]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/ata/sata_mv.c
sata_mv: store the board_idx into the host private data
[mirror_ubuntu-bionic-kernel.git] / drivers / ata / sata_mv.c
CommitLineData
20f733e7
BR
1/*
2 * sata_mv.c - Marvell SATA support
3 *
40f21b11 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 5 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 6 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 7 *
40f21b11
ML
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
20f733e7
BR
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
4a05e209 28/*
85afb934
ML
29 * sata_mv TODO list:
30 *
85afb934
ML
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
2b748a0a 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
4a05e209 42
65ad7fef
ML
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
20f733e7
BR
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
8d8b6004 59#include <linux/dmapool.h>
20f733e7 60#include <linux/dma-mapping.h>
a9524a76 61#include <linux/device.h>
c77a2f4e 62#include <linux/clk.h>
f351b2d6
SB
63#include <linux/platform_device.h>
64#include <linux/ata_platform.h>
15a32632 65#include <linux/mbus.h>
c46938cc 66#include <linux/bitops.h>
20f733e7 67#include <scsi/scsi_host.h>
193515d5 68#include <scsi/scsi_cmnd.h>
6c08772e 69#include <scsi/scsi_device.h>
20f733e7 70#include <linux/libata.h>
20f733e7
BR
71
72#define DRV_NAME "sata_mv"
cae5a29d 73#define DRV_VERSION "1.28"
20f733e7 74
40f21b11
ML
75/*
76 * module options
77 */
78
79static int msi;
80#ifdef CONFIG_PCI
81module_param(msi, int, S_IRUGO);
82MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
83#endif
84
2b748a0a
ML
85static int irq_coalescing_io_count;
86module_param(irq_coalescing_io_count, int, S_IRUGO);
87MODULE_PARM_DESC(irq_coalescing_io_count,
88 "IRQ coalescing I/O count threshold (0..255)");
89
90static int irq_coalescing_usecs;
91module_param(irq_coalescing_usecs, int, S_IRUGO);
92MODULE_PARM_DESC(irq_coalescing_usecs,
93 "IRQ coalescing time threshold in usecs");
94
20f733e7
BR
95enum {
96 /* BAR's are enumerated in terms of pci_resource_start() terms */
97 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
98 MV_IO_BAR = 2, /* offset 0x18: IO space */
99 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
100
101 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
102 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
103
2b748a0a
ML
104 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
105 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
106 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
107 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
108
20f733e7 109 MV_PCI_REG_BASE = 0,
615ab953 110
2b748a0a
ML
111 /*
112 * Per-chip ("all ports") interrupt coalescing feature.
113 * This is only for GEN_II / GEN_IIE hardware.
114 *
115 * Coalescing defers the interrupt until either the IO_THRESHOLD
116 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
117 */
cae5a29d
ML
118 COAL_REG_BASE = 0x18000,
119 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
2b748a0a
ML
120 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
121
cae5a29d
ML
122 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
123 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
2b748a0a
ML
124
125 /*
126 * Registers for the (unused here) transaction coalescing feature:
127 */
cae5a29d
ML
128 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
129 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
2b748a0a 130
cae5a29d
ML
131 SATAHC0_REG_BASE = 0x20000,
132 FLASH_CTL = 0x1046c,
133 GPIO_PORT_CTL = 0x104f0,
134 RESET_CFG = 0x180d8,
20f733e7
BR
135
136 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
137 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
139 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
140
31961943
BR
141 MV_MAX_Q_DEPTH = 32,
142 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
143
144 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
145 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
146 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
147 */
148 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
149 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 150 MV_MAX_SG_CT = 256,
31961943 151 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 152
352fab70 153 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 154 MV_PORT_HC_SHIFT = 2,
352fab70
ML
155 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
156 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
157 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
158
159 /* Host Flags */
160 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 161
c5d3e45a 162 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91b1a84c 163 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
ad3aef51 164
91b1a84c 165 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 166
40f21b11
ML
167 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
168 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
169
170 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 171
31961943
BR
172 CRQB_FLAG_READ = (1 << 0),
173 CRQB_TAG_SHIFT = 1,
c5d3e45a 174 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 175 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 176 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
177 CRQB_CMD_ADDR_SHIFT = 8,
178 CRQB_CMD_CS = (0x2 << 11),
179 CRQB_CMD_LAST = (1 << 15),
180
181 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
182 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
183 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
184
185 EPRD_FLAG_END_OF_TBL = (1 << 31),
186
20f733e7
BR
187 /* PCI interface registers */
188
cae5a29d
ML
189 MV_PCI_COMMAND = 0xc00,
190 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
191 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 192
cae5a29d 193 PCI_MAIN_CMD_STS = 0xd30,
20f733e7
BR
194 STOP_PCI_MASTER = (1 << 2),
195 PCI_MASTER_EMPTY = (1 << 3),
196 GLOB_SFT_RST = (1 << 4),
197
cae5a29d 198 MV_PCI_MODE = 0xd00,
8e7decdb
ML
199 MV_PCI_MODE_MASK = 0x30,
200
522479fb
JG
201 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
202 MV_PCI_DISC_TIMER = 0xd04,
203 MV_PCI_MSI_TRIGGER = 0xc38,
204 MV_PCI_SERR_MASK = 0xc28,
cae5a29d 205 MV_PCI_XBAR_TMOUT = 0x1d04,
522479fb
JG
206 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
207 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
208 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
209 MV_PCI_ERR_COMMAND = 0x1d50,
210
cae5a29d
ML
211 PCI_IRQ_CAUSE = 0x1d58,
212 PCI_IRQ_MASK = 0x1d5c,
20f733e7
BR
213 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
214
cae5a29d
ML
215 PCIE_IRQ_CAUSE = 0x1900,
216 PCIE_IRQ_MASK = 0x1910,
646a4da5 217 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 218
7368f919 219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
cae5a29d
ML
220 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
221 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
222 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
223 SOC_HC_MAIN_IRQ_MASK = 0x20024,
40f21b11
ML
224 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
225 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
226 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
227 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
228 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
229 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 230 PCI_ERR = (1 << 18),
40f21b11
ML
231 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
232 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
233 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
234 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
235 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
236 GPIO_INT = (1 << 22),
237 SELF_INT = (1 << 23),
238 TWSI_INT = (1 << 24),
239 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 240 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 241 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
242
243 /* SATAHC registers */
cae5a29d 244 HC_CFG = 0x00,
20f733e7 245
cae5a29d 246 HC_IRQ_CAUSE = 0x14,
352fab70
ML
247 DMA_IRQ = (1 << 0), /* shift by port # */
248 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
249 DEV_IRQ = (1 << 8), /* shift by port # */
250
2b748a0a
ML
251 /*
252 * Per-HC (Host-Controller) interrupt coalescing feature.
253 * This is present on all chip generations.
254 *
255 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 */
cae5a29d
ML
258 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
259 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
2b748a0a 260
cae5a29d 261 SOC_LED_CTRL = 0x2c,
000b344f
ML
262 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
263 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
264 /* with dev activity LED */
265
20f733e7 266 /* Shadow block registers */
cae5a29d
ML
267 SHD_BLK = 0x100,
268 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
20f733e7
BR
269
270 /* SATA registers */
cae5a29d
ML
271 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
272 SATA_ACTIVE = 0x350,
273 FIS_IRQ_CAUSE = 0x364,
274 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
17c5aab5 275
cae5a29d 276 LTMODE = 0x30c, /* requires read-after-write */
17c5aab5
ML
277 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
278
cae5a29d 279 PHY_MODE2 = 0x330,
47c2b677 280 PHY_MODE3 = 0x310,
cae5a29d
ML
281
282 PHY_MODE4 = 0x314, /* requires read-after-write */
ba069e37
ML
283 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
284 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
285 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
286 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
287
cae5a29d
ML
288 SATA_IFCTL = 0x344,
289 SATA_TESTCTL = 0x348,
290 SATA_IFSTAT = 0x34c,
291 VENDOR_UNIQUE_FIS = 0x35c,
17c5aab5 292
cae5a29d 293 FISCFG = 0x360,
8e7decdb
ML
294 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
295 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 296
29b7e43c
MM
297 PHY_MODE9_GEN2 = 0x398,
298 PHY_MODE9_GEN1 = 0x39c,
299 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
300
c9d39130 301 MV5_PHY_MODE = 0x74,
cae5a29d
ML
302 MV5_LTMODE = 0x30,
303 MV5_PHY_CTL = 0x0C,
304 SATA_IFCFG = 0x050,
bca1c4eb
JG
305
306 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
307
308 /* Port registers */
cae5a29d 309 EDMA_CFG = 0,
0c58912e
ML
310 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
311 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
312 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
313 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
314 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
315 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
316 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7 317
cae5a29d
ML
318 EDMA_ERR_IRQ_CAUSE = 0x8,
319 EDMA_ERR_IRQ_MASK = 0xc,
6c1153e0
JG
320 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
321 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
322 EDMA_ERR_DEV = (1 << 2), /* device error */
323 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
324 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
325 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
326 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
327 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 328 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 329 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
330 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
331 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
332 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
333 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 334
6c1153e0 335 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
336 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
337 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
338 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
339 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
340
6c1153e0 341 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 342
6c1153e0 343 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
344 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
345 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
346 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
347 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
348 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
349
6c1153e0 350 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 351
6c1153e0 352 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
353 EDMA_ERR_OVERRUN_5 = (1 << 5),
354 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
355
356 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
357 EDMA_ERR_LNK_CTRL_RX_1 |
358 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 359 EDMA_ERR_LNK_CTRL_TX,
646a4da5 360
bdd4ddde
JG
361 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
362 EDMA_ERR_PRD_PAR |
363 EDMA_ERR_DEV_DCON |
364 EDMA_ERR_DEV_CON |
365 EDMA_ERR_SERR |
366 EDMA_ERR_SELF_DIS |
6c1153e0 367 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
368 EDMA_ERR_CRPB_PAR |
369 EDMA_ERR_INTRL_PAR |
370 EDMA_ERR_IORDY |
371 EDMA_ERR_LNK_CTRL_RX_2 |
372 EDMA_ERR_LNK_DATA_RX |
373 EDMA_ERR_LNK_DATA_TX |
374 EDMA_ERR_TRANS_PROTO,
e12bef50 375
bdd4ddde
JG
376 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
377 EDMA_ERR_PRD_PAR |
378 EDMA_ERR_DEV_DCON |
379 EDMA_ERR_DEV_CON |
380 EDMA_ERR_OVERRUN_5 |
381 EDMA_ERR_UNDERRUN_5 |
382 EDMA_ERR_SELF_DIS_5 |
6c1153e0 383 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
384 EDMA_ERR_CRPB_PAR |
385 EDMA_ERR_INTRL_PAR |
386 EDMA_ERR_IORDY,
20f733e7 387
cae5a29d
ML
388 EDMA_REQ_Q_BASE_HI = 0x10,
389 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
31961943 390
cae5a29d 391 EDMA_REQ_Q_OUT_PTR = 0x18,
31961943
BR
392 EDMA_REQ_Q_PTR_SHIFT = 5,
393
cae5a29d
ML
394 EDMA_RSP_Q_BASE_HI = 0x1c,
395 EDMA_RSP_Q_IN_PTR = 0x20,
396 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
31961943
BR
397 EDMA_RSP_Q_PTR_SHIFT = 3,
398
cae5a29d 399 EDMA_CMD = 0x28, /* EDMA command register */
0ea9e179
JG
400 EDMA_EN = (1 << 0), /* enable EDMA */
401 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
402 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
403
cae5a29d 404 EDMA_STATUS = 0x30, /* EDMA engine status */
8e7decdb
ML
405 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
406 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 407
cae5a29d
ML
408 EDMA_IORDY_TMOUT = 0x34,
409 EDMA_ARB_CFG = 0x38,
8e7decdb 410
cae5a29d
ML
411 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
412 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
da14265e 413
cae5a29d
ML
414 BMDMA_CMD = 0x224, /* bmdma command register */
415 BMDMA_STATUS = 0x228, /* bmdma status register */
416 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
417 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
da14265e 418
31961943
BR
419 /* Host private flags (hp_flags) */
420 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
421 MV_HP_ERRATA_50XXB0 = (1 << 1),
422 MV_HP_ERRATA_50XXB2 = (1 << 2),
423 MV_HP_ERRATA_60X1B2 = (1 << 3),
424 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
425 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
426 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
427 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 428 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 429 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 430 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 431 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
20f733e7 432
31961943 433 /* Port private flags (pp_flags) */
0ea9e179 434 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 435 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 436 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 437 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 438 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
439};
440
ee9ccdf7
JG
441#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 443#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 444#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 445#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 446
15a32632
LB
447#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
448#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
449
095fec88 450enum {
baf14aa1
JG
451 /* DMA boundary 0xffff is required by the s/g splitting
452 * we need on /length/ in mv_fill-sg().
453 */
454 MV_DMA_BOUNDARY = 0xffffU,
095fec88 455
0ea9e179
JG
456 /* mask of register bits containing lower 32 bits
457 * of EDMA request queue DMA address
458 */
095fec88
JG
459 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
460
0ea9e179 461 /* ditto, for response queue */
095fec88
JG
462 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
463};
464
522479fb
JG
465enum chip_type {
466 chip_504x,
467 chip_508x,
468 chip_5080,
469 chip_604x,
470 chip_608x,
e4e7b892
JG
471 chip_6042,
472 chip_7042,
f351b2d6 473 chip_soc,
522479fb
JG
474};
475
31961943
BR
476/* Command ReQuest Block: 32B */
477struct mv_crqb {
e1469874
ML
478 __le32 sg_addr;
479 __le32 sg_addr_hi;
480 __le16 ctrl_flags;
481 __le16 ata_cmd[11];
31961943 482};
20f733e7 483
e4e7b892 484struct mv_crqb_iie {
e1469874
ML
485 __le32 addr;
486 __le32 addr_hi;
487 __le32 flags;
488 __le32 len;
489 __le32 ata_cmd[4];
e4e7b892
JG
490};
491
31961943
BR
492/* Command ResPonse Block: 8B */
493struct mv_crpb {
e1469874
ML
494 __le16 id;
495 __le16 flags;
496 __le32 tmstmp;
20f733e7
BR
497};
498
31961943
BR
499/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
500struct mv_sg {
e1469874
ML
501 __le32 addr;
502 __le32 flags_size;
503 __le32 addr_hi;
504 __le32 reserved;
31961943 505};
20f733e7 506
08da1759
ML
507/*
508 * We keep a local cache of a few frequently accessed port
509 * registers here, to avoid having to read them (very slow)
510 * when switching between EDMA and non-EDMA modes.
511 */
512struct mv_cached_regs {
513 u32 fiscfg;
514 u32 ltmode;
515 u32 haltcond;
c01e8a23 516 u32 unknown_rsvd;
08da1759
ML
517};
518
31961943
BR
519struct mv_port_priv {
520 struct mv_crqb *crqb;
521 dma_addr_t crqb_dma;
522 struct mv_crpb *crpb;
523 dma_addr_t crpb_dma;
eb73d558
ML
524 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
525 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
526
527 unsigned int req_idx;
528 unsigned int resp_idx;
529
31961943 530 u32 pp_flags;
08da1759 531 struct mv_cached_regs cached;
29d187bb 532 unsigned int delayed_eh_pmp_map;
31961943
BR
533};
534
bca1c4eb
JG
535struct mv_port_signal {
536 u32 amps;
537 u32 pre;
538};
539
02a121da
ML
540struct mv_host_priv {
541 u32 hp_flags;
1bfeff03 542 unsigned int board_idx;
96e2c487 543 u32 main_irq_mask;
02a121da
ML
544 struct mv_port_signal signal[8];
545 const struct mv_hw_ops *ops;
f351b2d6
SB
546 int n_ports;
547 void __iomem *base;
7368f919
ML
548 void __iomem *main_irq_cause_addr;
549 void __iomem *main_irq_mask_addr;
cae5a29d
ML
550 u32 irq_cause_offset;
551 u32 irq_mask_offset;
02a121da 552 u32 unmask_all_irqs;
c77a2f4e
SB
553
554#if defined(CONFIG_HAVE_CLK)
555 struct clk *clk;
556#endif
da2fa9ba
ML
557 /*
558 * These consistent DMA memory pools give us guaranteed
559 * alignment for hardware-accessed data structures,
560 * and less memory waste in accomplishing the alignment.
