]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - drivers/ata/pata_ftide010.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / drivers / ata / pata_ftide010.c
CommitLineData
be4e456e
LW
1/*
2 * Faraday Technology FTIDE010 driver
3 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
4 *
5 * Includes portions of the SL2312/SL3516/Gemini PATA driver
6 * Copyright (C) 2003 StorLine, Inc <jason@storlink.com.tw>
7 * Copyright (C) 2009 Janos Laube <janos.dev@gmail.com>
8 * Copyright (C) 2010 Frederic Pecourt <opengemini@free.fr>
9 * Copyright (C) 2011 Tobias Waldvogel <tobias.waldvogel@gmail.com>
10 */
11
12#include <linux/platform_device.h>
13#include <linux/module.h>
14#include <linux/libata.h>
15#include <linux/bitops.h>
16#include <linux/of_address.h>
17#include <linux/of_device.h>
18#include <linux/clk.h>
19#include "sata_gemini.h"
20
21#define DRV_NAME "pata_ftide010"
22
23/**
24 * struct ftide010 - state container for the Faraday FTIDE010
25 * @dev: pointer back to the device representing this controller
26 * @base: remapped I/O space address
27 * @pclk: peripheral clock for the IDE block
28 * @host: pointer to the ATA host for this device
29 * @master_cbl: master cable type
30 * @slave_cbl: slave cable type
31 * @sg: Gemini SATA bridge pointer, if running on the Gemini
32 * @master_to_sata0: Gemini SATA bridge: the ATA master is connected
33 * to the SATA0 bridge
34 * @slave_to_sata0: Gemini SATA bridge: the ATA slave is connected
35 * to the SATA0 bridge
36 * @master_to_sata1: Gemini SATA bridge: the ATA master is connected
37 * to the SATA1 bridge
38 * @slave_to_sata1: Gemini SATA bridge: the ATA slave is connected
39 * to the SATA1 bridge
40 */
41struct ftide010 {
42 struct device *dev;
43 void __iomem *base;
44 struct clk *pclk;
45 struct ata_host *host;
46 unsigned int master_cbl;
47 unsigned int slave_cbl;
48 /* Gemini-specific properties */
49 struct sata_gemini *sg;
50 bool master_to_sata0;
51 bool slave_to_sata0;
52 bool master_to_sata1;
53 bool slave_to_sata1;
54};
55
56#define FTIDE010_DMA_REG 0x00
57#define FTIDE010_DMA_STATUS 0x02
58#define FTIDE010_IDE_BMDTPR 0x04
59#define FTIDE010_IDE_DEVICE_ID 0x08
60#define FTIDE010_PIO_TIMING 0x10
61#define FTIDE010_MWDMA_TIMING 0x11
62#define FTIDE010_UDMA_TIMING0 0x12 /* Master */
63#define FTIDE010_UDMA_TIMING1 0x13 /* Slave */
64#define FTIDE010_CLK_MOD 0x14
65/* These registers are mapped directly to the IDE registers */
66#define FTIDE010_CMD_DATA 0x20
67#define FTIDE010_ERROR_FEATURES 0x21
68#define FTIDE010_NSECT 0x22
69#define FTIDE010_LBAL 0x23
70#define FTIDE010_LBAM 0x24
71#define FTIDE010_LBAH 0x25
72#define FTIDE010_DEVICE 0x26
73#define FTIDE010_STATUS_COMMAND 0x27
74#define FTIDE010_ALTSTAT_CTRL 0x36
75
76/* Set this bit for UDMA mode 5 and 6 */
77#define FTIDE010_UDMA_TIMING_MODE_56 BIT(7)
78
79/* 0 = 50 MHz, 1 = 66 MHz */
80#define FTIDE010_CLK_MOD_DEV0_CLK_SEL BIT(0)
81#define FTIDE010_CLK_MOD_DEV1_CLK_SEL BIT(1)
82/* Enable UDMA on a device */
83#define FTIDE010_CLK_MOD_DEV0_UDMA_EN BIT(4)
84#define FTIDE010_CLK_MOD_DEV1_UDMA_EN BIT(5)
85
86static struct scsi_host_template pata_ftide010_sht = {
87 ATA_BMDMA_SHT(DRV_NAME),
88};
89
90/*
91 * Bus timings
92 *
93 * The unit of the below required timings is two clock periods of the ATA
94 * reference clock which is 30 nanoseconds per unit at 66MHz and 20
95 * nanoseconds per unit at 50 MHz. The PIO timings assume 33MHz speed for
96 * PIO.
