]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - drivers/ata/libata-sff.c
libata-sff: separate out BMDMA EH
[mirror_ubuntu-hirsute-kernel.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce
JG
37#include <linux/pci.h>
38#include <linux/libata.h>
624d5c51 39#include <linux/highmem.h>
1fdffbce
JG
40
41#include "libata.h"
42
c429137a
TH
43static struct workqueue_struct *ata_sff_wq;
44
624d5c51
TH
45const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
47
9363c382
TH
48 .qc_prep = ata_sff_qc_prep,
49 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
51
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
0aa1113d 54 .prereset = ata_sff_prereset,
9363c382 55 .softreset = ata_sff_softreset,
57c9efdf 56 .hardreset = sata_sff_hardreset,
203c75b8 57 .postreset = ata_sff_postreset,
9363c382 58 .error_handler = ata_sff_error_handler,
9363c382 59
5682ed33
TH
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
288623a0 66 .sff_irq_clear = ata_sff_irq_clear,
8244cd05 67 .sff_drain_fifo = ata_sff_drain_fifo,
624d5c51 68
c96f1732 69 .lost_interrupt = ata_sff_lost_interrupt,
624d5c51 70};
0fe40ff8 71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51 72
624d5c51
TH
73/**
74 * ata_fill_sg - Fill PCI IDE PRD table
75 * @qc: Metadata associated with taskfile to be transferred
76 *
77 * Fill PCI IDE PRD (scatter-gather) table with segments
78 * associated with the current disk command.
79 *
80 * LOCKING:
81 * spin_lock_irqsave(host lock)
82 *
83 */
84static void ata_fill_sg(struct ata_queued_cmd *qc)
85{
86 struct ata_port *ap = qc->ap;
87 struct scatterlist *sg;
88 unsigned int si, pi;
89
90 pi = 0;
91 for_each_sg(qc->sg, sg, qc->n_elem, si) {
92 u32 addr, offset;
93 u32 sg_len, len;
94
95 /* determine if physical DMA addr spans 64K boundary.
96 * Note h/w doesn't support 64-bit, so we unconditionally
97 * truncate dma_addr_t to u32.
98 */
99 addr = (u32) sg_dma_address(sg);
100 sg_len = sg_dma_len(sg);
101
102 while (sg_len) {
103 offset = addr & 0xffff;
104 len = sg_len;
105 if ((offset + sg_len) > 0x10000)
106 len = 0x10000 - offset;
107
108 ap->prd[pi].addr = cpu_to_le32(addr);
109 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
110 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
111
112 pi++;
113 sg_len -= len;
114 addr += len;
115 }
116 }
117
118 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
119}
120
121/**
122 * ata_fill_sg_dumb - Fill PCI IDE PRD table
123 * @qc: Metadata associated with taskfile to be transferred
124 *
125 * Fill PCI IDE PRD (scatter-gather) table with segments
126 * associated with the current disk command. Perform the fill
127 * so that we avoid writing any length 64K records for
128 * controllers that don't follow the spec.
129 *
130 * LOCKING:
131 * spin_lock_irqsave(host lock)
132 *
133 */
134static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
135{
136 struct ata_port *ap = qc->ap;
137 struct scatterlist *sg;
138 unsigned int si, pi;
139
140 pi = 0;
141 for_each_sg(qc->sg, sg, qc->n_elem, si) {
142 u32 addr, offset;
143 u32 sg_len, len, blen;
144
145 /* determine if physical DMA addr spans 64K boundary.
146 * Note h/w doesn't support 64-bit, so we unconditionally
147 * truncate dma_addr_t to u32.
148 */
149 addr = (u32) sg_dma_address(sg);
150 sg_len = sg_dma_len(sg);
151
152 while (sg_len) {
153 offset = addr & 0xffff;
154 len = sg_len;
155 if ((offset + sg_len) > 0x10000)
156 len = 0x10000 - offset;
157
158 blen = len & 0xffff;
159 ap->prd[pi].addr = cpu_to_le32(addr);
160 if (blen == 0) {
0fe40ff8
AC
161 /* Some PATA chipsets like the CS5530 can't
162 cope with 0x0000 meaning 64K as the spec
163 says */
624d5c51
TH
164 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
165 blen = 0x8000;
166 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
167 }
168 ap->prd[pi].flags_len = cpu_to_le32(blen);
169 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
170
171 pi++;
172 sg_len -= len;
173 addr += len;
174 }
175 }
176
177 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
178}
179
180/**
9363c382 181 * ata_sff_qc_prep - Prepare taskfile for submission
624d5c51
TH
182 * @qc: Metadata associated with taskfile to be prepared
183 *
184 * Prepare ATA taskfile for submission.
185 *
186 * LOCKING:
187 * spin_lock_irqsave(host lock)
188 */
9363c382 189void ata_sff_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
190{
191 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
192 return;
193
194 ata_fill_sg(qc);
195}
0fe40ff8 196EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
624d5c51
TH
197
198/**
9363c382 199 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
624d5c51
TH
200 * @qc: Metadata associated with taskfile to be prepared
201 *
202 * Prepare ATA taskfile for submission.
203 *
204 * LOCKING:
205 * spin_lock_irqsave(host lock)
206 */
9363c382 207void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
208{
209 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
210 return;
211
212 ata_fill_sg_dumb(qc);
213}
0fe40ff8 214EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
624d5c51 215
272f7884 216/**
9363c382 217 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
218 * @ap: port where the device is
219 *
220 * Reads ATA taskfile status register for currently-selected device
221 * and return its value. This also clears pending interrupts
222 * from this device
223 *
224 * LOCKING:
225 * Inherited from caller.
226 */
9363c382 227u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
228{
229 return ioread8(ap->ioaddr.status_addr);
230}
0fe40ff8 231EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
232
233/**
9363c382 234 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
235 * @ap: port where the device is
236 *
237 * Reads ATA taskfile alternate status register for
238 * currently-selected device and return its value.
239 *
240 * Note: may NOT be used as the check_altstatus() entry in
241 * ata_port_operations.
242 *
243 * LOCKING:
244 * Inherited from caller.
245 */
a57c1bad 246static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 247{
5682ed33
TH
248 if (ap->ops->sff_check_altstatus)
249 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
250
251 return ioread8(ap->ioaddr.altstatus_addr);
252}
253
a57c1bad
AC
254/**
255 * ata_sff_irq_status - Check if the device is busy
256 * @ap: port where the device is
257 *
258 * Determine if the port is currently busy. Uses altstatus
259 * if available in order to avoid clearing shared IRQ status
260 * when finding an IRQ source. Non ctl capable devices don't
261 * share interrupt lines fortunately for us.
262 *
263 * LOCKING:
264 * Inherited from caller.
265 */
266static u8 ata_sff_irq_status(struct ata_port *ap)
267{
268 u8 status;
269
270 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
271 status = ata_sff_altstatus(ap);
272 /* Not us: We are busy */
273 if (status & ATA_BUSY)
0fe40ff8 274 return status;
a57c1bad
AC
275 }
276 /* Clear INTRQ latch */
6311c90a 277 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
278 return status;
279}
280
281/**
282 * ata_sff_sync - Flush writes
283 * @ap: Port to wait for.
284 *
285 * CAUTION:
286 * If we have an mmio device with no ctl and no altstatus
287 * method this will fail. No such devices are known to exist.
288 *
289 * LOCKING:
290 * Inherited from caller.
291 */
292
293static void ata_sff_sync(struct ata_port *ap)
294{
295 if (ap->ops->sff_check_altstatus)
296 ap->ops->sff_check_altstatus(ap);
297 else if (ap->ioaddr.altstatus_addr)
298 ioread8(ap->ioaddr.altstatus_addr);
299}
300
301/**
302 * ata_sff_pause - Flush writes and wait 400nS
303 * @ap: Port to pause for.
304 *
305 * CAUTION:
306 * If we have an mmio device with no ctl and no altstatus
307 * method this will fail. No such devices are known to exist.
308 *
309 * LOCKING:
310 * Inherited from caller.
311 */
312
313void ata_sff_pause(struct ata_port *ap)
314{
315 ata_sff_sync(ap);
316 ndelay(400);
317}
0fe40ff8 318EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
319
320/**
321 * ata_sff_dma_pause - Pause before commencing DMA
322 * @ap: Port to pause for.
323 *
324 * Perform I/O fencing and ensure sufficient cycle delays occur
325 * for the HDMA1:0 transition
326 */
0fe40ff8 327
a57c1bad
AC
328void ata_sff_dma_pause(struct ata_port *ap)
329{
330 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
331 /* An altstatus read will cause the needed delay without
332 messing up the IRQ status */
333 ata_sff_altstatus(ap);
334 return;
335 }
336 /* There are no DMA controllers without ctl. BUG here to ensure
337 we never violate the HDMA1:0 transition timing and risk
338 corruption. */
339 BUG();
340}
0fe40ff8 341EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 342
624d5c51 343/**
9363c382 344 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 345 * @ap: port containing status register to be polled
341c2c95
TH
346 * @tmout_pat: impatience timeout in msecs
347 * @tmout: overall timeout in msecs
624d5c51
TH
348 *
349 * Sleep until ATA Status register bit BSY clears,
350 * or a timeout occurs.
351 *
352 * LOCKING:
353 * Kernel thread context (may sleep).
354 *
355 * RETURNS:
356 * 0 on success, -errno otherwise.
357 */
9363c382
TH
358int ata_sff_busy_sleep(struct ata_port *ap,
359 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
360{
361 unsigned long timer_start, timeout;
362 u8 status;
363
9363c382 364 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 365 timer_start = jiffies;
341c2c95 366 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
367 while (status != 0xff && (status & ATA_BUSY) &&
368 time_before(jiffies, timeout)) {
369 msleep(50);
9363c382 370 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
371 }
372
373 if (status != 0xff && (status & ATA_BUSY))
374 ata_port_printk(ap, KERN_WARNING,
375 "port is slow to respond, please be patient "
376 "(Status 0x%x)\n", status);
377
341c2c95 378 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
379 while (status != 0xff && (status & ATA_BUSY) &&
380 time_before(jiffies, timeout)) {
381 msleep(50);
5682ed33 382 status = ap->ops->sff_check_status(ap);
624d5c51
TH
383 }
384
385 if (status == 0xff)
386 return -ENODEV;
387
388 if (status & ATA_BUSY) {
389 ata_port_printk(ap, KERN_ERR, "port failed to respond "
390 "(%lu secs, Status 0x%x)\n",
341c2c95 391 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
392 return -EBUSY;
393 }
394
395 return 0;
396}
0fe40ff8 397EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 398
aa2731ad
TH
399static int ata_sff_check_ready(struct ata_link *link)
400{
401 u8 status = link->ap->ops->sff_check_status(link->ap);
402
78ab88f0 403 return ata_check_ready(status);
aa2731ad
TH
404}
405
624d5c51 406/**
9363c382 407 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 408 * @link: SFF link to wait ready status for
624d5c51
TH
409 * @deadline: deadline jiffies for the operation
410 *
411 * Sleep until ATA Status register bit BSY clears, or timeout
412 * occurs.
413 *
414 * LOCKING:
415 * Kernel thread context (may sleep).
416 *
417 * RETURNS:
418 * 0 on success, -errno otherwise.
419 */
705e76be 420int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 421{
aa2731ad 422 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 423}
0fe40ff8 424EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 425
41dec29b
SS
426/**
427 * ata_sff_set_devctl - Write device control reg
428 * @ap: port where the device is
429 * @ctl: value to write
430 *
431 * Writes ATA taskfile device control register.
432 *
433 * Note: may NOT be used as the sff_set_devctl() entry in
434 * ata_port_operations.
435 *
436 * LOCKING:
437 * Inherited from caller.
438 */
439static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
440{
441 if (ap->ops->sff_set_devctl)
442 ap->ops->sff_set_devctl(ap, ctl);
443 else
444 iowrite8(ctl, ap->ioaddr.ctl_addr);
445}
446
624d5c51 447/**
9363c382 448 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
449 * @ap: ATA channel to manipulate
450 * @device: ATA device (numbered from zero) to select
451 *
452 * Use the method defined in the ATA specification to
453 * make either device 0, or device 1, active on the
454 * ATA channel. Works with both PIO and MMIO.
455 *
456 * May be used as the dev_select() entry in ata_port_operations.
457 *
458 * LOCKING:
459 * caller.