561 */
562 struct dma_pool *crqb_pool;
563 struct dma_pool *crpb_pool;
564 struct dma_pool *sg_tbl_pool;
02a121da
ML
565};
566
47c2b677 567struct mv_hw_ops {
2a47ce06
JG
568 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
569 unsigned int port);
47c2b677
JG
570 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
571 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
572 void __iomem *mmio);
c9d39130
JG
573 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
574 unsigned int n_hc);
522479fb 575 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 576 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
577};
578
82ef04fb
TH
579static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
580static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
581static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
582static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
583static int mv_port_start(struct ata_port *ap);
584static void mv_port_stop(struct ata_port *ap);
3e4a1391 585static int mv_qc_defer(struct ata_queued_cmd *qc);
31961943 586static void mv_qc_prep(struct ata_queued_cmd *qc);
e4e7b892 587static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 588static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
589static int mv_hardreset(struct ata_link *link, unsigned int *class,
590 unsigned long deadline);
bdd4ddde
JG
591static void mv_eh_freeze(struct ata_port *ap);
592static void mv_eh_thaw(struct ata_port *ap);
f273827e 593static void mv6_dev_config(struct ata_device *dev);
20f733e7 594
2a47ce06
JG
595static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
596 unsigned int port);
47c2b677
JG
597static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
598static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
599 void __iomem *mmio);
c9d39130
JG
600static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
601 unsigned int n_hc);
522479fb 602static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 603static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 604
2a47ce06
JG
605static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
606 unsigned int port);
47c2b677
JG
607static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
608static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
609 void __iomem *mmio);
c9d39130
JG
610static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
611 unsigned int n_hc);
522479fb 612static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
613static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
614 void __iomem *mmio);
615static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
616 void __iomem *mmio);
617static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
618 void __iomem *mmio, unsigned int n_hc);
619static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
620 void __iomem *mmio);
621static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
29b7e43c
MM
622static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
623 void __iomem *mmio, unsigned int port);
7bb3c529 624static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 625static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 626 unsigned int port_no);
e12bef50 627static int mv_stop_edma(struct ata_port *ap);
b562468c 628static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 629static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 630
e49856d8
ML
631static void mv_pmp_select(struct ata_port *ap, int pmp);
632static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
633 unsigned long deadline);
634static int mv_softreset(struct ata_link *link, unsigned int *class,
635 unsigned long deadline);
29d187bb 636static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
637static void mv_process_crpb_entries(struct ata_port *ap,
638 struct mv_port_priv *pp);
47c2b677 639
da14265e
ML
640static void mv_sff_irq_clear(struct ata_port *ap);
641static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
642static void mv_bmdma_setup(struct ata_queued_cmd *qc);
643static void mv_bmdma_start(struct ata_queued_cmd *qc);
644static void mv_bmdma_stop(struct ata_queued_cmd *qc);
645static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 646static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 647
eb73d558
ML
648/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
649 * because we have to allow room for worst case splitting of
650 * PRDs for 64K boundaries in mv_fill_sg().
651 */
c5d3e45a 652static struct scsi_host_template mv5_sht = {
68d1d07b 653 ATA_BASE_SHT(DRV_NAME),
baf14aa1 654 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 655 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a
JG
656};
657
658static struct scsi_host_template mv6_sht = {
68d1d07b 659 ATA_NCQ_SHT(DRV_NAME),
138bfdd0 660 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 661 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 662 .dma_boundary = MV_DMA_BOUNDARY,
20f733e7
BR
663};
664
029cfd6b
TH
665static struct ata_port_operations mv5_ops = {
666 .inherits = &ata_sff_port_ops,
c9d39130 667
c96f1732
AC
668 .lost_interrupt = ATA_OP_NULL,
669
3e4a1391 670 .qc_defer = mv_qc_defer,
c9d39130
JG
671 .qc_prep = mv_qc_prep,
672 .qc_issue = mv_qc_issue,
c9d39130 673
bdd4ddde
JG
674 .freeze = mv_eh_freeze,
675 .thaw = mv_eh_thaw,
a1efdaba 676 .hardreset = mv_hardreset,
a1efdaba 677 .error_handler = ata_std_error_handler, /* avoid SFF EH */
029cfd6b 678 .post_internal_cmd = ATA_OP_NULL,
bdd4ddde 679
c9d39130
JG
680 .scr_read = mv5_scr_read,
681 .scr_write = mv5_scr_write,
682
683 .port_start = mv_port_start,
684 .port_stop = mv_port_stop,
c9d39130
JG
685};
686
029cfd6b
TH
687static struct ata_port_operations mv6_ops = {
688 .inherits = &mv5_ops,
f273827e 689 .dev_config = mv6_dev_config,
20f733e7
BR
690 .scr_read = mv_scr_read,
691 .scr_write = mv_scr_write,
692
e49856d8
ML
693 .pmp_hardreset = mv_pmp_hardreset,
694 .pmp_softreset = mv_softreset,
695 .softreset = mv_softreset,
29d187bb 696 .error_handler = mv_pmp_error_handler,
da14265e 697
40f21b11 698 .sff_check_status = mv_sff_check_status,
da14265e
ML
699 .sff_irq_clear = mv_sff_irq_clear,
700 .check_atapi_dma = mv_check_atapi_dma,
701 .bmdma_setup = mv_bmdma_setup,
702 .bmdma_start = mv_bmdma_start,
703 .bmdma_stop = mv_bmdma_stop,
704 .bmdma_status = mv_bmdma_status,
20f733e7
BR
705};
706
029cfd6b
TH
707static struct ata_port_operations mv_iie_ops = {
708 .inherits = &mv6_ops,
709 .dev_config = ATA_OP_NULL,
e4e7b892 710 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
711};
712
98ac62de 713static const struct ata_port_info mv_port_info[] = {
20f733e7 714 { /* chip_504x */
91b1a84c 715 .flags = MV_GEN_I_FLAGS,
c361acbc 716 .pio_mask = ATA_PIO4,
bf6263a8 717 .udma_mask = ATA_UDMA6,
c9d39130 718 .port_ops = &mv5_ops,
20f733e7
BR
719 },
720 { /* chip_508x */
91b1a84c 721 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 722 .pio_mask = ATA_PIO4,
bf6263a8 723 .udma_mask = ATA_UDMA6,
c9d39130 724 .port_ops = &mv5_ops,
20f733e7 725 },
47c2b677 726 { /* chip_5080 */
91b1a84c 727 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 728 .pio_mask = ATA_PIO4,
bf6263a8 729 .udma_mask = ATA_UDMA6,
c9d39130 730 .port_ops = &mv5_ops,
47c2b677 731 },
20f733e7 732 { /* chip_604x */
91b1a84c 733 .flags = MV_GEN_II_FLAGS,
c361acbc 734 .pio_mask = ATA_PIO4,
bf6263a8 735 .udma_mask = ATA_UDMA6,
c9d39130 736 .port_ops = &mv6_ops,
20f733e7
BR
737 },
738 { /* chip_608x */
91b1a84c 739 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 740 .pio_mask = ATA_PIO4,
bf6263a8 741 .udma_mask = ATA_UDMA6,
c9d39130 742 .port_ops = &mv6_ops,
20f733e7 743 },
e4e7b892 744 { /* chip_6042 */
91b1a84c 745 .flags = MV_GEN_IIE_FLAGS,
c361acbc 746 .pio_mask = ATA_PIO4,
bf6263a8 747 .udma_mask = ATA_UDMA6,
e4e7b892
JG
748 .port_ops = &mv_iie_ops,
749 },
750 { /* chip_7042 */
91b1a84c 751 .flags = MV_GEN_IIE_FLAGS,
c361acbc 752 .pio_mask = ATA_PIO4,
bf6263a8 753 .udma_mask = ATA_UDMA6,
e4e7b892
JG
754 .port_ops = &mv_iie_ops,
755 },
f351b2d6 756 { /* chip_soc */
91b1a84c 757 .flags = MV_GEN_IIE_FLAGS,
c361acbc 758 .pio_mask = ATA_PIO4,
17c5aab5
ML
759 .udma_mask = ATA_UDMA6,
760 .port_ops = &mv_iie_ops,
f351b2d6 761 },
20f733e7
BR
762};
763
3b7d697d 764static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
765 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
766 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
767 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
768 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
769 /* RocketRAID 1720/174x have different identifiers */
770 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
771 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
772 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
773
774 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
775 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
776 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
777 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
778 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
779
780 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
781
d9f9c6bc
FA
782 /* Adaptec 1430SA */
783 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
784
02a121da 785 /* Marvell 7042 support */
6a3d586d
MT
786 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
787
02a121da
ML
788 /* Highpoint RocketRAID PCIe series */
789 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
790 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
791
2d2744fc 792 { } /* terminate list */
20f733e7
BR
793};
794
47c2b677
JG
795static const struct mv_hw_ops mv5xxx_ops = {
796 .phy_errata = mv5_phy_errata,
797 .enable_leds = mv5_enable_leds,
798 .read_preamp = mv5_read_preamp,
799 .reset_hc = mv5_reset_hc,
522479fb
JG
800 .reset_flash = mv5_reset_flash,
801 .reset_bus = mv5_reset_bus,
47c2b677
JG
802};
803
804static const struct mv_hw_ops mv6xxx_ops = {
805 .phy_errata = mv6_phy_errata,
806 .enable_leds = mv6_enable_leds,
807 .read_preamp = mv6_read_preamp,
808 .reset_hc = mv6_reset_hc,
522479fb
JG
809 .reset_flash = mv6_reset_flash,
810 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
811};
812
f351b2d6
SB
813static const struct mv_hw_ops mv_soc_ops = {
814 .phy_errata = mv6_phy_errata,
815 .enable_leds = mv_soc_enable_leds,
816 .read_preamp = mv_soc_read_preamp,
817 .reset_hc = mv_soc_reset_hc,
818 .reset_flash = mv_soc_reset_flash,
819 .reset_bus = mv_soc_reset_bus,
820};
821
29b7e43c
MM
822static const struct mv_hw_ops mv_soc_65n_ops = {
823 .phy_errata = mv_soc_65n_phy_errata,
824 .enable_leds = mv_soc_enable_leds,
825 .reset_hc = mv_soc_reset_hc,
826 .reset_flash = mv_soc_reset_flash,
827 .reset_bus = mv_soc_reset_bus,
828};
829
20f733e7
BR
830/*
831 * Functions
832 */
833
834static inline void writelfl(unsigned long data, void __iomem *addr)
835{
836 writel(data, addr);
837 (void) readl(addr); /* flush to avoid PCI posted write */
838}
839
c9d39130
JG
840static inline unsigned int mv_hc_from_port(unsigned int port)
841{
842 return port >> MV_PORT_HC_SHIFT;
843}
844
845static inline unsigned int mv_hardport_from_port(unsigned int port)
846{
847 return port & MV_PORT_MASK;
848}
849
1cfd19ae
ML
850/*
851 * Consolidate some rather tricky bit shift calculations.
852 * This is hot-path stuff, so not a function.
853 * Simple code, with two return values, so macro rather than inline.
854 *
855 * port is the sole input, in range 0..7.
7368f919
ML
856 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
857 * hardport is the other output, in range 0..3.
1cfd19ae
ML
858 *
859 * Note that port and hardport may be the same variable in some cases.
860 */
861#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
862{ \
863 shift = mv_hc_from_port(port) * HC_SHIFT; \
864 hardport = mv_hardport_from_port(port); \
865 shift += hardport * 2; \
866}
867
352fab70
ML
868static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
869{
cae5a29d 870 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
352fab70
ML
871}
872
c9d39130
JG
873static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
874 unsigned int port)
875{
876 return mv_hc_base(base, mv_hc_from_port(port));
877}
878
20f733e7
BR
879static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
880{
c9d39130 881 return mv_hc_base_from_port(base, port) +
8b260248 882 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 883 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
884}
885
e12bef50
ML
886static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
887{
888 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
889 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
890
891 return hc_mmio + ofs;
892}
893
f351b2d6
SB
894static inline void __iomem *mv_host_base(struct ata_host *host)
895{
896 struct mv_host_priv *hpriv = host->private_data;
897 return hpriv->base;
898}
899
20f733e7
BR
900static inline void __iomem *mv_ap_base(struct ata_port *ap)
901{
f351b2d6 902 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
903}
904
cca3974e 905static inline int mv_get_hc_count(unsigned long port_flags)
31961943 906{
cca3974e 907 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
908}
909
08da1759
ML
910/**
911 * mv_save_cached_regs - (re-)initialize cached port registers
912 * @ap: the port whose registers we are caching
913 *
914 * Initialize the local cache of port registers,
915 * so that reading them over and over again can
916 * be avoided on the hotter paths of this driver.
917 * This saves a few microseconds each time we switch
918 * to/from EDMA mode to perform (eg.) a drive cache flush.
919 */
920static void mv_save_cached_regs(struct ata_port *ap)
921{
922 void __iomem *port_mmio = mv_ap_base(ap);
923 struct mv_port_priv *pp = ap->private_data;
924
cae5a29d
ML
925 pp->cached.fiscfg = readl(port_mmio + FISCFG);
926 pp->cached.ltmode = readl(port_mmio + LTMODE);
927 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
928 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
08da1759
ML
929}
930
931/**
932 * mv_write_cached_reg - write to a cached port register
933 * @addr: hardware address of the register
934 * @old: pointer to cached value of the register
935 * @new: new value for the register
936 *
937 * Write a new value to a cached register,
938 * but only if the value is different from before.
939 */
940static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
941{
942 if (new != *old) {
12f3b6d7 943 unsigned long laddr;
08da1759 944 *old = new;
12f3b6d7
ML
945 /*
946 * Workaround for 88SX60x1-B2 FEr SATA#13:
947 * Read-after-write is needed to prevent generating 64-bit
948 * write cycles on the PCI bus for SATA interface registers
949 * at offsets ending in 0x4 or 0xc.
950 *
951 * Looks like a lot of fuss, but it avoids an unnecessary
952 * +1 usec read-after-write delay for unaffected registers.
953 */
954 laddr = (long)addr & 0xffff;
955 if (laddr >= 0x300 && laddr <= 0x33c) {
956 laddr &= 0x000f;
957 if (laddr == 0x4 || laddr == 0xc) {
958 writelfl(new, addr); /* read after write */
959 return;
960 }
961 }
962 writel(new, addr); /* unaffected by the errata */
08da1759
ML
963 }
964}
965
c5d3e45a
JG
966static void mv_set_edma_ptrs(void __iomem *port_mmio,
967 struct mv_host_priv *hpriv,
968 struct mv_port_priv *pp)
969{
bdd4ddde
JG
970 u32 index;
971
c5d3e45a
JG
972 /*
973 * initialize request queue
974 */
fcfb1f77
ML
975 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
976 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 977
c5d3e45a 978 WARN_ON(pp->crqb_dma & 0x3ff);
cae5a29d 979 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
bdd4ddde 980 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
cae5a29d
ML
981 port_mmio + EDMA_REQ_Q_IN_PTR);
982 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
c5d3e45a
JG
983
984 /*
985 * initialize response queue
986 */
fcfb1f77
ML
987 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
988 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 989
c5d3e45a 990 WARN_ON(pp->crpb_dma & 0xff);
cae5a29d
ML
991 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
992 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
bdd4ddde 993 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
cae5a29d 994 port_mmio + EDMA_RSP_Q_OUT_PTR);
c5d3e45a
JG
995}
996
2b748a0a
ML
997static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
998{
999 /*
1000 * When writing to the main_irq_mask in hardware,
1001 * we must ensure exclusivity between the interrupt coalescing bits
1002 * and the corresponding individual port DONE_IRQ bits.
1003 *
1004 * Note that this register is really an "IRQ enable" register,
1005 * not an "IRQ mask" register as Marvell's naming might suggest.
1006 */
1007 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1008 mask &= ~DONE_IRQ_0_3;
1009 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1010 mask &= ~DONE_IRQ_4_7;
1011 writelfl(mask, hpriv->main_irq_mask_addr);
1012}
1013
c4de573b
ML
1014static void mv_set_main_irq_mask(struct ata_host *host,
1015 u32 disable_bits, u32 enable_bits)
1016{
1017 struct mv_host_priv *hpriv = host->private_data;
1018 u32 old_mask, new_mask;
1019
96e2c487 1020 old_mask = hpriv->main_irq_mask;
c4de573b 1021 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1022 if (new_mask != old_mask) {
1023 hpriv->main_irq_mask = new_mask;
2b748a0a 1024 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1025 }
c4de573b
ML
1026}
1027
1028static void mv_enable_port_irqs(struct ata_port *ap,
1029 unsigned int port_bits)
1030{
1031 unsigned int shift, hardport, port = ap->port_no;
1032 u32 disable_bits, enable_bits;
1033
1034 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1035
1036 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1037 enable_bits = port_bits << shift;
1038 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1039}
1040
00b81235
ML
1041static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1042 void __iomem *port_mmio,
1043 unsigned int port_irqs)
1044{
1045 struct mv_host_priv *hpriv = ap->host->private_data;
1046 int hardport = mv_hardport_from_port(ap->port_no);
1047 void __iomem *hc_mmio = mv_hc_base_from_port(
1048 mv_host_base(ap->host), ap->port_no);
1049 u32 hc_irq_cause;
1050
1051 /* clear EDMA event indicators, if any */
cae5a29d 1052 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
00b81235
ML
1053
1054 /* clear pending irq events */
1055 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 1056 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
00b81235
ML
1057
1058 /* clear FIS IRQ Cause */
1059 if (IS_GEN_IIE(hpriv))
cae5a29d 1060 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
00b81235
ML
1061
1062 mv_enable_port_irqs(ap, port_irqs);
1063}
1064
2b748a0a
ML
1065static void mv_set_irq_coalescing(struct ata_host *host,
1066 unsigned int count, unsigned int usecs)
1067{
1068 struct mv_host_priv *hpriv = host->private_data;
1069 void __iomem *mmio = hpriv->base, *hc_mmio;
1070 u32 coal_enable = 0;
1071 unsigned long flags;
6abf4678 1072 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1073 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1074 ALL_PORTS_COAL_DONE;
1075
1076 /* Disable IRQ coalescing if either threshold is zero */
1077 if (!usecs || !count) {
1078 clks = count = 0;
1079 } else {
1080 /* Respect maximum limits of the hardware */
1081 clks = usecs * COAL_CLOCKS_PER_USEC;
1082 if (clks > MAX_COAL_TIME_THRESHOLD)
1083 clks = MAX_COAL_TIME_THRESHOLD;
1084 if (count > MAX_COAL_IO_COUNT)
1085 count = MAX_COAL_IO_COUNT;
1086 }
1087
1088 spin_lock_irqsave(&host->lock, flags);
6abf4678 1089 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1090
6abf4678 1091 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1092 /*
6abf4678
ML
1093 * GEN_II/GEN_IIE with dual host controllers:
1094 * one set of global thresholds for the entire chip.