97 *
98 * pio_active_time: array of 5 elements for T2 timing for Mode 0,
99 * 1, 2, 3 and 4. Range 0..15.
100 * pio_recovery_time: array of 5 elements for T2l timing for Mode 0,
101 * 1, 2, 3 and 4. Range 0..15.
102 * mdma_50_active_time: array of 4 elements for Td timing for multi
103 * word DMA, Mode 0, 1, and 2 at 50 MHz. Range 0..15.
104 * mdma_50_recovery_time: array of 4 elements for Tk timing for
105 * multi word DMA, Mode 0, 1 and 2 at 50 MHz. Range 0..15.
106 * mdma_66_active_time: array of 4 elements for Td timing for multi
107 * word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
108 * mdma_66_recovery_time: array of 4 elements for Tk timing for
109 * multi word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
110 * udma_50_setup_time: array of 4 elements for Tvds timing for ultra
111 * DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz. Range 0..7.
112 * udma_50_hold_time: array of 4 elements for Tdvh timing for
113 * multi word DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz, Range 0..7.
114 * udma_66_setup_time: array of 4 elements for Tvds timing for multi
115 * word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
116 * udma_66_hold_time: array of 4 elements for Tdvh timing for
117 * multi word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
118 */
119static const u8 pio_active_time[5] = {10, 10, 10, 3, 3};
120static const u8 pio_recovery_time[5] = {10, 3, 1, 3, 1};
121static const u8 mwdma_50_active_time[3] = {6, 2, 2};
122static const u8 mwdma_50_recovery_time[3] = {6, 2, 1};
123static const u8 mwdma_66_active_time[3] = {8, 3, 3};
124static const u8 mwdma_66_recovery_time[3] = {8, 2, 1};
125static const u8 udma_50_setup_time[6] = {3, 3, 2, 2, 1, 1};
126static const u8 udma_50_hold_time[6] = {3, 1, 1, 1, 1, 1};
127static const u8 udma_66_setup_time[7] = {4, 4, 3, 2, };
128static const u8 udma_66_hold_time[7] = {};
129
130/*
131 * We set 66 MHz for all MWDMA modes
132 */
133static const bool set_mdma_66_mhz[] = { true, true, true, true };
134
135/*
136 * We set 66 MHz for UDMA modes 3, 4 and 6 and no others
137 */
138static const bool set_udma_66_mhz[] = { false, false, false, true, true, false, true };
139
140static void ftide010_set_dmamode(struct ata_port *ap, struct ata_device *adev)
141{
142 struct ftide010 *ftide = ap->host->private_data;
143 u8 speed = adev->dma_mode;
144 u8 devno = adev->devno & 1;
145 u8 udma_en_mask;
146 u8 f66m_en_mask;
147 u8 clkreg;
148 u8 timreg;
149 u8 i;
150
151 /* Target device 0 (master) or 1 (slave) */
152 if (!devno) {
153 udma_en_mask = FTIDE010_CLK_MOD_DEV0_UDMA_EN;
154 f66m_en_mask = FTIDE010_CLK_MOD_DEV0_CLK_SEL;
155 } else {
156 udma_en_mask = FTIDE010_CLK_MOD_DEV1_UDMA_EN;