460 */
9363c382 461void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
462{
463 u8 tmp;
464
465 if (device == 0)
466 tmp = ATA_DEVICE_OBS;
467 else
468 tmp = ATA_DEVICE_OBS | ATA_DEV1;
469
470 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 471 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 472}
0fe40ff8 473EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
474
475/**
476 * ata_dev_select - Select device 0/1 on ATA bus
477 * @ap: ATA channel to manipulate
478 * @device: ATA device (numbered from zero) to select
479 * @wait: non-zero to wait for Status register BSY bit to clear
480 * @can_sleep: non-zero if context allows sleeping
481 *
482 * Use the method defined in the ATA specification to
483 * make either device 0, or device 1, active on the
484 * ATA channel.
485 *
9363c382
TH
486 * This is a high-level version of ata_sff_dev_select(), which
487 * additionally provides the services of inserting the proper
488 * pauses and status polling, where needed.
624d5c51
TH
489 *
490 * LOCKING:
491 * caller.
492 */
c7a8209f 493static void ata_dev_select(struct ata_port *ap, unsigned int device,
624d5c51
TH
494 unsigned int wait, unsigned int can_sleep)
495{
496 if (ata_msg_probe(ap))
497 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
498 "device %u, wait %u\n", device, wait);
499
500 if (wait)
501 ata_wait_idle(ap);
502
5682ed33 503 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
504
505 if (wait) {
506 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
507 msleep(150);
508 ata_wait_idle(ap);
509 }
510}
511
512/**
9363c382 513 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
514 * @ap: Port on which interrupts are enabled.
515 *
516 * Enable interrupts on a legacy IDE device using MMIO or PIO,
517 * wait for idle, clear any pending interrupts.
518 *
e42a542b
SS
519 * Note: may NOT be used as the sff_irq_on() entry in
520 * ata_port_operations.
521 *
624d5c51
TH
522 * LOCKING:
523 * Inherited from caller.
524 */
e42a542b 525void ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
526{
527 struct ata_ioports *ioaddr = &ap->ioaddr;
e42a542b
SS
528
529 if (ap->ops->sff_irq_on) {
530 ap->ops->sff_irq_on(ap);
531 return;
532 }
624d5c51
TH
533
534 ap->ctl &= ~ATA_NIEN;
535 ap->last_ctl = ap->ctl;
536
e42a542b
SS
537 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
538 ata_sff_set_devctl(ap, ap->ctl);
539 ata_wait_idle(ap);
624d5c51 540
5682ed33 541 ap->ops->sff_irq_clear(ap);
624d5c51 542}
0fe40ff8 543EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51
TH
544
545/**
9363c382 546 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
624d5c51
TH
547 * @ap: Port associated with this ATA transaction.
548 *
549 * Clear interrupt and error flags in DMA status register.
550 *
551 * May be used as the irq_clear() entry in ata_port_operations.
552 *
553 * LOCKING:
554 * spin_lock_irqsave(host lock)
555 */
9363c382 556void ata_sff_irq_clear(struct ata_port *ap)
624d5c51
TH
557{
558 void __iomem *mmio = ap->ioaddr.bmdma_addr;
559
560 if (!mmio)
561 return;
562
563 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
564}
0fe40ff8 565EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
624d5c51
TH
566
567/**
9363c382 568 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
569 * @ap: Port to which output is sent
570 * @tf: ATA taskfile register set
571 *
572 * Outputs ATA taskfile to standard ATA host controller.
573 *
574 * LOCKING:
575 * Inherited from caller.
576 */
9363c382 577void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
578{
579 struct ata_ioports *ioaddr = &ap->ioaddr;
580 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
581
582 if (tf->ctl != ap->last_ctl) {
583 if (ioaddr->ctl_addr)
584 iowrite8(tf->ctl, ioaddr->ctl_addr);
585 ap->last_ctl = tf->ctl;
624d5c51
TH
586 }
587
588 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 589 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
590 iowrite8(tf->hob_feature, ioaddr->feature_addr);
591 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
592 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
593 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
594 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
595 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
596 tf->hob_feature,
597 tf->hob_nsect,
598 tf->hob_lbal,
599 tf->hob_lbam,
600 tf->hob_lbah);
601 }
602
603 if (is_addr) {
604 iowrite8(tf->feature, ioaddr->feature_addr);
605 iowrite8(tf->nsect, ioaddr->nsect_addr);
606 iowrite8(tf->lbal, ioaddr->lbal_addr);
607 iowrite8(tf->lbam, ioaddr->lbam_addr);
608 iowrite8(tf->lbah, ioaddr->lbah_addr);
609 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
610 tf->feature,
611 tf->nsect,
612 tf->lbal,
613 tf->lbam,
614 tf->lbah);
615 }
616
617 if (tf->flags & ATA_TFLAG_DEVICE) {
618 iowrite8(tf->device, ioaddr->device_addr);
619 VPRINTK("device 0x%X\n", tf->device);
620 }
624d5c51 621}
0fe40ff8 622EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
623
624/**
9363c382 625 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
626 * @ap: Port from which input is read
627 * @tf: ATA taskfile register set for storing input
628 *
629 * Reads ATA taskfile registers for currently-selected device
630 * into @tf. Assumes the device has a fully SFF compliant task file
631 * layout and behaviour. If you device does not (eg has a different
632 * status method) then you will need to provide a replacement tf_read
633 *
634 * LOCKING:
635 * Inherited from caller.
636 */
9363c382 637void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
638{
639 struct ata_ioports *ioaddr = &ap->ioaddr;
640
9363c382 641 tf->command = ata_sff_check_status(ap);
624d5c51
TH
642 tf->feature = ioread8(ioaddr->error_addr);
643 tf->nsect = ioread8(ioaddr->nsect_addr);
644 tf->lbal = ioread8(ioaddr->lbal_addr);
645 tf->lbam = ioread8(ioaddr->lbam_addr);
646 tf->lbah = ioread8(ioaddr->lbah_addr);
647 tf->device = ioread8(ioaddr->device_addr);
648
649 if (tf->flags & ATA_TFLAG_LBA48) {
650 if (likely(ioaddr->ctl_addr)) {
651 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
652 tf->hob_feature = ioread8(ioaddr->error_addr);
653 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
654 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
655 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
656 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
657 iowrite8(tf->ctl, ioaddr->ctl_addr);
658 ap->last_ctl = tf->ctl;
659 } else
efcb3cf7 660 WARN_ON_ONCE(1);
624d5c51
TH
661 }
662}
0fe40ff8 663EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
664
665/**
9363c382 666 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
667 * @ap: port to which command is being issued
668 * @tf: ATA taskfile register set
669 *
670 * Issues ATA command, with proper synchronization with interrupt
671 * handler / other threads.
672 *
673 * LOCKING:
674 * spin_lock_irqsave(host lock)
675 */
9363c382 676void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
677{
678 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
679
680 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 681 ata_sff_pause(ap);
624d5c51 682}
0fe40ff8 683EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
684
685/**
686 * ata_tf_to_host - issue ATA taskfile to host controller
687 * @ap: port to which command is being issued
688 * @tf: ATA taskfile register set
689 *
690 * Issues ATA taskfile register set to ATA host controller,
691 * with proper synchronization with interrupt handler and
692 * other threads.
693 *
694 * LOCKING:
695 * spin_lock_irqsave(host lock)
696 */
697static inline void ata_tf_to_host(struct ata_port *ap,
698 const struct ata_taskfile *tf)
699{
5682ed33
TH
700 ap->ops->sff_tf_load(ap, tf);
701 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
702}
703
704/**
9363c382 705 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
706 * @dev: device to target
707 * @buf: data buffer
708 * @buflen: buffer length
709 * @rw: read/write
710 *
711 * Transfer data from/to the device data register by PIO.
712 *
713 * LOCKING:
714 * Inherited from caller.
715 *
716 * RETURNS:
717 * Bytes consumed.
718 */
9363c382
TH
719unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
720 unsigned int buflen, int rw)
624d5c51
TH
721{
722 struct ata_port *ap = dev->link->ap;
723 void __iomem *data_addr = ap->ioaddr.data_addr;
724 unsigned int words = buflen >> 1;
725
726 /* Transfer multiple of 2 bytes */
727 if (rw == READ)
728 ioread16_rep(data_addr, buf, words);
729 else
730 iowrite16_rep(data_addr, buf, words);
731
2102d749 732 /* Transfer trailing byte, if any. */
624d5c51 733 if (unlikely(buflen & 0x01)) {
2102d749 734 unsigned char pad[2];
624d5c51 735
2102d749
SS
736 /* Point buf to the tail of buffer */
737 buf += buflen - 1;
738
739 /*
740 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 741 * swapping bytes to and from on the big endian machines...
2102d749 742 */
624d5c51 743 if (rw == READ) {
2102d749
SS
744 ioread16_rep(data_addr, pad, 1);
745 *buf = pad[0];
624d5c51 746 } else {
2102d749
SS
747 pad[0] = *buf;
748 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
749 }
750 words++;
751 }
752
753 return words << 1;
754}
0fe40ff8 755EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 756
871af121
AC
757/**
758 * ata_sff_data_xfer32 - Transfer data by PIO
759 * @dev: device to target
760 * @buf: data buffer
761 * @buflen: buffer length
762 * @rw: read/write
763 *
764 * Transfer data from/to the device data register by PIO using 32bit
765 * I/O operations.
766 *
767 * LOCKING:
768 * Inherited from caller.
769 *
770 * RETURNS:
771 * Bytes consumed.
772 */
773
774unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
775 unsigned int buflen, int rw)
776{
777 struct ata_port *ap = dev->link->ap;
778 void __iomem *data_addr = ap->ioaddr.data_addr;
779 unsigned int words = buflen >> 2;
780 int slop = buflen & 3;
972b94ff 781
e3cf95dd
AC
782 if (!(ap->pflags & ATA_PFLAG_PIO32))
783 return ata_sff_data_xfer(dev, buf, buflen, rw);
871af121
AC
784
785 /* Transfer multiple of 4 bytes */
786 if (rw == READ)
787 ioread32_rep(data_addr, buf, words);
788 else
789 iowrite32_rep(data_addr, buf, words);
790
d1b3525b 791 /* Transfer trailing bytes, if any */
871af121 792 if (unlikely(slop)) {
d1b3525b
SS
793 unsigned char pad[4];
794
795 /* Point buf to the tail of buffer */
796 buf += buflen - slop;
797
798 /*
799 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 800 * swapping bytes to and from on the big endian machines...
d1b3525b 801 */
871af121 802 if (rw == READ) {
d1b3525b
SS
803 if (slop < 3)
804 ioread16_rep(data_addr, pad, 1);
805 else
806 ioread32_rep(data_addr, pad, 1);
807 memcpy(buf, pad, slop);
871af121 808 } else {
d1b3525b
SS
809 memcpy(pad, buf, slop);
810 if (slop < 3)
811 iowrite16_rep(data_addr, pad, 1);
812 else
813 iowrite32_rep(data_addr, pad, 1);
871af121 814 }
871af121 815 }
d1b3525b 816 return (buflen + 1) & ~1;
871af121
AC
817}
818EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
819
624d5c51 820/**
9363c382 821 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
822 * @dev: device to target
823 * @buf: data buffer
824 * @buflen: buffer length
825 * @rw: read/write
826 *
827 * Transfer data from/to the device data register by PIO. Do the
828 * transfer with interrupts disabled.
829 *
830 * LOCKING:
831 * Inherited from caller.
832 *
833 * RETURNS:
834 * Bytes consumed.
835 */
9363c382
TH
836unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
837 unsigned int buflen, int rw)
624d5c51
TH
838{
839 unsigned long flags;
840 unsigned int consumed;
841
842 local_irq_save(flags);
9363c382 843 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
844 local_irq_restore(flags);
845
846 return consumed;
847}
0fe40ff8 848EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
849
850/**
851 * ata_pio_sector - Transfer a sector of data.
852 * @qc: Command on going
853 *
854 * Transfer qc->sect_size bytes of data from/to the ATA device.
855 *
856 * LOCKING:
857 * Inherited from caller.
