]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ata/libata-sff.c
pata_octeon_cf: remove unused local variables from octeon_cf_set_piomode()
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce 3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
1fdffbce
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce 37#include <linux/pci.h>
bff7832d 38#include <linux/module.h>
1fdffbce 39#include <linux/libata.h>
624d5c51 40#include <linux/highmem.h>
1fdffbce
JG
41
42#include "libata.h"
43
c429137a
TH
44static struct workqueue_struct *ata_sff_wq;
45
624d5c51
TH
46const struct ata_port_operations ata_sff_port_ops = {
47 .inherits = &ata_base_port_ops,
48
f47451c4 49 .qc_prep = ata_noop_qc_prep,
9363c382 50 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 51 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
52
53 .freeze = ata_sff_freeze,
54 .thaw = ata_sff_thaw,
0aa1113d 55 .prereset = ata_sff_prereset,
9363c382 56 .softreset = ata_sff_softreset,
57c9efdf 57 .hardreset = sata_sff_hardreset,
203c75b8 58 .postreset = ata_sff_postreset,
9363c382 59 .error_handler = ata_sff_error_handler,
9363c382 60
5682ed33
TH
61 .sff_dev_select = ata_sff_dev_select,
62 .sff_check_status = ata_sff_check_status,
63 .sff_tf_load = ata_sff_tf_load,
64 .sff_tf_read = ata_sff_tf_read,
65 .sff_exec_command = ata_sff_exec_command,
66 .sff_data_xfer = ata_sff_data_xfer,
8244cd05 67 .sff_drain_fifo = ata_sff_drain_fifo,
624d5c51 68
c96f1732 69 .lost_interrupt = ata_sff_lost_interrupt,
624d5c51 70};
0fe40ff8 71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51 72
272f7884 73/**
9363c382 74 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
75 * @ap: port where the device is
76 *
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
79 * from this device
80 *
81 * LOCKING:
82 * Inherited from caller.
83 */
9363c382 84u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
85{
86 return ioread8(ap->ioaddr.status_addr);
87}
0fe40ff8 88EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
89
90/**
9363c382 91 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
92 * @ap: port where the device is
93 *
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
96 *
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
a57c1bad 103static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 104{
5682ed33
TH
105 if (ap->ops->sff_check_altstatus)
106 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
107
108 return ioread8(ap->ioaddr.altstatus_addr);
109}
110
a57c1bad
AC
111/**
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
114 *
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
119 *
120 * LOCKING:
121 * Inherited from caller.
122 */
123static u8 ata_sff_irq_status(struct ata_port *ap)
124{
125 u8 status;
126
127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128 status = ata_sff_altstatus(ap);
129 /* Not us: We are busy */
130 if (status & ATA_BUSY)
0fe40ff8 131 return status;
a57c1bad
AC
132 }
133 /* Clear INTRQ latch */
6311c90a 134 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
135 return status;
136}
137
138/**
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
141 *
142 * CAUTION:
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150static void ata_sff_sync(struct ata_port *ap)
151{
152 if (ap->ops->sff_check_altstatus)
153 ap->ops->sff_check_altstatus(ap);
154 else if (ap->ioaddr.altstatus_addr)
155 ioread8(ap->ioaddr.altstatus_addr);
156}
157
158/**
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
161 *
162 * CAUTION:
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
165 *
166 * LOCKING:
167 * Inherited from caller.
168 */
169
170void ata_sff_pause(struct ata_port *ap)
171{
172 ata_sff_sync(ap);
173 ndelay(400);
174}
0fe40ff8 175EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
176
177/**
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
180 *
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
183 */
0fe40ff8 184
a57c1bad
AC
185void ata_sff_dma_pause(struct ata_port *ap)
186{
187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap);
191 return;
192 }
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
195 corruption. */
196 BUG();
197}
0fe40ff8 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 199
624d5c51 200/**
9363c382 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 202 * @ap: port containing status register to be polled
341c2c95
TH
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
624d5c51
TH
205 *
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
208 *
209 * LOCKING:
210 * Kernel thread context (may sleep).
211 *
212 * RETURNS:
213 * 0 on success, -errno otherwise.
214 */
9363c382
TH
215int ata_sff_busy_sleep(struct ata_port *ap,
216 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
217{
218 unsigned long timer_start, timeout;
219 u8 status;
220
9363c382 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 222 timer_start = jiffies;
341c2c95 223 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
224 while (status != 0xff && (status & ATA_BUSY) &&
225 time_before(jiffies, timeout)) {
97750ceb 226 ata_msleep(ap, 50);
9363c382 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
228 }
229
230 if (status != 0xff && (status & ATA_BUSY))
a9a79dfe
JP
231 ata_port_warn(ap,
232 "port is slow to respond, please be patient (Status 0x%x)\n",
233 status);
624d5c51 234
341c2c95 235 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
236 while (status != 0xff && (status & ATA_BUSY) &&
237 time_before(jiffies, timeout)) {
97750ceb 238 ata_msleep(ap, 50);
5682ed33 239 status = ap->ops->sff_check_status(ap);
624d5c51
TH
240 }
241
242 if (status == 0xff)
243 return -ENODEV;
244
245 if (status & ATA_BUSY) {
a9a79dfe
JP
246 ata_port_err(ap,
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
249 return -EBUSY;
250 }
251
252 return 0;
253}
0fe40ff8 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 255
aa2731ad
TH
256static int ata_sff_check_ready(struct ata_link *link)
257{
258 u8 status = link->ap->ops->sff_check_status(link->ap);
259
78ab88f0 260 return ata_check_ready(status);
aa2731ad
TH
261}
262
624d5c51 263/**
9363c382 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 265 * @link: SFF link to wait ready status for
624d5c51
TH
266 * @deadline: deadline jiffies for the operation
267 *
268 * Sleep until ATA Status register bit BSY clears, or timeout
269 * occurs.
270 *
271 * LOCKING:
272 * Kernel thread context (may sleep).
273 *
274 * RETURNS:
275 * 0 on success, -errno otherwise.
276 */
705e76be 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 278{
aa2731ad 279 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 280}
0fe40ff8 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 282
41dec29b
SS
283/**
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
287 *
288 * Writes ATA taskfile device control register.
289 *
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297{
298 if (ap->ops->sff_set_devctl)
299 ap->ops->sff_set_devctl(ap, ctl);
300 else
301 iowrite8(ctl, ap->ioaddr.ctl_addr);
302}
303
624d5c51 304/**
9363c382 305 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
308 *
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
312 *
313 * May be used as the dev_select() entry in ata_port_operations.
314 *
315 * LOCKING:
316 * caller.
317 */
9363c382 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
319{
320 u8 tmp;
321
322 if (device == 0)
323 tmp = ATA_DEVICE_OBS;
324 else
325 tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 329}
0fe40ff8 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
331
332/**
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
338 *
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
341 * ATA channel.
342 *
9363c382
TH
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
624d5c51
TH
346 *
347 * LOCKING:
348 * caller.
349 */
c7a8209f 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
624d5c51
TH
351 unsigned int wait, unsigned int can_sleep)
352{
353 if (ata_msg_probe(ap))
a9a79dfe
JP
354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355 device, wait);
624d5c51
TH
356
357 if (wait)
358 ata_wait_idle(ap);
359
5682ed33 360 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
361
362 if (wait) {
363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
97750ceb 364 ata_msleep(ap, 150);
624d5c51
TH
365 ata_wait_idle(ap);
366 }
367}
368
369/**
9363c382 370 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
371 * @ap: Port on which interrupts are enabled.
372 *
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
375 *
e42a542b
SS
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
378 *
624d5c51
TH
379 * LOCKING:
380 * Inherited from caller.
381 */
e42a542b 382void ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
383{
384 struct ata_ioports *ioaddr = &ap->ioaddr;
e42a542b
SS
385
386 if (ap->ops->sff_irq_on) {
387 ap->ops->sff_irq_on(ap);
388 return;
389 }
624d5c51
TH
390
391 ap->ctl &= ~ATA_NIEN;
392 ap->last_ctl = ap->ctl;
393
e42a542b
SS
394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395 ata_sff_set_devctl(ap, ap->ctl);
396 ata_wait_idle(ap);
624d5c51 397
37f65b8b
TH
398 if (ap->ops->sff_irq_clear)
399 ap->ops->sff_irq_clear(ap);
624d5c51 400}
0fe40ff8 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51 402
624d5c51 403/**
9363c382 404 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
407 *
408 * Outputs ATA taskfile to standard ATA host controller.
409 *
410 * LOCKING:
411 * Inherited from caller.
412 */
9363c382 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
414{
415 struct ata_ioports *ioaddr = &ap->ioaddr;
416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418 if (tf->ctl != ap->last_ctl) {
419 if (ioaddr->ctl_addr)
420 iowrite8(tf->ctl, ioaddr->ctl_addr);
421 ap->last_ctl = tf->ctl;
40c60230 422 ata_wait_idle(ap);
624d5c51
TH
423 }
424
425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 426 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
427 iowrite8(tf->hob_feature, ioaddr->feature_addr);
428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433 tf->hob_feature,
434 tf->hob_nsect,
435 tf->hob_lbal,
436 tf->hob_lbam,
437 tf->hob_lbah);
438 }
439
440 if (is_addr) {
441 iowrite8(tf->feature, ioaddr->feature_addr);
442 iowrite8(tf->nsect, ioaddr->nsect_addr);
443 iowrite8(tf->lbal, ioaddr->lbal_addr);
444 iowrite8(tf->lbam, ioaddr->lbam_addr);
445 iowrite8(tf->lbah, ioaddr->lbah_addr);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447 tf->feature,
448 tf->nsect,
449 tf->lbal,
450 tf->lbam,
451 tf->lbah);
452 }
453
454 if (tf->flags & ATA_TFLAG_DEVICE) {
455 iowrite8(tf->device, ioaddr->device_addr);
456 VPRINTK("device 0x%X\n", tf->device);
457 }
40c60230
TH
458
459 ata_wait_idle(ap);
624d5c51 460}
0fe40ff8 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
462
463/**
9363c382 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
467 *
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
9363c382 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
477{
478 struct ata_ioports *ioaddr = &ap->ioaddr;
479
9363c382 480 tf->command = ata_sff_check_status(ap);
624d5c51
TH
481 tf->feature = ioread8(ioaddr->error_addr);
482 tf->nsect = ioread8(ioaddr->nsect_addr);
483 tf->lbal = ioread8(ioaddr->lbal_addr);
484 tf->lbam = ioread8(ioaddr->lbam_addr);
485 tf->lbah = ioread8(ioaddr->lbah_addr);
486 tf->device = ioread8(ioaddr->device_addr);
487
488 if (tf->flags & ATA_TFLAG_LBA48) {
489 if (likely(ioaddr->ctl_addr)) {
490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491 tf->hob_feature = ioread8(ioaddr->error_addr);
492 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496 iowrite8(tf->ctl, ioaddr->ctl_addr);
497 ap->last_ctl = tf->ctl;
498 } else
efcb3cf7 499 WARN_ON_ONCE(1);
624d5c51
TH
500 }
501}
0fe40ff8 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
503
504/**
9363c382 505 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
508 *
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
511 *
512 * LOCKING:
513 * spin_lock_irqsave(host lock)
514 */
9363c382 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
516{
517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 520 ata_sff_pause(ap);
624d5c51 521}
0fe40ff8 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
523
524/**
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
528 *
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
531 * other threads.
532 *
533 * LOCKING:
534 * spin_lock_irqsave(host lock)
535 */
536static inline void ata_tf_to_host(struct ata_port *ap,
537 const struct ata_taskfile *tf)
538{
5682ed33
TH
539 ap->ops->sff_tf_load(ap, tf);
540 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
541}
542
543/**
9363c382 544 * ata_sff_data_xfer - Transfer data by PIO
989e0aac 545 * @qc: queued command
624d5c51
TH
546 * @buf: data buffer
547 * @buflen: buffer length
548 * @rw: read/write
549 *
550 * Transfer data from/to the device data register by PIO.
551 *
552 * LOCKING:
553 * Inherited from caller.
554 *
555 * RETURNS:
556 * Bytes consumed.
557 */
989e0aac 558unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
9363c382 559 unsigned int buflen, int rw)
624d5c51 560{
989e0aac 561 struct ata_port *ap = qc->dev->link->ap;
624d5c51
TH
562 void __iomem *data_addr = ap->ioaddr.data_addr;
563 unsigned int words = buflen >> 1;
564
565 /* Transfer multiple of 2 bytes */
566 if (rw == READ)
567 ioread16_rep(data_addr, buf, words);
568 else
569 iowrite16_rep(data_addr, buf, words);
570
2102d749 571 /* Transfer trailing byte, if any. */
624d5c51 572 if (unlikely(buflen & 0x01)) {
21dba244 573 unsigned char pad[2] = { };
624d5c51 574
2102d749
SS
575 /* Point buf to the tail of buffer */
576 buf += buflen - 1;
577
578 /*
579 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 580 * swapping bytes to and from on the big endian machines...
