 ata_port_schedule_eh(ap);
5586
ba6a1308 5587 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5588
5589 /* wait for EH to finish */
5590 ata_port_wait_eh(ap);
5591 } else {
5592 DPRINTK("ata%u: bus probe begin\n", ap->id);
5593 rc = ata_bus_probe(ap);
5594 DPRINTK("ata%u: bus probe end\n", ap->id);
5595
5596 if (rc) {
5597 /* FIXME: do something useful here?
5598 * Current libata behavior will
5599 * tear down everything when
5600 * the module is removed
5601 * or the h/w is unplugged.
5602 */
5603 }
5604 }
1da177e4
LT
5605 }
5606
5607 /* probes are done, now scan each port's disk(s) */
c893a3ae 5608 DPRINTK("host probe begin\n");
cca3974e
JG
5609 for (i = 0; i < host->n_ports; i++) {
5610 struct ata_port *ap = host->ports[i];
1da177e4 5611
644dd0cc 5612 ata_scsi_scan_host(ap);
1da177e4
LT
5613 }
5614
cca3974e 5615 dev_set_drvdata(dev, host);
1da177e4
LT
5616
5617 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5618 return ent->n_ports; /* success */
5619
2ec7df04 5620err_out_free_irq:
cca3974e 5621 free_irq(ent->irq, host);
1da177e4 5622err_out:
cca3974e
JG
5623 for (i = 0; i < host->n_ports; i++) {
5624 struct ata_port *ap = host->ports[i];
77f3f879
TH
5625 if (ap) {
5626 ap->ops->port_stop(ap);
cca3974e 5627 scsi_host_put(ap->scsi_host);
77f3f879 5628 }
1da177e4 5629 }
6d0500df 5630
cca3974e 5631 kfree(host);
1da177e4
LT
5632 VPRINTK("EXIT, returning 0\n");
5633 return 0;
5634}
5635
720ba126
TH
5636/**
5637 * ata_port_detach - Detach ATA port in prepration of device removal
5638 * @ap: ATA port to be detached
5639 *
5640 * Detach all ATA devices and the associated SCSI devices of @ap;
5641 * then, remove the associated SCSI host. @ap is guaranteed to
5642 * be quiescent on return from this function.
5643 *
5644 * LOCKING:
5645 * Kernel thread context (may sleep).
5646 */
5647void ata_port_detach(struct ata_port *ap)
5648{
5649 unsigned long flags;
5650 int i;
5651
5652 if (!ap->ops->error_handler)
c3cf30a9 5653 goto skip_eh;
720ba126
TH
5654
5655 /* tell EH we're leaving & flush EH */
ba6a1308 5656 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5657 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5658 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5659
5660 ata_port_wait_eh(ap);
5661
5662 /* EH is now guaranteed to see UNLOADING, so no new device
5663 * will be attached. Disable all existing devices.
5664 */
ba6a1308 5665 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5666
5667 for (i = 0; i < ATA_MAX_DEVICES; i++)
5668 ata_dev_disable(&ap->device[i]);
5669
ba6a1308 5670 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5671
5672 /* Final freeze & EH. All in-flight commands are aborted. EH
5673 * will be skipped and retrials will be terminated with bad
5674 * target.
5675 */
ba6a1308 5676 spin_lock_irqsave(ap->lock, flags);
720ba126 5677 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5678 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5679
5680 ata_port_wait_eh(ap);
5681
5682 /* Flush hotplug task. The sequence is similar to
5683 * ata_port_flush_task().
5684 */
5685 flush_workqueue(ata_aux_wq);
5686 cancel_delayed_work(&ap->hotplug_task);
5687 flush_workqueue(ata_aux_wq);
5688
c3cf30a9 5689 skip_eh:
720ba126 5690 /* remove the associated SCSI host */
cca3974e 5691 scsi_remove_host(ap->scsi_host);
720ba126
TH
5692}
5693
17b14451 5694/**
cca3974e
JG
5695 * ata_host_remove - PCI layer callback for device removal
5696 * @host: ATA host set that was removed
17b14451 5697 *
2e9edbf8 5698 * Unregister all objects associated with this host set. Free those
17b14451
AC
5699 * objects.
5700 *
5701 * LOCKING:
5702 * Inherited from calling layer (may sleep).