858 */
859static void ata_pio_sector(struct ata_queued_cmd *qc)
860{
861 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
862 struct ata_port *ap = qc->ap;
863 struct page *page;
864 unsigned int offset;
865 unsigned char *buf;
866
867 if (qc->curbytes == qc->nbytes - qc->sect_size)
868 ap->hsm_task_state = HSM_ST_LAST;
869
870 page = sg_page(qc->cursg);
871 offset = qc->cursg->offset + qc->cursg_ofs;
872
873 /* get the current page and offset */
874 page = nth_page(page, (offset >> PAGE_SHIFT));
875 offset %= PAGE_SIZE;
876
877 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
878
879 if (PageHighMem(page)) {
880 unsigned long flags;
881
882 /* FIXME: use a bounce buffer */
883 local_irq_save(flags);
884 buf = kmap_atomic(page, KM_IRQ0);
885
886 /* do the actual data transfer */
5682ed33
TH
887 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
888 do_write);
624d5c51
TH
889
890 kunmap_atomic(buf, KM_IRQ0);
891 local_irq_restore(flags);
892 } else {
893 buf = page_address(page);
5682ed33
TH
894 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
895 do_write);
624d5c51
TH
896 }
897
3842e835 898 if (!do_write && !PageSlab(page))
2d68b7fe
CM
899 flush_dcache_page(page);
900
624d5c51
TH
901 qc->curbytes += qc->sect_size;
902 qc->cursg_ofs += qc->sect_size;
903
904 if (qc->cursg_ofs == qc->cursg->length) {
905 qc->cursg = sg_next(qc->cursg);
906 qc->cursg_ofs = 0;
907 }
908}
909
910/**
911 * ata_pio_sectors - Transfer one or many sectors.
912 * @qc: Command on going
913 *
914 * Transfer one or many sectors of data from/to the
915 * ATA device for the DRQ request.
916 *
917 * LOCKING:
918 * Inherited from caller.
919 */
920static void ata_pio_sectors(struct ata_queued_cmd *qc)
921{
922 if (is_multi_taskfile(&qc->tf)) {
923 /* READ/WRITE MULTIPLE */
924 unsigned int nsect;
925
efcb3cf7 926 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
927
928 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
929 qc->dev->multi_count);
930 while (nsect--)
931 ata_pio_sector(qc);
932 } else
933 ata_pio_sector(qc);
934
a57c1bad 935 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
936}
937
938/**
939 * atapi_send_cdb - Write CDB bytes to hardware
940 * @ap: Port to which ATAPI device is attached.
941 * @qc: Taskfile currently active
942 *
943 * When device has indicated its readiness to accept
944 * a CDB, this function is called. Send the CDB.
945 *
946 * LOCKING:
947 * caller.
948 */
949static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
950{
951 /* send SCSI cdb */
952 DPRINTK("send cdb\n");
efcb3cf7 953 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 954
5682ed33 955 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
956 ata_sff_sync(ap);
957 /* FIXME: If the CDB is for DMA do we need to do the transition delay
958 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
959 switch (qc->tf.protocol) {
960 case ATAPI_PROT_PIO:
961 ap->hsm_task_state = HSM_ST;
962 break;
963 case ATAPI_PROT_NODATA:
964 ap->hsm_task_state = HSM_ST_LAST;
965 break;
966 case ATAPI_PROT_DMA:
967 ap->hsm_task_state = HSM_ST_LAST;
968 /* initiate bmdma */
969 ap->ops->bmdma_start(qc);
970 break;
971 }
972}
973
974/**
975 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
976 * @qc: Command on going
977 * @bytes: number of bytes
978 *
979 * Transfer Transfer data from/to the ATAPI device.
980 *
981 * LOCKING:
982 * Inherited from caller.
983 *
984 */
985static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
986{
987 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
988 struct ata_port *ap = qc->ap;
989 struct ata_device *dev = qc->dev;
990 struct ata_eh_info *ehi = &dev->link->eh_info;
991 struct scatterlist *sg;
992 struct page *page;
993 unsigned char *buf;
994 unsigned int offset, count, consumed;
995
996next_sg:
997 sg = qc->cursg;
998 if (unlikely(!sg)) {
999 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
1000 "buf=%u cur=%u bytes=%u",
1001 qc->nbytes, qc->curbytes, bytes);
1002 return -1;
1003 }
1004
1005 page = sg_page(sg);
1006 offset = sg->offset + qc->cursg_ofs;
1007
1008 /* get the current page and offset */
1009 page = nth_page(page, (offset >> PAGE_SHIFT));
1010 offset %= PAGE_SIZE;
1011
1012 /* don't overrun current sg */
1013 count = min(sg->length - qc->cursg_ofs, bytes);
1014
1015 /* don't cross page boundaries */
1016 count = min(count, (unsigned int)PAGE_SIZE - offset);
1017
1018 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
1019
1020 if (PageHighMem(page)) {
1021 unsigned long flags;
1022
1023 /* FIXME: use bounce buffer */
1024 local_irq_save(flags);
1025 buf = kmap_atomic(page, KM_IRQ0);
1026
1027 /* do the actual data transfer */
0fe40ff8
AC
1028 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1029 count, rw);
624d5c51
TH
1030
1031 kunmap_atomic(buf, KM_IRQ0);
1032 local_irq_restore(flags);
1033 } else {
1034 buf = page_address(page);
0fe40ff8
AC
1035 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
1036 count, rw);
624d5c51
TH
1037 }
1038
1039 bytes -= min(bytes, consumed);
1040 qc->curbytes += count;
1041 qc->cursg_ofs += count;
1042
1043 if (qc->cursg_ofs == sg->length) {
1044 qc->cursg = sg_next(qc->cursg);
1045 qc->cursg_ofs = 0;
1046 }
1047
a0f79f7a
CB
1048 /*
1049 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
1050 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
1051 * check correctly as it doesn't know if it is the last request being
1052 * made. Somebody should implement a proper sanity check.
1053 */
624d5c51
TH
1054 if (bytes)
1055 goto next_sg;
1056 return 0;
1057}
1058
1059/**
1060 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
1061 * @qc: Command on going
1062 *
1063 * Transfer Transfer data from/to the ATAPI device.
1064 *
1065 * LOCKING:
1066 * Inherited from caller.
1067 */
1068static void atapi_pio_bytes(struct ata_queued_cmd *qc)
1069{
1070 struct ata_port *ap = qc->ap;
1071 struct ata_device *dev = qc->dev;
1072 struct ata_eh_info *ehi = &dev->link->eh_info;
1073 unsigned int ireason, bc_lo, bc_hi, bytes;
1074 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
1075
1076 /* Abuse qc->result_tf for temp storage of intermediate TF
1077 * here to save some kernel stack usage.
1078 * For normal completion, qc->result_tf is not relevant. For
1079 * error, qc->result_tf is later overwritten by ata_qc_complete().
1080 * So, the correctness of qc->result_tf is not affected.
1081 */
5682ed33 1082 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
1083 ireason = qc->result_tf.nsect;
1084 bc_lo = qc->result_tf.lbam;
1085 bc_hi = qc->result_tf.lbah;
1086 bytes = (bc_hi << 8) | bc_lo;
1087
1088 /* shall be cleared to zero, indicating xfer of data */
1089 if (unlikely(ireason & (1 << 0)))
1090 goto atapi_check;
1091
1092 /* make sure transfer direction matches expected */
1093 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
1094 if (unlikely(do_write != i_write))
1095 goto atapi_check;
1096
1097 if (unlikely(!bytes))
1098 goto atapi_check;
1099
1100 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
1101
1102 if (unlikely(__atapi_pio_bytes(qc, bytes)))
1103 goto err_out;
a57c1bad 1104 ata_sff_sync(ap); /* flush */
624d5c51
TH
1105
1106 return;
1107
1108 atapi_check:
1109 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1110 ireason, bytes);
1111 err_out:
1112 qc->err_mask |= AC_ERR_HSM;
1113 ap->hsm_task_state = HSM_ST_ERR;
1114}
1115
1116/**
1117 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1118 * @ap: the target ata_port
1119 * @qc: qc on going
1120 *
1121 * RETURNS:
1122 * 1 if ok in workqueue, 0 otherwise.
1123 */
0fe40ff8
AC
1124static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
1125 struct ata_queued_cmd *qc)
624d5c51
TH
1126{
1127 if (qc->tf.flags & ATA_TFLAG_POLLING)
1128 return 1;
1129
1130 if (ap->hsm_task_state == HSM_ST_FIRST) {
1131 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 1132 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
1133 return 1;
1134
1135 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 1136 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
1137 return 1;
1138 }
1139
1140 return 0;
1141}
1142
1143/**
1144 * ata_hsm_qc_complete - finish a qc running on standard HSM
1145 * @qc: Command to complete
1146 * @in_wq: 1 if called from workqueue, 0 otherwise
1147 *
1148 * Finish @qc which is running on standard HSM.
1149 *
1150 * LOCKING:
1151 * If @in_wq is zero, spin_lock_irqsave(host lock).
1152 * Otherwise, none on entry and grabs host lock.
1153 */
1154static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1155{
1156 struct ata_port *ap = qc->ap;
1157 unsigned long flags;
1158
1159 if (ap->ops->error_handler) {
1160 if (in_wq) {
1161 spin_lock_irqsave(ap->lock, flags);
1162
1163 /* EH might have kicked in while host lock is
1164 * released.
1165 */
1166 qc = ata_qc_from_tag(ap, qc->tag);
1167 if (qc) {
1168 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
e42a542b 1169 ata_sff_irq_on(ap);
624d5c51
TH
1170 ata_qc_complete(qc);
1171 } else
1172 ata_port_freeze(ap);
1173 }
1174
1175 spin_unlock_irqrestore(ap->lock, flags);
1176 } else {
1177 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1178 ata_qc_complete(qc);
1179 else
1180 ata_port_freeze(ap);
1181 }
1182 } else {
1183 if (in_wq) {
1184 spin_lock_irqsave(ap->lock, flags);
e42a542b 1185 ata_sff_irq_on(ap);
624d5c51
TH
1186 ata_qc_complete(qc);
1187 spin_unlock_irqrestore(ap->lock, flags);
1188 } else
1189 ata_qc_complete(qc);
1190 }
1191}
1192
1193/**
9363c382 1194 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1195 * @ap: the target ata_port
1196 * @qc: qc on going
1197 * @status: current device status
1198 * @in_wq: 1 if called from workqueue, 0 otherwise
1199 *
1200 * RETURNS:
1201 * 1 when poll next status needed, 0 otherwise.
1202 */
9363c382
TH
1203int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1204 u8 status, int in_wq)
624d5c51 1205{
a836d3e8 1206 struct ata_eh_info *ehi = &ap->link.eh_info;
624d5c51
TH
1207 unsigned long flags = 0;
1208 int poll_next;
1209
efcb3cf7 1210 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1211
9363c382 1212 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1213 * like DMA polling into the workqueue. Notice that
1214 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1215 */
efcb3cf7 1216 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1217
1218fsm_start:
1219 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1220 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1221
1222 switch (ap->hsm_task_state) {
1223 case HSM_ST_FIRST:
1224 /* Send first data block or PACKET CDB */
1225
1226 /* If polling, we will stay in the work queue after
1227 * sending the data. Otherwise, interrupt handler
1228 * takes over after sending the data.
1229 */
1230 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1231
1232 /* check device status */
1233 if (unlikely((status & ATA_DRQ) == 0)) {
1234 /* handle BSY=0, DRQ=0 as error */
1235 if (likely(status & (ATA_ERR | ATA_DF)))
1236 /* device stops HSM for abort/error */
1237 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1238 else {
624d5c51 1239 /* HSM violation. Let EH handle this */
a836d3e8
TH
1240 ata_ehi_push_desc(ehi,
1241 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1242 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1243 }
624d5c51
TH
1244
1245 ap->hsm_task_state = HSM_ST_ERR;
1246 goto fsm_start;
1247 }
1248
1249 /* Device should not ask for data transfer (DRQ=1)
1250 * when it finds something wrong.
1251 * We ignore DRQ here and stop the HSM by
1252 * changing hsm_task_state to HSM_ST_ERR and
1253 * let the EH abort the command or reset the device.
1254 */
1255 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1256 /* Some ATAPI tape drives forget to clear the ERR bit
1257 * when doing the next command (mostly request sense).
1258 * We ignore ERR here to workaround and proceed sending
1259 * the CDB.
1260 */
1261 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1262 ata_ehi_push_desc(ehi, "ST_FIRST: "
1263 "DRQ=1 with device error, "
1264 "dev_stat 0x%X", status);
624d5c51
TH
1265 qc->err_mask |= AC_ERR_HSM;
1266 ap->hsm_task_state = HSM_ST_ERR;
1267 goto fsm_start;
1268 }
1269 }
1270
1271 /* Send the CDB (atapi) or the first data block (ata pio out).