2102d749 581 */
624d5c51 582 if (rw == READ) {
2102d749
SS
583 ioread16_rep(data_addr, pad, 1);
584 *buf = pad[0];
624d5c51 585 } else {
2102d749
SS
586 pad[0] = *buf;
587 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
588 }
589 words++;
590 }
591
592 return words << 1;
593}
0fe40ff8 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 595
871af121
AC
596/**
597 * ata_sff_data_xfer32 - Transfer data by PIO
989e0aac 598 * @qc: queued command
871af121
AC
599 * @buf: data buffer
600 * @buflen: buffer length
601 * @rw: read/write
602 *
603 * Transfer data from/to the device data register by PIO using 32bit
604 * I/O operations.
605 *
606 * LOCKING:
607 * Inherited from caller.
608 *
609 * RETURNS:
610 * Bytes consumed.
611 */
612
989e0aac 613unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
871af121
AC
614 unsigned int buflen, int rw)
615{
989e0aac 616 struct ata_device *dev = qc->dev;
871af121
AC
617 struct ata_port *ap = dev->link->ap;
618 void __iomem *data_addr = ap->ioaddr.data_addr;
619 unsigned int words = buflen >> 2;
620 int slop = buflen & 3;
972b94ff 621
e3cf95dd 622 if (!(ap->pflags & ATA_PFLAG_PIO32))
989e0aac 623 return ata_sff_data_xfer(qc, buf, buflen, rw);
871af121
AC
624
625 /* Transfer multiple of 4 bytes */
626 if (rw == READ)
627 ioread32_rep(data_addr, buf, words);
628 else
629 iowrite32_rep(data_addr, buf, words);
630
d1b3525b 631 /* Transfer trailing bytes, if any */
871af121 632 if (unlikely(slop)) {
21dba244 633 unsigned char pad[4] = { };
d1b3525b
SS
634
635 /* Point buf to the tail of buffer */
636 buf += buflen - slop;
637
638 /*
639 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 640 * swapping bytes to and from on the big endian machines...
d1b3525b 641 */
871af121 642 if (rw == READ) {
d1b3525b
SS
643 if (slop < 3)
644 ioread16_rep(data_addr, pad, 1);
645 else
646 ioread32_rep(data_addr, pad, 1);
647 memcpy(buf, pad, slop);
871af121 648 } else {
d1b3525b
SS
649 memcpy(pad, buf, slop);
650 if (slop < 3)
651 iowrite16_rep(data_addr, pad, 1);
652 else
653 iowrite32_rep(data_addr, pad, 1);
871af121 654 }
871af121 655 }
d1b3525b 656 return (buflen + 1) & ~1;
871af121
AC
657}
658EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
659
624d5c51 660/**
9363c382 661 * ata_sff_data_xfer_noirq - Transfer data by PIO
989e0aac 662 * @qc: queued command
624d5c51
TH
663 * @buf: data buffer
664 * @buflen: buffer length
665 * @rw: read/write
666 *
667 * Transfer data from/to the device data register by PIO. Do the
668 * transfer with interrupts disabled.
669 *
670 * LOCKING:
671 * Inherited from caller.
672 *
673 * RETURNS:
674 * Bytes consumed.
675 */
989e0aac 676unsigned int ata_sff_data_xfer_noirq(struct ata_queued_cmd *qc, unsigned char *buf,
9363c382 677 unsigned int buflen, int rw)
624d5c51
TH
678{
679 unsigned long flags;
680 unsigned int consumed;
681
682 local_irq_save(flags);
989e0aac 683 consumed = ata_sff_data_xfer32(qc, buf, buflen, rw);
624d5c51
TH
684 local_irq_restore(flags);
685
686 return consumed;
687}
0fe40ff8 688EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
689
690/**
691 * ata_pio_sector - Transfer a sector of data.
692 * @qc: Command on going
693 *
694 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 *
696 * LOCKING:
697 * Inherited from caller.
698 */
699static void ata_pio_sector(struct ata_queued_cmd *qc)
700{
701 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
702 struct ata_port *ap = qc->ap;
703 struct page *page;
704 unsigned int offset;
705 unsigned char *buf;
706
707 if (qc->curbytes == qc->nbytes - qc->sect_size)
708 ap->hsm_task_state = HSM_ST_LAST;
709
710 page = sg_page(qc->cursg);
711 offset = qc->cursg->offset + qc->cursg_ofs;
712
713 /* get the current page and offset */
714 page = nth_page(page, (offset >> PAGE_SHIFT));
715 offset %= PAGE_SIZE;
716
717 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
718
719 if (PageHighMem(page)) {
720 unsigned long flags;
721
722 /* FIXME: use a bounce buffer */
723 local_irq_save(flags);
496cda8e 724 buf = kmap_atomic(page);
624d5c51
TH
725
726 /* do the actual data transfer */
989e0aac 727 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
5682ed33 728 do_write);
624d5c51 729
496cda8e 730 kunmap_atomic(buf);
624d5c51
TH
731 local_irq_restore(flags);
732 } else {
733 buf = page_address(page);
989e0aac 734 ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size,
5682ed33 735 do_write);
624d5c51
TH
736 }
737
3842e835 738 if (!do_write && !PageSlab(page))
2d68b7fe
CM
739 flush_dcache_page(page);
740
624d5c51
TH
741 qc->curbytes += qc->sect_size;
742 qc->cursg_ofs += qc->sect_size;
743
744 if (qc->cursg_ofs == qc->cursg->length) {
745 qc->cursg = sg_next(qc->cursg);
746 qc->cursg_ofs = 0;
747 }
748}
749
750/**
751 * ata_pio_sectors - Transfer one or many sectors.
752 * @qc: Command on going
753 *
754 * Transfer one or many sectors of data from/to the
755 * ATA device for the DRQ request.
756 *
757 * LOCKING:
758 * Inherited from caller.
759 */
760static void ata_pio_sectors(struct ata_queued_cmd *qc)
761{
762 if (is_multi_taskfile(&qc->tf)) {
763 /* READ/WRITE MULTIPLE */
764 unsigned int nsect;
765
efcb3cf7 766 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
767
768 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
769 qc->dev->multi_count);
770 while (nsect--)
771 ata_pio_sector(qc);
772 } else
773 ata_pio_sector(qc);
774
a57c1bad 775 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
776}
777
778/**
779 * atapi_send_cdb - Write CDB bytes to hardware
780 * @ap: Port to which ATAPI device is attached.
781 * @qc: Taskfile currently active
782 *
783 * When device has indicated its readiness to accept
784 * a CDB, this function is called. Send the CDB.
785 *
786 * LOCKING:
787 * caller.
788 */
789static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
790{
791 /* send SCSI cdb */
792 DPRINTK("send cdb\n");
efcb3cf7 793 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 794
989e0aac 795 ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
796 ata_sff_sync(ap);
797 /* FIXME: If the CDB is for DMA do we need to do the transition delay
798 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
799 switch (qc->tf.protocol) {
800 case ATAPI_PROT_PIO:
801 ap->hsm_task_state = HSM_ST;
802 break;
803 case ATAPI_PROT_NODATA:
804 ap->hsm_task_state = HSM_ST_LAST;
805 break;
9a7780c9 806#ifdef CONFIG_ATA_BMDMA
624d5c51
TH
807 case ATAPI_PROT_DMA:
808 ap->hsm_task_state = HSM_ST_LAST;
809 /* initiate bmdma */
810 ap->ops->bmdma_start(qc);
811 break;
9a7780c9
TH
812#endif /* CONFIG_ATA_BMDMA */
813 default:
814 BUG();
624d5c51
TH
815 }
816}
817
818/**
819 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
820 * @qc: Command on going
821 * @bytes: number of bytes
822 *
823 * Transfer Transfer data from/to the ATAPI device.
824 *
825 * LOCKING:
826 * Inherited from caller.
827 *
828 */
829static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
830{
831 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
832 struct ata_port *ap = qc->ap;
833 struct ata_device *dev = qc->dev;
834 struct ata_eh_info *ehi = &dev->link->eh_info;
835 struct scatterlist *sg;
836 struct page *page;
837 unsigned char *buf;
838 unsigned int offset, count, consumed;
839
840next_sg:
841 sg = qc->cursg;
842 if (unlikely(!sg)) {
843 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
844 "buf=%u cur=%u bytes=%u",
845 qc->nbytes, qc->curbytes, bytes);
846 return -1;
847 }
848
849 page = sg_page(sg);
850 offset = sg->offset + qc->cursg_ofs;
851
852 /* get the current page and offset */
853 page = nth_page(page, (offset >> PAGE_SHIFT));
854 offset %= PAGE_SIZE;
855
856 /* don't overrun current sg */
857 count = min(sg->length - qc->cursg_ofs, bytes);
858
859 /* don't cross page boundaries */
860 count = min(count, (unsigned int)PAGE_SIZE - offset);
861
862 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
863
864 if (PageHighMem(page)) {
865 unsigned long flags;
866
867 /* FIXME: use bounce buffer */
868 local_irq_save(flags);
496cda8e 869 buf = kmap_atomic(page);
624d5c51
TH
870
871 /* do the actual data transfer */
989e0aac 872 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
0fe40ff8 873 count, rw);
624d5c51 874
496cda8e 875 kunmap_atomic(buf);
624d5c51
TH
876 local_irq_restore(flags);
877 } else {
878 buf = page_address(page);
989e0aac 879 consumed = ap->ops->sff_data_xfer(qc, buf + offset,
0fe40ff8 880 count, rw);
624d5c51
TH
881 }
882
883 bytes -= min(bytes, consumed);
884 qc->curbytes += count;
885 qc->cursg_ofs += count;
886
887 if (qc->cursg_ofs == sg->length) {
888 qc->cursg = sg_next(qc->cursg);
889 qc->cursg_ofs = 0;
890 }
891
a0f79f7a
CB
892 /*
893 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
894 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
895 * check correctly as it doesn't know if it is the last request being
896 * made. Somebody should implement a proper sanity check.
897 */
624d5c51
TH
898 if (bytes)
899 goto next_sg;
900 return 0;
901}
902
903/**
904 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
905 * @qc: Command on going
906 *
907 * Transfer Transfer data from/to the ATAPI device.
908 *
909 * LOCKING:
910 * Inherited from caller.
911 */
912static void atapi_pio_bytes(struct ata_queued_cmd *qc)
913{
914 struct ata_port *ap = qc->ap;
915 struct ata_device *dev = qc->dev;
916 struct ata_eh_info *ehi = &dev->link->eh_info;
917 unsigned int ireason, bc_lo, bc_hi, bytes;
918 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
919
920 /* Abuse qc->result_tf for temp storage of intermediate TF
921 * here to save some kernel stack usage.
922 * For normal completion, qc->result_tf is not relevant. For
923 * error, qc->result_tf is later overwritten by ata_qc_complete().
924 * So, the correctness of qc->result_tf is not affected.
925 */
5682ed33 926 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
927 ireason = qc->result_tf.nsect;
928 bc_lo = qc->result_tf.lbam;
929 bc_hi = qc->result_tf.lbah;
930 bytes = (bc_hi << 8) | bc_lo;
931
932 /* shall be cleared to zero, indicating xfer of data */
002ae084 933 if (unlikely(ireason & ATAPI_COD))
624d5c51
TH
934 goto atapi_check;
935
936 /* make sure transfer direction matches expected */
002ae084 937 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
624d5c51
TH
938 if (unlikely(do_write != i_write))
939 goto atapi_check;
940
941 if (unlikely(!bytes))
942 goto atapi_check;
943
944 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
945
946 if (unlikely(__atapi_pio_bytes(qc, bytes)))
947 goto err_out;
a57c1bad 948 ata_sff_sync(ap); /* flush */
624d5c51
TH
949
950 return;
951
952 atapi_check:
953 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 ireason, bytes);
955 err_out:
956 qc->err_mask |= AC_ERR_HSM;
957 ap->hsm_task_state = HSM_ST_ERR;
958}
959
960/**
961 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
962 * @ap: the target ata_port
963 * @qc: qc on going
964 *
965 * RETURNS:
966 * 1 if ok in workqueue, 0 otherwise.
967 */
0fe40ff8
AC
968static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
969 struct ata_queued_cmd *qc)
624d5c51
TH
970{
971 if (qc->tf.flags & ATA_TFLAG_POLLING)
972 return 1;
973
974 if (ap->hsm_task_state == HSM_ST_FIRST) {
975 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 976 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
977 return 1;
978
979 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 980 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
981 return 1;
982 }
983
984 return 0;
985}
986
987/**
988 * ata_hsm_qc_complete - finish a qc running on standard HSM
989 * @qc: Command to complete
990 * @in_wq: 1 if called from workqueue, 0 otherwise
991 *
992 * Finish @qc which is running on standard HSM.
993 *
994 * LOCKING:
995 * If @in_wq is zero, spin_lock_irqsave(host lock).