2b748a0a 1095 */
cae5a29d
ML
1096 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1097 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
2b748a0a 1098 /* clear leftover coal IRQ bit */
cae5a29d 1099 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
6abf4678
ML
1100 if (count)
1101 coal_enable = ALL_PORTS_COAL_DONE;
1102 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1103 }
6abf4678 1104
2b748a0a
ML
1105 /*
1106 * All chips: independent thresholds for each HC on the chip.
1107 */
1108 hc_mmio = mv_hc_base_from_port(mmio, 0);
cae5a29d
ML
1109 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1110 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1111 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1112 if (count)
1113 coal_enable |= PORTS_0_3_COAL_DONE;
1114 if (is_dual_hc) {
2b748a0a 1115 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
cae5a29d
ML
1116 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1117 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1118 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1119 if (count)
1120 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1121 }
2b748a0a 1122
6abf4678 1123 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1124 spin_unlock_irqrestore(&host->lock, flags);
1125}
1126
05b308e1 1127/**
00b81235 1128 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1129 * @base: port base address
1130 * @pp: port private data
1131 *
beec7dbc
TH
1132 * Verify the local cache of the eDMA state is accurate with a
1133 * WARN_ON.
05b308e1
BR
1134 *
1135 * LOCKING:
1136 * Inherited from caller.
1137 */
00b81235 1138static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1139 struct mv_port_priv *pp, u8 protocol)
20f733e7 1140{
72109168
ML
1141 int want_ncq = (protocol == ATA_PROT_NCQ);
1142
1143 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1144 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1145 if (want_ncq != using_ncq)
b562468c 1146 mv_stop_edma(ap);
72109168 1147 }
c5d3e45a 1148 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1149 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1150
00b81235 1151 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1152
f630d562 1153 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1154 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1155
cae5a29d 1156 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
afb0edd9
BR
1157 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1158 }
20f733e7
BR
1159}
1160
9b2c4e0b
ML
1161static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1162{
1163 void __iomem *port_mmio = mv_ap_base(ap);
1164 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1165 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1166 int i;
1167
1168 /*
1169 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1170 * No idea what a good "timeout" value might be, but measurements
1171 * indicate that it often requires hundreds of microseconds
1172 * with two drives in-use. So we use the 15msec value above
1173 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1174 */
1175 for (i = 0; i < timeout; ++i) {
cae5a29d 1176 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
9b2c4e0b
ML
1177 if ((edma_stat & empty_idle) == empty_idle)
1178 break;
1179 udelay(per_loop);
1180 }
1181 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1182}
1183
05b308e1 1184/**
e12bef50 1185 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1186 * @port_mmio: io base address
05b308e1
BR
1187 *
1188 * LOCKING:
1189 * Inherited from caller.
1190 */
b562468c 1191static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1192{
b562468c 1193 int i;
31961943 1194
b562468c 1195 /* Disable eDMA. The disable bit auto clears. */
cae5a29d 1196 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
8b260248 1197
b562468c
ML
1198 /* Wait for the chip to confirm eDMA is off. */
1199 for (i = 10000; i > 0; i--) {
cae5a29d 1200 u32 reg = readl(port_mmio + EDMA_CMD);
4537deb5 1201 if (!(reg & EDMA_EN))
b562468c
ML
1202 return 0;
1203 udelay(10);
31961943 1204 }
b562468c 1205 return -EIO;
20f733e7
BR
1206}
1207
e12bef50 1208static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1209{
b562468c
ML
1210 void __iomem *port_mmio = mv_ap_base(ap);
1211 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1212 int err = 0;
0ea9e179 1213
b562468c
ML
1214 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1215 return 0;
1216 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1217 mv_wait_for_edma_empty_idle(ap);
b562468c
ML
1218 if (mv_stop_edma_engine(port_mmio)) {
1219 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
66e57a2c 1220 err = -EIO;
b562468c 1221 }
66e57a2c
ML
1222 mv_edma_cfg(ap, 0, 0);
1223 return err;
0ea9e179
JG
1224}
1225
8a70f8dc 1226#ifdef ATA_DEBUG
31961943 1227static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1228{
31961943
BR
1229 int b, w;
1230 for (b = 0; b < bytes; ) {
1231 DPRINTK("%p: ", start + b);
1232 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1233 printk("%08x ", readl(start + b));
31961943
BR
1234 b += sizeof(u32);
1235 }
1236 printk("\n");
1237 }
31961943 1238}
8a70f8dc
JG
1239#endif
1240
31961943
BR
1241static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1242{
1243#ifdef ATA_DEBUG
1244 int b, w;
1245 u32 dw;
1246 for (b = 0; b < bytes; ) {
1247 DPRINTK("%02x: ", b);
1248 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1249 (void) pci_read_config_dword(pdev, b, &dw);
1250 printk("%08x ", dw);
31961943
BR
1251 b += sizeof(u32);
1252 }
1253 printk("\n");
1254 }
1255#endif
1256}
1257static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1258 struct pci_dev *pdev)
1259{
1260#ifdef ATA_DEBUG
8b260248 1261 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1262 port >> MV_PORT_HC_SHIFT);
1263 void __iomem *port_base;
1264 int start_port, num_ports, p, start_hc, num_hcs, hc;
1265
1266 if (0 > port) {
1267 start_hc = start_port = 0;
1268 num_ports = 8; /* shld be benign for 4 port devs */
1269 num_hcs = 2;
1270 } else {
1271 start_hc = port >> MV_PORT_HC_SHIFT;
1272 start_port = port;
1273 num_ports = num_hcs = 1;
1274 }
8b260248 1275 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1276 num_ports > 1 ? num_ports - 1 : start_port);
1277
1278 if (NULL != pdev) {
1279 DPRINTK("PCI config space regs:\n");
1280 mv_dump_pci_cfg(pdev, 0x68);
1281 }
1282 DPRINTK("PCI regs:\n");
1283 mv_dump_mem(mmio_base+0xc00, 0x3c);
1284 mv_dump_mem(mmio_base+0xd00, 0x34);
1285 mv_dump_mem(mmio_base+0xf00, 0x4);
1286 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1287 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1288 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1289 DPRINTK("HC regs (HC %i):\n", hc);
1290 mv_dump_mem(hc_base, 0x1c);
1291 }
1292 for (p = start_port; p < start_port + num_ports; p++) {
1293 port_base = mv_port_base(mmio_base, p);
2dcb407e 1294 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1295 mv_dump_mem(port_base, 0x54);
2dcb407e 1296 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1297 mv_dump_mem(port_base+0x300, 0x60);
1298 }
1299#endif
20f733e7
BR
1300}
1301
1302static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1303{
1304 unsigned int ofs;
1305
1306 switch (sc_reg_in) {
1307 case SCR_STATUS:
1308 case SCR_CONTROL:
1309 case SCR_ERROR:
cae5a29d 1310 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
20f733e7
BR
1311 break;
1312 case SCR_ACTIVE:
cae5a29d 1313 ofs = SATA_ACTIVE; /* active is not with the others */
20f733e7
BR
1314 break;
1315 default:
1316 ofs = 0xffffffffU;
1317 break;
1318 }
1319 return ofs;
1320}
1321
82ef04fb 1322static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1323{
1324 unsigned int ofs = mv_scr_offset(sc_reg_in);
1325
da3dbb17 1326 if (ofs != 0xffffffffU) {
82ef04fb 1327 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1328 return 0;
1329 } else
1330 return -EINVAL;
20f733e7
BR
1331}
1332
82ef04fb 1333static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1334{
1335 unsigned int ofs = mv_scr_offset(sc_reg_in);
1336
da3dbb17 1337 if (ofs != 0xffffffffU) {
20091773
ML
1338 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1339 if (sc_reg_in == SCR_CONTROL) {
1340 /*
1341 * Workaround for 88SX60x1 FEr SATA#26:
1342 *
1343 * COMRESETs have to take care not to accidently
1344 * put the drive to sleep when writing SCR_CONTROL.
1345 * Setting bits 12..15 prevents this problem.
1346 *
1347 * So if we see an outbound COMMRESET, set those bits.
1348 * Ditto for the followup write that clears the reset.
1349 *
1350 * The proprietary driver does this for
1351 * all chip versions, and so do we.
1352 */
1353 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1354 val |= 0xf000;
1355 }
1356 writelfl(val, addr);
da3dbb17
TH
1357 return 0;
1358 } else
1359 return -EINVAL;
20f733e7
BR
1360}
1361
f273827e
ML
1362static void mv6_dev_config(struct ata_device *adev)
1363{
1364 /*
e49856d8
ML
1365 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1366 *
1367 * Gen-II does not support NCQ over a port multiplier
1368 * (no FIS-based switching).
f273827e 1369 */
e49856d8 1370 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1371 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1372 adev->flags &= ~ATA_DFLAG_NCQ;
352fab70
ML
1373 ata_dev_printk(adev, KERN_INFO,
1374 "NCQ disabled for command-based switching\n");
352fab70 1375 }
e49856d8 1376 }
f273827e
ML
1377}
1378
3e4a1391
ML
1379static int mv_qc_defer(struct ata_queued_cmd *qc)
1380{
1381 struct ata_link *link = qc->dev->link;
1382 struct ata_port *ap = link->ap;
1383 struct mv_port_priv *pp = ap->private_data;
1384
29d187bb
ML
1385 /*
1386 * Don't allow new commands if we're in a delayed EH state
1387 * for NCQ and/or FIS-based switching.
1388 */
1389 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1390 return ATA_DEFER_PORT;
159a7ff7
GG
1391
1392 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1393 * can run concurrently.
1394 * set excl_link when we want to send a PIO command in DMA mode
1395 * or a non-NCQ command in NCQ mode.
1396 * When we receive a command from that link, and there are no
1397 * outstanding commands, mark a flag to clear excl_link and let
1398 * the command go through.
1399 */
1400 if (unlikely(ap->excl_link)) {
1401 if (link == ap->excl_link) {
1402 if (ap->nr_active_links)
1403 return ATA_DEFER_PORT;
1404 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1405 return 0;
1406 } else
1407 return ATA_DEFER_PORT;
1408 }
1409
3e4a1391
ML
1410 /*
1411 * If the port is completely idle, then allow the new qc.
1412 */
1413 if (ap->nr_active_links == 0)
1414 return 0;
1415
4bdee6c5
TH
1416 /*
1417 * The port is operating in host queuing mode (EDMA) with NCQ
1418 * enabled, allow multiple NCQ commands. EDMA also allows
1419 * queueing multiple DMA commands but libata core currently
1420 * doesn't allow it.
1421 */
1422 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
159a7ff7
GG
1423 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1424 if (ata_is_ncq(qc->tf.protocol))
1425 return 0;
1426 else {
1427 ap->excl_link = link;
1428 return ATA_DEFER_PORT;
1429 }
1430 }
4bdee6c5 1431
3e4a1391
ML
1432 return ATA_DEFER_PORT;
1433}
1434
08da1759 1435static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1436{
08da1759
ML
1437 struct mv_port_priv *pp = ap->private_data;
1438 void __iomem *port_mmio;
00f42eab 1439
08da1759
ML
1440 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1441 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1442 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1443
08da1759
ML
1444 ltmode = *old_ltmode & ~LTMODE_BIT8;
1445 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1446
1447 if (want_fbs) {
08da1759
ML
1448 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1449 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1450 if (want_ncq)
08da1759 1451 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1452 else
08da1759
ML
1453 fiscfg |= FISCFG_WAIT_DEV_ERR;
1454 } else {
1455 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1456 }
00f42eab 1457
08da1759 1458 port_mmio = mv_ap_base(ap);
cae5a29d
ML
1459 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1460 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1461 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
f273827e
ML
1462}
1463
dd2890f6
ML
1464static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1465{
1466 struct mv_host_priv *hpriv = ap->host->private_data;
1467 u32 old, new;
1468
1469 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
cae5a29d 1470 old = readl(hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1471 if (want_ncq)
1472 new = old | (1 << 22);
1473 else
1474 new = old & ~(1 << 22);
1475 if (new != old)
cae5a29d 1476 writel(new, hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1477}
1478
c01e8a23 1479/**
40f21b11
ML
1480 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1481 * @ap: Port being initialized
c01e8a23
ML
1482 *
1483 * There are two DMA modes on these chips: basic DMA, and EDMA.
1484 *
1485 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1486 * of basic DMA on the GEN_IIE versions of the chips.
1487 *
1488 * This bit survives EDMA resets, and must be set for basic DMA
1489 * to function, and should be cleared when EDMA is active.
1490 */
1491static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1492{
1493 struct mv_port_priv *pp = ap->private_data;
1494 u32 new, *old = &pp->cached.unknown_rsvd;
1495
1496 if (enable_bmdma)
1497 new = *old | 1;
1498 else
1499 new = *old & ~1;
cae5a29d 1500 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
c01e8a23
ML
1501}
1502
000b344f
ML
1503/*
1504 * SOC chips have an issue whereby the HDD LEDs don't always blink
1505 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1506 * of the SOC takes care of it, generating a steady blink rate when
1507 * any drive on the chip is active.
1508 *
1509 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1510 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1511 *
1512 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1513 * LED operation works then, and provides better (more accurate) feedback.
1514 *
1515 * Note that this code assumes that an SOC never has more than one HC onboard.
1516 */
1517static void mv_soc_led_blink_enable(struct ata_port *ap)
1518{
1519 struct ata_host *host = ap->host;
1520 struct mv_host_priv *hpriv = host->private_data;
1521 void __iomem *hc_mmio;
1522 u32 led_ctrl;
1523
1524 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1525 return;
1526 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1527 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1528 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1529 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1530}
1531
1532static void mv_soc_led_blink_disable(struct ata_port *ap)
1533{
1534 struct ata_host *host = ap->host;
1535 struct mv_host_priv *hpriv = host->private_data;
1536 void __iomem *hc_mmio;
1537 u32 led_ctrl;
1538 unsigned int port;
1539
1540 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1541 return;
1542
1543 /* disable led-blink only if no ports are using NCQ */
1544 for (port = 0; port < hpriv->n_ports; port++) {
1545 struct ata_port *this_ap = host->ports[port];
1546 struct mv_port_priv *pp = this_ap->private_data;
1547
1548 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1549 return;
1550 }
1551
1552 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1553 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1554 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1555 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1556}
1557
00b81235 1558static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1559{
0c58912e 1560 u32 cfg;
e12bef50
ML
1561 struct mv_port_priv *pp = ap->private_data;
1562 struct mv_host_priv *hpriv = ap->host->private_data;
1563 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1564
1565 /* set up non-NCQ EDMA configuration */
0c58912e 1566 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1567 pp->pp_flags &=
1568 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1569
0c58912e 1570 if (IS_GEN_I(hpriv))
e4e7b892
JG
1571 cfg |= (1 << 8); /* enab config burst size mask */
1572
dd2890f6 1573 else if (IS_GEN_II(hpriv)) {
e4e7b892 1574 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1575 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1576
dd2890f6 1577 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1578 int want_fbs = sata_pmp_attached(ap);
1579 /*
1580 * Possible future enhancement:
1581 *
1582 * The chip can use FBS with non-NCQ, if we allow it,
1583 * But first we need to have the error handling in place
1584 * for this mode (datasheet section 7.3.15.4.2.3).
1585 * So disallow non-NCQ FBS for now.
1586 */
1587 want_fbs &= want_ncq;
1588
08da1759 1589 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1590
1591 if (want_fbs) {
1592 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1593 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1594 }
1595
e728eabe 1596 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1597 if (want_edma) {
1598 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1599 if (!IS_SOC(hpriv))
1600 cfg |= (1 << 18); /* enab early completion */
1601 }
616d4a98
ML
1602 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1603 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1604 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1605
1606 if (IS_SOC(hpriv)) {
1607 if (want_ncq)
1608 mv_soc_led_blink_enable(ap);
1609 else
1610 mv_soc_led_blink_disable(ap);
1611 }
e4e7b892
JG
1612 }
1613
72109168
ML
1614 if (want_ncq) {
1615 cfg |= EDMA_CFG_NCQ;
1616 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1617 }
72109168 1618
cae5a29d 1619 writelfl(cfg, port_mmio + EDMA_CFG);
e4e7b892
JG
1620}
1621
da2fa9ba
ML
1622static void mv_port_free_dma_mem(struct ata_port *ap)
1623{
1624 struct mv_host_priv *hpriv = ap->host->private_data;
1625 struct mv_port_priv *pp = ap->private_data;
eb73d558 1626 int tag;
da2fa9ba
ML
1627
1628 if (pp->crqb) {
1629 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1630 pp->crqb = NULL;
1631 }
1632 if (pp->crpb) {
1633 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1634 pp->crpb = NULL;
1635 }
eb73d558
ML
1636 /*
1637 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1638 * For later hardware, we have one unique sg_tbl per NCQ tag.
1639 */
1640 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1641 if (pp->sg_tbl[tag]) {
1642 if (tag == 0 || !IS_GEN_I(hpriv))
1643 dma_pool_free(hpriv->sg_tbl_pool,
1644 pp->sg_tbl[tag],
1645 pp->sg_tbl_dma[tag]);
1646 pp->sg_tbl[tag] = NULL;
1647 }
da2fa9ba
ML
1648 }
1649}
1650
05b308e1
BR
1651/**
1652 * mv_port_start - Port specific init/start routine.
1653 * @ap: ATA channel to manipulate
1654 *
1655 * Allocate and point to DMA memory, init port private memory,
1656 * zero indices.
1657 *
1658 * LOCKING:
1659 * Inherited from caller.
