]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ata/libata-sff.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce 3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
1fdffbce
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce 37#include <linux/pci.h>
bff7832d 38#include <linux/module.h>
1fdffbce 39#include <linux/libata.h>
624d5c51 40#include <linux/highmem.h>
1fdffbce
JG
41
42#include "libata.h"
43
c429137a
TH
44static struct workqueue_struct *ata_sff_wq;
45
624d5c51
TH
46const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
f47451c4 49 .qc_prep = ata_noop_qc_prep,
9363c382 50 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
0aa1113d 55 .prereset = ata_sff_prereset,
9363c382 56 .softreset = ata_sff_softreset,
57c9efdf 57 .hardreset = sata_sff_hardreset,
203c75b8 58 .postreset = ata_sff_postreset,
9363c382 59 .error_handler = ata_sff_error_handler,
9363c382 60
5682ed33
TH
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
8244cd05 67 .sff_drain_fifo = ata_sff_drain_fifo,
624d5c51 68
c96f1732 69 .lost_interrupt = ata_sff_lost_interrupt,
624d5c51 70};
0fe40ff8 71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51 72
272f7884 73/**
9363c382 74 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
9363c382 84u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
85{
86 return ioread8(ap->ioaddr.status_addr);
87}
0fe40ff8 88EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
89
90/**
9363c382 91 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
a57c1bad 103static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 104{
5682ed33
TH
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109}
110
a57c1bad
AC
111/**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123static u8 ata_sff_irq_status(struct ata_port *ap)
124{
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
0fe40ff8 131 return status;
a57c1bad
AC
132 }
133 /* Clear INTRQ latch */
6311c90a 134 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
135 return status;
136}
137
138/**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150static void ata_sff_sync(struct ata_port *ap)
151{
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156}
157
158/**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
170void ata_sff_pause(struct ata_port *ap)
171{
172 ata_sff_sync(ap);
173 ndelay(400);
174}
0fe40ff8 175EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
176
177/**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
0fe40ff8 184
a57c1bad
AC
185void ata_sff_dma_pause(struct ata_port *ap)
186{
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197}
0fe40ff8 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 199
624d5c51 200/**
9363c382 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 202 * @ap: port containing status register to be polled
341c2c95
TH
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
624d5c51
TH
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
9363c382
TH
215int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
217{
218 unsigned long timer_start, timeout;
219 u8 status;
220
9363c382 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 222 timer_start = jiffies;
341c2c95 223 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
97750ceb 226 ata_msleep(ap, 50);
9363c382 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
a9a79dfe
JP
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
624d5c51 234
341c2c95 235 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
97750ceb 238 ata_msleep(ap, 50);
5682ed33 239 status = ap->ops->sff_check_status(ap);
624d5c51
TH
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
a9a79dfe
JP
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
249 return -EBUSY;
250 }
251
252 return 0;
253}
0fe40ff8 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 255
aa2731ad
TH
256static int ata_sff_check_ready(struct ata_link *link)
257{
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
78ab88f0 260 return ata_check_ready(status);
aa2731ad
TH
261}
262
624d5c51 263/**
9363c382 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 265 * @link: SFF link to wait ready status for
624d5c51
TH
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
705e76be 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 278{
aa2731ad 279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 280}
0fe40ff8 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 282
41dec29b
SS
283/**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297{
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302}
303
624d5c51 304/**
9363c382 305 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
9363c382 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
319{
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 329}
0fe40ff8 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
331
332/**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
9363c382
TH
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
624d5c51
TH
346 *
347 * LOCKING:
348 * caller.
349 */
c7a8209f 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
624d5c51
TH
351 unsigned int wait, unsigned int can_sleep)
352{
353 if (ata_msg_probe(ap))
a9a79dfe
JP
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
624d5c51
TH
356
357 if (wait)
358 ata_wait_idle(ap);
359
5682ed33 360 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
97750ceb 364 ata_msleep(ap, 150);
624d5c51
TH
365 ata_wait_idle(ap);
366 }
367}
368
369/**
9363c382 370 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
e42a542b
SS
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
624d5c51
TH
379 * LOCKING:
380 * Inherited from caller.
381 */
e42a542b 382void ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
383{
384 struct ata_ioports *ioaddr = &ap->ioaddr;
e42a542b
SS
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
624d5c51
TH
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
e42a542b
SS
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
624d5c51 397
37f65b8b
TH
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
624d5c51 400}
0fe40ff8 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51 402
624d5c51 403/**
9363c382 404 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
9363c382 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
414{
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
40c60230 422 ata_wait_idle(ap);
624d5c51
TH
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 426 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
40c60230
TH
458
459 ata_wait_idle(ap);
624d5c51 460}
0fe40ff8 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
462
463/**
9363c382 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
9363c382 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
477{
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
9363c382 480 tf->command = ata_sff_check_status(ap);
624d5c51
TH
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
efcb3cf7 499 WARN_ON_ONCE(1);
624d5c51
TH
500 }
501}
0fe40ff8 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
503
504/**
9363c382 505 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
9363c382 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
516{
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 520 ata_sff_pause(ap);
624d5c51 521}
0fe40ff8 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
523
524/**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
536static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538{
5682ed33
TH
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
541}
542
543/**
9363c382 544 * ata_sff_data_xfer - Transfer data by PIO
989e0aac 545 * @qc: queued command
624d5c51
TH
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
989e0aac 558unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
9363c382 559 unsigned int buflen, int rw)
624d5c51 560{
989e0aac 561 struct ata_port *ap = qc->dev->link->ap;
624d5c51
TH
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
2102d749 571 /* Transfer trailing byte, if any. */
624d5c51 572 if (unlikely(buflen & 0x01)) {
21dba244 573 unsigned char pad[2] = { };
624d5c51 574
2102d749
SS
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 580 * swapping bytes to and from on the big endian machines...
2102d749 581 */
624d5c51 582 if (rw == READ) {
2102d749
SS
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
624d5c51 585 } else {
2102d749
SS
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
588 }
589 words++;
590 }
591
592 return words << 1;
593}
0fe40ff8 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 595
871af121
AC
596/**
597 * ata_sff_data_xfer32 - Transfer data by PIO
989e0aac 598 * @qc: queued command
871af121
AC
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
989e0aac 613unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
871af121
AC
614 unsigned int buflen, int rw)
615{
989e0aac 616 struct ata_device *dev = qc->dev;
871af121
AC
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
972b94ff 621
e3cf95dd 622 if (!(ap->pflags & ATA_PFLAG_PIO32))
989e0aac 623 return ata_sff_data_xfer(qc, buf, buflen, rw);
871af121
AC
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
d1b3525b 631 /* Transfer trailing bytes, if any */
871af121 632 if (unlikely(slop)) {
21dba244 633 unsigned char pad[4] = { };
d1b3525b
SS
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 640 * swapping bytes to and from on the big endian machines...
d1b3525b 641 */
871af121 642 if (rw == READ) {
d1b3525b
SS
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
871af121 648 } else {
d1b3525b
SS
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
871af121 654 }
871af121 655 }
d1b3525b 656 return (buflen + 1) & ~1;
871af121
AC
657}
658EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
624d5c51 660/**
9363c382 661 * ata_sff_data_xfer_noirq - Transfer data by PIO
989e0aac 662 * @qc: queued command
624d5c51
TH
663 * @buf: data buffer
664 * @buflen: buffer length
665 * @rw: read/write
666 *
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
669 *
670 * LOCKING:
671 * Inherited from caller.
672 *
673 * RETURNS:
674 * Bytes consumed.
675 */
989e0aac 676unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
9363c382 677 unsigned int buflen, int rw)
624d5c51
TH
678{
679 unsigned long flags;
680 unsigned int consumed;
681
682 local_irq_save(flags);
989e0aac 683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
624d5c51
TH
684 local_irq_restore(flags);
685
686 return consumed;
687}
0fe40ff8 688EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
689
690/**
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
693 *
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 *
696 * LOCKING:
697 * Inherited from caller.
698 */
699static void ata_pio_sector(struct ata_queued_cmd *qc)
700{
701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 struct ata_port *ap = qc->ap;
703 struct page *page;
704 unsigned int offset;
705 unsigned char *buf;
706
707 if (qc->curbytes == qc->nbytes - qc->sect_size)
708 ap->hsm_task_state = HSM_ST_LAST;
709
710 page = sg_page(qc->cursg);
711 offset = qc->cursg->offset + qc->cursg_ofs;
712
713 /* get the current page and offset */
714 page = nth_page(page, (offset >> PAGE_SHIFT));
715 offset %= PAGE_SIZE;
716
717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718
719 if (PageHighMem(page)) {
720 unsigned long flags;
721
722 /* FIXME: use a bounce buffer */
723 local_irq_save(flags);
496cda8e 724 buf = kmap_atomic(page);
624d5c51
TH
725
726 /* do the actual data transfer */
989e0aac 727 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
5682ed33 728 do_write);
624d5c51 729
496cda8e 730 kunmap_atomic(buf);
624d5c51
TH
731 local_irq_restore(flags);
732 } else {
733 buf = page_address(page);
989e0aac 734 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
5682ed33 735 do_write);
624d5c51
TH
736 }
737
3842e835 738 if (!do_write && !PageSlab(page))
2d68b7fe
CM
739 flush_dcache_page(page);
740
624d5c51
TH
741 qc->curbytes += qc->sect_size;
742 qc->cursg_ofs += qc->sect_size;
743
744 if (qc->cursg_ofs == qc->cursg->length) {
745 qc->cursg = sg_next(qc->cursg);
746 qc->cursg_ofs = 0;
747 }
748}
749
750/**
751 * ata_pio_sectors - Transfer one or many sectors.
752 * @qc: Command on going
753 *
754 * Transfer one or many sectors of data from/to the
755 * ATA device for the DRQ request.
756 *
757 * LOCKING:
758 * Inherited from caller.
759 */
760static void ata_pio_sectors(struct ata_queued_cmd *qc)
761{
762 if (is_multi_taskfile(&qc->tf)) {
763 /* READ/WRITE MULTIPLE */
764 unsigned int nsect;
765
efcb3cf7 766 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
767
768 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
769 qc->dev->multi_count);
770 while (nsect--)
771 ata_pio_sector(qc);
772 } else
773 ata_pio_sector(qc);
774
a57c1bad 775 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
776}
777
778/**
779 * atapi_send_cdb - Write CDB bytes to hardware
780 * @ap: Port to which ATAPI device is attached.
781 * @qc: Taskfile currently active
782 *
783 * When device has indicated its readiness to accept
784 * a CDB, this function is called. Send the CDB.
785 *
786 * LOCKING:
787 * caller.
788 */
789static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
790{
791 /* send SCSI cdb */
792 DPRINTK("send cdb\n");
efcb3cf7 793 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 794
989e0aac 795 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
796 ata_sff_sync(ap);
797 /* FIXME: If the CDB is for DMA do we need to do the transition delay
798 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
799 switch (qc->tf.protocol) {
800 case ATAPI_PROT_PIO:
801 ap->hsm_task_state = HSM_ST;
802 break;
803 case ATAPI_PROT_NODATA:
804 ap->hsm_task_state = HSM_ST_LAST;
805 break;
9a7780c9 806#ifdef CONFIG_ATA_BMDMA
624d5c51
TH
807 case ATAPI_PROT_DMA:
808 ap->hsm_task_state = HSM_ST_LAST;
809 /* initiate bmdma */
810 ap->ops->bmdma_start(qc);
811 break;
9a7780c9
TH
812#endif /* CONFIG_ATA_BMDMA */
813 default:
814 BUG();
624d5c51
TH
815 }
816}
817
818/**
819 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
820 * @qc: Command on going
821 * @bytes: number of bytes
822 *
823 * Transfer Transfer data from/to the ATAPI device.