996 * Otherwise, none on entry and grabs host lock.
997 */
998static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
999{
1000 struct ata_port *ap = qc->ap;
624d5c51
TH
1001
1002 if (ap->ops->error_handler) {
1003 if (in_wq) {
624d5c51
TH
1004 /* EH might have kicked in while host lock is
1005 * released.
1006 */
1007 qc = ata_qc_from_tag(ap, qc->tag);
1008 if (qc) {
1009 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
e42a542b 1010 ata_sff_irq_on(ap);
624d5c51
TH
1011 ata_qc_complete(qc);
1012 } else
1013 ata_port_freeze(ap);
1014 }
624d5c51
TH
1015 } else {
1016 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1017 ata_qc_complete(qc);
1018 else
1019 ata_port_freeze(ap);
1020 }
1021 } else {
1022 if (in_wq) {
e42a542b 1023 ata_sff_irq_on(ap);
624d5c51 1024 ata_qc_complete(qc);
624d5c51
TH
1025 } else
1026 ata_qc_complete(qc);
1027 }
1028}
1029
1030/**
9363c382 1031 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1032 * @ap: the target ata_port
1033 * @qc: qc on going
1034 * @status: current device status
1035 * @in_wq: 1 if called from workqueue, 0 otherwise
1036 *
1037 * RETURNS:
1038 * 1 when poll next status needed, 0 otherwise.
1039 */
9363c382
TH
1040int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1041 u8 status, int in_wq)
624d5c51 1042{
ea3c6450
GG
1043 struct ata_link *link = qc->dev->link;
1044 struct ata_eh_info *ehi = &link->eh_info;
624d5c51
TH
1045 int poll_next;
1046
8eee1d3e
TH
1047 lockdep_assert_held(ap->lock);
1048
efcb3cf7 1049 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1050
9363c382 1051 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1052 * like DMA polling into the workqueue. Notice that
1053 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1054 */
efcb3cf7 1055 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1056
1057fsm_start:
1058 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1059 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1060
1061 switch (ap->hsm_task_state) {
1062 case HSM_ST_FIRST:
1063 /* Send first data block or PACKET CDB */
1064
1065 /* If polling, we will stay in the work queue after
1066 * sending the data. Otherwise, interrupt handler
1067 * takes over after sending the data.
1068 */
1069 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1070
1071 /* check device status */
1072 if (unlikely((status & ATA_DRQ) == 0)) {
1073 /* handle BSY=0, DRQ=0 as error */
1074 if (likely(status & (ATA_ERR | ATA_DF)))
1075 /* device stops HSM for abort/error */
1076 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1077 else {
624d5c51 1078 /* HSM violation. Let EH handle this */
a836d3e8
TH
1079 ata_ehi_push_desc(ehi,
1080 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1081 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1082 }
624d5c51
TH
1083
1084 ap->hsm_task_state = HSM_ST_ERR;
1085 goto fsm_start;
1086 }
1087
1088 /* Device should not ask for data transfer (DRQ=1)
1089 * when it finds something wrong.
1090 * We ignore DRQ here and stop the HSM by
1091 * changing hsm_task_state to HSM_ST_ERR and
1092 * let the EH abort the command or reset the device.
1093 */
1094 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1095 /* Some ATAPI tape drives forget to clear the ERR bit
1096 * when doing the next command (mostly request sense).
1097 * We ignore ERR here to workaround and proceed sending
1098 * the CDB.
1099 */
1100 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1101 ata_ehi_push_desc(ehi, "ST_FIRST: "
1102 "DRQ=1 with device error, "
1103 "dev_stat 0x%X", status);
624d5c51
TH
1104 qc->err_mask |= AC_ERR_HSM;
1105 ap->hsm_task_state = HSM_ST_ERR;
1106 goto fsm_start;
1107 }
1108 }
1109
624d5c51
TH
1110 if (qc->tf.protocol == ATA_PROT_PIO) {
1111 /* PIO data out protocol.
1112 * send first data block.
1113 */
1114
1115 /* ata_pio_sectors() might change the state
1116 * to HSM_ST_LAST. so, the state is changed here
1117 * before ata_pio_sectors().
1118 */
1119 ap->hsm_task_state = HSM_ST;
1120 ata_pio_sectors(qc);
1121 } else
1122 /* send CDB */
1123 atapi_send_cdb(ap, qc);
1124
c429137a 1125 /* if polling, ata_sff_pio_task() handles the rest.
624d5c51
TH
1126 * otherwise, interrupt handler takes over from here.
1127 */
1128 break;
1129
1130 case HSM_ST:
1131 /* complete command or read/write the data register */
1132 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1133 /* ATAPI PIO protocol */
1134 if ((status & ATA_DRQ) == 0) {
1135 /* No more data to transfer or device error.
1136 * Device error will be tagged in HSM_ST_LAST.
1137 */
1138 ap->hsm_task_state = HSM_ST_LAST;
1139 goto fsm_start;
1140 }
1141
1142 /* Device should not ask for data transfer (DRQ=1)
1143 * when it finds something wrong.
1144 * We ignore DRQ here and stop the HSM by
1145 * changing hsm_task_state to HSM_ST_ERR and
1146 * let the EH abort the command or reset the device.
1147 */
1148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1149 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1150 "DRQ=1 with device error, "
1151 "dev_stat 0x%X", status);
624d5c51
TH
1152 qc->err_mask |= AC_ERR_HSM;
1153 ap->hsm_task_state = HSM_ST_ERR;
1154 goto fsm_start;
1155 }
1156
1157 atapi_pio_bytes(qc);
1158
1159 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1160 /* bad ireason reported by device */
1161 goto fsm_start;
1162
1163 } else {
1164 /* ATA PIO protocol */
1165 if (unlikely((status & ATA_DRQ) == 0)) {
1166 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1167 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1168 /* device stops HSM for abort/error */
1169 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1170
1171 /* If diagnostic failed and this is
1172 * IDENTIFY, it's likely a phantom
1173 * device. Mark hint.
1174 */
1175 if (qc->dev->horkage &
1176 ATA_HORKAGE_DIAGNOSTIC)
1177 qc->err_mask |=
1178 AC_ERR_NODEV_HINT;
1179 } else {
624d5c51
TH
1180 /* HSM violation. Let EH handle this.
1181 * Phantom devices also trigger this
1182 * condition. Mark hint.
1183 */
a836d3e8 1184 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1185 "DRQ=0 without device error, "
a836d3e8 1186 "dev_stat 0x%X", status);
624d5c51
TH
1187 qc->err_mask |= AC_ERR_HSM |
1188 AC_ERR_NODEV_HINT;
a836d3e8 1189 }
624d5c51
TH
1190
1191 ap->hsm_task_state = HSM_ST_ERR;
1192 goto fsm_start;
1193 }
1194
1195 /* For PIO reads, some devices may ask for
1196 * data transfer (DRQ=1) alone with ERR=1.
1197 * We respect DRQ here and transfer one
1198 * block of junk data before changing the
1199 * hsm_task_state to HSM_ST_ERR.
1200 *
1201 * For PIO writes, ERR=1 DRQ=1 doesn't make
1202 * sense since the data block has been
1203 * transferred to the device.
1204 */
1205 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1206 /* data might be corrputed */
1207 qc->err_mask |= AC_ERR_DEV;
1208
1209 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1210 ata_pio_sectors(qc);
1211 status = ata_wait_idle(ap);
1212 }
1213
a836d3e8
TH
1214 if (status & (ATA_BUSY | ATA_DRQ)) {
1215 ata_ehi_push_desc(ehi, "ST-ATA: "
1216 "BUSY|DRQ persists on ERR|DF, "
1217 "dev_stat 0x%X", status);
624d5c51 1218 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1219 }
624d5c51 1220
b919930c
TH
1221 /* There are oddball controllers with
1222 * status register stuck at 0x7f and
1223 * lbal/m/h at zero which makes it
1224 * pass all other presence detection
1225 * mechanisms we have. Set NODEV_HINT
1226 * for it. Kernel bz#7241.
1227 */
1228 if (status == 0x7f)
1229 qc->err_mask |= AC_ERR_NODEV_HINT;
1230
624d5c51
TH
1231 /* ata_pio_sectors() might change the
1232 * state to HSM_ST_LAST. so, the state
1233 * is changed after ata_pio_sectors().
1234 */
1235 ap->hsm_task_state = HSM_ST_ERR;
1236 goto fsm_start;
1237 }
1238
1239 ata_pio_sectors(qc);
1240
1241 if (ap->hsm_task_state == HSM_ST_LAST &&
1242 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1243 /* all data read */
1244 status = ata_wait_idle(ap);
1245 goto fsm_start;
1246 }
1247 }
1248
1249 poll_next = 1;
1250 break;
1251
1252 case HSM_ST_LAST:
1253 if (unlikely(!ata_ok(status))) {
1254 qc->err_mask |= __ac_err_mask(status);
1255 ap->hsm_task_state = HSM_ST_ERR;
1256 goto fsm_start;
1257 }
1258
1259 /* no more data to transfer */
1260 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1261 ap->print_id, qc->dev->devno, status);
1262
efcb3cf7 1263 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1264
1265 ap->hsm_task_state = HSM_ST_IDLE;
1266
1267 /* complete taskfile transaction */
1268 ata_hsm_qc_complete(qc, in_wq);
1269
1270 poll_next = 0;
1271 break;
1272
1273 case HSM_ST_ERR:
624d5c51
TH
1274 ap->hsm_task_state = HSM_ST_IDLE;
1275
1276 /* complete taskfile transaction */
1277 ata_hsm_qc_complete(qc, in_wq);
1278
1279 poll_next = 0;
1280 break;
1281 default:
1282 poll_next = 0;
a588afc9
TH
1283 WARN(true, "ata%d: SFF host state machine in invalid state %d",
1284 ap->print_id, ap->hsm_task_state);
624d5c51
TH
1285 }
1286
1287 return poll_next;
1288}
0fe40ff8 1289EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51 1290
64b97594
VK
1291void ata_sff_queue_work(struct work_struct *work)
1292{
1293 queue_work(ata_sff_wq, work);
1294}
1295EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1296
1297void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1298{
1299 queue_delayed_work(ata_sff_wq, dwork, delay);
1300}
1301EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1302
ea3c6450 1303void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
c429137a 1304{
ea3c6450
GG
1305 struct ata_port *ap = link->ap;
1306
1307 WARN_ON((ap->sff_pio_task_link != NULL) &&
1308 (ap->sff_pio_task_link != link));
1309 ap->sff_pio_task_link = link;
1310
c429137a 1311 /* may fail if ata_sff_flush_pio_task() in progress */
64b97594 1312 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
c429137a
TH
1313}
1314EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1315
1316void ata_sff_flush_pio_task(struct ata_port *ap)
1317{
1318 DPRINTK("ENTER\n");
1319
afe2c511 1320 cancel_delayed_work_sync(&ap->sff_pio_task);
ce751452
DJ
1321
1322 /*
1323 * We wanna reset the HSM state to IDLE. If we do so without
1324 * grabbing the port lock, critical sections protected by it which
1325 * expect the HSM state to stay stable may get surprised. For
1326 * example, we may set IDLE in between the time
1327 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1328 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1329 */
1330 spin_lock_irq(ap->lock);
c429137a 1331 ap->hsm_task_state = HSM_ST_IDLE;
ce751452
DJ
1332 spin_unlock_irq(ap->lock);
1333
d4d8eaff 1334 ap->sff_pio_task_link = NULL;
c429137a
TH
1335
1336 if (ata_msg_ctl(ap))
a9a79dfe 1337 ata_port_dbg(ap, "%s: EXIT\n", __func__);
c429137a
TH
1338}
1339
1340static void ata_sff_pio_task(struct work_struct *work)
624d5c51
TH
1341{
1342 struct ata_port *ap =
c429137a 1343 container_of(work, struct ata_port, sff_pio_task.work);
ea3c6450 1344 struct ata_link *link = ap->sff_pio_task_link;
c429137a 1345 struct ata_queued_cmd *qc;
624d5c51
TH
1346 u8 status;
1347 int poll_next;
1348
8eee1d3e
TH
1349 spin_lock_irq(ap->lock);
1350
4fca377f 1351 BUG_ON(ap->sff_pio_task_link == NULL);
c429137a 1352 /* qc can be NULL if timeout occurred */
ea3c6450
GG
1353 qc = ata_qc_from_tag(ap, link->active_tag);
1354 if (!qc) {
1355 ap->sff_pio_task_link = NULL;
8eee1d3e 1356 goto out_unlock;
ea3c6450 1357 }
c429137a 1358
624d5c51 1359fsm_start:
efcb3cf7 1360 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1361
1362 /*
1363 * This is purely heuristic. This is a fast path.
1364 * Sometimes when we enter, BSY will be cleared in
1365 * a chk-status or two. If not, the drive is probably seeking
1366 * or something. Snooze for a couple msecs, then
1367 * chk-status again. If still busy, queue delayed work.