1272 * During the state transition, interrupt handler shouldn't
1273 * be invoked before the data transfer is complete and
1274 * hsm_task_state is changed. Hence, the following locking.
1275 */
1276 if (in_wq)
1277 spin_lock_irqsave(ap->lock, flags);
1278
1279 if (qc->tf.protocol == ATA_PROT_PIO) {
1280 /* PIO data out protocol.
1281 * send first data block.
1282 */
1283
1284 /* ata_pio_sectors() might change the state
1285 * to HSM_ST_LAST. so, the state is changed here
1286 * before ata_pio_sectors().
1287 */
1288 ap->hsm_task_state = HSM_ST;
1289 ata_pio_sectors(qc);
1290 } else
1291 /* send CDB */
1292 atapi_send_cdb(ap, qc);
1293
1294 if (in_wq)
1295 spin_unlock_irqrestore(ap->lock, flags);
1296
c429137a 1297 /* if polling, ata_sff_pio_task() handles the rest.
624d5c51
TH
1298 * otherwise, interrupt handler takes over from here.
1299 */
1300 break;
1301
1302 case HSM_ST:
1303 /* complete command or read/write the data register */
1304 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1305 /* ATAPI PIO protocol */
1306 if ((status & ATA_DRQ) == 0) {
1307 /* No more data to transfer or device error.
1308 * Device error will be tagged in HSM_ST_LAST.
1309 */
1310 ap->hsm_task_state = HSM_ST_LAST;
1311 goto fsm_start;
1312 }
1313
1314 /* Device should not ask for data transfer (DRQ=1)
1315 * when it finds something wrong.
1316 * We ignore DRQ here and stop the HSM by
1317 * changing hsm_task_state to HSM_ST_ERR and
1318 * let the EH abort the command or reset the device.
1319 */
1320 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1321 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1322 "DRQ=1 with device error, "
1323 "dev_stat 0x%X", status);
624d5c51
TH
1324 qc->err_mask |= AC_ERR_HSM;
1325 ap->hsm_task_state = HSM_ST_ERR;
1326 goto fsm_start;
1327 }
1328
1329 atapi_pio_bytes(qc);
1330
1331 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1332 /* bad ireason reported by device */
1333 goto fsm_start;
1334
1335 } else {
1336 /* ATA PIO protocol */
1337 if (unlikely((status & ATA_DRQ) == 0)) {
1338 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1339 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1340 /* device stops HSM for abort/error */
1341 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1342
1343 /* If diagnostic failed and this is
1344 * IDENTIFY, it's likely a phantom
1345 * device. Mark hint.
1346 */
1347 if (qc->dev->horkage &
1348 ATA_HORKAGE_DIAGNOSTIC)
1349 qc->err_mask |=
1350 AC_ERR_NODEV_HINT;
1351 } else {
624d5c51
TH
1352 /* HSM violation. Let EH handle this.
1353 * Phantom devices also trigger this
1354 * condition. Mark hint.
1355 */
a836d3e8 1356 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1357 "DRQ=0 without device error, "
a836d3e8 1358 "dev_stat 0x%X", status);
624d5c51
TH
1359 qc->err_mask |= AC_ERR_HSM |
1360 AC_ERR_NODEV_HINT;
a836d3e8 1361 }
624d5c51
TH
1362
1363 ap->hsm_task_state = HSM_ST_ERR;
1364 goto fsm_start;
1365 }
1366
1367 /* For PIO reads, some devices may ask for
1368 * data transfer (DRQ=1) alone with ERR=1.
1369 * We respect DRQ here and transfer one
1370 * block of junk data before changing the
1371 * hsm_task_state to HSM_ST_ERR.
1372 *
1373 * For PIO writes, ERR=1 DRQ=1 doesn't make
1374 * sense since the data block has been
1375 * transferred to the device.
1376 */
1377 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1378 /* data might be corrputed */
1379 qc->err_mask |= AC_ERR_DEV;
1380
1381 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1382 ata_pio_sectors(qc);
1383 status = ata_wait_idle(ap);
1384 }
1385
a836d3e8
TH
1386 if (status & (ATA_BUSY | ATA_DRQ)) {
1387 ata_ehi_push_desc(ehi, "ST-ATA: "
1388 "BUSY|DRQ persists on ERR|DF, "
1389 "dev_stat 0x%X", status);
624d5c51 1390 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1391 }
624d5c51 1392
b919930c
TH
1393 /* There are oddball controllers with
1394 * status register stuck at 0x7f and
1395 * lbal/m/h at zero which makes it
1396 * pass all other presence detection
1397 * mechanisms we have. Set NODEV_HINT
1398 * for it. Kernel bz#7241.
1399 */
1400 if (status == 0x7f)
1401 qc->err_mask |= AC_ERR_NODEV_HINT;
1402
624d5c51
TH
1403 /* ata_pio_sectors() might change the
1404 * state to HSM_ST_LAST. so, the state
1405 * is changed after ata_pio_sectors().
1406 */
1407 ap->hsm_task_state = HSM_ST_ERR;
1408 goto fsm_start;
1409 }
1410
1411 ata_pio_sectors(qc);
1412
1413 if (ap->hsm_task_state == HSM_ST_LAST &&
1414 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1415 /* all data read */
1416 status = ata_wait_idle(ap);
1417 goto fsm_start;
1418 }
1419 }
1420
1421 poll_next = 1;
1422 break;
1423
1424 case HSM_ST_LAST:
1425 if (unlikely(!ata_ok(status))) {
1426 qc->err_mask |= __ac_err_mask(status);
1427 ap->hsm_task_state = HSM_ST_ERR;
1428 goto fsm_start;
1429 }
1430
1431 /* no more data to transfer */
1432 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1433 ap->print_id, qc->dev->devno, status);
1434
efcb3cf7 1435 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1436
1437 ap->hsm_task_state = HSM_ST_IDLE;
1438
1439 /* complete taskfile transaction */
1440 ata_hsm_qc_complete(qc, in_wq);
1441
1442 poll_next = 0;
1443 break;
1444
1445 case HSM_ST_ERR:
624d5c51
TH
1446 ap->hsm_task_state = HSM_ST_IDLE;
1447
1448 /* complete taskfile transaction */
1449 ata_hsm_qc_complete(qc, in_wq);
1450
1451 poll_next = 0;
1452 break;
1453 default:
1454 poll_next = 0;
1455 BUG();
1456 }
1457
1458 return poll_next;
1459}
0fe40ff8 1460EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51 1461
c429137a
TH
1462void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1463{
1464 /* may fail if ata_sff_flush_pio_task() in progress */
1465 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1466 msecs_to_jiffies(delay));
1467}
1468EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1469
1470void ata_sff_flush_pio_task(struct ata_port *ap)
1471{
1472 DPRINTK("ENTER\n");
1473
1474 cancel_rearming_delayed_work(&ap->sff_pio_task);
1475 ap->hsm_task_state = HSM_ST_IDLE;
1476
1477 if (ata_msg_ctl(ap))
1478 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1479}
1480
1481static void ata_sff_pio_task(struct work_struct *work)
624d5c51
TH
1482{
1483 struct ata_port *ap =
c429137a
TH
1484 container_of(work, struct ata_port, sff_pio_task.work);
1485 struct ata_queued_cmd *qc;
624d5c51
TH
1486 u8 status;
1487 int poll_next;
1488
c429137a
TH
1489 /* qc can be NULL if timeout occurred */
1490 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1491 if (!qc)
1492 return;
1493
624d5c51 1494fsm_start:
efcb3cf7 1495 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1496
1497 /*
1498 * This is purely heuristic. This is a fast path.
1499 * Sometimes when we enter, BSY will be cleared in
1500 * a chk-status or two. If not, the drive is probably seeking
1501 * or something. Snooze for a couple msecs, then
1502 * chk-status again. If still busy, queue delayed work.
1503 */
9363c382 1504 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1505 if (status & ATA_BUSY) {
1506 msleep(2);
9363c382 1507 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51 1508 if (status & ATA_BUSY) {
c429137a 1509 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
624d5c51
TH
1510 return;
1511 }
1512 }
1513
1514 /* move the HSM */
9363c382 1515 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1516
1517 /* another command or interrupt handler
1518 * may be running at this point.
1519 */
1520 if (poll_next)
1521 goto fsm_start;
1522}
1523
1524/**
9363c382 1525 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
624d5c51
TH
1526 * @qc: command to issue to device
1527 *
1528 * Using various libata functions and hooks, this function
1529 * starts an ATA command. ATA commands are grouped into
1530 * classes called "protocols", and issuing each type of protocol
1531 * is slightly different.
1532 *
1533 * May be used as the qc_issue() entry in ata_port_operations.
1534 *
1535 * LOCKING:
1536 * spin_lock_irqsave(host lock)
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
1540 */
9363c382 1541unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1542{
1543 struct ata_port *ap = qc->ap;
1544
1545 /* Use polling pio if the LLD doesn't handle
1546 * interrupt driven pio and atapi CDB interrupt.
1547 */
1548 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1549 switch (qc->tf.protocol) {
1550 case ATA_PROT_PIO:
1551 case ATA_PROT_NODATA:
1552 case ATAPI_PROT_PIO:
1553 case ATAPI_PROT_NODATA:
1554 qc->tf.flags |= ATA_TFLAG_POLLING;
1555 break;
1556 case ATAPI_PROT_DMA:
1557 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1558 /* see ata_dma_blacklisted() */
1559 BUG();
1560 break;
1561 default:
1562 break;
1563 }
1564 }
1565
1566 /* select the device */
1567 ata_dev_select(ap, qc->dev->devno, 1, 0);
1568
1569 /* start the command */
1570 switch (qc->tf.protocol) {
1571 case ATA_PROT_NODATA:
1572 if (qc->tf.flags & ATA_TFLAG_POLLING)
1573 ata_qc_set_polling(qc);
1574
1575 ata_tf_to_host(ap, &qc->tf);
1576 ap->hsm_task_state = HSM_ST_LAST;
1577
1578 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1579 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1580
1581 break;
1582
1583 case ATA_PROT_DMA:
efcb3cf7 1584 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
624d5c51 1585
5682ed33 1586 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1587 ap->ops->bmdma_setup(qc); /* set up bmdma */
1588 ap->ops->bmdma_start(qc); /* initiate bmdma */
1589 ap->hsm_task_state = HSM_ST_LAST;
1590 break;
1591
1592 case ATA_PROT_PIO:
1593 if (qc->tf.flags & ATA_TFLAG_POLLING)
1594 ata_qc_set_polling(qc);
1595
1596 ata_tf_to_host(ap, &qc->tf);
1597
1598 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1599 /* PIO data out protocol */
1600 ap->hsm_task_state = HSM_ST_FIRST;
c429137a 1601 ata_sff_queue_pio_task(ap, 0);
624d5c51 1602
c429137a
TH
1603 /* always send first data block using the
1604 * ata_sff_pio_task() codepath.
624d5c51
TH
1605 */
1606 } else {
1607 /* PIO data in protocol */
1608 ap->hsm_task_state = HSM_ST;
1609
1610 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1611 ata_sff_queue_pio_task(ap, 0);
624d5c51 1612
c429137a
TH
1613 /* if polling, ata_sff_pio_task() handles the
1614 * rest. otherwise, interrupt handler takes
1615 * over from here.
624d5c51
TH
1616 */
1617 }
1618
1619 break;
1620
1621 case ATAPI_PROT_PIO:
1622 case ATAPI_PROT_NODATA:
1623 if (qc->tf.flags & ATA_TFLAG_POLLING)
1624 ata_qc_set_polling(qc);
1625
1626 ata_tf_to_host(ap, &qc->tf);
1627
1628 ap->hsm_task_state = HSM_ST_FIRST;
1629
1630 /* send cdb by polling if no cdb interrupt */
1631 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1632 (qc->tf.flags & ATA_TFLAG_POLLING))
c429137a 1633 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1634 break;
1635
1636 case ATAPI_PROT_DMA:
efcb3cf7 1637 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
624d5c51 1638
5682ed33 1639 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1640 ap->ops->bmdma_setup(qc); /* set up bmdma */
1641 ap->hsm_task_state = HSM_ST_FIRST;
1642
1643 /* send cdb by polling if no cdb interrupt */
1644 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
c429137a 1645 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1646 break;
1647
1648 default:
efcb3cf7 1649 WARN_ON_ONCE(1);
624d5c51
TH
1650 return AC_ERR_SYSTEM;
1651 }
1652
1653 return 0;
1654}
0fe40ff8 1655EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1656
22183bf5
TH
1657/**
1658 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1659 * @qc: qc to fill result TF for
1660 *
1661 * @qc is finished and result TF needs to be filled. Fill it
1662 * using ->sff_tf_read.