5703 */
5704
cca3974e 5705void ata_host_remove(struct ata_host *host)
17b14451 5706{
17b14451
AC
5707 unsigned int i;
5708
cca3974e
JG
5709 for (i = 0; i < host->n_ports; i++)
5710 ata_port_detach(host->ports[i]);
17b14451 5711
cca3974e
JG
5712 free_irq(host->irq, host);
5713 if (host->irq2)
5714 free_irq(host->irq2, host);
17b14451 5715
cca3974e
JG
5716 for (i = 0; i < host->n_ports; i++) {
5717 struct ata_port *ap = host->ports[i];
17b14451 5718
cca3974e 5719 ata_scsi_release(ap->scsi_host);
17b14451
AC
5720
5721 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5722 struct ata_ioports *ioaddr = &ap->ioaddr;
5723
2ec7df04
AC
5724 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5725 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5726 release_region(ATA_PRIMARY_CMD, 8);
5727 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5728 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5729 }
5730
cca3974e 5731 scsi_host_put(ap->scsi_host);
17b14451
AC
5732 }
5733
cca3974e
JG
5734 if (host->ops->host_stop)
5735 host->ops->host_stop(host);
17b14451 5736
cca3974e 5737 kfree(host);
17b14451
AC
5738}
5739
1da177e4
LT
5740/**
5741 * ata_scsi_release - SCSI layer callback hook for host unload
5742 * @host: libata host to be unloaded
5743 *
5744 * Performs all duties necessary to shut down a libata port...
5745 * Kill port kthread, disable port, and release resources.
5746 *
5747 * LOCKING:
5748 * Inherited from SCSI layer.
5749 *
5750 * RETURNS:
5751 * One.
5752 */
5753
cca3974e 5754int ata_scsi_release(struct Scsi_Host *shost)
1da177e4 5755{
cca3974e 5756 struct ata_port *ap = ata_shost_to_port(shost);
1da177e4
LT
5757
5758 DPRINTK("ENTER\n");
5759
5760 ap->ops->port_disable(ap);
6543bc07 5761 ap->ops->port_stop(ap);
1da177e4
LT
5762
5763 DPRINTK("EXIT\n");
5764 return 1;
5765}
5766
f6d950e2
BK
5767struct ata_probe_ent *
5768ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5769{
5770 struct ata_probe_ent *probe_ent;
5771
5772 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5773 if (!probe_ent) {
5774 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5775 kobject_name(&(dev->kobj)));
5776 return NULL;
5777 }
5778
5779 INIT_LIST_HEAD(&probe_ent->node);
5780 probe_ent->dev = dev;
5781
5782 probe_ent->sht = port->sht;
cca3974e 5783 probe_ent->port_flags = port->flags;
f6d950e2
BK
5784 probe_ent->pio_mask = port->pio_mask;
5785 probe_ent->mwdma_mask = port->mwdma_mask;
5786 probe_ent->udma_mask = port->udma_mask;
5787 probe_ent->port_ops = port->port_ops;
5788
5789 return probe_ent;
5790}
5791
1da177e4
LT
5792/**
5793 * ata_std_ports - initialize ioaddr with standard port offsets.
5794 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5795 *
5796 * Utility function which initializes data_addr, error_addr,
5797 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5798 * device_addr, status_addr, and command_addr to standard offsets
5799 * relative to cmd_addr.
5800 *
5801 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5802 */
0baab86b 5803
1da177e4
LT
5804void ata_std_ports(struct ata_ioports *ioaddr)
5805{
5806 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5807 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5808 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5809 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5810 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5811 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5812 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5813 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5814 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5815 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5816}
5817
0baab86b 5818
374b1873
JG
5819#ifdef CONFIG_PCI
5820
cca3974e 5821void ata_pci_host_stop (struct ata_host *host)
374b1873 5822{
cca3974e 5823 struct pci_dev *pdev = to_pci_dev(host->dev);
374b1873 5824
cca3974e 5825 pci_iounmap(pdev, host->mmio_base);
374b1873
JG
5826}
5827
1da177e4
LT
5828/**
5829 * ata_pci_remove_one - PCI layer callback for device removal
5830 * @pdev: PCI device that was removed
5831 *
5832 * PCI layer indicates to libata via this hook that
6f0ef4fa 5833 * hot-unplug or module unload event has occurred.
1da177e4
LT
5834 * Handle this by unregistering all objects associated
5835 * with this PCI device. Free those objects. Then finally
5836 * release PCI resources and disable device.
5837 *
5838 * LOCKING:
5839 * Inherited from PCI layer (may sleep).