1368 */
9363c382 1369 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51 1370 if (status & ATA_BUSY) {
8eee1d3e 1371 spin_unlock_irq(ap->lock);
97750ceb 1372 ata_msleep(ap, 2);
8eee1d3e
TH
1373 spin_lock_irq(ap->lock);
1374
9363c382 1375 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51 1376 if (status & ATA_BUSY) {
ea3c6450 1377 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
8eee1d3e 1378 goto out_unlock;
624d5c51
TH
1379 }
1380 }
1381
ea3c6450
GG
1382 /*
1383 * hsm_move() may trigger another command to be processed.
1384 * clean the link beforehand.
1385 */
1386 ap->sff_pio_task_link = NULL;
624d5c51 1387 /* move the HSM */
9363c382 1388 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1389
1390 /* another command or interrupt handler
1391 * may be running at this point.
1392 */
1393 if (poll_next)
1394 goto fsm_start;
8eee1d3e
TH
1395out_unlock:
1396 spin_unlock_irq(ap->lock);
624d5c51
TH
1397}
1398
1399/**
360ff783 1400 * ata_sff_qc_issue - issue taskfile to a SFF controller
624d5c51
TH
1401 * @qc: command to issue to device
1402 *
360ff783
TH
1403 * This function issues a PIO or NODATA command to a SFF
1404 * controller.
624d5c51
TH
1405 *
1406 * LOCKING:
1407 * spin_lock_irqsave(host lock)
1408 *
1409 * RETURNS:
1410 * Zero on success, AC_ERR_* mask on failure
1411 */
9363c382 1412unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1413{
1414 struct ata_port *ap = qc->ap;
ea3c6450 1415 struct ata_link *link = qc->dev->link;
624d5c51
TH
1416
1417 /* Use polling pio if the LLD doesn't handle
1418 * interrupt driven pio and atapi CDB interrupt.
1419 */
360ff783
TH
1420 if (ap->flags & ATA_FLAG_PIO_POLLING)
1421 qc->tf.flags |= ATA_TFLAG_POLLING;
624d5c51
TH
1422
1423 /* select the device */
1424 ata_dev_select(ap, qc->dev->devno, 1, 0);
1425
1426 /* start the command */
1427 switch (qc->tf.protocol) {
1428 case ATA_PROT_NODATA:
1429 if (qc->tf.flags & ATA_TFLAG_POLLING)
1430 ata_qc_set_polling(qc);
1431
1432 ata_tf_to_host(ap, &qc->tf);
1433 ap->hsm_task_state = HSM_ST_LAST;
1434
1435 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 1436 ata_sff_queue_pio_task(link, 0);
624d5c51
TH
1437
1438 break;
1439
624d5c51
TH
1440 case ATA_PROT_PIO:
1441 if (qc->tf.flags & ATA_TFLAG_POLLING)
1442 ata_qc_set_polling(qc);
1443
1444 ata_tf_to_host(ap, &qc->tf);
1445
1446 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1447 /* PIO data out protocol */
1448 ap->hsm_task_state = HSM_ST_FIRST;
ea3c6450 1449 ata_sff_queue_pio_task(link, 0);
624d5c51 1450
c429137a
TH
1451 /* always send first data block using the
1452 * ata_sff_pio_task() codepath.
624d5c51
TH
1453 */
1454 } else {
1455 /* PIO data in protocol */
1456 ap->hsm_task_state = HSM_ST;
1457
1458 if (qc->tf.flags & ATA_TFLAG_POLLING)
ea3c6450 1459 ata_sff_queue_pio_task(link, 0);
624d5c51 1460
c429137a
TH
1461 /* if polling, ata_sff_pio_task() handles the
1462 * rest. otherwise, interrupt handler takes
1463 * over from here.
624d5c51
TH
1464 */
1465 }
1466
1467 break;
1468
1469 case ATAPI_PROT_PIO:
1470 case ATAPI_PROT_NODATA:
1471 if (qc->tf.flags & ATA_TFLAG_POLLING)
1472 ata_qc_set_polling(qc);
1473
1474 ata_tf_to_host(ap, &qc->tf);
1475
1476 ap->hsm_task_state = HSM_ST_FIRST;
1477
1478 /* send cdb by polling if no cdb interrupt */
1479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1480 (qc->tf.flags & ATA_TFLAG_POLLING))
ea3c6450 1481 ata_sff_queue_pio_task(link, 0);
624d5c51
TH
1482 break;
1483
624d5c51 1484 default:
efcb3cf7 1485 WARN_ON_ONCE(1);
624d5c51
TH
1486 return AC_ERR_SYSTEM;
1487 }
1488
1489 return 0;
1490}
0fe40ff8 1491EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1492
22183bf5
TH
1493/**
1494 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1495 * @qc: qc to fill result TF for
1496 *
1497 * @qc is finished and result TF needs to be filled. Fill it
1498 * using ->sff_tf_read.
1499 *
1500 * LOCKING:
1501 * spin_lock_irqsave(host lock)
1502 *
1503 * RETURNS:
1504 * true indicating that result TF is successfully filled.
1505 */
1506bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1507{
1508 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1509 return true;
1510}
0fe40ff8 1511EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1512
c3b28894 1513static unsigned int ata_sff_idle_irq(struct ata_port *ap)
624d5c51 1514{
c3b28894
TH
1515 ap->stats.idle_irq++;
1516
1517#ifdef ATA_IRQ_TRAP
1518 if ((ap->stats.idle_irq % 1000) == 0) {
1519 ap->ops->sff_check_status(ap);
1520 if (ap->ops->sff_irq_clear)
1521 ap->ops->sff_irq_clear(ap);
a9a79dfe 1522 ata_port_warn(ap, "irq trap\n");
c3b28894
TH
1523 return 1;
1524 }
1525#endif
1526 return 0; /* irq not handled */
1527}
1528
1529static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1530 struct ata_queued_cmd *qc,
1531 bool hsmv_on_idle)
1532{
1533 u8 status;
624d5c51
TH
1534
1535 VPRINTK("ata%u: protocol %d task_state %d\n",
1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1537
1538 /* Check whether we are expecting interrupt in this state */
1539 switch (ap->hsm_task_state) {
1540 case HSM_ST_FIRST:
1541 /* Some pre-ATAPI-4 devices assert INTRQ
1542 * at this state when ready to receive CDB.
1543 */
1544
1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1546 * The flag was turned on only for atapi devices. No
1547 * need to check ata_is_atapi(qc->tf.protocol) again.
1548 */
1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
c3b28894 1550 return ata_sff_idle_irq(ap);
624d5c51 1551 break;
687a9933 1552 case HSM_ST_IDLE:
c3b28894 1553 return ata_sff_idle_irq(ap);
687a9933
TH
1554 default:
1555 break;
624d5c51
TH
1556 }
1557
a57c1bad
AC
1558 /* check main status, clearing INTRQ if needed */
1559 status = ata_sff_irq_status(ap);
332ac7ff 1560 if (status & ATA_BUSY) {
c3b28894 1561 if (hsmv_on_idle) {
332ac7ff
TH
1562 /* BMDMA engine is already stopped, we're screwed */
1563 qc->err_mask |= AC_ERR_HSM;
1564 ap->hsm_task_state = HSM_ST_ERR;
1565 } else
c3b28894 1566 return ata_sff_idle_irq(ap);
332ac7ff 1567 }
624d5c51 1568
9f2f7210 1569 /* clear irq events */
37f65b8b
TH
1570 if (ap->ops->sff_irq_clear)
1571 ap->ops->sff_irq_clear(ap);
624d5c51 1572
9363c382 1573 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51 1574
624d5c51 1575 return 1; /* irq handled */
624d5c51
TH
1576}
1577
1578/**
c3b28894
TH
1579 * ata_sff_port_intr - Handle SFF port interrupt
1580 * @ap: Port on which interrupt arrived (possibly...)
1581 * @qc: Taskfile currently active in engine
624d5c51 1582 *
c3b28894 1583 * Handle port interrupt for given queued command.
624d5c51
TH
1584 *
1585 * LOCKING:
c3b28894 1586 * spin_lock_irqsave(host lock)
624d5c51
TH
1587 *
1588 * RETURNS:
c3b28894 1589 * One if interrupt was handled, zero if not (shared irq).
624d5c51 1590 */
c3b28894
TH
1591unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1592{
1593 return __ata_sff_port_intr(ap, qc, false);
1594}
1595EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1596
1597static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1598 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
624d5c51
TH
1599{
1600 struct ata_host *host = dev_instance;
332ac7ff 1601 bool retried = false;
624d5c51 1602 unsigned int i;
332ac7ff 1603 unsigned int handled, idle, polling;
624d5c51
TH
1604 unsigned long flags;
1605
1606 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1607 spin_lock_irqsave(&host->lock, flags);
1608
332ac7ff
TH
1609retry:
1610 handled = idle = polling = 0;
624d5c51 1611 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1612 struct ata_port *ap = host->ports[i];
1613 struct ata_queued_cmd *qc;
624d5c51 1614
d88ec2e5 1615 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1616 if (qc) {
1617 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
c3b28894 1618 handled |= port_intr(ap, qc);
27943620
TH
1619 else
1620 polling |= 1 << i;
332ac7ff
TH
1621 } else
1622 idle |= 1 << i;
27943620
TH
1623 }
1624
1625 /*
1626 * If no port was expecting IRQ but the controller is actually
1627 * asserting IRQ line, nobody cared will ensue. Check IRQ
1628 * pending status if available and clear spurious IRQ.
1629 */
332ac7ff
TH
1630 if (!handled && !retried) {
1631 bool retry = false;
1632
27943620
TH
1633 for (i = 0; i < host->n_ports; i++) {
1634 struct ata_port *ap = host->ports[i];
1635
1636 if (polling & (1 << i))
1637 continue;
1638
1639 if (!ap->ops->sff_irq_check ||
1640 !ap->ops->sff_irq_check(ap))
1641 continue;
1642
332ac7ff
TH
1643 if (idle & (1 << i)) {
1644 ap->ops->sff_check_status(ap);
37f65b8b
TH
1645 if (ap->ops->sff_irq_clear)
1646 ap->ops->sff_irq_clear(ap);
332ac7ff
TH
1647 } else {
1648 /* clear INTRQ and check if BUSY cleared */
1649 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1650 retry |= true;
1651 /*
1652 * With command in flight, we can't do
1653 * sff_irq_clear() w/o racing with completion.
1654 */
1655 }
1656 }
1657
1658 if (retry) {
1659 retried = true;
1660 goto retry;
27943620 1661 }
624d5c51
TH
1662 }
1663
1664 spin_unlock_irqrestore(&host->lock, flags);
1665
1666 return IRQ_RETVAL(handled);
1667}
c3b28894
TH
1668
1669/**
1670 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1671 * @irq: irq line (unused)
1672 * @dev_instance: pointer to our ata_host information structure
1673 *
1674 * Default interrupt handler for PCI IDE devices. Calls
1675 * ata_sff_port_intr() for each port that is not disabled.
1676 *
1677 * LOCKING:
1678 * Obtains host lock during operation.
1679 *
1680 * RETURNS:
1681 * IRQ_NONE or IRQ_HANDLED.
1682 */
1683irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1684{
1685 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1686}
0fe40ff8 1687EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1688
c96f1732
AC
1689/**
1690 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1691 * @ap: port that appears to have timed out
1692 *
1693 * Called from the libata error handlers when the core code suspects
1694 * an interrupt has been lost. If it has complete anything we can and
1695 * then return. Interface must support altstatus for this faster
1696 * recovery to occur.
1697 *
1698 * Locking:
1699 * Caller holds host lock
1700 */
1701
1702void ata_sff_lost_interrupt(struct ata_port *ap)
1703{
1704 u8 status;
1705 struct ata_queued_cmd *qc;
1706
1707 /* Only one outstanding command per SFF channel */
1708 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
1709 /* We cannot lose an interrupt on a non-existent or polled command */
1710 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
c96f1732
AC
1711 return;
1712 /* See if the controller thinks it is still busy - if so the command
1713 isn't a lost IRQ but is still in progress */
1714 status = ata_sff_altstatus(ap);
1715 if (status & ATA_BUSY)
1716 return;
1717
1718 /* There was a command running, we are no longer busy and we have
1719 no interrupt. */
a9a79dfe 1720 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
c96f1732
AC
1721 status);
1722 /* Run the host interrupt logic as if the interrupt had not been
1723 lost */
c3b28894 1724 ata_sff_port_intr(ap, qc);
c96f1732
AC
1725}
1726EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1727
624d5c51 1728/**
9363c382 1729 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1730 * @ap: port to freeze
1731 *
9f2f7210 1732 * Freeze SFF controller port.
624d5c51
TH
1733 *
1734 * LOCKING:
1735 * Inherited from caller.