1660 */
31961943
BR
1661static int mv_port_start(struct ata_port *ap)
1662{
cca3974e
JG
1663 struct device *dev = ap->host->dev;
1664 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1665 struct mv_port_priv *pp;
933cb8e5 1666 unsigned long flags;
dde20207 1667 int tag;
31961943 1668
24dc5f33 1669 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1670 if (!pp)
24dc5f33 1671 return -ENOMEM;
da2fa9ba 1672 ap->private_data = pp;
31961943 1673
da2fa9ba
ML
1674 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1675 if (!pp->crqb)
1676 return -ENOMEM;
1677 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
31961943 1678
da2fa9ba
ML
1679 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1680 if (!pp->crpb)
1681 goto out_port_free_dma_mem;
1682 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
31961943 1683
3bd0a70e
ML
1684 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1685 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1686 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1687 /*
1688 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1689 * For later hardware, we need one unique sg_tbl per NCQ tag.
1690 */
1691 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1692 if (tag == 0 || !IS_GEN_I(hpriv)) {
1693 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1694 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1695 if (!pp->sg_tbl[tag])
1696 goto out_port_free_dma_mem;
1697 } else {
1698 pp->sg_tbl[tag] = pp->sg_tbl[0];
1699 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1700 }
1701 }
933cb8e5
ML
1702
1703 spin_lock_irqsave(ap->lock, flags);
08da1759 1704 mv_save_cached_regs(ap);
66e57a2c 1705 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1706 spin_unlock_irqrestore(ap->lock, flags);
1707
31961943 1708 return 0;
da2fa9ba
ML
1709
1710out_port_free_dma_mem:
1711 mv_port_free_dma_mem(ap);
1712 return -ENOMEM;
31961943
BR
1713}
1714
05b308e1
BR
1715/**
1716 * mv_port_stop - Port specific cleanup/stop routine.
1717 * @ap: ATA channel to manipulate
1718 *
1719 * Stop DMA, cleanup port memory.
1720 *
1721 * LOCKING:
cca3974e 1722 * This routine uses the host lock to protect the DMA stop.
05b308e1 1723 */
31961943
BR
1724static void mv_port_stop(struct ata_port *ap)
1725{
933cb8e5
ML
1726 unsigned long flags;
1727
1728 spin_lock_irqsave(ap->lock, flags);
e12bef50 1729 mv_stop_edma(ap);
88e675e1 1730 mv_enable_port_irqs(ap, 0);
933cb8e5 1731 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1732 mv_port_free_dma_mem(ap);
31961943
BR
1733}
1734
05b308e1
BR
1735/**
1736 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1737 * @qc: queued command whose SG list to source from
1738 *
1739 * Populate the SG list and mark the last entry.
1740 *
1741 * LOCKING:
1742 * Inherited from caller.
1743 */
6c08772e 1744static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1745{
1746 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1747 struct scatterlist *sg;
3be6cbd7 1748 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1749 unsigned int si;
31961943 1750
eb73d558 1751 mv_sg = pp->sg_tbl[qc->tag];
ff2aeb1e 1752 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1753 dma_addr_t addr = sg_dma_address(sg);
1754 u32 sg_len = sg_dma_len(sg);
22374677 1755
4007b493
OJ
1756 while (sg_len) {
1757 u32 offset = addr & 0xffff;
1758 u32 len = sg_len;
22374677 1759
32cd11a6 1760 if (offset + len > 0x10000)
4007b493
OJ
1761 len = 0x10000 - offset;
1762
1763 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1764 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1765 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1766 mv_sg->reserved = 0;
4007b493
OJ
1767
1768 sg_len -= len;
1769 addr += len;
1770
3be6cbd7 1771 last_sg = mv_sg;
4007b493 1772 mv_sg++;
4007b493 1773 }
31961943 1774 }
3be6cbd7
JG
1775
1776 if (likely(last_sg))
1777 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1778 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1779}
1780
5796d1c4 1781static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1782{
559eedad 1783 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1784 (last ? CRQB_CMD_LAST : 0);
559eedad 1785 *cmdw = cpu_to_le16(tmp);
31961943
BR
1786}
1787
da14265e
ML
1788/**
1789 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1790 * @ap: Port associated with this ATA transaction.
1791 *
1792 * We need this only for ATAPI bmdma transactions,
1793 * as otherwise we experience spurious interrupts
1794 * after libata-sff handles the bmdma interrupts.
1795 */
1796static void mv_sff_irq_clear(struct ata_port *ap)
1797{
1798 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1799}
1800
1801/**
1802 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1803 * @qc: queued command to check for chipset/DMA compatibility.
1804 *
1805 * The bmdma engines cannot handle speculative data sizes
1806 * (bytecount under/over flow). So only allow DMA for
1807 * data transfer commands with known data sizes.
1808 *
1809 * LOCKING:
1810 * Inherited from caller.
1811 */
1812static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1813{
1814 struct scsi_cmnd *scmd = qc->scsicmd;
1815
1816 if (scmd) {
1817 switch (scmd->cmnd[0]) {
1818 case READ_6:
1819 case READ_10:
1820 case READ_12:
1821 case WRITE_6:
1822 case WRITE_10:
1823 case WRITE_12:
1824 case GPCMD_READ_CD:
1825 case GPCMD_SEND_DVD_STRUCTURE:
1826 case GPCMD_SEND_CUE_SHEET:
1827 return 0; /* DMA is safe */
1828 }
1829 }
1830 return -EOPNOTSUPP; /* use PIO instead */
1831}
1832
1833/**
1834 * mv_bmdma_setup - Set up BMDMA transaction
1835 * @qc: queued command to prepare DMA for.
1836 *
1837 * LOCKING:
1838 * Inherited from caller.
1839 */
1840static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1841{
1842 struct ata_port *ap = qc->ap;
1843 void __iomem *port_mmio = mv_ap_base(ap);
1844 struct mv_port_priv *pp = ap->private_data;
1845
1846 mv_fill_sg(qc);
1847
1848 /* clear all DMA cmd bits */
cae5a29d 1849 writel(0, port_mmio + BMDMA_CMD);
da14265e
ML
1850
1851 /* load PRD table addr. */
1852 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
cae5a29d 1853 port_mmio + BMDMA_PRD_HIGH);
da14265e 1854 writelfl(pp->sg_tbl_dma[qc->tag],
cae5a29d 1855 port_mmio + BMDMA_PRD_LOW);
da14265e
ML
1856
1857 /* issue r/w command */
1858 ap->ops->sff_exec_command(ap, &qc->tf);
1859}
1860
1861/**
1862 * mv_bmdma_start - Start a BMDMA transaction
1863 * @qc: queued command to start DMA on.
1864 *
1865 * LOCKING:
1866 * Inherited from caller.
1867 */
1868static void mv_bmdma_start(struct ata_queued_cmd *qc)
1869{
1870 struct ata_port *ap = qc->ap;
1871 void __iomem *port_mmio = mv_ap_base(ap);
1872 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1873 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1874
1875 /* start host DMA transaction */
cae5a29d 1876 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1877}
1878
1879/**
1880 * mv_bmdma_stop - Stop BMDMA transfer
1881 * @qc: queued command to stop DMA on.
1882 *
1883 * Clears the ATA_DMA_START flag in the bmdma control register
1884 *
1885 * LOCKING:
1886 * Inherited from caller.
1887 */
1888static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1889{
1890 struct ata_port *ap = qc->ap;
1891 void __iomem *port_mmio = mv_ap_base(ap);
1892 u32 cmd;
1893
1894 /* clear start/stop bit */
cae5a29d 1895 cmd = readl(port_mmio + BMDMA_CMD);
da14265e 1896 cmd &= ~ATA_DMA_START;
cae5a29d 1897 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1898
1899 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1900 ata_sff_dma_pause(ap);
1901}
1902
1903/**
1904 * mv_bmdma_status - Read BMDMA status
1905 * @ap: port for which to retrieve DMA status.
1906 *
1907 * Read and return equivalent of the sff BMDMA status register.
1908 *
1909 * LOCKING:
1910 * Inherited from caller.
1911 */
1912static u8 mv_bmdma_status(struct ata_port *ap)
1913{
1914 void __iomem *port_mmio = mv_ap_base(ap);
1915 u32 reg, status;
1916
1917 /*
1918 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1919 * and the ATA_DMA_INTR bit doesn't exist.
1920 */
cae5a29d 1921 reg = readl(port_mmio + BMDMA_STATUS);
da14265e
ML
1922 if (reg & ATA_DMA_ACTIVE)
1923 status = ATA_DMA_ACTIVE;
1924 else
1925 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1926 return status;
1927}
1928
299b3f8d
ML
1929static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1930{
1931 struct ata_taskfile *tf = &qc->tf;
1932 /*
1933 * Workaround for 88SX60x1 FEr SATA#24.
1934 *
1935 * Chip may corrupt WRITEs if multi_count >= 4kB.
1936 * Note that READs are unaffected.
1937 *
1938 * It's not clear if this errata really means "4K bytes",
1939 * or if it always happens for multi_count > 7
1940 * regardless of device sector_size.
1941 *
1942 * So, for safety, any write with multi_count > 7
1943 * gets converted here into a regular PIO write instead:
1944 */
1945 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1946 if (qc->dev->multi_count > 7) {
1947 switch (tf->command) {
1948 case ATA_CMD_WRITE_MULTI:
1949 tf->command = ATA_CMD_PIO_WRITE;
1950 break;
1951 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1952 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1953 /* fall through */
1954 case ATA_CMD_WRITE_MULTI_EXT:
1955 tf->command = ATA_CMD_PIO_WRITE_EXT;
1956 break;
1957 }
1958 }
1959 }
1960}
1961
05b308e1
BR
1962/**
1963 * mv_qc_prep - Host specific command preparation.
1964 * @qc: queued command to prepare
1965 *
1966 * This routine simply redirects to the general purpose routine
1967 * if command is not DMA. Else, it handles prep of the CRQB
1968 * (command request block), does some sanity checking, and calls
1969 * the SG load routine.
1970 *
1971 * LOCKING:
1972 * Inherited from caller.
1973 */
31961943
BR
1974static void mv_qc_prep(struct ata_queued_cmd *qc)
1975{
1976 struct ata_port *ap = qc->ap;
1977 struct mv_port_priv *pp = ap->private_data;
e1469874 1978 __le16 *cw;
8d2b450d 1979 struct ata_taskfile *tf = &qc->tf;
31961943 1980 u16 flags = 0;
a6432436 1981 unsigned in_index;
31961943 1982
299b3f8d
ML
1983 switch (tf->protocol) {
1984 case ATA_PROT_DMA:
1985 case ATA_PROT_NCQ:
1986 break; /* continue below */
1987 case ATA_PROT_PIO:
1988 mv_rw_multi_errata_sata24(qc);
31961943 1989 return;
299b3f8d
ML
1990 default:
1991 return;
1992 }
20f733e7 1993
31961943
BR
1994 /* Fill in command request block
1995 */
8d2b450d 1996 if (!(tf->flags & ATA_TFLAG_WRITE))
31961943 1997 flags |= CRQB_FLAG_READ;
beec7dbc 1998 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
31961943 1999 flags |= qc->tag << CRQB_TAG_SHIFT;
e49856d8 2000 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 2001
bdd4ddde 2002 /* get current queue index from software */
fcfb1f77 2003 in_index = pp->req_idx;
a6432436
ML
2004
2005 pp->crqb[in_index].sg_addr =
eb73d558 2006 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
a6432436 2007 pp->crqb[in_index].sg_addr_hi =
eb73d558 2008 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
a6432436 2009 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 2010
a6432436 2011 cw = &pp->crqb[in_index].ata_cmd[0];
31961943
BR
2012
2013 /* Sadly, the CRQB cannot accomodate all registers--there are
2014 * only 11 bytes...so we must pick and choose required
2015 * registers based on the command. So, we drop feature and
2016 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
2017 * NCQ. NCQ will drop hob_nsect, which is not needed there
2018 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 2019 */
31961943
BR
2020 switch (tf->command) {
2021 case ATA_CMD_READ:
2022 case ATA_CMD_READ_EXT:
2023 case ATA_CMD_WRITE:
2024 case ATA_CMD_WRITE_EXT:
c15d85c8 2025 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
2026 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2027 break;
31961943
BR
2028 case ATA_CMD_FPDMA_READ:
2029 case ATA_CMD_FPDMA_WRITE:
8b260248 2030 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
2031 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2032 break;
31961943
BR
2033 default:
2034 /* The only other commands EDMA supports in non-queued and
2035 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2036 * of which are defined/used by Linux. If we get here, this
2037 * driver needs work.
2038 *
2039 * FIXME: modify libata to give qc_prep a return value and
2040 * return error here.
2041 */
2042 BUG_ON(tf->command);
2043 break;
2044 }
2045 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2046 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2047 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2048 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2049 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2050 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2051 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2052 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2053 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2054
e4e7b892
JG
2055 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2056 return;
2057 mv_fill_sg(qc);
2058}
2059
2060/**
2061 * mv_qc_prep_iie - Host specific command preparation.
2062 * @qc: queued command to prepare
2063 *
2064 * This routine simply redirects to the general purpose routine
2065 * if command is not DMA. Else, it handles prep of the CRQB
2066 * (command request block), does some sanity checking, and calls
2067 * the SG load routine.
2068 *
2069 * LOCKING:
2070 * Inherited from caller.
2071 */
2072static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2073{
2074 struct ata_port *ap = qc->ap;
2075 struct mv_port_priv *pp = ap->private_data;
2076 struct mv_crqb_iie *crqb;
8d2b450d 2077 struct ata_taskfile *tf = &qc->tf;
a6432436 2078 unsigned in_index;
e4e7b892
JG
2079 u32 flags = 0;
2080
8d2b450d
ML
2081 if ((tf->protocol != ATA_PROT_DMA) &&
2082 (tf->protocol != ATA_PROT_NCQ))
e4e7b892
JG
2083 return;
2084
e12bef50 2085 /* Fill in Gen IIE command request block */
8d2b450d 2086 if (!(tf->flags & ATA_TFLAG_WRITE))
e4e7b892
JG
2087 flags |= CRQB_FLAG_READ;
2088
beec7dbc 2089 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
e4e7b892 2090 flags |= qc->tag << CRQB_TAG_SHIFT;
8c0aeb4a 2091 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
e49856d8 2092 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2093
bdd4ddde 2094 /* get current queue index from software */
fcfb1f77 2095 in_index = pp->req_idx;
a6432436
ML
2096
2097 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
eb73d558
ML
2098 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2099 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
e4e7b892
JG
2100 crqb->flags = cpu_to_le32(flags);
2101
e4e7b892
JG
2102 crqb->ata_cmd[0] = cpu_to_le32(
2103 (tf->command << 16) |
2104 (tf->feature << 24)
2105 );
2106 crqb->ata_cmd[1] = cpu_to_le32(
2107 (tf->lbal << 0) |
2108 (tf->lbam << 8) |
2109 (tf->lbah << 16) |
2110 (tf->device << 24)
2111 );
2112 crqb->ata_cmd[2] = cpu_to_le32(
2113 (tf->hob_lbal << 0) |
2114 (tf->hob_lbam << 8) |
2115 (tf->hob_lbah << 16) |
2116 (tf->hob_feature << 24)
2117 );
2118 crqb->ata_cmd[3] = cpu_to_le32(
2119 (tf->nsect << 0) |
2120 (tf->hob_nsect << 8)
2121 );
2122
2123 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
31961943 2124 return;
31961943
BR
2125 mv_fill_sg(qc);
2126}
2127
d16ab3f6
ML
2128/**
2129 * mv_sff_check_status - fetch device status, if valid
2130 * @ap: ATA port to fetch status from
2131 *
2132 * When using command issue via mv_qc_issue_fis(),
2133 * the initial ATA_BUSY state does not show up in the
2134 * ATA status (shadow) register. This can confuse libata!
2135 *
2136 * So we have a hook here to fake ATA_BUSY for that situation,
2137 * until the first time a BUSY, DRQ, or ERR bit is seen.
2138 *
2139 * The rest of the time, it simply returns the ATA status register.
2140 */
2141static u8 mv_sff_check_status(struct ata_port *ap)
2142{
2143 u8 stat = ioread8(ap->ioaddr.status_addr);
2144 struct mv_port_priv *pp = ap->private_data;
2145
2146 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2147 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2148 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2149 else
2150 stat = ATA_BUSY;
2151 }
2152 return stat;
2153}
2154
70f8b79c
ML
2155/**
2156 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2157 * @fis: fis to be sent
2158 * @nwords: number of 32-bit words in the fis
2159 */
2160static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2161{
2162 void __iomem *port_mmio = mv_ap_base(ap);
2163 u32 ifctl, old_ifctl, ifstat;
2164 int i, timeout = 200, final_word = nwords - 1;
2165
2166 /* Initiate FIS transmission mode */
cae5a29d 2167 old_ifctl = readl(port_mmio + SATA_IFCTL);
70f8b79c 2168 ifctl = 0x100 | (old_ifctl & 0xf);
cae5a29d 2169 writelfl(ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2170
2171 /* Send all words of the FIS except for the final word */
2172 for (i = 0; i < final_word; ++i)
cae5a29d 2173 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2174
2175 /* Flag end-of-transmission, and then send the final word */
cae5a29d
ML
2176 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2177 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2178
2179 /*
2180 * Wait for FIS transmission to complete.
2181 * This typically takes just a single iteration.