824 *
825 * LOCKING:
826 * Inherited from caller.
827 *
828 */
829static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
830{
831 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
832 struct ata_port *ap = qc->ap;
833 struct ata_device *dev = qc->dev;
834 struct ata_eh_info *ehi = &dev->link->eh_info;
835 struct scatterlist *sg;
836 struct page *page;
837 unsigned char *buf;
838 unsigned int offset, count, consumed;
839
840next_sg:
841 sg = qc->cursg;
842 if (unlikely(!sg)) {
843 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
844 "buf=%u cur=%u bytes=%u",
845 qc->nbytes, qc->curbytes, bytes);
846 return -1;
847 }
848
849 page = sg_page(sg);
850 offset = sg->offset + qc->cursg_ofs;
851
852 /* get the current page and offset */
853 page = nth_page(page, (offset >> PAGE_SHIFT));
854 offset %= PAGE_SIZE;
855
856 /* don't overrun current sg */
857 count = min(sg->length - qc->cursg_ofs, bytes);
858
859 /* don't cross page boundaries */
860 count = min(count, (unsigned int)PAGE_SIZE - offset);
861
862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863
864 if (PageHighMem(page)) {
865 unsigned long flags;
866
867 /* FIXME: use bounce buffer */
868 local_irq_save(flags);
496cda8e 869 buf = kmap_atomic(page);
624d5c51
TH
870
871 /* do the actual data transfer */
989e0aac 872 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
0fe40ff8 873 count, rw);
624d5c51 874
496cda8e 875 kunmap_atomic(buf);
624d5c51
TH
876 local_irq_restore(flags);
877 } else {
878 buf = page_address(page);
989e0aac 879 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
0fe40ff8 880 count, rw);
624d5c51
TH
881 }
882
883 bytes -= min(bytes, consumed);
884 qc->curbytes += count;
885 qc->cursg_ofs += count;
886
887 if (qc->cursg_ofs == sg->length) {
888 qc->cursg = sg_next(qc->cursg);
889 qc->cursg_ofs = 0;
890 }
891
a0f79f7a
CB
892 /*
893 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
894 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
895 * check correctly as it doesn't know if it is the last request being
896 * made. Somebody should implement a proper sanity check.
897 */
624d5c51
TH
898 if (bytes)
899 goto next_sg;
900 return 0;
901}
902
903/**
904 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
905 * @qc: Command on going
906 *
907 * Transfer Transfer data from/to the ATAPI device.
908 *
909 * LOCKING:
910 * Inherited from caller.
911 */
912static void atapi_pio_bytes(struct ata_queued_cmd *qc)
913{
914 struct ata_port *ap = qc->ap;
915 struct ata_device *dev = qc->dev;
916 struct ata_eh_info *ehi = &dev->link->eh_info;
917 unsigned int ireason, bc_lo, bc_hi, bytes;
918 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
919
920 /* Abuse qc->result_tf for temp storage of intermediate TF
921 * here to save some kernel stack usage.
922 * For normal completion, qc->result_tf is not relevant. For
923 * error, qc->result_tf is later overwritten by ata_qc_complete().
924 * So, the correctness of qc->result_tf is not affected.
925 */
5682ed33 926 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
927 ireason = qc->result_tf.nsect;
928 bc_lo = qc->result_tf.lbam;
929 bc_hi = qc->result_tf.lbah;
930 bytes = (bc_hi << 8) | bc_lo;
931
932 /* shall be cleared to zero, indicating xfer of data */
002ae084 933 if (unlikely(ireason & ATAPI_COD))
624d5c51
TH
934 goto atapi_check;
935
936 /* make sure transfer direction matches expected */
002ae084 937 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
624d5c51
TH
938 if (unlikely(do_write != i_write))
939 goto atapi_check;
940
941 if (unlikely(!bytes))
942 goto atapi_check;
943
944 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
945
946 if (unlikely(__atapi_pio_bytes(qc, bytes)))
947 goto err_out;
a57c1bad 948 ata_sff_sync(ap); /* flush */
624d5c51
TH
949
950 return;
951
952 atapi_check:
953 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 ireason, bytes);
955 err_out:
956 qc->err_mask |= AC_ERR_HSM;
957 ap->hsm_task_state = HSM_ST_ERR;
958}
959
960/**
961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
962 * @ap: the target ata_port
963 * @qc: qc on going
964 *
965 * RETURNS:
966 * 1 if ok in workqueue, 0 otherwise.
967 */
0fe40ff8
AC
968static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
969 struct ata_queued_cmd *qc)
624d5c51
TH
970{
971 if (qc->tf.flags & ATA_TFLAG_POLLING)
972 return 1;
973
974 if (ap->hsm_task_state == HSM_ST_FIRST) {
975 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 976 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
977 return 1;
978
979 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
981 return 1;
982 }
983
984 return 0;
985}
986
987/**
988 * ata_hsm_qc_complete - finish a qc running on standard HSM
989 * @qc: Command to complete
990 * @in_wq: 1 if called from workqueue, 0 otherwise
991 *
992 * Finish @qc which is running on standard HSM.
993 *
994 * LOCKING:
995 * If @in_wq is zero, spin_lock_irqsave(host lock).
996 * Otherwise, none on entry and grabs host lock.
997 */
998static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
999{
1000 struct ata_port *ap = qc->ap;
624d5c51
TH
1001
1002 if (ap->ops->error_handler) {
1003 if (in_wq) {
624d5c51
TH
1004 /* EH might have kicked in while host lock is
1005 * released.
1006 */
1007 qc = ata_qc_from_tag(ap, qc->tag);
1008 if (qc) {
1009 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
e42a542b 1010 ata_sff_irq_on(ap);
624d5c51
TH
1011 ata_qc_complete(qc);
1012 } else
1013 ata_port_freeze(ap);
1014 }
624d5c51
TH
1015 } else {
1016 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 ata_qc_complete(qc);
1018 else
1019 ata_port_freeze(ap);
1020 }
1021 } else {
1022 if (in_wq) {
e42a542b 1023 ata_sff_irq_on(ap);
624d5c51 1024 ata_qc_complete(qc);
624d5c51
TH
1025 } else
1026 ata_qc_complete(qc);
1027 }
1028}
1029
1030/**
9363c382 1031 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1032 * @ap: the target ata_port
1033 * @qc: qc on going
1034 * @status: current device status
1035 * @in_wq: 1 if called from workqueue, 0 otherwise
1036 *
1037 * RETURNS:
1038 * 1 when poll next status needed, 0 otherwise.
1039 */
9363c382
TH
1040int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1041 u8 status, int in_wq)
624d5c51 1042{
ea3c6450
GG
1043 struct ata_link *link = qc->dev->link;
1044 struct ata_eh_info *ehi = &link->eh_info;
624d5c51
TH
1045 int poll_next;
1046
8eee1d3e
TH
1047 lockdep_assert_held(ap->lock);
1048
efcb3cf7 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1050
9363c382 1051 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 */
efcb3cf7 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1056
1057fsm_start:
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060
1061 switch (ap->hsm_task_state) {
1062 case HSM_ST_FIRST:
1063 /* Send first data block or PACKET CDB */
1064
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1068 */
1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070
1071 /* check device status */
1072 if (unlikely((status & ATA_DRQ) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status & (ATA_ERR | ATA_DF)))
1075 /* device stops HSM for abort/error */
1076 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1077 else {
624d5c51 1078 /* HSM violation. Let EH handle this */
a836d3e8
TH
1079 ata_ehi_push_desc(ehi,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1081 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1082 }
624d5c51
TH
1083
1084 ap->hsm_task_state = HSM_ST_ERR;
1085 goto fsm_start;
1086 }
1087
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1093 */
1094 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1098 * the CDB.
1099 */
1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1101 ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status);
624d5c51
TH
1104 qc->err_mask |= AC_ERR_HSM;
1105 ap->hsm_task_state = HSM_ST_ERR;
1106 goto fsm_start;
1107 }
1108 }
1109
624d5c51
TH
1110 if (qc->tf.protocol == ATA_PROT_PIO) {
1111 /* PIO data out protocol.
1112 * send first data block.
1113 */
1114
1115 /* ata_pio_sectors() might change the state
1116 * to HSM_ST_LAST. so, the state is changed here
1117 * before ata_pio_sectors().
1118 */
1119 ap->hsm_task_state = HSM_ST;
1120 ata_pio_sectors(qc);
1121 } else
1122 /* send CDB */
1123 atapi_send_cdb(ap, qc);
1124
c429137a 1125 /* if polling, ata_sff_pio_task() handles the rest.
624d5c51
TH
1126 * otherwise, interrupt handler takes over from here.
1127 */
1128 break;
1129
1130 case HSM_ST:
1131 /* complete command or read/write the data register */
1132 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1133 /* ATAPI PIO protocol */
1134 if ((status & ATA_DRQ) == 0) {
1135 /* No more data to transfer or device error.
1136 * Device error will be tagged in HSM_ST_LAST.
1137 */
1138 ap->hsm_task_state = HSM_ST_LAST;
1139 goto fsm_start;
1140 }
1141
1142 /* Device should not ask for data transfer (DRQ=1)
1143 * when it finds something wrong.
1144 * We ignore DRQ here and stop the HSM by
1145 * changing hsm_task_state to HSM_ST_ERR and
1146 * let the EH abort the command or reset the device.
1147 */
1148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1149 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1150 "DRQ=1 with device error, "
1151 "dev_stat 0x%X", status);
624d5c51
TH
1152 qc->err_mask |= AC_ERR_HSM;
1153 ap->hsm_task_state = HSM_ST_ERR;
1154 goto fsm_start;
1155 }
1156
1157 atapi_pio_bytes(qc);
1158
1159 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1160 /* bad ireason reported by device */
1161 goto fsm_start;
1162
1163 } else {
1164 /* ATA PIO protocol */
1165 if (unlikely((status & ATA_DRQ) == 0)) {
1166 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1167 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1168 /* device stops HSM for abort/error */
1169 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1170
1171 /* If diagnostic failed and this is
1172 * IDENTIFY, it's likely a phantom
1173 * device. Mark hint.
1174 */
1175 if (qc->dev->horkage &
1176 ATA_HORKAGE_DIAGNOSTIC)
1177 qc->err_mask |=
1178 AC_ERR_NODEV_HINT;
1179 } else {
624d5c51
TH
1180 /* HSM violation. Let EH handle this.
1181 * Phantom devices also trigger this
1182 * condition. Mark hint.
1183 */
a836d3e8 1184 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1185 "DRQ=0 without device error, "
a836d3e8 1186 "dev_stat 0x%X", status);
624d5c51
TH
1187 qc->err_mask |= AC_ERR_HSM |
1188 AC_ERR_NODEV_HINT;
a836d3e8 1189 }
624d5c51
TH
1190
1191 ap->hsm_task_state = HSM_ST_ERR;
1192 goto fsm_start;
1193 }
1194
1195 /* For PIO reads, some devices may ask for
1196 * data transfer (DRQ=1) alone with ERR=1.
1197 * We respect DRQ here and transfer one
1198 * block of junk data before changing the
1199 * hsm_task_state to HSM_ST_ERR.
1200 *
1201 * For PIO writes, ERR=1 DRQ=1 doesn't make
1202 * sense since the data block has been
1203 * transferred to the device.