157 f66m_en_mask = FTIDE010_CLK_MOD_DEV1_CLK_SEL;
158 }
159
160 clkreg = readb(ftide->base + FTIDE010_CLK_MOD);
161 clkreg &= ~udma_en_mask;
162 clkreg &= ~f66m_en_mask;
163
164 if (speed & XFER_UDMA_0) {
165 i = speed & ~XFER_UDMA_0;
166 dev_dbg(ftide->dev, "set UDMA mode %02x, index %d\n",
167 speed, i);
168
169 clkreg |= udma_en_mask;
170 if (set_udma_66_mhz[i]) {
171 clkreg |= f66m_en_mask;
172 timreg = udma_66_setup_time[i] << 4 |
173 udma_66_hold_time[i];
174 } else {
175 timreg = udma_50_setup_time[i] << 4 |
176 udma_50_hold_time[i];
177 }
178
179 /* A special bit needs to be set for modes 5 and 6 */
180 if (i >= 5)
181 timreg |= FTIDE010_UDMA_TIMING_MODE_56;
182
183 dev_dbg(ftide->dev, "UDMA write clkreg = %02x, timreg = %02x\n",
184 clkreg, timreg);
185
186 writeb(clkreg, ftide->base + FTIDE010_CLK_MOD);
187 writeb(timreg, ftide->base + FTIDE010_UDMA_TIMING0 + devno);
188 } else {
189 i = speed & ~XFER_MW_DMA_0;
190 dev_dbg(ftide->dev, "set MWDMA mode %02x, index %d\n",
191 speed, i);
192
193 if (set_mdma_66_mhz[i]) {
194 clkreg |= f66m_en_mask;
195 timreg = mwdma_66_active_time[i] << 4 |
196 mwdma_66_recovery_time[i];
197 } else {
198 timreg = mwdma_50_active_time[i] << 4 |
199 mwdma_50_recovery_time[i];
200 }
201 dev_dbg(ftide->dev,
202 "MWDMA write clkreg = %02x, timreg = %02x\n",
203 clkreg, timreg);
204 /* This will affect all devices */
205 writeb(clkreg, ftide->base + FTIDE010_CLK_MOD);
206 writeb(timreg, ftide->base + FTIDE010_MWDMA_TIMING);
207 }
208
209 /*
210 * Store the current device (master or slave) in ap->private_data
211 * so that .qc_issue() can detect if this changes and reprogram
212 * the DMA settings.
213 */
214 ap->private_data = adev;
215
216 return;
217}
218
219static void ftide010_set_piomode(struct ata_port *ap, struct ata_device *adev)
220{
221 struct ftide010 *ftide = ap->host->private_data;
222 u8 pio = adev->pio_mode - XFER_PIO_0;
223
224 dev_dbg(ftide->dev, "set PIO mode %02x, index %d\n",
225 adev->pio_mode, pio);
226 writeb(pio_active_time[pio] << 4 | pio_recovery_time[pio],
227 ftide->base + FTIDE010_PIO_TIMING);
228}
229
230/*
231 * We implement our own qc_issue() callback since we may need to set up
232 * the timings differently for master and slave transfers: the CLK_MOD_REG
233 * and MWDMA_TIMING_REG is shared between master and slave, so reprogramming
234 * this may be necessary.
235 */
236static unsigned int ftide010_qc_issue(struct ata_queued_cmd *qc)
237{
238 struct ata_port *ap = qc->ap;
239 struct ata_device *adev = qc->dev;
240
241 /*
242 * If the device changed, i.e. slave->master, master->slave,
243 * then set up the DMA mode again so we are sure the timings
244 * are correct.