2182 */
2183 do {
cae5a29d 2184 ifstat = readl(port_mmio + SATA_IFSTAT);
70f8b79c
ML
2185 } while (!(ifstat & 0x1000) && --timeout);
2186
2187 /* Restore original port configuration */
cae5a29d 2188 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2189
2190 /* See if it worked */
2191 if ((ifstat & 0x3000) != 0x1000) {
2192 ata_port_printk(ap, KERN_WARNING,
2193 "%s transmission error, ifstat=%08x\n",
2194 __func__, ifstat);
2195 return AC_ERR_OTHER;
2196 }
2197 return 0;
2198}
2199
2200/**
2201 * mv_qc_issue_fis - Issue a command directly as a FIS
2202 * @qc: queued command to start
2203 *
2204 * Note that the ATA shadow registers are not updated
2205 * after command issue, so the device will appear "READY"
2206 * if polled, even while it is BUSY processing the command.
2207 *
2208 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2209 *
2210 * Note: we don't get updated shadow regs on *completion*
2211 * of non-data commands. So avoid sending them via this function,
2212 * as they will appear to have completed immediately.
2213 *
2214 * GEN_IIE has special registers that we could get the result tf from,
2215 * but earlier chipsets do not. For now, we ignore those registers.
2216 */
2217static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2218{
2219 struct ata_port *ap = qc->ap;
2220 struct mv_port_priv *pp = ap->private_data;
2221 struct ata_link *link = qc->dev->link;
2222 u32 fis[5];
2223 int err = 0;
2224
2225 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
4c4a90fd 2226 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
70f8b79c
ML
2227 if (err)
2228 return err;
2229
2230 switch (qc->tf.protocol) {
2231 case ATAPI_PROT_PIO:
2232 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2233 /* fall through */
2234 case ATAPI_PROT_NODATA:
2235 ap->hsm_task_state = HSM_ST_FIRST;
2236 break;
2237 case ATA_PROT_PIO:
2238 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2239 if (qc->tf.flags & ATA_TFLAG_WRITE)
2240 ap->hsm_task_state = HSM_ST_FIRST;
2241 else
2242 ap->hsm_task_state = HSM_ST;
2243 break;
2244 default:
2245 ap->hsm_task_state = HSM_ST_LAST;
2246 break;
2247 }
2248
2249 if (qc->tf.flags & ATA_TFLAG_POLLING)
2250 ata_pio_queue_task(ap, qc, 0);
2251 return 0;
2252}
2253
05b308e1
BR
2254/**
2255 * mv_qc_issue - Initiate a command to the host
2256 * @qc: queued command to start
2257 *
2258 * This routine simply redirects to the general purpose routine
2259 * if command is not DMA. Else, it sanity checks our local
2260 * caches of the request producer/consumer indices then enables
2261 * DMA and bumps the request producer index.
2262 *
2263 * LOCKING:
2264 * Inherited from caller.
2265 */
9a3d9eb0 2266static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2267{
f48765cc 2268 static int limit_warnings = 10;
c5d3e45a
JG
2269 struct ata_port *ap = qc->ap;
2270 void __iomem *port_mmio = mv_ap_base(ap);
2271 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2272 u32 in_index;
42ed893d 2273 unsigned int port_irqs;
f48765cc 2274
d16ab3f6
ML
2275 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2276
f48765cc
ML
2277 switch (qc->tf.protocol) {
2278 case ATA_PROT_DMA:
2279 case ATA_PROT_NCQ:
2280 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2281 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2282 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2283
2284 /* Write the request in pointer to kick the EDMA to life */
2285 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
cae5a29d 2286 port_mmio + EDMA_REQ_Q_IN_PTR);
f48765cc 2287 return 0;
31961943 2288
f48765cc 2289 case ATA_PROT_PIO:
c6112bd8
ML
2290 /*
2291 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2292 *
2293 * Someday, we might implement special polling workarounds
2294 * for these, but it all seems rather unnecessary since we
2295 * normally use only DMA for commands which transfer more
2296 * than a single block of data.
2297 *
2298 * Much of the time, this could just work regardless.
2299 * So for now, just log the incident, and allow the attempt.
2300 */
c7843e8f 2301 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8
ML
2302 --limit_warnings;
2303 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2304 ": attempting PIO w/multiple DRQ: "
2305 "this may fail due to h/w errata\n");
2306 }
f48765cc 2307 /* drop through */
42ed893d 2308 case ATA_PROT_NODATA:
f48765cc 2309 case ATAPI_PROT_PIO:
42ed893d
ML
2310 case ATAPI_PROT_NODATA:
2311 if (ap->flags & ATA_FLAG_PIO_POLLING)
2312 qc->tf.flags |= ATA_TFLAG_POLLING;
2313 break;
31961943 2314 }
42ed893d
ML
2315
2316 if (qc->tf.flags & ATA_TFLAG_POLLING)
2317 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2318 else
2319 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2320
2321 /*
2322 * We're about to send a non-EDMA capable command to the
2323 * port. Turn off EDMA so there won't be problems accessing
2324 * shadow block, etc registers.
2325 */
2326 mv_stop_edma(ap);
2327 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2328 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2329
2330 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2331 struct mv_host_priv *hpriv = ap->host->private_data;
2332 /*
2333 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2334 *
70f8b79c
ML
2335 * After any NCQ error, the READ_LOG_EXT command
2336 * from libata-eh *must* use mv_qc_issue_fis().
2337 * Otherwise it might fail, due to chip errata.
2338 *
2339 * Rather than special-case it, we'll just *always*
2340 * use this method here for READ_LOG_EXT, making for
2341 * easier testing.
2342 */
2343 if (IS_GEN_II(hpriv))
2344 return mv_qc_issue_fis(qc);
2345 }
42ed893d 2346 return ata_sff_qc_issue(qc);
31961943
BR
2347}
2348
8f767f8a
ML
2349static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2350{
2351 struct mv_port_priv *pp = ap->private_data;
2352 struct ata_queued_cmd *qc;
2353
2354 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2355 return NULL;
2356 qc = ata_qc_from_tag(ap, ap->link.active_tag);
95db5051
ML
2357 if (qc) {
2358 if (qc->tf.flags & ATA_TFLAG_POLLING)
2359 qc = NULL;
2360 else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2361 qc = NULL;
2362 }
8f767f8a
ML
2363 return qc;
2364}
2365
29d187bb
ML
2366static void mv_pmp_error_handler(struct ata_port *ap)
2367{
2368 unsigned int pmp, pmp_map;
2369 struct mv_port_priv *pp = ap->private_data;
2370
2371 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2372 /*
2373 * Perform NCQ error analysis on failed PMPs
2374 * before we freeze the port entirely.
2375 *
2376 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2377 */
2378 pmp_map = pp->delayed_eh_pmp_map;
2379 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2380 for (pmp = 0; pmp_map != 0; pmp++) {
2381 unsigned int this_pmp = (1 << pmp);
2382 if (pmp_map & this_pmp) {
2383 struct ata_link *link = &ap->pmp_link[pmp];
2384 pmp_map &= ~this_pmp;
2385 ata_eh_analyze_ncq_error(link);
2386 }
2387 }
2388 ata_port_freeze(ap);
2389 }
2390 sata_pmp_error_handler(ap);
2391}
2392
4c299ca3
ML
2393static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2394{
2395 void __iomem *port_mmio = mv_ap_base(ap);
2396
cae5a29d 2397 return readl(port_mmio + SATA_TESTCTL) >> 16;
4c299ca3
ML
2398}
2399
4c299ca3
ML
2400static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2401{
2402 struct ata_eh_info *ehi;
2403 unsigned int pmp;
2404
2405 /*
2406 * Initialize EH info for PMPs which saw device errors
2407 */
2408 ehi = &ap->link.eh_info;
2409 for (pmp = 0; pmp_map != 0; pmp++) {
2410 unsigned int this_pmp = (1 << pmp);
2411 if (pmp_map & this_pmp) {
2412 struct ata_link *link = &ap->pmp_link[pmp];
2413
2414 pmp_map &= ~this_pmp;
2415 ehi = &link->eh_info;
2416 ata_ehi_clear_desc(ehi);
2417 ata_ehi_push_desc(ehi, "dev err");
2418 ehi->err_mask |= AC_ERR_DEV;
2419 ehi->action |= ATA_EH_RESET;
2420 ata_link_abort(link);
2421 }
2422 }
2423}
2424
06aaca3f
ML
2425static int mv_req_q_empty(struct ata_port *ap)
2426{
2427 void __iomem *port_mmio = mv_ap_base(ap);
2428 u32 in_ptr, out_ptr;
2429
cae5a29d 2430 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
06aaca3f 2431 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
cae5a29d 2432 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
06aaca3f
ML
2433 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2434 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2435}
2436
4c299ca3
ML
2437static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2438{
2439 struct mv_port_priv *pp = ap->private_data;
2440 int failed_links;
2441 unsigned int old_map, new_map;
2442
2443 /*
2444 * Device error during FBS+NCQ operation:
2445 *
2446 * Set a port flag to prevent further I/O being enqueued.
2447 * Leave the EDMA running to drain outstanding commands from this port.
2448 * Perform the post-mortem/EH only when all responses are complete.
2449 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2450 */
2451 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2452 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2453 pp->delayed_eh_pmp_map = 0;
2454 }
2455 old_map = pp->delayed_eh_pmp_map;
2456 new_map = old_map | mv_get_err_pmp_map(ap);
2457
2458 if (old_map != new_map) {
2459 pp->delayed_eh_pmp_map = new_map;
2460 mv_pmp_eh_prep(ap, new_map & ~old_map);
2461 }
c46938cc 2462 failed_links = hweight16(new_map);
4c299ca3
ML
2463
2464 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2465 "failed_links=%d nr_active_links=%d\n",
2466 __func__, pp->delayed_eh_pmp_map,
2467 ap->qc_active, failed_links,
2468 ap->nr_active_links);
2469
06aaca3f 2470 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2471 mv_process_crpb_entries(ap, pp);
2472 mv_stop_edma(ap);
2473 mv_eh_freeze(ap);
2474 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2475 return 1; /* handled */
2476 }
2477 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2478 return 1; /* handled */
2479}
2480
2481static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2482{
2483 /*
2484 * Possible future enhancement:
2485 *
2486 * FBS+non-NCQ operation is not yet implemented.
2487 * See related notes in mv_edma_cfg().
2488 *
2489 * Device error during FBS+non-NCQ operation:
2490 *
2491 * We need to snapshot the shadow registers for each failed command.
2492 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2493 */
2494 return 0; /* not handled */
2495}
2496
2497static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2498{
2499 struct mv_port_priv *pp = ap->private_data;
2500
2501 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2502 return 0; /* EDMA was not active: not handled */
2503 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2504 return 0; /* FBS was not active: not handled */
2505
2506 if (!(edma_err_cause & EDMA_ERR_DEV))
2507 return 0; /* non DEV error: not handled */
2508 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2509 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2510 return 0; /* other problems: not handled */
2511
2512 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2513 /*
2514 * EDMA should NOT have self-disabled for this case.
2515 * If it did, then something is wrong elsewhere,
2516 * and we cannot handle it here.
2517 */
2518 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2519 ata_port_printk(ap, KERN_WARNING,
2520 "%s: err_cause=0x%x pp_flags=0x%x\n",
2521 __func__, edma_err_cause, pp->pp_flags);
2522 return 0; /* not handled */
2523 }
2524 return mv_handle_fbs_ncq_dev_err(ap);
2525 } else {
2526 /*
2527 * EDMA should have self-disabled for this case.
2528 * If it did not, then something is wrong elsewhere,
2529 * and we cannot handle it here.
2530 */
2531 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2532 ata_port_printk(ap, KERN_WARNING,
2533 "%s: err_cause=0x%x pp_flags=0x%x\n",
2534 __func__, edma_err_cause, pp->pp_flags);
2535 return 0; /* not handled */
2536 }
2537 return mv_handle_fbs_non_ncq_dev_err(ap);
2538 }
2539 return 0; /* not handled */
2540}
2541
a9010329 2542static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2543{
8f767f8a 2544 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2545 char *when = "idle";
8f767f8a 2546
8f767f8a 2547 ata_ehi_clear_desc(ehi);
c9abde12 2548 if (ap->flags & ATA_FLAG_DISABLED) {
a9010329
ML
2549 when = "disabled";
2550 } else if (edma_was_enabled) {
2551 when = "EDMA enabled";
8f767f8a
ML
2552 } else {
2553 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2554 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2555 when = "polling";
8f767f8a 2556 }
a9010329 2557 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2558 ehi->err_mask |= AC_ERR_OTHER;
2559 ehi->action |= ATA_EH_RESET;
2560 ata_port_freeze(ap);
2561}
2562
05b308e1
BR
2563/**
2564 * mv_err_intr - Handle error interrupts on the port
2565 * @ap: ATA channel to manipulate
2566 *
8d07379d
ML
2567 * Most cases require a full reset of the chip's state machine,
2568 * which also performs a COMRESET.
2569 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2570 *
2571 * LOCKING:
2572 * Inherited from caller.
2573 */
37b9046a 2574static void mv_err_intr(struct ata_port *ap)
31961943
BR
2575{
2576 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2577 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2578 u32 fis_cause = 0;
bdd4ddde
JG
2579 struct mv_port_priv *pp = ap->private_data;
2580 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2581 unsigned int action = 0, err_mask = 0;
9af5c9c9 2582 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2583 struct ata_queued_cmd *qc;
2584 int abort = 0;
20f733e7 2585
8d07379d 2586 /*
37b9046a 2587 * Read and clear the SError and err_cause bits.
e4006077
ML
2588 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2589 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2590 */
37b9046a
ML
2591 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2592 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2593
cae5a29d 2594 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
e4006077 2595 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
cae5a29d
ML
2596 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2597 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
e4006077 2598 }
cae5a29d 2599 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde 2600
4c299ca3
ML
2601 if (edma_err_cause & EDMA_ERR_DEV) {
2602 /*
2603 * Device errors during FIS-based switching operation
2604 * require special handling.
2605 */
2606 if (mv_handle_dev_err(ap, edma_err_cause))
2607 return;
2608 }
2609
37b9046a
ML
2610 qc = mv_get_active_qc(ap);
2611 ata_ehi_clear_desc(ehi);
2612 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2613 edma_err_cause, pp->pp_flags);
e4006077 2614
c443c500 2615 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2616 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
cae5a29d 2617 if (fis_cause & FIS_IRQ_CAUSE_AN) {
c443c500
ML
2618 u32 ec = edma_err_cause &
2619 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2620 sata_async_notification(ap);
2621 if (!ec)
2622 return; /* Just an AN; no need for the nukes */
2623 ata_ehi_push_desc(ehi, "SDB notify");
2624 }
2625 }
bdd4ddde 2626 /*
352fab70 2627 * All generations share these EDMA error cause bits:
bdd4ddde 2628 */
37b9046a 2629 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2630 err_mask |= AC_ERR_DEV;
37b9046a
ML
2631 action |= ATA_EH_RESET;
2632 ata_ehi_push_desc(ehi, "dev error");
2633 }
bdd4ddde 2634 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2635 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2636 EDMA_ERR_INTRL_PAR)) {
2637 err_mask |= AC_ERR_ATA_BUS;
cf480626 2638 action |= ATA_EH_RESET;
b64bbc39 2639 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2640 }
2641 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2642 ata_ehi_hotplugged(ehi);
2643 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2644 "dev disconnect" : "dev connect");
cf480626 2645 action |= ATA_EH_RESET;
bdd4ddde
JG
2646 }
2647
352fab70
ML
2648 /*
2649 * Gen-I has a different SELF_DIS bit,
2650 * different FREEZE bits, and no SERR bit:
2651 */
ee9ccdf7 2652 if (IS_GEN_I(hpriv)) {
bdd4ddde 2653 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2654 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2655 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2656 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2657 }
2658 } else {
2659 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2660 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2661 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2662 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2663 }
bdd4ddde 2664 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2665 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2666 err_mask |= AC_ERR_ATA_BUS;
cf480626 2667 action |= ATA_EH_RESET;
bdd4ddde 2668 }
afb0edd9 2669 }
20f733e7 2670
bdd4ddde
JG
2671 if (!err_mask) {
2672 err_mask = AC_ERR_OTHER;
cf480626 2673 action |= ATA_EH_RESET;
bdd4ddde
JG
2674 }
2675
2676 ehi->serror |= serr;
2677 ehi->action |= action;
2678
2679 if (qc)
2680 qc->err_mask |= err_mask;
2681 else
2682 ehi->err_mask |= err_mask;
2683
37b9046a
ML
2684 if (err_mask == AC_ERR_DEV) {
2685 /*
2686 * Cannot do ata_port_freeze() here,
2687 * because it would kill PIO access,
2688 * which is needed for further diagnosis.
2689 */
2690 mv_eh_freeze(ap);
2691 abort = 1;
2692 } else if (edma_err_cause & eh_freeze_mask) {
2693 /*
2694 * Note to self: ata_port_freeze() calls ata_port_abort()
2695 */
bdd4ddde 2696 ata_port_freeze(ap);
37b9046a
ML
2697 } else {
2698 abort = 1;
2699 }
2700
2701 if (abort) {
2702 if (qc)
2703 ata_link_abort(qc->dev->link);
2704 else
2705 ata_port_abort(ap);
2706 }
bdd4ddde
JG
2707}
2708
fcfb1f77
ML
2709static void mv_process_crpb_response(struct ata_port *ap,
2710 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2711{
2712 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2713
2714 if (qc) {
2715 u8 ata_status;
2716 u16 edma_status = le16_to_cpu(response->flags);
2717 /*
2718 * edma_status from a response queue entry:
cae5a29d 2719 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
fcfb1f77
ML
2720 * MSB is saved ATA status from command completion.
2721 */
2722 if (!ncq_enabled) {
2723 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2724 if (err_cause) {
2725 /*
2726 * Error will be seen/handled by mv_err_intr().