5840 */
5841
5842void ata_pci_remove_one (struct pci_dev *pdev)
5843{
5844 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 5845 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 5846
cca3974e 5847 ata_host_remove(host);
f0eb62b8 5848
1da177e4
LT
5849 pci_release_regions(pdev);
5850 pci_disable_device(pdev);
5851 dev_set_drvdata(dev, NULL);
5852}
5853
5854/* move to PCI subsystem */
057ace5e 5855int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5856{
5857 unsigned long tmp = 0;
5858
5859 switch (bits->width) {
5860 case 1: {
5861 u8 tmp8 = 0;
5862 pci_read_config_byte(pdev, bits->reg, &tmp8);
5863 tmp = tmp8;
5864 break;
5865 }
5866 case 2: {
5867 u16 tmp16 = 0;
5868 pci_read_config_word(pdev, bits->reg, &tmp16);
5869 tmp = tmp16;
5870 break;
5871 }
5872 case 4: {
5873 u32 tmp32 = 0;
5874 pci_read_config_dword(pdev, bits->reg, &tmp32);
5875 tmp = tmp32;
5876 break;
5877 }
5878
5879 default:
5880 return -EINVAL;
5881 }
5882
5883 tmp &= bits->mask;
5884
5885 return (tmp == bits->val) ? 1 : 0;
5886}
9b847548 5887
3c5100c1 5888void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5889{
5890 pci_save_state(pdev);
500530f6 5891
3c5100c1 5892 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
5893 pci_disable_device(pdev);
5894 pci_set_power_state(pdev, PCI_D3hot);
5895 }
9b847548
JA
5896}
5897
500530f6 5898void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5899{
5900 pci_set_power_state(pdev, PCI_D0);
5901 pci_restore_state(pdev);
5902 pci_enable_device(pdev);
5903 pci_set_master(pdev);
500530f6
TH
5904}
5905
3c5100c1 5906int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 5907{
cca3974e 5908 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5909 int rc = 0;
5910
cca3974e 5911 rc = ata_host_suspend(host, mesg);
500530f6
TH
5912 if (rc)
5913 return rc;
5914
3c5100c1 5915 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5916
5917 return 0;
5918}
5919
5920int ata_pci_device_resume(struct pci_dev *pdev)
5921{
cca3974e 5922 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
5923
5924 ata_pci_device_do_resume(pdev);
cca3974e 5925 ata_host_resume(host);
9b847548
JA
5926 return 0;
5927}
1da177e4
LT
5928#endif /* CONFIG_PCI */
5929
5930
1da177e4
LT
5931static int __init ata_init(void)
5932{
a8601e5f 5933 ata_probe_timeout *= HZ;
1da177e4
LT
5934 ata_wq = create_workqueue("ata");
5935 if (!ata_wq)
5936 return -ENOMEM;
5937
453b07ac
TH
5938 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5939 if (!ata_aux_wq) {
5940 destroy_workqueue(ata_wq);
5941 return -ENOMEM;
5942 }
5943
1da177e4
LT
5944 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5945 return 0;
5946}
5947
5948static void __exit ata_exit(void)
5949{
5950 destroy_workqueue(ata_wq);
453b07ac 5951 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5952}
5953
5954module_init(ata_init);
5955module_exit(ata_exit);
5956
67846b30 5957static unsigned long ratelimit_time;
34af946a 5958static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5959
5960int ata_ratelimit(void)
5961{
5962 int rc;
5963 unsigned long flags;
5964
5965 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5966
5967 if (time_after(jiffies, ratelimit_time)) {
5968 rc = 1;
5969 ratelimit_time = jiffies + (HZ/5);
5970 } else
5971 rc = 0;
5972
5973 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5974
5975 return rc;
5976}
5977
c22daff4
TH
5978/**
5979 * ata_wait_register - wait until register value changes
5980 * @reg: IO-mapped register
5981 * @mask: Mask to apply to read register value
5982 * @val: Wait condition
5983 * @interval_msec: polling interval in milliseconds
5984 * @timeout_msec: timeout in milliseconds
5985 *
5986 * Waiting for some bits of register to change is a common
5987 * operation for ATA controllers. This function reads 32bit LE
5988 * IO-mapped register @reg and tests for the following condition.
5989 *
5990 * (*@reg & mask) != val
5991 *
5992 * If the condition is met, it returns; otherwise, the process is
5993 * repeated after @interval_msec until timeout.
5994 *
5995 * LOCKING:
5996 * Kernel thread context (may sleep)
5997 *
5998 * RETURNS:
5999 * The final register value.
6000 */
6001u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6002 unsigned long interval_msec,
6003 unsigned long timeout_msec)
6004{
6005 unsigned long timeout;
6006 u32 tmp;
6007
6008 tmp = ioread32(reg);
6009
6010 /* Calculate timeout _after_ the first read to make sure
6011 * preceding writes reach the controller before starting to
6012 * eat away the timeout.