1663 *
1664 * LOCKING:
1665 * spin_lock_irqsave(host lock)
1666 *
1667 * RETURNS:
1668 * true indicating that result TF is successfully filled.
1669 */
1670bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1671{
1672 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1673 return true;
1674}
0fe40ff8 1675EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1676
624d5c51 1677/**
9363c382 1678 * ata_sff_host_intr - Handle host interrupt for given (port, task)
624d5c51
TH
1679 * @ap: Port on which interrupt arrived (possibly...)
1680 * @qc: Taskfile currently active in engine
1681 *
1682 * Handle host interrupt for given queued command. Currently,
1683 * only DMA interrupts are handled. All other commands are
1684 * handled via polling with interrupts disabled (nIEN bit).
1685 *
1686 * LOCKING:
1687 * spin_lock_irqsave(host lock)
1688 *
1689 * RETURNS:
1690 * One if interrupt was handled, zero if not (shared irq).
1691 */
c96f1732 1692unsigned int ata_sff_host_intr(struct ata_port *ap,
9363c382 1693 struct ata_queued_cmd *qc)
624d5c51
TH
1694{
1695 struct ata_eh_info *ehi = &ap->link.eh_info;
1696 u8 status, host_stat = 0;
332ac7ff 1697 bool bmdma_stopped = false;
624d5c51
TH
1698
1699 VPRINTK("ata%u: protocol %d task_state %d\n",
1700 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1701
1702 /* Check whether we are expecting interrupt in this state */
1703 switch (ap->hsm_task_state) {
1704 case HSM_ST_FIRST:
1705 /* Some pre-ATAPI-4 devices assert INTRQ
1706 * at this state when ready to receive CDB.
1707 */
1708
1709 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1710 * The flag was turned on only for atapi devices. No
1711 * need to check ata_is_atapi(qc->tf.protocol) again.
1712 */
1713 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1714 goto idle_irq;
1715 break;
1716 case HSM_ST_LAST:
1717 if (qc->tf.protocol == ATA_PROT_DMA ||
1718 qc->tf.protocol == ATAPI_PROT_DMA) {
1719 /* check status of DMA engine */
1720 host_stat = ap->ops->bmdma_status(ap);
1721 VPRINTK("ata%u: host_stat 0x%X\n",
1722 ap->print_id, host_stat);
1723
1724 /* if it's not our irq... */
1725 if (!(host_stat & ATA_DMA_INTR))
1726 goto idle_irq;
1727
1728 /* before we do anything else, clear DMA-Start bit */
1729 ap->ops->bmdma_stop(qc);
332ac7ff 1730 bmdma_stopped = true;
624d5c51
TH
1731
1732 if (unlikely(host_stat & ATA_DMA_ERR)) {
1733 /* error when transfering data to/from memory */
1734 qc->err_mask |= AC_ERR_HOST_BUS;
1735 ap->hsm_task_state = HSM_ST_ERR;
1736 }
1737 }
1738 break;
1739 case HSM_ST:
1740 break;
1741 default:
1742 goto idle_irq;
1743 }
1744
624d5c51 1745
a57c1bad
AC
1746 /* check main status, clearing INTRQ if needed */
1747 status = ata_sff_irq_status(ap);
332ac7ff
TH
1748 if (status & ATA_BUSY) {
1749 if (bmdma_stopped) {
1750 /* BMDMA engine is already stopped, we're screwed */
1751 qc->err_mask |= AC_ERR_HSM;
1752 ap->hsm_task_state = HSM_ST_ERR;
1753 } else
1754 goto idle_irq;
1755 }
624d5c51 1756
9f2f7210 1757 /* clear irq events */
5682ed33 1758 ap->ops->sff_irq_clear(ap);
624d5c51 1759
9363c382 1760 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51
TH
1761
1762 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1763 qc->tf.protocol == ATAPI_PROT_DMA))
1764 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1765
1766 return 1; /* irq handled */
1767
1768idle_irq:
1769 ap->stats.idle_irq++;
1770
1771#ifdef ATA_IRQ_TRAP
1772 if ((ap->stats.idle_irq % 1000) == 0) {
5682ed33
TH
1773 ap->ops->sff_check_status(ap);
1774 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1775 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1776 return 1;
1777 }
1778#endif
1779 return 0; /* irq not handled */
1780}
0fe40ff8 1781EXPORT_SYMBOL_GPL(ata_sff_host_intr);
624d5c51
TH
1782
1783/**
9363c382 1784 * ata_sff_interrupt - Default ATA host interrupt handler
624d5c51
TH
1785 * @irq: irq line (unused)
1786 * @dev_instance: pointer to our ata_host information structure
1787 *
1788 * Default interrupt handler for PCI IDE devices. Calls
9363c382 1789 * ata_sff_host_intr() for each port that is not disabled.
624d5c51
TH
1790 *
1791 * LOCKING:
1792 * Obtains host lock during operation.
1793 *
1794 * RETURNS:
1795 * IRQ_NONE or IRQ_HANDLED.
1796 */
9363c382 1797irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
624d5c51
TH
1798{
1799 struct ata_host *host = dev_instance;
332ac7ff 1800 bool retried = false;
624d5c51 1801 unsigned int i;
332ac7ff 1802 unsigned int handled, idle, polling;
624d5c51
TH
1803 unsigned long flags;
1804
1805 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1806 spin_lock_irqsave(&host->lock, flags);
1807
332ac7ff
TH
1808retry:
1809 handled = idle = polling = 0;
624d5c51 1810 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1811 struct ata_port *ap = host->ports[i];
1812 struct ata_queued_cmd *qc;
624d5c51 1813
d88ec2e5 1814 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1815 if (qc) {
1816 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1817 handled |= ata_sff_host_intr(ap, qc);
1818 else
1819 polling |= 1 << i;
332ac7ff
TH
1820 } else
1821 idle |= 1 << i;
27943620
TH
1822 }
1823
1824 /*
1825 * If no port was expecting IRQ but the controller is actually
1826 * asserting IRQ line, nobody cared will ensue. Check IRQ
1827 * pending status if available and clear spurious IRQ.
1828 */
332ac7ff
TH
1829 if (!handled && !retried) {
1830 bool retry = false;
1831
27943620
TH
1832 for (i = 0; i < host->n_ports; i++) {
1833 struct ata_port *ap = host->ports[i];
1834
1835 if (polling & (1 << i))
1836 continue;
1837
1838 if (!ap->ops->sff_irq_check ||
1839 !ap->ops->sff_irq_check(ap))
1840 continue;
1841
332ac7ff
TH
1842 if (idle & (1 << i)) {
1843 ap->ops->sff_check_status(ap);
1844 ap->ops->sff_irq_clear(ap);
1845 } else {
1846 /* clear INTRQ and check if BUSY cleared */
1847 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1848 retry |= true;
1849 /*
1850 * With command in flight, we can't do
1851 * sff_irq_clear() w/o racing with completion.
1852 */
1853 }
1854 }
1855
1856 if (retry) {
1857 retried = true;
1858 goto retry;
27943620 1859 }
624d5c51
TH
1860 }
1861
1862 spin_unlock_irqrestore(&host->lock, flags);
1863
1864 return IRQ_RETVAL(handled);
1865}
0fe40ff8 1866EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1867
c96f1732
AC
1868/**
1869 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1870 * @ap: port that appears to have timed out
1871 *
1872 * Called from the libata error handlers when the core code suspects
1873 * an interrupt has been lost. If it has complete anything we can and
1874 * then return. Interface must support altstatus for this faster
1875 * recovery to occur.
1876 *
1877 * Locking:
1878 * Caller holds host lock
1879 */
1880
1881void ata_sff_lost_interrupt(struct ata_port *ap)
1882{
1883 u8 status;
1884 struct ata_queued_cmd *qc;
1885
1886 /* Only one outstanding command per SFF channel */
1887 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
1888 /* We cannot lose an interrupt on a non-existent or polled command */
1889 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
c96f1732
AC
1890 return;
1891 /* See if the controller thinks it is still busy - if so the command
1892 isn't a lost IRQ but is still in progress */
1893 status = ata_sff_altstatus(ap);
1894 if (status & ATA_BUSY)
1895 return;
1896
1897 /* There was a command running, we are no longer busy and we have
1898 no interrupt. */
1899 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1900 status);
1901 /* Run the host interrupt logic as if the interrupt had not been
1902 lost */
1903 ata_sff_host_intr(ap, qc);
1904}
1905EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1906
624d5c51 1907/**
9363c382 1908 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1909 * @ap: port to freeze
1910 *
9f2f7210 1911 * Freeze SFF controller port.
624d5c51
TH
1912 *
1913 * LOCKING:
1914 * Inherited from caller.
1915 */
9363c382 1916void ata_sff_freeze(struct ata_port *ap)
624d5c51 1917{
624d5c51
TH
1918 ap->ctl |= ATA_NIEN;
1919 ap->last_ctl = ap->ctl;
1920
41dec29b
SS
1921 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1922 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1923
1924 /* Under certain circumstances, some controllers raise IRQ on
1925 * ATA_NIEN manipulation. Also, many controllers fail to mask
1926 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1927 */
5682ed33 1928 ap->ops->sff_check_status(ap);
624d5c51 1929
5682ed33 1930 ap->ops->sff_irq_clear(ap);
624d5c51 1931}
0fe40ff8 1932EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1933
1934/**
9363c382 1935 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1936 * @ap: port to thaw
1937 *
9363c382 1938 * Thaw SFF controller port.
624d5c51
TH
1939 *
1940 * LOCKING:
1941 * Inherited from caller.
1942 */
9363c382 1943void ata_sff_thaw(struct ata_port *ap)
272f7884 1944{
624d5c51 1945 /* clear & re-enable interrupts */
5682ed33
TH
1946 ap->ops->sff_check_status(ap);
1947 ap->ops->sff_irq_clear(ap);
e42a542b 1948 ata_sff_irq_on(ap);
272f7884 1949}
0fe40ff8 1950EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1951
0aa1113d
TH
1952/**
1953 * ata_sff_prereset - prepare SFF link for reset
1954 * @link: SFF link to be reset
1955 * @deadline: deadline jiffies for the operation
1956 *
1957 * SFF link @link is about to be reset. Initialize it. It first
1958 * calls ata_std_prereset() and wait for !BSY if the port is
1959 * being softreset.
1960 *
1961 * LOCKING:
1962 * Kernel thread context (may sleep)
1963 *
1964 * RETURNS:
1965 * 0 on success, -errno otherwise.
1966 */
1967int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1968{
0aa1113d
TH
1969 struct ata_eh_context *ehc = &link->eh_context;
1970 int rc;
1971
1972 rc = ata_std_prereset(link, deadline);
1973 if (rc)
1974 return rc;
1975
1976 /* if we're about to do hardreset, nothing more to do */
1977 if (ehc->i.action & ATA_EH_HARDRESET)
1978 return 0;
1979
1980 /* wait for !BSY if we don't know that no device is attached */
1981 if (!ata_link_offline(link)) {
705e76be 1982 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1983 if (rc && rc != -ENODEV) {
1984 ata_link_printk(link, KERN_WARNING, "device not ready "
1985 "(errno=%d), forcing hardreset\n", rc);
1986 ehc->i.action |= ATA_EH_HARDRESET;
1987 }
1988 }
1989
1990 return 0;
1991}
0fe40ff8 1992EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1993
90088bb4 1994/**
624d5c51
TH
1995 * ata_devchk - PATA device presence detection
1996 * @ap: ATA channel to examine
1997 * @device: Device to examine (starting at zero)
90088bb4 1998 *
624d5c51
TH
1999 * This technique was originally described in
2000 * Hale Landis's ATADRVR (www.ata-atapi.com), and
2001 * later found its way into the ATA/ATAPI spec.
2002 *
2003 * Write a pattern to the ATA shadow registers,
2004 * and if a device is present, it will respond by
2005 * correctly storing and echoing back the
2006 * ATA shadow register contents.
90088bb4
TH
2007 *
2008 * LOCKING:
624d5c51 2009 * caller.