1204 */
1205 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1206 /* data might be corrputed */
1207 qc->err_mask |= AC_ERR_DEV;
1208
1209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1210 ata_pio_sectors(qc);
1211 status = ata_wait_idle(ap);
1212 }
1213
a836d3e8
TH
1214 if (status & (ATA_BUSY | ATA_DRQ)) {
1215 ata_ehi_push_desc(ehi, "ST-ATA: "
1216 "BUSY|DRQ persists on ERR|DF, "
1217 "dev_stat 0x%X", status);
624d5c51 1218 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1219 }
624d5c51 1220
b919930c
TH
1221 /* There are oddball controllers with
1222 * status register stuck at 0x7f and
1223 * lbal/m/h at zero which makes it
1224 * pass all other presence detection
1225 * mechanisms we have. Set NODEV_HINT
1226 * for it. Kernel bz#7241.
1227 */
1228 if (status == 0x7f)
1229 qc->err_mask |= AC_ERR_NODEV_HINT;
1230
624d5c51
TH
1231 /* ata_pio_sectors() might change the
1232 * state to HSM_ST_LAST. so, the state
1233 * is changed after ata_pio_sectors().
1234 */
1235 ap->hsm_task_state = HSM_ST_ERR;
1236 goto fsm_start;
1237 }
1238
1239 ata_pio_sectors(qc);
1240
1241 if (ap->hsm_task_state == HSM_ST_LAST &&
1242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1243 /* all data read */
1244 status = ata_wait_idle(ap);
1245 goto fsm_start;
1246 }
1247 }
1248
1249 poll_next = 1;
1250 break;
1251
1252 case HSM_ST_LAST:
1253 if (unlikely(!ata_ok(status))) {
1254 qc->err_mask |= __ac_err_mask(status);
1255 ap->hsm_task_state = HSM_ST_ERR;
1256 goto fsm_start;
1257 }
1258
1259 /* no more data to transfer */
1260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1261 ap->print_id, qc->dev->devno, status);
1262
efcb3cf7 1263 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1264
1265 ap->hsm_task_state = HSM_ST_IDLE;
1266
1267 /* complete taskfile transaction */
1268 ata_hsm_qc_complete(qc, in_wq);
1269
1270 poll_next = 0;
1271 break;
1272
1273 case HSM_ST_ERR:
624d5c51
TH
1274 ap->hsm_task_state = HSM_ST_IDLE;
1275
1276 /* complete taskfile transaction */
1277 ata_hsm_qc_complete(qc, in_wq);
1278
1279 poll_next = 0;
1280 break;
1281 default:
1282 poll_next = 0;
a588afc9
TH
1283 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1284 ap->print_id, ap->hsm_task_state);
624d5c51
TH
1285 }
1286
1287 return poll_next;
1288}
0fe40ff8 1289EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51 1290
64b97594
VK
1291void ata_sff_queue_work(struct work_struct *work)
1292{
1293 queue_work(ata_sff_wq, work);
1294}
1295EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1296
1297void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1298{
1299 queue_delayed_work(ata_sff_wq, dwork, delay);
1300}
1301EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1302
ea3c6450 1303void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
c429137a 1304{
ea3c6450
GG
1305 struct ata_port *ap = link->ap;
1306
1307 WARN_ON((ap->sff_pio_task_link != NULL) &&
1308 (ap->sff_pio_task_link != link));
1309 ap->sff_pio_task_link = link;
1310
c429137a 1311 /* may fail if ata_sff_flush_pio_task() in progress */
64b97594 1312 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
c429137a
TH
1313}
1314EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1315
1316void ata_sff_flush_pio_task(struct ata_port *ap)
1317{
1318 DPRINTK("ENTER\n");
1319
afe2c511 1320 cancel_delayed_work_sync(&ap->sff_pio_task);
ce751452
DJ
1321
1322 /*
1323 * We wanna reset the HSM state to IDLE. If we do so without
1324 * grabbing the port lock, critical sections protected by it which
1325 * expect the HSM state to stay stable may get surprised. For
1326 * example, we may set IDLE in between the time
1327 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1328 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1329 */
1330 spin_lock_irq(ap->lock);
c429137a 1331 ap->hsm_task_state = HSM_ST_IDLE;
ce751452
DJ
1332 spin_unlock_irq(ap->lock);
1333
d4d8eaff 1334 ap->sff_pio_task_link = NULL;
c429137a
TH
1335
1336 if (ata_msg_ctl(ap))
a9a79dfe 1337 ata_port_dbg(ap, "%s: EXIT\n", __func__);
c429137a
TH
1338}
1339
1340static void ata_sff_pio_task(struct work_struct *work)
624d5c51
TH
1341{
1342 struct ata_port *ap =
c429137a 1343 container_of(work, struct ata_port, sff_pio_task.work);
ea3c6450 1344 struct ata_link *link = ap->sff_pio_task_link;
c429137a 1345 struct ata_queued_cmd *qc;
624d5c51
TH
1346 u8 status;
1347 int poll_next;
1348
8eee1d3e
TH
1349 spin_lock_irq(ap->lock);
1350
4fca377f 1351 BUG_ON(ap->sff_pio_task_link == NULL);
c429137a 1352 /* qc can be NULL if timeout occurred */
ea3c6450
GG
1353 qc = ata_qc_from_tag(ap, link->active_tag);
1354 if (!qc) {
1355 ap->sff_pio_task_link = NULL;
8eee1d3e 1356 goto out_unlock;
ea3c6450 1357 }
c429137a 1358
624d5c51 1359fsm_start:
efcb3cf7 1360 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1361
1362 /*
1363 * This is purely heuristic. This is a fast path.
1364 * Sometimes when we enter, BSY will be cleared in
1365 * a chk-status or two. If not, the drive is probably seeking
1366 * or something. Snooze for a couple msecs, then
1367 * chk-status again. If still busy, queue delayed work.
1368 */
9363c382 1369 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51 1370 if (status & ATA_BUSY) {
8eee1d3e 1371 spin_unlock_irq(ap->lock);
97750ceb 1372 ata_msleep(ap, 2);
8eee1d3e
TH
1373 spin_lock_irq(ap->lock);
1374
9363c382 1375 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51 1376 if (status & ATA_BUSY) {
ea3c6450 1377 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
8eee1d3e 1378 goto out_unlock;
624d5c51
TH
1379 }
1380 }
1381
ea3c6450
GG
1382 /*
1383 * hsm_move() may trigger another command to be processed.
1384 * clean the link beforehand.
1385 */
1386 ap->sff_pio_task_link = NULL;
624d5c51 1387 /* move the HSM */
9363c382 1388 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1389
1390 /* another command or interrupt handler
1391 * may be running at this point.
1392 */
1393 if (poll_next)
1394 goto fsm_start;
8eee1d3e
TH
1395out_unlock:
1396 spin_unlock_irq(ap->lock);
624d5c51
TH
1397}
1398
1399/**
360ff783 1400 * ata_sff_qc_issue - issue taskfile to a SFF controller
624d5c51
TH
1401 * @qc: command to issue to device
1402 *
360ff783
TH
1403 * This function issues a PIO or NODATA command to a SFF
1404 * controller.
624d5c51
TH
1405 *
1406 * LOCKING:
1407 * spin_lock_irqsave(host lock)
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
1411 */
9363c382 1412unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1413{
1414 struct ata_port *ap = qc->ap;
ea3c6450 1415 struct ata_link *link = qc->dev->link;
624d5c51
TH
1416
1417 /* Use polling pio if the LLD doesn't handle
1418 * interrupt driven pio and atapi CDB interrupt.
1419 */
360ff783
TH
1420 if (ap->flags & ATA_FLAG_PIO_POLLING)
1421 qc->tf.flags |= ATA_TFLAG_POLLING;
624d5c51
TH
1422
1423 /* select the device */
1424 ata_dev_select(ap, qc->dev->devno, 1, 0);
1425
1426 /* start the command */
1427 switch (qc->tf.protocol) {
1428 case ATA_PROT_NODATA:
1429 if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 ata_qc_set_polling(qc);
1431
1432 ata_tf_to_host(ap, &qc->tf);
1433 ap->hsm_task_state = HSM_ST_LAST;
1434
1435 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 1436 ata_sff_queue_pio_task(link, 0);
624d5c51
TH
1437
1438 break;
1439
624d5c51
TH
1440 case ATA_PROT_PIO:
1441 if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 ata_qc_set_polling(qc);
1443
1444 ata_tf_to_host(ap, &qc->tf);
1445
1446 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1447 /* PIO data out protocol */
1448 ap->hsm_task_state = HSM_ST_FIRST;
ea3c6450 1449 ata_sff_queue_pio_task(link, 0);
624d5c51 1450
c429137a
TH
1451 /* always send first data block using the
1452 * ata_sff_pio_task() codepath.
624d5c51
TH
1453 */
1454 } else {
1455 /* PIO data in protocol */
1456 ap->hsm_task_state = HSM_ST;
1457
1458 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 1459 ata_sff_queue_pio_task(link, 0);
624d5c51 1460
c429137a
TH
1461 /* if polling, ata_sff_pio_task() handles the
1462 * rest. otherwise, interrupt handler takes
1463 * over from here.
624d5c51
TH
1464 */
1465 }
1466
1467 break;
1468
1469 case ATAPI_PROT_PIO:
1470 case ATAPI_PROT_NODATA:
1471 if (qc->tf.flags & ATA_TFLAG_POLLING)
1472 ata_qc_set_polling(qc);
1473
1474 ata_tf_to_host(ap, &qc->tf);
1475
1476 ap->hsm_task_state = HSM_ST_FIRST;
1477
1478 /* send cdb by polling if no cdb interrupt */
1479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1480 (qc->tf.flags & ATA_TFLAG_POLLING))
ea3c6450 1481 ata_sff_queue_pio_task(link, 0);
624d5c51
TH
1482 break;
1483
624d5c51 1484 default:
624d5c51
TH
1485 return AC_ERR_SYSTEM;
1486 }
1487
1488 return 0;
1489}
0fe40ff8 1490EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1491
22183bf5
TH
1492/**
1493 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494 * @qc: qc to fill result TF for
1495 *
1496 * @qc is finished and result TF needs to be filled. Fill it
1497 * using ->sff_tf_read.
1498 *
1499 * LOCKING:
1500 * spin_lock_irqsave(host lock)
1501 *
1502 * RETURNS:
1503 * true indicating that result TF is successfully filled.
1504 */
1505bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506{
1507 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508 return true;
1509}
0fe40ff8 1510EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1511
c3b28894 1512static unsigned int ata_sff_idle_irq(struct ata_port *ap)
624d5c51 1513{
c3b28894
TH
1514 ap->stats.idle_irq++;
1515
1516#ifdef ATA_IRQ_TRAP
1517 if ((ap->stats.idle_irq % 1000) == 0) {
1518 ap->ops->sff_check_status(ap);
1519 if (ap->ops->sff_irq_clear)
1520 ap->ops->sff_irq_clear(ap);
a9a79dfe 1521 ata_port_warn(ap, "irq trap\n");
c3b28894
TH
1522 return 1;
1523 }
1524#endif
1525 return 0; /* irq not handled */
1526}
1527
1528static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529 struct ata_queued_cmd *qc,
1530 bool hsmv_on_idle)
1531{
1532 u8 status;
624d5c51
TH
1533
1534 VPRINTK("ata%u: protocol %d task_state %d\n",
1535 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536
1537 /* Check whether we are expecting interrupt in this state */
1538 switch (ap->hsm_task_state) {
1539 case HSM_ST_FIRST:
1540 /* Some pre-ATAPI-4 devices assert INTRQ
1541 * at this state when ready to receive CDB.
1542 */
1543
1544 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545 * The flag was turned on only for atapi devices. No
1546 * need to check ata_is_atapi(qc->tf.protocol) again.