1736 */
9363c382 1737void ata_sff_freeze(struct ata_port *ap)
624d5c51 1738{
624d5c51
TH
1739 ap->ctl |= ATA_NIEN;
1740 ap->last_ctl = ap->ctl;
1741
41dec29b
SS
1742 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1743 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1744
1745 /* Under certain circumstances, some controllers raise IRQ on
1746 * ATA_NIEN manipulation. Also, many controllers fail to mask
1747 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1748 */
5682ed33 1749 ap->ops->sff_check_status(ap);
624d5c51 1750
37f65b8b
TH
1751 if (ap->ops->sff_irq_clear)
1752 ap->ops->sff_irq_clear(ap);
624d5c51 1753}
0fe40ff8 1754EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1755
1756/**
9363c382 1757 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1758 * @ap: port to thaw
1759 *
9363c382 1760 * Thaw SFF controller port.
624d5c51
TH
1761 *
1762 * LOCKING:
1763 * Inherited from caller.
1764 */
9363c382 1765void ata_sff_thaw(struct ata_port *ap)
272f7884 1766{
624d5c51 1767 /* clear & re-enable interrupts */
5682ed33 1768 ap->ops->sff_check_status(ap);
37f65b8b
TH
1769 if (ap->ops->sff_irq_clear)
1770 ap->ops->sff_irq_clear(ap);
e42a542b 1771 ata_sff_irq_on(ap);
272f7884 1772}
0fe40ff8 1773EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1774
0aa1113d
TH
1775/**
1776 * ata_sff_prereset - prepare SFF link for reset
1777 * @link: SFF link to be reset
1778 * @deadline: deadline jiffies for the operation
1779 *
1780 * SFF link @link is about to be reset. Initialize it. It first
1781 * calls ata_std_prereset() and wait for !BSY if the port is
1782 * being softreset.
1783 *
1784 * LOCKING:
1785 * Kernel thread context (may sleep)
1786 *
1787 * RETURNS:
1788 * 0 on success, -errno otherwise.
1789 */
1790int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1791{
0aa1113d
TH
1792 struct ata_eh_context *ehc = &link->eh_context;
1793 int rc;
1794
1795 rc = ata_std_prereset(link, deadline);
1796 if (rc)
1797 return rc;
1798
1799 /* if we're about to do hardreset, nothing more to do */
1800 if (ehc->i.action & ATA_EH_HARDRESET)
1801 return 0;
1802
1803 /* wait for !BSY if we don't know that no device is attached */
1804 if (!ata_link_offline(link)) {
705e76be 1805 rc = ata_sff_wait_ready(link, deadline);
0aa1113d 1806 if (rc && rc != -ENODEV) {
a9a79dfe
JP
1807 ata_link_warn(link,
1808 "device not ready (errno=%d), forcing hardreset\n",
1809 rc);
0aa1113d
TH
1810 ehc->i.action |= ATA_EH_HARDRESET;
1811 }
1812 }
1813
1814 return 0;
1815}
0fe40ff8 1816EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1817
90088bb4 1818/**
624d5c51
TH
1819 * ata_devchk - PATA device presence detection
1820 * @ap: ATA channel to examine
1821 * @device: Device to examine (starting at zero)
90088bb4 1822 *
624d5c51
TH
1823 * This technique was originally described in
1824 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1825 * later found its way into the ATA/ATAPI spec.
1826 *
1827 * Write a pattern to the ATA shadow registers,
1828 * and if a device is present, it will respond by
1829 * correctly storing and echoing back the
1830 * ATA shadow register contents.
90088bb4
TH
1831 *
1832 * LOCKING:
624d5c51 1833 * caller.
90088bb4 1834 */
624d5c51 1835static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1836{
1837 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1838 u8 nsect, lbal;
90088bb4 1839
5682ed33 1840 ap->ops->sff_dev_select(ap, device);
90088bb4 1841
624d5c51
TH
1842 iowrite8(0x55, ioaddr->nsect_addr);
1843 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1844
624d5c51
TH
1845 iowrite8(0xaa, ioaddr->nsect_addr);
1846 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1847
624d5c51
TH
1848 iowrite8(0x55, ioaddr->nsect_addr);
1849 iowrite8(0xaa, ioaddr->lbal_addr);
1850
1851 nsect = ioread8(ioaddr->nsect_addr);
1852 lbal = ioread8(ioaddr->lbal_addr);
1853
1854 if ((nsect == 0x55) && (lbal == 0xaa))
1855 return 1; /* we found a device */
1856
1857 return 0; /* nothing found */
90088bb4
TH
1858}
1859
272f7884 1860/**
9363c382 1861 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1862 * @dev: ATA device to classify (starting at zero)
1863 * @present: device seems present
1864 * @r_err: Value of error register on completion
272f7884 1865 *
624d5c51
TH
1866 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1867 * an ATA/ATAPI-defined set of values is placed in the ATA
1868 * shadow registers, indicating the results of device detection
1869 * and diagnostics.
272f7884 1870 *
624d5c51
TH
1871 * Select the ATA device, and read the values from the ATA shadow
1872 * registers. Then parse according to the Error register value,
1873 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1874 *
1875 * LOCKING:
624d5c51
TH
1876 * caller.
1877 *
1878 * RETURNS:
1879 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1880 */
9363c382 1881unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1882 u8 *r_err)
272f7884 1883{
624d5c51
TH
1884 struct ata_port *ap = dev->link->ap;
1885 struct ata_taskfile tf;
1886 unsigned int class;
1887 u8 err;
1888
5682ed33 1889 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1890
1891 memset(&tf, 0, sizeof(tf));
1892
5682ed33 1893 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1894 err = tf.feature;
1895 if (r_err)
1896 *r_err = err;
1897
1898 /* see if device passed diags: continue and warn later */
1899 if (err == 0)
1900 /* diagnostic fail : do nothing _YET_ */
1901 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1902 else if (err == 1)
1903 /* do nothing */ ;
1904 else if ((dev->devno == 0) && (err == 0x81))
1905 /* do nothing */ ;
1906 else
1907 return ATA_DEV_NONE;
272f7884 1908
624d5c51
TH
1909 /* determine if device is ATA or ATAPI */
1910 class = ata_dev_classify(&tf);
272f7884 1911
624d5c51
TH
1912 if (class == ATA_DEV_UNKNOWN) {
1913 /* If the device failed diagnostic, it's likely to
1914 * have reported incorrect device signature too.
1915 * Assume ATA device if the device seems present but
1916 * device signature is invalid with diagnostic
1917 * failure.
1918 */
1919 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1920 class = ATA_DEV_ATA;
1921 else
1922 class = ATA_DEV_NONE;
5682ed33
TH
1923 } else if ((class == ATA_DEV_ATA) &&
1924 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1925 class = ATA_DEV_NONE;
1926
1927 return class;
272f7884 1928}
0fe40ff8 1929EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 1930
705e76be
TH
1931/**
1932 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1933 * @link: SFF link which is just reset
1934 * @devmask: mask of present devices
1935 * @deadline: deadline jiffies for the operation
1936 *
1937 * Wait devices attached to SFF @link to become ready after
1938 * reset. It contains preceding 150ms wait to avoid accessing TF
1939 * status register too early.
1940 *
1941 * LOCKING:
1942 * Kernel thread context (may sleep).
1943 *
1944 * RETURNS:
1945 * 0 on success, -ENODEV if some or all of devices in @devmask
1946 * don't seem to exist. -errno on other errors.
1947 */
1948int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1949 unsigned long deadline)
1fdffbce 1950{
705e76be 1951 struct ata_port *ap = link->ap;
1fdffbce 1952 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1953 unsigned int dev0 = devmask & (1 << 0);
1954 unsigned int dev1 = devmask & (1 << 1);
1955 int rc, ret = 0;
1fdffbce 1956
97750ceb 1957 ata_msleep(ap, ATA_WAIT_AFTER_RESET);
705e76be
TH
1958
1959 /* always check readiness of the master device */
1960 rc = ata_sff_wait_ready(link, deadline);
1961 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1962 * and TF status is 0xff, bail out on it too.
624d5c51 1963 */
705e76be
TH
1964 if (rc)
1965 return rc;
1fdffbce 1966
624d5c51
TH
1967 /* if device 1 was found in ata_devchk, wait for register
1968 * access briefly, then wait for BSY to clear.
1969 */
1970 if (dev1) {
1971 int i;
1fdffbce 1972
5682ed33 1973 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1974
624d5c51
TH
1975 /* Wait for register access. Some ATAPI devices fail
1976 * to set nsect/lbal after reset, so don't waste too
1977 * much time on it. We're gonna wait for !BSY anyway.
1978 */
1979 for (i = 0; i < 2; i++) {
1980 u8 nsect, lbal;
1981
1982 nsect = ioread8(ioaddr->nsect_addr);
1983 lbal = ioread8(ioaddr->lbal_addr);
1984 if ((nsect == 1) && (lbal == 1))
1985 break;
97750ceb 1986 ata_msleep(ap, 50); /* give drive a breather */
624d5c51
TH
1987 }
1988
705e76be 1989 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1990 if (rc) {
1991 if (rc != -ENODEV)
1992 return rc;
1993 ret = rc;
1994 }
1fdffbce
JG
1995 }
1996
624d5c51 1997 /* is all this really necessary? */
5682ed33 1998 ap->ops->sff_dev_select(ap, 0);
624d5c51 1999 if (dev1)
5682ed33 2000 ap->ops->sff_dev_select(ap, 1);
624d5c51 2001 if (dev0)
5682ed33 2002 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2003
2004 return ret;
1fdffbce 2005}
0fe40ff8 2006EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 2007
624d5c51
TH
2008static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2009 unsigned long deadline)
2cc432ee 2010{
624d5c51 2011 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 2012
624d5c51
TH
2013 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2014
6d8ca28f
OZ
2015 if (ap->ioaddr.ctl_addr) {
2016 /* software reset. causes dev0 to be selected */
2017 iowrite8(ap->ctl, ioaddr->ctl_addr);
2018 udelay(20); /* FIXME: flush */
2019 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2020 udelay(20); /* FIXME: flush */
2021 iowrite8(ap->ctl, ioaddr->ctl_addr);
2022 ap->last_ctl = ap->ctl;
2023 }
624d5c51 2024
705e76be
TH
2025 /* wait the port to become ready */
2026 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
2027}
2028
6d97dbd7 2029/**
9363c382 2030 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
2031 * @link: ATA link to reset
2032 * @classes: resulting classes of attached devices
2033 * @deadline: deadline jiffies for the operation
6d97dbd7 2034 *
624d5c51 2035 * Reset host port using ATA SRST.
6d97dbd7
TH
2036 *
2037 * LOCKING:
624d5c51
TH
2038 * Kernel thread context (may sleep)
2039 *
2040 * RETURNS:
2041 * 0 on success, -errno otherwise.
6d97dbd7 2042 */
9363c382 2043int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2044 unsigned long deadline)
6d97dbd7 2045{
624d5c51
TH
2046 struct ata_port *ap = link->ap;
2047 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2048 unsigned int devmask = 0;
2049 int rc;
2050 u8 err;
6d97dbd7 2051
624d5c51 2052 DPRINTK("ENTER\n");
6d97dbd7 2053
624d5c51
TH
2054 /* determine if device 0/1 are present */
2055 if (ata_devchk(ap, 0))
2056 devmask |= (1 << 0);
2057 if (slave_possible && ata_devchk(ap, 1))
2058 devmask |= (1 << 1);
2059
2060 /* select device 0 again */
5682ed33 2061 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2062
2063 /* issue bus reset */
2064 DPRINTK("about to softreset, devmask=%x\n", devmask);
2065 rc = ata_bus_softreset(ap, devmask, deadline);
2066 /* if link is occupied, -ENODEV too is an error */
2067 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
a9a79dfe 2068 ata_link_err(link, "SRST failed (errno=%d)\n", rc);
624d5c51
TH
2069 return rc;
2070 }
0f0a3ad3 2071
624d5c51 2072 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2073 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2074 devmask & (1 << 0), &err);
2075 if (slave_possible && err != 0x81)
9363c382 2076 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2077 devmask & (1 << 1), &err);
2078
624d5c51
TH
2079 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2080 return 0;
6d97dbd7 2081}
0fe40ff8 2082EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2083
2084/**
9363c382 2085 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2086 * @link: link to reset
2087 * @class: resulting class of attached device
2088 * @deadline: deadline jiffies for the operation
6d97dbd7 2089 *
624d5c51
TH
2090 * SATA phy-reset host port using DET bits of SControl register,
2091 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2092 *
2093 * LOCKING:
624d5c51
TH
2094 * Kernel thread context (may sleep)
2095 *
2096 * RETURNS:
2097 * 0 on success, -errno otherwise.