90088bb4 2010 */
624d5c51 2011static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
2012{
2013 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 2014 u8 nsect, lbal;
90088bb4 2015
5682ed33 2016 ap->ops->sff_dev_select(ap, device);
90088bb4 2017
624d5c51
TH
2018 iowrite8(0x55, ioaddr->nsect_addr);
2019 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 2020
624d5c51
TH
2021 iowrite8(0xaa, ioaddr->nsect_addr);
2022 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 2023
624d5c51
TH
2024 iowrite8(0x55, ioaddr->nsect_addr);
2025 iowrite8(0xaa, ioaddr->lbal_addr);
2026
2027 nsect = ioread8(ioaddr->nsect_addr);
2028 lbal = ioread8(ioaddr->lbal_addr);
2029
2030 if ((nsect == 0x55) && (lbal == 0xaa))
2031 return 1; /* we found a device */
2032
2033 return 0; /* nothing found */
90088bb4
TH
2034}
2035
272f7884 2036/**
9363c382 2037 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
2038 * @dev: ATA device to classify (starting at zero)
2039 * @present: device seems present
2040 * @r_err: Value of error register on completion
272f7884 2041 *
624d5c51
TH
2042 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
2043 * an ATA/ATAPI-defined set of values is placed in the ATA
2044 * shadow registers, indicating the results of device detection
2045 * and diagnostics.
272f7884 2046 *
624d5c51
TH
2047 * Select the ATA device, and read the values from the ATA shadow
2048 * registers. Then parse according to the Error register value,
2049 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
2050 *
2051 * LOCKING:
624d5c51
TH
2052 * caller.
2053 *
2054 * RETURNS:
2055 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 2056 */
9363c382 2057unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 2058 u8 *r_err)
272f7884 2059{
624d5c51
TH
2060 struct ata_port *ap = dev->link->ap;
2061 struct ata_taskfile tf;
2062 unsigned int class;
2063 u8 err;
2064
5682ed33 2065 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
2066
2067 memset(&tf, 0, sizeof(tf));
2068
5682ed33 2069 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
2070 err = tf.feature;
2071 if (r_err)
2072 *r_err = err;
2073
2074 /* see if device passed diags: continue and warn later */
2075 if (err == 0)
2076 /* diagnostic fail : do nothing _YET_ */
2077 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
2078 else if (err == 1)
2079 /* do nothing */ ;
2080 else if ((dev->devno == 0) && (err == 0x81))
2081 /* do nothing */ ;
2082 else
2083 return ATA_DEV_NONE;
272f7884 2084
624d5c51
TH
2085 /* determine if device is ATA or ATAPI */
2086 class = ata_dev_classify(&tf);
272f7884 2087
624d5c51
TH
2088 if (class == ATA_DEV_UNKNOWN) {
2089 /* If the device failed diagnostic, it's likely to
2090 * have reported incorrect device signature too.
2091 * Assume ATA device if the device seems present but
2092 * device signature is invalid with diagnostic
2093 * failure.
2094 */
2095 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
2096 class = ATA_DEV_ATA;
2097 else
2098 class = ATA_DEV_NONE;
5682ed33
TH
2099 } else if ((class == ATA_DEV_ATA) &&
2100 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
2101 class = ATA_DEV_NONE;
2102
2103 return class;
272f7884 2104}
0fe40ff8 2105EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 2106
705e76be
TH
2107/**
2108 * ata_sff_wait_after_reset - wait for devices to become ready after reset
2109 * @link: SFF link which is just reset
2110 * @devmask: mask of present devices
2111 * @deadline: deadline jiffies for the operation
2112 *
2113 * Wait devices attached to SFF @link to become ready after
2114 * reset. It contains preceding 150ms wait to avoid accessing TF
2115 * status register too early.
2116 *
2117 * LOCKING:
2118 * Kernel thread context (may sleep).
2119 *
2120 * RETURNS:
2121 * 0 on success, -ENODEV if some or all of devices in @devmask
2122 * don't seem to exist. -errno on other errors.
2123 */
2124int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
2125 unsigned long deadline)
1fdffbce 2126{
705e76be 2127 struct ata_port *ap = link->ap;
1fdffbce 2128 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
2129 unsigned int dev0 = devmask & (1 << 0);
2130 unsigned int dev1 = devmask & (1 << 1);
2131 int rc, ret = 0;
1fdffbce 2132
341c2c95 2133 msleep(ATA_WAIT_AFTER_RESET);
705e76be
TH
2134
2135 /* always check readiness of the master device */
2136 rc = ata_sff_wait_ready(link, deadline);
2137 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
2138 * and TF status is 0xff, bail out on it too.
624d5c51 2139 */
705e76be
TH
2140 if (rc)
2141 return rc;
1fdffbce 2142
624d5c51
TH
2143 /* if device 1 was found in ata_devchk, wait for register
2144 * access briefly, then wait for BSY to clear.
2145 */
2146 if (dev1) {
2147 int i;
1fdffbce 2148
5682ed33 2149 ap->ops->sff_dev_select(ap, 1);
1fdffbce 2150
624d5c51
TH
2151 /* Wait for register access. Some ATAPI devices fail
2152 * to set nsect/lbal after reset, so don't waste too
2153 * much time on it. We're gonna wait for !BSY anyway.
2154 */
2155 for (i = 0; i < 2; i++) {
2156 u8 nsect, lbal;
2157
2158 nsect = ioread8(ioaddr->nsect_addr);
2159 lbal = ioread8(ioaddr->lbal_addr);
2160 if ((nsect == 1) && (lbal == 1))
2161 break;
2162 msleep(50); /* give drive a breather */
2163 }
2164
705e76be 2165 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
2166 if (rc) {
2167 if (rc != -ENODEV)
2168 return rc;
2169 ret = rc;
2170 }
1fdffbce
JG
2171 }
2172
624d5c51 2173 /* is all this really necessary? */
5682ed33 2174 ap->ops->sff_dev_select(ap, 0);
624d5c51 2175 if (dev1)
5682ed33 2176 ap->ops->sff_dev_select(ap, 1);
624d5c51 2177 if (dev0)
5682ed33 2178 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2179
2180 return ret;
1fdffbce 2181}
0fe40ff8 2182EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 2183
624d5c51
TH
2184static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2185 unsigned long deadline)
2cc432ee 2186{
624d5c51 2187 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 2188
624d5c51
TH
2189 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2190
2191 /* software reset. causes dev0 to be selected */
2192 iowrite8(ap->ctl, ioaddr->ctl_addr);
2193 udelay(20); /* FIXME: flush */
2194 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2195 udelay(20); /* FIXME: flush */
2196 iowrite8(ap->ctl, ioaddr->ctl_addr);
e3e4385f 2197 ap->last_ctl = ap->ctl;
624d5c51 2198
705e76be
TH
2199 /* wait the port to become ready */
2200 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
2201}
2202
6d97dbd7 2203/**
9363c382 2204 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
2205 * @link: ATA link to reset
2206 * @classes: resulting classes of attached devices
2207 * @deadline: deadline jiffies for the operation
6d97dbd7 2208 *
624d5c51 2209 * Reset host port using ATA SRST.
6d97dbd7
TH
2210 *
2211 * LOCKING:
624d5c51
TH
2212 * Kernel thread context (may sleep)
2213 *
2214 * RETURNS:
2215 * 0 on success, -errno otherwise.
6d97dbd7 2216 */
9363c382 2217int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2218 unsigned long deadline)
6d97dbd7 2219{
624d5c51
TH
2220 struct ata_port *ap = link->ap;
2221 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2222 unsigned int devmask = 0;
2223 int rc;
2224 u8 err;
6d97dbd7 2225
624d5c51 2226 DPRINTK("ENTER\n");
6d97dbd7 2227
624d5c51
TH
2228 /* determine if device 0/1 are present */
2229 if (ata_devchk(ap, 0))
2230 devmask |= (1 << 0);
2231 if (slave_possible && ata_devchk(ap, 1))
2232 devmask |= (1 << 1);
2233
2234 /* select device 0 again */
5682ed33 2235 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2236
2237 /* issue bus reset */
2238 DPRINTK("about to softreset, devmask=%x\n", devmask);
2239 rc = ata_bus_softreset(ap, devmask, deadline);
2240 /* if link is occupied, -ENODEV too is an error */
2241 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2242 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2243 return rc;
2244 }
0f0a3ad3 2245
624d5c51 2246 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2247 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2248 devmask & (1 << 0), &err);
2249 if (slave_possible && err != 0x81)
9363c382 2250 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2251 devmask & (1 << 1), &err);
2252
624d5c51
TH
2253 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2254 return 0;
6d97dbd7 2255}
0fe40ff8 2256EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2257
2258/**
9363c382 2259 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2260 * @link: link to reset
2261 * @class: resulting class of attached device
2262 * @deadline: deadline jiffies for the operation
6d97dbd7 2263 *
624d5c51
TH
2264 * SATA phy-reset host port using DET bits of SControl register,
2265 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2266 *
2267 * LOCKING:
624d5c51
TH
2268 * Kernel thread context (may sleep)
2269 *
2270 * RETURNS:
2271 * 0 on success, -errno otherwise.
6d97dbd7 2272 */
9363c382 2273int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2274 unsigned long deadline)
6d97dbd7 2275{
9dadd45b
TH
2276 struct ata_eh_context *ehc = &link->eh_context;
2277 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2278 bool online;
624d5c51
TH
2279 int rc;
2280
9dadd45b
TH
2281 rc = sata_link_hardreset(link, timing, deadline, &online,
2282 ata_sff_check_ready);
9dadd45b
TH
2283 if (online)
2284 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2285
2286 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2287 return rc;
6d97dbd7 2288}
0fe40ff8 2289EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2290
203c75b8
TH
2291/**
2292 * ata_sff_postreset - SFF postreset callback
2293 * @link: the target SFF ata_link
2294 * @classes: classes of attached devices
2295 *
2296 * This function is invoked after a successful reset. It first
2297 * calls ata_std_postreset() and performs SFF specific postreset
2298 * processing.
2299 *
2300 * LOCKING:
2301 * Kernel thread context (may sleep)
2302 */
2303void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2304{
2305 struct ata_port *ap = link->ap;
2306
2307 ata_std_postreset(link, classes);
2308
2309 /* is double-select really necessary? */
2310 if (classes[0] != ATA_DEV_NONE)
2311 ap->ops->sff_dev_select(ap, 1);
2312 if (classes[1] != ATA_DEV_NONE)
2313 ap->ops->sff_dev_select(ap, 0);
2314
2315 /* bail out if no device is present */
2316 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2317 DPRINTK("EXIT, no device\n");
2318 return;
2319 }
2320
2321 /* set up device control */
41dec29b
SS
2322 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2323 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2324 ap->last_ctl = ap->ctl;
2325 }
203c75b8 2326}
0fe40ff8 2327EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2328
3d47aa8e
AC
2329/**
2330 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2331 * @qc: command
2332 *
2333 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2334 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2335 * reset will recover the device.
2336 *
2337 */
2338
2339void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2340{
2341 int count;
2342 struct ata_port *ap;
2343
2344 /* We only need to flush incoming data when a command was running */
2345 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2346 return;
2347
2348 ap = qc->ap;
2349 /* Drain up to 64K of data before we give up this recovery method */
2350 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2351 && count < 65536; count += 2)
3d47aa8e
AC
2352 ioread16(ap->ioaddr.data_addr);
2353
2354 /* Can become DEBUG later */
2355 if (count)
2356 ata_port_printk(ap, KERN_DEBUG,
2357 "drained %d bytes to clear DRQ.\n", count);
2358
2359}
2360EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2361
6d97dbd7 2362/**
fe06e5f9 2363 * ata_sff_error_handler - Stock error handler for SFF controller
6d97dbd7 2364 * @ap: port to handle error for
6d97dbd7 2365 *
9363c382 2366 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2367 * PATA and SATA controllers. Many controllers should be able to
2368 * use this EH as-is or with some added handling before and
2369 * after.