1547 */
1548 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
c3b28894 1549 return ata_sff_idle_irq(ap);
624d5c51 1550 break;
687a9933 1551 case HSM_ST_IDLE:
c3b28894 1552 return ata_sff_idle_irq(ap);
687a9933
TH
1553 default:
1554 break;
624d5c51
TH
1555 }
1556
a57c1bad
AC
1557 /* check main status, clearing INTRQ if needed */
1558 status = ata_sff_irq_status(ap);
332ac7ff 1559 if (status & ATA_BUSY) {
c3b28894 1560 if (hsmv_on_idle) {
332ac7ff
TH
1561 /* BMDMA engine is already stopped, we're screwed */
1562 qc->err_mask |= AC_ERR_HSM;
1563 ap->hsm_task_state = HSM_ST_ERR;
1564 } else
c3b28894 1565 return ata_sff_idle_irq(ap);
332ac7ff 1566 }
624d5c51 1567
9f2f7210 1568 /* clear irq events */
37f65b8b
TH
1569 if (ap->ops->sff_irq_clear)
1570 ap->ops->sff_irq_clear(ap);
624d5c51 1571
9363c382 1572 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51 1573
624d5c51 1574 return 1; /* irq handled */
624d5c51
TH
1575}
1576
1577/**
c3b28894
TH
1578 * ata_sff_port_intr - Handle SFF port interrupt
1579 * @ap: Port on which interrupt arrived (possibly...)
1580 * @qc: Taskfile currently active in engine
624d5c51 1581 *
c3b28894 1582 * Handle port interrupt for given queued command.
624d5c51
TH
1583 *
1584 * LOCKING:
c3b28894 1585 * spin_lock_irqsave(host lock)
624d5c51
TH
1586 *
1587 * RETURNS:
c3b28894 1588 * One if interrupt was handled, zero if not (shared irq).
624d5c51 1589 */
c3b28894
TH
1590unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591{
1592 return __ata_sff_port_intr(ap, qc, false);
1593}
1594EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595
1596static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
624d5c51
TH
1598{
1599 struct ata_host *host = dev_instance;
332ac7ff 1600 bool retried = false;
624d5c51 1601 unsigned int i;
332ac7ff 1602 unsigned int handled, idle, polling;
624d5c51
TH
1603 unsigned long flags;
1604
1605 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606 spin_lock_irqsave(&host->lock, flags);
1607
332ac7ff
TH
1608retry:
1609 handled = idle = polling = 0;
624d5c51 1610 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1611 struct ata_port *ap = host->ports[i];
1612 struct ata_queued_cmd *qc;
624d5c51 1613
d88ec2e5 1614 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1615 if (qc) {
1616 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
c3b28894 1617 handled |= port_intr(ap, qc);
27943620
TH
1618 else
1619 polling |= 1 << i;
332ac7ff
TH
1620 } else
1621 idle |= 1 << i;
27943620
TH
1622 }
1623
1624 /*
1625 * If no port was expecting IRQ but the controller is actually
1626 * asserting IRQ line, nobody cared will ensue. Check IRQ
1627 * pending status if available and clear spurious IRQ.
1628 */
332ac7ff
TH
1629 if (!handled && !retried) {
1630 bool retry = false;
1631
27943620
TH
1632 for (i = 0; i < host->n_ports; i++) {
1633 struct ata_port *ap = host->ports[i];
1634
1635 if (polling & (1 << i))
1636 continue;
1637
1638 if (!ap->ops->sff_irq_check ||
1639 !ap->ops->sff_irq_check(ap))
1640 continue;
1641
332ac7ff
TH
1642 if (idle & (1 << i)) {
1643 ap->ops->sff_check_status(ap);
37f65b8b
TH
1644 if (ap->ops->sff_irq_clear)
1645 ap->ops->sff_irq_clear(ap);
332ac7ff
TH
1646 } else {
1647 /* clear INTRQ and check if BUSY cleared */
1648 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649 retry |= true;
1650 /*
1651 * With command in flight, we can't do
1652 * sff_irq_clear() w/o racing with completion.
1653 */
1654 }
1655 }
1656
1657 if (retry) {
1658 retried = true;
1659 goto retry;
27943620 1660 }
624d5c51
TH
1661 }
1662
1663 spin_unlock_irqrestore(&host->lock, flags);
1664
1665 return IRQ_RETVAL(handled);
1666}
c3b28894
TH
1667
1668/**
1669 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1670 * @irq: irq line (unused)
1671 * @dev_instance: pointer to our ata_host information structure
1672 *
1673 * Default interrupt handler for PCI IDE devices. Calls
1674 * ata_sff_port_intr() for each port that is not disabled.
1675 *
1676 * LOCKING:
1677 * Obtains host lock during operation.
1678 *
1679 * RETURNS:
1680 * IRQ_NONE or IRQ_HANDLED.
1681 */
1682irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683{
1684 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685}
0fe40ff8 1686EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1687
c96f1732
AC
1688/**
1689 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1690 * @ap: port that appears to have timed out
1691 *
1692 * Called from the libata error handlers when the core code suspects
1693 * an interrupt has been lost. If it has complete anything we can and
1694 * then return. Interface must support altstatus for this faster
1695 * recovery to occur.
1696 *
1697 * Locking:
1698 * Caller holds host lock
1699 */
1700
1701void ata_sff_lost_interrupt(struct ata_port *ap)
1702{
1703 u8 status;
1704 struct ata_queued_cmd *qc;
1705
1706 /* Only one outstanding command per SFF channel */
1707 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
1708 /* We cannot lose an interrupt on a non-existent or polled command */
1709 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
c96f1732
AC
1710 return;
1711 /* See if the controller thinks it is still busy - if so the command
1712 isn't a lost IRQ but is still in progress */
1713 status = ata_sff_altstatus(ap);
1714 if (status & ATA_BUSY)
1715 return;
1716
1717 /* There was a command running, we are no longer busy and we have
1718 no interrupt. */
a9a79dfe 1719 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
c96f1732
AC
1720 status);
1721 /* Run the host interrupt logic as if the interrupt had not been
1722 lost */
c3b28894 1723 ata_sff_port_intr(ap, qc);
c96f1732
AC
1724}
1725EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726
624d5c51 1727/**
9363c382 1728 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1729 * @ap: port to freeze
1730 *
9f2f7210 1731 * Freeze SFF controller port.
624d5c51
TH
1732 *
1733 * LOCKING:
1734 * Inherited from caller.
1735 */
9363c382 1736void ata_sff_freeze(struct ata_port *ap)
624d5c51 1737{
624d5c51
TH
1738 ap->ctl |= ATA_NIEN;
1739 ap->last_ctl = ap->ctl;
1740
41dec29b
SS
1741 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1743
1744 /* Under certain circumstances, some controllers raise IRQ on
1745 * ATA_NIEN manipulation. Also, many controllers fail to mask
1746 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1747 */
5682ed33 1748 ap->ops->sff_check_status(ap);
624d5c51 1749
37f65b8b
TH
1750 if (ap->ops->sff_irq_clear)
1751 ap->ops->sff_irq_clear(ap);
624d5c51 1752}
0fe40ff8 1753EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1754
1755/**
9363c382 1756 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1757 * @ap: port to thaw
1758 *
9363c382 1759 * Thaw SFF controller port.
624d5c51
TH
1760 *
1761 * LOCKING:
1762 * Inherited from caller.
1763 */
9363c382 1764void ata_sff_thaw(struct ata_port *ap)
272f7884 1765{
624d5c51 1766 /* clear & re-enable interrupts */
5682ed33 1767 ap->ops->sff_check_status(ap);
37f65b8b
TH
1768 if (ap->ops->sff_irq_clear)
1769 ap->ops->sff_irq_clear(ap);
e42a542b 1770 ata_sff_irq_on(ap);
272f7884 1771}
0fe40ff8 1772EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1773
0aa1113d
TH
1774/**
1775 * ata_sff_prereset - prepare SFF link for reset
1776 * @link: SFF link to be reset
1777 * @deadline: deadline jiffies for the operation
1778 *
1779 * SFF link @link is about to be reset. Initialize it. It first
1780 * calls ata_std_prereset() and wait for !BSY if the port is
1781 * being softreset.
1782 *
1783 * LOCKING:
1784 * Kernel thread context (may sleep)
1785 *
1786 * RETURNS:
1787 * 0 on success, -errno otherwise.
1788 */
1789int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790{
0aa1113d
TH
1791 struct ata_eh_context *ehc = &link->eh_context;
1792 int rc;
1793
1794 rc = ata_std_prereset(link, deadline);
1795 if (rc)
1796 return rc;
1797
1798 /* if we're about to do hardreset, nothing more to do */
1799 if (ehc->i.action & ATA_EH_HARDRESET)
1800 return 0;
1801
1802 /* wait for !BSY if we don't know that no device is attached */
1803 if (!ata_link_offline(link)) {
705e76be 1804 rc = ata_sff_wait_ready(link, deadline);
0aa1113d 1805 if (rc && rc != -ENODEV) {
a9a79dfe
JP
1806 ata_link_warn(link,
1807 "device not ready (errno=%d), forcing hardreset\n",
1808 rc);
0aa1113d
TH
1809 ehc->i.action |= ATA_EH_HARDRESET;
1810 }
1811 }
1812
1813 return 0;
1814}
0fe40ff8 1815EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1816
90088bb4 1817/**
624d5c51
TH
1818 * ata_devchk - PATA device presence detection
1819 * @ap: ATA channel to examine
1820 * @device: Device to examine (starting at zero)
90088bb4 1821 *
624d5c51
TH
1822 * This technique was originally described in
1823 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1824 * later found its way into the ATA/ATAPI spec.
1825 *
1826 * Write a pattern to the ATA shadow registers,
1827 * and if a device is present, it will respond by
1828 * correctly storing and echoing back the
1829 * ATA shadow register contents.
90088bb4
TH
1830 *
1831 * LOCKING:
624d5c51 1832 * caller.
90088bb4 1833 */
624d5c51 1834static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1835{
1836 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1837 u8 nsect, lbal;
90088bb4 1838
5682ed33 1839 ap->ops->sff_dev_select(ap, device);
90088bb4 1840
624d5c51
TH
1841 iowrite8(0x55, ioaddr->nsect_addr);
1842 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1843
624d5c51
TH
1844 iowrite8(0xaa, ioaddr->nsect_addr);
1845 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1846
624d5c51
TH
1847 iowrite8(0x55, ioaddr->nsect_addr);
1848 iowrite8(0xaa, ioaddr->lbal_addr);
1849
1850 nsect = ioread8(ioaddr->nsect_addr);
1851 lbal = ioread8(ioaddr->lbal_addr);
1852
1853 if ((nsect == 0x55) && (lbal == 0xaa))
1854 return 1; /* we found a device */
1855
1856 return 0; /* nothing found */
90088bb4
TH
1857}
1858
272f7884 1859/**
9363c382 1860 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1861 * @dev: ATA device to classify (starting at zero)
1862 * @present: device seems present
1863 * @r_err: Value of error register on completion
272f7884 1864 *
624d5c51
TH
1865 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866 * an ATA/ATAPI-defined set of values is placed in the ATA
1867 * shadow registers, indicating the results of device detection
1868 * and diagnostics.
272f7884 1869 *
624d5c51
TH
1870 * Select the ATA device, and read the values from the ATA shadow
1871 * registers. Then parse according to the Error register value,
1872 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1873 *
1874 * LOCKING:
624d5c51
TH
1875 * caller.