245 */
246 if (adev != ap->private_data && ata_dma_enabled(adev))
247 ftide010_set_dmamode(ap, adev);
248
249 return ata_bmdma_qc_issue(qc);
250}
251
252static struct ata_port_operations pata_ftide010_port_ops = {
253 .inherits = &ata_bmdma_port_ops,
254 .set_dmamode = ftide010_set_dmamode,
255 .set_piomode = ftide010_set_piomode,
256 .qc_issue = ftide010_qc_issue,
257};
258
259static struct ata_port_info ftide010_port_info[] = {
260 {
261 .flags = ATA_FLAG_SLAVE_POSS,
262 .mwdma_mask = ATA_MWDMA2,
263 .udma_mask = ATA_UDMA6,
264 .pio_mask = ATA_PIO4,
265 .port_ops = &pata_ftide010_port_ops,
266 },
267};
268
269#if IS_ENABLED(CONFIG_SATA_GEMINI)
270
271static int pata_ftide010_gemini_port_start(struct ata_port *ap)
272{
273 struct ftide010 *ftide = ap->host->private_data;
274 struct device *dev = ftide->dev;
275 struct sata_gemini *sg = ftide->sg;
276 int bridges = 0;
277 int ret;
278
279 ret = ata_bmdma_port_start(ap);
280 if (ret)
281 return ret;
282
283 if (ftide->master_to_sata0) {
284 dev_info(dev, "SATA0 (master) start\n");
285 ret = gemini_sata_start_bridge(sg, 0);
286 if (!ret)
287 bridges++;
288 }
289 if (ftide->master_to_sata1) {
290 dev_info(dev, "SATA1 (master) start\n");
291 ret = gemini_sata_start_bridge(sg, 1);
292 if (!ret)
293 bridges++;
294 }
295 /* Avoid double-starting */
296 if (ftide->slave_to_sata0 && !ftide->master_to_sata0) {
297 dev_info(dev, "SATA0 (slave) start\n");
298 ret = gemini_sata_start_bridge(sg, 0);
299 if (!ret)
300 bridges++;
301 }
302 /* Avoid double-starting */
303 if (ftide->slave_to_sata1 && !ftide->master_to_sata1) {
304 dev_info(dev, "SATA1 (slave) start\n");
305 ret = gemini_sata_start_bridge(sg, 1);
306 if (!ret)
307 bridges++;
308 }
309
310 dev_info(dev, "brought %d bridges online\n", bridges);
311 return (bridges > 0) ? 0 : -EINVAL; // -ENODEV;
312}
313
314static void pata_ftide010_gemini_port_stop(struct ata_port *ap)
315{
316 struct ftide010 *ftide = ap->host->private_data;
317 struct device *dev = ftide->dev;
318 struct sata_gemini *sg = ftide->sg;
319
320 if (ftide->master_to_sata0) {
321 dev_info(dev, "SATA0 (master) stop\n");
322 gemini_sata_stop_bridge(sg, 0);
323 }
324 if (ftide->master_to_sata1) {
325 dev_info(dev, "SATA1 (master) stop\n");
326 gemini_sata_stop_bridge(sg, 1);
327 }
328 /* Avoid double-stopping */
329 if (ftide->slave_to_sata0 && !ftide->master_to_sata0) {
330 dev_info(dev, "SATA0 (slave) stop\n");
331 gemini_sata_stop_bridge(sg, 0);
332 }
333 /* Avoid double-stopping */
334 if (ftide->slave_to_sata1 && !ftide->master_to_sata1) {
335 dev_info(dev, "SATA1 (slave) stop\n");
336 gemini_sata_stop_bridge(sg, 1);
337 }
338}
339
340static int pata_ftide010_gemini_cable_detect(struct ata_port *ap)
341{
342 struct ftide010 *ftide = ap->host->private_data;
343
344 /*
345 * Return the master cable, I have no clue how to return a different
346 * cable for the slave than for the master.