6d97dbd7 2098 */
9363c382 2099int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2100 unsigned long deadline)
6d97dbd7 2101{
9dadd45b
TH
2102 struct ata_eh_context *ehc = &link->eh_context;
2103 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2104 bool online;
624d5c51
TH
2105 int rc;
2106
9dadd45b
TH
2107 rc = sata_link_hardreset(link, timing, deadline, &online,
2108 ata_sff_check_ready);
9dadd45b
TH
2109 if (online)
2110 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2111
2112 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2113 return rc;
6d97dbd7 2114}
0fe40ff8 2115EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2116
203c75b8
TH
2117/**
2118 * ata_sff_postreset - SFF postreset callback
2119 * @link: the target SFF ata_link
2120 * @classes: classes of attached devices
2121 *
2122 * This function is invoked after a successful reset. It first
2123 * calls ata_std_postreset() and performs SFF specific postreset
2124 * processing.
2125 *
2126 * LOCKING:
2127 * Kernel thread context (may sleep)
2128 */
2129void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2130{
2131 struct ata_port *ap = link->ap;
2132
2133 ata_std_postreset(link, classes);
2134
2135 /* is double-select really necessary? */
2136 if (classes[0] != ATA_DEV_NONE)
2137 ap->ops->sff_dev_select(ap, 1);
2138 if (classes[1] != ATA_DEV_NONE)
2139 ap->ops->sff_dev_select(ap, 0);
2140
2141 /* bail out if no device is present */
2142 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2143 DPRINTK("EXIT, no device\n");
2144 return;
2145 }
2146
2147 /* set up device control */
41dec29b
SS
2148 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2149 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2150 ap->last_ctl = ap->ctl;
2151 }
203c75b8 2152}
0fe40ff8 2153EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2154
3d47aa8e
AC
2155/**
2156 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2157 * @qc: command
2158 *
2159 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2160 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2161 * reset will recover the device.
2162 *
2163 */
2164
2165void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2166{
2167 int count;
2168 struct ata_port *ap;
2169
2170 /* We only need to flush incoming data when a command was running */
2171 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2172 return;
2173
2174 ap = qc->ap;
2175 /* Drain up to 64K of data before we give up this recovery method */
2176 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2177 && count < 65536; count += 2)
3d47aa8e
AC
2178 ioread16(ap->ioaddr.data_addr);
2179
2180 /* Can become DEBUG later */
2181 if (count)
a9a79dfe 2182 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
3d47aa8e
AC
2183
2184}
2185EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2186
6d97dbd7 2187/**
fe06e5f9 2188 * ata_sff_error_handler - Stock error handler for SFF controller
6d97dbd7 2189 * @ap: port to handle error for
6d97dbd7 2190 *
9363c382 2191 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2192 * PATA and SATA controllers. Many controllers should be able to
2193 * use this EH as-is or with some added handling before and
2194 * after.
2195 *
6d97dbd7
TH
2196 * LOCKING:
2197 * Kernel thread context (may sleep)
2198 */
9363c382 2199void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2200{
a1efdaba
TH
2201 ata_reset_fn_t softreset = ap->ops->softreset;
2202 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2203 struct ata_queued_cmd *qc;
2204 unsigned long flags;
6d97dbd7 2205
9af5c9c9 2206 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2207 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2208 qc = NULL;
2209
ba6a1308 2210 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2211
fe06e5f9
TH
2212 /*
2213 * We *MUST* do FIFO draining before we issue a reset as
2214 * several devices helpfully clear their internal state and
2215 * will lock solid if we touch the data port post reset. Pass
2216 * qc in case anyone wants to do different PIO/DMA recovery or
2217 * has per command fixups
3d47aa8e 2218 */
8244cd05
TH
2219 if (ap->ops->sff_drain_fifo)
2220 ap->ops->sff_drain_fifo(qc);
6d97dbd7 2221
ba6a1308 2222 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2223
fe06e5f9
TH
2224 /* ignore built-in hardresets if SCR access is not available */
2225 if ((hardreset == sata_std_hardreset ||
2226 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2227 hardreset = NULL;
6d97dbd7 2228
a1efdaba
TH
2229 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2230 ap->ops->postreset);
6d97dbd7 2231}
0fe40ff8 2232EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7 2233
624d5c51 2234/**
9363c382 2235 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2236 * @ioaddr: IO address structure to be initialized
2237 *
2238 * Utility function which initializes data_addr, error_addr,
2239 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2240 * device_addr, status_addr, and command_addr to standard offsets
2241 * relative to cmd_addr.
2242 *
2243 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2244 */
9363c382 2245void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2246{
2247 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2248 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2249 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2250 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2251 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2252 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2253 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2254 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2255 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2256 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2257}
0fe40ff8 2258EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2259
1fdffbce 2260#ifdef CONFIG_PCI
4112e16a 2261
272f7884
TH
2262static int ata_resources_present(struct pci_dev *pdev, int port)
2263{
2264 int i;
2265
2266 /* Check the PCI resources for this channel are enabled */
2267 port = port * 2;
0fe40ff8 2268 for (i = 0; i < 2; i++) {
272f7884
TH
2269 if (pci_resource_start(pdev, port + i) == 0 ||
2270 pci_resource_len(pdev, port + i) == 0)
2271 return 0;
2272 }
2273 return 1;
2274}
2275
d491b27b 2276/**
9363c382 2277 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2278 * @host: target ATA host
d491b27b 2279 *
1626aeb8
TH
2280 * Acquire native PCI ATA resources for @host and initialize the
2281 * first two ports of @host accordingly. Ports marked dummy are
2282 * skipped and allocation failure makes the port dummy.
d491b27b 2283 *
d583bc18
TH
2284 * Note that native PCI resources are valid even for legacy hosts
2285 * as we fix up pdev resources array early in boot, so this
2286 * function can be used for both native and legacy SFF hosts.
2287 *
d491b27b
TH
2288 * LOCKING:
2289 * Inherited from calling layer (may sleep).
2290 *
2291 * RETURNS:
1626aeb8
TH
2292 * 0 if at least one port is initialized, -ENODEV if no port is
2293 * available.
d491b27b 2294 */
9363c382 2295int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2296{
2297 struct device *gdev = host->dev;
2298 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2299 unsigned int mask = 0;
d491b27b
TH
2300 int i, rc;
2301
d491b27b
TH
2302 /* request, iomap BARs and init port addresses accordingly */
2303 for (i = 0; i < 2; i++) {
2304 struct ata_port *ap = host->ports[i];
2305 int base = i * 2;
2306 void __iomem * const *iomap;
2307
1626aeb8
TH
2308 if (ata_port_is_dummy(ap))
2309 continue;
2310
2311 /* Discard disabled ports. Some controllers show
2312 * their unused channels this way. Disabled ports are
2313 * made dummy.
2314 */
2315 if (!ata_resources_present(pdev, i)) {
2316 ap->ops = &ata_dummy_port_ops;
d491b27b 2317 continue;
1626aeb8 2318 }
d491b27b 2319
35a10a80
TH
2320 rc = pcim_iomap_regions(pdev, 0x3 << base,
2321 dev_driver_string(gdev));
d491b27b 2322 if (rc) {
a44fec1f
JP
2323 dev_warn(gdev,
2324 "failed to request/iomap BARs for port %d (errno=%d)\n",
2325 i, rc);
d491b27b
TH
2326 if (rc == -EBUSY)
2327 pcim_pin_device(pdev);
1626aeb8
TH
2328 ap->ops = &ata_dummy_port_ops;
2329 continue;
d491b27b
TH
2330 }
2331 host->iomap = iomap = pcim_iomap_table(pdev);
2332
2333 ap->ioaddr.cmd_addr = iomap[base];
2334 ap->ioaddr.altstatus_addr =
2335 ap->ioaddr.ctl_addr = (void __iomem *)
2336 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2337 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2338
cbcdd875
TH
2339 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2340 (unsigned long long)pci_resource_start(pdev, base),
2341 (unsigned long long)pci_resource_start(pdev, base + 1));
2342
1626aeb8
TH
2343 mask |= 1 << i;
2344 }
2345
2346 if (!mask) {
a44fec1f 2347 dev_err(gdev, "no available native port\n");
1626aeb8 2348 return -ENODEV;
d491b27b
TH
2349 }
2350
2351 return 0;
2352}
0fe40ff8 2353EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2354
21b0ad4f 2355/**
1c5afdf7 2356 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
21b0ad4f 2357 * @pdev: target PCI device
1626aeb8 2358 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2359 * @r_host: out argument for the initialized ATA host
2360 *
1c5afdf7
TH
2361 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2362 * all PCI resources and initialize it accordingly in one go.
21b0ad4f
TH
2363 *
2364 * LOCKING:
2365 * Inherited from calling layer (may sleep).
2366 *
2367 * RETURNS:
2368 * 0 on success, -errno otherwise.
2369 */
9363c382 2370int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2371 const struct ata_port_info * const *ppi,
d583bc18 2372 struct ata_host **r_host)
21b0ad4f
TH
2373{
2374 struct ata_host *host;
21b0ad4f
TH
2375 int rc;
2376
2377 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2378 return -ENOMEM;
2379
2380 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2381 if (!host) {
a44fec1f 2382 dev_err(&pdev->dev, "failed to allocate ATA host\n");
21b0ad4f
TH
2383 rc = -ENOMEM;
2384 goto err_out;
2385 }
2386
9363c382 2387 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2388 if (rc)
2389 goto err_out;
2390
21b0ad4f
TH
2391 devres_remove_group(&pdev->dev, NULL);
2392 *r_host = host;
2393 return 0;
2394
0fe40ff8 2395err_out:
21b0ad4f
TH
2396 devres_release_group(&pdev->dev, NULL);
2397 return rc;
2398}
0fe40ff8 2399EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2400
4e6b79fa 2401/**
9363c382 2402 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2403 * @host: target SFF ATA host
2404 * @irq_handler: irq_handler used when requesting IRQ(s)
2405 * @sht: scsi_host_template to use when registering the host
2406 *
2407 * This is the counterpart of ata_host_activate() for SFF ATA
2408 * hosts. This separate helper is necessary because SFF hosts
2409 * use two separate interrupts in legacy mode.
2410 *
2411 * LOCKING:
2412 * Inherited from calling layer (may sleep).
2413 *
2414 * RETURNS:
2415 * 0 on success, -errno otherwise.
2416 */
9363c382 2417int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2418 irq_handler_t irq_handler,
2419 struct scsi_host_template *sht)
2420{
2421 struct device *dev = host->dev;
2422 struct pci_dev *pdev = to_pci_dev(dev);
2423 const char *drv_name = dev_driver_string(host->dev);
2424 int legacy_mode = 0, rc;
2425
2426 rc = ata_host_start(host);
2427 if (rc)
2428 return rc;
2429
2430 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2431 u8 tmp8, mask;
2432
2433 /* TODO: What if one channel is in native mode ... */
2434 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2435 mask = (1 << 2) | (1 << 0);
2436 if ((tmp8 & mask) != mask)
2437 legacy_mode = 1;
4e6b79fa
TH
2438 }
2439
2440 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2441 return -ENOMEM;
2442
2443 if (!legacy_mode && pdev->irq) {
af649a1b
JB
2444 int i;
2445
4e6b79fa
TH
2446 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2447 IRQF_SHARED, drv_name, host);
2448 if (rc)
2449 goto out;
2450
af649a1b
JB
2451 for (i = 0; i < 2; i++) {
2452 if (ata_port_is_dummy(host->ports[i]))
2453 continue;
2454 ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2455 }
4e6b79fa
TH
2456 } else if (legacy_mode) {
2457 if (!ata_port_is_dummy(host->ports[0])) {
2458 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2459 irq_handler, IRQF_SHARED,
2460 drv_name, host);
2461 if (rc)
2462 goto out;
2463
2464 ata_port_desc(host->ports[0], "irq %d",
2465 ATA_PRIMARY_IRQ(pdev));
2466 }
2467
2468 if (!ata_port_is_dummy(host->ports[1])) {
2469 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2470 irq_handler, IRQF_SHARED,
2471 drv_name, host);
2472 if (rc)
2473 goto out;
2474
2475 ata_port_desc(host->ports[1], "irq %d",
2476 ATA_SECONDARY_IRQ(pdev));
2477 }
2478 }
2479
2480 rc = ata_host_register(host, sht);
0fe40ff8 2481out:
4e6b79fa
TH
2482 if (rc == 0)
2483 devres_remove_group(dev, NULL);
2484 else
2485 devres_release_group(dev, NULL);
2486
2487 return rc;
2488}
0fe40ff8 2489EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2490
1c5afdf7
TH
2491static const struct ata_port_info *ata_sff_find_valid_pi(
2492 const struct ata_port_info * const *ppi)
2493{
2494 int i;
2495
2496 /* look up the first valid port_info */
2497 for (i = 0; i < 2 && ppi[i]; i++)
2498 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2499 return ppi[i];
2500
2501 return NULL;
2502}
2503
c2036033
BZ
2504static int ata_pci_init_one(struct pci_dev *pdev,
2505 const struct ata_port_info * const *ppi,
2506 struct scsi_host_template *sht, void *host_priv,
2507 int hflags, bool bmdma)
1fdffbce 2508{
f0d36efd 2509 struct device *dev = &pdev->dev;
1c5afdf7 2510 const struct ata_port_info *pi;
0f834de3 2511 struct ata_host *host = NULL;
1c5afdf7 2512 int rc;
1fdffbce
JG
2513
2514 DPRINTK("ENTER\n");
2515
1c5afdf7 2516 pi = ata_sff_find_valid_pi(ppi);
1626aeb8 2517 if (!pi) {
a44fec1f 2518 dev_err(&pdev->dev, "no valid port_info specified\n");
1626aeb8
TH
2519 return -EINVAL;
2520 }
c791c306 2521
1626aeb8
TH
2522 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2523 return -ENOMEM;
1fdffbce 2524
f0d36efd 2525 rc = pcim_enable_device(pdev);
1fdffbce 2526 if (rc)
4e6b79fa 2527 goto out;
1fdffbce 2528
aab94404 2529#ifdef CONFIG_ATA_BMDMA
c2036033
BZ
2530 if (bmdma)
2531 /* prepare and activate BMDMA host */
2532 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2533 else
aab94404 2534#endif
c2036033
BZ
2535 /* prepare and activate SFF host */
2536 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2537 if (rc)
4e6b79fa 2538 goto out;
887125e3 2539 host->private_data = host_priv;
c2036033 2540 host->flags |= hflags;
d491b27b 2541
aab94404 2542#ifdef CONFIG_ATA_BMDMA
c2036033
BZ
2543 if (bmdma) {
2544 pci_set_master(pdev);
2545 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2546 } else
aab94404 2547#endif
c2036033 2548 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 2549out:
4e6b79fa
TH
2550 if (rc == 0)
2551 devres_remove_group(&pdev->dev, NULL);
2552 else
2553 devres_release_group(&pdev->dev, NULL);
d491b27b 2554
1fdffbce
JG
2555 return rc;
2556}
c2036033
BZ
2557
2558/**
2559 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2560 * @pdev: Controller to be initialized
2561 * @ppi: array of port_info, must be enough for two ports
2562 * @sht: scsi_host_template to use when registering the host
2563 * @host_priv: host private_data
2564 * @hflag: host flags
2565 *
2566 * This is a helper function which can be called from a driver's
2567 * xxx_init_one() probe function if the hardware uses traditional
2568 * IDE taskfile registers and is PIO only.