1876 *
1877 * RETURNS:
1878 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1879 */
9363c382 1880unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1881 u8 *r_err)
272f7884 1882{
624d5c51
TH
1883 struct ata_port *ap = dev->link->ap;
1884 struct ata_taskfile tf;
1885 unsigned int class;
1886 u8 err;
1887
5682ed33 1888 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1889
1890 memset(&tf, 0, sizeof(tf));
1891
5682ed33 1892 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1893 err = tf.feature;
1894 if (r_err)
1895 *r_err = err;
1896
1897 /* see if device passed diags: continue and warn later */
1898 if (err == 0)
1899 /* diagnostic fail : do nothing _YET_ */
1900 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901 else if (err == 1)
1902 /* do nothing */ ;
1903 else if ((dev->devno == 0) && (err == 0x81))
1904 /* do nothing */ ;
1905 else
1906 return ATA_DEV_NONE;
272f7884 1907
624d5c51
TH
1908 /* determine if device is ATA or ATAPI */
1909 class = ata_dev_classify(&tf);
272f7884 1910
624d5c51
TH
1911 if (class == ATA_DEV_UNKNOWN) {
1912 /* If the device failed diagnostic, it's likely to
1913 * have reported incorrect device signature too.
1914 * Assume ATA device if the device seems present but
1915 * device signature is invalid with diagnostic
1916 * failure.
1917 */
1918 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919 class = ATA_DEV_ATA;
1920 else
1921 class = ATA_DEV_NONE;
5682ed33
TH
1922 } else if ((class == ATA_DEV_ATA) &&
1923 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1924 class = ATA_DEV_NONE;
1925
1926 return class;
272f7884 1927}
0fe40ff8 1928EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 1929
705e76be
TH
1930/**
1931 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1932 * @link: SFF link which is just reset
1933 * @devmask: mask of present devices
1934 * @deadline: deadline jiffies for the operation
1935 *
1936 * Wait devices attached to SFF @link to become ready after
1937 * reset. It contains preceding 150ms wait to avoid accessing TF
1938 * status register too early.
1939 *
1940 * LOCKING:
1941 * Kernel thread context (may sleep).
1942 *
1943 * RETURNS:
1944 * 0 on success, -ENODEV if some or all of devices in @devmask
1945 * don't seem to exist. -errno on other errors.
1946 */
1947int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948 unsigned long deadline)
1fdffbce 1949{
705e76be 1950 struct ata_port *ap = link->ap;
1fdffbce 1951 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1952 unsigned int dev0 = devmask & (1 << 0);
1953 unsigned int dev1 = devmask & (1 << 1);
1954 int rc, ret = 0;
1fdffbce 1955
97750ceb 1956 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
705e76be
TH
1957
1958 /* always check readiness of the master device */
1959 rc = ata_sff_wait_ready(link, deadline);
1960 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961 * and TF status is 0xff, bail out on it too.
624d5c51 1962 */
705e76be
TH
1963 if (rc)
1964 return rc;
1fdffbce 1965
624d5c51
TH
1966 /* if device 1 was found in ata_devchk, wait for register
1967 * access briefly, then wait for BSY to clear.
1968 */
1969 if (dev1) {
1970 int i;
1fdffbce 1971
5682ed33 1972 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1973
624d5c51
TH
1974 /* Wait for register access. Some ATAPI devices fail
1975 * to set nsect/lbal after reset, so don't waste too
1976 * much time on it. We're gonna wait for !BSY anyway.
1977 */
1978 for (i = 0; i < 2; i++) {
1979 u8 nsect, lbal;
1980
1981 nsect = ioread8(ioaddr->nsect_addr);
1982 lbal = ioread8(ioaddr->lbal_addr);
1983 if ((nsect == 1) && (lbal == 1))
1984 break;
97750ceb 1985 ata_msleep(ap, 50); /* give drive a breather */
624d5c51
TH
1986 }
1987
705e76be 1988 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1989 if (rc) {
1990 if (rc != -ENODEV)
1991 return rc;
1992 ret = rc;
1993 }
1fdffbce
JG
1994 }
1995
624d5c51 1996 /* is all this really necessary? */
5682ed33 1997 ap->ops->sff_dev_select(ap, 0);
624d5c51 1998 if (dev1)
5682ed33 1999 ap->ops->sff_dev_select(ap, 1);
624d5c51 2000 if (dev0)
5682ed33 2001 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2002
2003 return ret;
1fdffbce 2004}
0fe40ff8 2005EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 2006
624d5c51
TH
2007static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008 unsigned long deadline)
2cc432ee 2009{
624d5c51 2010 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 2011
624d5c51
TH
2012 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013
6d8ca28f
OZ
2014 if (ap->ioaddr.ctl_addr) {
2015 /* software reset. causes dev0 to be selected */
2016 iowrite8(ap->ctl, ioaddr->ctl_addr);
2017 udelay(20); /* FIXME: flush */
2018 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019 udelay(20); /* FIXME: flush */
2020 iowrite8(ap->ctl, ioaddr->ctl_addr);
2021 ap->last_ctl = ap->ctl;
2022 }
624d5c51 2023
705e76be
TH
2024 /* wait the port to become ready */
2025 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
2026}
2027
6d97dbd7 2028/**
9363c382 2029 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
2030 * @link: ATA link to reset
2031 * @classes: resulting classes of attached devices
2032 * @deadline: deadline jiffies for the operation
6d97dbd7 2033 *
624d5c51 2034 * Reset host port using ATA SRST.
6d97dbd7
TH
2035 *
2036 * LOCKING:
624d5c51
TH
2037 * Kernel thread context (may sleep)
2038 *
2039 * RETURNS:
2040 * 0 on success, -errno otherwise.
6d97dbd7 2041 */
9363c382 2042int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2043 unsigned long deadline)
6d97dbd7 2044{
624d5c51
TH
2045 struct ata_port *ap = link->ap;
2046 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047 unsigned int devmask = 0;
2048 int rc;
2049 u8 err;
6d97dbd7 2050
624d5c51 2051 DPRINTK("ENTER\n");
6d97dbd7 2052
624d5c51
TH
2053 /* determine if device 0/1 are present */
2054 if (ata_devchk(ap, 0))
2055 devmask |= (1 << 0);
2056 if (slave_possible && ata_devchk(ap, 1))
2057 devmask |= (1 << 1);
2058
2059 /* select device 0 again */
5682ed33 2060 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2061
2062 /* issue bus reset */
2063 DPRINTK("about to softreset, devmask=%x\n", devmask);
2064 rc = ata_bus_softreset(ap, devmask, deadline);
2065 /* if link is occupied, -ENODEV too is an error */
2066 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
a9a79dfe 2067 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
624d5c51
TH
2068 return rc;
2069 }
0f0a3ad3 2070
624d5c51 2071 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2072 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2073 devmask & (1 << 0), &err);
2074 if (slave_possible && err != 0x81)
9363c382 2075 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2076 devmask & (1 << 1), &err);
2077
624d5c51
TH
2078 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079 return 0;
6d97dbd7 2080}
0fe40ff8 2081EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2082
2083/**
9363c382 2084 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2085 * @link: link to reset
2086 * @class: resulting class of attached device
2087 * @deadline: deadline jiffies for the operation
6d97dbd7 2088 *
624d5c51
TH
2089 * SATA phy-reset host port using DET bits of SControl register,
2090 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2091 *
2092 * LOCKING:
624d5c51
TH
2093 * Kernel thread context (may sleep)
2094 *
2095 * RETURNS:
2096 * 0 on success, -errno otherwise.
6d97dbd7 2097 */
9363c382 2098int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2099 unsigned long deadline)
6d97dbd7 2100{
9dadd45b
TH
2101 struct ata_eh_context *ehc = &link->eh_context;
2102 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103 bool online;
624d5c51
TH
2104 int rc;
2105
9dadd45b
TH
2106 rc = sata_link_hardreset(link, timing, deadline, &online,
2107 ata_sff_check_ready);
9dadd45b
TH
2108 if (online)
2109 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2110
2111 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2112 return rc;
6d97dbd7 2113}
0fe40ff8 2114EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2115
203c75b8
TH
2116/**
2117 * ata_sff_postreset - SFF postreset callback
2118 * @link: the target SFF ata_link
2119 * @classes: classes of attached devices
2120 *
2121 * This function is invoked after a successful reset. It first
2122 * calls ata_std_postreset() and performs SFF specific postreset
2123 * processing.
2124 *
2125 * LOCKING:
2126 * Kernel thread context (may sleep)
2127 */
2128void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129{
2130 struct ata_port *ap = link->ap;
2131
2132 ata_std_postreset(link, classes);
2133
2134 /* is double-select really necessary? */
2135 if (classes[0] != ATA_DEV_NONE)
2136 ap->ops->sff_dev_select(ap, 1);
2137 if (classes[1] != ATA_DEV_NONE)
2138 ap->ops->sff_dev_select(ap, 0);
2139
2140 /* bail out if no device is present */
2141 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142 DPRINTK("EXIT, no device\n");
2143 return;
2144 }
2145
2146 /* set up device control */
41dec29b
SS
2147 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2149 ap->last_ctl = ap->ctl;
2150 }
203c75b8 2151}
0fe40ff8 2152EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2153
3d47aa8e
AC
2154/**
2155 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 * @qc: command
2157 *
2158 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2159 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2160 * reset will recover the device.
2161 *
2162 */
2163
2164void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165{
2166 int count;
2167 struct ata_port *ap;
2168
2169 /* We only need to flush incoming data when a command was running */
2170 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171 return;
2172
2173 ap = qc->ap;
2174 /* Drain up to 64K of data before we give up this recovery method */
2175 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2176 && count < 65536; count += 2)
3d47aa8e
AC
2177 ioread16(ap->ioaddr.data_addr);
2178
2179 /* Can become DEBUG later */
2180 if (count)
a9a79dfe 2181 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
3d47aa8e
AC
2182
2183}
2184EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185
6d97dbd7 2186/**
fe06e5f9 2187 * ata_sff_error_handler - Stock error handler for SFF controller
6d97dbd7 2188 * @ap: port to handle error for
6d97dbd7 2189 *
9363c382 2190 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2191 * PATA and SATA controllers. Many controllers should be able to
2192 * use this EH as-is or with some added handling before and
2193 * after.
2194 *
6d97dbd7
TH
2195 * LOCKING:
2196 * Kernel thread context (may sleep)
2197 */
9363c382 2198void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2199{
a1efdaba
TH
2200 ata_reset_fn_t softreset = ap->ops->softreset;
2201 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2202 struct ata_queued_cmd *qc;
2203 unsigned long flags;
6d97dbd7 2204
9af5c9c9 2205 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2206 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207 qc = NULL;
2208
ba6a1308 2209 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2210
fe06e5f9
TH
2211 /*
2212 * We *MUST* do FIFO draining before we issue a reset as
2213 * several devices helpfully clear their internal state and
2214 * will lock solid if we touch the data port post reset. Pass
2215 * qc in case anyone wants to do different PIO/DMA recovery or
2216 * has per command fixups
3d47aa8e 2217 */
8244cd05
TH
2218 if (ap->ops->sff_drain_fifo)
2219 ap->ops->sff_drain_fifo(qc);
6d97dbd7 2220
ba6a1308 2221 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2222
fe06e5f9
TH
2223 /* ignore built-in hardresets if SCR access is not available */
2224 if ((hardreset == sata_std_hardreset ||
2225 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2226 hardreset = NULL;
6d97dbd7 2227
a1efdaba
TH
2228 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229 ap->ops->postreset);
6d97dbd7 2230}
0fe40ff8 2231EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7 2232
624d5c51 2233/**
9363c382 2234 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2235 * @ioaddr: IO address structure to be initialized
2236 *
2237 * Utility function which initializes data_addr, error_addr,
2238 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239 * device_addr, status_addr, and command_addr to standard offsets
2240 * relative to cmd_addr.