2727 * So do nothing at all here.
2728 */
2729 return;
2730 }
2731 }
2732 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
37b9046a
ML
2733 if (!ac_err_mask(ata_status))
2734 ata_qc_complete(qc);
2735 /* else: leave it for mv_err_intr() */
fcfb1f77
ML
2736 } else {
2737 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2738 __func__, tag);
2739 }
2740}
2741
2742static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2743{
2744 void __iomem *port_mmio = mv_ap_base(ap);
2745 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2746 u32 in_index;
bdd4ddde 2747 bool work_done = false;
fcfb1f77 2748 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2749
fcfb1f77 2750 /* Get the hardware queue position index */
cae5a29d 2751 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
bdd4ddde
JG
2752 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2753
fcfb1f77
ML
2754 /* Process new responses from since the last time we looked */
2755 while (in_index != pp->resp_idx) {
6c1153e0 2756 unsigned int tag;
fcfb1f77 2757 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2758
fcfb1f77 2759 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2760
fcfb1f77
ML
2761 if (IS_GEN_I(hpriv)) {
2762 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2763 tag = ap->link.active_tag;
fcfb1f77
ML
2764 } else {
2765 /* Gen II/IIE: get command tag from CRPB entry */
2766 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2767 }
fcfb1f77 2768 mv_process_crpb_response(ap, response, tag, ncq_enabled);
bdd4ddde 2769 work_done = true;
bdd4ddde
JG
2770 }
2771
352fab70 2772 /* Update the software queue position index in hardware */
bdd4ddde
JG
2773 if (work_done)
2774 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2775 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
cae5a29d 2776 port_mmio + EDMA_RSP_Q_OUT_PTR);
20f733e7
BR
2777}
2778
a9010329
ML
2779static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2780{
2781 struct mv_port_priv *pp;
2782 int edma_was_enabled;
2783
2784 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2785 mv_unexpected_intr(ap, 0);
2786 return;
2787 }
2788 /*
2789 * Grab a snapshot of the EDMA_EN flag setting,
2790 * so that we have a consistent view for this port,
2791 * even if something we call of our routines changes it.
2792 */
2793 pp = ap->private_data;
2794 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2795 /*
2796 * Process completed CRPB response(s) before other events.
2797 */
2798 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2799 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2800 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2801 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2802 }
2803 /*
2804 * Handle chip-reported errors, or continue on to handle PIO.
2805 */
2806 if (unlikely(port_cause & ERR_IRQ)) {
2807 mv_err_intr(ap);
2808 } else if (!edma_was_enabled) {
2809 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2810 if (qc)
2811 ata_sff_host_intr(ap, qc);
2812 else
2813 mv_unexpected_intr(ap, edma_was_enabled);
2814 }
2815}
2816
05b308e1
BR
2817/**
2818 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2819 * @host: host specific structure
7368f919 2820 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2821 *
2822 * LOCKING:
2823 * Inherited from caller.
2824 */
7368f919 2825static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2826{
f351b2d6 2827 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2828 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2829 unsigned int handled = 0, port;
20f733e7 2830
2b748a0a
ML
2831 /* If asserted, clear the "all ports" IRQ coalescing bit */
2832 if (main_irq_cause & ALL_PORTS_COAL_DONE)
cae5a29d 2833 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2b748a0a 2834
a3718c1f 2835 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2836 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2837 unsigned int p, shift, hardport, port_cause;
2838
a3718c1f 2839 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2840 /*
eabd5eb1
ML
2841 * Each hc within the host has its own hc_irq_cause register,
2842 * where the interrupting ports bits get ack'd.
a3718c1f 2843 */
eabd5eb1
ML
2844 if (hardport == 0) { /* first port on this hc ? */
2845 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2846 u32 port_mask, ack_irqs;
2847 /*
2848 * Skip this entire hc if nothing pending for any ports
2849 */
2850 if (!hc_cause) {
2851 port += MV_PORTS_PER_HC - 1;
2852 continue;
2853 }
2854 /*
2855 * We don't need/want to read the hc_irq_cause register,
2856 * because doing so hurts performance, and
2857 * main_irq_cause already gives us everything we need.
2858 *
2859 * But we do have to *write* to the hc_irq_cause to ack
2860 * the ports that we are handling this time through.
2861 *
2862 * This requires that we create a bitmap for those
2863 * ports which interrupted us, and use that bitmap
2864 * to ack (only) those ports via hc_irq_cause.
2865 */
2866 ack_irqs = 0;
2b748a0a
ML
2867 if (hc_cause & PORTS_0_3_COAL_DONE)
2868 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2869 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2870 if ((port + p) >= hpriv->n_ports)
2871 break;
2872 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2873 if (hc_cause & port_mask)
2874 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2875 }
a3718c1f 2876 hc_mmio = mv_hc_base_from_port(mmio, port);
cae5a29d 2877 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
a3718c1f
ML
2878 handled = 1;
2879 }
8f767f8a 2880 /*
a9010329 2881 * Handle interrupts signalled for this port:
8f767f8a 2882 */
a9010329
ML
2883 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2884 if (port_cause)
2885 mv_port_intr(ap, port_cause);
20f733e7 2886 }
a3718c1f 2887 return handled;
20f733e7
BR
2888}
2889
a3718c1f 2890static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2891{
02a121da 2892 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2893 struct ata_port *ap;
2894 struct ata_queued_cmd *qc;
2895 struct ata_eh_info *ehi;
2896 unsigned int i, err_mask, printed = 0;
2897 u32 err_cause;
2898
cae5a29d 2899 err_cause = readl(mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2900
2901 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2902 err_cause);
2903
2904 DPRINTK("All regs @ PCI error\n");
2905 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2906
cae5a29d 2907 writelfl(0, mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2908
2909 for (i = 0; i < host->n_ports; i++) {
2910 ap = host->ports[i];
936fd732 2911 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2912 ehi = &ap->link.eh_info;
bdd4ddde
JG
2913 ata_ehi_clear_desc(ehi);
2914 if (!printed++)
2915 ata_ehi_push_desc(ehi,
2916 "PCI err cause 0x%08x", err_cause);
2917 err_mask = AC_ERR_HOST_BUS;
cf480626 2918 ehi->action = ATA_EH_RESET;
9af5c9c9 2919 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2920 if (qc)
2921 qc->err_mask |= err_mask;
2922 else
2923 ehi->err_mask |= err_mask;
2924
2925 ata_port_freeze(ap);
2926 }
2927 }
a3718c1f 2928 return 1; /* handled */
bdd4ddde
JG
2929}
2930
05b308e1 2931/**
c5d3e45a 2932 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2933 * @irq: unused
2934 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2935 *
2936 * Read the read only register to determine if any host
2937 * controllers have pending interrupts. If so, call lower level
2938 * routine to handle. Also check for PCI errors which are only
2939 * reported here.
2940 *
8b260248 2941 * LOCKING:
cca3974e 2942 * This routine holds the host lock while processing pending
05b308e1
BR
2943 * interrupts.
2944 */
7d12e780 2945static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 2946{
cca3974e 2947 struct ata_host *host = dev_instance;
f351b2d6 2948 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 2949 unsigned int handled = 0;
6d3c30ef 2950 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 2951 u32 main_irq_cause, pending_irqs;
20f733e7 2952
646a4da5 2953 spin_lock(&host->lock);
6d3c30ef
ML
2954
2955 /* for MSI: block new interrupts while in here */
2956 if (using_msi)
2b748a0a 2957 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 2958
7368f919 2959 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 2960 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
2961 /*
2962 * Deal with cases where we either have nothing pending, or have read
2963 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 2964 */
a44253d2 2965 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 2966 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
2967 handled = mv_pci_error(host, hpriv->base);
2968 else
a44253d2 2969 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 2970 }
6d3c30ef
ML
2971
2972 /* for MSI: unmask; interrupt cause bits will retrigger now */
2973 if (using_msi)
2b748a0a 2974 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 2975
9d51af7b
ML
2976 spin_unlock(&host->lock);
2977
20f733e7
BR
2978 return IRQ_RETVAL(handled);
2979}
2980
c9d39130
JG
2981static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2982{
2983 unsigned int ofs;
2984
2985 switch (sc_reg_in) {
2986 case SCR_STATUS:
2987 case SCR_ERROR:
2988 case SCR_CONTROL:
2989 ofs = sc_reg_in * sizeof(u32);
2990 break;
2991 default:
2992 ofs = 0xffffffffU;
2993 break;
2994 }
2995 return ofs;
2996}
2997
82ef04fb 2998static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 2999{
82ef04fb 3000 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3001 void __iomem *mmio = hpriv->base;
82ef04fb 3002 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3003 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3004
da3dbb17
TH
3005 if (ofs != 0xffffffffU) {
3006 *val = readl(addr + ofs);
3007 return 0;
3008 } else
3009 return -EINVAL;
c9d39130
JG
3010}
3011
82ef04fb 3012static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 3013{
82ef04fb 3014 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3015 void __iomem *mmio = hpriv->base;
82ef04fb 3016 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3017 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3018
da3dbb17 3019 if (ofs != 0xffffffffU) {
0d5ff566 3020 writelfl(val, addr + ofs);
da3dbb17
TH
3021 return 0;
3022 } else
3023 return -EINVAL;
c9d39130
JG
3024}
3025
7bb3c529 3026static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 3027{
7bb3c529 3028 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
3029 int early_5080;
3030
44c10138 3031 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
3032
3033 if (!early_5080) {
3034 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3035 tmp |= (1 << 0);
3036 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3037 }
3038
7bb3c529 3039 mv_reset_pci_bus(host, mmio);
522479fb
JG
3040}
3041
3042static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3043{
cae5a29d 3044 writel(0x0fcfffff, mmio + FLASH_CTL);
522479fb
JG
3045}
3046
47c2b677 3047static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3048 void __iomem *mmio)
3049{
c9d39130
JG
3050 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3051 u32 tmp;
3052
3053 tmp = readl(phy_mmio + MV5_PHY_MODE);
3054
3055 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3056 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
3057}
3058
47c2b677 3059static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3060{
522479fb
JG
3061 u32 tmp;
3062
cae5a29d 3063 writel(0, mmio + GPIO_PORT_CTL);
522479fb
JG
3064
3065 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3066
3067 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068 tmp |= ~(1 << 0);
3069 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
3070}
3071
2a47ce06
JG
3072static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3073 unsigned int port)
bca1c4eb 3074{
c9d39130
JG
3075 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3076 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3077 u32 tmp;
3078 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3079
3080 if (fix_apm_sq) {
cae5a29d 3081 tmp = readl(phy_mmio + MV5_LTMODE);
c9d39130 3082 tmp |= (1 << 19);
cae5a29d 3083 writel(tmp, phy_mmio + MV5_LTMODE);
c9d39130 3084
cae5a29d 3085 tmp = readl(phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3086 tmp &= ~0x3;
3087 tmp |= 0x1;
cae5a29d 3088 writel(tmp, phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3089 }
3090
3091 tmp = readl(phy_mmio + MV5_PHY_MODE);
3092 tmp &= ~mask;
3093 tmp |= hpriv->signal[port].pre;
3094 tmp |= hpriv->signal[port].amps;
3095 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3096}
3097
c9d39130
JG
3098
3099#undef ZERO
3100#define ZERO(reg) writel(0, port_mmio + (reg))
3101static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3102 unsigned int port)
3103{
3104 void __iomem *port_mmio = mv_port_base(mmio, port);
3105
e12bef50 3106 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3107
3108 ZERO(0x028); /* command */
cae5a29d 3109 writel(0x11f, port_mmio + EDMA_CFG);
c9d39130
JG
3110 ZERO(0x004); /* timer */
3111 ZERO(0x008); /* irq err cause */
3112 ZERO(0x00c); /* irq err mask */
3113 ZERO(0x010); /* rq bah */
3114 ZERO(0x014); /* rq inp */
3115 ZERO(0x018); /* rq outp */
3116 ZERO(0x01c); /* respq bah */
3117 ZERO(0x024); /* respq outp */
3118 ZERO(0x020); /* respq inp */
3119 ZERO(0x02c); /* test control */
cae5a29d 3120 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
c9d39130
JG
3121}
3122#undef ZERO
3123
3124#define ZERO(reg) writel(0, hc_mmio + (reg))
3125static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3126 unsigned int hc)
47c2b677 3127{
c9d39130
JG
3128 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3129 u32 tmp;
3130
3131 ZERO(0x00c);
3132 ZERO(0x010);
3133 ZERO(0x014);
3134 ZERO(0x018);
3135
3136 tmp = readl(hc_mmio + 0x20);
3137 tmp &= 0x1c1c1c1c;
3138 tmp |= 0x03030303;
3139 writel(tmp, hc_mmio + 0x20);
3140}
3141#undef ZERO
3142
3143static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3144 unsigned int n_hc)
3145{
3146 unsigned int hc, port;
3147
3148 for (hc = 0; hc < n_hc; hc++) {
3149 for (port = 0; port < MV_PORTS_PER_HC; port++)
3150 mv5_reset_hc_port(hpriv, mmio,
3151 (hc * MV_PORTS_PER_HC) + port);
3152
3153 mv5_reset_one_hc(hpriv, mmio, hc);
3154 }
3155
3156 return 0;
47c2b677
JG
3157}
3158
101ffae2
JG
3159#undef ZERO
3160#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3161static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3162{
02a121da 3163 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3164 u32 tmp;
3165
cae5a29d 3166 tmp = readl(mmio + MV_PCI_MODE);
101ffae2 3167 tmp &= 0xff00ffff;
cae5a29d 3168 writel(tmp, mmio + MV_PCI_MODE);
101ffae2
JG
3169
3170 ZERO(MV_PCI_DISC_TIMER);
3171 ZERO(MV_PCI_MSI_TRIGGER);
cae5a29d 3172 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
101ffae2 3173 ZERO(MV_PCI_SERR_MASK);
cae5a29d
ML
3174 ZERO(hpriv->irq_cause_offset);
3175 ZERO(hpriv->irq_mask_offset);
101ffae2
JG
3176 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3177 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3178 ZERO(MV_PCI_ERR_ATTRIBUTE);
3179 ZERO(MV_PCI_ERR_COMMAND);
3180}
3181#undef ZERO
3182
3183static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3184{
3185 u32 tmp;
3186
3187 mv5_reset_flash(hpriv, mmio);
3188
cae5a29d 3189 tmp = readl(mmio + GPIO_PORT_CTL);
101ffae2
JG
3190 tmp &= 0x3;
3191 tmp |= (1 << 5) | (1 << 6);
cae5a29d 3192 writel(tmp, mmio + GPIO_PORT_CTL);
101ffae2
JG
3193}
3194
3195/**
3196 * mv6_reset_hc - Perform the 6xxx global soft reset
3197 * @mmio: base address of the HBA
3198 *
3199 * This routine only applies to 6xxx parts.
3200 *
3201 * LOCKING:
3202 * Inherited from caller.
3203 */
c9d39130
JG
3204static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3205 unsigned int n_hc)
101ffae2 3206{
cae5a29d 3207 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
101ffae2
JG
3208 int i, rc = 0;
3209 u32 t;
3210
3211 /* Following procedure defined in PCI "main command and status
3212 * register" table.
3213 */
3214 t = readl(reg);
3215 writel(t | STOP_PCI_MASTER, reg);
3216
3217 for (i = 0; i < 1000; i++) {
3218 udelay(1);
3219 t = readl(reg);
2dcb407e 3220 if (PCI_MASTER_EMPTY & t)
101ffae2 3221 break;
101ffae2
JG
3222 }
3223 if (!(PCI_MASTER_EMPTY & t)) {
3224 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3225 rc = 1;
3226 goto done;
3227 }
3228
3229 /* set reset */
3230 i = 5;
3231 do {
3232 writel(t | GLOB_SFT_RST, reg);
3233 t = readl(reg);
3234 udelay(1);
3235 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3236
3237 if (!(GLOB_SFT_RST & t)) {
3238 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3239 rc = 1;
3240 goto done;
3241 }
3242
3243 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3244 i = 5;
3245 do {
3246 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3247 t = readl(reg);
3248 udelay(1);
3249 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3250
3251 if (GLOB_SFT_RST & t) {
3252 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3253 rc = 1;
3254 }
3255done:
3256 return rc;
3257}
3258
47c2b677 3259static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3260 void __iomem *mmio)
3261{
3262 void __iomem *port_mmio;
3263 u32 tmp;
3264
cae5a29d 3265 tmp = readl(mmio + RESET_CFG);
ba3fe8fb 3266 if ((tmp & (1 << 0)) == 0) {
47c2b677 3267 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3268 hpriv->signal[idx].pre = 0x1 << 5;
3269 return;
3270 }
3271
3272 port_mmio = mv_port_base(mmio, idx);
3273 tmp = readl(port_mmio + PHY_MODE2);
3274
3275 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3276 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3277}
3278
47c2b677 3279static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3280{
cae5a29d 3281 writel(0x00000060, mmio + GPIO_PORT_CTL);
ba3fe8fb
JG
3282}
3283
c9d39130 3284static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3285 unsigned int port)
bca1c4eb 3286{
c9d39130
JG
3287 void __iomem *port_mmio = mv_port_base(mmio, port);
3288
bca1c4eb 3289 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3290 int fix_phy_mode2 =
3291 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3292 int fix_phy_mode4 =
47c2b677 3293 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3294 u32 m2, m3;
47c2b677
JG
3295
3296 if (fix_phy_mode2) {
3297 m2 = readl(port_mmio + PHY_MODE2);
3298 m2 &= ~(1 << 16);
3299 m2 |= (1 << 31);
3300 writel(m2, port_mmio + PHY_MODE2);
3301
3302 udelay(200);
3303
3304 m2 = readl(port_mmio + PHY_MODE2);
3305 m2 &= ~((1 << 16) | (1 << 31));
3306 writel(m2, port_mmio + PHY_MODE2);
3307
3308 udelay(200);
3309 }
3310
8c30a8b9
ML
3311 /*
3312 * Gen-II/IIe PHY_MODE3 errata RM#2:
3313 * Achieves better receiver noise performance than the h/w default:
3314 */
3315 m3 = readl(port_mmio + PHY_MODE3);
3316 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3317
0388a8c0
ML
3318 /* Guideline 88F5182 (GL# SATA-S11) */
3319 if (IS_SOC(hpriv))
3320 m3 &= ~0x1c;
3321
bca1c4eb 3322 if (fix_phy_mode4) {
ba069e37
ML
3323 u32 m4 = readl(port_mmio + PHY_MODE4);
3324 /*
3325 * Enforce reserved-bit restrictions on GenIIe devices only.