2569 *
2570 * ASSUMPTION:
2571 * Nobody makes a single channel controller that appears solely as
2572 * the secondary legacy port on PCI.
2573 *
2574 * LOCKING:
2575 * Inherited from PCI layer (may sleep).
2576 *
2577 * RETURNS:
2578 * Zero on success, negative on errno-based value on error.
2579 */
2580int ata_pci_sff_init_one(struct pci_dev *pdev,
2581 const struct ata_port_info * const *ppi,
2582 struct scsi_host_template *sht, void *host_priv, int hflag)
2583{
2584 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2585}
0fe40ff8 2586EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
2587
2588#endif /* CONFIG_PCI */
9f2f7210 2589
9a7780c9
TH
2590/*
2591 * BMDMA support
2592 */
2593
2594#ifdef CONFIG_ATA_BMDMA
2595
9f2f7210
TH
2596const struct ata_port_operations ata_bmdma_port_ops = {
2597 .inherits = &ata_sff_port_ops,
2598
fe06e5f9
TH
2599 .error_handler = ata_bmdma_error_handler,
2600 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2601
f47451c4 2602 .qc_prep = ata_bmdma_qc_prep,
360ff783 2603 .qc_issue = ata_bmdma_qc_issue,
f47451c4 2604
37f65b8b 2605 .sff_irq_clear = ata_bmdma_irq_clear,
9f2f7210
TH
2606 .bmdma_setup = ata_bmdma_setup,
2607 .bmdma_start = ata_bmdma_start,
2608 .bmdma_stop = ata_bmdma_stop,
2609 .bmdma_status = ata_bmdma_status,
c7087652
TH
2610
2611 .port_start = ata_bmdma_port_start,
9f2f7210
TH
2612};
2613EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2614
2615const struct ata_port_operations ata_bmdma32_port_ops = {
2616 .inherits = &ata_bmdma_port_ops,
2617
2618 .sff_data_xfer = ata_sff_data_xfer32,
c7087652 2619 .port_start = ata_bmdma_port_start32,
9f2f7210
TH
2620};
2621EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2622
f47451c4
TH
2623/**
2624 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2625 * @qc: Metadata associated with taskfile to be transferred
2626 *
2627 * Fill PCI IDE PRD (scatter-gather) table with segments
2628 * associated with the current disk command.
2629 *
2630 * LOCKING:
2631 * spin_lock_irqsave(host lock)
2632 *
2633 */
2634static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2635{
2636 struct ata_port *ap = qc->ap;
f60d7011 2637 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2638 struct scatterlist *sg;
2639 unsigned int si, pi;
2640
2641 pi = 0;
2642 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2643 u32 addr, offset;
2644 u32 sg_len, len;
2645
2646 /* determine if physical DMA addr spans 64K boundary.
2647 * Note h/w doesn't support 64-bit, so we unconditionally
2648 * truncate dma_addr_t to u32.
2649 */
2650 addr = (u32) sg_dma_address(sg);
2651 sg_len = sg_dma_len(sg);
2652
2653 while (sg_len) {
2654 offset = addr & 0xffff;
2655 len = sg_len;
2656 if ((offset + sg_len) > 0x10000)
2657 len = 0x10000 - offset;
2658
f60d7011
TH
2659 prd[pi].addr = cpu_to_le32(addr);
2660 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
f47451c4
TH
2661 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2662
2663 pi++;
2664 sg_len -= len;
2665 addr += len;
2666 }
2667 }
2668
f60d7011 2669 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2670}
2671
2672/**
2673 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2674 * @qc: Metadata associated with taskfile to be transferred
2675 *
2676 * Fill PCI IDE PRD (scatter-gather) table with segments
2677 * associated with the current disk command. Perform the fill
2678 * so that we avoid writing any length 64K records for
2679 * controllers that don't follow the spec.
2680 *
2681 * LOCKING:
2682 * spin_lock_irqsave(host lock)
2683 *
2684 */
2685static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2686{
2687 struct ata_port *ap = qc->ap;
f60d7011 2688 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2689 struct scatterlist *sg;
2690 unsigned int si, pi;
2691
2692 pi = 0;
2693 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2694 u32 addr, offset;
2695 u32 sg_len, len, blen;
2696
2697 /* determine if physical DMA addr spans 64K boundary.
2698 * Note h/w doesn't support 64-bit, so we unconditionally
2699 * truncate dma_addr_t to u32.
2700 */
2701 addr = (u32) sg_dma_address(sg);
2702 sg_len = sg_dma_len(sg);
2703
2704 while (sg_len) {
2705 offset = addr & 0xffff;
2706 len = sg_len;
2707 if ((offset + sg_len) > 0x10000)
2708 len = 0x10000 - offset;
2709
2710 blen = len & 0xffff;
f60d7011 2711 prd[pi].addr = cpu_to_le32(addr);
f47451c4
TH
2712 if (blen == 0) {
2713 /* Some PATA chipsets like the CS5530 can't
2714 cope with 0x0000 meaning 64K as the spec
2715 says */
f60d7011 2716 prd[pi].flags_len = cpu_to_le32(0x8000);
f47451c4 2717 blen = 0x8000;
f60d7011 2718 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
f47451c4 2719 }
f60d7011 2720 prd[pi].flags_len = cpu_to_le32(blen);
f47451c4
TH
2721 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2722
2723 pi++;
2724 sg_len -= len;
2725 addr += len;
2726 }
2727 }
2728
f60d7011 2729 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2730}
2731
2732/**
2733 * ata_bmdma_qc_prep - Prepare taskfile for submission
2734 * @qc: Metadata associated with taskfile to be prepared
2735 *
2736 * Prepare ATA taskfile for submission.
2737 *
2738 * LOCKING:
2739 * spin_lock_irqsave(host lock)
2740 */
2741void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2742{
2743 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2744 return;
2745
2746 ata_bmdma_fill_sg(qc);
2747}
2748EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2749
2750/**
2751 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2752 * @qc: Metadata associated with taskfile to be prepared
2753 *
2754 * Prepare ATA taskfile for submission.
2755 *
2756 * LOCKING:
2757 * spin_lock_irqsave(host lock)
2758 */
2759void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2760{
2761 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2762 return;
2763
2764 ata_bmdma_fill_sg_dumb(qc);
2765}
2766EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2767
360ff783
TH
2768/**
2769 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2770 * @qc: command to issue to device
2771 *
2772 * This function issues a PIO, NODATA or DMA command to a
2773 * SFF/BMDMA controller. PIO and NODATA are handled by
2774 * ata_sff_qc_issue().
2775 *
2776 * LOCKING:
2777 * spin_lock_irqsave(host lock)
2778 *
2779 * RETURNS:
2780 * Zero on success, AC_ERR_* mask on failure
2781 */
2782unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2783{
2784 struct ata_port *ap = qc->ap;
ea3c6450 2785 struct ata_link *link = qc->dev->link;
360ff783 2786
360ff783
TH
2787 /* defer PIO handling to sff_qc_issue */
2788 if (!ata_is_dma(qc->tf.protocol))
2789 return ata_sff_qc_issue(qc);
2790
2791 /* select the device */
2792 ata_dev_select(ap, qc->dev->devno, 1, 0);
2793
2794 /* start the command */
2795 switch (qc->tf.protocol) {
2796 case ATA_PROT_DMA:
2797 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2798
2799 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2800 ap->ops->bmdma_setup(qc); /* set up bmdma */
2801 ap->ops->bmdma_start(qc); /* initiate bmdma */
2802 ap->hsm_task_state = HSM_ST_LAST;
2803 break;
2804
2805 case ATAPI_PROT_DMA:
2806 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2807
2808 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2809 ap->ops->bmdma_setup(qc); /* set up bmdma */
2810 ap->hsm_task_state = HSM_ST_FIRST;
2811
2812 /* send cdb by polling if no cdb interrupt */
2813 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
ea3c6450 2814 ata_sff_queue_pio_task(link, 0);
360ff783
TH
2815 break;
2816
2817 default:
2818 WARN_ON(1);
2819 return AC_ERR_SYSTEM;
2820 }
2821
2822 return 0;
2823}
2824EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2825
c3b28894
TH
2826/**
2827 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2828 * @ap: Port on which interrupt arrived (possibly...)
2829 * @qc: Taskfile currently active in engine
2830 *
2831 * Handle port interrupt for given queued command.
2832 *
2833 * LOCKING:
2834 * spin_lock_irqsave(host lock)
2835 *
2836 * RETURNS:
2837 * One if interrupt was handled, zero if not (shared irq).
2838 */
2839unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2840{
2841 struct ata_eh_info *ehi = &ap->link.eh_info;
2842 u8 host_stat = 0;
2843 bool bmdma_stopped = false;
2844 unsigned int handled;
2845
2846 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2847 /* check status of DMA engine */
2848 host_stat = ap->ops->bmdma_status(ap);
2849 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2850
2851 /* if it's not our irq... */
2852 if (!(host_stat & ATA_DMA_INTR))
2853 return ata_sff_idle_irq(ap);
2854
2855 /* before we do anything else, clear DMA-Start bit */
2856 ap->ops->bmdma_stop(qc);
2857 bmdma_stopped = true;
2858
2859 if (unlikely(host_stat & ATA_DMA_ERR)) {
25985edc 2860 /* error when transferring data to/from memory */
c3b28894
TH
2861 qc->err_mask |= AC_ERR_HOST_BUS;
2862 ap->hsm_task_state = HSM_ST_ERR;
2863 }
2864 }
2865
2866 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2867
2868 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2869 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2870
2871 return handled;
2872}
2873EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2874
2875/**
2876 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2877 * @irq: irq line (unused)
2878 * @dev_instance: pointer to our ata_host information structure
2879 *
2880 * Default interrupt handler for PCI IDE devices. Calls
2881 * ata_bmdma_port_intr() for each port that is not disabled.
2882 *
2883 * LOCKING:
2884 * Obtains host lock during operation.
2885 *
2886 * RETURNS:
2887 * IRQ_NONE or IRQ_HANDLED.
2888 */
2889irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2890{
2891 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2892}
2893EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2894
fe06e5f9
TH
2895/**
2896 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2897 * @ap: port to handle error for
2898 *
2899 * Stock error handler for BMDMA controller. It can handle both
2900 * PATA and SATA controllers. Most BMDMA controllers should be
2901 * able to use this EH as-is or with some added handling before
2902 * and after.
2903 *
2904 * LOCKING:
2905 * Kernel thread context (may sleep)
2906 */
2907void ata_bmdma_error_handler(struct ata_port *ap)
2908{
2909 struct ata_queued_cmd *qc;
2910 unsigned long flags;
2911 bool thaw = false;
2912
2913 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2914 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2915 qc = NULL;
2916
2917 /* reset PIO HSM and stop DMA engine */
2918 spin_lock_irqsave(ap->lock, flags);
2919
2920 if (qc && ata_is_dma(qc->tf.protocol)) {
2921 u8 host_stat;
2922
2923 host_stat = ap->ops->bmdma_status(ap);
2924
2925 /* BMDMA controllers indicate host bus error by
2926 * setting DMA_ERR bit and timing out. As it wasn't
2927 * really a timeout event, adjust error mask and
2928 * cancel frozen state.