2241 *
2242 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243 */
9363c382 2244void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2245{
2246 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256}
0fe40ff8 2257EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2258
1fdffbce 2259#ifdef CONFIG_PCI
4112e16a 2260
272f7884
TH
2261static int ata_resources_present(struct pci_dev *pdev, int port)
2262{
2263 int i;
2264
2265 /* Check the PCI resources for this channel are enabled */
2266 port = port * 2;
0fe40ff8 2267 for (i = 0; i < 2; i++) {
272f7884
TH
2268 if (pci_resource_start(pdev, port + i) == 0 ||
2269 pci_resource_len(pdev, port + i) == 0)
2270 return 0;
2271 }
2272 return 1;
2273}
2274
d491b27b 2275/**
9363c382 2276 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2277 * @host: target ATA host
d491b27b 2278 *
1626aeb8
TH
2279 * Acquire native PCI ATA resources for @host and initialize the
2280 * first two ports of @host accordingly. Ports marked dummy are
2281 * skipped and allocation failure makes the port dummy.
d491b27b 2282 *
d583bc18
TH
2283 * Note that native PCI resources are valid even for legacy hosts
2284 * as we fix up pdev resources array early in boot, so this
2285 * function can be used for both native and legacy SFF hosts.
2286 *
d491b27b
TH
2287 * LOCKING:
2288 * Inherited from calling layer (may sleep).
2289 *
2290 * RETURNS:
1626aeb8
TH
2291 * 0 if at least one port is initialized, -ENODEV if no port is
2292 * available.
d491b27b 2293 */
9363c382 2294int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2295{
2296 struct device *gdev = host->dev;
2297 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2298 unsigned int mask = 0;
d491b27b
TH
2299 int i, rc;
2300
d491b27b
TH
2301 /* request, iomap BARs and init port addresses accordingly */
2302 for (i = 0; i < 2; i++) {
2303 struct ata_port *ap = host->ports[i];
2304 int base = i * 2;
2305 void __iomem * const *iomap;
2306
1626aeb8
TH
2307 if (ata_port_is_dummy(ap))
2308 continue;
2309
2310 /* Discard disabled ports. Some controllers show
2311 * their unused channels this way. Disabled ports are
2312 * made dummy.
2313 */
2314 if (!ata_resources_present(pdev, i)) {
2315 ap->ops = &ata_dummy_port_ops;
d491b27b 2316 continue;
1626aeb8 2317 }
d491b27b 2318
35a10a80
TH
2319 rc = pcim_iomap_regions(pdev, 0x3 << base,
2320 dev_driver_string(gdev));
d491b27b 2321 if (rc) {
a44fec1f
JP
2322 dev_warn(gdev,
2323 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 i, rc);
d491b27b
TH
2325 if (rc == -EBUSY)
2326 pcim_pin_device(pdev);
1626aeb8
TH
2327 ap->ops = &ata_dummy_port_ops;
2328 continue;
d491b27b
TH
2329 }
2330 host->iomap = iomap = pcim_iomap_table(pdev);
2331
2332 ap->ioaddr.cmd_addr = iomap[base];
2333 ap->ioaddr.altstatus_addr =
2334 ap->ioaddr.ctl_addr = (void __iomem *)
2335 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2336 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2337
cbcdd875
TH
2338 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339 (unsigned long long)pci_resource_start(pdev, base),
2340 (unsigned long long)pci_resource_start(pdev, base + 1));
2341
1626aeb8
TH
2342 mask |= 1 << i;
2343 }
2344
2345 if (!mask) {
a44fec1f 2346 dev_err(gdev, "no available native port\n");
1626aeb8 2347 return -ENODEV;
d491b27b
TH
2348 }
2349
2350 return 0;
2351}
0fe40ff8 2352EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2353
21b0ad4f 2354/**
1c5afdf7 2355 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
21b0ad4f 2356 * @pdev: target PCI device
1626aeb8 2357 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2358 * @r_host: out argument for the initialized ATA host
2359 *
1c5afdf7
TH
2360 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361 * all PCI resources and initialize it accordingly in one go.
21b0ad4f
TH
2362 *
2363 * LOCKING:
2364 * Inherited from calling layer (may sleep).
2365 *
2366 * RETURNS:
2367 * 0 on success, -errno otherwise.
2368 */
9363c382 2369int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2370 const struct ata_port_info * const *ppi,
d583bc18 2371 struct ata_host **r_host)
21b0ad4f
TH
2372{
2373 struct ata_host *host;
21b0ad4f
TH
2374 int rc;
2375
2376 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377 return -ENOMEM;
2378
2379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380 if (!host) {
a44fec1f 2381 dev_err(&pdev->dev, "failed to allocate ATA host\n");
21b0ad4f
TH
2382 rc = -ENOMEM;
2383 goto err_out;
2384 }
2385
9363c382 2386 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2387 if (rc)
2388 goto err_out;
2389
21b0ad4f
TH
2390 devres_remove_group(&pdev->dev, NULL);
2391 *r_host = host;
2392 return 0;
2393
0fe40ff8 2394err_out:
21b0ad4f
TH
2395 devres_release_group(&pdev->dev, NULL);
2396 return rc;
2397}
0fe40ff8 2398EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2399
4e6b79fa 2400/**
9363c382 2401 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2402 * @host: target SFF ATA host
2403 * @irq_handler: irq_handler used when requesting IRQ(s)
2404 * @sht: scsi_host_template to use when registering the host
2405 *
2406 * This is the counterpart of ata_host_activate() for SFF ATA
2407 * hosts. This separate helper is necessary because SFF hosts
2408 * use two separate interrupts in legacy mode.
2409 *
2410 * LOCKING:
2411 * Inherited from calling layer (may sleep).
2412 *
2413 * RETURNS:
2414 * 0 on success, -errno otherwise.
2415 */
9363c382 2416int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2417 irq_handler_t irq_handler,
2418 struct scsi_host_template *sht)
2419{
2420 struct device *dev = host->dev;
2421 struct pci_dev *pdev = to_pci_dev(dev);
2422 const char *drv_name = dev_driver_string(host->dev);
2423 int legacy_mode = 0, rc;
2424
2425 rc = ata_host_start(host);
2426 if (rc)
2427 return rc;
2428
2429 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
589d5726 2430 u8 tmp8, mask = 0;
4e6b79fa 2431
589d5726
DS
2432 /*
2433 * ATA spec says we should use legacy mode when one
2434 * port is in legacy mode, but disabled ports on some
2435 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2436 * on which the secondary port is not wired, so
2437 * ignore ports that are marked as 'dummy' during
2438 * this check
2439 */
4e6b79fa 2440 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
589d5726
DS
2441 if (!ata_port_is_dummy(host->ports[0]))
2442 mask |= (1 << 0);
2443 if (!ata_port_is_dummy(host->ports[1]))
2444 mask |= (1 << 2);
4e6b79fa
TH
2445 if ((tmp8 & mask) != mask)
2446 legacy_mode = 1;
4e6b79fa
TH
2447 }
2448
2449 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2450 return -ENOMEM;
2451
2452 if (!legacy_mode && pdev->irq) {
af649a1b
JB
2453 int i;
2454
4e6b79fa
TH
2455 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2456 IRQF_SHARED, drv_name, host);
2457 if (rc)
2458 goto out;
2459
af649a1b
JB
2460 for (i = 0; i < 2; i++) {
2461 if (ata_port_is_dummy(host->ports[i]))
2462 continue;
2463 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2464 }
4e6b79fa
TH
2465 } else if (legacy_mode) {
2466 if (!ata_port_is_dummy(host->ports[0])) {
2467 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2468 irq_handler, IRQF_SHARED,
2469 drv_name, host);
2470 if (rc)
2471 goto out;
2472
2473 ata_port_desc(host->ports[0], "irq %d",
2474 ATA_PRIMARY_IRQ(pdev));
2475 }
2476
2477 if (!ata_port_is_dummy(host->ports[1])) {
2478 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2479 irq_handler, IRQF_SHARED,
2480 drv_name, host);
2481 if (rc)
2482 goto out;
2483
2484 ata_port_desc(host->ports[1], "irq %d",
2485 ATA_SECONDARY_IRQ(pdev));
2486 }
2487 }
2488
2489 rc = ata_host_register(host, sht);
0fe40ff8 2490out:
4e6b79fa
TH
2491 if (rc == 0)
2492 devres_remove_group(dev, NULL);
2493 else
2494 devres_release_group(dev, NULL);
2495
2496 return rc;
2497}
0fe40ff8 2498EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2499
1c5afdf7
TH
2500static const struct ata_port_info *ata_sff_find_valid_pi(
2501 const struct ata_port_info * const *ppi)
2502{
2503 int i;
2504
2505 /* look up the first valid port_info */
2506 for (i = 0; i < 2 && ppi[i]; i++)
2507 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2508 return ppi[i];
2509
2510 return NULL;
2511}
2512
c2036033
BZ
2513static int ata_pci_init_one(struct pci_dev *pdev,
2514 const struct ata_port_info * const *ppi,
2515 struct scsi_host_template *sht, void *host_priv,
2516 int hflags, bool bmdma)
1fdffbce 2517{
f0d36efd 2518 struct device *dev = &pdev->dev;
1c5afdf7 2519 const struct ata_port_info *pi;
0f834de3 2520 struct ata_host *host = NULL;
1c5afdf7 2521 int rc;
1fdffbce
JG
2522
2523 DPRINTK("ENTER\n");
2524
1c5afdf7 2525 pi = ata_sff_find_valid_pi(ppi);
1626aeb8 2526 if (!pi) {
a44fec1f 2527 dev_err(&pdev->dev, "no valid port_info specified\n");
1626aeb8
TH
2528 return -EINVAL;
2529 }
c791c306 2530
1626aeb8
TH
2531 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2532 return -ENOMEM;
1fdffbce 2533
f0d36efd 2534 rc = pcim_enable_device(pdev);
1fdffbce 2535 if (rc)
4e6b79fa 2536 goto out;
1fdffbce 2537
aab94404 2538#ifdef CONFIG_ATA_BMDMA
c2036033
BZ
2539 if (bmdma)
2540 /* prepare and activate BMDMA host */
2541 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2542 else
aab94404 2543#endif
c2036033
BZ
2544 /* prepare and activate SFF host */
2545 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2546 if (rc)
4e6b79fa 2547 goto out;
887125e3 2548 host->private_data = host_priv;
c2036033 2549 host->flags |= hflags;
d491b27b 2550
aab94404 2551#ifdef CONFIG_ATA_BMDMA
c2036033
BZ
2552 if (bmdma) {
2553 pci_set_master(pdev);
2554 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2555 } else
aab94404 2556#endif
c2036033 2557 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 2558out:
4e6b79fa
TH
2559 if (rc == 0)
2560 devres_remove_group(&pdev->dev, NULL);
2561 else
2562 devres_release_group(&pdev->dev, NULL);
d491b27b 2563
1fdffbce
JG
2564 return rc;
2565}
c2036033
BZ
2566
2567/**
2568 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2569 * @pdev: Controller to be initialized
2570 * @ppi: array of port_info, must be enough for two ports
2571 * @sht: scsi_host_template to use when registering the host
2572 * @host_priv: host private_data
2573 * @hflag: host flags
2574 *
2575 * This is a helper function which can be called from a driver's
2576 * xxx_init_one() probe function if the hardware uses traditional
2577 * IDE taskfile registers and is PIO only.
2578 *
2579 * ASSUMPTION:
2580 * Nobody makes a single channel controller that appears solely as
2581 * the secondary legacy port on PCI.
2582 *
2583 * LOCKING:
2584 * Inherited from PCI layer (may sleep).
2585 *
2586 * RETURNS:
2587 * Zero on success, negative on errno-based value on error.