2370 *
6d97dbd7
TH
2371 * LOCKING:
2372 * Kernel thread context (may sleep)
2373 */
9363c382 2374void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2375{
a1efdaba
TH
2376 ata_reset_fn_t softreset = ap->ops->softreset;
2377 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2378 struct ata_queued_cmd *qc;
2379 unsigned long flags;
6d97dbd7 2380
9af5c9c9 2381 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2382 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2383 qc = NULL;
2384
ba6a1308 2385 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2386
fe06e5f9
TH
2387 /*
2388 * We *MUST* do FIFO draining before we issue a reset as
2389 * several devices helpfully clear their internal state and
2390 * will lock solid if we touch the data port post reset. Pass
2391 * qc in case anyone wants to do different PIO/DMA recovery or
2392 * has per command fixups
3d47aa8e 2393 */
8244cd05
TH
2394 if (ap->ops->sff_drain_fifo)
2395 ap->ops->sff_drain_fifo(qc);
6d97dbd7 2396
ba6a1308 2397 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2398
fe06e5f9 2399 /* ignore ata_sff_softreset if ctl isn't accessible */
9363c382 2400 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2401 softreset = NULL;
fe06e5f9
TH
2402
2403 /* ignore built-in hardresets if SCR access is not available */
2404 if ((hardreset == sata_std_hardreset ||
2405 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2406 hardreset = NULL;
6d97dbd7 2407
a1efdaba
TH
2408 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2409 ap->ops->postreset);
6d97dbd7 2410}
0fe40ff8 2411EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7 2412
624d5c51 2413/**
9363c382 2414 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2415 * @ioaddr: IO address structure to be initialized
2416 *
2417 * Utility function which initializes data_addr, error_addr,
2418 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2419 * device_addr, status_addr, and command_addr to standard offsets
2420 * relative to cmd_addr.
2421 *
2422 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2423 */
9363c382 2424void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2425{
2426 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2427 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2428 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2429 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2430 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2431 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2432 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2433 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2434 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2435 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2436}
0fe40ff8 2437EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2438
1fdffbce 2439#ifdef CONFIG_PCI
4112e16a 2440
272f7884
TH
2441static int ata_resources_present(struct pci_dev *pdev, int port)
2442{
2443 int i;
2444
2445 /* Check the PCI resources for this channel are enabled */
2446 port = port * 2;
0fe40ff8 2447 for (i = 0; i < 2; i++) {
272f7884
TH
2448 if (pci_resource_start(pdev, port + i) == 0 ||
2449 pci_resource_len(pdev, port + i) == 0)
2450 return 0;
2451 }
2452 return 1;
2453}
2454
d491b27b 2455/**
9363c382 2456 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2457 * @host: target ATA host
d491b27b 2458 *
1626aeb8
TH
2459 * Acquire native PCI ATA resources for @host and initialize the
2460 * first two ports of @host accordingly. Ports marked dummy are
2461 * skipped and allocation failure makes the port dummy.
d491b27b 2462 *
d583bc18
TH
2463 * Note that native PCI resources are valid even for legacy hosts
2464 * as we fix up pdev resources array early in boot, so this
2465 * function can be used for both native and legacy SFF hosts.
2466 *
d491b27b
TH
2467 * LOCKING:
2468 * Inherited from calling layer (may sleep).
2469 *
2470 * RETURNS:
1626aeb8
TH
2471 * 0 if at least one port is initialized, -ENODEV if no port is
2472 * available.
d491b27b 2473 */
9363c382 2474int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2475{
2476 struct device *gdev = host->dev;
2477 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2478 unsigned int mask = 0;
d491b27b
TH
2479 int i, rc;
2480
d491b27b
TH
2481 /* request, iomap BARs and init port addresses accordingly */
2482 for (i = 0; i < 2; i++) {
2483 struct ata_port *ap = host->ports[i];
2484 int base = i * 2;
2485 void __iomem * const *iomap;
2486
1626aeb8
TH
2487 if (ata_port_is_dummy(ap))
2488 continue;
2489
2490 /* Discard disabled ports. Some controllers show
2491 * their unused channels this way. Disabled ports are
2492 * made dummy.
2493 */
2494 if (!ata_resources_present(pdev, i)) {
2495 ap->ops = &ata_dummy_port_ops;
d491b27b 2496 continue;
1626aeb8 2497 }
d491b27b 2498
35a10a80
TH
2499 rc = pcim_iomap_regions(pdev, 0x3 << base,
2500 dev_driver_string(gdev));
d491b27b 2501 if (rc) {
1626aeb8
TH
2502 dev_printk(KERN_WARNING, gdev,
2503 "failed to request/iomap BARs for port %d "
2504 "(errno=%d)\n", i, rc);
d491b27b
TH
2505 if (rc == -EBUSY)
2506 pcim_pin_device(pdev);
1626aeb8
TH
2507 ap->ops = &ata_dummy_port_ops;
2508 continue;
d491b27b
TH
2509 }
2510 host->iomap = iomap = pcim_iomap_table(pdev);
2511
2512 ap->ioaddr.cmd_addr = iomap[base];
2513 ap->ioaddr.altstatus_addr =
2514 ap->ioaddr.ctl_addr = (void __iomem *)
2515 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2516 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2517
cbcdd875
TH
2518 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2519 (unsigned long long)pci_resource_start(pdev, base),
2520 (unsigned long long)pci_resource_start(pdev, base + 1));
2521
1626aeb8
TH
2522 mask |= 1 << i;
2523 }
2524
2525 if (!mask) {
2526 dev_printk(KERN_ERR, gdev, "no available native port\n");
2527 return -ENODEV;
d491b27b
TH
2528 }
2529
2530 return 0;
2531}
0fe40ff8 2532EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2533
21b0ad4f 2534/**
9363c382 2535 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
21b0ad4f 2536 * @pdev: target PCI device
1626aeb8 2537 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2538 * @r_host: out argument for the initialized ATA host
2539 *
2540 * Helper to allocate ATA host for @pdev, acquire all native PCI
2541 * resources and initialize it accordingly in one go.
2542 *
2543 * LOCKING:
2544 * Inherited from calling layer (may sleep).
2545 *
2546 * RETURNS:
2547 * 0 on success, -errno otherwise.
2548 */
9363c382 2549int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2550 const struct ata_port_info * const *ppi,
d583bc18 2551 struct ata_host **r_host)
21b0ad4f
TH
2552{
2553 struct ata_host *host;
21b0ad4f
TH
2554 int rc;
2555
2556 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2557 return -ENOMEM;
2558
2559 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2560 if (!host) {
2561 dev_printk(KERN_ERR, &pdev->dev,
2562 "failed to allocate ATA host\n");
2563 rc = -ENOMEM;
2564 goto err_out;
2565 }
2566
9363c382 2567 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2568 if (rc)
2569 goto err_out;
2570
2571 /* init DMA related stuff */
c7087652 2572 ata_pci_bmdma_init(host);
21b0ad4f
TH
2573
2574 devres_remove_group(&pdev->dev, NULL);
2575 *r_host = host;
2576 return 0;
2577
0fe40ff8 2578err_out:
21b0ad4f
TH
2579 devres_release_group(&pdev->dev, NULL);
2580 return rc;
2581}
0fe40ff8 2582EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2583
4e6b79fa 2584/**
9363c382 2585 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2586 * @host: target SFF ATA host
2587 * @irq_handler: irq_handler used when requesting IRQ(s)
2588 * @sht: scsi_host_template to use when registering the host
2589 *
2590 * This is the counterpart of ata_host_activate() for SFF ATA
2591 * hosts. This separate helper is necessary because SFF hosts
2592 * use two separate interrupts in legacy mode.
2593 *
2594 * LOCKING:
2595 * Inherited from calling layer (may sleep).
2596 *
2597 * RETURNS:
2598 * 0 on success, -errno otherwise.
2599 */
9363c382 2600int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2601 irq_handler_t irq_handler,
2602 struct scsi_host_template *sht)
2603{
2604 struct device *dev = host->dev;
2605 struct pci_dev *pdev = to_pci_dev(dev);
2606 const char *drv_name = dev_driver_string(host->dev);
2607 int legacy_mode = 0, rc;
2608
2609 rc = ata_host_start(host);
2610 if (rc)
2611 return rc;
2612
2613 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2614 u8 tmp8, mask;
2615
2616 /* TODO: What if one channel is in native mode ... */
2617 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2618 mask = (1 << 2) | (1 << 0);
2619 if ((tmp8 & mask) != mask)
2620 legacy_mode = 1;
2621#if defined(CONFIG_NO_ATA_LEGACY)
2622 /* Some platforms with PCI limits cannot address compat
2623 port space. In that case we punt if their firmware has
2624 left a device in compatibility mode */
2625 if (legacy_mode) {
2626 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2627 return -EOPNOTSUPP;
2628 }
2629#endif
2630 }
2631
2632 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2633 return -ENOMEM;
2634
2635 if (!legacy_mode && pdev->irq) {
2636 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2637 IRQF_SHARED, drv_name, host);
2638 if (rc)
2639 goto out;
2640
2641 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2642 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2643 } else if (legacy_mode) {
2644 if (!ata_port_is_dummy(host->ports[0])) {
2645 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2646 irq_handler, IRQF_SHARED,
2647 drv_name, host);
2648 if (rc)
2649 goto out;
2650
2651 ata_port_desc(host->ports[0], "irq %d",
2652 ATA_PRIMARY_IRQ(pdev));
2653 }
2654
2655 if (!ata_port_is_dummy(host->ports[1])) {
2656 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2657 irq_handler, IRQF_SHARED,
2658 drv_name, host);
2659 if (rc)
2660 goto out;
2661
2662 ata_port_desc(host->ports[1], "irq %d",
2663 ATA_SECONDARY_IRQ(pdev));
2664 }
2665 }
2666
2667 rc = ata_host_register(host, sht);
0fe40ff8 2668out:
4e6b79fa
TH
2669 if (rc == 0)
2670 devres_remove_group(dev, NULL);
2671 else
2672 devres_release_group(dev, NULL);
2673
2674 return rc;
2675}
0fe40ff8 2676EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2677
1fdffbce 2678/**
9363c382 2679 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
1fdffbce 2680 * @pdev: Controller to be initialized
1626aeb8 2681 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2682 * @sht: scsi_host_template to use when registering the host
887125e3 2683 * @host_priv: host private_data
16ea0fc9 2684 * @hflag: host flags
1fdffbce
JG
2685 *
2686 * This is a helper function which can be called from a driver's
2687 * xxx_init_one() probe function if the hardware uses traditional
2688 * IDE taskfile registers.
2689 *
2690 * This function calls pci_enable_device(), reserves its register
2691 * regions, sets the dma mask, enables bus master mode, and calls
2692 * ata_device_add()
2693 *
2ec7df04
AC
2694 * ASSUMPTION:
2695 * Nobody makes a single channel controller that appears solely as
2696 * the secondary legacy port on PCI.
2697 *
1fdffbce
JG
2698 * LOCKING:
2699 * Inherited from PCI layer (may sleep).
2700 *
2701 * RETURNS:
2702 * Zero on success, negative on errno-based value on error.
2703 */
9363c382 2704int ata_pci_sff_init_one(struct pci_dev *pdev,
16ea0fc9
AC
2705 const struct ata_port_info * const *ppi,
2706 struct scsi_host_template *sht, void *host_priv, int hflag)
1fdffbce 2707{
f0d36efd 2708 struct device *dev = &pdev->dev;
1626aeb8 2709 const struct ata_port_info *pi = NULL;
0f834de3 2710 struct ata_host *host = NULL;
1626aeb8 2711 int i, rc;
1fdffbce
JG
2712
2713 DPRINTK("ENTER\n");
2714
1626aeb8
TH
2715 /* look up the first valid port_info */
2716 for (i = 0; i < 2 && ppi[i]; i++) {
2717 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2718 pi = ppi[i];
2719 break;
2720 }
2721 }
f0d36efd 2722
1626aeb8
TH
2723 if (!pi) {
2724 dev_printk(KERN_ERR, &pdev->dev,
2725 "no valid port_info specified\n");
2726 return -EINVAL;
2727 }
c791c306 2728
1626aeb8
TH
2729 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2730 return -ENOMEM;
1fdffbce 2731
f0d36efd 2732 rc = pcim_enable_device(pdev);
1fdffbce 2733 if (rc)
4e6b79fa 2734 goto out;
1fdffbce 2735
4e6b79fa 2736 /* prepare and activate SFF host */
9363c382 2737 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2738 if (rc)
4e6b79fa 2739 goto out;
887125e3 2740 host->private_data = host_priv;
16ea0fc9 2741 host->flags |= hflag;
d491b27b 2742
d491b27b 2743 pci_set_master(pdev);
9363c382 2744 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 2745out:
4e6b79fa
TH
2746 if (rc == 0)
2747 devres_remove_group(&pdev->dev, NULL);
2748 else
2749 devres_release_group(&pdev->dev, NULL);
d491b27b 2750
1fdffbce
JG
2751 return rc;
2752}
0fe40ff8 2753EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
2754
2755#endif /* CONFIG_PCI */
9f2f7210
TH
2756
2757const struct ata_port_operations ata_bmdma_port_ops = {
2758 .inherits = &ata_sff_port_ops,
2759
fe06e5f9
TH
2760 .error_handler = ata_bmdma_error_handler,
2761 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2762
9f2f7210
TH
2763 .bmdma_setup = ata_bmdma_setup,
2764 .bmdma_start = ata_bmdma_start,
2765 .bmdma_stop = ata_bmdma_stop,
2766 .bmdma_status = ata_bmdma_status,
c7087652
TH
2767
2768 .port_start = ata_bmdma_port_start,
9f2f7210
TH
2769};
2770EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2771
2772const struct ata_port_operations ata_bmdma32_port_ops = {
2773 .inherits = &ata_bmdma_port_ops,
2774
2775 .sff_data_xfer = ata_sff_data_xfer32,
c7087652 2776 .port_start = ata_bmdma_port_start32,
9f2f7210
TH
2777};
2778EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2779
fe06e5f9
TH
2780/**
2781 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2782 * @ap: port to handle error for
2783 *
2784 * Stock error handler for BMDMA controller. It can handle both
2785 * PATA and SATA controllers. Most BMDMA controllers should be
2786 * able to use this EH as-is or with some added handling before
2787 * and after.