2929 */
2930 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2931 qc->err_mask = AC_ERR_HOST_BUS;
2932 thaw = true;
2933 }
2934
2935 ap->ops->bmdma_stop(qc);
2936
2937 /* if we're gonna thaw, make sure IRQ is clear */
2938 if (thaw) {
2939 ap->ops->sff_check_status(ap);
37f65b8b
TH
2940 if (ap->ops->sff_irq_clear)
2941 ap->ops->sff_irq_clear(ap);
fe06e5f9
TH
2942 }
2943 }
2944
2945 spin_unlock_irqrestore(ap->lock, flags);
2946
2947 if (thaw)
2948 ata_eh_thaw_port(ap);
2949
2950 ata_sff_error_handler(ap);
2951}
2952EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2953
2954/**
2955 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2956 * @qc: internal command to clean up
2957 *
2958 * LOCKING:
2959 * Kernel thread context (may sleep)
2960 */
2961void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2962{
2963 struct ata_port *ap = qc->ap;
2964 unsigned long flags;
2965
2966 if (ata_is_dma(qc->tf.protocol)) {
2967 spin_lock_irqsave(ap->lock, flags);
2968 ap->ops->bmdma_stop(qc);
2969 spin_unlock_irqrestore(ap->lock, flags);
2970 }
2971}
2972EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2973
37f65b8b
TH
2974/**
2975 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2976 * @ap: Port associated with this ATA transaction.
2977 *
2978 * Clear interrupt and error flags in DMA status register.
2979 *
2980 * May be used as the irq_clear() entry in ata_port_operations.
2981 *
2982 * LOCKING:
2983 * spin_lock_irqsave(host lock)
2984 */
2985void ata_bmdma_irq_clear(struct ata_port *ap)
2986{
2987 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2988
2989 if (!mmio)
2990 return;
2991
2992 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2993}
2994EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2995
9f2f7210
TH
2996/**
2997 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2998 * @qc: Info associated with this ATA transaction.
2999 *
3000 * LOCKING:
3001 * spin_lock_irqsave(host lock)
3002 */
3003void ata_bmdma_setup(struct ata_queued_cmd *qc)
3004{
3005 struct ata_port *ap = qc->ap;
3006 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3007 u8 dmactl;
3008
3009 /* load PRD table addr. */
3010 mb(); /* make sure PRD table writes are visible to controller */
f60d7011 3011 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
9f2f7210
TH
3012
3013 /* specify data direction, triple-check start bit is clear */
3014 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3015 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3016 if (!rw)
3017 dmactl |= ATA_DMA_WR;
3018 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3019
3020 /* issue r/w command */
3021 ap->ops->sff_exec_command(ap, &qc->tf);
3022}
3023EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3024
3025/**
3026 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3027 * @qc: Info associated with this ATA transaction.
3028 *
3029 * LOCKING:
3030 * spin_lock_irqsave(host lock)
3031 */
3032void ata_bmdma_start(struct ata_queued_cmd *qc)
3033{
3034 struct ata_port *ap = qc->ap;
3035 u8 dmactl;
3036
3037 /* start host DMA transaction */
3038 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3040
3041 /* Strictly, one may wish to issue an ioread8() here, to
3042 * flush the mmio write. However, control also passes
3043 * to the hardware at this point, and it will interrupt
3044 * us when we are to resume control. So, in effect,
3045 * we don't care when the mmio write flushes.
3046 * Further, a read of the DMA status register _immediately_
3047 * following the write may not be what certain flaky hardware
3048 * is expected, so I think it is best to not add a readb()
3049 * without first all the MMIO ATA cards/mobos.
3050 * Or maybe I'm just being paranoid.
3051 *
3052 * FIXME: The posting of this write means I/O starts are
25985edc 3053 * unnecessarily delayed for MMIO
9f2f7210
TH
3054 */
3055}
3056EXPORT_SYMBOL_GPL(ata_bmdma_start);
3057
3058/**
3059 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3060 * @qc: Command we are ending DMA for
3061 *
3062 * Clears the ATA_DMA_START flag in the dma control register
3063 *
3064 * May be used as the bmdma_stop() entry in ata_port_operations.
3065 *
3066 * LOCKING:
3067 * spin_lock_irqsave(host lock)
3068 */
3069void ata_bmdma_stop(struct ata_queued_cmd *qc)
3070{
3071 struct ata_port *ap = qc->ap;
3072 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3073
3074 /* clear start/stop bit */
3075 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3076 mmio + ATA_DMA_CMD);
3077
3078 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3079 ata_sff_dma_pause(ap);
3080}
3081EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3082
3083/**
3084 * ata_bmdma_status - Read PCI IDE BMDMA status
3085 * @ap: Port associated with this ATA transaction.
3086 *
3087 * Read and return BMDMA status register.
3088 *
3089 * May be used as the bmdma_status() entry in ata_port_operations.
3090 *
3091 * LOCKING:
3092 * spin_lock_irqsave(host lock)
3093 */
3094u8 ata_bmdma_status(struct ata_port *ap)
3095{
3096 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3097}
3098EXPORT_SYMBOL_GPL(ata_bmdma_status);
3099
c7087652
TH
3100
3101/**
3102 * ata_bmdma_port_start - Set port up for bmdma.
3103 * @ap: Port to initialize
3104 *
3105 * Called just after data structures for each port are
3106 * initialized. Allocates space for PRD table.
3107 *
3108 * May be used as the port_start() entry in ata_port_operations.
3109 *
3110 * LOCKING:
3111 * Inherited from caller.
3112 */
3113int ata_bmdma_port_start(struct ata_port *ap)
3114{
3115 if (ap->mwdma_mask || ap->udma_mask) {
f60d7011
TH
3116 ap->bmdma_prd =
3117 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3118 &ap->bmdma_prd_dma, GFP_KERNEL);
3119 if (!ap->bmdma_prd)
c7087652
TH
3120 return -ENOMEM;
3121 }
3122
3123 return 0;
3124}
3125EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3126
3127/**
3128 * ata_bmdma_port_start32 - Set port up for dma.
3129 * @ap: Port to initialize
3130 *
3131 * Called just after data structures for each port are
3132 * initialized. Enables 32bit PIO and allocates space for PRD
3133 * table.
3134 *
3135 * May be used as the port_start() entry in ata_port_operations for
3136 * devices that are capable of 32bit PIO.
3137 *
3138 * LOCKING:
3139 * Inherited from caller.
3140 */
3141int ata_bmdma_port_start32(struct ata_port *ap)
3142{
3143 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3144 return ata_bmdma_port_start(ap);
3145}
3146EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3147
9f2f7210
TH
3148#ifdef CONFIG_PCI
3149
3150/**
3151 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3152 * @pdev: PCI device
3153 *
3154 * Some PCI ATA devices report simplex mode but in fact can be told to
3155 * enter non simplex mode. This implements the necessary logic to
3156 * perform the task on such devices. Calling it on other devices will
3157 * have -undefined- behaviour.
3158 */
3159int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3160{
3161 unsigned long bmdma = pci_resource_start(pdev, 4);
3162 u8 simplex;
3163
3164 if (bmdma == 0)
3165 return -ENOENT;
3166
3167 simplex = inb(bmdma + 0x02);
3168 outb(simplex & 0x60, bmdma + 0x02);
3169 simplex = inb(bmdma + 0x02);
3170 if (simplex & 0x80)
3171 return -EOPNOTSUPP;
3172 return 0;
3173}
3174EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3175
c7087652
TH
3176static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3177{
3178 int i;
3179
a44fec1f 3180 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
c7087652
TH
3181
3182 for (i = 0; i < 2; i++) {
3183 host->ports[i]->mwdma_mask = 0;
3184 host->ports[i]->udma_mask = 0;
3185 }
3186}
3187
9f2f7210
TH
3188/**
3189 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3190 * @host: target ATA host
3191 *
3192 * Acquire PCI BMDMA resources and initialize @host accordingly.
3193 *
3194 * LOCKING:
3195 * Inherited from calling layer (may sleep).
9f2f7210 3196 */
c7087652 3197void ata_pci_bmdma_init(struct ata_host *host)
9f2f7210
TH
3198{
3199 struct device *gdev = host->dev;
3200 struct pci_dev *pdev = to_pci_dev(gdev);
3201 int i, rc;
3202
3203 /* No BAR4 allocation: No DMA */
c7087652
TH
3204 if (pci_resource_start(pdev, 4) == 0) {
3205 ata_bmdma_nodma(host, "BAR4 is zero");
3206 return;
3207 }
9f2f7210 3208
c7087652
TH
3209 /*
3210 * Some controllers require BMDMA region to be initialized
3211 * even if DMA is not in use to clear IRQ status via
3212 * ->sff_irq_clear method. Try to initialize bmdma_addr
3213 * regardless of dma masks.
3214 */
c54c719b 3215 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
9f2f7210 3216 if (rc)
c7087652
TH
3217 ata_bmdma_nodma(host, "failed to set dma mask");
3218 if (!rc) {
c54c719b 3219 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
c7087652
TH
3220 if (rc)
3221 ata_bmdma_nodma(host,
3222 "failed to set consistent dma mask");
3223 }
9f2f7210
TH
3224
3225 /* request and iomap DMA region */
3226 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3227 if (rc) {
c7087652
TH
3228 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3229 return;
9f2f7210
TH
3230 }
3231 host->iomap = pcim_iomap_table(pdev);
3232
3233 for (i = 0; i < 2; i++) {
3234 struct ata_port *ap = host->ports[i];
3235 void __iomem *bmdma = host->iomap[4] + 8 * i;
3236
3237 if (ata_port_is_dummy(ap))
3238 continue;
3239
3240 ap->ioaddr.bmdma_addr = bmdma;
3241 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3242 (ioread8(bmdma + 2) & 0x80))
3243 host->flags |= ATA_HOST_SIMPLEX;
3244
3245 ata_port_desc(ap, "bmdma 0x%llx",
3246 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3247 }
9f2f7210
TH
3248}
3249EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3250
1c5afdf7
TH
3251/**
3252 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3253 * @pdev: target PCI device
3254 * @ppi: array of port_info, must be enough for two ports
3255 * @r_host: out argument for the initialized ATA host
3256 *
3257 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3258 * resources and initialize it accordingly in one go.
3259 *
3260 * LOCKING:
3261 * Inherited from calling layer (may sleep).
3262 *
3263 * RETURNS:
3264 * 0 on success, -errno otherwise.
3265 */
3266int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3267 const struct ata_port_info * const * ppi,
3268 struct ata_host **r_host)
3269{
3270 int rc;
3271
3272 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3273 if (rc)
3274 return rc;
3275
3276 ata_pci_bmdma_init(*r_host);
3277 return 0;
3278}
3279EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3280
3281/**
3282 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3283 * @pdev: Controller to be initialized
3284 * @ppi: array of port_info, must be enough for two ports
3285 * @sht: scsi_host_template to use when registering the host
3286 * @host_priv: host private_data
3287 * @hflags: host flags
3288 *
3289 * This function is similar to ata_pci_sff_init_one() but also
3290 * takes care of BMDMA initialization.
3291 *
3292 * LOCKING:
3293 * Inherited from PCI layer (may sleep).
3294 *
3295 * RETURNS:
3296 * Zero on success, negative on errno-based value on error.
3297 */
3298int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3299 const struct ata_port_info * const * ppi,
3300 struct scsi_host_template *sht, void *host_priv,
3301 int hflags)
3302{
c2036033 3303 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
1c5afdf7
TH
3304}
3305EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3306
9f2f7210 3307#endif /* CONFIG_PCI */
9a7780c9 3308#endif /* CONFIG_ATA_BMDMA */
270390e1
TH
3309
3310/**
3311 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3312 * @ap: Port to initialize
3313 *
3314 * Called on port allocation to initialize SFF/BMDMA specific
3315 * fields.
3316 *
3317 * LOCKING:
3318 * None.
3319 */
3320void ata_sff_port_init(struct ata_port *ap)
3321{
c429137a 3322 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
5fe7454a
TH
3323 ap->ctl = ATA_DEVCTL_OBS;
3324 ap->last_ctl = 0xFF;
270390e1
TH
3325}
3326
3327int __init ata_sff_init(void)
3328{
6370a6ad 3329 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
c429137a
TH
3330 if (!ata_sff_wq)
3331 return -ENOMEM;
3332
270390e1
TH
3333 return 0;
3334}
3335
c43d559f 3336void ata_sff_exit(void)
270390e1 3337{
c429137a 3338 destroy_workqueue(ata_sff_wq);
270390e1 3339}