2588 */
2589int ata_pci_sff_init_one(struct pci_dev *pdev,
2590 const struct ata_port_info * const *ppi,
2591 struct scsi_host_template *sht, void *host_priv, int hflag)
2592{
2593 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2594}
0fe40ff8 2595EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
2596
2597#endif /* CONFIG_PCI */
9f2f7210 2598
9a7780c9
TH
2599/*
2600 * BMDMA support
2601 */
2602
2603#ifdef CONFIG_ATA_BMDMA
2604
9f2f7210
TH
2605const struct ata_port_operations ata_bmdma_port_ops = {
2606 .inherits = &ata_sff_port_ops,
2607
fe06e5f9
TH
2608 .error_handler = ata_bmdma_error_handler,
2609 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2610
f47451c4 2611 .qc_prep = ata_bmdma_qc_prep,
360ff783 2612 .qc_issue = ata_bmdma_qc_issue,
f47451c4 2613
37f65b8b 2614 .sff_irq_clear = ata_bmdma_irq_clear,
9f2f7210
TH
2615 .bmdma_setup = ata_bmdma_setup,
2616 .bmdma_start = ata_bmdma_start,
2617 .bmdma_stop = ata_bmdma_stop,
2618 .bmdma_status = ata_bmdma_status,
c7087652
TH
2619
2620 .port_start = ata_bmdma_port_start,
9f2f7210
TH
2621};
2622EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2623
2624const struct ata_port_operations ata_bmdma32_port_ops = {
2625 .inherits = &ata_bmdma_port_ops,
2626
2627 .sff_data_xfer = ata_sff_data_xfer32,
c7087652 2628 .port_start = ata_bmdma_port_start32,
9f2f7210
TH
2629};
2630EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2631
f47451c4
TH
2632/**
2633 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2634 * @qc: Metadata associated with taskfile to be transferred
2635 *
2636 * Fill PCI IDE PRD (scatter-gather) table with segments
2637 * associated with the current disk command.
2638 *
2639 * LOCKING:
2640 * spin_lock_irqsave(host lock)
2641 *
2642 */
2643static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2644{
2645 struct ata_port *ap = qc->ap;
f60d7011 2646 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2647 struct scatterlist *sg;
2648 unsigned int si, pi;
2649
2650 pi = 0;
2651 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2652 u32 addr, offset;
2653 u32 sg_len, len;
2654
2655 /* determine if physical DMA addr spans 64K boundary.
2656 * Note h/w doesn't support 64-bit, so we unconditionally
2657 * truncate dma_addr_t to u32.
2658 */
2659 addr = (u32) sg_dma_address(sg);
2660 sg_len = sg_dma_len(sg);
2661
2662 while (sg_len) {
2663 offset = addr & 0xffff;
2664 len = sg_len;
2665 if ((offset + sg_len) > 0x10000)
2666 len = 0x10000 - offset;
2667
f60d7011
TH
2668 prd[pi].addr = cpu_to_le32(addr);
2669 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
f47451c4
TH
2670 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2671
2672 pi++;
2673 sg_len -= len;
2674 addr += len;
2675 }
2676 }
2677
f60d7011 2678 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2679}
2680
2681/**
2682 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2683 * @qc: Metadata associated with taskfile to be transferred
2684 *
2685 * Fill PCI IDE PRD (scatter-gather) table with segments
2686 * associated with the current disk command. Perform the fill
2687 * so that we avoid writing any length 64K records for
2688 * controllers that don't follow the spec.
2689 *
2690 * LOCKING:
2691 * spin_lock_irqsave(host lock)
2692 *
2693 */
2694static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2695{
2696 struct ata_port *ap = qc->ap;
f60d7011 2697 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2698 struct scatterlist *sg;
2699 unsigned int si, pi;
2700
2701 pi = 0;
2702 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2703 u32 addr, offset;
2704 u32 sg_len, len, blen;
2705
2706 /* determine if physical DMA addr spans 64K boundary.
2707 * Note h/w doesn't support 64-bit, so we unconditionally
2708 * truncate dma_addr_t to u32.
2709 */
2710 addr = (u32) sg_dma_address(sg);
2711 sg_len = sg_dma_len(sg);
2712
2713 while (sg_len) {
2714 offset = addr & 0xffff;
2715 len = sg_len;
2716 if ((offset + sg_len) > 0x10000)
2717 len = 0x10000 - offset;
2718
2719 blen = len & 0xffff;
f60d7011 2720 prd[pi].addr = cpu_to_le32(addr);
f47451c4
TH
2721 if (blen == 0) {
2722 /* Some PATA chipsets like the CS5530 can't
2723 cope with 0x0000 meaning 64K as the spec
2724 says */
f60d7011 2725 prd[pi].flags_len = cpu_to_le32(0x8000);
f47451c4 2726 blen = 0x8000;
f60d7011 2727 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
f47451c4 2728 }
f60d7011 2729 prd[pi].flags_len = cpu_to_le32(blen);
f47451c4
TH
2730 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2731
2732 pi++;
2733 sg_len -= len;
2734 addr += len;
2735 }
2736 }
2737
f60d7011 2738 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2739}
2740
2741/**
2742 * ata_bmdma_qc_prep - Prepare taskfile for submission
2743 * @qc: Metadata associated with taskfile to be prepared
2744 *
2745 * Prepare ATA taskfile for submission.
2746 *
2747 * LOCKING:
2748 * spin_lock_irqsave(host lock)
2749 */
2750void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2751{
2752 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2753 return;
2754
2755 ata_bmdma_fill_sg(qc);
2756}
2757EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2758
2759/**
2760 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2761 * @qc: Metadata associated with taskfile to be prepared
2762 *
2763 * Prepare ATA taskfile for submission.
2764 *
2765 * LOCKING:
2766 * spin_lock_irqsave(host lock)
2767 */
2768void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2769{
2770 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2771 return;
2772
2773 ata_bmdma_fill_sg_dumb(qc);
2774}
2775EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2776
360ff783
TH
2777/**
2778 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2779 * @qc: command to issue to device
2780 *
2781 * This function issues a PIO, NODATA or DMA command to a
2782 * SFF/BMDMA controller. PIO and NODATA are handled by
2783 * ata_sff_qc_issue().
2784 *
2785 * LOCKING:
2786 * spin_lock_irqsave(host lock)
2787 *
2788 * RETURNS:
2789 * Zero on success, AC_ERR_* mask on failure
2790 */
2791unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2792{
2793 struct ata_port *ap = qc->ap;
ea3c6450 2794 struct ata_link *link = qc->dev->link;
360ff783 2795
360ff783
TH
2796 /* defer PIO handling to sff_qc_issue */
2797 if (!ata_is_dma(qc->tf.protocol))
2798 return ata_sff_qc_issue(qc);
2799
2800 /* select the device */
2801 ata_dev_select(ap, qc->dev->devno, 1, 0);
2802
2803 /* start the command */
2804 switch (qc->tf.protocol) {
2805 case ATA_PROT_DMA:
2806 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2807
2808 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2809 ap->ops->bmdma_setup(qc); /* set up bmdma */
2810 ap->ops->bmdma_start(qc); /* initiate bmdma */
2811 ap->hsm_task_state = HSM_ST_LAST;
2812 break;
2813
2814 case ATAPI_PROT_DMA:
2815 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2816
2817 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2818 ap->ops->bmdma_setup(qc); /* set up bmdma */
2819 ap->hsm_task_state = HSM_ST_FIRST;
2820
2821 /* send cdb by polling if no cdb interrupt */
2822 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
ea3c6450 2823 ata_sff_queue_pio_task(link, 0);
360ff783
TH
2824 break;
2825
2826 default:
2827 WARN_ON(1);
2828 return AC_ERR_SYSTEM;
2829 }
2830
2831 return 0;
2832}
2833EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2834
c3b28894
TH
2835/**
2836 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2837 * @ap: Port on which interrupt arrived (possibly...)
2838 * @qc: Taskfile currently active in engine
2839 *
2840 * Handle port interrupt for given queued command.
2841 *
2842 * LOCKING:
2843 * spin_lock_irqsave(host lock)
2844 *
2845 * RETURNS:
2846 * One if interrupt was handled, zero if not (shared irq).
2847 */
2848unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2849{
2850 struct ata_eh_info *ehi = &ap->link.eh_info;
2851 u8 host_stat = 0;
2852 bool bmdma_stopped = false;
2853 unsigned int handled;
2854
2855 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2856 /* check status of DMA engine */
2857 host_stat = ap->ops->bmdma_status(ap);
2858 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2859
2860 /* if it's not our irq... */
2861 if (!(host_stat & ATA_DMA_INTR))
2862 return ata_sff_idle_irq(ap);
2863
2864 /* before we do anything else, clear DMA-Start bit */
2865 ap->ops->bmdma_stop(qc);
2866 bmdma_stopped = true;
2867
2868 if (unlikely(host_stat & ATA_DMA_ERR)) {
25985edc 2869 /* error when transferring data to/from memory */
c3b28894
TH
2870 qc->err_mask |= AC_ERR_HOST_BUS;
2871 ap->hsm_task_state = HSM_ST_ERR;
2872 }
2873 }
2874
2875 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2876
2877 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2878 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2879
2880 return handled;
2881}
2882EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2883
2884/**
2885 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2886 * @irq: irq line (unused)
2887 * @dev_instance: pointer to our ata_host information structure
2888 *
2889 * Default interrupt handler for PCI IDE devices. Calls
2890 * ata_bmdma_port_intr() for each port that is not disabled.
2891 *
2892 * LOCKING:
2893 * Obtains host lock during operation.
2894 *
2895 * RETURNS:
2896 * IRQ_NONE or IRQ_HANDLED.
2897 */
2898irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2899{
2900 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2901}
2902EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2903
fe06e5f9
TH
2904/**
2905 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2906 * @ap: port to handle error for
2907 *
2908 * Stock error handler for BMDMA controller. It can handle both
2909 * PATA and SATA controllers. Most BMDMA controllers should be
2910 * able to use this EH as-is or with some added handling before
2911 * and after.
2912 *
2913 * LOCKING:
2914 * Kernel thread context (may sleep)
2915 */
2916void ata_bmdma_error_handler(struct ata_port *ap)
2917{
2918 struct ata_queued_cmd *qc;
2919 unsigned long flags;
2920 bool thaw = false;
2921
2922 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2923 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2924 qc = NULL;
2925
2926 /* reset PIO HSM and stop DMA engine */
2927 spin_lock_irqsave(ap->lock, flags);
2928
2929 if (qc && ata_is_dma(qc->tf.protocol)) {
2930 u8 host_stat;
2931
2932 host_stat = ap->ops->bmdma_status(ap);
2933
2934 /* BMDMA controllers indicate host bus error by
2935 * setting DMA_ERR bit and timing out. As it wasn't
2936 * really a timeout event, adjust error mask and
2937 * cancel frozen state.
2938 */
2939 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2940 qc->err_mask = AC_ERR_HOST_BUS;
2941 thaw = true;
2942 }
2943
2944 ap->ops->bmdma_stop(qc);
2945
2946 /* if we're gonna thaw, make sure IRQ is clear */
2947 if (thaw) {
2948 ap->ops->sff_check_status(ap);
37f65b8b
TH
2949 if (ap->ops->sff_irq_clear)
2950 ap->ops->sff_irq_clear(ap);
fe06e5f9
TH
2951 }
2952 }
2953
2954 spin_unlock_irqrestore(ap->lock, flags);
2955
2956 if (thaw)
2957 ata_eh_thaw_port(ap);
2958
2959 ata_sff_error_handler(ap);
2960}
2961EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2962
2963/**
2964 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2965 * @qc: internal command to clean up
2966 *
2967 * LOCKING:
2968 * Kernel thread context (may sleep)
2969 */
2970void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2971{
2972 struct ata_port *ap = qc->ap;
2973 unsigned long flags;
2974
2975 if (ata_is_dma(qc->tf.protocol)) {
2976 spin_lock_irqsave(ap->lock, flags);
2977 ap->ops->bmdma_stop(qc);
2978 spin_unlock_irqrestore(ap->lock, flags);
2979 }
2980}
2981EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2982
37f65b8b
TH
2983/**
2984 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2985 * @ap: Port associated with this ATA transaction.