3326 * For earlier chipsets, force only the internal config field
3327 * (workaround for errata FEr SATA#10 part 1).
3328 */
8c30a8b9 3329 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3330 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3331 else
3332 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
8c30a8b9 3333 writel(m4, port_mmio + PHY_MODE4);
bca1c4eb 3334 }
b406c7a6
ML
3335 /*
3336 * Workaround for 60x1-B2 errata SATA#13:
3337 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3338 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3339 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6
ML
3340 */
3341 writel(m3, port_mmio + PHY_MODE3);
bca1c4eb
JG
3342
3343 /* Revert values of pre-emphasis and signal amps to the saved ones */
3344 m2 = readl(port_mmio + PHY_MODE2);
3345
3346 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3347 m2 |= hpriv->signal[port].amps;
3348 m2 |= hpriv->signal[port].pre;
47c2b677 3349 m2 &= ~(1 << 16);
bca1c4eb 3350
e4e7b892
JG
3351 /* according to mvSata 3.6.1, some IIE values are fixed */
3352 if (IS_GEN_IIE(hpriv)) {
3353 m2 &= ~0xC30FF01F;
3354 m2 |= 0x0000900F;
3355 }
3356
bca1c4eb
JG
3357 writel(m2, port_mmio + PHY_MODE2);
3358}
3359
f351b2d6
SB
3360/* TODO: use the generic LED interface to configure the SATA Presence */
3361/* & Acitivy LEDs on the board */
3362static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3363 void __iomem *mmio)
3364{
3365 return;
3366}
3367
3368static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3369 void __iomem *mmio)
3370{
3371 void __iomem *port_mmio;
3372 u32 tmp;
3373
3374 port_mmio = mv_port_base(mmio, idx);
3375 tmp = readl(port_mmio + PHY_MODE2);
3376
3377 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3378 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3379}
3380
3381#undef ZERO
3382#define ZERO(reg) writel(0, port_mmio + (reg))
3383static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3384 void __iomem *mmio, unsigned int port)
3385{
3386 void __iomem *port_mmio = mv_port_base(mmio, port);
3387
e12bef50 3388 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3389
3390 ZERO(0x028); /* command */
cae5a29d 3391 writel(0x101f, port_mmio + EDMA_CFG);
f351b2d6
SB
3392 ZERO(0x004); /* timer */
3393 ZERO(0x008); /* irq err cause */
3394 ZERO(0x00c); /* irq err mask */
3395 ZERO(0x010); /* rq bah */
3396 ZERO(0x014); /* rq inp */
3397 ZERO(0x018); /* rq outp */
3398 ZERO(0x01c); /* respq bah */
3399 ZERO(0x024); /* respq outp */
3400 ZERO(0x020); /* respq inp */
3401 ZERO(0x02c); /* test control */
d7b0c143 3402 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
f351b2d6
SB
3403}
3404
3405#undef ZERO
3406
3407#define ZERO(reg) writel(0, hc_mmio + (reg))
3408static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3409 void __iomem *mmio)
3410{
3411 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3412
3413 ZERO(0x00c);
3414 ZERO(0x010);
3415 ZERO(0x014);
3416
3417}
3418
3419#undef ZERO
3420
3421static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3422 void __iomem *mmio, unsigned int n_hc)
3423{
3424 unsigned int port;
3425
3426 for (port = 0; port < hpriv->n_ports; port++)
3427 mv_soc_reset_hc_port(hpriv, mmio, port);
3428
3429 mv_soc_reset_one_hc(hpriv, mmio);
3430
3431 return 0;
3432}
3433
3434static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3435 void __iomem *mmio)
3436{
3437 return;
3438}
3439
3440static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3441{
3442 return;
3443}
3444
29b7e43c
MM
3445static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3446 void __iomem *mmio, unsigned int port)
3447{
3448 void __iomem *port_mmio = mv_port_base(mmio, port);
3449 u32 reg;
3450
3451 reg = readl(port_mmio + PHY_MODE3);
3452 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3453 reg |= (0x1 << 27);
3454 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3455 reg |= (0x1 << 29);
3456 writel(reg, port_mmio + PHY_MODE3);
3457
3458 reg = readl(port_mmio + PHY_MODE4);
3459 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3460 reg |= (0x1 << 16);
3461 writel(reg, port_mmio + PHY_MODE4);
3462
3463 reg = readl(port_mmio + PHY_MODE9_GEN2);
3464 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3465 reg |= 0x8;
3466 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3467 writel(reg, port_mmio + PHY_MODE9_GEN2);
3468
3469 reg = readl(port_mmio + PHY_MODE9_GEN1);
3470 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3471 reg |= 0x8;
3472 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3473 writel(reg, port_mmio + PHY_MODE9_GEN1);
3474}
3475
3476/**
3477 * soc_is_65 - check if the soc is 65 nano device
3478 *
3479 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3480 * register, this register should contain non-zero value and it exists only
3481 * in the 65 nano devices, when reading it from older devices we get 0.
3482 */
3483static bool soc_is_65n(struct mv_host_priv *hpriv)
3484{
3485 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3486
3487 if (readl(port0_mmio + PHYCFG_OFS))
3488 return true;
3489 return false;
3490}
3491
8e7decdb 3492static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3493{
cae5a29d 3494 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
b67a1064 3495
8e7decdb 3496 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3497 if (want_gen2i)
8e7decdb 3498 ifcfg |= (1 << 7); /* enable gen2i speed */
cae5a29d 3499 writelfl(ifcfg, port_mmio + SATA_IFCFG);
b67a1064
ML
3500}
3501
e12bef50 3502static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3503 unsigned int port_no)
3504{
3505 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3506
8e7decdb
ML
3507 /*
3508 * The datasheet warns against setting EDMA_RESET when EDMA is active
3509 * (but doesn't say what the problem might be). So we first try
3510 * to disable the EDMA engine before doing the EDMA_RESET operation.
3511 */
0d8be5cb 3512 mv_stop_edma_engine(port_mmio);
cae5a29d 3513 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
c9d39130 3514
b67a1064 3515 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3516 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3517 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3518 }
b67a1064 3519 /*
8e7decdb 3520 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064 3521 * link, and physical layers. It resets all SATA interface registers
cae5a29d 3522 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
c9d39130 3523 */
cae5a29d 3524 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
b67a1064 3525 udelay(25); /* allow reset propagation */
cae5a29d 3526 writelfl(0, port_mmio + EDMA_CMD);
c9d39130
JG
3527
3528 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3529
ee9ccdf7 3530 if (IS_GEN_I(hpriv))
c9d39130
JG
3531 mdelay(1);
3532}
3533
e49856d8 3534static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3535{
e49856d8
ML
3536 if (sata_pmp_supported(ap)) {
3537 void __iomem *port_mmio = mv_ap_base(ap);
cae5a29d 3538 u32 reg = readl(port_mmio + SATA_IFCTL);
e49856d8 3539 int old = reg & 0xf;
22374677 3540
e49856d8
ML
3541 if (old != pmp) {
3542 reg = (reg & ~0xf) | pmp;
cae5a29d 3543 writelfl(reg, port_mmio + SATA_IFCTL);
e49856d8 3544 }
22374677 3545 }
20f733e7
BR
3546}
3547
e49856d8
ML
3548static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3549 unsigned long deadline)
22374677 3550{
e49856d8
ML
3551 mv_pmp_select(link->ap, sata_srst_pmp(link));
3552 return sata_std_hardreset(link, class, deadline);
3553}
bdd4ddde 3554
e49856d8
ML
3555static int mv_softreset(struct ata_link *link, unsigned int *class,
3556 unsigned long deadline)
3557{
3558 mv_pmp_select(link->ap, sata_srst_pmp(link));
3559 return ata_sff_softreset(link, class, deadline);
22374677
JG
3560}
3561
cc0680a5 3562static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3563 unsigned long deadline)
31961943 3564{
cc0680a5 3565 struct ata_port *ap = link->ap;
bdd4ddde 3566 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3567 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3568 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3569 int rc, attempts = 0, extra = 0;
3570 u32 sstatus;
3571 bool online;
31961943 3572
e12bef50 3573 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3574 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3575 pp->pp_flags &=
3576 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3577
0d8be5cb
ML
3578 /* Workaround for errata FEr SATA#10 (part 2) */
3579 do {
17c5aab5
ML
3580 const unsigned long *timing =
3581 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3582
17c5aab5
ML
3583 rc = sata_link_hardreset(link, timing, deadline + extra,
3584 &online, NULL);
9dcffd99 3585 rc = online ? -EAGAIN : rc;
17c5aab5 3586 if (rc)
0d8be5cb 3587 return rc;
0d8be5cb
ML
3588 sata_scr_read(link, SCR_STATUS, &sstatus);
3589 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3590 /* Force 1.5gb/s link speed and try again */
8e7decdb 3591 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3592 if (time_after(jiffies + HZ, deadline))
3593 extra = HZ; /* only extend it once, max */
3594 }
3595 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3596 mv_save_cached_regs(ap);
66e57a2c 3597 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3598
17c5aab5 3599 return rc;
bdd4ddde
JG
3600}
3601
bdd4ddde
JG
3602static void mv_eh_freeze(struct ata_port *ap)
3603{
1cfd19ae 3604 mv_stop_edma(ap);
c4de573b 3605 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3606}
3607
3608static void mv_eh_thaw(struct ata_port *ap)
3609{
f351b2d6 3610 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3611 unsigned int port = ap->port_no;
3612 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3613 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3614 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3615 u32 hc_irq_cause;
bdd4ddde 3616
bdd4ddde 3617 /* clear EDMA errors on this port */
cae5a29d 3618 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde
JG
3619
3620 /* clear pending irq events */
cae6edc3 3621 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 3622 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
bdd4ddde 3623
88e675e1 3624 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3625}
3626
05b308e1
BR
3627/**
3628 * mv_port_init - Perform some early initialization on a single port.
3629 * @port: libata data structure storing shadow register addresses
3630 * @port_mmio: base address of the port
3631 *
3632 * Initialize shadow register mmio addresses, clear outstanding
3633 * interrupts on the port, and unmask interrupts for the future
3634 * start of the port.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
31961943 3639static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3640{
cae5a29d 3641 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
31961943 3642
8b260248 3643 /* PIO related setup
31961943
BR
3644 */
3645 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3646 port->error_addr =
31961943
BR
3647 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3648 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3649 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3650 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3651 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3652 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3653 port->status_addr =
31961943
BR
3654 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3655 /* special case: control/altstatus doesn't have ATA_REG_ address */
cae5a29d 3656 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
31961943
BR
3657
3658 /* unused: */
8d9db2d2 3659 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
20f733e7 3660
31961943 3661 /* Clear any currently outstanding port interrupt conditions */
cae5a29d
ML
3662 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3663 writelfl(readl(serr), serr);
3664 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
31961943 3665
646a4da5 3666 /* unmask all non-transient EDMA error interrupts */
cae5a29d 3667 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
20f733e7 3668
8b260248 3669 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
cae5a29d
ML
3670 readl(port_mmio + EDMA_CFG),
3671 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3672 readl(port_mmio + EDMA_ERR_IRQ_MASK));
20f733e7
BR
3673}
3674
616d4a98
ML
3675static unsigned int mv_in_pcix_mode(struct ata_host *host)
3676{
3677 struct mv_host_priv *hpriv = host->private_data;
3678 void __iomem *mmio = hpriv->base;
3679 u32 reg;
3680
1f398472 3681 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98 3682 return 0; /* not PCI-X capable */
cae5a29d 3683 reg = readl(mmio + MV_PCI_MODE);
616d4a98
ML
3684 if ((reg & MV_PCI_MODE_MASK) == 0)
3685 return 0; /* conventional PCI mode */
3686 return 1; /* chip is in PCI-X mode */
3687}
3688
3689static int mv_pci_cut_through_okay(struct ata_host *host)
3690{
3691 struct mv_host_priv *hpriv = host->private_data;
3692 void __iomem *mmio = hpriv->base;
3693 u32 reg;
3694
3695 if (!mv_in_pcix_mode(host)) {
cae5a29d
ML
3696 reg = readl(mmio + MV_PCI_COMMAND);
3697 if (reg & MV_PCI_COMMAND_MRDTRIG)
616d4a98
ML
3698 return 0; /* not okay */
3699 }
3700 return 1; /* okay */
3701}
3702
65ad7fef
ML
3703static void mv_60x1b2_errata_pci7(struct ata_host *host)
3704{
3705 struct mv_host_priv *hpriv = host->private_data;
3706 void __iomem *mmio = hpriv->base;
3707
3708 /* workaround for 60x1-B2 errata PCI#7 */
3709 if (mv_in_pcix_mode(host)) {
cae5a29d
ML
3710 u32 reg = readl(mmio + MV_PCI_COMMAND);
3711 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
65ad7fef
ML
3712 }
3713}
3714
4447d351 3715static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3716{
4447d351
TH
3717 struct pci_dev *pdev = to_pci_dev(host->dev);
3718 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3719 u32 hp_flags = hpriv->hp_flags;
3720
5796d1c4 3721 switch (board_idx) {
47c2b677
JG
3722 case chip_5080:
3723 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3724 hp_flags |= MV_HP_GEN_I;
47c2b677 3725
44c10138 3726 switch (pdev->revision) {
47c2b677
JG
3727 case 0x1:
3728 hp_flags |= MV_HP_ERRATA_50XXB0;
3729 break;
3730 case 0x3:
3731 hp_flags |= MV_HP_ERRATA_50XXB2;
3732 break;
3733 default:
3734 dev_printk(KERN_WARNING, &pdev->dev,
3735 "Applying 50XXB2 workarounds to unknown rev\n");
3736 hp_flags |= MV_HP_ERRATA_50XXB2;
3737 break;
3738 }
3739 break;
3740
bca1c4eb
JG
3741 case chip_504x:
3742 case chip_508x:
47c2b677 3743 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3744 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3745
44c10138 3746 switch (pdev->revision) {
47c2b677
JG
3747 case 0x0:
3748 hp_flags |= MV_HP_ERRATA_50XXB0;
3749 break;
3750 case 0x3:
3751 hp_flags |= MV_HP_ERRATA_50XXB2;
3752 break;
3753 default:
3754 dev_printk(KERN_WARNING, &pdev->dev,
3755 "Applying B2 workarounds to unknown rev\n");
3756 hp_flags |= MV_HP_ERRATA_50XXB2;
3757 break;
bca1c4eb
JG
3758 }
3759 break;
3760
3761 case chip_604x:
3762 case chip_608x:
47c2b677 3763 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3764 hp_flags |= MV_HP_GEN_II;
47c2b677 3765
44c10138 3766 switch (pdev->revision) {
47c2b677 3767 case 0x7:
65ad7fef 3768 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3769 hp_flags |= MV_HP_ERRATA_60X1B2;
3770 break;
3771 case 0x9:
3772 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3773 break;
3774 default:
3775 dev_printk(KERN_WARNING, &pdev->dev,
47c2b677
JG
3776 "Applying B2 workarounds to unknown rev\n");
3777 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3778 break;
3779 }
3780 break;
3781
e4e7b892 3782 case chip_7042:
616d4a98 3783 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3784 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3785 (pdev->device == 0x2300 || pdev->device == 0x2310))
3786 {
4e520033
ML
3787 /*
3788 * Highpoint RocketRAID PCIe 23xx series cards:
3789 *
3790 * Unconfigured drives are treated as "Legacy"
3791 * by the BIOS, and it overwrites sector 8 with
3792 * a "Lgcy" metadata block prior to Linux boot.
3793 *
3794 * Configured drives (RAID or JBOD) leave sector 8
3795 * alone, but instead overwrite a high numbered
3796 * sector for the RAID metadata. This sector can
3797 * be determined exactly, by truncating the physical
3798 * drive capacity to a nice even GB value.
3799 *
3800 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3801 *
3802 * Warn the user, lest they think we're just buggy.
3803 */
3804 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3805 " BIOS CORRUPTS DATA on all attached drives,"
3806 " regardless of if/how they are configured."