347 */
348 return ftide->master_cbl;
349}
350
351static int pata_ftide010_gemini_init(struct ftide010 *ftide,
352 bool is_ata1)
353{
354 struct device *dev = ftide->dev;
355 struct sata_gemini *sg;
356 enum gemini_muxmode muxmode;
357
358 /* Look up SATA bridge */
359 sg = gemini_sata_bridge_get();
360 if (IS_ERR(sg))
361 return PTR_ERR(sg);
362 ftide->sg = sg;
363
364 muxmode = gemini_sata_get_muxmode(sg);
365
366 /* Special ops */
367 pata_ftide010_port_ops.port_start =
368 pata_ftide010_gemini_port_start;
369 pata_ftide010_port_ops.port_stop =
370 pata_ftide010_gemini_port_stop;
371 pata_ftide010_port_ops.cable_detect =
372 pata_ftide010_gemini_cable_detect;
373
374 /* Flag port as SATA-capable */
375 if (gemini_sata_bridge_enabled(sg, is_ata1))
376 ftide010_port_info[0].flags |= ATA_FLAG_SATA;
377
378 /*
379 * We assume that a simple 40-wire cable is used in the PATA mode.
380 * if you're adding a system using the PATA interface, make sure
381 * the right cable is set up here, it might be necessary to use
382 * special hardware detection or encode the cable type in the device
383 * tree with special properties.
384 */
385 if (!is_ata1) {
386 switch (muxmode) {
387 case GEMINI_MUXMODE_0:
388 ftide->master_cbl = ATA_CBL_SATA;
389 ftide->slave_cbl = ATA_CBL_PATA40;
390 ftide->master_to_sata0 = true;
391 break;
392 case GEMINI_MUXMODE_1:
393 ftide->master_cbl = ATA_CBL_SATA;
394 ftide->slave_cbl = ATA_CBL_NONE;
395 ftide->master_to_sata0 = true;
396 break;
397 case GEMINI_MUXMODE_2:
398 ftide->master_cbl = ATA_CBL_PATA40;
399 ftide->slave_cbl = ATA_CBL_PATA40;
400 break;
401 case GEMINI_MUXMODE_3:
402 ftide->master_cbl = ATA_CBL_SATA;
403 ftide->slave_cbl = ATA_CBL_SATA;
404 ftide->master_to_sata0 = true;
405 ftide->slave_to_sata1 = true;
406 break;
407 }
408 } else {
409 switch (muxmode) {
410 case GEMINI_MUXMODE_0:
411 ftide->master_cbl = ATA_CBL_SATA;
412 ftide->slave_cbl = ATA_CBL_NONE;
413 ftide->master_to_sata1 = true;
414 break;
415 case GEMINI_MUXMODE_1:
416 ftide->master_cbl = ATA_CBL_SATA;
417 ftide->slave_cbl = ATA_CBL_PATA40;
418 ftide->master_to_sata1 = true;
419 break;
420 case GEMINI_MUXMODE_2:
421 ftide->master_cbl = ATA_CBL_SATA;
422 ftide->slave_cbl = ATA_CBL_SATA;
423 ftide->slave_to_sata0 = true;
424 ftide->master_to_sata1 = true;
425 break;
426 case GEMINI_MUXMODE_3:
427 ftide->master_cbl = ATA_CBL_PATA40;
428 ftide->slave_cbl = ATA_CBL_PATA40;
429 break;
430 }
431 }
432 dev_info(dev, "set up Gemini PATA%d\n", is_ata1);
433
434 return 0;
435}
436#else
437static int pata_ftide010_gemini_init(struct ftide010 *ftide,
438 bool is_ata1)
439{
440 return -ENOTSUPP;
441}
442#endif
443
444
445static int pata_ftide010_probe(struct platform_device *pdev)
446{
447 struct device *dev = &pdev->dev;
448 struct device_node *np = dev->of_node;
449 const struct ata_port_info pi = ftide010_port_info[0];
450 const struct ata_port_info *ppi[] = { &pi, NULL };
451 struct ftide010 *ftide;
452 struct resource *res;
453 int irq;
454 int ret;
455 int i;
456
457 ftide = devm_kzalloc(dev, sizeof(*ftide), GFP_KERNEL);
458 if (!ftide)
459 return -ENOMEM;
460 ftide->dev = dev;
461
462 irq = platform_get_irq(pdev, 0);
463 if (irq < 0)
464 return irq;
465
466 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
467 if (!res)
468 return -ENODEV;
469
470 ftide->base = devm_ioremap_resource(dev, res);
471 if (IS_ERR(ftide->base))
472 return PTR_ERR(ftide->base);
473
474 ftide->pclk = devm_clk_get(dev, "PCLK");
475 if (!IS_ERR(ftide->pclk)) {
476 ret = clk_prepare_enable(ftide->pclk);
477 if (ret) {
478 dev_err(dev, "failed to enable PCLK\n");
479 return ret;
480 }
481 }
482
483 /* Some special Cortina Gemini init, if needed */
484 if (of_device_is_compatible(np, "cortina,gemini-pata")) {
485 /*
486 * We need to know which instance is probing (the
487 * Gemini has two instances of FTIDE010) and we do
488 * this simply by looking at the physical base
489 * address, which is 0x63400000 for ATA1, else we
490 * are ATA0. This will also set up the cable types.