2986 *
2987 * Clear interrupt and error flags in DMA status register.
2988 *
2989 * May be used as the irq_clear() entry in ata_port_operations.
2990 *
2991 * LOCKING:
2992 * spin_lock_irqsave(host lock)
2993 */
2994void ata_bmdma_irq_clear(struct ata_port *ap)
2995{
2996 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2997
2998 if (!mmio)
2999 return;
3000
3001 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
3002}
3003EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
3004
9f2f7210
TH
3005/**
3006 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3007 * @qc: Info associated with this ATA transaction.
3008 *
3009 * LOCKING:
3010 * spin_lock_irqsave(host lock)
3011 */
3012void ata_bmdma_setup(struct ata_queued_cmd *qc)
3013{
3014 struct ata_port *ap = qc->ap;
3015 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3016 u8 dmactl;
3017
3018 /* load PRD table addr. */
3019 mb(); /* make sure PRD table writes are visible to controller */
f60d7011 3020 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
9f2f7210
TH
3021
3022 /* specify data direction, triple-check start bit is clear */
3023 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3024 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3025 if (!rw)
3026 dmactl |= ATA_DMA_WR;
3027 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3028
3029 /* issue r/w command */
3030 ap->ops->sff_exec_command(ap, &qc->tf);
3031}
3032EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3033
3034/**
3035 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3036 * @qc: Info associated with this ATA transaction.
3037 *
3038 * LOCKING:
3039 * spin_lock_irqsave(host lock)
3040 */
3041void ata_bmdma_start(struct ata_queued_cmd *qc)
3042{
3043 struct ata_port *ap = qc->ap;
3044 u8 dmactl;
3045
3046 /* start host DMA transaction */
3047 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3048 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3049
3050 /* Strictly, one may wish to issue an ioread8() here, to
3051 * flush the mmio write. However, control also passes
3052 * to the hardware at this point, and it will interrupt
3053 * us when we are to resume control. So, in effect,
3054 * we don't care when the mmio write flushes.
3055 * Further, a read of the DMA status register _immediately_
3056 * following the write may not be what certain flaky hardware
3057 * is expected, so I think it is best to not add a readb()
3058 * without first all the MMIO ATA cards/mobos.
3059 * Or maybe I'm just being paranoid.
3060 *
3061 * FIXME: The posting of this write means I/O starts are
25985edc 3062 * unnecessarily delayed for MMIO
9f2f7210
TH
3063 */
3064}
3065EXPORT_SYMBOL_GPL(ata_bmdma_start);
3066
3067/**
3068 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3069 * @qc: Command we are ending DMA for
3070 *
3071 * Clears the ATA_DMA_START flag in the dma control register
3072 *
3073 * May be used as the bmdma_stop() entry in ata_port_operations.
3074 *
3075 * LOCKING:
3076 * spin_lock_irqsave(host lock)
3077 */
3078void ata_bmdma_stop(struct ata_queued_cmd *qc)
3079{
3080 struct ata_port *ap = qc->ap;
3081 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3082
3083 /* clear start/stop bit */
3084 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3085 mmio + ATA_DMA_CMD);
3086
3087 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3088 ata_sff_dma_pause(ap);
3089}
3090EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3091
3092/**
3093 * ata_bmdma_status - Read PCI IDE BMDMA status
3094 * @ap: Port associated with this ATA transaction.
3095 *
3096 * Read and return BMDMA status register.
3097 *
3098 * May be used as the bmdma_status() entry in ata_port_operations.
3099 *
3100 * LOCKING:
3101 * spin_lock_irqsave(host lock)
3102 */
3103u8 ata_bmdma_status(struct ata_port *ap)
3104{
3105 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3106}
3107EXPORT_SYMBOL_GPL(ata_bmdma_status);
3108
c7087652
TH
3109
3110/**
3111 * ata_bmdma_port_start - Set port up for bmdma.
3112 * @ap: Port to initialize
3113 *
3114 * Called just after data structures for each port are
3115 * initialized. Allocates space for PRD table.
3116 *
3117 * May be used as the port_start() entry in ata_port_operations.
3118 *
3119 * LOCKING:
3120 * Inherited from caller.
3121 */
3122int ata_bmdma_port_start(struct ata_port *ap)
3123{
3124 if (ap->mwdma_mask || ap->udma_mask) {
f60d7011
TH
3125 ap->bmdma_prd =
3126 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3127 &ap->bmdma_prd_dma, GFP_KERNEL);
3128 if (!ap->bmdma_prd)
c7087652
TH
3129 return -ENOMEM;
3130 }
3131
3132 return 0;
3133}
3134EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3135
3136/**
3137 * ata_bmdma_port_start32 - Set port up for dma.
3138 * @ap: Port to initialize
3139 *
3140 * Called just after data structures for each port are
3141 * initialized. Enables 32bit PIO and allocates space for PRD
3142 * table.
3143 *
3144 * May be used as the port_start() entry in ata_port_operations for
3145 * devices that are capable of 32bit PIO.
3146 *
3147 * LOCKING:
3148 * Inherited from caller.
3149 */
3150int ata_bmdma_port_start32(struct ata_port *ap)
3151{
3152 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3153 return ata_bmdma_port_start(ap);
3154}
3155EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3156
9f2f7210
TH
3157#ifdef CONFIG_PCI
3158
3159/**
3160 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3161 * @pdev: PCI device
3162 *
3163 * Some PCI ATA devices report simplex mode but in fact can be told to
3164 * enter non simplex mode. This implements the necessary logic to
3165 * perform the task on such devices. Calling it on other devices will
3166 * have -undefined- behaviour.
3167 */
3168int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3169{
3170 unsigned long bmdma = pci_resource_start(pdev, 4);
3171 u8 simplex;
3172
3173 if (bmdma == 0)
3174 return -ENOENT;
3175
3176 simplex = inb(bmdma + 0x02);
3177 outb(simplex & 0x60, bmdma + 0x02);
3178 simplex = inb(bmdma + 0x02);
3179 if (simplex & 0x80)
3180 return -EOPNOTSUPP;
3181 return 0;
3182}
3183EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3184
c7087652
TH
3185static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3186{
3187 int i;
3188
a44fec1f 3189 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
c7087652
TH
3190
3191 for (i = 0; i < 2; i++) {
3192 host->ports[i]->mwdma_mask = 0;
3193 host->ports[i]->udma_mask = 0;
3194 }
3195}
3196
9f2f7210
TH
3197/**
3198 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3199 * @host: target ATA host
3200 *
3201 * Acquire PCI BMDMA resources and initialize @host accordingly.
3202 *
3203 * LOCKING:
3204 * Inherited from calling layer (may sleep).
9f2f7210 3205 */
c7087652 3206void ata_pci_bmdma_init(struct ata_host *host)
9f2f7210
TH
3207{
3208 struct device *gdev = host->dev;
3209 struct pci_dev *pdev = to_pci_dev(gdev);
3210 int i, rc;
3211
3212 /* No BAR4 allocation: No DMA */
c7087652
TH
3213 if (pci_resource_start(pdev, 4) == 0) {
3214 ata_bmdma_nodma(host, "BAR4 is zero");
3215 return;
3216 }
9f2f7210 3217
c7087652
TH
3218 /*
3219 * Some controllers require BMDMA region to be initialized
3220 * even if DMA is not in use to clear IRQ status via
3221 * ->sff_irq_clear method. Try to initialize bmdma_addr
3222 * regardless of dma masks.
3223 */
c54c719b 3224 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
9f2f7210 3225 if (rc)
c7087652
TH
3226 ata_bmdma_nodma(host, "failed to set dma mask");
3227 if (!rc) {
c54c719b 3228 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
c7087652
TH
3229 if (rc)
3230 ata_bmdma_nodma(host,
3231 "failed to set consistent dma mask");
3232 }
9f2f7210
TH
3233
3234 /* request and iomap DMA region */
3235 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3236 if (rc) {
c7087652
TH
3237 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3238 return;
9f2f7210
TH
3239 }
3240 host->iomap = pcim_iomap_table(pdev);
3241
3242 for (i = 0; i < 2; i++) {
3243 struct ata_port *ap = host->ports[i];
3244 void __iomem *bmdma = host->iomap[4] + 8 * i;
3245
3246 if (ata_port_is_dummy(ap))
3247 continue;
3248
3249 ap->ioaddr.bmdma_addr = bmdma;
3250 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3251 (ioread8(bmdma + 2) & 0x80))
3252 host->flags |= ATA_HOST_SIMPLEX;
3253
3254 ata_port_desc(ap, "bmdma 0x%llx",
3255 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3256 }
9f2f7210
TH
3257}
3258EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3259
1c5afdf7
TH
3260/**
3261 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3262 * @pdev: target PCI device
3263 * @ppi: array of port_info, must be enough for two ports
3264 * @r_host: out argument for the initialized ATA host
3265 *
3266 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3267 * resources and initialize it accordingly in one go.
3268 *
3269 * LOCKING:
3270 * Inherited from calling layer (may sleep).
3271 *
3272 * RETURNS:
3273 * 0 on success, -errno otherwise.
3274 */
3275int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3276 const struct ata_port_info * const * ppi,
3277 struct ata_host **r_host)
3278{
3279 int rc;
3280
3281 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3282 if (rc)
3283 return rc;
3284
3285 ata_pci_bmdma_init(*r_host);
3286 return 0;
3287}
3288EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3289
3290/**
3291 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3292 * @pdev: Controller to be initialized
3293 * @ppi: array of port_info, must be enough for two ports
3294 * @sht: scsi_host_template to use when registering the host
3295 * @host_priv: host private_data
3296 * @hflags: host flags
3297 *
3298 * This function is similar to ata_pci_sff_init_one() but also
3299 * takes care of BMDMA initialization.
3300 *
3301 * LOCKING:
3302 * Inherited from PCI layer (may sleep).
3303 *
3304 * RETURNS:
3305 * Zero on success, negative on errno-based value on error.
3306 */
3307int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3308 const struct ata_port_info * const * ppi,
3309 struct scsi_host_template *sht, void *host_priv,
3310 int hflags)
3311{
c2036033 3312 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
1c5afdf7
TH
3313}
3314EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3315
9f2f7210 3316#endif /* CONFIG_PCI */
9a7780c9 3317#endif /* CONFIG_ATA_BMDMA */
270390e1
TH
3318
3319/**
3320 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3321 * @ap: Port to initialize
3322 *
3323 * Called on port allocation to initialize SFF/BMDMA specific
3324 * fields.
3325 *
3326 * LOCKING:
3327 * None.
3328 */
3329void ata_sff_port_init(struct ata_port *ap)
3330{
c429137a 3331 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
5fe7454a
TH
3332 ap->ctl = ATA_DEVCTL_OBS;
3333 ap->last_ctl = 0xFF;
270390e1
TH
3334}
3335
3336int __init ata_sff_init(void)
3337{
6370a6ad 3338 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
c429137a
TH
3339 if (!ata_sff_wq)
3340 return -ENOMEM;
3341
270390e1
TH
3342 return 0;
3343}
3344
c43d559f 3345void ata_sff_exit(void)
270390e1 3346{
c429137a 3347 destroy_workqueue(ata_sff_wq);
270390e1 3348}