3807 " BEWARE!\n");
3808 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3809 " use sectors 8-9 on \"Legacy\" drives,"
3810 " and avoid the final two gigabytes on"
3811 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3812 }
8e7decdb 3813 /* drop through */
e4e7b892
JG
3814 case chip_6042:
3815 hpriv->ops = &mv6xxx_ops;
e4e7b892 3816 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3817 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3818 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3819
44c10138 3820 switch (pdev->revision) {
5cf73bfb 3821 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3822 hp_flags |= MV_HP_ERRATA_60X1C0;
3823 break;
3824 default:
3825 dev_printk(KERN_WARNING, &pdev->dev,
3826 "Applying 60X1C0 workarounds to unknown rev\n");
3827 hp_flags |= MV_HP_ERRATA_60X1C0;
3828 break;
3829 }
3830 break;
f351b2d6 3831 case chip_soc:
29b7e43c
MM
3832 if (soc_is_65n(hpriv))
3833 hpriv->ops = &mv_soc_65n_ops;
3834 else
3835 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3836 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3837 MV_HP_ERRATA_60X1C0;
f351b2d6 3838 break;
e4e7b892 3839
bca1c4eb 3840 default:
f351b2d6 3841 dev_printk(KERN_ERR, host->dev,
5796d1c4 3842 "BUG: invalid board index %u\n", board_idx);
bca1c4eb
JG
3843 return 1;
3844 }
3845
3846 hpriv->hp_flags = hp_flags;
02a121da 3847 if (hp_flags & MV_HP_PCIE) {
cae5a29d
ML
3848 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3849 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
02a121da
ML
3850 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3851 } else {
cae5a29d
ML
3852 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3853 hpriv->irq_mask_offset = PCI_IRQ_MASK;
02a121da
ML
3854 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3855 }
bca1c4eb
JG
3856
3857 return 0;
3858}
3859
05b308e1 3860/**
47c2b677 3861 * mv_init_host - Perform some early initialization of the host.
4447d351 3862 * @host: ATA host to initialize
05b308e1
BR
3863 *
3864 * If possible, do an early global reset of the host. Then do
3865 * our port init and clear/unmask all/relevant host interrupts.
3866 *
3867 * LOCKING:
3868 * Inherited from caller.
3869 */
1bfeff03 3870static int mv_init_host(struct ata_host *host)
20f733e7
BR
3871{
3872 int rc = 0, n_hc, port, hc;
4447d351 3873 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3874 void __iomem *mmio = hpriv->base;
47c2b677 3875
1bfeff03 3876 rc = mv_chip_id(host, hpriv->board_idx);
bca1c4eb 3877 if (rc)
352fab70 3878 goto done;
f351b2d6 3879
1f398472 3880 if (IS_SOC(hpriv)) {
cae5a29d
ML
3881 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3882 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
1f398472 3883 } else {
cae5a29d
ML
3884 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3885 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
f351b2d6 3886 }
352fab70 3887
5d0fb2e7
TR
3888 /* initialize shadow irq mask with register's value */
3889 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3890
352fab70 3891 /* global interrupt mask: 0 == mask everything */
c4de573b 3892 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3893
4447d351 3894 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3895
4447d351 3896 for (port = 0; port < host->n_ports; port++)
29b7e43c
MM
3897 if (hpriv->ops->read_preamp)
3898 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3899
c9d39130 3900 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3901 if (rc)
20f733e7 3902 goto done;
20f733e7 3903
522479fb 3904 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3905 hpriv->ops->reset_bus(host, mmio);
47c2b677 3906 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3907
4447d351 3908 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3909 struct ata_port *ap = host->ports[port];
2a47ce06 3910 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3911
3912 mv_port_init(&ap->ioaddr, port_mmio);
20f733e7
BR
3913 }
3914
3915 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3916 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3917
3918 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3919 "(before clear)=0x%08x\n", hc,
cae5a29d
ML
3920 readl(hc_mmio + HC_CFG),
3921 readl(hc_mmio + HC_IRQ_CAUSE));
31961943
BR
3922
3923 /* Clear any currently outstanding hc interrupt conditions */
cae5a29d 3924 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
20f733e7
BR
3925 }
3926
44c65d16
ML
3927 if (!IS_SOC(hpriv)) {
3928 /* Clear any currently outstanding host interrupt conditions */
cae5a29d 3929 writelfl(0, mmio + hpriv->irq_cause_offset);
31961943 3930
44c65d16 3931 /* and unmask interrupt generation for host regs */
cae5a29d 3932 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
44c65d16 3933 }
51de32d2 3934
6be96ac1
ML
3935 /*
3936 * enable only global host interrupts for now.
3937 * The per-port interrupts get done later as ports are set up.
3938 */
3939 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3940 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3941 irq_coalescing_usecs);
f351b2d6
SB
3942done:
3943 return rc;
3944}
fb621e2f 3945
fbf14e2f
BB
3946static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3947{
3948 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3949 MV_CRQB_Q_SZ, 0);
3950 if (!hpriv->crqb_pool)
3951 return -ENOMEM;
3952
3953 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3954 MV_CRPB_Q_SZ, 0);
3955 if (!hpriv->crpb_pool)
3956 return -ENOMEM;
3957
3958 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3959 MV_SG_TBL_SZ, 0);
3960 if (!hpriv->sg_tbl_pool)
3961 return -ENOMEM;
3962
3963 return 0;
3964}
3965
15a32632
LB
3966static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3967 struct mbus_dram_target_info *dram)
3968{
3969 int i;
3970
3971 for (i = 0; i < 4; i++) {
3972 writel(0, hpriv->base + WINDOW_CTRL(i));
3973 writel(0, hpriv->base + WINDOW_BASE(i));
3974 }
3975
3976 for (i = 0; i < dram->num_cs; i++) {
3977 struct mbus_dram_window *cs = dram->cs + i;
3978
3979 writel(((cs->size - 1) & 0xffff0000) |
3980 (cs->mbus_attr << 8) |
3981 (dram->mbus_dram_target_id << 4) | 1,
3982 hpriv->base + WINDOW_CTRL(i));
3983 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3984 }
3985}
3986
f351b2d6
SB
3987/**
3988 * mv_platform_probe - handle a positive probe of an soc Marvell
3989 * host
3990 * @pdev: platform device found
3991 *
3992 * LOCKING:
3993 * Inherited from caller.
3994 */
3995static int mv_platform_probe(struct platform_device *pdev)
3996{
3997 static int printed_version;
3998 const struct mv_sata_platform_data *mv_platform_data;
3999 const struct ata_port_info *ppi[] =
4000 { &mv_port_info[chip_soc], NULL };
4001 struct ata_host *host;
4002 struct mv_host_priv *hpriv;
4003 struct resource *res;
4004 int n_ports, rc;
20f733e7 4005
f351b2d6
SB
4006 if (!printed_version++)
4007 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
bca1c4eb 4008
f351b2d6
SB
4009 /*
4010 * Simple resource validation ..
4011 */
4012 if (unlikely(pdev->num_resources != 2)) {
4013 dev_err(&pdev->dev, "invalid number of resources\n");
4014 return -EINVAL;
4015 }
4016
4017 /*
4018 * Get the register base first
4019 */
4020 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4021 if (res == NULL)
4022 return -EINVAL;
4023
4024 /* allocate host */
4025 mv_platform_data = pdev->dev.platform_data;
4026 n_ports = mv_platform_data->n_ports;
4027
4028 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4029 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4030
4031 if (!host || !hpriv)
4032 return -ENOMEM;
4033 host->private_data = hpriv;
4034 hpriv->n_ports = n_ports;
1bfeff03 4035 hpriv->board_idx = chip_soc;
f351b2d6
SB
4036
4037 host->iomap = NULL;
f1cb0ea1 4038 hpriv->base = devm_ioremap(&pdev->dev, res->start,
041b5eac 4039 resource_size(res));
cae5a29d 4040 hpriv->base -= SATAHC0_REG_BASE;
f351b2d6 4041
c77a2f4e
SB
4042#if defined(CONFIG_HAVE_CLK)
4043 hpriv->clk = clk_get(&pdev->dev, NULL);
4044 if (IS_ERR(hpriv->clk))
4045 dev_notice(&pdev->dev, "cannot get clkdev\n");
4046 else
4047 clk_enable(hpriv->clk);
4048#endif
4049
15a32632
LB
4050 /*
4051 * (Re-)program MBUS remapping windows if we are asked to.
4052 */
4053 if (mv_platform_data->dram != NULL)
4054 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4055
fbf14e2f
BB
4056 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4057 if (rc)
c77a2f4e 4058 goto err;
fbf14e2f 4059
f351b2d6 4060 /* initialize adapter */
1bfeff03 4061 rc = mv_init_host(host);
f351b2d6 4062 if (rc)
c77a2f4e 4063 goto err;
f351b2d6
SB
4064
4065 dev_printk(KERN_INFO, &pdev->dev,
4066 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4067 host->n_ports);
4068
4069 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4070 IRQF_SHARED, &mv6_sht);
c77a2f4e
SB
4071err:
4072#if defined(CONFIG_HAVE_CLK)
4073 if (!IS_ERR(hpriv->clk)) {
4074 clk_disable(hpriv->clk);
4075 clk_put(hpriv->clk);
4076 }
4077#endif
4078
4079 return rc;
f351b2d6
SB
4080}
4081
4082/*
4083 *
4084 * mv_platform_remove - unplug a platform interface
4085 * @pdev: platform device
4086 *
4087 * A platform bus SATA device has been unplugged. Perform the needed
4088 * cleanup. Also called on module unload for any active devices.
4089 */
4090static int __devexit mv_platform_remove(struct platform_device *pdev)
4091{
4092 struct device *dev = &pdev->dev;
4093 struct ata_host *host = dev_get_drvdata(dev);
c77a2f4e
SB
4094#if defined(CONFIG_HAVE_CLK)
4095 struct mv_host_priv *hpriv = host->private_data;
4096#endif
f351b2d6 4097 ata_host_detach(host);
c77a2f4e
SB
4098
4099#if defined(CONFIG_HAVE_CLK)
4100 if (!IS_ERR(hpriv->clk)) {
4101 clk_disable(hpriv->clk);
4102 clk_put(hpriv->clk);
4103 }
4104#endif
f351b2d6 4105 return 0;
20f733e7
BR
4106}
4107
6481f2b5
SB
4108#ifdef CONFIG_PM
4109static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4110{
4111 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4112 if (host)
4113 return ata_host_suspend(host, state);
4114 else
4115 return 0;
4116}
4117
4118static int mv_platform_resume(struct platform_device *pdev)
4119{
4120 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4121 int ret;
4122
4123 if (host) {
4124 struct mv_host_priv *hpriv = host->private_data;
4125 const struct mv_sata_platform_data *mv_platform_data = \
4126 pdev->dev.platform_data;
4127 /*
4128 * (Re-)program MBUS remapping windows if we are asked to.
4129 */
4130 if (mv_platform_data->dram != NULL)
4131 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4132
4133 /* initialize adapter */
1bfeff03 4134 ret = mv_init_host(host);
6481f2b5
SB
4135 if (ret) {
4136 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4137 return ret;
4138 }
4139 ata_host_resume(host);
4140 }
4141
4142 return 0;
4143}
4144#else
4145#define mv_platform_suspend NULL
4146#define mv_platform_resume NULL
4147#endif
4148
f351b2d6
SB
4149static struct platform_driver mv_platform_driver = {
4150 .probe = mv_platform_probe,
4151 .remove = __devexit_p(mv_platform_remove),
6481f2b5
SB
4152 .suspend = mv_platform_suspend,
4153 .resume = mv_platform_resume,
f351b2d6
SB
4154 .driver = {
4155 .name = DRV_NAME,
4156 .owner = THIS_MODULE,
4157 },
4158};
4159
4160
7bb3c529 4161#ifdef CONFIG_PCI
f351b2d6
SB
4162static int mv_pci_init_one(struct pci_dev *pdev,
4163 const struct pci_device_id *ent);
4164
7bb3c529
SB
4165
4166static struct pci_driver mv_pci_driver = {
4167 .name = DRV_NAME,
4168 .id_table = mv_pci_tbl,
f351b2d6 4169 .probe = mv_pci_init_one,
7bb3c529
SB
4170 .remove = ata_pci_remove_one,
4171};
4172
7bb3c529
SB
4173/* move to PCI layer or libata core? */
4174static int pci_go_64(struct pci_dev *pdev)
4175{
4176 int rc;
4177
6a35528a
YH
4178 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4179 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
7bb3c529 4180 if (rc) {
284901a9 4181 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4182 if (rc) {
4183 dev_printk(KERN_ERR, &pdev->dev,
4184 "64-bit DMA enable failed\n");
4185 return rc;
4186 }
4187 }
4188 } else {
284901a9 4189 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4190 if (rc) {
4191 dev_printk(KERN_ERR, &pdev->dev,
4192 "32-bit DMA enable failed\n");
4193 return rc;
4194 }
284901a9 4195 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4196 if (rc) {
4197 dev_printk(KERN_ERR, &pdev->dev,
4198 "32-bit consistent DMA enable failed\n");
4199 return rc;
4200 }
4201 }
4202
4203 return rc;
4204}
4205
05b308e1
BR
4206/**
4207 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4208 * @host: ATA host to print info about
05b308e1
BR
4209 *
4210 * FIXME: complete this.
4211 *
4212 * LOCKING:
4213 * Inherited from caller.
4214 */
4447d351 4215static void mv_print_info(struct ata_host *host)
31961943 4216{
4447d351
TH
4217 struct pci_dev *pdev = to_pci_dev(host->dev);
4218 struct mv_host_priv *hpriv = host->private_data;
44c10138 4219 u8 scc;
c1e4fe71 4220 const char *scc_s, *gen;
31961943
BR
4221
4222 /* Use this to determine the HW stepping of the chip so we know
4223 * what errata to workaround
4224 */
31961943
BR
4225 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4226 if (scc == 0)
4227 scc_s = "SCSI";
4228 else if (scc == 0x01)
4229 scc_s = "RAID";
4230 else
c1e4fe71
JG
4231 scc_s = "?";
4232
4233 if (IS_GEN_I(hpriv))
4234 gen = "I";
4235 else if (IS_GEN_II(hpriv))
4236 gen = "II";
4237 else if (IS_GEN_IIE(hpriv))
4238 gen = "IIE";
4239 else
4240 gen = "?";
31961943 4241
a9524a76 4242 dev_printk(KERN_INFO, &pdev->dev,
c1e4fe71
JG
4243 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4244 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
31961943
BR
4245 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4246}
4247
05b308e1 4248/**
f351b2d6 4249 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4250 * @pdev: PCI device found
4251 * @ent: PCI device ID entry for the matched host
4252 *
4253 * LOCKING:
4254 * Inherited from caller.
4255 */
f351b2d6
SB
4256static int mv_pci_init_one(struct pci_dev *pdev,
4257 const struct pci_device_id *ent)
20f733e7 4258{
2dcb407e 4259 static int printed_version;
20f733e7 4260 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4261 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4262 struct ata_host *host;
4263 struct mv_host_priv *hpriv;
c4bc7d73 4264 int n_ports, port, rc;
20f733e7 4265
a9524a76
JG
4266 if (!printed_version++)
4267 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
20f733e7 4268
4447d351
TH
4269 /* allocate host */
4270 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4271
4272 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4273 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4274 if (!host || !hpriv)
4275 return -ENOMEM;
4276 host->private_data = hpriv;
f351b2d6 4277 hpriv->n_ports = n_ports;
1bfeff03 4278 hpriv->board_idx = board_idx;
4447d351
TH
4279
4280 /* acquire resources */
24dc5f33
TH
4281 rc = pcim_enable_device(pdev);
4282 if (rc)
20f733e7 4283 return rc;
20f733e7 4284
0d5ff566
TH
4285 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4286 if (rc == -EBUSY)
24dc5f33 4287 pcim_pin_device(pdev);
0d5ff566 4288 if (rc)
24dc5f33 4289 return rc;
4447d351 4290 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4291 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4292
d88184fb
JG
4293 rc = pci_go_64(pdev);
4294 if (rc)
4295 return rc;
4296
da2fa9ba
ML
4297 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4298 if (rc)
4299 return rc;
4300
c4bc7d73
SB
4301 for (port = 0; port < host->n_ports; port++) {
4302 struct ata_port *ap = host->ports[port];
4303 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4304 unsigned int offset = port_mmio - hpriv->base;
4305
4306 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4307 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4308 }
4309
20f733e7 4310 /* initialize adapter */
1bfeff03 4311 rc = mv_init_host(host);
24dc5f33
TH
4312 if (rc)
4313 return rc;
20f733e7 4314
6d3c30ef
ML
4315 /* Enable message-switched interrupts, if requested */
4316 if (msi && pci_enable_msi(pdev) == 0)
4317 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4318
31961943 4319 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4320 mv_print_info(host);
20f733e7 4321
4447d351 4322 pci_set_master(pdev);
ea8b4db9 4323 pci_try_set_mwi(pdev);
4447d351 4324 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4325 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4326}
7bb3c529 4327#endif
20f733e7 4328
f351b2d6
SB
4329static int mv_platform_probe(struct platform_device *pdev);
4330static int __devexit mv_platform_remove(struct platform_device *pdev);
4331
20f733e7
BR
4332static int __init mv_init(void)
4333{
7bb3c529
SB
4334 int rc = -ENODEV;
4335#ifdef CONFIG_PCI
4336 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4337 if (rc < 0)
4338 return rc;
4339#endif
4340 rc = platform_driver_register(&mv_platform_driver);
4341
4342#ifdef CONFIG_PCI
4343 if (rc < 0)
4344 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4345#endif
4346 return rc;
20f733e7
BR
4347}
4348
4349static void __exit mv_exit(void)
4350{
7bb3c529 4351#ifdef CONFIG_PCI
20f733e7 4352 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4353#endif
f351b2d6 4354 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4355}
4356
4357MODULE_AUTHOR("Brett Russ");
4358MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4359MODULE_LICENSE("GPL");
4360MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4361MODULE_VERSION(DRV_VERSION);
17c5aab5 4362MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4363
4364module_init(mv_init);
4365module_exit(mv_exit);