2788 *
2789 * LOCKING:
2790 * Kernel thread context (may sleep)
2791 */
2792void ata_bmdma_error_handler(struct ata_port *ap)
2793{
2794 struct ata_queued_cmd *qc;
2795 unsigned long flags;
2796 bool thaw = false;
2797
2798 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2799 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2800 qc = NULL;
2801
2802 /* reset PIO HSM and stop DMA engine */
2803 spin_lock_irqsave(ap->lock, flags);
2804
2805 if (qc && ata_is_dma(qc->tf.protocol)) {
2806 u8 host_stat;
2807
2808 host_stat = ap->ops->bmdma_status(ap);
2809
2810 /* BMDMA controllers indicate host bus error by
2811 * setting DMA_ERR bit and timing out. As it wasn't
2812 * really a timeout event, adjust error mask and
2813 * cancel frozen state.
2814 */
2815 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2816 qc->err_mask = AC_ERR_HOST_BUS;
2817 thaw = true;
2818 }
2819
2820 ap->ops->bmdma_stop(qc);
2821
2822 /* if we're gonna thaw, make sure IRQ is clear */
2823 if (thaw) {
2824 ap->ops->sff_check_status(ap);
2825 ap->ops->sff_irq_clear(ap);
2826 }
2827 }
2828
2829 spin_unlock_irqrestore(ap->lock, flags);
2830
2831 if (thaw)
2832 ata_eh_thaw_port(ap);
2833
2834 ata_sff_error_handler(ap);
2835}
2836EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2837
2838/**
2839 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2840 * @qc: internal command to clean up
2841 *
2842 * LOCKING:
2843 * Kernel thread context (may sleep)
2844 */
2845void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2846{
2847 struct ata_port *ap = qc->ap;
2848 unsigned long flags;
2849
2850 if (ata_is_dma(qc->tf.protocol)) {
2851 spin_lock_irqsave(ap->lock, flags);
2852 ap->ops->bmdma_stop(qc);
2853 spin_unlock_irqrestore(ap->lock, flags);
2854 }
2855}
2856EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2857
9f2f7210
TH
2858/**
2859 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2860 * @qc: Info associated with this ATA transaction.
2861 *
2862 * LOCKING:
2863 * spin_lock_irqsave(host lock)
2864 */
2865void ata_bmdma_setup(struct ata_queued_cmd *qc)
2866{
2867 struct ata_port *ap = qc->ap;
2868 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2869 u8 dmactl;
2870
2871 /* load PRD table addr. */
2872 mb(); /* make sure PRD table writes are visible to controller */
2873 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2874
2875 /* specify data direction, triple-check start bit is clear */
2876 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2877 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2878 if (!rw)
2879 dmactl |= ATA_DMA_WR;
2880 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2881
2882 /* issue r/w command */
2883 ap->ops->sff_exec_command(ap, &qc->tf);
2884}
2885EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2886
2887/**
2888 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2889 * @qc: Info associated with this ATA transaction.
2890 *
2891 * LOCKING:
2892 * spin_lock_irqsave(host lock)
2893 */
2894void ata_bmdma_start(struct ata_queued_cmd *qc)
2895{
2896 struct ata_port *ap = qc->ap;
2897 u8 dmactl;
2898
2899 /* start host DMA transaction */
2900 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2901 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2902
2903 /* Strictly, one may wish to issue an ioread8() here, to
2904 * flush the mmio write. However, control also passes
2905 * to the hardware at this point, and it will interrupt
2906 * us when we are to resume control. So, in effect,
2907 * we don't care when the mmio write flushes.
2908 * Further, a read of the DMA status register _immediately_
2909 * following the write may not be what certain flaky hardware
2910 * is expected, so I think it is best to not add a readb()
2911 * without first all the MMIO ATA cards/mobos.
2912 * Or maybe I'm just being paranoid.
2913 *
2914 * FIXME: The posting of this write means I/O starts are
2915 * unneccessarily delayed for MMIO
2916 */
2917}
2918EXPORT_SYMBOL_GPL(ata_bmdma_start);
2919
2920/**
2921 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2922 * @qc: Command we are ending DMA for
2923 *
2924 * Clears the ATA_DMA_START flag in the dma control register
2925 *
2926 * May be used as the bmdma_stop() entry in ata_port_operations.
2927 *
2928 * LOCKING:
2929 * spin_lock_irqsave(host lock)
2930 */
2931void ata_bmdma_stop(struct ata_queued_cmd *qc)
2932{
2933 struct ata_port *ap = qc->ap;
2934 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2935
2936 /* clear start/stop bit */
2937 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2938 mmio + ATA_DMA_CMD);
2939
2940 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2941 ata_sff_dma_pause(ap);
2942}
2943EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2944
2945/**
2946 * ata_bmdma_status - Read PCI IDE BMDMA status
2947 * @ap: Port associated with this ATA transaction.
2948 *
2949 * Read and return BMDMA status register.
2950 *
2951 * May be used as the bmdma_status() entry in ata_port_operations.
2952 *
2953 * LOCKING:
2954 * spin_lock_irqsave(host lock)
2955 */
2956u8 ata_bmdma_status(struct ata_port *ap)
2957{
2958 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2959}
2960EXPORT_SYMBOL_GPL(ata_bmdma_status);
2961
c7087652
TH
2962
2963/**
2964 * ata_bmdma_port_start - Set port up for bmdma.
2965 * @ap: Port to initialize
2966 *
2967 * Called just after data structures for each port are
2968 * initialized. Allocates space for PRD table.
2969 *
2970 * May be used as the port_start() entry in ata_port_operations.
2971 *
2972 * LOCKING:
2973 * Inherited from caller.
2974 */
2975int ata_bmdma_port_start(struct ata_port *ap)
2976{
2977 if (ap->mwdma_mask || ap->udma_mask) {
2978 ap->prd = dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2979 &ap->prd_dma, GFP_KERNEL);
2980 if (!ap->prd)
2981 return -ENOMEM;
2982 }
2983
2984 return 0;
2985}
2986EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
2987
2988/**
2989 * ata_bmdma_port_start32 - Set port up for dma.
2990 * @ap: Port to initialize
2991 *
2992 * Called just after data structures for each port are
2993 * initialized. Enables 32bit PIO and allocates space for PRD
2994 * table.
2995 *
2996 * May be used as the port_start() entry in ata_port_operations for
2997 * devices that are capable of 32bit PIO.
2998 *
2999 * LOCKING:
3000 * Inherited from caller.
3001 */
3002int ata_bmdma_port_start32(struct ata_port *ap)
3003{
3004 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3005 return ata_bmdma_port_start(ap);
3006}
3007EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3008
9f2f7210
TH
3009#ifdef CONFIG_PCI
3010
3011/**
3012 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3013 * @pdev: PCI device
3014 *
3015 * Some PCI ATA devices report simplex mode but in fact can be told to
3016 * enter non simplex mode. This implements the necessary logic to
3017 * perform the task on such devices. Calling it on other devices will
3018 * have -undefined- behaviour.
3019 */
3020int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3021{
3022 unsigned long bmdma = pci_resource_start(pdev, 4);
3023 u8 simplex;
3024
3025 if (bmdma == 0)
3026 return -ENOENT;
3027
3028 simplex = inb(bmdma + 0x02);
3029 outb(simplex & 0x60, bmdma + 0x02);
3030 simplex = inb(bmdma + 0x02);
3031 if (simplex & 0x80)
3032 return -EOPNOTSUPP;
3033 return 0;
3034}
3035EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3036
c7087652
TH
3037static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3038{
3039 int i;
3040
3041 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3042 reason);
3043
3044 for (i = 0; i < 2; i++) {
3045 host->ports[i]->mwdma_mask = 0;
3046 host->ports[i]->udma_mask = 0;
3047 }
3048}
3049
9f2f7210
TH
3050/**
3051 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3052 * @host: target ATA host
3053 *
3054 * Acquire PCI BMDMA resources and initialize @host accordingly.
3055 *
3056 * LOCKING:
3057 * Inherited from calling layer (may sleep).
9f2f7210 3058 */
c7087652 3059void ata_pci_bmdma_init(struct ata_host *host)
9f2f7210
TH
3060{
3061 struct device *gdev = host->dev;
3062 struct pci_dev *pdev = to_pci_dev(gdev);
3063 int i, rc;
3064
3065 /* No BAR4 allocation: No DMA */
c7087652
TH
3066 if (pci_resource_start(pdev, 4) == 0) {
3067 ata_bmdma_nodma(host, "BAR4 is zero");
3068 return;
3069 }
9f2f7210 3070
c7087652
TH
3071 /*
3072 * Some controllers require BMDMA region to be initialized
3073 * even if DMA is not in use to clear IRQ status via
3074 * ->sff_irq_clear method. Try to initialize bmdma_addr
3075 * regardless of dma masks.
3076 */
9f2f7210
TH
3077 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3078 if (rc)
c7087652
TH
3079 ata_bmdma_nodma(host, "failed to set dma mask");
3080 if (!rc) {
3081 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3082 if (rc)
3083 ata_bmdma_nodma(host,
3084 "failed to set consistent dma mask");
3085 }
9f2f7210
TH
3086
3087 /* request and iomap DMA region */
3088 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3089 if (rc) {
c7087652
TH
3090 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3091 return;
9f2f7210
TH
3092 }
3093 host->iomap = pcim_iomap_table(pdev);
3094
3095 for (i = 0; i < 2; i++) {
3096 struct ata_port *ap = host->ports[i];
3097 void __iomem *bmdma = host->iomap[4] + 8 * i;
3098
3099 if (ata_port_is_dummy(ap))
3100 continue;
3101
3102 ap->ioaddr.bmdma_addr = bmdma;
3103 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3104 (ioread8(bmdma + 2) & 0x80))
3105 host->flags |= ATA_HOST_SIMPLEX;
3106
3107 ata_port_desc(ap, "bmdma 0x%llx",
3108 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3109 }
9f2f7210
TH
3110}
3111EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3112
3113#endif /* CONFIG_PCI */
270390e1
TH
3114
3115/**
3116 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3117 * @ap: Port to initialize
3118 *
3119 * Called on port allocation to initialize SFF/BMDMA specific
3120 * fields.
3121 *
3122 * LOCKING:
3123 * None.
3124 */
3125void ata_sff_port_init(struct ata_port *ap)
3126{
c429137a 3127 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
5fe7454a
TH
3128 ap->ctl = ATA_DEVCTL_OBS;
3129 ap->last_ctl = 0xFF;
270390e1
TH
3130}
3131
3132int __init ata_sff_init(void)
3133{
c429137a
TH
3134 /*
3135 * FIXME: In UP case, there is only one workqueue thread and if you
3136 * have more than one PIO device, latency is bloody awful, with
3137 * occasional multi-second "hiccups" as one PIO device waits for
3138 * another. It's an ugly wart that users DO occasionally complain
3139 * about; luckily most users have at most one PIO polled device.
3140 */
3141 ata_sff_wq = create_workqueue("ata_sff");
3142 if (!ata_sff_wq)
3143 return -ENOMEM;
3144
270390e1
TH
3145 return 0;
3146}
3147
3148void __exit ata_sff_exit(void)
3149{
c429137a 3150 destroy_workqueue(ata_sff_wq);
270390e1 3151}