6013 */
6014 timeout = jiffies + (timeout_msec * HZ) / 1000;
6015
6016 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6017 msleep(interval_msec);
6018 tmp = ioread32(reg);
6019 }
6020
6021 return tmp;
6022}
6023
dd5b06c4
TH
6024/*
6025 * Dummy port_ops
6026 */
6027static void ata_dummy_noret(struct ata_port *ap) { }
6028static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6029static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6030
6031static u8 ata_dummy_check_status(struct ata_port *ap)
6032{
6033 return ATA_DRDY;
6034}
6035
6036static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6037{
6038 return AC_ERR_SYSTEM;
6039}
6040
6041const struct ata_port_operations ata_dummy_port_ops = {
6042 .port_disable = ata_port_disable,
6043 .check_status = ata_dummy_check_status,
6044 .check_altstatus = ata_dummy_check_status,
6045 .dev_select = ata_noop_dev_select,
6046 .qc_prep = ata_noop_qc_prep,
6047 .qc_issue = ata_dummy_qc_issue,
6048 .freeze = ata_dummy_noret,
6049 .thaw = ata_dummy_noret,
6050 .error_handler = ata_dummy_noret,
6051 .post_internal_cmd = ata_dummy_qc_noret,
6052 .irq_clear = ata_dummy_noret,
6053 .port_start = ata_dummy_ret0,
6054 .port_stop = ata_dummy_noret,
6055};
6056
1da177e4
LT
6057/*
6058 * libata is essentially a library of internal helper functions for
6059 * low-level ATA host controller drivers. As such, the API/ABI is
6060 * likely to change as new drivers are added and updated.
6061 * Do not depend on ABI/API stability.
6062 */
6063
e9c83914
TH
6064EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6065EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6066EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6067EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6068EXPORT_SYMBOL_GPL(ata_std_bios_param);
6069EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6070EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6071EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 6072EXPORT_SYMBOL_GPL(ata_port_detach);
cca3974e 6073EXPORT_SYMBOL_GPL(ata_host_remove);
1da177e4
LT
6074EXPORT_SYMBOL_GPL(ata_sg_init);
6075EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6076EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6077EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6078EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6079EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6080EXPORT_SYMBOL_GPL(ata_tf_load);
6081EXPORT_SYMBOL_GPL(ata_tf_read);
6082EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6083EXPORT_SYMBOL_GPL(ata_std_dev_select);
6084EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6085EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6086EXPORT_SYMBOL_GPL(ata_check_status);
6087EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6088EXPORT_SYMBOL_GPL(ata_exec_command);
6089EXPORT_SYMBOL_GPL(ata_port_start);
6090EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 6091EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 6092EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
6093EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6094EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 6095EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 6096EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6097EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6098EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6099EXPORT_SYMBOL_GPL(ata_bmdma_start);
6100EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6101EXPORT_SYMBOL_GPL(ata_bmdma_status);
6102EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6103EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6104EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6105EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6106EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6107EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6108EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 6109EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6110EXPORT_SYMBOL_GPL(sata_phy_debounce);
6111EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6112EXPORT_SYMBOL_GPL(sata_phy_reset);
6113EXPORT_SYMBOL_GPL(__sata_phy_reset);
6114EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6115EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
6116EXPORT_SYMBOL_GPL(ata_std_softreset);
6117EXPORT_SYMBOL_GPL(sata_std_hardreset);
6118EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 6119EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
6120EXPORT_SYMBOL_GPL(ata_dev_classify);
6121EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6122EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6123EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6124EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6125EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6126EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6127EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6128EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6129EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6130EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6131EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6132EXPORT_SYMBOL_GPL(ata_scsi_release);
6133EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6134EXPORT_SYMBOL_GPL(sata_scr_valid);
6135EXPORT_SYMBOL_GPL(sata_scr_read);
6136EXPORT_SYMBOL_GPL(sata_scr_write);
6137EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6138EXPORT_SYMBOL_GPL(ata_port_online);
6139EXPORT_SYMBOL_GPL(ata_port_offline);
cca3974e
JG
6140EXPORT_SYMBOL_GPL(ata_host_suspend);
6141EXPORT_SYMBOL_GPL(ata_host_resume);
6a62a04d
TH
6142EXPORT_SYMBOL_GPL(ata_id_string);
6143EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
6144EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6145
1bc4ccff 6146EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6147EXPORT_SYMBOL_GPL(ata_timing_compute);
6148EXPORT_SYMBOL_GPL(ata_timing_merge);
6149
1da177e4
LT
6150#ifdef CONFIG_PCI
6151EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6152EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6153EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6154EXPORT_SYMBOL_GPL(ata_pci_init_one);
6155EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6156EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6157EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6158EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6159EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6160EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6161EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6162#endif /* CONFIG_PCI */
9b847548 6163
9b847548
JA
6164EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6165EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6166
ece1d636 6167EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6168EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6169EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6170EXPORT_SYMBOL_GPL(ata_port_freeze);
6171EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6172EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6173EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6174EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6175EXPORT_SYMBOL_GPL(ata_do_eh);