491 */
492 ret = pata_ftide010_gemini_init(ftide,
493 (res->start == 0x63400000));
494 if (ret)
495 goto err_dis_clk;
496 } else {
497 /* Else assume we are connected using PATA40 */
498 ftide->master_cbl = ATA_CBL_PATA40;
499 ftide->slave_cbl = ATA_CBL_PATA40;
500 }
501
502 ftide->host = ata_host_alloc_pinfo(dev, ppi, 1);
503 if (!ftide->host) {
504 ret = -ENOMEM;
505 goto err_dis_clk;
506 }
507 ftide->host->private_data = ftide;
508
509 for (i = 0; i < ftide->host->n_ports; i++) {
510 struct ata_port *ap = ftide->host->ports[i];
511 struct ata_ioports *ioaddr = &ap->ioaddr;
512
513 ioaddr->bmdma_addr = ftide->base + FTIDE010_DMA_REG;
514 ioaddr->cmd_addr = ftide->base + FTIDE010_CMD_DATA;
515 ioaddr->ctl_addr = ftide->base + FTIDE010_ALTSTAT_CTRL;
516 ioaddr->altstatus_addr = ftide->base + FTIDE010_ALTSTAT_CTRL;
517 ata_sff_std_ports(ioaddr);
518 }
519
d0318fb3
AB
520 dev_info(dev, "device ID %08x, irq %d, reg %pR\n",
521 readl(ftide->base + FTIDE010_IDE_DEVICE_ID), irq, res);
be4e456e
LW
522
523 ret = ata_host_activate(ftide->host, irq, ata_bmdma_interrupt,
524 0, &pata_ftide010_sht);
525 if (ret)
526 goto err_dis_clk;
527
528 return 0;
529
530err_dis_clk:
531 if (!IS_ERR(ftide->pclk))
532 clk_disable_unprepare(ftide->pclk);
533 return ret;
534}
535
536static int pata_ftide010_remove(struct platform_device *pdev)
537{
538 struct ata_host *host = platform_get_drvdata(pdev);
539 struct ftide010 *ftide = host->private_data;
540
541 ata_host_detach(ftide->host);
542 if (!IS_ERR(ftide->pclk))
543 clk_disable_unprepare(ftide->pclk);
544
545 return 0;
546}
547
548static const struct of_device_id pata_ftide010_of_match[] = {
549 {
550 .compatible = "faraday,ftide010",
551 },
552 {},
553};
554
555static struct platform_driver pata_ftide010_driver = {
556 .driver = {
557 .name = DRV_NAME,
558 .of_match_table = of_match_ptr(pata_ftide010_of_match),
559 },
560 .probe = pata_ftide010_probe,
561 .remove = pata_ftide010_remove,
562};
563module_platform_driver(pata_ftide010_driver);
564
565MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
566MODULE_LICENSE("GPL");
567MODULE_ALIAS("platform:" DRV_NAME);